]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge remote-tracking branch 'wireless-next/master'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35 #include "i915_drv.h"
36 #include "i915_trace.h"
37 #include "intel_drv.h"
38
39 static const u32 hpd_ibx[] = {
40         [HPD_CRT] = SDE_CRT_HOTPLUG,
41         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
42         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
43         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
44         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
45 };
46
47 static const u32 hpd_cpt[] = {
48         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
49         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
50         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
51         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
52         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
53 };
54
55 static const u32 hpd_mask_i915[] = {
56         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
57         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
58         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
59         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
60         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
61         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
62 };
63
64 static const u32 hpd_status_gen4[] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
71 };
72
73 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 /* For display hotplug interrupt */
83 static void
84 ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
85 {
86         assert_spin_locked(&dev_priv->irq_lock);
87
88         if (dev_priv->pc8.irqs_disabled) {
89                 WARN(1, "IRQs disabled\n");
90                 dev_priv->pc8.regsave.deimr &= ~mask;
91                 return;
92         }
93
94         if ((dev_priv->irq_mask & mask) != 0) {
95                 dev_priv->irq_mask &= ~mask;
96                 I915_WRITE(DEIMR, dev_priv->irq_mask);
97                 POSTING_READ(DEIMR);
98         }
99 }
100
101 static void
102 ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
103 {
104         assert_spin_locked(&dev_priv->irq_lock);
105
106         if (dev_priv->pc8.irqs_disabled) {
107                 WARN(1, "IRQs disabled\n");
108                 dev_priv->pc8.regsave.deimr |= mask;
109                 return;
110         }
111
112         if ((dev_priv->irq_mask & mask) != mask) {
113                 dev_priv->irq_mask |= mask;
114                 I915_WRITE(DEIMR, dev_priv->irq_mask);
115                 POSTING_READ(DEIMR);
116         }
117 }
118
119 /**
120  * ilk_update_gt_irq - update GTIMR
121  * @dev_priv: driver private
122  * @interrupt_mask: mask of interrupt bits to update
123  * @enabled_irq_mask: mask of interrupt bits to enable
124  */
125 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
126                               uint32_t interrupt_mask,
127                               uint32_t enabled_irq_mask)
128 {
129         assert_spin_locked(&dev_priv->irq_lock);
130
131         if (dev_priv->pc8.irqs_disabled) {
132                 WARN(1, "IRQs disabled\n");
133                 dev_priv->pc8.regsave.gtimr &= ~interrupt_mask;
134                 dev_priv->pc8.regsave.gtimr |= (~enabled_irq_mask &
135                                                 interrupt_mask);
136                 return;
137         }
138
139         dev_priv->gt_irq_mask &= ~interrupt_mask;
140         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
141         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
142         POSTING_READ(GTIMR);
143 }
144
145 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
146 {
147         ilk_update_gt_irq(dev_priv, mask, mask);
148 }
149
150 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
151 {
152         ilk_update_gt_irq(dev_priv, mask, 0);
153 }
154
155 /**
156   * snb_update_pm_irq - update GEN6_PMIMR
157   * @dev_priv: driver private
158   * @interrupt_mask: mask of interrupt bits to update
159   * @enabled_irq_mask: mask of interrupt bits to enable
160   */
161 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
162                               uint32_t interrupt_mask,
163                               uint32_t enabled_irq_mask)
164 {
165         uint32_t new_val;
166
167         assert_spin_locked(&dev_priv->irq_lock);
168
169         if (dev_priv->pc8.irqs_disabled) {
170                 WARN(1, "IRQs disabled\n");
171                 dev_priv->pc8.regsave.gen6_pmimr &= ~interrupt_mask;
172                 dev_priv->pc8.regsave.gen6_pmimr |= (~enabled_irq_mask &
173                                                      interrupt_mask);
174                 return;
175         }
176
177         new_val = dev_priv->pm_irq_mask;
178         new_val &= ~interrupt_mask;
179         new_val |= (~enabled_irq_mask & interrupt_mask);
180
181         if (new_val != dev_priv->pm_irq_mask) {
182                 dev_priv->pm_irq_mask = new_val;
183                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
184                 POSTING_READ(GEN6_PMIMR);
185         }
186 }
187
188 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
189 {
190         snb_update_pm_irq(dev_priv, mask, mask);
191 }
192
193 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
194 {
195         snb_update_pm_irq(dev_priv, mask, 0);
196 }
197
198 static bool ivb_can_enable_err_int(struct drm_device *dev)
199 {
200         struct drm_i915_private *dev_priv = dev->dev_private;
201         struct intel_crtc *crtc;
202         enum pipe pipe;
203
204         assert_spin_locked(&dev_priv->irq_lock);
205
206         for_each_pipe(pipe) {
207                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
208
209                 if (crtc->cpu_fifo_underrun_disabled)
210                         return false;
211         }
212
213         return true;
214 }
215
216 static bool cpt_can_enable_serr_int(struct drm_device *dev)
217 {
218         struct drm_i915_private *dev_priv = dev->dev_private;
219         enum pipe pipe;
220         struct intel_crtc *crtc;
221
222         assert_spin_locked(&dev_priv->irq_lock);
223
224         for_each_pipe(pipe) {
225                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
226
227                 if (crtc->pch_fifo_underrun_disabled)
228                         return false;
229         }
230
231         return true;
232 }
233
234 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
235                                                  enum pipe pipe, bool enable)
236 {
237         struct drm_i915_private *dev_priv = dev->dev_private;
238         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
239                                           DE_PIPEB_FIFO_UNDERRUN;
240
241         if (enable)
242                 ironlake_enable_display_irq(dev_priv, bit);
243         else
244                 ironlake_disable_display_irq(dev_priv, bit);
245 }
246
247 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
248                                                   enum pipe pipe, bool enable)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251         if (enable) {
252                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
253
254                 if (!ivb_can_enable_err_int(dev))
255                         return;
256
257                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
258         } else {
259                 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
260
261                 /* Change the state _after_ we've read out the current one. */
262                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
263
264                 if (!was_enabled &&
265                     (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
266                         DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
267                                       pipe_name(pipe));
268                 }
269         }
270 }
271
272 /**
273  * ibx_display_interrupt_update - update SDEIMR
274  * @dev_priv: driver private
275  * @interrupt_mask: mask of interrupt bits to update
276  * @enabled_irq_mask: mask of interrupt bits to enable
277  */
278 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
279                                          uint32_t interrupt_mask,
280                                          uint32_t enabled_irq_mask)
281 {
282         uint32_t sdeimr = I915_READ(SDEIMR);
283         sdeimr &= ~interrupt_mask;
284         sdeimr |= (~enabled_irq_mask & interrupt_mask);
285
286         assert_spin_locked(&dev_priv->irq_lock);
287
288         if (dev_priv->pc8.irqs_disabled &&
289             (interrupt_mask & SDE_HOTPLUG_MASK_CPT)) {
290                 WARN(1, "IRQs disabled\n");
291                 dev_priv->pc8.regsave.sdeimr &= ~interrupt_mask;
292                 dev_priv->pc8.regsave.sdeimr |= (~enabled_irq_mask &
293                                                  interrupt_mask);
294                 return;
295         }
296
297         I915_WRITE(SDEIMR, sdeimr);
298         POSTING_READ(SDEIMR);
299 }
300 #define ibx_enable_display_interrupt(dev_priv, bits) \
301         ibx_display_interrupt_update((dev_priv), (bits), (bits))
302 #define ibx_disable_display_interrupt(dev_priv, bits) \
303         ibx_display_interrupt_update((dev_priv), (bits), 0)
304
305 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
306                                             enum transcoder pch_transcoder,
307                                             bool enable)
308 {
309         struct drm_i915_private *dev_priv = dev->dev_private;
310         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
311                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
312
313         if (enable)
314                 ibx_enable_display_interrupt(dev_priv, bit);
315         else
316                 ibx_disable_display_interrupt(dev_priv, bit);
317 }
318
319 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
320                                             enum transcoder pch_transcoder,
321                                             bool enable)
322 {
323         struct drm_i915_private *dev_priv = dev->dev_private;
324
325         if (enable) {
326                 I915_WRITE(SERR_INT,
327                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
328
329                 if (!cpt_can_enable_serr_int(dev))
330                         return;
331
332                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
333         } else {
334                 uint32_t tmp = I915_READ(SERR_INT);
335                 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
336
337                 /* Change the state _after_ we've read out the current one. */
338                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
339
340                 if (!was_enabled &&
341                     (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
342                         DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
343                                       transcoder_name(pch_transcoder));
344                 }
345         }
346 }
347
348 /**
349  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
350  * @dev: drm device
351  * @pipe: pipe
352  * @enable: true if we want to report FIFO underrun errors, false otherwise
353  *
354  * This function makes us disable or enable CPU fifo underruns for a specific
355  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
356  * reporting for one pipe may also disable all the other CPU error interruts for
357  * the other pipes, due to the fact that there's just one interrupt mask/enable
358  * bit for all the pipes.
359  *
360  * Returns the previous state of underrun reporting.
361  */
362 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
363                                            enum pipe pipe, bool enable)
364 {
365         struct drm_i915_private *dev_priv = dev->dev_private;
366         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
368         unsigned long flags;
369         bool ret;
370
371         spin_lock_irqsave(&dev_priv->irq_lock, flags);
372
373         ret = !intel_crtc->cpu_fifo_underrun_disabled;
374
375         if (enable == ret)
376                 goto done;
377
378         intel_crtc->cpu_fifo_underrun_disabled = !enable;
379
380         if (IS_GEN5(dev) || IS_GEN6(dev))
381                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
382         else if (IS_GEN7(dev))
383                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
384
385 done:
386         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
387         return ret;
388 }
389
390 /**
391  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
392  * @dev: drm device
393  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
394  * @enable: true if we want to report FIFO underrun errors, false otherwise
395  *
396  * This function makes us disable or enable PCH fifo underruns for a specific
397  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
398  * underrun reporting for one transcoder may also disable all the other PCH
399  * error interruts for the other transcoders, due to the fact that there's just
400  * one interrupt mask/enable bit for all the transcoders.
401  *
402  * Returns the previous state of underrun reporting.
403  */
404 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
405                                            enum transcoder pch_transcoder,
406                                            bool enable)
407 {
408         struct drm_i915_private *dev_priv = dev->dev_private;
409         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
411         unsigned long flags;
412         bool ret;
413
414         /*
415          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
416          * has only one pch transcoder A that all pipes can use. To avoid racy
417          * pch transcoder -> pipe lookups from interrupt code simply store the
418          * underrun statistics in crtc A. Since we never expose this anywhere
419          * nor use it outside of the fifo underrun code here using the "wrong"
420          * crtc on LPT won't cause issues.
421          */
422
423         spin_lock_irqsave(&dev_priv->irq_lock, flags);
424
425         ret = !intel_crtc->pch_fifo_underrun_disabled;
426
427         if (enable == ret)
428                 goto done;
429
430         intel_crtc->pch_fifo_underrun_disabled = !enable;
431
432         if (HAS_PCH_IBX(dev))
433                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
434         else
435                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
436
437 done:
438         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
439         return ret;
440 }
441
442
443 void
444 i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
445 {
446         u32 reg = PIPESTAT(pipe);
447         u32 pipestat = I915_READ(reg) & 0x7fff0000;
448
449         assert_spin_locked(&dev_priv->irq_lock);
450
451         if ((pipestat & mask) == mask)
452                 return;
453
454         /* Enable the interrupt, clear any pending status */
455         pipestat |= mask | (mask >> 16);
456         I915_WRITE(reg, pipestat);
457         POSTING_READ(reg);
458 }
459
460 void
461 i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
462 {
463         u32 reg = PIPESTAT(pipe);
464         u32 pipestat = I915_READ(reg) & 0x7fff0000;
465
466         assert_spin_locked(&dev_priv->irq_lock);
467
468         if ((pipestat & mask) == 0)
469                 return;
470
471         pipestat &= ~mask;
472         I915_WRITE(reg, pipestat);
473         POSTING_READ(reg);
474 }
475
476 /**
477  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
478  */
479 static void i915_enable_asle_pipestat(struct drm_device *dev)
480 {
481         drm_i915_private_t *dev_priv = dev->dev_private;
482         unsigned long irqflags;
483
484         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
485                 return;
486
487         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
488
489         i915_enable_pipestat(dev_priv, 1, PIPE_LEGACY_BLC_EVENT_ENABLE);
490         if (INTEL_INFO(dev)->gen >= 4)
491                 i915_enable_pipestat(dev_priv, 0, PIPE_LEGACY_BLC_EVENT_ENABLE);
492
493         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
494 }
495
496 /**
497  * i915_pipe_enabled - check if a pipe is enabled
498  * @dev: DRM device
499  * @pipe: pipe to check
500  *
501  * Reading certain registers when the pipe is disabled can hang the chip.
502  * Use this routine to make sure the PLL is running and the pipe is active
503  * before reading such registers if unsure.
504  */
505 static int
506 i915_pipe_enabled(struct drm_device *dev, int pipe)
507 {
508         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
509
510         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
511                 /* Locking is horribly broken here, but whatever. */
512                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
513                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
514
515                 return intel_crtc->active;
516         } else {
517                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
518         }
519 }
520
521 /* Called from drm generic code, passed a 'crtc', which
522  * we use as a pipe index
523  */
524 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
525 {
526         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
527         unsigned long high_frame;
528         unsigned long low_frame;
529         u32 high1, high2, low;
530
531         if (!i915_pipe_enabled(dev, pipe)) {
532                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
533                                 "pipe %c\n", pipe_name(pipe));
534                 return 0;
535         }
536
537         high_frame = PIPEFRAME(pipe);
538         low_frame = PIPEFRAMEPIXEL(pipe);
539
540         /*
541          * High & low register fields aren't synchronized, so make sure
542          * we get a low value that's stable across two reads of the high
543          * register.
544          */
545         do {
546                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
547                 low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
548                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
549         } while (high1 != high2);
550
551         high1 >>= PIPE_FRAME_HIGH_SHIFT;
552         low >>= PIPE_FRAME_LOW_SHIFT;
553         return (high1 << 8) | low;
554 }
555
556 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
557 {
558         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
559         int reg = PIPE_FRMCOUNT_GM45(pipe);
560
561         if (!i915_pipe_enabled(dev, pipe)) {
562                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
563                                  "pipe %c\n", pipe_name(pipe));
564                 return 0;
565         }
566
567         return I915_READ(reg);
568 }
569
570 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
571                              int *vpos, int *hpos)
572 {
573         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
574         u32 vbl = 0, position = 0;
575         int vbl_start, vbl_end, htotal, vtotal;
576         bool in_vbl = true;
577         int ret = 0;
578         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
579                                                                       pipe);
580
581         if (!i915_pipe_enabled(dev, pipe)) {
582                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
583                                  "pipe %c\n", pipe_name(pipe));
584                 return 0;
585         }
586
587         /* Get vtotal. */
588         vtotal = 1 + ((I915_READ(VTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
589
590         if (INTEL_INFO(dev)->gen >= 4) {
591                 /* No obvious pixelcount register. Only query vertical
592                  * scanout position from Display scan line register.
593                  */
594                 position = I915_READ(PIPEDSL(pipe));
595
596                 /* Decode into vertical scanout position. Don't have
597                  * horizontal scanout position.
598                  */
599                 *vpos = position & 0x1fff;
600                 *hpos = 0;
601         } else {
602                 /* Have access to pixelcount since start of frame.
603                  * We can split this into vertical and horizontal
604                  * scanout position.
605                  */
606                 position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
607
608                 htotal = 1 + ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff);
609                 *vpos = position / htotal;
610                 *hpos = position - (*vpos * htotal);
611         }
612
613         /* Query vblank area. */
614         vbl = I915_READ(VBLANK(cpu_transcoder));
615
616         /* Test position against vblank region. */
617         vbl_start = vbl & 0x1fff;
618         vbl_end = (vbl >> 16) & 0x1fff;
619
620         if ((*vpos < vbl_start) || (*vpos > vbl_end))
621                 in_vbl = false;
622
623         /* Inside "upper part" of vblank area? Apply corrective offset: */
624         if (in_vbl && (*vpos >= vbl_start))
625                 *vpos = *vpos - vtotal;
626
627         /* Readouts valid? */
628         if (vbl > 0)
629                 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
630
631         /* In vblank? */
632         if (in_vbl)
633                 ret |= DRM_SCANOUTPOS_INVBL;
634
635         return ret;
636 }
637
638 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
639                               int *max_error,
640                               struct timeval *vblank_time,
641                               unsigned flags)
642 {
643         struct drm_crtc *crtc;
644
645         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
646                 DRM_ERROR("Invalid crtc %d\n", pipe);
647                 return -EINVAL;
648         }
649
650         /* Get drm_crtc to timestamp: */
651         crtc = intel_get_crtc_for_pipe(dev, pipe);
652         if (crtc == NULL) {
653                 DRM_ERROR("Invalid crtc %d\n", pipe);
654                 return -EINVAL;
655         }
656
657         if (!crtc->enabled) {
658                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
659                 return -EBUSY;
660         }
661
662         /* Helper routine in DRM core does all the work: */
663         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
664                                                      vblank_time, flags,
665                                                      crtc);
666 }
667
668 static int intel_hpd_irq_event(struct drm_device *dev, struct drm_connector *connector)
669 {
670         enum drm_connector_status old_status;
671
672         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
673         old_status = connector->status;
674
675         connector->status = connector->funcs->detect(connector, false);
676         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %d to %d\n",
677                       connector->base.id,
678                       drm_get_connector_name(connector),
679                       old_status, connector->status);
680         return (old_status != connector->status);
681 }
682
683 /*
684  * Handle hotplug events outside the interrupt handler proper.
685  */
686 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
687
688 static void i915_hotplug_work_func(struct work_struct *work)
689 {
690         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
691                                                     hotplug_work);
692         struct drm_device *dev = dev_priv->dev;
693         struct drm_mode_config *mode_config = &dev->mode_config;
694         struct intel_connector *intel_connector;
695         struct intel_encoder *intel_encoder;
696         struct drm_connector *connector;
697         unsigned long irqflags;
698         bool hpd_disabled = false;
699         bool changed = false;
700         u32 hpd_event_bits;
701
702         /* HPD irq before everything is fully set up. */
703         if (!dev_priv->enable_hotplug_processing)
704                 return;
705
706         mutex_lock(&mode_config->mutex);
707         DRM_DEBUG_KMS("running encoder hotplug functions\n");
708
709         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
710
711         hpd_event_bits = dev_priv->hpd_event_bits;
712         dev_priv->hpd_event_bits = 0;
713         list_for_each_entry(connector, &mode_config->connector_list, head) {
714                 intel_connector = to_intel_connector(connector);
715                 intel_encoder = intel_connector->encoder;
716                 if (intel_encoder->hpd_pin > HPD_NONE &&
717                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
718                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
719                         DRM_INFO("HPD interrupt storm detected on connector %s: "
720                                  "switching from hotplug detection to polling\n",
721                                 drm_get_connector_name(connector));
722                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
723                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
724                                 | DRM_CONNECTOR_POLL_DISCONNECT;
725                         hpd_disabled = true;
726                 }
727                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
728                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
729                                       drm_get_connector_name(connector), intel_encoder->hpd_pin);
730                 }
731         }
732          /* if there were no outputs to poll, poll was disabled,
733           * therefore make sure it's enabled when disabling HPD on
734           * some connectors */
735         if (hpd_disabled) {
736                 drm_kms_helper_poll_enable(dev);
737                 mod_timer(&dev_priv->hotplug_reenable_timer,
738                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
739         }
740
741         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
742
743         list_for_each_entry(connector, &mode_config->connector_list, head) {
744                 intel_connector = to_intel_connector(connector);
745                 intel_encoder = intel_connector->encoder;
746                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
747                         if (intel_encoder->hot_plug)
748                                 intel_encoder->hot_plug(intel_encoder);
749                         if (intel_hpd_irq_event(dev, connector))
750                                 changed = true;
751                 }
752         }
753         mutex_unlock(&mode_config->mutex);
754
755         if (changed)
756                 drm_kms_helper_hotplug_event(dev);
757 }
758
759 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
760 {
761         drm_i915_private_t *dev_priv = dev->dev_private;
762         u32 busy_up, busy_down, max_avg, min_avg;
763         u8 new_delay;
764
765         spin_lock(&mchdev_lock);
766
767         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
768
769         new_delay = dev_priv->ips.cur_delay;
770
771         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
772         busy_up = I915_READ(RCPREVBSYTUPAVG);
773         busy_down = I915_READ(RCPREVBSYTDNAVG);
774         max_avg = I915_READ(RCBMAXAVG);
775         min_avg = I915_READ(RCBMINAVG);
776
777         /* Handle RCS change request from hw */
778         if (busy_up > max_avg) {
779                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
780                         new_delay = dev_priv->ips.cur_delay - 1;
781                 if (new_delay < dev_priv->ips.max_delay)
782                         new_delay = dev_priv->ips.max_delay;
783         } else if (busy_down < min_avg) {
784                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
785                         new_delay = dev_priv->ips.cur_delay + 1;
786                 if (new_delay > dev_priv->ips.min_delay)
787                         new_delay = dev_priv->ips.min_delay;
788         }
789
790         if (ironlake_set_drps(dev, new_delay))
791                 dev_priv->ips.cur_delay = new_delay;
792
793         spin_unlock(&mchdev_lock);
794
795         return;
796 }
797
798 static void notify_ring(struct drm_device *dev,
799                         struct intel_ring_buffer *ring)
800 {
801         if (ring->obj == NULL)
802                 return;
803
804         trace_i915_gem_request_complete(ring, ring->get_seqno(ring, false));
805
806         wake_up_all(&ring->irq_queue);
807         i915_queue_hangcheck(dev);
808 }
809
810 static void gen6_pm_rps_work(struct work_struct *work)
811 {
812         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
813                                                     rps.work);
814         u32 pm_iir;
815         u8 new_delay;
816
817         spin_lock_irq(&dev_priv->irq_lock);
818         pm_iir = dev_priv->rps.pm_iir;
819         dev_priv->rps.pm_iir = 0;
820         /* Make sure not to corrupt PMIMR state used by ringbuffer code */
821         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
822         spin_unlock_irq(&dev_priv->irq_lock);
823
824         /* Make sure we didn't queue anything we're not going to process. */
825         WARN_ON(pm_iir & ~GEN6_PM_RPS_EVENTS);
826
827         if ((pm_iir & GEN6_PM_RPS_EVENTS) == 0)
828                 return;
829
830         mutex_lock(&dev_priv->rps.hw_lock);
831
832         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
833                 new_delay = dev_priv->rps.cur_delay + 1;
834
835                 /*
836                  * For better performance, jump directly
837                  * to RPe if we're below it.
838                  */
839                 if (IS_VALLEYVIEW(dev_priv->dev) &&
840                     dev_priv->rps.cur_delay < dev_priv->rps.rpe_delay)
841                         new_delay = dev_priv->rps.rpe_delay;
842         } else
843                 new_delay = dev_priv->rps.cur_delay - 1;
844
845         /* sysfs frequency interfaces may have snuck in while servicing the
846          * interrupt
847          */
848         if (new_delay >= dev_priv->rps.min_delay &&
849             new_delay <= dev_priv->rps.max_delay) {
850                 if (IS_VALLEYVIEW(dev_priv->dev))
851                         valleyview_set_rps(dev_priv->dev, new_delay);
852                 else
853                         gen6_set_rps(dev_priv->dev, new_delay);
854         }
855
856         if (IS_VALLEYVIEW(dev_priv->dev)) {
857                 /*
858                  * On VLV, when we enter RC6 we may not be at the minimum
859                  * voltage level, so arm a timer to check.  It should only
860                  * fire when there's activity or once after we've entered
861                  * RC6, and then won't be re-armed until the next RPS interrupt.
862                  */
863                 mod_delayed_work(dev_priv->wq, &dev_priv->rps.vlv_work,
864                                  msecs_to_jiffies(100));
865         }
866
867         mutex_unlock(&dev_priv->rps.hw_lock);
868 }
869
870
871 /**
872  * ivybridge_parity_work - Workqueue called when a parity error interrupt
873  * occurred.
874  * @work: workqueue struct
875  *
876  * Doesn't actually do anything except notify userspace. As a consequence of
877  * this event, userspace should try to remap the bad rows since statistically
878  * it is likely the same row is more likely to go bad again.
879  */
880 static void ivybridge_parity_work(struct work_struct *work)
881 {
882         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
883                                                     l3_parity.error_work);
884         u32 error_status, row, bank, subbank;
885         char *parity_event[5];
886         uint32_t misccpctl;
887         unsigned long flags;
888
889         /* We must turn off DOP level clock gating to access the L3 registers.
890          * In order to prevent a get/put style interface, acquire struct mutex
891          * any time we access those registers.
892          */
893         mutex_lock(&dev_priv->dev->struct_mutex);
894
895         misccpctl = I915_READ(GEN7_MISCCPCTL);
896         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
897         POSTING_READ(GEN7_MISCCPCTL);
898
899         error_status = I915_READ(GEN7_L3CDERRST1);
900         row = GEN7_PARITY_ERROR_ROW(error_status);
901         bank = GEN7_PARITY_ERROR_BANK(error_status);
902         subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
903
904         I915_WRITE(GEN7_L3CDERRST1, GEN7_PARITY_ERROR_VALID |
905                                     GEN7_L3CDERRST1_ENABLE);
906         POSTING_READ(GEN7_L3CDERRST1);
907
908         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
909
910         spin_lock_irqsave(&dev_priv->irq_lock, flags);
911         ilk_enable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
912         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
913
914         mutex_unlock(&dev_priv->dev->struct_mutex);
915
916         parity_event[0] = I915_L3_PARITY_UEVENT "=1";
917         parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
918         parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
919         parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
920         parity_event[4] = NULL;
921
922         kobject_uevent_env(&dev_priv->dev->primary->kdev.kobj,
923                            KOBJ_CHANGE, parity_event);
924
925         DRM_DEBUG("Parity error: Row = %d, Bank = %d, Sub bank = %d.\n",
926                   row, bank, subbank);
927
928         kfree(parity_event[3]);
929         kfree(parity_event[2]);
930         kfree(parity_event[1]);
931 }
932
933 static void ivybridge_parity_error_irq_handler(struct drm_device *dev)
934 {
935         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
936
937         if (!HAS_L3_GPU_CACHE(dev))
938                 return;
939
940         spin_lock(&dev_priv->irq_lock);
941         ilk_disable_gt_irq(dev_priv, GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
942         spin_unlock(&dev_priv->irq_lock);
943
944         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
945 }
946
947 static void ilk_gt_irq_handler(struct drm_device *dev,
948                                struct drm_i915_private *dev_priv,
949                                u32 gt_iir)
950 {
951         if (gt_iir &
952             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
953                 notify_ring(dev, &dev_priv->ring[RCS]);
954         if (gt_iir & ILK_BSD_USER_INTERRUPT)
955                 notify_ring(dev, &dev_priv->ring[VCS]);
956 }
957
958 static void snb_gt_irq_handler(struct drm_device *dev,
959                                struct drm_i915_private *dev_priv,
960                                u32 gt_iir)
961 {
962
963         if (gt_iir &
964             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
965                 notify_ring(dev, &dev_priv->ring[RCS]);
966         if (gt_iir & GT_BSD_USER_INTERRUPT)
967                 notify_ring(dev, &dev_priv->ring[VCS]);
968         if (gt_iir & GT_BLT_USER_INTERRUPT)
969                 notify_ring(dev, &dev_priv->ring[BCS]);
970
971         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
972                       GT_BSD_CS_ERROR_INTERRUPT |
973                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
974                 DRM_ERROR("GT error interrupt 0x%08x\n", gt_iir);
975                 i915_handle_error(dev, false);
976         }
977
978         if (gt_iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
979                 ivybridge_parity_error_irq_handler(dev);
980 }
981
982 #define HPD_STORM_DETECT_PERIOD 1000
983 #define HPD_STORM_THRESHOLD 5
984
985 static inline void intel_hpd_irq_handler(struct drm_device *dev,
986                                          u32 hotplug_trigger,
987                                          const u32 *hpd)
988 {
989         drm_i915_private_t *dev_priv = dev->dev_private;
990         int i;
991         bool storm_detected = false;
992
993         if (!hotplug_trigger)
994                 return;
995
996         spin_lock(&dev_priv->irq_lock);
997         for (i = 1; i < HPD_NUM_PINS; i++) {
998
999                 WARN(((hpd[i] & hotplug_trigger) &&
1000                       dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED),
1001                      "Received HPD interrupt although disabled\n");
1002
1003                 if (!(hpd[i] & hotplug_trigger) ||
1004                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1005                         continue;
1006
1007                 dev_priv->hpd_event_bits |= (1 << i);
1008                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1009                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1010                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1011                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1012                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1013                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1014                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1015                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1016                         dev_priv->hpd_event_bits &= ~(1 << i);
1017                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1018                         storm_detected = true;
1019                 } else {
1020                         dev_priv->hpd_stats[i].hpd_cnt++;
1021                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1022                                       dev_priv->hpd_stats[i].hpd_cnt);
1023                 }
1024         }
1025
1026         if (storm_detected)
1027                 dev_priv->display.hpd_irq_setup(dev);
1028         spin_unlock(&dev_priv->irq_lock);
1029
1030         /*
1031          * Our hotplug handler can grab modeset locks (by calling down into the
1032          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1033          * queue for otherwise the flush_work in the pageflip code will
1034          * deadlock.
1035          */
1036         schedule_work(&dev_priv->hotplug_work);
1037 }
1038
1039 static void gmbus_irq_handler(struct drm_device *dev)
1040 {
1041         struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1042
1043         wake_up_all(&dev_priv->gmbus_wait_queue);
1044 }
1045
1046 static void dp_aux_irq_handler(struct drm_device *dev)
1047 {
1048         struct drm_i915_private *dev_priv = (drm_i915_private_t *) dev->dev_private;
1049
1050         wake_up_all(&dev_priv->gmbus_wait_queue);
1051 }
1052
1053 /* The RPS events need forcewake, so we add them to a work queue and mask their
1054  * IMR bits until the work is done. Other interrupts can be processed without
1055  * the work queue. */
1056 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1057 {
1058         if (pm_iir & GEN6_PM_RPS_EVENTS) {
1059                 spin_lock(&dev_priv->irq_lock);
1060                 dev_priv->rps.pm_iir |= pm_iir & GEN6_PM_RPS_EVENTS;
1061                 snb_disable_pm_irq(dev_priv, pm_iir & GEN6_PM_RPS_EVENTS);
1062                 spin_unlock(&dev_priv->irq_lock);
1063
1064                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1065         }
1066
1067         if (HAS_VEBOX(dev_priv->dev)) {
1068                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1069                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1070
1071                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1072                         DRM_ERROR("VEBOX CS error interrupt 0x%08x\n", pm_iir);
1073                         i915_handle_error(dev_priv->dev, false);
1074                 }
1075         }
1076 }
1077
1078 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1079 {
1080         struct drm_device *dev = (struct drm_device *) arg;
1081         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1082         u32 iir, gt_iir, pm_iir;
1083         irqreturn_t ret = IRQ_NONE;
1084         unsigned long irqflags;
1085         int pipe;
1086         u32 pipe_stats[I915_MAX_PIPES];
1087
1088         atomic_inc(&dev_priv->irq_received);
1089
1090         while (true) {
1091                 iir = I915_READ(VLV_IIR);
1092                 gt_iir = I915_READ(GTIIR);
1093                 pm_iir = I915_READ(GEN6_PMIIR);
1094
1095                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1096                         goto out;
1097
1098                 ret = IRQ_HANDLED;
1099
1100                 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1101
1102                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1103                 for_each_pipe(pipe) {
1104                         int reg = PIPESTAT(pipe);
1105                         pipe_stats[pipe] = I915_READ(reg);
1106
1107                         /*
1108                          * Clear the PIPE*STAT regs before the IIR
1109                          */
1110                         if (pipe_stats[pipe] & 0x8000ffff) {
1111                                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1112                                         DRM_DEBUG_DRIVER("pipe %c underrun\n",
1113                                                          pipe_name(pipe));
1114                                 I915_WRITE(reg, pipe_stats[pipe]);
1115                         }
1116                 }
1117                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1118
1119                 for_each_pipe(pipe) {
1120                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1121                                 drm_handle_vblank(dev, pipe);
1122
1123                         if (pipe_stats[pipe] & PLANE_FLIPDONE_INT_STATUS_VLV) {
1124                                 intel_prepare_page_flip(dev, pipe);
1125                                 intel_finish_page_flip(dev, pipe);
1126                         }
1127                 }
1128
1129                 /* Consume port.  Then clear IIR or we'll miss events */
1130                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
1131                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1132                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1133
1134                         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1135                                          hotplug_status);
1136
1137                         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1138
1139                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1140                         I915_READ(PORT_HOTPLUG_STAT);
1141                 }
1142
1143                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1144                         gmbus_irq_handler(dev);
1145
1146                 if (pm_iir)
1147                         gen6_rps_irq_handler(dev_priv, pm_iir);
1148
1149                 I915_WRITE(GTIIR, gt_iir);
1150                 I915_WRITE(GEN6_PMIIR, pm_iir);
1151                 I915_WRITE(VLV_IIR, iir);
1152         }
1153
1154 out:
1155         return ret;
1156 }
1157
1158 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1159 {
1160         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1161         int pipe;
1162         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1163
1164         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1165
1166         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1167                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1168                                SDE_AUDIO_POWER_SHIFT);
1169                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1170                                  port_name(port));
1171         }
1172
1173         if (pch_iir & SDE_AUX_MASK)
1174                 dp_aux_irq_handler(dev);
1175
1176         if (pch_iir & SDE_GMBUS)
1177                 gmbus_irq_handler(dev);
1178
1179         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1180                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1181
1182         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1183                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1184
1185         if (pch_iir & SDE_POISON)
1186                 DRM_ERROR("PCH poison interrupt\n");
1187
1188         if (pch_iir & SDE_FDI_MASK)
1189                 for_each_pipe(pipe)
1190                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1191                                          pipe_name(pipe),
1192                                          I915_READ(FDI_RX_IIR(pipe)));
1193
1194         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1195                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1196
1197         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1198                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1199
1200         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1201                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1202                                                           false))
1203                         DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1204
1205         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1206                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1207                                                           false))
1208                         DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1209 }
1210
1211 static void ivb_err_int_handler(struct drm_device *dev)
1212 {
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         u32 err_int = I915_READ(GEN7_ERR_INT);
1215
1216         if (err_int & ERR_INT_POISON)
1217                 DRM_ERROR("Poison interrupt\n");
1218
1219         if (err_int & ERR_INT_FIFO_UNDERRUN_A)
1220                 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1221                         DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1222
1223         if (err_int & ERR_INT_FIFO_UNDERRUN_B)
1224                 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1225                         DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1226
1227         if (err_int & ERR_INT_FIFO_UNDERRUN_C)
1228                 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_C, false))
1229                         DRM_DEBUG_DRIVER("Pipe C FIFO underrun\n");
1230
1231         I915_WRITE(GEN7_ERR_INT, err_int);
1232 }
1233
1234 static void cpt_serr_int_handler(struct drm_device *dev)
1235 {
1236         struct drm_i915_private *dev_priv = dev->dev_private;
1237         u32 serr_int = I915_READ(SERR_INT);
1238
1239         if (serr_int & SERR_INT_POISON)
1240                 DRM_ERROR("PCH poison interrupt\n");
1241
1242         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1243                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1244                                                           false))
1245                         DRM_DEBUG_DRIVER("PCH transcoder A FIFO underrun\n");
1246
1247         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1248                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1249                                                           false))
1250                         DRM_DEBUG_DRIVER("PCH transcoder B FIFO underrun\n");
1251
1252         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1253                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1254                                                           false))
1255                         DRM_DEBUG_DRIVER("PCH transcoder C FIFO underrun\n");
1256
1257         I915_WRITE(SERR_INT, serr_int);
1258 }
1259
1260 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1261 {
1262         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1263         int pipe;
1264         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1265
1266         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1267
1268         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1269                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1270                                SDE_AUDIO_POWER_SHIFT_CPT);
1271                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1272                                  port_name(port));
1273         }
1274
1275         if (pch_iir & SDE_AUX_MASK_CPT)
1276                 dp_aux_irq_handler(dev);
1277
1278         if (pch_iir & SDE_GMBUS_CPT)
1279                 gmbus_irq_handler(dev);
1280
1281         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1282                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1283
1284         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1285                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1286
1287         if (pch_iir & SDE_FDI_MASK_CPT)
1288                 for_each_pipe(pipe)
1289                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1290                                          pipe_name(pipe),
1291                                          I915_READ(FDI_RX_IIR(pipe)));
1292
1293         if (pch_iir & SDE_ERROR_CPT)
1294                 cpt_serr_int_handler(dev);
1295 }
1296
1297 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1298 {
1299         struct drm_i915_private *dev_priv = dev->dev_private;
1300
1301         if (de_iir & DE_AUX_CHANNEL_A)
1302                 dp_aux_irq_handler(dev);
1303
1304         if (de_iir & DE_GSE)
1305                 intel_opregion_asle_intr(dev);
1306
1307         if (de_iir & DE_PIPEA_VBLANK)
1308                 drm_handle_vblank(dev, 0);
1309
1310         if (de_iir & DE_PIPEB_VBLANK)
1311                 drm_handle_vblank(dev, 1);
1312
1313         if (de_iir & DE_POISON)
1314                 DRM_ERROR("Poison interrupt\n");
1315
1316         if (de_iir & DE_PIPEA_FIFO_UNDERRUN)
1317                 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_A, false))
1318                         DRM_DEBUG_DRIVER("Pipe A FIFO underrun\n");
1319
1320         if (de_iir & DE_PIPEB_FIFO_UNDERRUN)
1321                 if (intel_set_cpu_fifo_underrun_reporting(dev, PIPE_B, false))
1322                         DRM_DEBUG_DRIVER("Pipe B FIFO underrun\n");
1323
1324         if (de_iir & DE_PLANEA_FLIP_DONE) {
1325                 intel_prepare_page_flip(dev, 0);
1326                 intel_finish_page_flip_plane(dev, 0);
1327         }
1328
1329         if (de_iir & DE_PLANEB_FLIP_DONE) {
1330                 intel_prepare_page_flip(dev, 1);
1331                 intel_finish_page_flip_plane(dev, 1);
1332         }
1333
1334         /* check event from PCH */
1335         if (de_iir & DE_PCH_EVENT) {
1336                 u32 pch_iir = I915_READ(SDEIIR);
1337
1338                 if (HAS_PCH_CPT(dev))
1339                         cpt_irq_handler(dev, pch_iir);
1340                 else
1341                         ibx_irq_handler(dev, pch_iir);
1342
1343                 /* should clear PCH hotplug event before clear CPU irq */
1344                 I915_WRITE(SDEIIR, pch_iir);
1345         }
1346
1347         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1348                 ironlake_rps_change_irq_handler(dev);
1349 }
1350
1351 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1352 {
1353         struct drm_i915_private *dev_priv = dev->dev_private;
1354         int i;
1355
1356         if (de_iir & DE_ERR_INT_IVB)
1357                 ivb_err_int_handler(dev);
1358
1359         if (de_iir & DE_AUX_CHANNEL_A_IVB)
1360                 dp_aux_irq_handler(dev);
1361
1362         if (de_iir & DE_GSE_IVB)
1363                 intel_opregion_asle_intr(dev);
1364
1365         for (i = 0; i < 3; i++) {
1366                 if (de_iir & (DE_PIPEA_VBLANK_IVB << (5 * i)))
1367                         drm_handle_vblank(dev, i);
1368                 if (de_iir & (DE_PLANEA_FLIP_DONE_IVB << (5 * i))) {
1369                         intel_prepare_page_flip(dev, i);
1370                         intel_finish_page_flip_plane(dev, i);
1371                 }
1372         }
1373
1374         /* check event from PCH */
1375         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1376                 u32 pch_iir = I915_READ(SDEIIR);
1377
1378                 cpt_irq_handler(dev, pch_iir);
1379
1380                 /* clear PCH hotplug event before clear CPU irq */
1381                 I915_WRITE(SDEIIR, pch_iir);
1382         }
1383 }
1384
1385 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1386 {
1387         struct drm_device *dev = (struct drm_device *) arg;
1388         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1389         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1390         irqreturn_t ret = IRQ_NONE;
1391         bool err_int_reenable = false;
1392
1393         atomic_inc(&dev_priv->irq_received);
1394
1395         /* We get interrupts on unclaimed registers, so check for this before we
1396          * do any I915_{READ,WRITE}. */
1397         intel_uncore_check_errors(dev);
1398
1399         /* disable master interrupt before clearing iir  */
1400         de_ier = I915_READ(DEIER);
1401         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1402         POSTING_READ(DEIER);
1403
1404         /* Disable south interrupts. We'll only write to SDEIIR once, so further
1405          * interrupts will will be stored on its back queue, and then we'll be
1406          * able to process them after we restore SDEIER (as soon as we restore
1407          * it, we'll get an interrupt if SDEIIR still has something to process
1408          * due to its back queue). */
1409         if (!HAS_PCH_NOP(dev)) {
1410                 sde_ier = I915_READ(SDEIER);
1411                 I915_WRITE(SDEIER, 0);
1412                 POSTING_READ(SDEIER);
1413         }
1414
1415         /* On Haswell, also mask ERR_INT because we don't want to risk
1416          * generating "unclaimed register" interrupts from inside the interrupt
1417          * handler. */
1418         if (IS_HASWELL(dev)) {
1419                 spin_lock(&dev_priv->irq_lock);
1420                 err_int_reenable = ~dev_priv->irq_mask & DE_ERR_INT_IVB;
1421                 if (err_int_reenable)
1422                         ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
1423                 spin_unlock(&dev_priv->irq_lock);
1424         }
1425
1426         gt_iir = I915_READ(GTIIR);
1427         if (gt_iir) {
1428                 if (INTEL_INFO(dev)->gen >= 6)
1429                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1430                 else
1431                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1432                 I915_WRITE(GTIIR, gt_iir);
1433                 ret = IRQ_HANDLED;
1434         }
1435
1436         de_iir = I915_READ(DEIIR);
1437         if (de_iir) {
1438                 if (INTEL_INFO(dev)->gen >= 7)
1439                         ivb_display_irq_handler(dev, de_iir);
1440                 else
1441                         ilk_display_irq_handler(dev, de_iir);
1442                 I915_WRITE(DEIIR, de_iir);
1443                 ret = IRQ_HANDLED;
1444         }
1445
1446         if (INTEL_INFO(dev)->gen >= 6) {
1447                 u32 pm_iir = I915_READ(GEN6_PMIIR);
1448                 if (pm_iir) {
1449                         gen6_rps_irq_handler(dev_priv, pm_iir);
1450                         I915_WRITE(GEN6_PMIIR, pm_iir);
1451                         ret = IRQ_HANDLED;
1452                 }
1453         }
1454
1455         if (err_int_reenable) {
1456                 spin_lock(&dev_priv->irq_lock);
1457                 if (ivb_can_enable_err_int(dev))
1458                         ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
1459                 spin_unlock(&dev_priv->irq_lock);
1460         }
1461
1462         I915_WRITE(DEIER, de_ier);
1463         POSTING_READ(DEIER);
1464         if (!HAS_PCH_NOP(dev)) {
1465                 I915_WRITE(SDEIER, sde_ier);
1466                 POSTING_READ(SDEIER);
1467         }
1468
1469         return ret;
1470 }
1471
1472 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
1473                                bool reset_completed)
1474 {
1475         struct intel_ring_buffer *ring;
1476         int i;
1477
1478         /*
1479          * Notify all waiters for GPU completion events that reset state has
1480          * been changed, and that they need to restart their wait after
1481          * checking for potential errors (and bail out to drop locks if there is
1482          * a gpu reset pending so that i915_error_work_func can acquire them).
1483          */
1484
1485         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
1486         for_each_ring(ring, dev_priv, i)
1487                 wake_up_all(&ring->irq_queue);
1488
1489         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
1490         wake_up_all(&dev_priv->pending_flip_queue);
1491
1492         /*
1493          * Signal tasks blocked in i915_gem_wait_for_error that the pending
1494          * reset state is cleared.
1495          */
1496         if (reset_completed)
1497                 wake_up_all(&dev_priv->gpu_error.reset_queue);
1498 }
1499
1500 /**
1501  * i915_error_work_func - do process context error handling work
1502  * @work: work struct
1503  *
1504  * Fire an error uevent so userspace can see that a hang or error
1505  * was detected.
1506  */
1507 static void i915_error_work_func(struct work_struct *work)
1508 {
1509         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
1510                                                     work);
1511         drm_i915_private_t *dev_priv = container_of(error, drm_i915_private_t,
1512                                                     gpu_error);
1513         struct drm_device *dev = dev_priv->dev;
1514         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
1515         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
1516         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
1517         int ret;
1518
1519         kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
1520
1521         /*
1522          * Note that there's only one work item which does gpu resets, so we
1523          * need not worry about concurrent gpu resets potentially incrementing
1524          * error->reset_counter twice. We only need to take care of another
1525          * racing irq/hangcheck declaring the gpu dead for a second time. A
1526          * quick check for that is good enough: schedule_work ensures the
1527          * correct ordering between hang detection and this work item, and since
1528          * the reset in-progress bit is only ever set by code outside of this
1529          * work we don't need to worry about any other races.
1530          */
1531         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
1532                 DRM_DEBUG_DRIVER("resetting chip\n");
1533                 kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE,
1534                                    reset_event);
1535
1536                 /*
1537                  * All state reset _must_ be completed before we update the
1538                  * reset counter, for otherwise waiters might miss the reset
1539                  * pending state and not properly drop locks, resulting in
1540                  * deadlocks with the reset work.
1541                  */
1542                 ret = i915_reset(dev);
1543
1544                 intel_display_handle_reset(dev);
1545
1546                 if (ret == 0) {
1547                         /*
1548                          * After all the gem state is reset, increment the reset
1549                          * counter and wake up everyone waiting for the reset to
1550                          * complete.
1551                          *
1552                          * Since unlock operations are a one-sided barrier only,
1553                          * we need to insert a barrier here to order any seqno
1554                          * updates before
1555                          * the counter increment.
1556                          */
1557                         smp_mb__before_atomic_inc();
1558                         atomic_inc(&dev_priv->gpu_error.reset_counter);
1559
1560                         kobject_uevent_env(&dev->primary->kdev.kobj,
1561                                            KOBJ_CHANGE, reset_done_event);
1562                 } else {
1563                         atomic_set(&error->reset_counter, I915_WEDGED);
1564                 }
1565
1566                 /*
1567                  * Note: The wake_up also serves as a memory barrier so that
1568                  * waiters see the update value of the reset counter atomic_t.
1569                  */
1570                 i915_error_wake_up(dev_priv, true);
1571         }
1572 }
1573
1574 static void i915_report_and_clear_eir(struct drm_device *dev)
1575 {
1576         struct drm_i915_private *dev_priv = dev->dev_private;
1577         uint32_t instdone[I915_NUM_INSTDONE_REG];
1578         u32 eir = I915_READ(EIR);
1579         int pipe, i;
1580
1581         if (!eir)
1582                 return;
1583
1584         pr_err("render error detected, EIR: 0x%08x\n", eir);
1585
1586         i915_get_extra_instdone(dev, instdone);
1587
1588         if (IS_G4X(dev)) {
1589                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1590                         u32 ipeir = I915_READ(IPEIR_I965);
1591
1592                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1593                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1594                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
1595                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1596                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1597                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1598                         I915_WRITE(IPEIR_I965, ipeir);
1599                         POSTING_READ(IPEIR_I965);
1600                 }
1601                 if (eir & GM45_ERROR_PAGE_TABLE) {
1602                         u32 pgtbl_err = I915_READ(PGTBL_ER);
1603                         pr_err("page table error\n");
1604                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1605                         I915_WRITE(PGTBL_ER, pgtbl_err);
1606                         POSTING_READ(PGTBL_ER);
1607                 }
1608         }
1609
1610         if (!IS_GEN2(dev)) {
1611                 if (eir & I915_ERROR_PAGE_TABLE) {
1612                         u32 pgtbl_err = I915_READ(PGTBL_ER);
1613                         pr_err("page table error\n");
1614                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
1615                         I915_WRITE(PGTBL_ER, pgtbl_err);
1616                         POSTING_READ(PGTBL_ER);
1617                 }
1618         }
1619
1620         if (eir & I915_ERROR_MEMORY_REFRESH) {
1621                 pr_err("memory refresh error:\n");
1622                 for_each_pipe(pipe)
1623                         pr_err("pipe %c stat: 0x%08x\n",
1624                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1625                 /* pipestat has already been acked */
1626         }
1627         if (eir & I915_ERROR_INSTRUCTION) {
1628                 pr_err("instruction error\n");
1629                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
1630                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
1631                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
1632                 if (INTEL_INFO(dev)->gen < 4) {
1633                         u32 ipeir = I915_READ(IPEIR);
1634
1635                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
1636                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
1637                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
1638                         I915_WRITE(IPEIR, ipeir);
1639                         POSTING_READ(IPEIR);
1640                 } else {
1641                         u32 ipeir = I915_READ(IPEIR_I965);
1642
1643                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
1644                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
1645                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
1646                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
1647                         I915_WRITE(IPEIR_I965, ipeir);
1648                         POSTING_READ(IPEIR_I965);
1649                 }
1650         }
1651
1652         I915_WRITE(EIR, eir);
1653         POSTING_READ(EIR);
1654         eir = I915_READ(EIR);
1655         if (eir) {
1656                 /*
1657                  * some errors might have become stuck,
1658                  * mask them.
1659                  */
1660                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1661                 I915_WRITE(EMR, I915_READ(EMR) | eir);
1662                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1663         }
1664 }
1665
1666 /**
1667  * i915_handle_error - handle an error interrupt
1668  * @dev: drm device
1669  *
1670  * Do some basic checking of regsiter state at error interrupt time and
1671  * dump it to the syslog.  Also call i915_capture_error_state() to make
1672  * sure we get a record and make it available in debugfs.  Fire a uevent
1673  * so userspace knows something bad happened (should trigger collection
1674  * of a ring dump etc.).
1675  */
1676 void i915_handle_error(struct drm_device *dev, bool wedged)
1677 {
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679
1680         i915_capture_error_state(dev);
1681         i915_report_and_clear_eir(dev);
1682
1683         if (wedged) {
1684                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
1685                                 &dev_priv->gpu_error.reset_counter);
1686
1687                 /*
1688                  * Wakeup waiting processes so that the reset work function
1689                  * i915_error_work_func doesn't deadlock trying to grab various
1690                  * locks. By bumping the reset counter first, the woken
1691                  * processes will see a reset in progress and back off,
1692                  * releasing their locks and then wait for the reset completion.
1693                  * We must do this for _all_ gpu waiters that might hold locks
1694                  * that the reset work needs to acquire.
1695                  *
1696                  * Note: The wake_up serves as the required memory barrier to
1697                  * ensure that the waiters see the updated value of the reset
1698                  * counter atomic_t.
1699                  */
1700                 i915_error_wake_up(dev_priv, false);
1701         }
1702
1703         /*
1704          * Our reset work can grab modeset locks (since it needs to reset the
1705          * state of outstanding pagelips). Hence it must not be run on our own
1706          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
1707          * code will deadlock.
1708          */
1709         schedule_work(&dev_priv->gpu_error.work);
1710 }
1711
1712 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1713 {
1714         drm_i915_private_t *dev_priv = dev->dev_private;
1715         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1716         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1717         struct drm_i915_gem_object *obj;
1718         struct intel_unpin_work *work;
1719         unsigned long flags;
1720         bool stall_detected;
1721
1722         /* Ignore early vblank irqs */
1723         if (intel_crtc == NULL)
1724                 return;
1725
1726         spin_lock_irqsave(&dev->event_lock, flags);
1727         work = intel_crtc->unpin_work;
1728
1729         if (work == NULL ||
1730             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
1731             !work->enable_stall_check) {
1732                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
1733                 spin_unlock_irqrestore(&dev->event_lock, flags);
1734                 return;
1735         }
1736
1737         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1738         obj = work->pending_flip_obj;
1739         if (INTEL_INFO(dev)->gen >= 4) {
1740                 int dspsurf = DSPSURF(intel_crtc->plane);
1741                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
1742                                         i915_gem_obj_ggtt_offset(obj);
1743         } else {
1744                 int dspaddr = DSPADDR(intel_crtc->plane);
1745                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
1746                                                         crtc->y * crtc->fb->pitches[0] +
1747                                                         crtc->x * crtc->fb->bits_per_pixel/8);
1748         }
1749
1750         spin_unlock_irqrestore(&dev->event_lock, flags);
1751
1752         if (stall_detected) {
1753                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1754                 intel_prepare_page_flip(dev, intel_crtc->plane);
1755         }
1756 }
1757
1758 /* Called from drm generic code, passed 'crtc' which
1759  * we use as a pipe index
1760  */
1761 static int i915_enable_vblank(struct drm_device *dev, int pipe)
1762 {
1763         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1764         unsigned long irqflags;
1765
1766         if (!i915_pipe_enabled(dev, pipe))
1767                 return -EINVAL;
1768
1769         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1770         if (INTEL_INFO(dev)->gen >= 4)
1771                 i915_enable_pipestat(dev_priv, pipe,
1772                                      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1773         else
1774                 i915_enable_pipestat(dev_priv, pipe,
1775                                      PIPE_VBLANK_INTERRUPT_ENABLE);
1776
1777         /* maintain vblank delivery even in deep C-states */
1778         if (dev_priv->info->gen == 3)
1779                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
1780         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1781
1782         return 0;
1783 }
1784
1785 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1786 {
1787         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1788         unsigned long irqflags;
1789         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1790                                                      DE_PIPE_VBLANK_ILK(pipe);
1791
1792         if (!i915_pipe_enabled(dev, pipe))
1793                 return -EINVAL;
1794
1795         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1796         ironlake_enable_display_irq(dev_priv, bit);
1797         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1798
1799         return 0;
1800 }
1801
1802 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
1803 {
1804         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1805         unsigned long irqflags;
1806         u32 imr;
1807
1808         if (!i915_pipe_enabled(dev, pipe))
1809                 return -EINVAL;
1810
1811         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1812         imr = I915_READ(VLV_IMR);
1813         if (pipe == 0)
1814                 imr &= ~I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1815         else
1816                 imr &= ~I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1817         I915_WRITE(VLV_IMR, imr);
1818         i915_enable_pipestat(dev_priv, pipe,
1819                              PIPE_START_VBLANK_INTERRUPT_ENABLE);
1820         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1821
1822         return 0;
1823 }
1824
1825 /* Called from drm generic code, passed 'crtc' which
1826  * we use as a pipe index
1827  */
1828 static void i915_disable_vblank(struct drm_device *dev, int pipe)
1829 {
1830         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1831         unsigned long irqflags;
1832
1833         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1834         if (dev_priv->info->gen == 3)
1835                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
1836
1837         i915_disable_pipestat(dev_priv, pipe,
1838                               PIPE_VBLANK_INTERRUPT_ENABLE |
1839                               PIPE_START_VBLANK_INTERRUPT_ENABLE);
1840         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1841 }
1842
1843 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1844 {
1845         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1846         unsigned long irqflags;
1847         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
1848                                                      DE_PIPE_VBLANK_ILK(pipe);
1849
1850         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1851         ironlake_disable_display_irq(dev_priv, bit);
1852         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1853 }
1854
1855 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
1856 {
1857         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1858         unsigned long irqflags;
1859         u32 imr;
1860
1861         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1862         i915_disable_pipestat(dev_priv, pipe,
1863                               PIPE_START_VBLANK_INTERRUPT_ENABLE);
1864         imr = I915_READ(VLV_IMR);
1865         if (pipe == 0)
1866                 imr |= I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT;
1867         else
1868                 imr |= I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
1869         I915_WRITE(VLV_IMR, imr);
1870         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1871 }
1872
1873 static u32
1874 ring_last_seqno(struct intel_ring_buffer *ring)
1875 {
1876         return list_entry(ring->request_list.prev,
1877                           struct drm_i915_gem_request, list)->seqno;
1878 }
1879
1880 static bool
1881 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
1882 {
1883         return (list_empty(&ring->request_list) ||
1884                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
1885 }
1886
1887 static struct intel_ring_buffer *
1888 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
1889 {
1890         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1891         u32 cmd, ipehr, acthd, acthd_min;
1892
1893         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
1894         if ((ipehr & ~(0x3 << 16)) !=
1895             (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE | MI_SEMAPHORE_REGISTER))
1896                 return NULL;
1897
1898         /* ACTHD is likely pointing to the dword after the actual command,
1899          * so scan backwards until we find the MBOX.
1900          */
1901         acthd = intel_ring_get_active_head(ring) & HEAD_ADDR;
1902         acthd_min = max((int)acthd - 3 * 4, 0);
1903         do {
1904                 cmd = ioread32(ring->virtual_start + acthd);
1905                 if (cmd == ipehr)
1906                         break;
1907
1908                 acthd -= 4;
1909                 if (acthd < acthd_min)
1910                         return NULL;
1911         } while (1);
1912
1913         *seqno = ioread32(ring->virtual_start+acthd+4)+1;
1914         return &dev_priv->ring[(ring->id + (((ipehr >> 17) & 1) + 1)) % 3];
1915 }
1916
1917 static int semaphore_passed(struct intel_ring_buffer *ring)
1918 {
1919         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1920         struct intel_ring_buffer *signaller;
1921         u32 seqno, ctl;
1922
1923         ring->hangcheck.deadlock = true;
1924
1925         signaller = semaphore_waits_for(ring, &seqno);
1926         if (signaller == NULL || signaller->hangcheck.deadlock)
1927                 return -1;
1928
1929         /* cursory check for an unkickable deadlock */
1930         ctl = I915_READ_CTL(signaller);
1931         if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
1932                 return -1;
1933
1934         return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
1935 }
1936
1937 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
1938 {
1939         struct intel_ring_buffer *ring;
1940         int i;
1941
1942         for_each_ring(ring, dev_priv, i)
1943                 ring->hangcheck.deadlock = false;
1944 }
1945
1946 static enum intel_ring_hangcheck_action
1947 ring_stuck(struct intel_ring_buffer *ring, u32 acthd)
1948 {
1949         struct drm_device *dev = ring->dev;
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951         u32 tmp;
1952
1953         if (ring->hangcheck.acthd != acthd)
1954                 return HANGCHECK_ACTIVE;
1955
1956         if (IS_GEN2(dev))
1957                 return HANGCHECK_HUNG;
1958
1959         /* Is the chip hanging on a WAIT_FOR_EVENT?
1960          * If so we can simply poke the RB_WAIT bit
1961          * and break the hang. This should work on
1962          * all but the second generation chipsets.
1963          */
1964         tmp = I915_READ_CTL(ring);
1965         if (tmp & RING_WAIT) {
1966                 DRM_ERROR("Kicking stuck wait on %s\n",
1967                           ring->name);
1968                 I915_WRITE_CTL(ring, tmp);
1969                 return HANGCHECK_KICK;
1970         }
1971
1972         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
1973                 switch (semaphore_passed(ring)) {
1974                 default:
1975                         return HANGCHECK_HUNG;
1976                 case 1:
1977                         DRM_ERROR("Kicking stuck semaphore on %s\n",
1978                                   ring->name);
1979                         I915_WRITE_CTL(ring, tmp);
1980                         return HANGCHECK_KICK;
1981                 case 0:
1982                         return HANGCHECK_WAIT;
1983                 }
1984         }
1985
1986         return HANGCHECK_HUNG;
1987 }
1988
1989 /**
1990  * This is called when the chip hasn't reported back with completed
1991  * batchbuffers in a long time. We keep track per ring seqno progress and
1992  * if there are no progress, hangcheck score for that ring is increased.
1993  * Further, acthd is inspected to see if the ring is stuck. On stuck case
1994  * we kick the ring. If we see no progress on three subsequent calls
1995  * we assume chip is wedged and try to fix it by resetting the chip.
1996  */
1997 static void i915_hangcheck_elapsed(unsigned long data)
1998 {
1999         struct drm_device *dev = (struct drm_device *)data;
2000         drm_i915_private_t *dev_priv = dev->dev_private;
2001         struct intel_ring_buffer *ring;
2002         int i;
2003         int busy_count = 0, rings_hung = 0;
2004         bool stuck[I915_NUM_RINGS] = { 0 };
2005 #define BUSY 1
2006 #define KICK 5
2007 #define HUNG 20
2008 #define FIRE 30
2009
2010         if (!i915_enable_hangcheck)
2011                 return;
2012
2013         for_each_ring(ring, dev_priv, i) {
2014                 u32 seqno, acthd;
2015                 bool busy = true;
2016
2017                 semaphore_clear_deadlocks(dev_priv);
2018
2019                 seqno = ring->get_seqno(ring, false);
2020                 acthd = intel_ring_get_active_head(ring);
2021
2022                 if (ring->hangcheck.seqno == seqno) {
2023                         if (ring_idle(ring, seqno)) {
2024                                 if (waitqueue_active(&ring->irq_queue)) {
2025                                         /* Issue a wake-up to catch stuck h/w. */
2026                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2027                                                   ring->name);
2028                                         wake_up_all(&ring->irq_queue);
2029                                         ring->hangcheck.score += HUNG;
2030                                 } else
2031                                         busy = false;
2032                         } else {
2033                                 /* We always increment the hangcheck score
2034                                  * if the ring is busy and still processing
2035                                  * the same request, so that no single request
2036                                  * can run indefinitely (such as a chain of
2037                                  * batches). The only time we do not increment
2038                                  * the hangcheck score on this ring, if this
2039                                  * ring is in a legitimate wait for another
2040                                  * ring. In that case the waiting ring is a
2041                                  * victim and we want to be sure we catch the
2042                                  * right culprit. Then every time we do kick
2043                                  * the ring, add a small increment to the
2044                                  * score so that we can catch a batch that is
2045                                  * being repeatedly kicked and so responsible
2046                                  * for stalling the machine.
2047                                  */
2048                                 ring->hangcheck.action = ring_stuck(ring,
2049                                                                     acthd);
2050
2051                                 switch (ring->hangcheck.action) {
2052                                 case HANGCHECK_WAIT:
2053                                         break;
2054                                 case HANGCHECK_ACTIVE:
2055                                         ring->hangcheck.score += BUSY;
2056                                         break;
2057                                 case HANGCHECK_KICK:
2058                                         ring->hangcheck.score += KICK;
2059                                         break;
2060                                 case HANGCHECK_HUNG:
2061                                         ring->hangcheck.score += HUNG;
2062                                         stuck[i] = true;
2063                                         break;
2064                                 }
2065                         }
2066                 } else {
2067                         /* Gradually reduce the count so that we catch DoS
2068                          * attempts across multiple batches.
2069                          */
2070                         if (ring->hangcheck.score > 0)
2071                                 ring->hangcheck.score--;
2072                 }
2073
2074                 ring->hangcheck.seqno = seqno;
2075                 ring->hangcheck.acthd = acthd;
2076                 busy_count += busy;
2077         }
2078
2079         for_each_ring(ring, dev_priv, i) {
2080                 if (ring->hangcheck.score > FIRE) {
2081                         DRM_INFO("%s on %s\n",
2082                                  stuck[i] ? "stuck" : "no progress",
2083                                  ring->name);
2084                         rings_hung++;
2085                 }
2086         }
2087
2088         if (rings_hung)
2089                 return i915_handle_error(dev, true);
2090
2091         if (busy_count)
2092                 /* Reset timer case chip hangs without another request
2093                  * being added */
2094                 i915_queue_hangcheck(dev);
2095 }
2096
2097 void i915_queue_hangcheck(struct drm_device *dev)
2098 {
2099         struct drm_i915_private *dev_priv = dev->dev_private;
2100         if (!i915_enable_hangcheck)
2101                 return;
2102
2103         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2104                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2105 }
2106
2107 static void ibx_irq_preinstall(struct drm_device *dev)
2108 {
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110
2111         if (HAS_PCH_NOP(dev))
2112                 return;
2113
2114         /* south display irq */
2115         I915_WRITE(SDEIMR, 0xffffffff);
2116         /*
2117          * SDEIER is also touched by the interrupt handler to work around missed
2118          * PCH interrupts. Hence we can't update it after the interrupt handler
2119          * is enabled - instead we unconditionally enable all PCH interrupt
2120          * sources here, but then only unmask them as needed with SDEIMR.
2121          */
2122         I915_WRITE(SDEIER, 0xffffffff);
2123         POSTING_READ(SDEIER);
2124 }
2125
2126 static void gen5_gt_irq_preinstall(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130         /* and GT */
2131         I915_WRITE(GTIMR, 0xffffffff);
2132         I915_WRITE(GTIER, 0x0);
2133         POSTING_READ(GTIER);
2134
2135         if (INTEL_INFO(dev)->gen >= 6) {
2136                 /* and PM */
2137                 I915_WRITE(GEN6_PMIMR, 0xffffffff);
2138                 I915_WRITE(GEN6_PMIER, 0x0);
2139                 POSTING_READ(GEN6_PMIER);
2140         }
2141 }
2142
2143 /* drm_dma.h hooks
2144 */
2145 static void ironlake_irq_preinstall(struct drm_device *dev)
2146 {
2147         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2148
2149         atomic_set(&dev_priv->irq_received, 0);
2150
2151         I915_WRITE(HWSTAM, 0xeffe);
2152
2153         I915_WRITE(DEIMR, 0xffffffff);
2154         I915_WRITE(DEIER, 0x0);
2155         POSTING_READ(DEIER);
2156
2157         gen5_gt_irq_preinstall(dev);
2158
2159         ibx_irq_preinstall(dev);
2160 }
2161
2162 static void valleyview_irq_preinstall(struct drm_device *dev)
2163 {
2164         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2165         int pipe;
2166
2167         atomic_set(&dev_priv->irq_received, 0);
2168
2169         /* VLV magic */
2170         I915_WRITE(VLV_IMR, 0);
2171         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2172         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2173         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2174
2175         /* and GT */
2176         I915_WRITE(GTIIR, I915_READ(GTIIR));
2177         I915_WRITE(GTIIR, I915_READ(GTIIR));
2178
2179         gen5_gt_irq_preinstall(dev);
2180
2181         I915_WRITE(DPINVGTT, 0xff);
2182
2183         I915_WRITE(PORT_HOTPLUG_EN, 0);
2184         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2185         for_each_pipe(pipe)
2186                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2187         I915_WRITE(VLV_IIR, 0xffffffff);
2188         I915_WRITE(VLV_IMR, 0xffffffff);
2189         I915_WRITE(VLV_IER, 0x0);
2190         POSTING_READ(VLV_IER);
2191 }
2192
2193 static void ibx_hpd_irq_setup(struct drm_device *dev)
2194 {
2195         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2196         struct drm_mode_config *mode_config = &dev->mode_config;
2197         struct intel_encoder *intel_encoder;
2198         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2199
2200         if (HAS_PCH_IBX(dev)) {
2201                 hotplug_irqs = SDE_HOTPLUG_MASK;
2202                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2203                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2204                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2205         } else {
2206                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2207                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2208                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2209                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2210         }
2211
2212         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2213
2214         /*
2215          * Enable digital hotplug on the PCH, and configure the DP short pulse
2216          * duration to 2ms (which is the minimum in the Display Port spec)
2217          *
2218          * This register is the same on all known PCH chips.
2219          */
2220         hotplug = I915_READ(PCH_PORT_HOTPLUG);
2221         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2222         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2223         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2224         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2225         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2226 }
2227
2228 static void ibx_irq_postinstall(struct drm_device *dev)
2229 {
2230         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2231         u32 mask;
2232
2233         if (HAS_PCH_NOP(dev))
2234                 return;
2235
2236         if (HAS_PCH_IBX(dev)) {
2237                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_TRANSB_FIFO_UNDER |
2238                        SDE_TRANSA_FIFO_UNDER | SDE_POISON;
2239         } else {
2240                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT | SDE_ERROR_CPT;
2241
2242                 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2243         }
2244
2245         I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2246         I915_WRITE(SDEIMR, ~mask);
2247 }
2248
2249 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         u32 pm_irqs, gt_irqs;
2253
2254         pm_irqs = gt_irqs = 0;
2255
2256         dev_priv->gt_irq_mask = ~0;
2257         if (HAS_L3_GPU_CACHE(dev)) {
2258                 /* L3 parity interrupt is always unmasked. */
2259                 dev_priv->gt_irq_mask = ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2260                 gt_irqs |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2261         }
2262
2263         gt_irqs |= GT_RENDER_USER_INTERRUPT;
2264         if (IS_GEN5(dev)) {
2265                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
2266                            ILK_BSD_USER_INTERRUPT;
2267         } else {
2268                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
2269         }
2270
2271         I915_WRITE(GTIIR, I915_READ(GTIIR));
2272         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
2273         I915_WRITE(GTIER, gt_irqs);
2274         POSTING_READ(GTIER);
2275
2276         if (INTEL_INFO(dev)->gen >= 6) {
2277                 pm_irqs |= GEN6_PM_RPS_EVENTS;
2278
2279                 if (HAS_VEBOX(dev))
2280                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
2281
2282                 dev_priv->pm_irq_mask = 0xffffffff;
2283                 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2284                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
2285                 I915_WRITE(GEN6_PMIER, pm_irqs);
2286                 POSTING_READ(GEN6_PMIER);
2287         }
2288 }
2289
2290 static int ironlake_irq_postinstall(struct drm_device *dev)
2291 {
2292         unsigned long irqflags;
2293         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2294         u32 display_mask, extra_mask;
2295
2296         if (INTEL_INFO(dev)->gen >= 7) {
2297                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
2298                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
2299                                 DE_PLANEB_FLIP_DONE_IVB |
2300                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB |
2301                                 DE_ERR_INT_IVB);
2302                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
2303                               DE_PIPEA_VBLANK_IVB);
2304
2305                 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2306         } else {
2307                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
2308                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
2309                                 DE_AUX_CHANNEL_A | DE_PIPEB_FIFO_UNDERRUN |
2310                                 DE_PIPEA_FIFO_UNDERRUN | DE_POISON);
2311                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT;
2312         }
2313
2314         dev_priv->irq_mask = ~display_mask;
2315
2316         /* should always can generate irq */
2317         I915_WRITE(DEIIR, I915_READ(DEIIR));
2318         I915_WRITE(DEIMR, dev_priv->irq_mask);
2319         I915_WRITE(DEIER, display_mask | extra_mask);
2320         POSTING_READ(DEIER);
2321
2322         gen5_gt_irq_postinstall(dev);
2323
2324         ibx_irq_postinstall(dev);
2325
2326         if (IS_IRONLAKE_M(dev)) {
2327                 /* Enable PCU event interrupts
2328                  *
2329                  * spinlocking not required here for correctness since interrupt
2330                  * setup is guaranteed to run in single-threaded context. But we
2331                  * need it to make the assert_spin_locked happy. */
2332                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2333                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
2334                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2335         }
2336
2337         return 0;
2338 }
2339
2340 static int valleyview_irq_postinstall(struct drm_device *dev)
2341 {
2342         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2343         u32 enable_mask;
2344         u32 pipestat_enable = PLANE_FLIP_DONE_INT_EN_VLV;
2345         unsigned long irqflags;
2346
2347         enable_mask = I915_DISPLAY_PORT_INTERRUPT;
2348         enable_mask |= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2349                 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2350                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2351                 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2352
2353         /*
2354          *Leave vblank interrupts masked initially.  enable/disable will
2355          * toggle them based on usage.
2356          */
2357         dev_priv->irq_mask = (~enable_mask) |
2358                 I915_DISPLAY_PIPE_A_VBLANK_INTERRUPT |
2359                 I915_DISPLAY_PIPE_B_VBLANK_INTERRUPT;
2360
2361         I915_WRITE(PORT_HOTPLUG_EN, 0);
2362         POSTING_READ(PORT_HOTPLUG_EN);
2363
2364         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
2365         I915_WRITE(VLV_IER, enable_mask);
2366         I915_WRITE(VLV_IIR, 0xffffffff);
2367         I915_WRITE(PIPESTAT(0), 0xffff);
2368         I915_WRITE(PIPESTAT(1), 0xffff);
2369         POSTING_READ(VLV_IER);
2370
2371         /* Interrupt setup is already guaranteed to be single-threaded, this is
2372          * just to make the assert_spin_locked check happy. */
2373         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2374         i915_enable_pipestat(dev_priv, 0, pipestat_enable);
2375         i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2376         i915_enable_pipestat(dev_priv, 1, pipestat_enable);
2377         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2378
2379         I915_WRITE(VLV_IIR, 0xffffffff);
2380         I915_WRITE(VLV_IIR, 0xffffffff);
2381
2382         gen5_gt_irq_postinstall(dev);
2383
2384         /* ack & enable invalid PTE error interrupts */
2385 #if 0 /* FIXME: add support to irq handler for checking these bits */
2386         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2387         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
2388 #endif
2389
2390         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2391
2392         return 0;
2393 }
2394
2395 static void valleyview_irq_uninstall(struct drm_device *dev)
2396 {
2397         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2398         int pipe;
2399
2400         if (!dev_priv)
2401                 return;
2402
2403         del_timer_sync(&dev_priv->hotplug_reenable_timer);
2404
2405         for_each_pipe(pipe)
2406                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2407
2408         I915_WRITE(HWSTAM, 0xffffffff);
2409         I915_WRITE(PORT_HOTPLUG_EN, 0);
2410         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2411         for_each_pipe(pipe)
2412                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2413         I915_WRITE(VLV_IIR, 0xffffffff);
2414         I915_WRITE(VLV_IMR, 0xffffffff);
2415         I915_WRITE(VLV_IER, 0x0);
2416         POSTING_READ(VLV_IER);
2417 }
2418
2419 static void ironlake_irq_uninstall(struct drm_device *dev)
2420 {
2421         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2422
2423         if (!dev_priv)
2424                 return;
2425
2426         del_timer_sync(&dev_priv->hotplug_reenable_timer);
2427
2428         I915_WRITE(HWSTAM, 0xffffffff);
2429
2430         I915_WRITE(DEIMR, 0xffffffff);
2431         I915_WRITE(DEIER, 0x0);
2432         I915_WRITE(DEIIR, I915_READ(DEIIR));
2433         if (IS_GEN7(dev))
2434                 I915_WRITE(GEN7_ERR_INT, I915_READ(GEN7_ERR_INT));
2435
2436         I915_WRITE(GTIMR, 0xffffffff);
2437         I915_WRITE(GTIER, 0x0);
2438         I915_WRITE(GTIIR, I915_READ(GTIIR));
2439
2440         if (HAS_PCH_NOP(dev))
2441                 return;
2442
2443         I915_WRITE(SDEIMR, 0xffffffff);
2444         I915_WRITE(SDEIER, 0x0);
2445         I915_WRITE(SDEIIR, I915_READ(SDEIIR));
2446         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2447                 I915_WRITE(SERR_INT, I915_READ(SERR_INT));
2448 }
2449
2450 static void i8xx_irq_preinstall(struct drm_device * dev)
2451 {
2452         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2453         int pipe;
2454
2455         atomic_set(&dev_priv->irq_received, 0);
2456
2457         for_each_pipe(pipe)
2458                 I915_WRITE(PIPESTAT(pipe), 0);
2459         I915_WRITE16(IMR, 0xffff);
2460         I915_WRITE16(IER, 0x0);
2461         POSTING_READ16(IER);
2462 }
2463
2464 static int i8xx_irq_postinstall(struct drm_device *dev)
2465 {
2466         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2467
2468         I915_WRITE16(EMR,
2469                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2470
2471         /* Unmask the interrupts that we always want on. */
2472         dev_priv->irq_mask =
2473                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2474                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2475                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2476                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2477                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2478         I915_WRITE16(IMR, dev_priv->irq_mask);
2479
2480         I915_WRITE16(IER,
2481                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2482                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2483                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2484                      I915_USER_INTERRUPT);
2485         POSTING_READ16(IER);
2486
2487         return 0;
2488 }
2489
2490 /*
2491  * Returns true when a page flip has completed.
2492  */
2493 static bool i8xx_handle_vblank(struct drm_device *dev,
2494                                int pipe, u16 iir)
2495 {
2496         drm_i915_private_t *dev_priv = dev->dev_private;
2497         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(pipe);
2498
2499         if (!drm_handle_vblank(dev, pipe))
2500                 return false;
2501
2502         if ((iir & flip_pending) == 0)
2503                 return false;
2504
2505         intel_prepare_page_flip(dev, pipe);
2506
2507         /* We detect FlipDone by looking for the change in PendingFlip from '1'
2508          * to '0' on the following vblank, i.e. IIR has the Pendingflip
2509          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2510          * the flip is completed (no longer pending). Since this doesn't raise
2511          * an interrupt per se, we watch for the change at vblank.
2512          */
2513         if (I915_READ16(ISR) & flip_pending)
2514                 return false;
2515
2516         intel_finish_page_flip(dev, pipe);
2517
2518         return true;
2519 }
2520
2521 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
2522 {
2523         struct drm_device *dev = (struct drm_device *) arg;
2524         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2525         u16 iir, new_iir;
2526         u32 pipe_stats[2];
2527         unsigned long irqflags;
2528         int pipe;
2529         u16 flip_mask =
2530                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2531                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2532
2533         atomic_inc(&dev_priv->irq_received);
2534
2535         iir = I915_READ16(IIR);
2536         if (iir == 0)
2537                 return IRQ_NONE;
2538
2539         while (iir & ~flip_mask) {
2540                 /* Can't rely on pipestat interrupt bit in iir as it might
2541                  * have been cleared after the pipestat interrupt was received.
2542                  * It doesn't set the bit in iir again, but it still produces
2543                  * interrupts (for non-MSI).
2544                  */
2545                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2546                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2547                         i915_handle_error(dev, false);
2548
2549                 for_each_pipe(pipe) {
2550                         int reg = PIPESTAT(pipe);
2551                         pipe_stats[pipe] = I915_READ(reg);
2552
2553                         /*
2554                          * Clear the PIPE*STAT regs before the IIR
2555                          */
2556                         if (pipe_stats[pipe] & 0x8000ffff) {
2557                                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2558                                         DRM_DEBUG_DRIVER("pipe %c underrun\n",
2559                                                          pipe_name(pipe));
2560                                 I915_WRITE(reg, pipe_stats[pipe]);
2561                         }
2562                 }
2563                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2564
2565                 I915_WRITE16(IIR, iir & ~flip_mask);
2566                 new_iir = I915_READ16(IIR); /* Flush posted writes */
2567
2568                 i915_update_dri1_breadcrumb(dev);
2569
2570                 if (iir & I915_USER_INTERRUPT)
2571                         notify_ring(dev, &dev_priv->ring[RCS]);
2572
2573                 if (pipe_stats[0] & PIPE_VBLANK_INTERRUPT_STATUS &&
2574                     i8xx_handle_vblank(dev, 0, iir))
2575                         flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(0);
2576
2577                 if (pipe_stats[1] & PIPE_VBLANK_INTERRUPT_STATUS &&
2578                     i8xx_handle_vblank(dev, 1, iir))
2579                         flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(1);
2580
2581                 iir = new_iir;
2582         }
2583
2584         return IRQ_HANDLED;
2585 }
2586
2587 static void i8xx_irq_uninstall(struct drm_device * dev)
2588 {
2589         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2590         int pipe;
2591
2592         for_each_pipe(pipe) {
2593                 /* Clear enable bits; then clear status bits */
2594                 I915_WRITE(PIPESTAT(pipe), 0);
2595                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2596         }
2597         I915_WRITE16(IMR, 0xffff);
2598         I915_WRITE16(IER, 0x0);
2599         I915_WRITE16(IIR, I915_READ16(IIR));
2600 }
2601
2602 static void i915_irq_preinstall(struct drm_device * dev)
2603 {
2604         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2605         int pipe;
2606
2607         atomic_set(&dev_priv->irq_received, 0);
2608
2609         if (I915_HAS_HOTPLUG(dev)) {
2610                 I915_WRITE(PORT_HOTPLUG_EN, 0);
2611                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2612         }
2613
2614         I915_WRITE16(HWSTAM, 0xeffe);
2615         for_each_pipe(pipe)
2616                 I915_WRITE(PIPESTAT(pipe), 0);
2617         I915_WRITE(IMR, 0xffffffff);
2618         I915_WRITE(IER, 0x0);
2619         POSTING_READ(IER);
2620 }
2621
2622 static int i915_irq_postinstall(struct drm_device *dev)
2623 {
2624         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2625         u32 enable_mask;
2626
2627         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
2628
2629         /* Unmask the interrupts that we always want on. */
2630         dev_priv->irq_mask =
2631                 ~(I915_ASLE_INTERRUPT |
2632                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2633                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2634                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2635                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2636                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2637
2638         enable_mask =
2639                 I915_ASLE_INTERRUPT |
2640                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2641                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2642                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
2643                 I915_USER_INTERRUPT;
2644
2645         if (I915_HAS_HOTPLUG(dev)) {
2646                 I915_WRITE(PORT_HOTPLUG_EN, 0);
2647                 POSTING_READ(PORT_HOTPLUG_EN);
2648
2649                 /* Enable in IER... */
2650                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
2651                 /* and unmask in IMR */
2652                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
2653         }
2654
2655         I915_WRITE(IMR, dev_priv->irq_mask);
2656         I915_WRITE(IER, enable_mask);
2657         POSTING_READ(IER);
2658
2659         i915_enable_asle_pipestat(dev);
2660
2661         return 0;
2662 }
2663
2664 /*
2665  * Returns true when a page flip has completed.
2666  */
2667 static bool i915_handle_vblank(struct drm_device *dev,
2668                                int plane, int pipe, u32 iir)
2669 {
2670         drm_i915_private_t *dev_priv = dev->dev_private;
2671         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
2672
2673         if (!drm_handle_vblank(dev, pipe))
2674                 return false;
2675
2676         if ((iir & flip_pending) == 0)
2677                 return false;
2678
2679         intel_prepare_page_flip(dev, plane);
2680
2681         /* We detect FlipDone by looking for the change in PendingFlip from '1'
2682          * to '0' on the following vblank, i.e. IIR has the Pendingflip
2683          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
2684          * the flip is completed (no longer pending). Since this doesn't raise
2685          * an interrupt per se, we watch for the change at vblank.
2686          */
2687         if (I915_READ(ISR) & flip_pending)
2688                 return false;
2689
2690         intel_finish_page_flip(dev, pipe);
2691
2692         return true;
2693 }
2694
2695 static irqreturn_t i915_irq_handler(int irq, void *arg)
2696 {
2697         struct drm_device *dev = (struct drm_device *) arg;
2698         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2699         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
2700         unsigned long irqflags;
2701         u32 flip_mask =
2702                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2703                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2704         int pipe, ret = IRQ_NONE;
2705
2706         atomic_inc(&dev_priv->irq_received);
2707
2708         iir = I915_READ(IIR);
2709         do {
2710                 bool irq_received = (iir & ~flip_mask) != 0;
2711                 bool blc_event = false;
2712
2713                 /* Can't rely on pipestat interrupt bit in iir as it might
2714                  * have been cleared after the pipestat interrupt was received.
2715                  * It doesn't set the bit in iir again, but it still produces
2716                  * interrupts (for non-MSI).
2717                  */
2718                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2719                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2720                         i915_handle_error(dev, false);
2721
2722                 for_each_pipe(pipe) {
2723                         int reg = PIPESTAT(pipe);
2724                         pipe_stats[pipe] = I915_READ(reg);
2725
2726                         /* Clear the PIPE*STAT regs before the IIR */
2727                         if (pipe_stats[pipe] & 0x8000ffff) {
2728                                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2729                                         DRM_DEBUG_DRIVER("pipe %c underrun\n",
2730                                                          pipe_name(pipe));
2731                                 I915_WRITE(reg, pipe_stats[pipe]);
2732                                 irq_received = true;
2733                         }
2734                 }
2735                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736
2737                 if (!irq_received)
2738                         break;
2739
2740                 /* Consume port.  Then clear IIR or we'll miss events */
2741                 if ((I915_HAS_HOTPLUG(dev)) &&
2742                     (iir & I915_DISPLAY_PORT_INTERRUPT)) {
2743                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2744                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2745
2746                         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2747                                   hotplug_status);
2748
2749                         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
2750
2751                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2752                         POSTING_READ(PORT_HOTPLUG_STAT);
2753                 }
2754
2755                 I915_WRITE(IIR, iir & ~flip_mask);
2756                 new_iir = I915_READ(IIR); /* Flush posted writes */
2757
2758                 if (iir & I915_USER_INTERRUPT)
2759                         notify_ring(dev, &dev_priv->ring[RCS]);
2760
2761                 for_each_pipe(pipe) {
2762                         int plane = pipe;
2763                         if (IS_MOBILE(dev))
2764                                 plane = !plane;
2765
2766                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
2767                             i915_handle_vblank(dev, plane, pipe, iir))
2768                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
2769
2770                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
2771                                 blc_event = true;
2772                 }
2773
2774                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
2775                         intel_opregion_asle_intr(dev);
2776
2777                 /* With MSI, interrupts are only generated when iir
2778                  * transitions from zero to nonzero.  If another bit got
2779                  * set while we were handling the existing iir bits, then
2780                  * we would never get another interrupt.
2781                  *
2782                  * This is fine on non-MSI as well, as if we hit this path
2783                  * we avoid exiting the interrupt handler only to generate
2784                  * another one.
2785                  *
2786                  * Note that for MSI this could cause a stray interrupt report
2787                  * if an interrupt landed in the time between writing IIR and
2788                  * the posting read.  This should be rare enough to never
2789                  * trigger the 99% of 100,000 interrupts test for disabling
2790                  * stray interrupts.
2791                  */
2792                 ret = IRQ_HANDLED;
2793                 iir = new_iir;
2794         } while (iir & ~flip_mask);
2795
2796         i915_update_dri1_breadcrumb(dev);
2797
2798         return ret;
2799 }
2800
2801 static void i915_irq_uninstall(struct drm_device * dev)
2802 {
2803         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2804         int pipe;
2805
2806         del_timer_sync(&dev_priv->hotplug_reenable_timer);
2807
2808         if (I915_HAS_HOTPLUG(dev)) {
2809                 I915_WRITE(PORT_HOTPLUG_EN, 0);
2810                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2811         }
2812
2813         I915_WRITE16(HWSTAM, 0xffff);
2814         for_each_pipe(pipe) {
2815                 /* Clear enable bits; then clear status bits */
2816                 I915_WRITE(PIPESTAT(pipe), 0);
2817                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
2818         }
2819         I915_WRITE(IMR, 0xffffffff);
2820         I915_WRITE(IER, 0x0);
2821
2822         I915_WRITE(IIR, I915_READ(IIR));
2823 }
2824
2825 static void i965_irq_preinstall(struct drm_device * dev)
2826 {
2827         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2828         int pipe;
2829
2830         atomic_set(&dev_priv->irq_received, 0);
2831
2832         I915_WRITE(PORT_HOTPLUG_EN, 0);
2833         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2834
2835         I915_WRITE(HWSTAM, 0xeffe);
2836         for_each_pipe(pipe)
2837                 I915_WRITE(PIPESTAT(pipe), 0);
2838         I915_WRITE(IMR, 0xffffffff);
2839         I915_WRITE(IER, 0x0);
2840         POSTING_READ(IER);
2841 }
2842
2843 static int i965_irq_postinstall(struct drm_device *dev)
2844 {
2845         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2846         u32 enable_mask;
2847         u32 error_mask;
2848         unsigned long irqflags;
2849
2850         /* Unmask the interrupts that we always want on. */
2851         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
2852                                I915_DISPLAY_PORT_INTERRUPT |
2853                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2854                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2855                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2856                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
2857                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2858
2859         enable_mask = ~dev_priv->irq_mask;
2860         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2861                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
2862         enable_mask |= I915_USER_INTERRUPT;
2863
2864         if (IS_G4X(dev))
2865                 enable_mask |= I915_BSD_USER_INTERRUPT;
2866
2867         /* Interrupt setup is already guaranteed to be single-threaded, this is
2868          * just to make the assert_spin_locked check happy. */
2869         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2870         i915_enable_pipestat(dev_priv, 0, PIPE_GMBUS_EVENT_ENABLE);
2871         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2872
2873         /*
2874          * Enable some error detection, note the instruction error mask
2875          * bit is reserved, so we leave it masked.
2876          */
2877         if (IS_G4X(dev)) {
2878                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
2879                                GM45_ERROR_MEM_PRIV |
2880                                GM45_ERROR_CP_PRIV |
2881                                I915_ERROR_MEMORY_REFRESH);
2882         } else {
2883                 error_mask = ~(I915_ERROR_PAGE_TABLE |
2884                                I915_ERROR_MEMORY_REFRESH);
2885         }
2886         I915_WRITE(EMR, error_mask);
2887
2888         I915_WRITE(IMR, dev_priv->irq_mask);
2889         I915_WRITE(IER, enable_mask);
2890         POSTING_READ(IER);
2891
2892         I915_WRITE(PORT_HOTPLUG_EN, 0);
2893         POSTING_READ(PORT_HOTPLUG_EN);
2894
2895         i915_enable_asle_pipestat(dev);
2896
2897         return 0;
2898 }
2899
2900 static void i915_hpd_irq_setup(struct drm_device *dev)
2901 {
2902         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2903         struct drm_mode_config *mode_config = &dev->mode_config;
2904         struct intel_encoder *intel_encoder;
2905         u32 hotplug_en;
2906
2907         assert_spin_locked(&dev_priv->irq_lock);
2908
2909         if (I915_HAS_HOTPLUG(dev)) {
2910                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
2911                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
2912                 /* Note HDMI and DP share hotplug bits */
2913                 /* enable bits are the same for all generations */
2914                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2915                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2916                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
2917                 /* Programming the CRT detection parameters tends
2918                    to generate a spurious hotplug event about three
2919                    seconds later.  So just do it once.
2920                 */
2921                 if (IS_G4X(dev))
2922                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
2923                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
2924                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
2925
2926                 /* Ignore TV since it's buggy */
2927                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
2928         }
2929 }
2930
2931 static irqreturn_t i965_irq_handler(int irq, void *arg)
2932 {
2933         struct drm_device *dev = (struct drm_device *) arg;
2934         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2935         u32 iir, new_iir;
2936         u32 pipe_stats[I915_MAX_PIPES];
2937         unsigned long irqflags;
2938         int irq_received;
2939         int ret = IRQ_NONE, pipe;
2940         u32 flip_mask =
2941                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
2942                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
2943
2944         atomic_inc(&dev_priv->irq_received);
2945
2946         iir = I915_READ(IIR);
2947
2948         for (;;) {
2949                 bool blc_event = false;
2950
2951                 irq_received = (iir & ~flip_mask) != 0;
2952
2953                 /* Can't rely on pipestat interrupt bit in iir as it might
2954                  * have been cleared after the pipestat interrupt was received.
2955                  * It doesn't set the bit in iir again, but it still produces
2956                  * interrupts (for non-MSI).
2957                  */
2958                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2959                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
2960                         i915_handle_error(dev, false);
2961
2962                 for_each_pipe(pipe) {
2963                         int reg = PIPESTAT(pipe);
2964                         pipe_stats[pipe] = I915_READ(reg);
2965
2966                         /*
2967                          * Clear the PIPE*STAT regs before the IIR
2968                          */
2969                         if (pipe_stats[pipe] & 0x8000ffff) {
2970                                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
2971                                         DRM_DEBUG_DRIVER("pipe %c underrun\n",
2972                                                          pipe_name(pipe));
2973                                 I915_WRITE(reg, pipe_stats[pipe]);
2974                                 irq_received = 1;
2975                         }
2976                 }
2977                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2978
2979                 if (!irq_received)
2980                         break;
2981
2982                 ret = IRQ_HANDLED;
2983
2984                 /* Consume port.  Then clear IIR or we'll miss events */
2985                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
2986                         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2987                         u32 hotplug_trigger = hotplug_status & (IS_G4X(dev) ?
2988                                                                   HOTPLUG_INT_STATUS_G4X :
2989                                                                   HOTPLUG_INT_STATUS_I915);
2990
2991                         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2992                                   hotplug_status);
2993
2994                         intel_hpd_irq_handler(dev, hotplug_trigger,
2995                                               IS_G4X(dev) ? hpd_status_gen4 : hpd_status_i915);
2996
2997                         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2998                         I915_READ(PORT_HOTPLUG_STAT);
2999                 }
3000
3001                 I915_WRITE(IIR, iir & ~flip_mask);
3002                 new_iir = I915_READ(IIR); /* Flush posted writes */
3003
3004                 if (iir & I915_USER_INTERRUPT)
3005                         notify_ring(dev, &dev_priv->ring[RCS]);
3006                 if (iir & I915_BSD_USER_INTERRUPT)
3007                         notify_ring(dev, &dev_priv->ring[VCS]);
3008
3009                 for_each_pipe(pipe) {
3010                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3011                             i915_handle_vblank(dev, pipe, pipe, iir))
3012                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3013
3014                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3015                                 blc_event = true;
3016                 }
3017
3018
3019                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3020                         intel_opregion_asle_intr(dev);
3021
3022                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3023                         gmbus_irq_handler(dev);
3024
3025                 /* With MSI, interrupts are only generated when iir
3026                  * transitions from zero to nonzero.  If another bit got
3027                  * set while we were handling the existing iir bits, then
3028                  * we would never get another interrupt.
3029                  *
3030                  * This is fine on non-MSI as well, as if we hit this path
3031                  * we avoid exiting the interrupt handler only to generate
3032                  * another one.
3033                  *
3034                  * Note that for MSI this could cause a stray interrupt report
3035                  * if an interrupt landed in the time between writing IIR and
3036                  * the posting read.  This should be rare enough to never
3037                  * trigger the 99% of 100,000 interrupts test for disabling
3038                  * stray interrupts.
3039                  */
3040                 iir = new_iir;
3041         }
3042
3043         i915_update_dri1_breadcrumb(dev);
3044
3045         return ret;
3046 }
3047
3048 static void i965_irq_uninstall(struct drm_device * dev)
3049 {
3050         drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
3051         int pipe;
3052
3053         if (!dev_priv)
3054                 return;
3055
3056         del_timer_sync(&dev_priv->hotplug_reenable_timer);
3057
3058         I915_WRITE(PORT_HOTPLUG_EN, 0);
3059         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3060
3061         I915_WRITE(HWSTAM, 0xffffffff);
3062         for_each_pipe(pipe)
3063                 I915_WRITE(PIPESTAT(pipe), 0);
3064         I915_WRITE(IMR, 0xffffffff);
3065         I915_WRITE(IER, 0x0);
3066
3067         for_each_pipe(pipe)
3068                 I915_WRITE(PIPESTAT(pipe),
3069                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3070         I915_WRITE(IIR, I915_READ(IIR));
3071 }
3072
3073 static void i915_reenable_hotplug_timer_func(unsigned long data)
3074 {
3075         drm_i915_private_t *dev_priv = (drm_i915_private_t *)data;
3076         struct drm_device *dev = dev_priv->dev;
3077         struct drm_mode_config *mode_config = &dev->mode_config;
3078         unsigned long irqflags;
3079         int i;
3080
3081         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3082         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3083                 struct drm_connector *connector;
3084
3085                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3086                         continue;
3087
3088                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3089
3090                 list_for_each_entry(connector, &mode_config->connector_list, head) {
3091                         struct intel_connector *intel_connector = to_intel_connector(connector);
3092
3093                         if (intel_connector->encoder->hpd_pin == i) {
3094                                 if (connector->polled != intel_connector->polled)
3095                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3096                                                          drm_get_connector_name(connector));
3097                                 connector->polled = intel_connector->polled;
3098                                 if (!connector->polled)
3099                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
3100                         }
3101                 }
3102         }
3103         if (dev_priv->display.hpd_irq_setup)
3104                 dev_priv->display.hpd_irq_setup(dev);
3105         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3106 }
3107
3108 void intel_irq_init(struct drm_device *dev)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3113         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3114         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3115         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3116
3117         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3118                     i915_hangcheck_elapsed,
3119                     (unsigned long) dev);
3120         setup_timer(&dev_priv->hotplug_reenable_timer, i915_reenable_hotplug_timer_func,
3121                     (unsigned long) dev_priv);
3122
3123         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3124
3125         dev->driver->get_vblank_counter = i915_get_vblank_counter;
3126         dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3127         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3128                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3129                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3130         }
3131
3132         if (drm_core_check_feature(dev, DRIVER_MODESET))
3133                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
3134         else
3135                 dev->driver->get_vblank_timestamp = NULL;
3136         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
3137
3138         if (IS_VALLEYVIEW(dev)) {
3139                 dev->driver->irq_handler = valleyview_irq_handler;
3140                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
3141                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
3142                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
3143                 dev->driver->enable_vblank = valleyview_enable_vblank;
3144                 dev->driver->disable_vblank = valleyview_disable_vblank;
3145                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3146         } else if (HAS_PCH_SPLIT(dev)) {
3147                 dev->driver->irq_handler = ironlake_irq_handler;
3148                 dev->driver->irq_preinstall = ironlake_irq_preinstall;
3149                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
3150                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
3151                 dev->driver->enable_vblank = ironlake_enable_vblank;
3152                 dev->driver->disable_vblank = ironlake_disable_vblank;
3153                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
3154         } else {
3155                 if (INTEL_INFO(dev)->gen == 2) {
3156                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
3157                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
3158                         dev->driver->irq_handler = i8xx_irq_handler;
3159                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
3160                 } else if (INTEL_INFO(dev)->gen == 3) {
3161                         dev->driver->irq_preinstall = i915_irq_preinstall;
3162                         dev->driver->irq_postinstall = i915_irq_postinstall;
3163                         dev->driver->irq_uninstall = i915_irq_uninstall;
3164                         dev->driver->irq_handler = i915_irq_handler;
3165                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3166                 } else {
3167                         dev->driver->irq_preinstall = i965_irq_preinstall;
3168                         dev->driver->irq_postinstall = i965_irq_postinstall;
3169                         dev->driver->irq_uninstall = i965_irq_uninstall;
3170                         dev->driver->irq_handler = i965_irq_handler;
3171                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3172                 }
3173                 dev->driver->enable_vblank = i915_enable_vblank;
3174                 dev->driver->disable_vblank = i915_disable_vblank;
3175         }
3176 }
3177
3178 void intel_hpd_init(struct drm_device *dev)
3179 {
3180         struct drm_i915_private *dev_priv = dev->dev_private;
3181         struct drm_mode_config *mode_config = &dev->mode_config;
3182         struct drm_connector *connector;
3183         unsigned long irqflags;
3184         int i;
3185
3186         for (i = 1; i < HPD_NUM_PINS; i++) {
3187                 dev_priv->hpd_stats[i].hpd_cnt = 0;
3188                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3189         }
3190         list_for_each_entry(connector, &mode_config->connector_list, head) {
3191                 struct intel_connector *intel_connector = to_intel_connector(connector);
3192                 connector->polled = intel_connector->polled;
3193                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
3194                         connector->polled = DRM_CONNECTOR_POLL_HPD;
3195         }
3196
3197         /* Interrupt setup is already guaranteed to be single-threaded, this is
3198          * just to make the assert_spin_locked checks happy. */
3199         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3200         if (dev_priv->display.hpd_irq_setup)
3201                 dev_priv->display.hpd_irq_setup(dev);
3202         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3203 }
3204
3205 /* Disable interrupts so we can allow Package C8+. */
3206 void hsw_pc8_disable_interrupts(struct drm_device *dev)
3207 {
3208         struct drm_i915_private *dev_priv = dev->dev_private;
3209         unsigned long irqflags;
3210
3211         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3212
3213         dev_priv->pc8.regsave.deimr = I915_READ(DEIMR);
3214         dev_priv->pc8.regsave.sdeimr = I915_READ(SDEIMR);
3215         dev_priv->pc8.regsave.gtimr = I915_READ(GTIMR);
3216         dev_priv->pc8.regsave.gtier = I915_READ(GTIER);
3217         dev_priv->pc8.regsave.gen6_pmimr = I915_READ(GEN6_PMIMR);
3218
3219         ironlake_disable_display_irq(dev_priv, ~DE_PCH_EVENT_IVB);
3220         ibx_disable_display_interrupt(dev_priv, ~SDE_HOTPLUG_MASK_CPT);
3221         ilk_disable_gt_irq(dev_priv, 0xffffffff);
3222         snb_disable_pm_irq(dev_priv, 0xffffffff);
3223
3224         dev_priv->pc8.irqs_disabled = true;
3225
3226         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3227 }
3228
3229 /* Restore interrupts so we can recover from Package C8+. */
3230 void hsw_pc8_restore_interrupts(struct drm_device *dev)
3231 {
3232         struct drm_i915_private *dev_priv = dev->dev_private;
3233         unsigned long irqflags;
3234         uint32_t val, expected;
3235
3236         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3237
3238         val = I915_READ(DEIMR);
3239         expected = ~DE_PCH_EVENT_IVB;
3240         WARN(val != expected, "DEIMR is 0x%08x, not 0x%08x\n", val, expected);
3241
3242         val = I915_READ(SDEIMR) & ~SDE_HOTPLUG_MASK_CPT;
3243         expected = ~SDE_HOTPLUG_MASK_CPT;
3244         WARN(val != expected, "SDEIMR non-HPD bits are 0x%08x, not 0x%08x\n",
3245              val, expected);
3246
3247         val = I915_READ(GTIMR);
3248         expected = 0xffffffff;
3249         WARN(val != expected, "GTIMR is 0x%08x, not 0x%08x\n", val, expected);
3250
3251         val = I915_READ(GEN6_PMIMR);
3252         expected = 0xffffffff;
3253         WARN(val != expected, "GEN6_PMIMR is 0x%08x, not 0x%08x\n", val,
3254              expected);
3255
3256         dev_priv->pc8.irqs_disabled = false;
3257
3258         ironlake_enable_display_irq(dev_priv, ~dev_priv->pc8.regsave.deimr);
3259         ibx_enable_display_interrupt(dev_priv,
3260                                      ~dev_priv->pc8.regsave.sdeimr &
3261                                      ~SDE_HOTPLUG_MASK_CPT);
3262         ilk_enable_gt_irq(dev_priv, ~dev_priv->pc8.regsave.gtimr);
3263         snb_enable_pm_irq(dev_priv, ~dev_priv->pc8.regsave.gen6_pmimr);
3264         I915_WRITE(GTIER, dev_priv->pc8.regsave.gtier);
3265
3266         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3267 }