]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge tag 'drm-intel-fixes-2014-06-17' of git://anongit.freedesktop.org/drm-intel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(dev_priv->pm.irqs_disabled))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (WARN_ON(dev_priv->pm.irqs_disabled))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(dev_priv->pm.irqs_disabled))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(dev_priv->pm.irqs_disabled))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         uint32_t new_val;
264
265         assert_spin_locked(&dev_priv->irq_lock);
266
267         if (WARN_ON(dev_priv->pm.irqs_disabled))
268                 return;
269
270         new_val = dev_priv->pm_irq_mask;
271         new_val &= ~interrupt_mask;
272         new_val |= (~enabled_irq_mask & interrupt_mask);
273
274         if (new_val != dev_priv->pm_irq_mask) {
275                 dev_priv->pm_irq_mask = new_val;
276                 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277                 POSTING_READ(GEN8_GT_IMR(2));
278         }
279 }
280
281 void bdw_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void bdw_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288         bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294         enum pipe pipe;
295         struct intel_crtc *crtc;
296
297         assert_spin_locked(&dev_priv->irq_lock);
298
299         for_each_pipe(pipe) {
300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302                 if (crtc->pch_fifo_underrun_disabled)
303                         return false;
304         }
305
306         return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         struct intel_crtc *crtc;
313         unsigned long flags;
314
315         spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317         for_each_intel_crtc(dev, crtc) {
318                 u32 reg = PIPESTAT(crtc->pipe);
319                 u32 pipestat;
320
321                 if (crtc->cpu_fifo_underrun_disabled)
322                         continue;
323
324                 pipestat = I915_READ(reg) & 0xffff0000;
325                 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326                         continue;
327
328                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329                 POSTING_READ(reg);
330
331                 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332         }
333
334         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338                                              enum pipe pipe,
339                                              bool enable, bool old)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         u32 reg = PIPESTAT(pipe);
343         u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345         assert_spin_locked(&dev_priv->irq_lock);
346
347         if (enable) {
348                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349                 POSTING_READ(reg);
350         } else {
351                 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353         }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357                                                  enum pipe pipe, bool enable)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361                                           DE_PIPEB_FIFO_UNDERRUN;
362
363         if (enable)
364                 ironlake_enable_display_irq(dev_priv, bit);
365         else
366                 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370                                                   enum pipe pipe,
371                                                   bool enable, bool old)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         if (enable) {
375                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377                 if (!ivb_can_enable_err_int(dev))
378                         return;
379
380                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381         } else {
382                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384                 if (old &&
385                     I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386                         DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387                                   pipe_name(pipe));
388                 }
389         }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393                                                   enum pipe pipe, bool enable)
394 {
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         assert_spin_locked(&dev_priv->irq_lock);
398
399         if (enable)
400                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401         else
402                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414                                          uint32_t interrupt_mask,
415                                          uint32_t enabled_irq_mask)
416 {
417         uint32_t sdeimr = I915_READ(SDEIMR);
418         sdeimr &= ~interrupt_mask;
419         sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         if (WARN_ON(dev_priv->pm.irqs_disabled))
424                 return;
425
426         I915_WRITE(SDEIMR, sdeimr);
427         POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430         ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432         ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435                                             enum transcoder pch_transcoder,
436                                             bool enable)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442         if (enable)
443                 ibx_enable_display_interrupt(dev_priv, bit);
444         else
445                 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449                                             enum transcoder pch_transcoder,
450                                             bool enable, bool old)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453
454         if (enable) {
455                 I915_WRITE(SERR_INT,
456                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458                 if (!cpt_can_enable_serr_int(dev))
459                         return;
460
461                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462         } else {
463                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465                 if (old && I915_READ(SERR_INT) &
466                     SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467                         DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468                                   transcoder_name(pch_transcoder));
469                 }
470         }
471 }
472
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488                                                     enum pipe pipe, bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         bool old;
494
495         assert_spin_locked(&dev_priv->irq_lock);
496
497         old = !intel_crtc->cpu_fifo_underrun_disabled;
498         intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500         if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501                 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502         else if (IS_GEN5(dev) || IS_GEN6(dev))
503                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504         else if (IS_GEN7(dev))
505                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506         else if (IS_GEN8(dev))
507                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509         return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513                                            enum pipe pipe, bool enable)
514 {
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         unsigned long flags;
517         bool ret;
518
519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
520         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523         return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527                                                   enum pipe pipe)
528 {
529         struct drm_i915_private *dev_priv = dev->dev_private;
530         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533         return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551                                            enum transcoder pch_transcoder,
552                                            bool enable)
553 {
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557         unsigned long flags;
558         bool old;
559
560         /*
561          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562          * has only one pch transcoder A that all pipes can use. To avoid racy
563          * pch transcoder -> pipe lookups from interrupt code simply store the
564          * underrun statistics in crtc A. Since we never expose this anywhere
565          * nor use it outside of the fifo underrun code here using the "wrong"
566          * crtc on LPT won't cause issues.
567          */
568
569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571         old = !intel_crtc->pch_fifo_underrun_disabled;
572         intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574         if (HAS_PCH_IBX(dev))
575                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576         else
577                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580         return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586                        u32 enable_mask, u32 status_mask)
587 {
588         u32 reg = PIPESTAT(pipe);
589         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591         assert_spin_locked(&dev_priv->irq_lock);
592
593         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
595                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596                       pipe_name(pipe), enable_mask, status_mask))
597                 return;
598
599         if ((pipestat & enable_mask) == enable_mask)
600                 return;
601
602         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604         /* Enable the interrupt, clear any pending status */
605         pipestat |= enable_mask | status_mask;
606         I915_WRITE(reg, pipestat);
607         POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612                         u32 enable_mask, u32 status_mask)
613 {
614         u32 reg = PIPESTAT(pipe);
615         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617         assert_spin_locked(&dev_priv->irq_lock);
618
619         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                       pipe_name(pipe), enable_mask, status_mask))
623                 return;
624
625         if ((pipestat & enable_mask) == 0)
626                 return;
627
628         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630         pipestat &= ~enable_mask;
631         I915_WRITE(reg, pipestat);
632         POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637         u32 enable_mask = status_mask << 16;
638
639         /*
640          * On pipe A we don't support the PSR interrupt yet,
641          * on pipe B and C the same bit MBZ.
642          */
643         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644                 return 0;
645         /*
646          * On pipe B and C we don't support the PSR interrupt yet, on pipe
647          * A the same bit is for perf counters which we don't use either.
648          */
649         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650                 return 0;
651
652         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653                          SPRITE0_FLIP_DONE_INT_EN_VLV |
654                          SPRITE1_FLIP_DONE_INT_EN_VLV);
655         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660         return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665                      u32 status_mask)
666 {
667         u32 enable_mask;
668
669         if (IS_VALLEYVIEW(dev_priv->dev))
670                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671                                                            status_mask);
672         else
673                 enable_mask = status_mask << 16;
674         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679                       u32 status_mask)
680 {
681         u32 enable_mask;
682
683         if (IS_VALLEYVIEW(dev_priv->dev))
684                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685                                                            status_mask);
686         else
687                 enable_mask = status_mask << 16;
688         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         unsigned long irqflags;
698
699         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700                 return;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705         if (INTEL_INFO(dev)->gen >= 4)
706                 i915_enable_pipestat(dev_priv, PIPE_A,
707                                      PIPE_LEGACY_BLC_EVENT_STATUS);
708
709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725
726         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727                 /* Locking is horribly broken here, but whatever. */
728                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731                 return intel_crtc->active;
732         } else {
733                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734         }
735 }
736
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789         /* Gen2 doesn't have a hardware frame counter */
790         return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         unsigned long high_frame;
800         unsigned long low_frame;
801         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803         if (!i915_pipe_enabled(dev, pipe)) {
804                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805                                 "pipe %c\n", pipe_name(pipe));
806                 return 0;
807         }
808
809         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810                 struct intel_crtc *intel_crtc =
811                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812                 const struct drm_display_mode *mode =
813                         &intel_crtc->config.adjusted_mode;
814
815                 htotal = mode->crtc_htotal;
816                 hsync_start = mode->crtc_hsync_start;
817                 vbl_start = mode->crtc_vblank_start;
818                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
820         } else {
821                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
829         }
830
831         /* Convert to pixel count */
832         vbl_start *= htotal;
833
834         /* Start of vblank event occurs at start of hsync */
835         vbl_start -= htotal - hsync_start;
836
837         high_frame = PIPEFRAME(pipe);
838         low_frame = PIPEFRAMEPIXEL(pipe);
839
840         /*
841          * High & low register fields aren't synchronized, so make sure
842          * we get a low value that's stable across two reads of the high
843          * register.
844          */
845         do {
846                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847                 low   = I915_READ(low_frame);
848                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849         } while (high1 != high2);
850
851         high1 >>= PIPE_FRAME_HIGH_SHIFT;
852         pixel = low & PIPE_PIXEL_MASK;
853         low >>= PIPE_FRAME_LOW_SHIFT;
854
855         /*
856          * The frame counter increments at beginning of active.
857          * Cook up a vblank counter by also checking the pixel
858          * counter against vblank start.
859          */
860         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868         if (!i915_pipe_enabled(dev, pipe)) {
869                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870                                  "pipe %c\n", pipe_name(pipe));
871                 return 0;
872         }
873
874         return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882         struct drm_device *dev = crtc->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885         enum pipe pipe = crtc->pipe;
886         int position, vtotal;
887
888         vtotal = mode->crtc_vtotal;
889         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890                 vtotal /= 2;
891
892         if (IS_GEN2(dev))
893                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894         else
895                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897         /*
898          * See update_scanline_offset() for the details on the
899          * scanline_offset adjustment.
900          */
901         return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905                                     unsigned int flags, int *vpos, int *hpos,
906                                     ktime_t *stime, ktime_t *etime)
907 {
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912         int position;
913         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914         bool in_vbl = true;
915         int ret = 0;
916         unsigned long irqflags;
917
918         if (!intel_crtc->active) {
919                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920                                  "pipe %c\n", pipe_name(pipe));
921                 return 0;
922         }
923
924         htotal = mode->crtc_htotal;
925         hsync_start = mode->crtc_hsync_start;
926         vtotal = mode->crtc_vtotal;
927         vbl_start = mode->crtc_vblank_start;
928         vbl_end = mode->crtc_vblank_end;
929
930         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932                 vbl_end /= 2;
933                 vtotal /= 2;
934         }
935
936         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938         /*
939          * Lock uncore.lock, as we will do multiple timing critical raw
940          * register reads, potentially with preemption disabled, so the
941          * following code must not block on uncore.lock.
942          */
943         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947         /* Get optional system timestamp before query. */
948         if (stime)
949                 *stime = ktime_get();
950
951         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952                 /* No obvious pixelcount register. Only query vertical
953                  * scanout position from Display scan line register.
954                  */
955                 position = __intel_get_crtc_scanline(intel_crtc);
956         } else {
957                 /* Have access to pixelcount since start of frame.
958                  * We can split this into vertical and horizontal
959                  * scanout position.
960                  */
961                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963                 /* convert to pixel counts */
964                 vbl_start *= htotal;
965                 vbl_end *= htotal;
966                 vtotal *= htotal;
967
968                 /*
969                  * In interlaced modes, the pixel counter counts all pixels,
970                  * so one field will have htotal more pixels. In order to avoid
971                  * the reported position from jumping backwards when the pixel
972                  * counter is beyond the length of the shorter field, just
973                  * clamp the position the length of the shorter field. This
974                  * matches how the scanline counter based position works since
975                  * the scanline counter doesn't count the two half lines.
976                  */
977                 if (position >= vtotal)
978                         position = vtotal - 1;
979
980                 /*
981                  * Start of vblank interrupt is triggered at start of hsync,
982                  * just prior to the first active line of vblank. However we
983                  * consider lines to start at the leading edge of horizontal
984                  * active. So, should we get here before we've crossed into
985                  * the horizontal active of the first line in vblank, we would
986                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987                  * always add htotal-hsync_start to the current pixel position.
988                  */
989                 position = (position + htotal - hsync_start) % vtotal;
990         }
991
992         /* Get optional system timestamp after query. */
993         if (etime)
994                 *etime = ktime_get();
995
996         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000         in_vbl = position >= vbl_start && position < vbl_end;
1001
1002         /*
1003          * While in vblank, position will be negative
1004          * counting up towards 0 at vbl_end. And outside
1005          * vblank, position will be positive counting
1006          * up since vbl_end.
1007          */
1008         if (position >= vbl_start)
1009                 position -= vbl_end;
1010         else
1011                 position += vtotal - vbl_end;
1012
1013         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014                 *vpos = position;
1015                 *hpos = 0;
1016         } else {
1017                 *vpos = position / htotal;
1018                 *hpos = position - (*vpos * htotal);
1019         }
1020
1021         /* In vblank? */
1022         if (in_vbl)
1023                 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025         return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031         unsigned long irqflags;
1032         int position;
1033
1034         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035         position = __intel_get_crtc_scanline(crtc);
1036         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038         return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042                               int *max_error,
1043                               struct timeval *vblank_time,
1044                               unsigned flags)
1045 {
1046         struct drm_crtc *crtc;
1047
1048         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049                 DRM_ERROR("Invalid crtc %d\n", pipe);
1050                 return -EINVAL;
1051         }
1052
1053         /* Get drm_crtc to timestamp: */
1054         crtc = intel_get_crtc_for_pipe(dev, pipe);
1055         if (crtc == NULL) {
1056                 DRM_ERROR("Invalid crtc %d\n", pipe);
1057                 return -EINVAL;
1058         }
1059
1060         if (!crtc->enabled) {
1061                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062                 return -EBUSY;
1063         }
1064
1065         /* Helper routine in DRM core does all the work: */
1066         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067                                                      vblank_time, flags,
1068                                                      crtc,
1069                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073                                 struct drm_connector *connector)
1074 {
1075         enum drm_connector_status old_status;
1076
1077         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078         old_status = connector->status;
1079
1080         connector->status = connector->funcs->detect(connector, false);
1081         if (old_status == connector->status)
1082                 return false;
1083
1084         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085                       connector->base.id,
1086                       connector->name,
1087                       drm_get_connector_status_name(old_status),
1088                       drm_get_connector_status_name(connector->status));
1089
1090         return true;
1091 }
1092
1093 /*
1094  * Handle hotplug events outside the interrupt handler proper.
1095  */
1096 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1097
1098 static void i915_hotplug_work_func(struct work_struct *work)
1099 {
1100         struct drm_i915_private *dev_priv =
1101                 container_of(work, struct drm_i915_private, hotplug_work);
1102         struct drm_device *dev = dev_priv->dev;
1103         struct drm_mode_config *mode_config = &dev->mode_config;
1104         struct intel_connector *intel_connector;
1105         struct intel_encoder *intel_encoder;
1106         struct drm_connector *connector;
1107         unsigned long irqflags;
1108         bool hpd_disabled = false;
1109         bool changed = false;
1110         u32 hpd_event_bits;
1111
1112         /* HPD irq before everything is fully set up. */
1113         if (!dev_priv->enable_hotplug_processing)
1114                 return;
1115
1116         mutex_lock(&mode_config->mutex);
1117         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1118
1119         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1120
1121         hpd_event_bits = dev_priv->hpd_event_bits;
1122         dev_priv->hpd_event_bits = 0;
1123         list_for_each_entry(connector, &mode_config->connector_list, head) {
1124                 intel_connector = to_intel_connector(connector);
1125                 intel_encoder = intel_connector->encoder;
1126                 if (intel_encoder->hpd_pin > HPD_NONE &&
1127                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1128                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1129                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1130                                  "switching from hotplug detection to polling\n",
1131                                 connector->name);
1132                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1133                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1134                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1135                         hpd_disabled = true;
1136                 }
1137                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1138                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1139                                       connector->name, intel_encoder->hpd_pin);
1140                 }
1141         }
1142          /* if there were no outputs to poll, poll was disabled,
1143           * therefore make sure it's enabled when disabling HPD on
1144           * some connectors */
1145         if (hpd_disabled) {
1146                 drm_kms_helper_poll_enable(dev);
1147                 mod_timer(&dev_priv->hotplug_reenable_timer,
1148                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1149         }
1150
1151         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1152
1153         list_for_each_entry(connector, &mode_config->connector_list, head) {
1154                 intel_connector = to_intel_connector(connector);
1155                 intel_encoder = intel_connector->encoder;
1156                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1157                         if (intel_encoder->hot_plug)
1158                                 intel_encoder->hot_plug(intel_encoder);
1159                         if (intel_hpd_irq_event(dev, connector))
1160                                 changed = true;
1161                 }
1162         }
1163         mutex_unlock(&mode_config->mutex);
1164
1165         if (changed)
1166                 drm_kms_helper_hotplug_event(dev);
1167 }
1168
1169 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1170 {
1171         del_timer_sync(&dev_priv->hotplug_reenable_timer);
1172 }
1173
1174 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1175 {
1176         struct drm_i915_private *dev_priv = dev->dev_private;
1177         u32 busy_up, busy_down, max_avg, min_avg;
1178         u8 new_delay;
1179
1180         spin_lock(&mchdev_lock);
1181
1182         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1183
1184         new_delay = dev_priv->ips.cur_delay;
1185
1186         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1187         busy_up = I915_READ(RCPREVBSYTUPAVG);
1188         busy_down = I915_READ(RCPREVBSYTDNAVG);
1189         max_avg = I915_READ(RCBMAXAVG);
1190         min_avg = I915_READ(RCBMINAVG);
1191
1192         /* Handle RCS change request from hw */
1193         if (busy_up > max_avg) {
1194                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1195                         new_delay = dev_priv->ips.cur_delay - 1;
1196                 if (new_delay < dev_priv->ips.max_delay)
1197                         new_delay = dev_priv->ips.max_delay;
1198         } else if (busy_down < min_avg) {
1199                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1200                         new_delay = dev_priv->ips.cur_delay + 1;
1201                 if (new_delay > dev_priv->ips.min_delay)
1202                         new_delay = dev_priv->ips.min_delay;
1203         }
1204
1205         if (ironlake_set_drps(dev, new_delay))
1206                 dev_priv->ips.cur_delay = new_delay;
1207
1208         spin_unlock(&mchdev_lock);
1209
1210         return;
1211 }
1212
1213 static void notify_ring(struct drm_device *dev,
1214                         struct intel_engine_cs *ring)
1215 {
1216         if (!intel_ring_initialized(ring))
1217                 return;
1218
1219         trace_i915_gem_request_complete(ring);
1220
1221         wake_up_all(&ring->irq_queue);
1222         i915_queue_hangcheck(dev);
1223 }
1224
1225 static void gen6_pm_rps_work(struct work_struct *work)
1226 {
1227         struct drm_i915_private *dev_priv =
1228                 container_of(work, struct drm_i915_private, rps.work);
1229         u32 pm_iir;
1230         int new_delay, adj;
1231
1232         spin_lock_irq(&dev_priv->irq_lock);
1233         pm_iir = dev_priv->rps.pm_iir;
1234         dev_priv->rps.pm_iir = 0;
1235         if (IS_BROADWELL(dev_priv->dev))
1236                 bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1237         else {
1238                 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1239                 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1240         }
1241         spin_unlock_irq(&dev_priv->irq_lock);
1242
1243         /* Make sure we didn't queue anything we're not going to process. */
1244         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1245
1246         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1247                 return;
1248
1249         mutex_lock(&dev_priv->rps.hw_lock);
1250
1251         adj = dev_priv->rps.last_adj;
1252         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1253                 if (adj > 0)
1254                         adj *= 2;
1255                 else
1256                         adj = 1;
1257                 new_delay = dev_priv->rps.cur_freq + adj;
1258
1259                 /*
1260                  * For better performance, jump directly
1261                  * to RPe if we're below it.
1262                  */
1263                 if (new_delay < dev_priv->rps.efficient_freq)
1264                         new_delay = dev_priv->rps.efficient_freq;
1265         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1266                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1267                         new_delay = dev_priv->rps.efficient_freq;
1268                 else
1269                         new_delay = dev_priv->rps.min_freq_softlimit;
1270                 adj = 0;
1271         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1272                 if (adj < 0)
1273                         adj *= 2;
1274                 else
1275                         adj = -1;
1276                 new_delay = dev_priv->rps.cur_freq + adj;
1277         } else { /* unknown event */
1278                 new_delay = dev_priv->rps.cur_freq;
1279         }
1280
1281         /* sysfs frequency interfaces may have snuck in while servicing the
1282          * interrupt
1283          */
1284         new_delay = clamp_t(int, new_delay,
1285                             dev_priv->rps.min_freq_softlimit,
1286                             dev_priv->rps.max_freq_softlimit);
1287
1288         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1289
1290         if (IS_VALLEYVIEW(dev_priv->dev))
1291                 valleyview_set_rps(dev_priv->dev, new_delay);
1292         else
1293                 gen6_set_rps(dev_priv->dev, new_delay);
1294
1295         mutex_unlock(&dev_priv->rps.hw_lock);
1296 }
1297
1298
1299 /**
1300  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1301  * occurred.
1302  * @work: workqueue struct
1303  *
1304  * Doesn't actually do anything except notify userspace. As a consequence of
1305  * this event, userspace should try to remap the bad rows since statistically
1306  * it is likely the same row is more likely to go bad again.
1307  */
1308 static void ivybridge_parity_work(struct work_struct *work)
1309 {
1310         struct drm_i915_private *dev_priv =
1311                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1312         u32 error_status, row, bank, subbank;
1313         char *parity_event[6];
1314         uint32_t misccpctl;
1315         unsigned long flags;
1316         uint8_t slice = 0;
1317
1318         /* We must turn off DOP level clock gating to access the L3 registers.
1319          * In order to prevent a get/put style interface, acquire struct mutex
1320          * any time we access those registers.
1321          */
1322         mutex_lock(&dev_priv->dev->struct_mutex);
1323
1324         /* If we've screwed up tracking, just let the interrupt fire again */
1325         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1326                 goto out;
1327
1328         misccpctl = I915_READ(GEN7_MISCCPCTL);
1329         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1330         POSTING_READ(GEN7_MISCCPCTL);
1331
1332         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1333                 u32 reg;
1334
1335                 slice--;
1336                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1337                         break;
1338
1339                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1340
1341                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1342
1343                 error_status = I915_READ(reg);
1344                 row = GEN7_PARITY_ERROR_ROW(error_status);
1345                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1346                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1347
1348                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1349                 POSTING_READ(reg);
1350
1351                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1352                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1353                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1354                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1355                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1356                 parity_event[5] = NULL;
1357
1358                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1359                                    KOBJ_CHANGE, parity_event);
1360
1361                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1362                           slice, row, bank, subbank);
1363
1364                 kfree(parity_event[4]);
1365                 kfree(parity_event[3]);
1366                 kfree(parity_event[2]);
1367                 kfree(parity_event[1]);
1368         }
1369
1370         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1371
1372 out:
1373         WARN_ON(dev_priv->l3_parity.which_slice);
1374         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1375         ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1376         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1377
1378         mutex_unlock(&dev_priv->dev->struct_mutex);
1379 }
1380
1381 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1382 {
1383         struct drm_i915_private *dev_priv = dev->dev_private;
1384
1385         if (!HAS_L3_DPF(dev))
1386                 return;
1387
1388         spin_lock(&dev_priv->irq_lock);
1389         ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1390         spin_unlock(&dev_priv->irq_lock);
1391
1392         iir &= GT_PARITY_ERROR(dev);
1393         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1394                 dev_priv->l3_parity.which_slice |= 1 << 1;
1395
1396         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1397                 dev_priv->l3_parity.which_slice |= 1 << 0;
1398
1399         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1400 }
1401
1402 static void ilk_gt_irq_handler(struct drm_device *dev,
1403                                struct drm_i915_private *dev_priv,
1404                                u32 gt_iir)
1405 {
1406         if (gt_iir &
1407             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1408                 notify_ring(dev, &dev_priv->ring[RCS]);
1409         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1410                 notify_ring(dev, &dev_priv->ring[VCS]);
1411 }
1412
1413 static void snb_gt_irq_handler(struct drm_device *dev,
1414                                struct drm_i915_private *dev_priv,
1415                                u32 gt_iir)
1416 {
1417
1418         if (gt_iir &
1419             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1420                 notify_ring(dev, &dev_priv->ring[RCS]);
1421         if (gt_iir & GT_BSD_USER_INTERRUPT)
1422                 notify_ring(dev, &dev_priv->ring[VCS]);
1423         if (gt_iir & GT_BLT_USER_INTERRUPT)
1424                 notify_ring(dev, &dev_priv->ring[BCS]);
1425
1426         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1427                       GT_BSD_CS_ERROR_INTERRUPT |
1428                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1429                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1430                                   gt_iir);
1431         }
1432
1433         if (gt_iir & GT_PARITY_ERROR(dev))
1434                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1435 }
1436
1437 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1438 {
1439         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1440                 return;
1441
1442         spin_lock(&dev_priv->irq_lock);
1443         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1444         bdw_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1445         spin_unlock(&dev_priv->irq_lock);
1446
1447         queue_work(dev_priv->wq, &dev_priv->rps.work);
1448 }
1449
1450 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1451                                        struct drm_i915_private *dev_priv,
1452                                        u32 master_ctl)
1453 {
1454         u32 rcs, bcs, vcs;
1455         uint32_t tmp = 0;
1456         irqreturn_t ret = IRQ_NONE;
1457
1458         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1459                 tmp = I915_READ(GEN8_GT_IIR(0));
1460                 if (tmp) {
1461                         ret = IRQ_HANDLED;
1462                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1463                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1464                         if (rcs & GT_RENDER_USER_INTERRUPT)
1465                                 notify_ring(dev, &dev_priv->ring[RCS]);
1466                         if (bcs & GT_RENDER_USER_INTERRUPT)
1467                                 notify_ring(dev, &dev_priv->ring[BCS]);
1468                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1469                 } else
1470                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1471         }
1472
1473         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1474                 tmp = I915_READ(GEN8_GT_IIR(1));
1475                 if (tmp) {
1476                         ret = IRQ_HANDLED;
1477                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1478                         if (vcs & GT_RENDER_USER_INTERRUPT)
1479                                 notify_ring(dev, &dev_priv->ring[VCS]);
1480                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1481                         if (vcs & GT_RENDER_USER_INTERRUPT)
1482                                 notify_ring(dev, &dev_priv->ring[VCS2]);
1483                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1484                 } else
1485                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1486         }
1487
1488         if (master_ctl & GEN8_GT_PM_IRQ) {
1489                 tmp = I915_READ(GEN8_GT_IIR(2));
1490                 if (tmp & dev_priv->pm_rps_events) {
1491                         ret = IRQ_HANDLED;
1492                         gen8_rps_irq_handler(dev_priv, tmp);
1493                         I915_WRITE(GEN8_GT_IIR(2),
1494                                    tmp & dev_priv->pm_rps_events);
1495                 } else
1496                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1497         }
1498
1499         if (master_ctl & GEN8_GT_VECS_IRQ) {
1500                 tmp = I915_READ(GEN8_GT_IIR(3));
1501                 if (tmp) {
1502                         ret = IRQ_HANDLED;
1503                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1504                         if (vcs & GT_RENDER_USER_INTERRUPT)
1505                                 notify_ring(dev, &dev_priv->ring[VECS]);
1506                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1507                 } else
1508                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1509         }
1510
1511         return ret;
1512 }
1513
1514 #define HPD_STORM_DETECT_PERIOD 1000
1515 #define HPD_STORM_THRESHOLD 5
1516
1517 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1518                                          u32 hotplug_trigger,
1519                                          const u32 *hpd)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         int i;
1523         bool storm_detected = false;
1524
1525         if (!hotplug_trigger)
1526                 return;
1527
1528         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1529                           hotplug_trigger);
1530
1531         spin_lock(&dev_priv->irq_lock);
1532         for (i = 1; i < HPD_NUM_PINS; i++) {
1533
1534                 if (hpd[i] & hotplug_trigger &&
1535                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1536                         /*
1537                          * On GMCH platforms the interrupt mask bits only
1538                          * prevent irq generation, not the setting of the
1539                          * hotplug bits itself. So only WARN about unexpected
1540                          * interrupts on saner platforms.
1541                          */
1542                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1543                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1544                                   hotplug_trigger, i, hpd[i]);
1545
1546                         continue;
1547                 }
1548
1549                 if (!(hpd[i] & hotplug_trigger) ||
1550                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1551                         continue;
1552
1553                 dev_priv->hpd_event_bits |= (1 << i);
1554                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1555                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1556                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1557                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1558                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1559                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1560                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1561                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1562                         dev_priv->hpd_event_bits &= ~(1 << i);
1563                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1564                         storm_detected = true;
1565                 } else {
1566                         dev_priv->hpd_stats[i].hpd_cnt++;
1567                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1568                                       dev_priv->hpd_stats[i].hpd_cnt);
1569                 }
1570         }
1571
1572         if (storm_detected)
1573                 dev_priv->display.hpd_irq_setup(dev);
1574         spin_unlock(&dev_priv->irq_lock);
1575
1576         /*
1577          * Our hotplug handler can grab modeset locks (by calling down into the
1578          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1579          * queue for otherwise the flush_work in the pageflip code will
1580          * deadlock.
1581          */
1582         schedule_work(&dev_priv->hotplug_work);
1583 }
1584
1585 static void gmbus_irq_handler(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         wake_up_all(&dev_priv->gmbus_wait_queue);
1590 }
1591
1592 static void dp_aux_irq_handler(struct drm_device *dev)
1593 {
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596         wake_up_all(&dev_priv->gmbus_wait_queue);
1597 }
1598
1599 #if defined(CONFIG_DEBUG_FS)
1600 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1601                                          uint32_t crc0, uint32_t crc1,
1602                                          uint32_t crc2, uint32_t crc3,
1603                                          uint32_t crc4)
1604 {
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1607         struct intel_pipe_crc_entry *entry;
1608         int head, tail;
1609
1610         spin_lock(&pipe_crc->lock);
1611
1612         if (!pipe_crc->entries) {
1613                 spin_unlock(&pipe_crc->lock);
1614                 DRM_ERROR("spurious interrupt\n");
1615                 return;
1616         }
1617
1618         head = pipe_crc->head;
1619         tail = pipe_crc->tail;
1620
1621         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1622                 spin_unlock(&pipe_crc->lock);
1623                 DRM_ERROR("CRC buffer overflowing\n");
1624                 return;
1625         }
1626
1627         entry = &pipe_crc->entries[head];
1628
1629         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1630         entry->crc[0] = crc0;
1631         entry->crc[1] = crc1;
1632         entry->crc[2] = crc2;
1633         entry->crc[3] = crc3;
1634         entry->crc[4] = crc4;
1635
1636         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1637         pipe_crc->head = head;
1638
1639         spin_unlock(&pipe_crc->lock);
1640
1641         wake_up_interruptible(&pipe_crc->wq);
1642 }
1643 #else
1644 static inline void
1645 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1646                              uint32_t crc0, uint32_t crc1,
1647                              uint32_t crc2, uint32_t crc3,
1648                              uint32_t crc4) {}
1649 #endif
1650
1651
1652 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1653 {
1654         struct drm_i915_private *dev_priv = dev->dev_private;
1655
1656         display_pipe_crc_irq_handler(dev, pipe,
1657                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1658                                      0, 0, 0, 0);
1659 }
1660
1661 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1662 {
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664
1665         display_pipe_crc_irq_handler(dev, pipe,
1666                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672
1673 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676         uint32_t res1, res2;
1677
1678         if (INTEL_INFO(dev)->gen >= 3)
1679                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680         else
1681                 res1 = 0;
1682
1683         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1684                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685         else
1686                 res2 = 0;
1687
1688         display_pipe_crc_irq_handler(dev, pipe,
1689                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1690                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692                                      res1, res2);
1693 }
1694
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696  * IMR bits until the work is done. Other interrupts can be processed without
1697  * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700         if (pm_iir & dev_priv->pm_rps_events) {
1701                 spin_lock(&dev_priv->irq_lock);
1702                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1703                 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1704                 spin_unlock(&dev_priv->irq_lock);
1705
1706                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1707         }
1708
1709         if (HAS_VEBOX(dev_priv->dev)) {
1710                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1711                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1712
1713                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1714                         i915_handle_error(dev_priv->dev, false,
1715                                           "VEBOX CS error interrupt 0x%08x",
1716                                           pm_iir);
1717                 }
1718         }
1719 }
1720
1721 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1722 {
1723         struct intel_crtc *crtc;
1724
1725         if (!drm_handle_vblank(dev, pipe))
1726                 return false;
1727
1728         crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1729         wake_up(&crtc->vbl_wait);
1730
1731         return true;
1732 }
1733
1734 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1735 {
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         u32 pipe_stats[I915_MAX_PIPES] = { };
1738         int pipe;
1739
1740         spin_lock(&dev_priv->irq_lock);
1741         for_each_pipe(pipe) {
1742                 int reg;
1743                 u32 mask, iir_bit = 0;
1744
1745                 /*
1746                  * PIPESTAT bits get signalled even when the interrupt is
1747                  * disabled with the mask bits, and some of the status bits do
1748                  * not generate interrupts at all (like the underrun bit). Hence
1749                  * we need to be careful that we only handle what we want to
1750                  * handle.
1751                  */
1752                 mask = 0;
1753                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1754                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
1755
1756                 switch (pipe) {
1757                 case PIPE_A:
1758                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1759                         break;
1760                 case PIPE_B:
1761                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1762                         break;
1763                 case PIPE_C:
1764                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1765                         break;
1766                 }
1767                 if (iir & iir_bit)
1768                         mask |= dev_priv->pipestat_irq_mask[pipe];
1769
1770                 if (!mask)
1771                         continue;
1772
1773                 reg = PIPESTAT(pipe);
1774                 mask |= PIPESTAT_INT_ENABLE_MASK;
1775                 pipe_stats[pipe] = I915_READ(reg) & mask;
1776
1777                 /*
1778                  * Clear the PIPE*STAT regs before the IIR
1779                  */
1780                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1781                                         PIPESTAT_INT_STATUS_MASK))
1782                         I915_WRITE(reg, pipe_stats[pipe]);
1783         }
1784         spin_unlock(&dev_priv->irq_lock);
1785
1786         for_each_pipe(pipe) {
1787                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1788                         intel_pipe_handle_vblank(dev, pipe);
1789
1790                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1791                         intel_prepare_page_flip(dev, pipe);
1792                         intel_finish_page_flip(dev, pipe);
1793                 }
1794
1795                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1796                         i9xx_pipe_crc_irq_handler(dev, pipe);
1797
1798                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1799                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1800                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1801         }
1802
1803         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1804                 gmbus_irq_handler(dev);
1805 }
1806
1807 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1808 {
1809         struct drm_i915_private *dev_priv = dev->dev_private;
1810         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1811
1812         if (IS_G4X(dev)) {
1813                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1814
1815                 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1816         } else {
1817                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1818
1819                 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1820         }
1821
1822         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1823             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1824                 dp_aux_irq_handler(dev);
1825
1826         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1827         /*
1828          * Make sure hotplug status is cleared before we clear IIR, or else we
1829          * may miss hotplug events.
1830          */
1831         POSTING_READ(PORT_HOTPLUG_STAT);
1832 }
1833
1834 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1835 {
1836         struct drm_device *dev = arg;
1837         struct drm_i915_private *dev_priv = dev->dev_private;
1838         u32 iir, gt_iir, pm_iir;
1839         irqreturn_t ret = IRQ_NONE;
1840
1841         while (true) {
1842                 iir = I915_READ(VLV_IIR);
1843                 gt_iir = I915_READ(GTIIR);
1844                 pm_iir = I915_READ(GEN6_PMIIR);
1845
1846                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1847                         goto out;
1848
1849                 ret = IRQ_HANDLED;
1850
1851                 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1852
1853                 valleyview_pipestat_irq_handler(dev, iir);
1854
1855                 /* Consume port.  Then clear IIR or we'll miss events */
1856                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1857                         i9xx_hpd_irq_handler(dev);
1858
1859                 if (pm_iir)
1860                         gen6_rps_irq_handler(dev_priv, pm_iir);
1861
1862                 I915_WRITE(GTIIR, gt_iir);
1863                 I915_WRITE(GEN6_PMIIR, pm_iir);
1864                 I915_WRITE(VLV_IIR, iir);
1865         }
1866
1867 out:
1868         return ret;
1869 }
1870
1871 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1872 {
1873         struct drm_device *dev = arg;
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875         u32 master_ctl, iir;
1876         irqreturn_t ret = IRQ_NONE;
1877
1878         for (;;) {
1879                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1880                 iir = I915_READ(VLV_IIR);
1881
1882                 if (master_ctl == 0 && iir == 0)
1883                         break;
1884
1885                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1886
1887                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1888
1889                 valleyview_pipestat_irq_handler(dev, iir);
1890
1891                 /* Consume port.  Then clear IIR or we'll miss events */
1892                 i9xx_hpd_irq_handler(dev);
1893
1894                 I915_WRITE(VLV_IIR, iir);
1895
1896                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1897                 POSTING_READ(GEN8_MASTER_IRQ);
1898
1899                 ret = IRQ_HANDLED;
1900         }
1901
1902         return ret;
1903 }
1904
1905 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1906 {
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908         int pipe;
1909         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1910
1911         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1912
1913         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1914                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1915                                SDE_AUDIO_POWER_SHIFT);
1916                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1917                                  port_name(port));
1918         }
1919
1920         if (pch_iir & SDE_AUX_MASK)
1921                 dp_aux_irq_handler(dev);
1922
1923         if (pch_iir & SDE_GMBUS)
1924                 gmbus_irq_handler(dev);
1925
1926         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1927                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1928
1929         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1930                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1931
1932         if (pch_iir & SDE_POISON)
1933                 DRM_ERROR("PCH poison interrupt\n");
1934
1935         if (pch_iir & SDE_FDI_MASK)
1936                 for_each_pipe(pipe)
1937                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1938                                          pipe_name(pipe),
1939                                          I915_READ(FDI_RX_IIR(pipe)));
1940
1941         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1942                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1943
1944         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1945                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1946
1947         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1948                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1949                                                           false))
1950                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1951
1952         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1953                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1954                                                           false))
1955                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1956 }
1957
1958 static void ivb_err_int_handler(struct drm_device *dev)
1959 {
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         u32 err_int = I915_READ(GEN7_ERR_INT);
1962         enum pipe pipe;
1963
1964         if (err_int & ERR_INT_POISON)
1965                 DRM_ERROR("Poison interrupt\n");
1966
1967         for_each_pipe(pipe) {
1968                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1969                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1970                                                                   false))
1971                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1972                                           pipe_name(pipe));
1973                 }
1974
1975                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1976                         if (IS_IVYBRIDGE(dev))
1977                                 ivb_pipe_crc_irq_handler(dev, pipe);
1978                         else
1979                                 hsw_pipe_crc_irq_handler(dev, pipe);
1980                 }
1981         }
1982
1983         I915_WRITE(GEN7_ERR_INT, err_int);
1984 }
1985
1986 static void cpt_serr_int_handler(struct drm_device *dev)
1987 {
1988         struct drm_i915_private *dev_priv = dev->dev_private;
1989         u32 serr_int = I915_READ(SERR_INT);
1990
1991         if (serr_int & SERR_INT_POISON)
1992                 DRM_ERROR("PCH poison interrupt\n");
1993
1994         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1995                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1996                                                           false))
1997                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1998
1999         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2000                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2001                                                           false))
2002                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2003
2004         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2005                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2006                                                           false))
2007                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
2008
2009         I915_WRITE(SERR_INT, serr_int);
2010 }
2011
2012 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2013 {
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         int pipe;
2016         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2017
2018         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2019
2020         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2021                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2022                                SDE_AUDIO_POWER_SHIFT_CPT);
2023                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2024                                  port_name(port));
2025         }
2026
2027         if (pch_iir & SDE_AUX_MASK_CPT)
2028                 dp_aux_irq_handler(dev);
2029
2030         if (pch_iir & SDE_GMBUS_CPT)
2031                 gmbus_irq_handler(dev);
2032
2033         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2034                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2035
2036         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2037                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2038
2039         if (pch_iir & SDE_FDI_MASK_CPT)
2040                 for_each_pipe(pipe)
2041                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2042                                          pipe_name(pipe),
2043                                          I915_READ(FDI_RX_IIR(pipe)));
2044
2045         if (pch_iir & SDE_ERROR_CPT)
2046                 cpt_serr_int_handler(dev);
2047 }
2048
2049 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2050 {
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         enum pipe pipe;
2053
2054         if (de_iir & DE_AUX_CHANNEL_A)
2055                 dp_aux_irq_handler(dev);
2056
2057         if (de_iir & DE_GSE)
2058                 intel_opregion_asle_intr(dev);
2059
2060         if (de_iir & DE_POISON)
2061                 DRM_ERROR("Poison interrupt\n");
2062
2063         for_each_pipe(pipe) {
2064                 if (de_iir & DE_PIPE_VBLANK(pipe))
2065                         intel_pipe_handle_vblank(dev, pipe);
2066
2067                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2068                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2069                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2070                                           pipe_name(pipe));
2071
2072                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2073                         i9xx_pipe_crc_irq_handler(dev, pipe);
2074
2075                 /* plane/pipes map 1:1 on ilk+ */
2076                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2077                         intel_prepare_page_flip(dev, pipe);
2078                         intel_finish_page_flip_plane(dev, pipe);
2079                 }
2080         }
2081
2082         /* check event from PCH */
2083         if (de_iir & DE_PCH_EVENT) {
2084                 u32 pch_iir = I915_READ(SDEIIR);
2085
2086                 if (HAS_PCH_CPT(dev))
2087                         cpt_irq_handler(dev, pch_iir);
2088                 else
2089                         ibx_irq_handler(dev, pch_iir);
2090
2091                 /* should clear PCH hotplug event before clear CPU irq */
2092                 I915_WRITE(SDEIIR, pch_iir);
2093         }
2094
2095         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2096                 ironlake_rps_change_irq_handler(dev);
2097 }
2098
2099 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2100 {
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         enum pipe pipe;
2103
2104         if (de_iir & DE_ERR_INT_IVB)
2105                 ivb_err_int_handler(dev);
2106
2107         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2108                 dp_aux_irq_handler(dev);
2109
2110         if (de_iir & DE_GSE_IVB)
2111                 intel_opregion_asle_intr(dev);
2112
2113         for_each_pipe(pipe) {
2114                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2115                         intel_pipe_handle_vblank(dev, pipe);
2116
2117                 /* plane/pipes map 1:1 on ilk+ */
2118                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2119                         intel_prepare_page_flip(dev, pipe);
2120                         intel_finish_page_flip_plane(dev, pipe);
2121                 }
2122         }
2123
2124         /* check event from PCH */
2125         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2126                 u32 pch_iir = I915_READ(SDEIIR);
2127
2128                 cpt_irq_handler(dev, pch_iir);
2129
2130                 /* clear PCH hotplug event before clear CPU irq */
2131                 I915_WRITE(SDEIIR, pch_iir);
2132         }
2133 }
2134
2135 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2136 {
2137         struct drm_device *dev = arg;
2138         struct drm_i915_private *dev_priv = dev->dev_private;
2139         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2140         irqreturn_t ret = IRQ_NONE;
2141
2142         /* We get interrupts on unclaimed registers, so check for this before we
2143          * do any I915_{READ,WRITE}. */
2144         intel_uncore_check_errors(dev);
2145
2146         /* disable master interrupt before clearing iir  */
2147         de_ier = I915_READ(DEIER);
2148         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2149         POSTING_READ(DEIER);
2150
2151         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2152          * interrupts will will be stored on its back queue, and then we'll be
2153          * able to process them after we restore SDEIER (as soon as we restore
2154          * it, we'll get an interrupt if SDEIIR still has something to process
2155          * due to its back queue). */
2156         if (!HAS_PCH_NOP(dev)) {
2157                 sde_ier = I915_READ(SDEIER);
2158                 I915_WRITE(SDEIER, 0);
2159                 POSTING_READ(SDEIER);
2160         }
2161
2162         gt_iir = I915_READ(GTIIR);
2163         if (gt_iir) {
2164                 if (INTEL_INFO(dev)->gen >= 6)
2165                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2166                 else
2167                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2168                 I915_WRITE(GTIIR, gt_iir);
2169                 ret = IRQ_HANDLED;
2170         }
2171
2172         de_iir = I915_READ(DEIIR);
2173         if (de_iir) {
2174                 if (INTEL_INFO(dev)->gen >= 7)
2175                         ivb_display_irq_handler(dev, de_iir);
2176                 else
2177                         ilk_display_irq_handler(dev, de_iir);
2178                 I915_WRITE(DEIIR, de_iir);
2179                 ret = IRQ_HANDLED;
2180         }
2181
2182         if (INTEL_INFO(dev)->gen >= 6) {
2183                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2184                 if (pm_iir) {
2185                         gen6_rps_irq_handler(dev_priv, pm_iir);
2186                         I915_WRITE(GEN6_PMIIR, pm_iir);
2187                         ret = IRQ_HANDLED;
2188                 }
2189         }
2190
2191         I915_WRITE(DEIER, de_ier);
2192         POSTING_READ(DEIER);
2193         if (!HAS_PCH_NOP(dev)) {
2194                 I915_WRITE(SDEIER, sde_ier);
2195                 POSTING_READ(SDEIER);
2196         }
2197
2198         return ret;
2199 }
2200
2201 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2202 {
2203         struct drm_device *dev = arg;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205         u32 master_ctl;
2206         irqreturn_t ret = IRQ_NONE;
2207         uint32_t tmp = 0;
2208         enum pipe pipe;
2209
2210         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2211         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2212         if (!master_ctl)
2213                 return IRQ_NONE;
2214
2215         I915_WRITE(GEN8_MASTER_IRQ, 0);
2216         POSTING_READ(GEN8_MASTER_IRQ);
2217
2218         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2219
2220         if (master_ctl & GEN8_DE_MISC_IRQ) {
2221                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2222                 if (tmp & GEN8_DE_MISC_GSE)
2223                         intel_opregion_asle_intr(dev);
2224                 else if (tmp)
2225                         DRM_ERROR("Unexpected DE Misc interrupt\n");
2226                 else
2227                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2228
2229                 if (tmp) {
2230                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2231                         ret = IRQ_HANDLED;
2232                 }
2233         }
2234
2235         if (master_ctl & GEN8_DE_PORT_IRQ) {
2236                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2237                 if (tmp & GEN8_AUX_CHANNEL_A)
2238                         dp_aux_irq_handler(dev);
2239                 else if (tmp)
2240                         DRM_ERROR("Unexpected DE Port interrupt\n");
2241                 else
2242                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2243
2244                 if (tmp) {
2245                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2246                         ret = IRQ_HANDLED;
2247                 }
2248         }
2249
2250         for_each_pipe(pipe) {
2251                 uint32_t pipe_iir;
2252
2253                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2254                         continue;
2255
2256                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2257                 if (pipe_iir & GEN8_PIPE_VBLANK)
2258                         intel_pipe_handle_vblank(dev, pipe);
2259
2260                 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2261                         intel_prepare_page_flip(dev, pipe);
2262                         intel_finish_page_flip_plane(dev, pipe);
2263                 }
2264
2265                 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2266                         hsw_pipe_crc_irq_handler(dev, pipe);
2267
2268                 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2269                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2270                                                                   false))
2271                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2272                                           pipe_name(pipe));
2273                 }
2274
2275                 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2276                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2277                                   pipe_name(pipe),
2278                                   pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2279                 }
2280
2281                 if (pipe_iir) {
2282                         ret = IRQ_HANDLED;
2283                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2284                 } else
2285                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2286         }
2287
2288         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2289                 /*
2290                  * FIXME(BDW): Assume for now that the new interrupt handling
2291                  * scheme also closed the SDE interrupt handling race we've seen
2292                  * on older pch-split platforms. But this needs testing.
2293                  */
2294                 u32 pch_iir = I915_READ(SDEIIR);
2295
2296                 cpt_irq_handler(dev, pch_iir);
2297
2298                 if (pch_iir) {
2299                         I915_WRITE(SDEIIR, pch_iir);
2300                         ret = IRQ_HANDLED;
2301                 }
2302         }
2303
2304         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2305         POSTING_READ(GEN8_MASTER_IRQ);
2306
2307         return ret;
2308 }
2309
2310 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2311                                bool reset_completed)
2312 {
2313         struct intel_engine_cs *ring;
2314         int i;
2315
2316         /*
2317          * Notify all waiters for GPU completion events that reset state has
2318          * been changed, and that they need to restart their wait after
2319          * checking for potential errors (and bail out to drop locks if there is
2320          * a gpu reset pending so that i915_error_work_func can acquire them).
2321          */
2322
2323         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2324         for_each_ring(ring, dev_priv, i)
2325                 wake_up_all(&ring->irq_queue);
2326
2327         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2328         wake_up_all(&dev_priv->pending_flip_queue);
2329
2330         /*
2331          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2332          * reset state is cleared.
2333          */
2334         if (reset_completed)
2335                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2336 }
2337
2338 /**
2339  * i915_error_work_func - do process context error handling work
2340  * @work: work struct
2341  *
2342  * Fire an error uevent so userspace can see that a hang or error
2343  * was detected.
2344  */
2345 static void i915_error_work_func(struct work_struct *work)
2346 {
2347         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2348                                                     work);
2349         struct drm_i915_private *dev_priv =
2350                 container_of(error, struct drm_i915_private, gpu_error);
2351         struct drm_device *dev = dev_priv->dev;
2352         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2353         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2354         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2355         int ret;
2356
2357         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2358
2359         /*
2360          * Note that there's only one work item which does gpu resets, so we
2361          * need not worry about concurrent gpu resets potentially incrementing
2362          * error->reset_counter twice. We only need to take care of another
2363          * racing irq/hangcheck declaring the gpu dead for a second time. A
2364          * quick check for that is good enough: schedule_work ensures the
2365          * correct ordering between hang detection and this work item, and since
2366          * the reset in-progress bit is only ever set by code outside of this
2367          * work we don't need to worry about any other races.
2368          */
2369         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2370                 DRM_DEBUG_DRIVER("resetting chip\n");
2371                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2372                                    reset_event);
2373
2374                 /*
2375                  * In most cases it's guaranteed that we get here with an RPM
2376                  * reference held, for example because there is a pending GPU
2377                  * request that won't finish until the reset is done. This
2378                  * isn't the case at least when we get here by doing a
2379                  * simulated reset via debugs, so get an RPM reference.
2380                  */
2381                 intel_runtime_pm_get(dev_priv);
2382                 /*
2383                  * All state reset _must_ be completed before we update the
2384                  * reset counter, for otherwise waiters might miss the reset
2385                  * pending state and not properly drop locks, resulting in
2386                  * deadlocks with the reset work.
2387                  */
2388                 ret = i915_reset(dev);
2389
2390                 intel_display_handle_reset(dev);
2391
2392                 intel_runtime_pm_put(dev_priv);
2393
2394                 if (ret == 0) {
2395                         /*
2396                          * After all the gem state is reset, increment the reset
2397                          * counter and wake up everyone waiting for the reset to
2398                          * complete.
2399                          *
2400                          * Since unlock operations are a one-sided barrier only,
2401                          * we need to insert a barrier here to order any seqno
2402                          * updates before
2403                          * the counter increment.
2404                          */
2405                         smp_mb__before_atomic();
2406                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2407
2408                         kobject_uevent_env(&dev->primary->kdev->kobj,
2409                                            KOBJ_CHANGE, reset_done_event);
2410                 } else {
2411                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2412                 }
2413
2414                 /*
2415                  * Note: The wake_up also serves as a memory barrier so that
2416                  * waiters see the update value of the reset counter atomic_t.
2417                  */
2418                 i915_error_wake_up(dev_priv, true);
2419         }
2420 }
2421
2422 static void i915_report_and_clear_eir(struct drm_device *dev)
2423 {
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         uint32_t instdone[I915_NUM_INSTDONE_REG];
2426         u32 eir = I915_READ(EIR);
2427         int pipe, i;
2428
2429         if (!eir)
2430                 return;
2431
2432         pr_err("render error detected, EIR: 0x%08x\n", eir);
2433
2434         i915_get_extra_instdone(dev, instdone);
2435
2436         if (IS_G4X(dev)) {
2437                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2438                         u32 ipeir = I915_READ(IPEIR_I965);
2439
2440                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2441                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2442                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2443                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2444                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2445                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2446                         I915_WRITE(IPEIR_I965, ipeir);
2447                         POSTING_READ(IPEIR_I965);
2448                 }
2449                 if (eir & GM45_ERROR_PAGE_TABLE) {
2450                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2451                         pr_err("page table error\n");
2452                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2453                         I915_WRITE(PGTBL_ER, pgtbl_err);
2454                         POSTING_READ(PGTBL_ER);
2455                 }
2456         }
2457
2458         if (!IS_GEN2(dev)) {
2459                 if (eir & I915_ERROR_PAGE_TABLE) {
2460                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2461                         pr_err("page table error\n");
2462                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2463                         I915_WRITE(PGTBL_ER, pgtbl_err);
2464                         POSTING_READ(PGTBL_ER);
2465                 }
2466         }
2467
2468         if (eir & I915_ERROR_MEMORY_REFRESH) {
2469                 pr_err("memory refresh error:\n");
2470                 for_each_pipe(pipe)
2471                         pr_err("pipe %c stat: 0x%08x\n",
2472                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2473                 /* pipestat has already been acked */
2474         }
2475         if (eir & I915_ERROR_INSTRUCTION) {
2476                 pr_err("instruction error\n");
2477                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2478                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2479                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2480                 if (INTEL_INFO(dev)->gen < 4) {
2481                         u32 ipeir = I915_READ(IPEIR);
2482
2483                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2484                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2485                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2486                         I915_WRITE(IPEIR, ipeir);
2487                         POSTING_READ(IPEIR);
2488                 } else {
2489                         u32 ipeir = I915_READ(IPEIR_I965);
2490
2491                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2492                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2493                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2494                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2495                         I915_WRITE(IPEIR_I965, ipeir);
2496                         POSTING_READ(IPEIR_I965);
2497                 }
2498         }
2499
2500         I915_WRITE(EIR, eir);
2501         POSTING_READ(EIR);
2502         eir = I915_READ(EIR);
2503         if (eir) {
2504                 /*
2505                  * some errors might have become stuck,
2506                  * mask them.
2507                  */
2508                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2509                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2510                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2511         }
2512 }
2513
2514 /**
2515  * i915_handle_error - handle an error interrupt
2516  * @dev: drm device
2517  *
2518  * Do some basic checking of regsiter state at error interrupt time and
2519  * dump it to the syslog.  Also call i915_capture_error_state() to make
2520  * sure we get a record and make it available in debugfs.  Fire a uevent
2521  * so userspace knows something bad happened (should trigger collection
2522  * of a ring dump etc.).
2523  */
2524 void i915_handle_error(struct drm_device *dev, bool wedged,
2525                        const char *fmt, ...)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         va_list args;
2529         char error_msg[80];
2530
2531         va_start(args, fmt);
2532         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2533         va_end(args);
2534
2535         i915_capture_error_state(dev, wedged, error_msg);
2536         i915_report_and_clear_eir(dev);
2537
2538         if (wedged) {
2539                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2540                                 &dev_priv->gpu_error.reset_counter);
2541
2542                 /*
2543                  * Wakeup waiting processes so that the reset work function
2544                  * i915_error_work_func doesn't deadlock trying to grab various
2545                  * locks. By bumping the reset counter first, the woken
2546                  * processes will see a reset in progress and back off,
2547                  * releasing their locks and then wait for the reset completion.
2548                  * We must do this for _all_ gpu waiters that might hold locks
2549                  * that the reset work needs to acquire.
2550                  *
2551                  * Note: The wake_up serves as the required memory barrier to
2552                  * ensure that the waiters see the updated value of the reset
2553                  * counter atomic_t.
2554                  */
2555                 i915_error_wake_up(dev_priv, false);
2556         }
2557
2558         /*
2559          * Our reset work can grab modeset locks (since it needs to reset the
2560          * state of outstanding pagelips). Hence it must not be run on our own
2561          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2562          * code will deadlock.
2563          */
2564         schedule_work(&dev_priv->gpu_error.work);
2565 }
2566
2567 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2568 {
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572         struct drm_i915_gem_object *obj;
2573         struct intel_unpin_work *work;
2574         unsigned long flags;
2575         bool stall_detected;
2576
2577         /* Ignore early vblank irqs */
2578         if (intel_crtc == NULL)
2579                 return;
2580
2581         spin_lock_irqsave(&dev->event_lock, flags);
2582         work = intel_crtc->unpin_work;
2583
2584         if (work == NULL ||
2585             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2586             !work->enable_stall_check) {
2587                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2588                 spin_unlock_irqrestore(&dev->event_lock, flags);
2589                 return;
2590         }
2591
2592         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2593         obj = work->pending_flip_obj;
2594         if (INTEL_INFO(dev)->gen >= 4) {
2595                 int dspsurf = DSPSURF(intel_crtc->plane);
2596                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2597                                         i915_gem_obj_ggtt_offset(obj);
2598         } else {
2599                 int dspaddr = DSPADDR(intel_crtc->plane);
2600                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2601                                                         crtc->y * crtc->primary->fb->pitches[0] +
2602                                                         crtc->x * crtc->primary->fb->bits_per_pixel/8);
2603         }
2604
2605         spin_unlock_irqrestore(&dev->event_lock, flags);
2606
2607         if (stall_detected) {
2608                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2609                 intel_prepare_page_flip(dev, intel_crtc->plane);
2610         }
2611 }
2612
2613 /* Called from drm generic code, passed 'crtc' which
2614  * we use as a pipe index
2615  */
2616 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2617 {
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619         unsigned long irqflags;
2620
2621         if (!i915_pipe_enabled(dev, pipe))
2622                 return -EINVAL;
2623
2624         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2625         if (INTEL_INFO(dev)->gen >= 4)
2626                 i915_enable_pipestat(dev_priv, pipe,
2627                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2628         else
2629                 i915_enable_pipestat(dev_priv, pipe,
2630                                      PIPE_VBLANK_INTERRUPT_STATUS);
2631         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2632
2633         return 0;
2634 }
2635
2636 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2637 {
2638         struct drm_i915_private *dev_priv = dev->dev_private;
2639         unsigned long irqflags;
2640         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2641                                                      DE_PIPE_VBLANK(pipe);
2642
2643         if (!i915_pipe_enabled(dev, pipe))
2644                 return -EINVAL;
2645
2646         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647         ironlake_enable_display_irq(dev_priv, bit);
2648         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649
2650         return 0;
2651 }
2652
2653 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2654 {
2655         struct drm_i915_private *dev_priv = dev->dev_private;
2656         unsigned long irqflags;
2657
2658         if (!i915_pipe_enabled(dev, pipe))
2659                 return -EINVAL;
2660
2661         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2662         i915_enable_pipestat(dev_priv, pipe,
2663                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2664         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665
2666         return 0;
2667 }
2668
2669 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2670 {
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         unsigned long irqflags;
2673
2674         if (!i915_pipe_enabled(dev, pipe))
2675                 return -EINVAL;
2676
2677         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2679         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2680         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2681         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682         return 0;
2683 }
2684
2685 /* Called from drm generic code, passed 'crtc' which
2686  * we use as a pipe index
2687  */
2688 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2689 {
2690         struct drm_i915_private *dev_priv = dev->dev_private;
2691         unsigned long irqflags;
2692
2693         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2694         i915_disable_pipestat(dev_priv, pipe,
2695                               PIPE_VBLANK_INTERRUPT_STATUS |
2696                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2697         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2698 }
2699
2700 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2701 {
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         unsigned long irqflags;
2704         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2705                                                      DE_PIPE_VBLANK(pipe);
2706
2707         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708         ironlake_disable_display_irq(dev_priv, bit);
2709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710 }
2711
2712 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         unsigned long irqflags;
2716
2717         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718         i915_disable_pipestat(dev_priv, pipe,
2719                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2720         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2721 }
2722
2723 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2724 {
2725         struct drm_i915_private *dev_priv = dev->dev_private;
2726         unsigned long irqflags;
2727
2728         if (!i915_pipe_enabled(dev, pipe))
2729                 return;
2730
2731         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2733         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2734         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2735         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736 }
2737
2738 static u32
2739 ring_last_seqno(struct intel_engine_cs *ring)
2740 {
2741         return list_entry(ring->request_list.prev,
2742                           struct drm_i915_gem_request, list)->seqno;
2743 }
2744
2745 static bool
2746 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2747 {
2748         return (list_empty(&ring->request_list) ||
2749                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2750 }
2751
2752 static bool
2753 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2754 {
2755         if (INTEL_INFO(dev)->gen >= 8) {
2756                 /*
2757                  * FIXME: gen8 semaphore support - currently we don't emit
2758                  * semaphores on bdw anyway, but this needs to be addressed when
2759                  * we merge that code.
2760                  */
2761                 return false;
2762         } else {
2763                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2764                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2765                                  MI_SEMAPHORE_REGISTER);
2766         }
2767 }
2768
2769 static struct intel_engine_cs *
2770 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr)
2771 {
2772         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2773         struct intel_engine_cs *signaller;
2774         int i;
2775
2776         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2777                 /*
2778                  * FIXME: gen8 semaphore support - currently we don't emit
2779                  * semaphores on bdw anyway, but this needs to be addressed when
2780                  * we merge that code.
2781                  */
2782                 return NULL;
2783         } else {
2784                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2785
2786                 for_each_ring(signaller, dev_priv, i) {
2787                         if(ring == signaller)
2788                                 continue;
2789
2790                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2791                                 return signaller;
2792                 }
2793         }
2794
2795         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2796                   ring->id, ipehr);
2797
2798         return NULL;
2799 }
2800
2801 static struct intel_engine_cs *
2802 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2803 {
2804         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2805         u32 cmd, ipehr, head;
2806         int i;
2807
2808         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2809         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2810                 return NULL;
2811
2812         /*
2813          * HEAD is likely pointing to the dword after the actual command,
2814          * so scan backwards until we find the MBOX. But limit it to just 3
2815          * dwords. Note that we don't care about ACTHD here since that might
2816          * point at at batch, and semaphores are always emitted into the
2817          * ringbuffer itself.
2818          */
2819         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2820
2821         for (i = 4; i; --i) {
2822                 /*
2823                  * Be paranoid and presume the hw has gone off into the wild -
2824                  * our ring is smaller than what the hardware (and hence
2825                  * HEAD_ADDR) allows. Also handles wrap-around.
2826                  */
2827                 head &= ring->buffer->size - 1;
2828
2829                 /* This here seems to blow up */
2830                 cmd = ioread32(ring->buffer->virtual_start + head);
2831                 if (cmd == ipehr)
2832                         break;
2833
2834                 head -= 4;
2835         }
2836
2837         if (!i)
2838                 return NULL;
2839
2840         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2841         return semaphore_wait_to_signaller_ring(ring, ipehr);
2842 }
2843
2844 static int semaphore_passed(struct intel_engine_cs *ring)
2845 {
2846         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2847         struct intel_engine_cs *signaller;
2848         u32 seqno, ctl;
2849
2850         ring->hangcheck.deadlock++;
2851
2852         signaller = semaphore_waits_for(ring, &seqno);
2853         if (signaller == NULL)
2854                 return -1;
2855
2856         /* Prevent pathological recursion due to driver bugs */
2857         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2858                 return -1;
2859
2860         /* cursory check for an unkickable deadlock */
2861         ctl = I915_READ_CTL(signaller);
2862         if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2863                 return -1;
2864
2865         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2866                 return 1;
2867
2868         if (signaller->hangcheck.deadlock)
2869                 return -1;
2870
2871         return 0;
2872 }
2873
2874 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2875 {
2876         struct intel_engine_cs *ring;
2877         int i;
2878
2879         for_each_ring(ring, dev_priv, i)
2880                 ring->hangcheck.deadlock = 0;
2881 }
2882
2883 static enum intel_ring_hangcheck_action
2884 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2885 {
2886         struct drm_device *dev = ring->dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         u32 tmp;
2889
2890         if (ring->hangcheck.acthd != acthd)
2891                 return HANGCHECK_ACTIVE;
2892
2893         if (IS_GEN2(dev))
2894                 return HANGCHECK_HUNG;
2895
2896         /* Is the chip hanging on a WAIT_FOR_EVENT?
2897          * If so we can simply poke the RB_WAIT bit
2898          * and break the hang. This should work on
2899          * all but the second generation chipsets.
2900          */
2901         tmp = I915_READ_CTL(ring);
2902         if (tmp & RING_WAIT) {
2903                 i915_handle_error(dev, false,
2904                                   "Kicking stuck wait on %s",
2905                                   ring->name);
2906                 I915_WRITE_CTL(ring, tmp);
2907                 return HANGCHECK_KICK;
2908         }
2909
2910         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2911                 switch (semaphore_passed(ring)) {
2912                 default:
2913                         return HANGCHECK_HUNG;
2914                 case 1:
2915                         i915_handle_error(dev, false,
2916                                           "Kicking stuck semaphore on %s",
2917                                           ring->name);
2918                         I915_WRITE_CTL(ring, tmp);
2919                         return HANGCHECK_KICK;
2920                 case 0:
2921                         return HANGCHECK_WAIT;
2922                 }
2923         }
2924
2925         return HANGCHECK_HUNG;
2926 }
2927
2928 /**
2929  * This is called when the chip hasn't reported back with completed
2930  * batchbuffers in a long time. We keep track per ring seqno progress and
2931  * if there are no progress, hangcheck score for that ring is increased.
2932  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2933  * we kick the ring. If we see no progress on three subsequent calls
2934  * we assume chip is wedged and try to fix it by resetting the chip.
2935  */
2936 static void i915_hangcheck_elapsed(unsigned long data)
2937 {
2938         struct drm_device *dev = (struct drm_device *)data;
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940         struct intel_engine_cs *ring;
2941         int i;
2942         int busy_count = 0, rings_hung = 0;
2943         bool stuck[I915_NUM_RINGS] = { 0 };
2944 #define BUSY 1
2945 #define KICK 5
2946 #define HUNG 20
2947
2948         if (!i915.enable_hangcheck)
2949                 return;
2950
2951         for_each_ring(ring, dev_priv, i) {
2952                 u64 acthd;
2953                 u32 seqno;
2954                 bool busy = true;
2955
2956                 semaphore_clear_deadlocks(dev_priv);
2957
2958                 seqno = ring->get_seqno(ring, false);
2959                 acthd = intel_ring_get_active_head(ring);
2960
2961                 if (ring->hangcheck.seqno == seqno) {
2962                         if (ring_idle(ring, seqno)) {
2963                                 ring->hangcheck.action = HANGCHECK_IDLE;
2964
2965                                 if (waitqueue_active(&ring->irq_queue)) {
2966                                         /* Issue a wake-up to catch stuck h/w. */
2967                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2968                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2969                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2970                                                                   ring->name);
2971                                                 else
2972                                                         DRM_INFO("Fake missed irq on %s\n",
2973                                                                  ring->name);
2974                                                 wake_up_all(&ring->irq_queue);
2975                                         }
2976                                         /* Safeguard against driver failure */
2977                                         ring->hangcheck.score += BUSY;
2978                                 } else
2979                                         busy = false;
2980                         } else {
2981                                 /* We always increment the hangcheck score
2982                                  * if the ring is busy and still processing
2983                                  * the same request, so that no single request
2984                                  * can run indefinitely (such as a chain of
2985                                  * batches). The only time we do not increment
2986                                  * the hangcheck score on this ring, if this
2987                                  * ring is in a legitimate wait for another
2988                                  * ring. In that case the waiting ring is a
2989                                  * victim and we want to be sure we catch the
2990                                  * right culprit. Then every time we do kick
2991                                  * the ring, add a small increment to the
2992                                  * score so that we can catch a batch that is
2993                                  * being repeatedly kicked and so responsible
2994                                  * for stalling the machine.
2995                                  */
2996                                 ring->hangcheck.action = ring_stuck(ring,
2997                                                                     acthd);
2998
2999                                 switch (ring->hangcheck.action) {
3000                                 case HANGCHECK_IDLE:
3001                                 case HANGCHECK_WAIT:
3002                                         break;
3003                                 case HANGCHECK_ACTIVE:
3004                                         ring->hangcheck.score += BUSY;
3005                                         break;
3006                                 case HANGCHECK_KICK:
3007                                         ring->hangcheck.score += KICK;
3008                                         break;
3009                                 case HANGCHECK_HUNG:
3010                                         ring->hangcheck.score += HUNG;
3011                                         stuck[i] = true;
3012                                         break;
3013                                 }
3014                         }
3015                 } else {
3016                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3017
3018                         /* Gradually reduce the count so that we catch DoS
3019                          * attempts across multiple batches.
3020                          */
3021                         if (ring->hangcheck.score > 0)
3022                                 ring->hangcheck.score--;
3023                 }
3024
3025                 ring->hangcheck.seqno = seqno;
3026                 ring->hangcheck.acthd = acthd;
3027                 busy_count += busy;
3028         }
3029
3030         for_each_ring(ring, dev_priv, i) {
3031                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3032                         DRM_INFO("%s on %s\n",
3033                                  stuck[i] ? "stuck" : "no progress",
3034                                  ring->name);
3035                         rings_hung++;
3036                 }
3037         }
3038
3039         if (rings_hung)
3040                 return i915_handle_error(dev, true, "Ring hung");
3041
3042         if (busy_count)
3043                 /* Reset timer case chip hangs without another request
3044                  * being added */
3045                 i915_queue_hangcheck(dev);
3046 }
3047
3048 void i915_queue_hangcheck(struct drm_device *dev)
3049 {
3050         struct drm_i915_private *dev_priv = dev->dev_private;
3051         if (!i915.enable_hangcheck)
3052                 return;
3053
3054         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3055                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3056 }
3057
3058 static void ibx_irq_reset(struct drm_device *dev)
3059 {
3060         struct drm_i915_private *dev_priv = dev->dev_private;
3061
3062         if (HAS_PCH_NOP(dev))
3063                 return;
3064
3065         GEN5_IRQ_RESET(SDE);
3066
3067         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3068                 I915_WRITE(SERR_INT, 0xffffffff);
3069 }
3070
3071 /*
3072  * SDEIER is also touched by the interrupt handler to work around missed PCH
3073  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3074  * instead we unconditionally enable all PCH interrupt sources here, but then
3075  * only unmask them as needed with SDEIMR.
3076  *
3077  * This function needs to be called before interrupts are enabled.
3078  */
3079 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3080 {
3081         struct drm_i915_private *dev_priv = dev->dev_private;
3082
3083         if (HAS_PCH_NOP(dev))
3084                 return;
3085
3086         WARN_ON(I915_READ(SDEIER) != 0);
3087         I915_WRITE(SDEIER, 0xffffffff);
3088         POSTING_READ(SDEIER);
3089 }
3090
3091 static void gen5_gt_irq_reset(struct drm_device *dev)
3092 {
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095         GEN5_IRQ_RESET(GT);
3096         if (INTEL_INFO(dev)->gen >= 6)
3097                 GEN5_IRQ_RESET(GEN6_PM);
3098 }
3099
3100 /* drm_dma.h hooks
3101 */
3102 static void ironlake_irq_reset(struct drm_device *dev)
3103 {
3104         struct drm_i915_private *dev_priv = dev->dev_private;
3105
3106         I915_WRITE(HWSTAM, 0xffffffff);
3107
3108         GEN5_IRQ_RESET(DE);
3109         if (IS_GEN7(dev))
3110                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3111
3112         gen5_gt_irq_reset(dev);
3113
3114         ibx_irq_reset(dev);
3115 }
3116
3117 static void valleyview_irq_preinstall(struct drm_device *dev)
3118 {
3119         struct drm_i915_private *dev_priv = dev->dev_private;
3120         int pipe;
3121
3122         /* VLV magic */
3123         I915_WRITE(VLV_IMR, 0);
3124         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3125         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3126         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3127
3128         /* and GT */
3129         I915_WRITE(GTIIR, I915_READ(GTIIR));
3130         I915_WRITE(GTIIR, I915_READ(GTIIR));
3131
3132         gen5_gt_irq_reset(dev);
3133
3134         I915_WRITE(DPINVGTT, 0xff);
3135
3136         I915_WRITE(PORT_HOTPLUG_EN, 0);
3137         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3138         for_each_pipe(pipe)
3139                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3140         I915_WRITE(VLV_IIR, 0xffffffff);
3141         I915_WRITE(VLV_IMR, 0xffffffff);
3142         I915_WRITE(VLV_IER, 0x0);
3143         POSTING_READ(VLV_IER);
3144 }
3145
3146 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3147 {
3148         GEN8_IRQ_RESET_NDX(GT, 0);
3149         GEN8_IRQ_RESET_NDX(GT, 1);
3150         GEN8_IRQ_RESET_NDX(GT, 2);
3151         GEN8_IRQ_RESET_NDX(GT, 3);
3152 }
3153
3154 static void gen8_irq_reset(struct drm_device *dev)
3155 {
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157         int pipe;
3158
3159         I915_WRITE(GEN8_MASTER_IRQ, 0);
3160         POSTING_READ(GEN8_MASTER_IRQ);
3161
3162         gen8_gt_irq_reset(dev_priv);
3163
3164         for_each_pipe(pipe)
3165                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3166
3167         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3168         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3169         GEN5_IRQ_RESET(GEN8_PCU_);
3170
3171         ibx_irq_reset(dev);
3172 }
3173
3174 static void cherryview_irq_preinstall(struct drm_device *dev)
3175 {
3176         struct drm_i915_private *dev_priv = dev->dev_private;
3177         int pipe;
3178
3179         I915_WRITE(GEN8_MASTER_IRQ, 0);
3180         POSTING_READ(GEN8_MASTER_IRQ);
3181
3182         gen8_gt_irq_reset(dev_priv);
3183
3184         GEN5_IRQ_RESET(GEN8_PCU_);
3185
3186         POSTING_READ(GEN8_PCU_IIR);
3187
3188         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3189
3190         I915_WRITE(PORT_HOTPLUG_EN, 0);
3191         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3192
3193         for_each_pipe(pipe)
3194                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3195
3196         I915_WRITE(VLV_IMR, 0xffffffff);
3197         I915_WRITE(VLV_IER, 0x0);
3198         I915_WRITE(VLV_IIR, 0xffffffff);
3199         POSTING_READ(VLV_IIR);
3200 }
3201
3202 static void ibx_hpd_irq_setup(struct drm_device *dev)
3203 {
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         struct drm_mode_config *mode_config = &dev->mode_config;
3206         struct intel_encoder *intel_encoder;
3207         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3208
3209         if (HAS_PCH_IBX(dev)) {
3210                 hotplug_irqs = SDE_HOTPLUG_MASK;
3211                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3212                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3213                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3214         } else {
3215                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3216                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3217                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3218                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3219         }
3220
3221         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3222
3223         /*
3224          * Enable digital hotplug on the PCH, and configure the DP short pulse
3225          * duration to 2ms (which is the minimum in the Display Port spec)
3226          *
3227          * This register is the same on all known PCH chips.
3228          */
3229         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3230         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3231         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3232         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3233         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3234         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3235 }
3236
3237 static void ibx_irq_postinstall(struct drm_device *dev)
3238 {
3239         struct drm_i915_private *dev_priv = dev->dev_private;
3240         u32 mask;
3241
3242         if (HAS_PCH_NOP(dev))
3243                 return;
3244
3245         if (HAS_PCH_IBX(dev))
3246                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3247         else
3248                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3249
3250         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3251         I915_WRITE(SDEIMR, ~mask);
3252 }
3253
3254 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3255 {
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         u32 pm_irqs, gt_irqs;
3258
3259         pm_irqs = gt_irqs = 0;
3260
3261         dev_priv->gt_irq_mask = ~0;
3262         if (HAS_L3_DPF(dev)) {
3263                 /* L3 parity interrupt is always unmasked. */
3264                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3265                 gt_irqs |= GT_PARITY_ERROR(dev);
3266         }
3267
3268         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3269         if (IS_GEN5(dev)) {
3270                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3271                            ILK_BSD_USER_INTERRUPT;
3272         } else {
3273                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3274         }
3275
3276         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3277
3278         if (INTEL_INFO(dev)->gen >= 6) {
3279                 pm_irqs |= dev_priv->pm_rps_events;
3280
3281                 if (HAS_VEBOX(dev))
3282                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3283
3284                 dev_priv->pm_irq_mask = 0xffffffff;
3285                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3286         }
3287 }
3288
3289 static int ironlake_irq_postinstall(struct drm_device *dev)
3290 {
3291         unsigned long irqflags;
3292         struct drm_i915_private *dev_priv = dev->dev_private;
3293         u32 display_mask, extra_mask;
3294
3295         if (INTEL_INFO(dev)->gen >= 7) {
3296                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3297                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3298                                 DE_PLANEB_FLIP_DONE_IVB |
3299                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3300                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3301                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3302         } else {
3303                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3304                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3305                                 DE_AUX_CHANNEL_A |
3306                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3307                                 DE_POISON);
3308                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3309                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3310         }
3311
3312         dev_priv->irq_mask = ~display_mask;
3313
3314         I915_WRITE(HWSTAM, 0xeffe);
3315
3316         ibx_irq_pre_postinstall(dev);
3317
3318         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3319
3320         gen5_gt_irq_postinstall(dev);
3321
3322         ibx_irq_postinstall(dev);
3323
3324         if (IS_IRONLAKE_M(dev)) {
3325                 /* Enable PCU event interrupts
3326                  *
3327                  * spinlocking not required here for correctness since interrupt
3328                  * setup is guaranteed to run in single-threaded context. But we
3329                  * need it to make the assert_spin_locked happy. */
3330                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3331                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3332                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3333         }
3334
3335         return 0;
3336 }
3337
3338 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3339 {
3340         u32 pipestat_mask;
3341         u32 iir_mask;
3342
3343         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3344                         PIPE_FIFO_UNDERRUN_STATUS;
3345
3346         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3347         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3348         POSTING_READ(PIPESTAT(PIPE_A));
3349
3350         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3351                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3352
3353         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3354                                                PIPE_GMBUS_INTERRUPT_STATUS);
3355         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3356
3357         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3358                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3359                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3360         dev_priv->irq_mask &= ~iir_mask;
3361
3362         I915_WRITE(VLV_IIR, iir_mask);
3363         I915_WRITE(VLV_IIR, iir_mask);
3364         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3365         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3366         POSTING_READ(VLV_IER);
3367 }
3368
3369 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3370 {
3371         u32 pipestat_mask;
3372         u32 iir_mask;
3373
3374         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3375                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3376                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3377
3378         dev_priv->irq_mask |= iir_mask;
3379         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3380         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3381         I915_WRITE(VLV_IIR, iir_mask);
3382         I915_WRITE(VLV_IIR, iir_mask);
3383         POSTING_READ(VLV_IIR);
3384
3385         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3386                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3387
3388         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3389                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3390         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3391
3392         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3393                         PIPE_FIFO_UNDERRUN_STATUS;
3394         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3395         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3396         POSTING_READ(PIPESTAT(PIPE_A));
3397 }
3398
3399 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3400 {
3401         assert_spin_locked(&dev_priv->irq_lock);
3402
3403         if (dev_priv->display_irqs_enabled)
3404                 return;
3405
3406         dev_priv->display_irqs_enabled = true;
3407
3408         if (dev_priv->dev->irq_enabled)
3409                 valleyview_display_irqs_install(dev_priv);
3410 }
3411
3412 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3413 {
3414         assert_spin_locked(&dev_priv->irq_lock);
3415
3416         if (!dev_priv->display_irqs_enabled)
3417                 return;
3418
3419         dev_priv->display_irqs_enabled = false;
3420
3421         if (dev_priv->dev->irq_enabled)
3422                 valleyview_display_irqs_uninstall(dev_priv);
3423 }
3424
3425 static int valleyview_irq_postinstall(struct drm_device *dev)
3426 {
3427         struct drm_i915_private *dev_priv = dev->dev_private;
3428         unsigned long irqflags;
3429
3430         dev_priv->irq_mask = ~0;
3431
3432         I915_WRITE(PORT_HOTPLUG_EN, 0);
3433         POSTING_READ(PORT_HOTPLUG_EN);
3434
3435         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3436         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3437         I915_WRITE(VLV_IIR, 0xffffffff);
3438         POSTING_READ(VLV_IER);
3439
3440         /* Interrupt setup is already guaranteed to be single-threaded, this is
3441          * just to make the assert_spin_locked check happy. */
3442         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3443         if (dev_priv->display_irqs_enabled)
3444                 valleyview_display_irqs_install(dev_priv);
3445         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3446
3447         I915_WRITE(VLV_IIR, 0xffffffff);
3448         I915_WRITE(VLV_IIR, 0xffffffff);
3449
3450         gen5_gt_irq_postinstall(dev);
3451
3452         /* ack & enable invalid PTE error interrupts */
3453 #if 0 /* FIXME: add support to irq handler for checking these bits */
3454         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3455         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3456 #endif
3457
3458         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3459
3460         return 0;
3461 }
3462
3463 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3464 {
3465         int i;
3466
3467         /* These are interrupts we'll toggle with the ring mask register */
3468         uint32_t gt_interrupts[] = {
3469                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3470                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3471                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3472                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3473                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3474                 0,
3475                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3476                 };
3477
3478         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3479                 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3480
3481         dev_priv->pm_irq_mask = 0xffffffff;
3482 }
3483
3484 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3485 {
3486         struct drm_device *dev = dev_priv->dev;
3487         uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3488                 GEN8_PIPE_CDCLK_CRC_DONE |
3489                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3490         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3491                 GEN8_PIPE_FIFO_UNDERRUN;
3492         int pipe;
3493         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3494         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3495         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3496
3497         for_each_pipe(pipe)
3498                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3499                                   de_pipe_enables);
3500
3501         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3502 }
3503
3504 static int gen8_irq_postinstall(struct drm_device *dev)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507
3508         ibx_irq_pre_postinstall(dev);
3509
3510         gen8_gt_irq_postinstall(dev_priv);
3511         gen8_de_irq_postinstall(dev_priv);
3512
3513         ibx_irq_postinstall(dev);
3514
3515         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3516         POSTING_READ(GEN8_MASTER_IRQ);
3517
3518         return 0;
3519 }
3520
3521 static int cherryview_irq_postinstall(struct drm_device *dev)
3522 {
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3525                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3526                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3527                 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3528         u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3529                 PIPE_CRC_DONE_INTERRUPT_STATUS;
3530         unsigned long irqflags;
3531         int pipe;
3532
3533         /*
3534          * Leave vblank interrupts masked initially.  enable/disable will
3535          * toggle them based on usage.
3536          */
3537         dev_priv->irq_mask = ~enable_mask;
3538
3539         for_each_pipe(pipe)
3540                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3541
3542         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3543         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3544         for_each_pipe(pipe)
3545                 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3546         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3547
3548         I915_WRITE(VLV_IIR, 0xffffffff);
3549         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3550         I915_WRITE(VLV_IER, enable_mask);
3551
3552         gen8_gt_irq_postinstall(dev_priv);
3553
3554         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3555         POSTING_READ(GEN8_MASTER_IRQ);
3556
3557         return 0;
3558 }
3559
3560 static void gen8_irq_uninstall(struct drm_device *dev)
3561 {
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563
3564         if (!dev_priv)
3565                 return;
3566
3567         intel_hpd_irq_uninstall(dev_priv);
3568
3569         gen8_irq_reset(dev);
3570 }
3571
3572 static void valleyview_irq_uninstall(struct drm_device *dev)
3573 {
3574         struct drm_i915_private *dev_priv = dev->dev_private;
3575         unsigned long irqflags;
3576         int pipe;
3577
3578         if (!dev_priv)
3579                 return;
3580
3581         I915_WRITE(VLV_MASTER_IER, 0);
3582
3583         intel_hpd_irq_uninstall(dev_priv);
3584
3585         for_each_pipe(pipe)
3586                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3587
3588         I915_WRITE(HWSTAM, 0xffffffff);
3589         I915_WRITE(PORT_HOTPLUG_EN, 0);
3590         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3591
3592         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3593         if (dev_priv->display_irqs_enabled)
3594                 valleyview_display_irqs_uninstall(dev_priv);
3595         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3596
3597         dev_priv->irq_mask = 0;
3598
3599         I915_WRITE(VLV_IIR, 0xffffffff);
3600         I915_WRITE(VLV_IMR, 0xffffffff);
3601         I915_WRITE(VLV_IER, 0x0);
3602         POSTING_READ(VLV_IER);
3603 }
3604
3605 static void cherryview_irq_uninstall(struct drm_device *dev)
3606 {
3607         struct drm_i915_private *dev_priv = dev->dev_private;
3608         int pipe;
3609
3610         if (!dev_priv)
3611                 return;
3612
3613         I915_WRITE(GEN8_MASTER_IRQ, 0);
3614         POSTING_READ(GEN8_MASTER_IRQ);
3615
3616 #define GEN8_IRQ_FINI_NDX(type, which)                          \
3617 do {                                                            \
3618         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);       \
3619         I915_WRITE(GEN8_##type##_IER(which), 0);                \
3620         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3621         POSTING_READ(GEN8_##type##_IIR(which));                 \
3622         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3623 } while (0)
3624
3625 #define GEN8_IRQ_FINI(type)                             \
3626 do {                                                    \
3627         I915_WRITE(GEN8_##type##_IMR, 0xffffffff);      \
3628         I915_WRITE(GEN8_##type##_IER, 0);               \
3629         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3630         POSTING_READ(GEN8_##type##_IIR);                \
3631         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3632 } while (0)
3633
3634         GEN8_IRQ_FINI_NDX(GT, 0);
3635         GEN8_IRQ_FINI_NDX(GT, 1);
3636         GEN8_IRQ_FINI_NDX(GT, 2);
3637         GEN8_IRQ_FINI_NDX(GT, 3);
3638
3639         GEN8_IRQ_FINI(PCU);
3640
3641 #undef GEN8_IRQ_FINI
3642 #undef GEN8_IRQ_FINI_NDX
3643
3644         I915_WRITE(PORT_HOTPLUG_EN, 0);
3645         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3646
3647         for_each_pipe(pipe)
3648                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3649
3650         I915_WRITE(VLV_IMR, 0xffffffff);
3651         I915_WRITE(VLV_IER, 0x0);
3652         I915_WRITE(VLV_IIR, 0xffffffff);
3653         POSTING_READ(VLV_IIR);
3654 }
3655
3656 static void ironlake_irq_uninstall(struct drm_device *dev)
3657 {
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659
3660         if (!dev_priv)
3661                 return;
3662
3663         intel_hpd_irq_uninstall(dev_priv);
3664
3665         ironlake_irq_reset(dev);
3666 }
3667
3668 static void i8xx_irq_preinstall(struct drm_device * dev)
3669 {
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         int pipe;
3672
3673         for_each_pipe(pipe)
3674                 I915_WRITE(PIPESTAT(pipe), 0);
3675         I915_WRITE16(IMR, 0xffff);
3676         I915_WRITE16(IER, 0x0);
3677         POSTING_READ16(IER);
3678 }
3679
3680 static int i8xx_irq_postinstall(struct drm_device *dev)
3681 {
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         unsigned long irqflags;
3684
3685         I915_WRITE16(EMR,
3686                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3687
3688         /* Unmask the interrupts that we always want on. */
3689         dev_priv->irq_mask =
3690                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3691                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3692                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3693                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3694                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3695         I915_WRITE16(IMR, dev_priv->irq_mask);
3696
3697         I915_WRITE16(IER,
3698                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3699                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3700                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3701                      I915_USER_INTERRUPT);
3702         POSTING_READ16(IER);
3703
3704         /* Interrupt setup is already guaranteed to be single-threaded, this is
3705          * just to make the assert_spin_locked check happy. */
3706         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3707         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3708         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3710
3711         return 0;
3712 }
3713
3714 /*
3715  * Returns true when a page flip has completed.
3716  */
3717 static bool i8xx_handle_vblank(struct drm_device *dev,
3718                                int plane, int pipe, u32 iir)
3719 {
3720         struct drm_i915_private *dev_priv = dev->dev_private;
3721         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3722
3723         if (!intel_pipe_handle_vblank(dev, pipe))
3724                 return false;
3725
3726         if ((iir & flip_pending) == 0)
3727                 return false;
3728
3729         intel_prepare_page_flip(dev, plane);
3730
3731         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3732          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3733          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3734          * the flip is completed (no longer pending). Since this doesn't raise
3735          * an interrupt per se, we watch for the change at vblank.
3736          */
3737         if (I915_READ16(ISR) & flip_pending)
3738                 return false;
3739
3740         intel_finish_page_flip(dev, pipe);
3741
3742         return true;
3743 }
3744
3745 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3746 {
3747         struct drm_device *dev = arg;
3748         struct drm_i915_private *dev_priv = dev->dev_private;
3749         u16 iir, new_iir;
3750         u32 pipe_stats[2];
3751         unsigned long irqflags;
3752         int pipe;
3753         u16 flip_mask =
3754                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3755                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3756
3757         iir = I915_READ16(IIR);
3758         if (iir == 0)
3759                 return IRQ_NONE;
3760
3761         while (iir & ~flip_mask) {
3762                 /* Can't rely on pipestat interrupt bit in iir as it might
3763                  * have been cleared after the pipestat interrupt was received.
3764                  * It doesn't set the bit in iir again, but it still produces
3765                  * interrupts (for non-MSI).
3766                  */
3767                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3768                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3769                         i915_handle_error(dev, false,
3770                                           "Command parser error, iir 0x%08x",
3771                                           iir);
3772
3773                 for_each_pipe(pipe) {
3774                         int reg = PIPESTAT(pipe);
3775                         pipe_stats[pipe] = I915_READ(reg);
3776
3777                         /*
3778                          * Clear the PIPE*STAT regs before the IIR
3779                          */
3780                         if (pipe_stats[pipe] & 0x8000ffff)
3781                                 I915_WRITE(reg, pipe_stats[pipe]);
3782                 }
3783                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3784
3785                 I915_WRITE16(IIR, iir & ~flip_mask);
3786                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3787
3788                 i915_update_dri1_breadcrumb(dev);
3789
3790                 if (iir & I915_USER_INTERRUPT)
3791                         notify_ring(dev, &dev_priv->ring[RCS]);
3792
3793                 for_each_pipe(pipe) {
3794                         int plane = pipe;
3795                         if (HAS_FBC(dev))
3796                                 plane = !plane;
3797
3798                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3799                             i8xx_handle_vblank(dev, plane, pipe, iir))
3800                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3801
3802                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3803                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3804
3805                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3806                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3807                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3808                 }
3809
3810                 iir = new_iir;
3811         }
3812
3813         return IRQ_HANDLED;
3814 }
3815
3816 static void i8xx_irq_uninstall(struct drm_device * dev)
3817 {
3818         struct drm_i915_private *dev_priv = dev->dev_private;
3819         int pipe;
3820
3821         for_each_pipe(pipe) {
3822                 /* Clear enable bits; then clear status bits */
3823                 I915_WRITE(PIPESTAT(pipe), 0);
3824                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3825         }
3826         I915_WRITE16(IMR, 0xffff);
3827         I915_WRITE16(IER, 0x0);
3828         I915_WRITE16(IIR, I915_READ16(IIR));
3829 }
3830
3831 static void i915_irq_preinstall(struct drm_device * dev)
3832 {
3833         struct drm_i915_private *dev_priv = dev->dev_private;
3834         int pipe;
3835
3836         if (I915_HAS_HOTPLUG(dev)) {
3837                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3838                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3839         }
3840
3841         I915_WRITE16(HWSTAM, 0xeffe);
3842         for_each_pipe(pipe)
3843                 I915_WRITE(PIPESTAT(pipe), 0);
3844         I915_WRITE(IMR, 0xffffffff);
3845         I915_WRITE(IER, 0x0);
3846         POSTING_READ(IER);
3847 }
3848
3849 static int i915_irq_postinstall(struct drm_device *dev)
3850 {
3851         struct drm_i915_private *dev_priv = dev->dev_private;
3852         u32 enable_mask;
3853         unsigned long irqflags;
3854
3855         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3856
3857         /* Unmask the interrupts that we always want on. */
3858         dev_priv->irq_mask =
3859                 ~(I915_ASLE_INTERRUPT |
3860                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3861                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3862                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3863                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3864                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3865
3866         enable_mask =
3867                 I915_ASLE_INTERRUPT |
3868                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3869                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3870                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3871                 I915_USER_INTERRUPT;
3872
3873         if (I915_HAS_HOTPLUG(dev)) {
3874                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3875                 POSTING_READ(PORT_HOTPLUG_EN);
3876
3877                 /* Enable in IER... */
3878                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3879                 /* and unmask in IMR */
3880                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3881         }
3882
3883         I915_WRITE(IMR, dev_priv->irq_mask);
3884         I915_WRITE(IER, enable_mask);
3885         POSTING_READ(IER);
3886
3887         i915_enable_asle_pipestat(dev);
3888
3889         /* Interrupt setup is already guaranteed to be single-threaded, this is
3890          * just to make the assert_spin_locked check happy. */
3891         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3892         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3893         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3894         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3895
3896         return 0;
3897 }
3898
3899 /*
3900  * Returns true when a page flip has completed.
3901  */
3902 static bool i915_handle_vblank(struct drm_device *dev,
3903                                int plane, int pipe, u32 iir)
3904 {
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3907
3908         if (!intel_pipe_handle_vblank(dev, pipe))
3909                 return false;
3910
3911         if ((iir & flip_pending) == 0)
3912                 return false;
3913
3914         intel_prepare_page_flip(dev, plane);
3915
3916         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3917          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3918          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3919          * the flip is completed (no longer pending). Since this doesn't raise
3920          * an interrupt per se, we watch for the change at vblank.
3921          */
3922         if (I915_READ(ISR) & flip_pending)
3923                 return false;
3924
3925         intel_finish_page_flip(dev, pipe);
3926
3927         return true;
3928 }
3929
3930 static irqreturn_t i915_irq_handler(int irq, void *arg)
3931 {
3932         struct drm_device *dev = arg;
3933         struct drm_i915_private *dev_priv = dev->dev_private;
3934         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3935         unsigned long irqflags;
3936         u32 flip_mask =
3937                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3938                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3939         int pipe, ret = IRQ_NONE;
3940
3941         iir = I915_READ(IIR);
3942         do {
3943                 bool irq_received = (iir & ~flip_mask) != 0;
3944                 bool blc_event = false;
3945
3946                 /* Can't rely on pipestat interrupt bit in iir as it might
3947                  * have been cleared after the pipestat interrupt was received.
3948                  * It doesn't set the bit in iir again, but it still produces
3949                  * interrupts (for non-MSI).
3950                  */
3951                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3952                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3953                         i915_handle_error(dev, false,
3954                                           "Command parser error, iir 0x%08x",
3955                                           iir);
3956
3957                 for_each_pipe(pipe) {
3958                         int reg = PIPESTAT(pipe);
3959                         pipe_stats[pipe] = I915_READ(reg);
3960
3961                         /* Clear the PIPE*STAT regs before the IIR */
3962                         if (pipe_stats[pipe] & 0x8000ffff) {
3963                                 I915_WRITE(reg, pipe_stats[pipe]);
3964                                 irq_received = true;
3965                         }
3966                 }
3967                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3968
3969                 if (!irq_received)
3970                         break;
3971
3972                 /* Consume port.  Then clear IIR or we'll miss events */
3973                 if (I915_HAS_HOTPLUG(dev) &&
3974                     iir & I915_DISPLAY_PORT_INTERRUPT)
3975                         i9xx_hpd_irq_handler(dev);
3976
3977                 I915_WRITE(IIR, iir & ~flip_mask);
3978                 new_iir = I915_READ(IIR); /* Flush posted writes */
3979
3980                 if (iir & I915_USER_INTERRUPT)
3981                         notify_ring(dev, &dev_priv->ring[RCS]);
3982
3983                 for_each_pipe(pipe) {
3984                         int plane = pipe;
3985                         if (HAS_FBC(dev))
3986                                 plane = !plane;
3987
3988                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3989                             i915_handle_vblank(dev, plane, pipe, iir))
3990                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3991
3992                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3993                                 blc_event = true;
3994
3995                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3996                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3997
3998                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3999                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4000                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4001                 }
4002
4003                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4004                         intel_opregion_asle_intr(dev);
4005
4006                 /* With MSI, interrupts are only generated when iir
4007                  * transitions from zero to nonzero.  If another bit got
4008                  * set while we were handling the existing iir bits, then
4009                  * we would never get another interrupt.
4010                  *
4011                  * This is fine on non-MSI as well, as if we hit this path
4012                  * we avoid exiting the interrupt handler only to generate
4013                  * another one.
4014                  *
4015                  * Note that for MSI this could cause a stray interrupt report
4016                  * if an interrupt landed in the time between writing IIR and
4017                  * the posting read.  This should be rare enough to never
4018                  * trigger the 99% of 100,000 interrupts test for disabling
4019                  * stray interrupts.
4020                  */
4021                 ret = IRQ_HANDLED;
4022                 iir = new_iir;
4023         } while (iir & ~flip_mask);
4024
4025         i915_update_dri1_breadcrumb(dev);
4026
4027         return ret;
4028 }
4029
4030 static void i915_irq_uninstall(struct drm_device * dev)
4031 {
4032         struct drm_i915_private *dev_priv = dev->dev_private;
4033         int pipe;
4034
4035         intel_hpd_irq_uninstall(dev_priv);
4036
4037         if (I915_HAS_HOTPLUG(dev)) {
4038                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4039                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4040         }
4041
4042         I915_WRITE16(HWSTAM, 0xffff);
4043         for_each_pipe(pipe) {
4044                 /* Clear enable bits; then clear status bits */
4045                 I915_WRITE(PIPESTAT(pipe), 0);
4046                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4047         }
4048         I915_WRITE(IMR, 0xffffffff);
4049         I915_WRITE(IER, 0x0);
4050
4051         I915_WRITE(IIR, I915_READ(IIR));
4052 }
4053
4054 static void i965_irq_preinstall(struct drm_device * dev)
4055 {
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         int pipe;
4058
4059         I915_WRITE(PORT_HOTPLUG_EN, 0);
4060         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4061
4062         I915_WRITE(HWSTAM, 0xeffe);
4063         for_each_pipe(pipe)
4064                 I915_WRITE(PIPESTAT(pipe), 0);
4065         I915_WRITE(IMR, 0xffffffff);
4066         I915_WRITE(IER, 0x0);
4067         POSTING_READ(IER);
4068 }
4069
4070 static int i965_irq_postinstall(struct drm_device *dev)
4071 {
4072         struct drm_i915_private *dev_priv = dev->dev_private;
4073         u32 enable_mask;
4074         u32 error_mask;
4075         unsigned long irqflags;
4076
4077         /* Unmask the interrupts that we always want on. */
4078         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4079                                I915_DISPLAY_PORT_INTERRUPT |
4080                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4081                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4082                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4083                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4084                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4085
4086         enable_mask = ~dev_priv->irq_mask;
4087         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4088                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4089         enable_mask |= I915_USER_INTERRUPT;
4090
4091         if (IS_G4X(dev))
4092                 enable_mask |= I915_BSD_USER_INTERRUPT;
4093
4094         /* Interrupt setup is already guaranteed to be single-threaded, this is
4095          * just to make the assert_spin_locked check happy. */
4096         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4097         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4098         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4099         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4100         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4101
4102         /*
4103          * Enable some error detection, note the instruction error mask
4104          * bit is reserved, so we leave it masked.
4105          */
4106         if (IS_G4X(dev)) {
4107                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4108                                GM45_ERROR_MEM_PRIV |
4109                                GM45_ERROR_CP_PRIV |
4110                                I915_ERROR_MEMORY_REFRESH);
4111         } else {
4112                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4113                                I915_ERROR_MEMORY_REFRESH);
4114         }
4115         I915_WRITE(EMR, error_mask);
4116
4117         I915_WRITE(IMR, dev_priv->irq_mask);
4118         I915_WRITE(IER, enable_mask);
4119         POSTING_READ(IER);
4120
4121         I915_WRITE(PORT_HOTPLUG_EN, 0);
4122         POSTING_READ(PORT_HOTPLUG_EN);
4123
4124         i915_enable_asle_pipestat(dev);
4125
4126         return 0;
4127 }
4128
4129 static void i915_hpd_irq_setup(struct drm_device *dev)
4130 {
4131         struct drm_i915_private *dev_priv = dev->dev_private;
4132         struct drm_mode_config *mode_config = &dev->mode_config;
4133         struct intel_encoder *intel_encoder;
4134         u32 hotplug_en;
4135
4136         assert_spin_locked(&dev_priv->irq_lock);
4137
4138         if (I915_HAS_HOTPLUG(dev)) {
4139                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4140                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4141                 /* Note HDMI and DP share hotplug bits */
4142                 /* enable bits are the same for all generations */
4143                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4144                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4145                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4146                 /* Programming the CRT detection parameters tends
4147                    to generate a spurious hotplug event about three
4148                    seconds later.  So just do it once.
4149                 */
4150                 if (IS_G4X(dev))
4151                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4152                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4153                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4154
4155                 /* Ignore TV since it's buggy */
4156                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4157         }
4158 }
4159
4160 static irqreturn_t i965_irq_handler(int irq, void *arg)
4161 {
4162         struct drm_device *dev = arg;
4163         struct drm_i915_private *dev_priv = dev->dev_private;
4164         u32 iir, new_iir;
4165         u32 pipe_stats[I915_MAX_PIPES];
4166         unsigned long irqflags;
4167         int ret = IRQ_NONE, pipe;
4168         u32 flip_mask =
4169                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4170                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4171
4172         iir = I915_READ(IIR);
4173
4174         for (;;) {
4175                 bool irq_received = (iir & ~flip_mask) != 0;
4176                 bool blc_event = false;
4177
4178                 /* Can't rely on pipestat interrupt bit in iir as it might
4179                  * have been cleared after the pipestat interrupt was received.
4180                  * It doesn't set the bit in iir again, but it still produces
4181                  * interrupts (for non-MSI).
4182                  */
4183                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4184                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4185                         i915_handle_error(dev, false,
4186                                           "Command parser error, iir 0x%08x",
4187                                           iir);
4188
4189                 for_each_pipe(pipe) {
4190                         int reg = PIPESTAT(pipe);
4191                         pipe_stats[pipe] = I915_READ(reg);
4192
4193                         /*
4194                          * Clear the PIPE*STAT regs before the IIR
4195                          */
4196                         if (pipe_stats[pipe] & 0x8000ffff) {
4197                                 I915_WRITE(reg, pipe_stats[pipe]);
4198                                 irq_received = true;
4199                         }
4200                 }
4201                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4202
4203                 if (!irq_received)
4204                         break;
4205
4206                 ret = IRQ_HANDLED;
4207
4208                 /* Consume port.  Then clear IIR or we'll miss events */
4209                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4210                         i9xx_hpd_irq_handler(dev);
4211
4212                 I915_WRITE(IIR, iir & ~flip_mask);
4213                 new_iir = I915_READ(IIR); /* Flush posted writes */
4214
4215                 if (iir & I915_USER_INTERRUPT)
4216                         notify_ring(dev, &dev_priv->ring[RCS]);
4217                 if (iir & I915_BSD_USER_INTERRUPT)
4218                         notify_ring(dev, &dev_priv->ring[VCS]);
4219
4220                 for_each_pipe(pipe) {
4221                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4222                             i915_handle_vblank(dev, pipe, pipe, iir))
4223                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4224
4225                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4226                                 blc_event = true;
4227
4228                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4229                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4230
4231                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4232                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4233                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4234                 }
4235
4236                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4237                         intel_opregion_asle_intr(dev);
4238
4239                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4240                         gmbus_irq_handler(dev);
4241
4242                 /* With MSI, interrupts are only generated when iir
4243                  * transitions from zero to nonzero.  If another bit got
4244                  * set while we were handling the existing iir bits, then
4245                  * we would never get another interrupt.
4246                  *
4247                  * This is fine on non-MSI as well, as if we hit this path
4248                  * we avoid exiting the interrupt handler only to generate
4249                  * another one.
4250                  *
4251                  * Note that for MSI this could cause a stray interrupt report
4252                  * if an interrupt landed in the time between writing IIR and
4253                  * the posting read.  This should be rare enough to never
4254                  * trigger the 99% of 100,000 interrupts test for disabling
4255                  * stray interrupts.
4256                  */
4257                 iir = new_iir;
4258         }
4259
4260         i915_update_dri1_breadcrumb(dev);
4261
4262         return ret;
4263 }
4264
4265 static void i965_irq_uninstall(struct drm_device * dev)
4266 {
4267         struct drm_i915_private *dev_priv = dev->dev_private;
4268         int pipe;
4269
4270         if (!dev_priv)
4271                 return;
4272
4273         intel_hpd_irq_uninstall(dev_priv);
4274
4275         I915_WRITE(PORT_HOTPLUG_EN, 0);
4276         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4277
4278         I915_WRITE(HWSTAM, 0xffffffff);
4279         for_each_pipe(pipe)
4280                 I915_WRITE(PIPESTAT(pipe), 0);
4281         I915_WRITE(IMR, 0xffffffff);
4282         I915_WRITE(IER, 0x0);
4283
4284         for_each_pipe(pipe)
4285                 I915_WRITE(PIPESTAT(pipe),
4286                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4287         I915_WRITE(IIR, I915_READ(IIR));
4288 }
4289
4290 static void intel_hpd_irq_reenable(unsigned long data)
4291 {
4292         struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4293         struct drm_device *dev = dev_priv->dev;
4294         struct drm_mode_config *mode_config = &dev->mode_config;
4295         unsigned long irqflags;
4296         int i;
4297
4298         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4299         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4300                 struct drm_connector *connector;
4301
4302                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4303                         continue;
4304
4305                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4306
4307                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4308                         struct intel_connector *intel_connector = to_intel_connector(connector);
4309
4310                         if (intel_connector->encoder->hpd_pin == i) {
4311                                 if (connector->polled != intel_connector->polled)
4312                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4313                                                          connector->name);
4314                                 connector->polled = intel_connector->polled;
4315                                 if (!connector->polled)
4316                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4317                         }
4318                 }
4319         }
4320         if (dev_priv->display.hpd_irq_setup)
4321                 dev_priv->display.hpd_irq_setup(dev);
4322         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4323 }
4324
4325 void intel_irq_init(struct drm_device *dev)
4326 {
4327         struct drm_i915_private *dev_priv = dev->dev_private;
4328
4329         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4330         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4331         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4332         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4333
4334         /* Let's track the enabled rps events */
4335         dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4336
4337         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4338                     i915_hangcheck_elapsed,
4339                     (unsigned long) dev);
4340         setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4341                     (unsigned long) dev_priv);
4342
4343         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4344
4345         if (IS_GEN2(dev)) {
4346                 dev->max_vblank_count = 0;
4347                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4348         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4349                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4350                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4351         } else {
4352                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4353                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4354         }
4355
4356         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4357                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4358                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4359         }
4360
4361         if (IS_CHERRYVIEW(dev)) {
4362                 dev->driver->irq_handler = cherryview_irq_handler;
4363                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4364                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4365                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4366                 dev->driver->enable_vblank = valleyview_enable_vblank;
4367                 dev->driver->disable_vblank = valleyview_disable_vblank;
4368                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4369         } else if (IS_VALLEYVIEW(dev)) {
4370                 dev->driver->irq_handler = valleyview_irq_handler;
4371                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4372                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4373                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4374                 dev->driver->enable_vblank = valleyview_enable_vblank;
4375                 dev->driver->disable_vblank = valleyview_disable_vblank;
4376                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4377         } else if (IS_GEN8(dev)) {
4378                 dev->driver->irq_handler = gen8_irq_handler;
4379                 dev->driver->irq_preinstall = gen8_irq_reset;
4380                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4381                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4382                 dev->driver->enable_vblank = gen8_enable_vblank;
4383                 dev->driver->disable_vblank = gen8_disable_vblank;
4384                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4385         } else if (HAS_PCH_SPLIT(dev)) {
4386                 dev->driver->irq_handler = ironlake_irq_handler;
4387                 dev->driver->irq_preinstall = ironlake_irq_reset;
4388                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4389                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4390                 dev->driver->enable_vblank = ironlake_enable_vblank;
4391                 dev->driver->disable_vblank = ironlake_disable_vblank;
4392                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4393         } else {
4394                 if (INTEL_INFO(dev)->gen == 2) {
4395                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4396                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4397                         dev->driver->irq_handler = i8xx_irq_handler;
4398                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4399                 } else if (INTEL_INFO(dev)->gen == 3) {
4400                         dev->driver->irq_preinstall = i915_irq_preinstall;
4401                         dev->driver->irq_postinstall = i915_irq_postinstall;
4402                         dev->driver->irq_uninstall = i915_irq_uninstall;
4403                         dev->driver->irq_handler = i915_irq_handler;
4404                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4405                 } else {
4406                         dev->driver->irq_preinstall = i965_irq_preinstall;
4407                         dev->driver->irq_postinstall = i965_irq_postinstall;
4408                         dev->driver->irq_uninstall = i965_irq_uninstall;
4409                         dev->driver->irq_handler = i965_irq_handler;
4410                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4411                 }
4412                 dev->driver->enable_vblank = i915_enable_vblank;
4413                 dev->driver->disable_vblank = i915_disable_vblank;
4414         }
4415 }
4416
4417 void intel_hpd_init(struct drm_device *dev)
4418 {
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct drm_mode_config *mode_config = &dev->mode_config;
4421         struct drm_connector *connector;
4422         unsigned long irqflags;
4423         int i;
4424
4425         for (i = 1; i < HPD_NUM_PINS; i++) {
4426                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4427                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4428         }
4429         list_for_each_entry(connector, &mode_config->connector_list, head) {
4430                 struct intel_connector *intel_connector = to_intel_connector(connector);
4431                 connector->polled = intel_connector->polled;
4432                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4433                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4434         }
4435
4436         /* Interrupt setup is already guaranteed to be single-threaded, this is
4437          * just to make the assert_spin_locked checks happy. */
4438         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4439         if (dev_priv->display.hpd_irq_setup)
4440                 dev_priv->display.hpd_irq_setup(dev);
4441         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4442 }
4443
4444 /* Disable interrupts so we can allow runtime PM. */
4445 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4446 {
4447         struct drm_i915_private *dev_priv = dev->dev_private;
4448
4449         dev->driver->irq_uninstall(dev);
4450         dev_priv->pm.irqs_disabled = true;
4451 }
4452
4453 /* Restore interrupts so we can recover from runtime PM. */
4454 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4455 {
4456         struct drm_i915_private *dev_priv = dev->dev_private;
4457
4458         dev_priv->pm.irqs_disabled = false;
4459         dev->driver->irq_preinstall(dev);
4460         dev->driver->irq_postinstall(dev);
4461 }