]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(dev_priv->pm.irqs_disabled))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (WARN_ON(dev_priv->pm.irqs_disabled))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(dev_priv->pm.irqs_disabled))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(dev_priv->pm.irqs_disabled))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         uint32_t new_val;
264
265         assert_spin_locked(&dev_priv->irq_lock);
266
267         if (WARN_ON(dev_priv->pm.irqs_disabled))
268                 return;
269
270         new_val = dev_priv->pm_irq_mask;
271         new_val &= ~interrupt_mask;
272         new_val |= (~enabled_irq_mask & interrupt_mask);
273
274         if (new_val != dev_priv->pm_irq_mask) {
275                 dev_priv->pm_irq_mask = new_val;
276                 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277                 POSTING_READ(GEN8_GT_IMR(2));
278         }
279 }
280
281 void bdw_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void bdw_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288         bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294         enum pipe pipe;
295         struct intel_crtc *crtc;
296
297         assert_spin_locked(&dev_priv->irq_lock);
298
299         for_each_pipe(pipe) {
300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302                 if (crtc->pch_fifo_underrun_disabled)
303                         return false;
304         }
305
306         return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         struct intel_crtc *crtc;
313         unsigned long flags;
314
315         spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317         for_each_intel_crtc(dev, crtc) {
318                 u32 reg = PIPESTAT(crtc->pipe);
319                 u32 pipestat;
320
321                 if (crtc->cpu_fifo_underrun_disabled)
322                         continue;
323
324                 pipestat = I915_READ(reg) & 0xffff0000;
325                 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326                         continue;
327
328                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329                 POSTING_READ(reg);
330
331                 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332         }
333
334         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338                                              enum pipe pipe,
339                                              bool enable, bool old)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         u32 reg = PIPESTAT(pipe);
343         u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345         assert_spin_locked(&dev_priv->irq_lock);
346
347         if (enable) {
348                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349                 POSTING_READ(reg);
350         } else {
351                 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353         }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357                                                  enum pipe pipe, bool enable)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361                                           DE_PIPEB_FIFO_UNDERRUN;
362
363         if (enable)
364                 ironlake_enable_display_irq(dev_priv, bit);
365         else
366                 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370                                                   enum pipe pipe,
371                                                   bool enable, bool old)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         if (enable) {
375                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377                 if (!ivb_can_enable_err_int(dev))
378                         return;
379
380                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381         } else {
382                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384                 if (old &&
385                     I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386                         DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387                                   pipe_name(pipe));
388                 }
389         }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393                                                   enum pipe pipe, bool enable)
394 {
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         assert_spin_locked(&dev_priv->irq_lock);
398
399         if (enable)
400                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401         else
402                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414                                          uint32_t interrupt_mask,
415                                          uint32_t enabled_irq_mask)
416 {
417         uint32_t sdeimr = I915_READ(SDEIMR);
418         sdeimr &= ~interrupt_mask;
419         sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         if (WARN_ON(dev_priv->pm.irqs_disabled))
424                 return;
425
426         I915_WRITE(SDEIMR, sdeimr);
427         POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430         ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432         ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435                                             enum transcoder pch_transcoder,
436                                             bool enable)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442         if (enable)
443                 ibx_enable_display_interrupt(dev_priv, bit);
444         else
445                 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449                                             enum transcoder pch_transcoder,
450                                             bool enable, bool old)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453
454         if (enable) {
455                 I915_WRITE(SERR_INT,
456                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458                 if (!cpt_can_enable_serr_int(dev))
459                         return;
460
461                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462         } else {
463                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465                 if (old && I915_READ(SERR_INT) &
466                     SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467                         DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468                                   transcoder_name(pch_transcoder));
469                 }
470         }
471 }
472
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488                                                     enum pipe pipe, bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         bool old;
494
495         assert_spin_locked(&dev_priv->irq_lock);
496
497         old = !intel_crtc->cpu_fifo_underrun_disabled;
498         intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500         if (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
501                 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502         else if (IS_GEN5(dev) || IS_GEN6(dev))
503                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504         else if (IS_GEN7(dev))
505                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506         else if (IS_GEN8(dev))
507                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509         return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513                                            enum pipe pipe, bool enable)
514 {
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         unsigned long flags;
517         bool ret;
518
519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
520         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523         return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527                                                   enum pipe pipe)
528 {
529         struct drm_i915_private *dev_priv = dev->dev_private;
530         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533         return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551                                            enum transcoder pch_transcoder,
552                                            bool enable)
553 {
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557         unsigned long flags;
558         bool old;
559
560         /*
561          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562          * has only one pch transcoder A that all pipes can use. To avoid racy
563          * pch transcoder -> pipe lookups from interrupt code simply store the
564          * underrun statistics in crtc A. Since we never expose this anywhere
565          * nor use it outside of the fifo underrun code here using the "wrong"
566          * crtc on LPT won't cause issues.
567          */
568
569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571         old = !intel_crtc->pch_fifo_underrun_disabled;
572         intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574         if (HAS_PCH_IBX(dev))
575                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576         else
577                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580         return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586                        u32 enable_mask, u32 status_mask)
587 {
588         u32 reg = PIPESTAT(pipe);
589         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591         assert_spin_locked(&dev_priv->irq_lock);
592
593         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
595                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596                       pipe_name(pipe), enable_mask, status_mask))
597                 return;
598
599         if ((pipestat & enable_mask) == enable_mask)
600                 return;
601
602         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604         /* Enable the interrupt, clear any pending status */
605         pipestat |= enable_mask | status_mask;
606         I915_WRITE(reg, pipestat);
607         POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612                         u32 enable_mask, u32 status_mask)
613 {
614         u32 reg = PIPESTAT(pipe);
615         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617         assert_spin_locked(&dev_priv->irq_lock);
618
619         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                       pipe_name(pipe), enable_mask, status_mask))
623                 return;
624
625         if ((pipestat & enable_mask) == 0)
626                 return;
627
628         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630         pipestat &= ~enable_mask;
631         I915_WRITE(reg, pipestat);
632         POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637         u32 enable_mask = status_mask << 16;
638
639         /*
640          * On pipe A we don't support the PSR interrupt yet,
641          * on pipe B and C the same bit MBZ.
642          */
643         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644                 return 0;
645         /*
646          * On pipe B and C we don't support the PSR interrupt yet, on pipe
647          * A the same bit is for perf counters which we don't use either.
648          */
649         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650                 return 0;
651
652         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653                          SPRITE0_FLIP_DONE_INT_EN_VLV |
654                          SPRITE1_FLIP_DONE_INT_EN_VLV);
655         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660         return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665                      u32 status_mask)
666 {
667         u32 enable_mask;
668
669         if (IS_VALLEYVIEW(dev_priv->dev))
670                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671                                                            status_mask);
672         else
673                 enable_mask = status_mask << 16;
674         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679                       u32 status_mask)
680 {
681         u32 enable_mask;
682
683         if (IS_VALLEYVIEW(dev_priv->dev))
684                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685                                                            status_mask);
686         else
687                 enable_mask = status_mask << 16;
688         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         unsigned long irqflags;
698
699         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700                 return;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705         if (INTEL_INFO(dev)->gen >= 4)
706                 i915_enable_pipestat(dev_priv, PIPE_A,
707                                      PIPE_LEGACY_BLC_EVENT_STATUS);
708
709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725
726         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727                 /* Locking is horribly broken here, but whatever. */
728                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731                 return intel_crtc->active;
732         } else {
733                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734         }
735 }
736
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789         /* Gen2 doesn't have a hardware frame counter */
790         return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         unsigned long high_frame;
800         unsigned long low_frame;
801         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803         if (!i915_pipe_enabled(dev, pipe)) {
804                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805                                 "pipe %c\n", pipe_name(pipe));
806                 return 0;
807         }
808
809         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810                 struct intel_crtc *intel_crtc =
811                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812                 const struct drm_display_mode *mode =
813                         &intel_crtc->config.adjusted_mode;
814
815                 htotal = mode->crtc_htotal;
816                 hsync_start = mode->crtc_hsync_start;
817                 vbl_start = mode->crtc_vblank_start;
818                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
820         } else {
821                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
829         }
830
831         /* Convert to pixel count */
832         vbl_start *= htotal;
833
834         /* Start of vblank event occurs at start of hsync */
835         vbl_start -= htotal - hsync_start;
836
837         high_frame = PIPEFRAME(pipe);
838         low_frame = PIPEFRAMEPIXEL(pipe);
839
840         /*
841          * High & low register fields aren't synchronized, so make sure
842          * we get a low value that's stable across two reads of the high
843          * register.
844          */
845         do {
846                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847                 low   = I915_READ(low_frame);
848                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849         } while (high1 != high2);
850
851         high1 >>= PIPE_FRAME_HIGH_SHIFT;
852         pixel = low & PIPE_PIXEL_MASK;
853         low >>= PIPE_FRAME_LOW_SHIFT;
854
855         /*
856          * The frame counter increments at beginning of active.
857          * Cook up a vblank counter by also checking the pixel
858          * counter against vblank start.
859          */
860         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868         if (!i915_pipe_enabled(dev, pipe)) {
869                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870                                  "pipe %c\n", pipe_name(pipe));
871                 return 0;
872         }
873
874         return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882         struct drm_device *dev = crtc->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885         enum pipe pipe = crtc->pipe;
886         int position, vtotal;
887
888         vtotal = mode->crtc_vtotal;
889         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890                 vtotal /= 2;
891
892         if (IS_GEN2(dev))
893                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894         else
895                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897         /*
898          * See update_scanline_offset() for the details on the
899          * scanline_offset adjustment.
900          */
901         return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905                                     unsigned int flags, int *vpos, int *hpos,
906                                     ktime_t *stime, ktime_t *etime)
907 {
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912         int position;
913         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914         bool in_vbl = true;
915         int ret = 0;
916         unsigned long irqflags;
917
918         if (!intel_crtc->active) {
919                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920                                  "pipe %c\n", pipe_name(pipe));
921                 return 0;
922         }
923
924         htotal = mode->crtc_htotal;
925         hsync_start = mode->crtc_hsync_start;
926         vtotal = mode->crtc_vtotal;
927         vbl_start = mode->crtc_vblank_start;
928         vbl_end = mode->crtc_vblank_end;
929
930         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932                 vbl_end /= 2;
933                 vtotal /= 2;
934         }
935
936         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938         /*
939          * Lock uncore.lock, as we will do multiple timing critical raw
940          * register reads, potentially with preemption disabled, so the
941          * following code must not block on uncore.lock.
942          */
943         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947         /* Get optional system timestamp before query. */
948         if (stime)
949                 *stime = ktime_get();
950
951         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952                 /* No obvious pixelcount register. Only query vertical
953                  * scanout position from Display scan line register.
954                  */
955                 position = __intel_get_crtc_scanline(intel_crtc);
956         } else {
957                 /* Have access to pixelcount since start of frame.
958                  * We can split this into vertical and horizontal
959                  * scanout position.
960                  */
961                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963                 /* convert to pixel counts */
964                 vbl_start *= htotal;
965                 vbl_end *= htotal;
966                 vtotal *= htotal;
967
968                 /*
969                  * In interlaced modes, the pixel counter counts all pixels,
970                  * so one field will have htotal more pixels. In order to avoid
971                  * the reported position from jumping backwards when the pixel
972                  * counter is beyond the length of the shorter field, just
973                  * clamp the position the length of the shorter field. This
974                  * matches how the scanline counter based position works since
975                  * the scanline counter doesn't count the two half lines.
976                  */
977                 if (position >= vtotal)
978                         position = vtotal - 1;
979
980                 /*
981                  * Start of vblank interrupt is triggered at start of hsync,
982                  * just prior to the first active line of vblank. However we
983                  * consider lines to start at the leading edge of horizontal
984                  * active. So, should we get here before we've crossed into
985                  * the horizontal active of the first line in vblank, we would
986                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987                  * always add htotal-hsync_start to the current pixel position.
988                  */
989                 position = (position + htotal - hsync_start) % vtotal;
990         }
991
992         /* Get optional system timestamp after query. */
993         if (etime)
994                 *etime = ktime_get();
995
996         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000         in_vbl = position >= vbl_start && position < vbl_end;
1001
1002         /*
1003          * While in vblank, position will be negative
1004          * counting up towards 0 at vbl_end. And outside
1005          * vblank, position will be positive counting
1006          * up since vbl_end.
1007          */
1008         if (position >= vbl_start)
1009                 position -= vbl_end;
1010         else
1011                 position += vtotal - vbl_end;
1012
1013         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014                 *vpos = position;
1015                 *hpos = 0;
1016         } else {
1017                 *vpos = position / htotal;
1018                 *hpos = position - (*vpos * htotal);
1019         }
1020
1021         /* In vblank? */
1022         if (in_vbl)
1023                 ret |= DRM_SCANOUTPOS_INVBL;
1024
1025         return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031         unsigned long irqflags;
1032         int position;
1033
1034         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035         position = __intel_get_crtc_scanline(crtc);
1036         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038         return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042                               int *max_error,
1043                               struct timeval *vblank_time,
1044                               unsigned flags)
1045 {
1046         struct drm_crtc *crtc;
1047
1048         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049                 DRM_ERROR("Invalid crtc %d\n", pipe);
1050                 return -EINVAL;
1051         }
1052
1053         /* Get drm_crtc to timestamp: */
1054         crtc = intel_get_crtc_for_pipe(dev, pipe);
1055         if (crtc == NULL) {
1056                 DRM_ERROR("Invalid crtc %d\n", pipe);
1057                 return -EINVAL;
1058         }
1059
1060         if (!crtc->enabled) {
1061                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062                 return -EBUSY;
1063         }
1064
1065         /* Helper routine in DRM core does all the work: */
1066         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067                                                      vblank_time, flags,
1068                                                      crtc,
1069                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073                                 struct drm_connector *connector)
1074 {
1075         enum drm_connector_status old_status;
1076
1077         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078         old_status = connector->status;
1079
1080         connector->status = connector->funcs->detect(connector, false);
1081         if (old_status == connector->status)
1082                 return false;
1083
1084         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085                       connector->base.id,
1086                       connector->name,
1087                       drm_get_connector_status_name(old_status),
1088                       drm_get_connector_status_name(connector->status));
1089
1090         return true;
1091 }
1092
1093 /*
1094  * Handle hotplug events outside the interrupt handler proper.
1095  */
1096 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1097
1098 static void i915_hotplug_work_func(struct work_struct *work)
1099 {
1100         struct drm_i915_private *dev_priv =
1101                 container_of(work, struct drm_i915_private, hotplug_work);
1102         struct drm_device *dev = dev_priv->dev;
1103         struct drm_mode_config *mode_config = &dev->mode_config;
1104         struct intel_connector *intel_connector;
1105         struct intel_encoder *intel_encoder;
1106         struct drm_connector *connector;
1107         unsigned long irqflags;
1108         bool hpd_disabled = false;
1109         bool changed = false;
1110         u32 hpd_event_bits;
1111
1112         /* HPD irq before everything is fully set up. */
1113         if (!dev_priv->enable_hotplug_processing)
1114                 return;
1115
1116         mutex_lock(&mode_config->mutex);
1117         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1118
1119         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1120
1121         hpd_event_bits = dev_priv->hpd_event_bits;
1122         dev_priv->hpd_event_bits = 0;
1123         list_for_each_entry(connector, &mode_config->connector_list, head) {
1124                 intel_connector = to_intel_connector(connector);
1125                 intel_encoder = intel_connector->encoder;
1126                 if (intel_encoder->hpd_pin > HPD_NONE &&
1127                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1128                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1129                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1130                                  "switching from hotplug detection to polling\n",
1131                                 connector->name);
1132                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1133                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1134                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1135                         hpd_disabled = true;
1136                 }
1137                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1138                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1139                                       connector->name, intel_encoder->hpd_pin);
1140                 }
1141         }
1142          /* if there were no outputs to poll, poll was disabled,
1143           * therefore make sure it's enabled when disabling HPD on
1144           * some connectors */
1145         if (hpd_disabled) {
1146                 drm_kms_helper_poll_enable(dev);
1147                 mod_timer(&dev_priv->hotplug_reenable_timer,
1148                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1149         }
1150
1151         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1152
1153         list_for_each_entry(connector, &mode_config->connector_list, head) {
1154                 intel_connector = to_intel_connector(connector);
1155                 intel_encoder = intel_connector->encoder;
1156                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1157                         if (intel_encoder->hot_plug)
1158                                 intel_encoder->hot_plug(intel_encoder);
1159                         if (intel_hpd_irq_event(dev, connector))
1160                                 changed = true;
1161                 }
1162         }
1163         mutex_unlock(&mode_config->mutex);
1164
1165         if (changed)
1166                 drm_kms_helper_hotplug_event(dev);
1167 }
1168
1169 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1170 {
1171         del_timer_sync(&dev_priv->hotplug_reenable_timer);
1172 }
1173
1174 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1175 {
1176         struct drm_i915_private *dev_priv = dev->dev_private;
1177         u32 busy_up, busy_down, max_avg, min_avg;
1178         u8 new_delay;
1179
1180         spin_lock(&mchdev_lock);
1181
1182         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1183
1184         new_delay = dev_priv->ips.cur_delay;
1185
1186         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1187         busy_up = I915_READ(RCPREVBSYTUPAVG);
1188         busy_down = I915_READ(RCPREVBSYTDNAVG);
1189         max_avg = I915_READ(RCBMAXAVG);
1190         min_avg = I915_READ(RCBMINAVG);
1191
1192         /* Handle RCS change request from hw */
1193         if (busy_up > max_avg) {
1194                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1195                         new_delay = dev_priv->ips.cur_delay - 1;
1196                 if (new_delay < dev_priv->ips.max_delay)
1197                         new_delay = dev_priv->ips.max_delay;
1198         } else if (busy_down < min_avg) {
1199                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1200                         new_delay = dev_priv->ips.cur_delay + 1;
1201                 if (new_delay > dev_priv->ips.min_delay)
1202                         new_delay = dev_priv->ips.min_delay;
1203         }
1204
1205         if (ironlake_set_drps(dev, new_delay))
1206                 dev_priv->ips.cur_delay = new_delay;
1207
1208         spin_unlock(&mchdev_lock);
1209
1210         return;
1211 }
1212
1213 static void notify_ring(struct drm_device *dev,
1214                         struct intel_engine_cs *ring)
1215 {
1216         if (!intel_ring_initialized(ring))
1217                 return;
1218
1219         trace_i915_gem_request_complete(ring);
1220
1221         wake_up_all(&ring->irq_queue);
1222         i915_queue_hangcheck(dev);
1223 }
1224
1225 static void gen6_pm_rps_work(struct work_struct *work)
1226 {
1227         struct drm_i915_private *dev_priv =
1228                 container_of(work, struct drm_i915_private, rps.work);
1229         u32 pm_iir;
1230         int new_delay, adj;
1231
1232         spin_lock_irq(&dev_priv->irq_lock);
1233         pm_iir = dev_priv->rps.pm_iir;
1234         dev_priv->rps.pm_iir = 0;
1235         if (IS_BROADWELL(dev_priv->dev))
1236                 bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1237         else {
1238                 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1239                 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1240         }
1241         spin_unlock_irq(&dev_priv->irq_lock);
1242
1243         /* Make sure we didn't queue anything we're not going to process. */
1244         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1245
1246         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1247                 return;
1248
1249         mutex_lock(&dev_priv->rps.hw_lock);
1250
1251         adj = dev_priv->rps.last_adj;
1252         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1253                 if (adj > 0)
1254                         adj *= 2;
1255                 else
1256                         adj = 1;
1257                 new_delay = dev_priv->rps.cur_freq + adj;
1258
1259                 /*
1260                  * For better performance, jump directly
1261                  * to RPe if we're below it.
1262                  */
1263                 if (new_delay < dev_priv->rps.efficient_freq)
1264                         new_delay = dev_priv->rps.efficient_freq;
1265         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1266                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1267                         new_delay = dev_priv->rps.efficient_freq;
1268                 else
1269                         new_delay = dev_priv->rps.min_freq_softlimit;
1270                 adj = 0;
1271         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1272                 if (adj < 0)
1273                         adj *= 2;
1274                 else
1275                         adj = -1;
1276                 new_delay = dev_priv->rps.cur_freq + adj;
1277         } else { /* unknown event */
1278                 new_delay = dev_priv->rps.cur_freq;
1279         }
1280
1281         /* sysfs frequency interfaces may have snuck in while servicing the
1282          * interrupt
1283          */
1284         new_delay = clamp_t(int, new_delay,
1285                             dev_priv->rps.min_freq_softlimit,
1286                             dev_priv->rps.max_freq_softlimit);
1287
1288         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1289
1290         if (IS_VALLEYVIEW(dev_priv->dev))
1291                 valleyview_set_rps(dev_priv->dev, new_delay);
1292         else
1293                 gen6_set_rps(dev_priv->dev, new_delay);
1294
1295         mutex_unlock(&dev_priv->rps.hw_lock);
1296 }
1297
1298
1299 /**
1300  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1301  * occurred.
1302  * @work: workqueue struct
1303  *
1304  * Doesn't actually do anything except notify userspace. As a consequence of
1305  * this event, userspace should try to remap the bad rows since statistically
1306  * it is likely the same row is more likely to go bad again.
1307  */
1308 static void ivybridge_parity_work(struct work_struct *work)
1309 {
1310         struct drm_i915_private *dev_priv =
1311                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1312         u32 error_status, row, bank, subbank;
1313         char *parity_event[6];
1314         uint32_t misccpctl;
1315         unsigned long flags;
1316         uint8_t slice = 0;
1317
1318         /* We must turn off DOP level clock gating to access the L3 registers.
1319          * In order to prevent a get/put style interface, acquire struct mutex
1320          * any time we access those registers.
1321          */
1322         mutex_lock(&dev_priv->dev->struct_mutex);
1323
1324         /* If we've screwed up tracking, just let the interrupt fire again */
1325         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1326                 goto out;
1327
1328         misccpctl = I915_READ(GEN7_MISCCPCTL);
1329         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1330         POSTING_READ(GEN7_MISCCPCTL);
1331
1332         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1333                 u32 reg;
1334
1335                 slice--;
1336                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1337                         break;
1338
1339                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1340
1341                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1342
1343                 error_status = I915_READ(reg);
1344                 row = GEN7_PARITY_ERROR_ROW(error_status);
1345                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1346                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1347
1348                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1349                 POSTING_READ(reg);
1350
1351                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1352                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1353                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1354                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1355                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1356                 parity_event[5] = NULL;
1357
1358                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1359                                    KOBJ_CHANGE, parity_event);
1360
1361                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1362                           slice, row, bank, subbank);
1363
1364                 kfree(parity_event[4]);
1365                 kfree(parity_event[3]);
1366                 kfree(parity_event[2]);
1367                 kfree(parity_event[1]);
1368         }
1369
1370         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1371
1372 out:
1373         WARN_ON(dev_priv->l3_parity.which_slice);
1374         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1375         ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1376         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1377
1378         mutex_unlock(&dev_priv->dev->struct_mutex);
1379 }
1380
1381 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1382 {
1383         struct drm_i915_private *dev_priv = dev->dev_private;
1384
1385         if (!HAS_L3_DPF(dev))
1386                 return;
1387
1388         spin_lock(&dev_priv->irq_lock);
1389         ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1390         spin_unlock(&dev_priv->irq_lock);
1391
1392         iir &= GT_PARITY_ERROR(dev);
1393         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1394                 dev_priv->l3_parity.which_slice |= 1 << 1;
1395
1396         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1397                 dev_priv->l3_parity.which_slice |= 1 << 0;
1398
1399         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1400 }
1401
1402 static void ilk_gt_irq_handler(struct drm_device *dev,
1403                                struct drm_i915_private *dev_priv,
1404                                u32 gt_iir)
1405 {
1406         if (gt_iir &
1407             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1408                 notify_ring(dev, &dev_priv->ring[RCS]);
1409         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1410                 notify_ring(dev, &dev_priv->ring[VCS]);
1411 }
1412
1413 static void snb_gt_irq_handler(struct drm_device *dev,
1414                                struct drm_i915_private *dev_priv,
1415                                u32 gt_iir)
1416 {
1417
1418         if (gt_iir &
1419             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1420                 notify_ring(dev, &dev_priv->ring[RCS]);
1421         if (gt_iir & GT_BSD_USER_INTERRUPT)
1422                 notify_ring(dev, &dev_priv->ring[VCS]);
1423         if (gt_iir & GT_BLT_USER_INTERRUPT)
1424                 notify_ring(dev, &dev_priv->ring[BCS]);
1425
1426         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1427                       GT_BSD_CS_ERROR_INTERRUPT |
1428                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1429                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1430                                   gt_iir);
1431         }
1432
1433         if (gt_iir & GT_PARITY_ERROR(dev))
1434                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1435 }
1436
1437 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1438 {
1439         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1440                 return;
1441
1442         spin_lock(&dev_priv->irq_lock);
1443         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1444         bdw_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1445         spin_unlock(&dev_priv->irq_lock);
1446
1447         queue_work(dev_priv->wq, &dev_priv->rps.work);
1448 }
1449
1450 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1451                                        struct drm_i915_private *dev_priv,
1452                                        u32 master_ctl)
1453 {
1454         u32 rcs, bcs, vcs;
1455         uint32_t tmp = 0;
1456         irqreturn_t ret = IRQ_NONE;
1457
1458         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1459                 tmp = I915_READ(GEN8_GT_IIR(0));
1460                 if (tmp) {
1461                         ret = IRQ_HANDLED;
1462                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1463                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1464                         if (rcs & GT_RENDER_USER_INTERRUPT)
1465                                 notify_ring(dev, &dev_priv->ring[RCS]);
1466                         if (bcs & GT_RENDER_USER_INTERRUPT)
1467                                 notify_ring(dev, &dev_priv->ring[BCS]);
1468                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1469                 } else
1470                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1471         }
1472
1473         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1474                 tmp = I915_READ(GEN8_GT_IIR(1));
1475                 if (tmp) {
1476                         ret = IRQ_HANDLED;
1477                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1478                         if (vcs & GT_RENDER_USER_INTERRUPT)
1479                                 notify_ring(dev, &dev_priv->ring[VCS]);
1480                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1481                         if (vcs & GT_RENDER_USER_INTERRUPT)
1482                                 notify_ring(dev, &dev_priv->ring[VCS2]);
1483                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1484                 } else
1485                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1486         }
1487
1488         if (master_ctl & GEN8_GT_PM_IRQ) {
1489                 tmp = I915_READ(GEN8_GT_IIR(2));
1490                 if (tmp & dev_priv->pm_rps_events) {
1491                         ret = IRQ_HANDLED;
1492                         gen8_rps_irq_handler(dev_priv, tmp);
1493                         I915_WRITE(GEN8_GT_IIR(2),
1494                                    tmp & dev_priv->pm_rps_events);
1495                 } else
1496                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1497         }
1498
1499         if (master_ctl & GEN8_GT_VECS_IRQ) {
1500                 tmp = I915_READ(GEN8_GT_IIR(3));
1501                 if (tmp) {
1502                         ret = IRQ_HANDLED;
1503                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1504                         if (vcs & GT_RENDER_USER_INTERRUPT)
1505                                 notify_ring(dev, &dev_priv->ring[VECS]);
1506                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1507                 } else
1508                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1509         }
1510
1511         return ret;
1512 }
1513
1514 #define HPD_STORM_DETECT_PERIOD 1000
1515 #define HPD_STORM_THRESHOLD 5
1516
1517 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1518                                          u32 hotplug_trigger,
1519                                          const u32 *hpd)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         int i;
1523         bool storm_detected = false;
1524
1525         if (!hotplug_trigger)
1526                 return;
1527
1528         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1529                           hotplug_trigger);
1530
1531         spin_lock(&dev_priv->irq_lock);
1532         for (i = 1; i < HPD_NUM_PINS; i++) {
1533
1534                 if (hpd[i] & hotplug_trigger &&
1535                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1536                         /*
1537                          * On GMCH platforms the interrupt mask bits only
1538                          * prevent irq generation, not the setting of the
1539                          * hotplug bits itself. So only WARN about unexpected
1540                          * interrupts on saner platforms.
1541                          */
1542                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1543                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1544                                   hotplug_trigger, i, hpd[i]);
1545
1546                         continue;
1547                 }
1548
1549                 if (!(hpd[i] & hotplug_trigger) ||
1550                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1551                         continue;
1552
1553                 dev_priv->hpd_event_bits |= (1 << i);
1554                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1555                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1556                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1557                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1558                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1559                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1560                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1561                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1562                         dev_priv->hpd_event_bits &= ~(1 << i);
1563                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1564                         storm_detected = true;
1565                 } else {
1566                         dev_priv->hpd_stats[i].hpd_cnt++;
1567                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1568                                       dev_priv->hpd_stats[i].hpd_cnt);
1569                 }
1570         }
1571
1572         if (storm_detected)
1573                 dev_priv->display.hpd_irq_setup(dev);
1574         spin_unlock(&dev_priv->irq_lock);
1575
1576         /*
1577          * Our hotplug handler can grab modeset locks (by calling down into the
1578          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1579          * queue for otherwise the flush_work in the pageflip code will
1580          * deadlock.
1581          */
1582         schedule_work(&dev_priv->hotplug_work);
1583 }
1584
1585 static void gmbus_irq_handler(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         wake_up_all(&dev_priv->gmbus_wait_queue);
1590 }
1591
1592 static void dp_aux_irq_handler(struct drm_device *dev)
1593 {
1594         struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596         wake_up_all(&dev_priv->gmbus_wait_queue);
1597 }
1598
1599 #if defined(CONFIG_DEBUG_FS)
1600 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1601                                          uint32_t crc0, uint32_t crc1,
1602                                          uint32_t crc2, uint32_t crc3,
1603                                          uint32_t crc4)
1604 {
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1607         struct intel_pipe_crc_entry *entry;
1608         int head, tail;
1609
1610         spin_lock(&pipe_crc->lock);
1611
1612         if (!pipe_crc->entries) {
1613                 spin_unlock(&pipe_crc->lock);
1614                 DRM_ERROR("spurious interrupt\n");
1615                 return;
1616         }
1617
1618         head = pipe_crc->head;
1619         tail = pipe_crc->tail;
1620
1621         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1622                 spin_unlock(&pipe_crc->lock);
1623                 DRM_ERROR("CRC buffer overflowing\n");
1624                 return;
1625         }
1626
1627         entry = &pipe_crc->entries[head];
1628
1629         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1630         entry->crc[0] = crc0;
1631         entry->crc[1] = crc1;
1632         entry->crc[2] = crc2;
1633         entry->crc[3] = crc3;
1634         entry->crc[4] = crc4;
1635
1636         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1637         pipe_crc->head = head;
1638
1639         spin_unlock(&pipe_crc->lock);
1640
1641         wake_up_interruptible(&pipe_crc->wq);
1642 }
1643 #else
1644 static inline void
1645 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1646                              uint32_t crc0, uint32_t crc1,
1647                              uint32_t crc2, uint32_t crc3,
1648                              uint32_t crc4) {}
1649 #endif
1650
1651
1652 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1653 {
1654         struct drm_i915_private *dev_priv = dev->dev_private;
1655
1656         display_pipe_crc_irq_handler(dev, pipe,
1657                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1658                                      0, 0, 0, 0);
1659 }
1660
1661 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1662 {
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664
1665         display_pipe_crc_irq_handler(dev, pipe,
1666                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672
1673 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1674 {
1675         struct drm_i915_private *dev_priv = dev->dev_private;
1676         uint32_t res1, res2;
1677
1678         if (INTEL_INFO(dev)->gen >= 3)
1679                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680         else
1681                 res1 = 0;
1682
1683         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1684                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685         else
1686                 res2 = 0;
1687
1688         display_pipe_crc_irq_handler(dev, pipe,
1689                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1690                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692                                      res1, res2);
1693 }
1694
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696  * IMR bits until the work is done. Other interrupts can be processed without
1697  * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700         if (pm_iir & dev_priv->pm_rps_events) {
1701                 spin_lock(&dev_priv->irq_lock);
1702                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1703                 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1704                 spin_unlock(&dev_priv->irq_lock);
1705
1706                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1707         }
1708
1709         if (HAS_VEBOX(dev_priv->dev)) {
1710                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1711                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1712
1713                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1714                         i915_handle_error(dev_priv->dev, false,
1715                                           "VEBOX CS error interrupt 0x%08x",
1716                                           pm_iir);
1717                 }
1718         }
1719 }
1720
1721 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1722 {
1723         struct intel_crtc *crtc;
1724
1725         if (!drm_handle_vblank(dev, pipe))
1726                 return false;
1727
1728         crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1729         wake_up(&crtc->vbl_wait);
1730
1731         return true;
1732 }
1733
1734 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1735 {
1736         struct drm_i915_private *dev_priv = dev->dev_private;
1737         u32 pipe_stats[I915_MAX_PIPES] = { };
1738         int pipe;
1739
1740         spin_lock(&dev_priv->irq_lock);
1741         for_each_pipe(pipe) {
1742                 int reg;
1743                 u32 mask, iir_bit = 0;
1744
1745                 /*
1746                  * PIPESTAT bits get signalled even when the interrupt is
1747                  * disabled with the mask bits, and some of the status bits do
1748                  * not generate interrupts at all (like the underrun bit). Hence
1749                  * we need to be careful that we only handle what we want to
1750                  * handle.
1751                  */
1752                 mask = 0;
1753                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1754                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
1755
1756                 switch (pipe) {
1757                 case PIPE_A:
1758                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1759                         break;
1760                 case PIPE_B:
1761                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1762                         break;
1763                 case PIPE_C:
1764                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1765                         break;
1766                 }
1767                 if (iir & iir_bit)
1768                         mask |= dev_priv->pipestat_irq_mask[pipe];
1769
1770                 if (!mask)
1771                         continue;
1772
1773                 reg = PIPESTAT(pipe);
1774                 mask |= PIPESTAT_INT_ENABLE_MASK;
1775                 pipe_stats[pipe] = I915_READ(reg) & mask;
1776
1777                 /*
1778                  * Clear the PIPE*STAT regs before the IIR
1779                  */
1780                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1781                                         PIPESTAT_INT_STATUS_MASK))
1782                         I915_WRITE(reg, pipe_stats[pipe]);
1783         }
1784         spin_unlock(&dev_priv->irq_lock);
1785
1786         for_each_pipe(pipe) {
1787                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1788                         intel_pipe_handle_vblank(dev, pipe);
1789
1790                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1791                         intel_prepare_page_flip(dev, pipe);
1792                         intel_finish_page_flip(dev, pipe);
1793                 }
1794
1795                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1796                         i9xx_pipe_crc_irq_handler(dev, pipe);
1797
1798                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1799                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1800                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1801         }
1802
1803         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1804                 gmbus_irq_handler(dev);
1805 }
1806
1807 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1808 {
1809         struct drm_i915_private *dev_priv = dev->dev_private;
1810         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1811
1812         if (IS_G4X(dev)) {
1813                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1814
1815                 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1816         } else {
1817                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1818
1819                 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1820         }
1821
1822         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1823             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1824                 dp_aux_irq_handler(dev);
1825
1826         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1827         /*
1828          * Make sure hotplug status is cleared before we clear IIR, or else we
1829          * may miss hotplug events.
1830          */
1831         POSTING_READ(PORT_HOTPLUG_STAT);
1832 }
1833
1834 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1835 {
1836         struct drm_device *dev = arg;
1837         struct drm_i915_private *dev_priv = dev->dev_private;
1838         u32 iir, gt_iir, pm_iir;
1839         irqreturn_t ret = IRQ_NONE;
1840
1841         while (true) {
1842                 iir = I915_READ(VLV_IIR);
1843                 gt_iir = I915_READ(GTIIR);
1844                 pm_iir = I915_READ(GEN6_PMIIR);
1845
1846                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1847                         goto out;
1848
1849                 ret = IRQ_HANDLED;
1850
1851                 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1852
1853                 valleyview_pipestat_irq_handler(dev, iir);
1854
1855                 /* Consume port.  Then clear IIR or we'll miss events */
1856                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1857                         i9xx_hpd_irq_handler(dev);
1858
1859                 if (pm_iir)
1860                         gen6_rps_irq_handler(dev_priv, pm_iir);
1861
1862                 I915_WRITE(GTIIR, gt_iir);
1863                 I915_WRITE(GEN6_PMIIR, pm_iir);
1864                 I915_WRITE(VLV_IIR, iir);
1865         }
1866
1867 out:
1868         return ret;
1869 }
1870
1871 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1872 {
1873         struct drm_device *dev = arg;
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875         u32 master_ctl, iir;
1876         irqreturn_t ret = IRQ_NONE;
1877
1878         for (;;) {
1879                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1880                 iir = I915_READ(VLV_IIR);
1881
1882                 if (master_ctl == 0 && iir == 0)
1883                         break;
1884
1885                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1886
1887                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1888
1889                 valleyview_pipestat_irq_handler(dev, iir);
1890
1891                 /* Consume port.  Then clear IIR or we'll miss events */
1892                 i9xx_hpd_irq_handler(dev);
1893
1894                 I915_WRITE(VLV_IIR, iir);
1895
1896                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1897                 POSTING_READ(GEN8_MASTER_IRQ);
1898
1899                 ret = IRQ_HANDLED;
1900         }
1901
1902         return ret;
1903 }
1904
1905 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1906 {
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908         int pipe;
1909         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1910
1911         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1912
1913         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1914                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1915                                SDE_AUDIO_POWER_SHIFT);
1916                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1917                                  port_name(port));
1918         }
1919
1920         if (pch_iir & SDE_AUX_MASK)
1921                 dp_aux_irq_handler(dev);
1922
1923         if (pch_iir & SDE_GMBUS)
1924                 gmbus_irq_handler(dev);
1925
1926         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1927                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1928
1929         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1930                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1931
1932         if (pch_iir & SDE_POISON)
1933                 DRM_ERROR("PCH poison interrupt\n");
1934
1935         if (pch_iir & SDE_FDI_MASK)
1936                 for_each_pipe(pipe)
1937                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1938                                          pipe_name(pipe),
1939                                          I915_READ(FDI_RX_IIR(pipe)));
1940
1941         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1942                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1943
1944         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1945                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1946
1947         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1948                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1949                                                           false))
1950                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1951
1952         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1953                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1954                                                           false))
1955                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1956 }
1957
1958 static void ivb_err_int_handler(struct drm_device *dev)
1959 {
1960         struct drm_i915_private *dev_priv = dev->dev_private;
1961         u32 err_int = I915_READ(GEN7_ERR_INT);
1962         enum pipe pipe;
1963
1964         if (err_int & ERR_INT_POISON)
1965                 DRM_ERROR("Poison interrupt\n");
1966
1967         for_each_pipe(pipe) {
1968                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1969                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1970                                                                   false))
1971                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1972                                           pipe_name(pipe));
1973                 }
1974
1975                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1976                         if (IS_IVYBRIDGE(dev))
1977                                 ivb_pipe_crc_irq_handler(dev, pipe);
1978                         else
1979                                 hsw_pipe_crc_irq_handler(dev, pipe);
1980                 }
1981         }
1982
1983         I915_WRITE(GEN7_ERR_INT, err_int);
1984 }
1985
1986 static void cpt_serr_int_handler(struct drm_device *dev)
1987 {
1988         struct drm_i915_private *dev_priv = dev->dev_private;
1989         u32 serr_int = I915_READ(SERR_INT);
1990
1991         if (serr_int & SERR_INT_POISON)
1992                 DRM_ERROR("PCH poison interrupt\n");
1993
1994         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1995                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1996                                                           false))
1997                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1998
1999         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2000                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2001                                                           false))
2002                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2003
2004         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2005                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2006                                                           false))
2007                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
2008
2009         I915_WRITE(SERR_INT, serr_int);
2010 }
2011
2012 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2013 {
2014         struct drm_i915_private *dev_priv = dev->dev_private;
2015         int pipe;
2016         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2017
2018         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
2019
2020         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2021                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2022                                SDE_AUDIO_POWER_SHIFT_CPT);
2023                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2024                                  port_name(port));
2025         }
2026
2027         if (pch_iir & SDE_AUX_MASK_CPT)
2028                 dp_aux_irq_handler(dev);
2029
2030         if (pch_iir & SDE_GMBUS_CPT)
2031                 gmbus_irq_handler(dev);
2032
2033         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2034                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2035
2036         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2037                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2038
2039         if (pch_iir & SDE_FDI_MASK_CPT)
2040                 for_each_pipe(pipe)
2041                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2042                                          pipe_name(pipe),
2043                                          I915_READ(FDI_RX_IIR(pipe)));
2044
2045         if (pch_iir & SDE_ERROR_CPT)
2046                 cpt_serr_int_handler(dev);
2047 }
2048
2049 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2050 {
2051         struct drm_i915_private *dev_priv = dev->dev_private;
2052         enum pipe pipe;
2053
2054         if (de_iir & DE_AUX_CHANNEL_A)
2055                 dp_aux_irq_handler(dev);
2056
2057         if (de_iir & DE_GSE)
2058                 intel_opregion_asle_intr(dev);
2059
2060         if (de_iir & DE_POISON)
2061                 DRM_ERROR("Poison interrupt\n");
2062
2063         for_each_pipe(pipe) {
2064                 if (de_iir & DE_PIPE_VBLANK(pipe))
2065                         intel_pipe_handle_vblank(dev, pipe);
2066
2067                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2068                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2069                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2070                                           pipe_name(pipe));
2071
2072                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2073                         i9xx_pipe_crc_irq_handler(dev, pipe);
2074
2075                 /* plane/pipes map 1:1 on ilk+ */
2076                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2077                         intel_prepare_page_flip(dev, pipe);
2078                         intel_finish_page_flip_plane(dev, pipe);
2079                 }
2080         }
2081
2082         /* check event from PCH */
2083         if (de_iir & DE_PCH_EVENT) {
2084                 u32 pch_iir = I915_READ(SDEIIR);
2085
2086                 if (HAS_PCH_CPT(dev))
2087                         cpt_irq_handler(dev, pch_iir);
2088                 else
2089                         ibx_irq_handler(dev, pch_iir);
2090
2091                 /* should clear PCH hotplug event before clear CPU irq */
2092                 I915_WRITE(SDEIIR, pch_iir);
2093         }
2094
2095         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2096                 ironlake_rps_change_irq_handler(dev);
2097 }
2098
2099 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2100 {
2101         struct drm_i915_private *dev_priv = dev->dev_private;
2102         enum pipe pipe;
2103
2104         if (de_iir & DE_ERR_INT_IVB)
2105                 ivb_err_int_handler(dev);
2106
2107         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2108                 dp_aux_irq_handler(dev);
2109
2110         if (de_iir & DE_GSE_IVB)
2111                 intel_opregion_asle_intr(dev);
2112
2113         for_each_pipe(pipe) {
2114                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2115                         intel_pipe_handle_vblank(dev, pipe);
2116
2117                 /* plane/pipes map 1:1 on ilk+ */
2118                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2119                         intel_prepare_page_flip(dev, pipe);
2120                         intel_finish_page_flip_plane(dev, pipe);
2121                 }
2122         }
2123
2124         /* check event from PCH */
2125         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2126                 u32 pch_iir = I915_READ(SDEIIR);
2127
2128                 cpt_irq_handler(dev, pch_iir);
2129
2130                 /* clear PCH hotplug event before clear CPU irq */
2131                 I915_WRITE(SDEIIR, pch_iir);
2132         }
2133 }
2134
2135 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2136 {
2137         struct drm_device *dev = arg;
2138         struct drm_i915_private *dev_priv = dev->dev_private;
2139         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2140         irqreturn_t ret = IRQ_NONE;
2141
2142         /* We get interrupts on unclaimed registers, so check for this before we
2143          * do any I915_{READ,WRITE}. */
2144         intel_uncore_check_errors(dev);
2145
2146         /* disable master interrupt before clearing iir  */
2147         de_ier = I915_READ(DEIER);
2148         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2149         POSTING_READ(DEIER);
2150
2151         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2152          * interrupts will will be stored on its back queue, and then we'll be
2153          * able to process them after we restore SDEIER (as soon as we restore
2154          * it, we'll get an interrupt if SDEIIR still has something to process
2155          * due to its back queue). */
2156         if (!HAS_PCH_NOP(dev)) {
2157                 sde_ier = I915_READ(SDEIER);
2158                 I915_WRITE(SDEIER, 0);
2159                 POSTING_READ(SDEIER);
2160         }
2161
2162         gt_iir = I915_READ(GTIIR);
2163         if (gt_iir) {
2164                 if (INTEL_INFO(dev)->gen >= 6)
2165                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2166                 else
2167                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2168                 I915_WRITE(GTIIR, gt_iir);
2169                 ret = IRQ_HANDLED;
2170         }
2171
2172         de_iir = I915_READ(DEIIR);
2173         if (de_iir) {
2174                 if (INTEL_INFO(dev)->gen >= 7)
2175                         ivb_display_irq_handler(dev, de_iir);
2176                 else
2177                         ilk_display_irq_handler(dev, de_iir);
2178                 I915_WRITE(DEIIR, de_iir);
2179                 ret = IRQ_HANDLED;
2180         }
2181
2182         if (INTEL_INFO(dev)->gen >= 6) {
2183                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2184                 if (pm_iir) {
2185                         gen6_rps_irq_handler(dev_priv, pm_iir);
2186                         I915_WRITE(GEN6_PMIIR, pm_iir);
2187                         ret = IRQ_HANDLED;
2188                 }
2189         }
2190
2191         I915_WRITE(DEIER, de_ier);
2192         POSTING_READ(DEIER);
2193         if (!HAS_PCH_NOP(dev)) {
2194                 I915_WRITE(SDEIER, sde_ier);
2195                 POSTING_READ(SDEIER);
2196         }
2197
2198         return ret;
2199 }
2200
2201 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2202 {
2203         struct drm_device *dev = arg;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205         u32 master_ctl;
2206         irqreturn_t ret = IRQ_NONE;
2207         uint32_t tmp = 0;
2208         enum pipe pipe;
2209
2210         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2211         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2212         if (!master_ctl)
2213                 return IRQ_NONE;
2214
2215         I915_WRITE(GEN8_MASTER_IRQ, 0);
2216         POSTING_READ(GEN8_MASTER_IRQ);
2217
2218         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2219
2220         if (master_ctl & GEN8_DE_MISC_IRQ) {
2221                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2222                 if (tmp & GEN8_DE_MISC_GSE)
2223                         intel_opregion_asle_intr(dev);
2224                 else if (tmp)
2225                         DRM_ERROR("Unexpected DE Misc interrupt\n");
2226                 else
2227                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2228
2229                 if (tmp) {
2230                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2231                         ret = IRQ_HANDLED;
2232                 }
2233         }
2234
2235         if (master_ctl & GEN8_DE_PORT_IRQ) {
2236                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2237                 if (tmp & GEN8_AUX_CHANNEL_A)
2238                         dp_aux_irq_handler(dev);
2239                 else if (tmp)
2240                         DRM_ERROR("Unexpected DE Port interrupt\n");
2241                 else
2242                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2243
2244                 if (tmp) {
2245                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2246                         ret = IRQ_HANDLED;
2247                 }
2248         }
2249
2250         for_each_pipe(pipe) {
2251                 uint32_t pipe_iir;
2252
2253                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2254                         continue;
2255
2256                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2257                 if (pipe_iir & GEN8_PIPE_VBLANK)
2258                         intel_pipe_handle_vblank(dev, pipe);
2259
2260                 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2261                         intel_prepare_page_flip(dev, pipe);
2262                         intel_finish_page_flip_plane(dev, pipe);
2263                 }
2264
2265                 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2266                         hsw_pipe_crc_irq_handler(dev, pipe);
2267
2268                 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2269                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2270                                                                   false))
2271                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2272                                           pipe_name(pipe));
2273                 }
2274
2275                 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2276                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2277                                   pipe_name(pipe),
2278                                   pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2279                 }
2280
2281                 if (pipe_iir) {
2282                         ret = IRQ_HANDLED;
2283                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2284                 } else
2285                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2286         }
2287
2288         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2289                 /*
2290                  * FIXME(BDW): Assume for now that the new interrupt handling
2291                  * scheme also closed the SDE interrupt handling race we've seen
2292                  * on older pch-split platforms. But this needs testing.
2293                  */
2294                 u32 pch_iir = I915_READ(SDEIIR);
2295
2296                 cpt_irq_handler(dev, pch_iir);
2297
2298                 if (pch_iir) {
2299                         I915_WRITE(SDEIIR, pch_iir);
2300                         ret = IRQ_HANDLED;
2301                 }
2302         }
2303
2304         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2305         POSTING_READ(GEN8_MASTER_IRQ);
2306
2307         return ret;
2308 }
2309
2310 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2311                                bool reset_completed)
2312 {
2313         struct intel_engine_cs *ring;
2314         int i;
2315
2316         /*
2317          * Notify all waiters for GPU completion events that reset state has
2318          * been changed, and that they need to restart their wait after
2319          * checking for potential errors (and bail out to drop locks if there is
2320          * a gpu reset pending so that i915_error_work_func can acquire them).
2321          */
2322
2323         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2324         for_each_ring(ring, dev_priv, i)
2325                 wake_up_all(&ring->irq_queue);
2326
2327         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2328         wake_up_all(&dev_priv->pending_flip_queue);
2329
2330         /*
2331          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2332          * reset state is cleared.
2333          */
2334         if (reset_completed)
2335                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2336 }
2337
2338 /**
2339  * i915_error_work_func - do process context error handling work
2340  * @work: work struct
2341  *
2342  * Fire an error uevent so userspace can see that a hang or error
2343  * was detected.
2344  */
2345 static void i915_error_work_func(struct work_struct *work)
2346 {
2347         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2348                                                     work);
2349         struct drm_i915_private *dev_priv =
2350                 container_of(error, struct drm_i915_private, gpu_error);
2351         struct drm_device *dev = dev_priv->dev;
2352         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2353         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2354         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2355         int ret;
2356
2357         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2358
2359         /*
2360          * Note that there's only one work item which does gpu resets, so we
2361          * need not worry about concurrent gpu resets potentially incrementing
2362          * error->reset_counter twice. We only need to take care of another
2363          * racing irq/hangcheck declaring the gpu dead for a second time. A
2364          * quick check for that is good enough: schedule_work ensures the
2365          * correct ordering between hang detection and this work item, and since
2366          * the reset in-progress bit is only ever set by code outside of this
2367          * work we don't need to worry about any other races.
2368          */
2369         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2370                 DRM_DEBUG_DRIVER("resetting chip\n");
2371                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2372                                    reset_event);
2373
2374                 /*
2375                  * In most cases it's guaranteed that we get here with an RPM
2376                  * reference held, for example because there is a pending GPU
2377                  * request that won't finish until the reset is done. This
2378                  * isn't the case at least when we get here by doing a
2379                  * simulated reset via debugs, so get an RPM reference.
2380                  */
2381                 intel_runtime_pm_get(dev_priv);
2382                 /*
2383                  * All state reset _must_ be completed before we update the
2384                  * reset counter, for otherwise waiters might miss the reset
2385                  * pending state and not properly drop locks, resulting in
2386                  * deadlocks with the reset work.
2387                  */
2388                 ret = i915_reset(dev);
2389
2390                 intel_display_handle_reset(dev);
2391
2392                 intel_runtime_pm_put(dev_priv);
2393
2394                 if (ret == 0) {
2395                         /*
2396                          * After all the gem state is reset, increment the reset
2397                          * counter and wake up everyone waiting for the reset to
2398                          * complete.
2399                          *
2400                          * Since unlock operations are a one-sided barrier only,
2401                          * we need to insert a barrier here to order any seqno
2402                          * updates before
2403                          * the counter increment.
2404                          */
2405                         smp_mb__before_atomic();
2406                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2407
2408                         kobject_uevent_env(&dev->primary->kdev->kobj,
2409                                            KOBJ_CHANGE, reset_done_event);
2410                 } else {
2411                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2412                 }
2413
2414                 /*
2415                  * Note: The wake_up also serves as a memory barrier so that
2416                  * waiters see the update value of the reset counter atomic_t.
2417                  */
2418                 i915_error_wake_up(dev_priv, true);
2419         }
2420 }
2421
2422 static void i915_report_and_clear_eir(struct drm_device *dev)
2423 {
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         uint32_t instdone[I915_NUM_INSTDONE_REG];
2426         u32 eir = I915_READ(EIR);
2427         int pipe, i;
2428
2429         if (!eir)
2430                 return;
2431
2432         pr_err("render error detected, EIR: 0x%08x\n", eir);
2433
2434         i915_get_extra_instdone(dev, instdone);
2435
2436         if (IS_G4X(dev)) {
2437                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2438                         u32 ipeir = I915_READ(IPEIR_I965);
2439
2440                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2441                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2442                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2443                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2444                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2445                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2446                         I915_WRITE(IPEIR_I965, ipeir);
2447                         POSTING_READ(IPEIR_I965);
2448                 }
2449                 if (eir & GM45_ERROR_PAGE_TABLE) {
2450                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2451                         pr_err("page table error\n");
2452                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2453                         I915_WRITE(PGTBL_ER, pgtbl_err);
2454                         POSTING_READ(PGTBL_ER);
2455                 }
2456         }
2457
2458         if (!IS_GEN2(dev)) {
2459                 if (eir & I915_ERROR_PAGE_TABLE) {
2460                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2461                         pr_err("page table error\n");
2462                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2463                         I915_WRITE(PGTBL_ER, pgtbl_err);
2464                         POSTING_READ(PGTBL_ER);
2465                 }
2466         }
2467
2468         if (eir & I915_ERROR_MEMORY_REFRESH) {
2469                 pr_err("memory refresh error:\n");
2470                 for_each_pipe(pipe)
2471                         pr_err("pipe %c stat: 0x%08x\n",
2472                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2473                 /* pipestat has already been acked */
2474         }
2475         if (eir & I915_ERROR_INSTRUCTION) {
2476                 pr_err("instruction error\n");
2477                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2478                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2479                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2480                 if (INTEL_INFO(dev)->gen < 4) {
2481                         u32 ipeir = I915_READ(IPEIR);
2482
2483                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2484                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2485                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2486                         I915_WRITE(IPEIR, ipeir);
2487                         POSTING_READ(IPEIR);
2488                 } else {
2489                         u32 ipeir = I915_READ(IPEIR_I965);
2490
2491                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2492                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2493                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2494                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2495                         I915_WRITE(IPEIR_I965, ipeir);
2496                         POSTING_READ(IPEIR_I965);
2497                 }
2498         }
2499
2500         I915_WRITE(EIR, eir);
2501         POSTING_READ(EIR);
2502         eir = I915_READ(EIR);
2503         if (eir) {
2504                 /*
2505                  * some errors might have become stuck,
2506                  * mask them.
2507                  */
2508                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2509                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2510                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2511         }
2512 }
2513
2514 /**
2515  * i915_handle_error - handle an error interrupt
2516  * @dev: drm device
2517  *
2518  * Do some basic checking of regsiter state at error interrupt time and
2519  * dump it to the syslog.  Also call i915_capture_error_state() to make
2520  * sure we get a record and make it available in debugfs.  Fire a uevent
2521  * so userspace knows something bad happened (should trigger collection
2522  * of a ring dump etc.).
2523  */
2524 void i915_handle_error(struct drm_device *dev, bool wedged,
2525                        const char *fmt, ...)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         va_list args;
2529         char error_msg[80];
2530
2531         va_start(args, fmt);
2532         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2533         va_end(args);
2534
2535         i915_capture_error_state(dev, wedged, error_msg);
2536         i915_report_and_clear_eir(dev);
2537
2538         if (wedged) {
2539                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2540                                 &dev_priv->gpu_error.reset_counter);
2541
2542                 /*
2543                  * Wakeup waiting processes so that the reset work function
2544                  * i915_error_work_func doesn't deadlock trying to grab various
2545                  * locks. By bumping the reset counter first, the woken
2546                  * processes will see a reset in progress and back off,
2547                  * releasing their locks and then wait for the reset completion.
2548                  * We must do this for _all_ gpu waiters that might hold locks
2549                  * that the reset work needs to acquire.
2550                  *
2551                  * Note: The wake_up serves as the required memory barrier to
2552                  * ensure that the waiters see the updated value of the reset
2553                  * counter atomic_t.
2554                  */
2555                 i915_error_wake_up(dev_priv, false);
2556         }
2557
2558         /*
2559          * Our reset work can grab modeset locks (since it needs to reset the
2560          * state of outstanding pagelips). Hence it must not be run on our own
2561          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2562          * code will deadlock.
2563          */
2564         schedule_work(&dev_priv->gpu_error.work);
2565 }
2566
2567 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2568 {
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2571         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572         struct drm_i915_gem_object *obj;
2573         struct intel_unpin_work *work;
2574         unsigned long flags;
2575         bool stall_detected;
2576
2577         /* Ignore early vblank irqs */
2578         if (intel_crtc == NULL)
2579                 return;
2580
2581         spin_lock_irqsave(&dev->event_lock, flags);
2582         work = intel_crtc->unpin_work;
2583
2584         if (work == NULL ||
2585             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2586             !work->enable_stall_check) {
2587                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2588                 spin_unlock_irqrestore(&dev->event_lock, flags);
2589                 return;
2590         }
2591
2592         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2593         obj = work->pending_flip_obj;
2594         if (INTEL_INFO(dev)->gen >= 4) {
2595                 int dspsurf = DSPSURF(intel_crtc->plane);
2596                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2597                                         i915_gem_obj_ggtt_offset(obj);
2598         } else {
2599                 int dspaddr = DSPADDR(intel_crtc->plane);
2600                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2601                                                         crtc->y * crtc->primary->fb->pitches[0] +
2602                                                         crtc->x * crtc->primary->fb->bits_per_pixel/8);
2603         }
2604
2605         spin_unlock_irqrestore(&dev->event_lock, flags);
2606
2607         if (stall_detected) {
2608                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2609                 intel_prepare_page_flip(dev, intel_crtc->plane);
2610         }
2611 }
2612
2613 /* Called from drm generic code, passed 'crtc' which
2614  * we use as a pipe index
2615  */
2616 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2617 {
2618         struct drm_i915_private *dev_priv = dev->dev_private;
2619         unsigned long irqflags;
2620
2621         if (!i915_pipe_enabled(dev, pipe))
2622                 return -EINVAL;
2623
2624         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2625         if (INTEL_INFO(dev)->gen >= 4)
2626                 i915_enable_pipestat(dev_priv, pipe,
2627                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2628         else
2629                 i915_enable_pipestat(dev_priv, pipe,
2630                                      PIPE_VBLANK_INTERRUPT_STATUS);
2631         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2632
2633         return 0;
2634 }
2635
2636 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2637 {
2638         struct drm_i915_private *dev_priv = dev->dev_private;
2639         unsigned long irqflags;
2640         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2641                                                      DE_PIPE_VBLANK(pipe);
2642
2643         if (!i915_pipe_enabled(dev, pipe))
2644                 return -EINVAL;
2645
2646         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647         ironlake_enable_display_irq(dev_priv, bit);
2648         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2649
2650         return 0;
2651 }
2652
2653 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2654 {
2655         struct drm_i915_private *dev_priv = dev->dev_private;
2656         unsigned long irqflags;
2657
2658         if (!i915_pipe_enabled(dev, pipe))
2659                 return -EINVAL;
2660
2661         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2662         i915_enable_pipestat(dev_priv, pipe,
2663                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2664         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665
2666         return 0;
2667 }
2668
2669 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2670 {
2671         struct drm_i915_private *dev_priv = dev->dev_private;
2672         unsigned long irqflags;
2673
2674         if (!i915_pipe_enabled(dev, pipe))
2675                 return -EINVAL;
2676
2677         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2679         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2680         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2681         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682         return 0;
2683 }
2684
2685 /* Called from drm generic code, passed 'crtc' which
2686  * we use as a pipe index
2687  */
2688 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2689 {
2690         struct drm_i915_private *dev_priv = dev->dev_private;
2691         unsigned long irqflags;
2692
2693         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2694         i915_disable_pipestat(dev_priv, pipe,
2695                               PIPE_VBLANK_INTERRUPT_STATUS |
2696                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2697         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2698 }
2699
2700 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2701 {
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         unsigned long irqflags;
2704         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2705                                                      DE_PIPE_VBLANK(pipe);
2706
2707         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2708         ironlake_disable_display_irq(dev_priv, bit);
2709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710 }
2711
2712 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2713 {
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         unsigned long irqflags;
2716
2717         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2718         i915_disable_pipestat(dev_priv, pipe,
2719                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2720         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2721 }
2722
2723 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2724 {
2725         struct drm_i915_private *dev_priv = dev->dev_private;
2726         unsigned long irqflags;
2727
2728         if (!i915_pipe_enabled(dev, pipe))
2729                 return;
2730
2731         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2733         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2734         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2735         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2736 }
2737
2738 static u32
2739 ring_last_seqno(struct intel_engine_cs *ring)
2740 {
2741         return list_entry(ring->request_list.prev,
2742                           struct drm_i915_gem_request, list)->seqno;
2743 }
2744
2745 static bool
2746 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2747 {
2748         return (list_empty(&ring->request_list) ||
2749                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2750 }
2751
2752 static bool
2753 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2754 {
2755         if (INTEL_INFO(dev)->gen >= 8) {
2756                 /*
2757                  * FIXME: gen8 semaphore support - currently we don't emit
2758                  * semaphores on bdw anyway, but this needs to be addressed when
2759                  * we merge that code.
2760                  */
2761                 return false;
2762         } else {
2763                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2764                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2765                                  MI_SEMAPHORE_REGISTER);
2766         }
2767 }
2768
2769 static struct intel_engine_cs *
2770 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr)
2771 {
2772         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2773         struct intel_engine_cs *signaller;
2774         int i;
2775
2776         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2777                 /*
2778                  * FIXME: gen8 semaphore support - currently we don't emit
2779                  * semaphores on bdw anyway, but this needs to be addressed when
2780                  * we merge that code.
2781                  */
2782                 return NULL;
2783         } else {
2784                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2785
2786                 for_each_ring(signaller, dev_priv, i) {
2787                         if(ring == signaller)
2788                                 continue;
2789
2790                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2791                                 return signaller;
2792                 }
2793         }
2794
2795         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2796                   ring->id, ipehr);
2797
2798         return NULL;
2799 }
2800
2801 static struct intel_engine_cs *
2802 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2803 {
2804         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2805         u32 cmd, ipehr, head;
2806         int i;
2807
2808         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2809         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2810                 return NULL;
2811
2812         /*
2813          * HEAD is likely pointing to the dword after the actual command,
2814          * so scan backwards until we find the MBOX. But limit it to just 3
2815          * dwords. Note that we don't care about ACTHD here since that might
2816          * point at at batch, and semaphores are always emitted into the
2817          * ringbuffer itself.
2818          */
2819         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2820
2821         for (i = 4; i; --i) {
2822                 /*
2823                  * Be paranoid and presume the hw has gone off into the wild -
2824                  * our ring is smaller than what the hardware (and hence
2825                  * HEAD_ADDR) allows. Also handles wrap-around.
2826                  */
2827                 head &= ring->buffer->size - 1;
2828
2829                 /* This here seems to blow up */
2830                 cmd = ioread32(ring->buffer->virtual_start + head);
2831                 if (cmd == ipehr)
2832                         break;
2833
2834                 head -= 4;
2835         }
2836
2837         if (!i)
2838                 return NULL;
2839
2840         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2841         return semaphore_wait_to_signaller_ring(ring, ipehr);
2842 }
2843
2844 static int semaphore_passed(struct intel_engine_cs *ring)
2845 {
2846         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2847         struct intel_engine_cs *signaller;
2848         u32 seqno;
2849
2850         ring->hangcheck.deadlock++;
2851
2852         signaller = semaphore_waits_for(ring, &seqno);
2853         if (signaller == NULL)
2854                 return -1;
2855
2856         /* Prevent pathological recursion due to driver bugs */
2857         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2858                 return -1;
2859
2860         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2861                 return 1;
2862
2863         /* cursory check for an unkickable deadlock */
2864         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2865             semaphore_passed(signaller) < 0)
2866                 return -1;
2867
2868         return 0;
2869 }
2870
2871 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2872 {
2873         struct intel_engine_cs *ring;
2874         int i;
2875
2876         for_each_ring(ring, dev_priv, i)
2877                 ring->hangcheck.deadlock = 0;
2878 }
2879
2880 static enum intel_ring_hangcheck_action
2881 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2882 {
2883         struct drm_device *dev = ring->dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         u32 tmp;
2886
2887         if (ring->hangcheck.acthd != acthd)
2888                 return HANGCHECK_ACTIVE;
2889
2890         if (IS_GEN2(dev))
2891                 return HANGCHECK_HUNG;
2892
2893         /* Is the chip hanging on a WAIT_FOR_EVENT?
2894          * If so we can simply poke the RB_WAIT bit
2895          * and break the hang. This should work on
2896          * all but the second generation chipsets.
2897          */
2898         tmp = I915_READ_CTL(ring);
2899         if (tmp & RING_WAIT) {
2900                 i915_handle_error(dev, false,
2901                                   "Kicking stuck wait on %s",
2902                                   ring->name);
2903                 I915_WRITE_CTL(ring, tmp);
2904                 return HANGCHECK_KICK;
2905         }
2906
2907         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2908                 switch (semaphore_passed(ring)) {
2909                 default:
2910                         return HANGCHECK_HUNG;
2911                 case 1:
2912                         i915_handle_error(dev, false,
2913                                           "Kicking stuck semaphore on %s",
2914                                           ring->name);
2915                         I915_WRITE_CTL(ring, tmp);
2916                         return HANGCHECK_KICK;
2917                 case 0:
2918                         return HANGCHECK_WAIT;
2919                 }
2920         }
2921
2922         return HANGCHECK_HUNG;
2923 }
2924
2925 /**
2926  * This is called when the chip hasn't reported back with completed
2927  * batchbuffers in a long time. We keep track per ring seqno progress and
2928  * if there are no progress, hangcheck score for that ring is increased.
2929  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2930  * we kick the ring. If we see no progress on three subsequent calls
2931  * we assume chip is wedged and try to fix it by resetting the chip.
2932  */
2933 static void i915_hangcheck_elapsed(unsigned long data)
2934 {
2935         struct drm_device *dev = (struct drm_device *)data;
2936         struct drm_i915_private *dev_priv = dev->dev_private;
2937         struct intel_engine_cs *ring;
2938         int i;
2939         int busy_count = 0, rings_hung = 0;
2940         bool stuck[I915_NUM_RINGS] = { 0 };
2941 #define BUSY 1
2942 #define KICK 5
2943 #define HUNG 20
2944
2945         if (!i915.enable_hangcheck)
2946                 return;
2947
2948         for_each_ring(ring, dev_priv, i) {
2949                 u64 acthd;
2950                 u32 seqno;
2951                 bool busy = true;
2952
2953                 semaphore_clear_deadlocks(dev_priv);
2954
2955                 seqno = ring->get_seqno(ring, false);
2956                 acthd = intel_ring_get_active_head(ring);
2957
2958                 if (ring->hangcheck.seqno == seqno) {
2959                         if (ring_idle(ring, seqno)) {
2960                                 ring->hangcheck.action = HANGCHECK_IDLE;
2961
2962                                 if (waitqueue_active(&ring->irq_queue)) {
2963                                         /* Issue a wake-up to catch stuck h/w. */
2964                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2965                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2966                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2967                                                                   ring->name);
2968                                                 else
2969                                                         DRM_INFO("Fake missed irq on %s\n",
2970                                                                  ring->name);
2971                                                 wake_up_all(&ring->irq_queue);
2972                                         }
2973                                         /* Safeguard against driver failure */
2974                                         ring->hangcheck.score += BUSY;
2975                                 } else
2976                                         busy = false;
2977                         } else {
2978                                 /* We always increment the hangcheck score
2979                                  * if the ring is busy and still processing
2980                                  * the same request, so that no single request
2981                                  * can run indefinitely (such as a chain of
2982                                  * batches). The only time we do not increment
2983                                  * the hangcheck score on this ring, if this
2984                                  * ring is in a legitimate wait for another
2985                                  * ring. In that case the waiting ring is a
2986                                  * victim and we want to be sure we catch the
2987                                  * right culprit. Then every time we do kick
2988                                  * the ring, add a small increment to the
2989                                  * score so that we can catch a batch that is
2990                                  * being repeatedly kicked and so responsible
2991                                  * for stalling the machine.
2992                                  */
2993                                 ring->hangcheck.action = ring_stuck(ring,
2994                                                                     acthd);
2995
2996                                 switch (ring->hangcheck.action) {
2997                                 case HANGCHECK_IDLE:
2998                                 case HANGCHECK_WAIT:
2999                                         break;
3000                                 case HANGCHECK_ACTIVE:
3001                                         ring->hangcheck.score += BUSY;
3002                                         break;
3003                                 case HANGCHECK_KICK:
3004                                         ring->hangcheck.score += KICK;
3005                                         break;
3006                                 case HANGCHECK_HUNG:
3007                                         ring->hangcheck.score += HUNG;
3008                                         stuck[i] = true;
3009                                         break;
3010                                 }
3011                         }
3012                 } else {
3013                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3014
3015                         /* Gradually reduce the count so that we catch DoS
3016                          * attempts across multiple batches.
3017                          */
3018                         if (ring->hangcheck.score > 0)
3019                                 ring->hangcheck.score--;
3020                 }
3021
3022                 ring->hangcheck.seqno = seqno;
3023                 ring->hangcheck.acthd = acthd;
3024                 busy_count += busy;
3025         }
3026
3027         for_each_ring(ring, dev_priv, i) {
3028                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3029                         DRM_INFO("%s on %s\n",
3030                                  stuck[i] ? "stuck" : "no progress",
3031                                  ring->name);
3032                         rings_hung++;
3033                 }
3034         }
3035
3036         if (rings_hung)
3037                 return i915_handle_error(dev, true, "Ring hung");
3038
3039         if (busy_count)
3040                 /* Reset timer case chip hangs without another request
3041                  * being added */
3042                 i915_queue_hangcheck(dev);
3043 }
3044
3045 void i915_queue_hangcheck(struct drm_device *dev)
3046 {
3047         struct drm_i915_private *dev_priv = dev->dev_private;
3048         if (!i915.enable_hangcheck)
3049                 return;
3050
3051         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3052                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3053 }
3054
3055 static void ibx_irq_reset(struct drm_device *dev)
3056 {
3057         struct drm_i915_private *dev_priv = dev->dev_private;
3058
3059         if (HAS_PCH_NOP(dev))
3060                 return;
3061
3062         GEN5_IRQ_RESET(SDE);
3063
3064         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3065                 I915_WRITE(SERR_INT, 0xffffffff);
3066 }
3067
3068 /*
3069  * SDEIER is also touched by the interrupt handler to work around missed PCH
3070  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3071  * instead we unconditionally enable all PCH interrupt sources here, but then
3072  * only unmask them as needed with SDEIMR.
3073  *
3074  * This function needs to be called before interrupts are enabled.
3075  */
3076 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3077 {
3078         struct drm_i915_private *dev_priv = dev->dev_private;
3079
3080         if (HAS_PCH_NOP(dev))
3081                 return;
3082
3083         WARN_ON(I915_READ(SDEIER) != 0);
3084         I915_WRITE(SDEIER, 0xffffffff);
3085         POSTING_READ(SDEIER);
3086 }
3087
3088 static void gen5_gt_irq_reset(struct drm_device *dev)
3089 {
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091
3092         GEN5_IRQ_RESET(GT);
3093         if (INTEL_INFO(dev)->gen >= 6)
3094                 GEN5_IRQ_RESET(GEN6_PM);
3095 }
3096
3097 /* drm_dma.h hooks
3098 */
3099 static void ironlake_irq_reset(struct drm_device *dev)
3100 {
3101         struct drm_i915_private *dev_priv = dev->dev_private;
3102
3103         I915_WRITE(HWSTAM, 0xffffffff);
3104
3105         GEN5_IRQ_RESET(DE);
3106         if (IS_GEN7(dev))
3107                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3108
3109         gen5_gt_irq_reset(dev);
3110
3111         ibx_irq_reset(dev);
3112 }
3113
3114 static void valleyview_irq_preinstall(struct drm_device *dev)
3115 {
3116         struct drm_i915_private *dev_priv = dev->dev_private;
3117         int pipe;
3118
3119         /* VLV magic */
3120         I915_WRITE(VLV_IMR, 0);
3121         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3122         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3123         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3124
3125         /* and GT */
3126         I915_WRITE(GTIIR, I915_READ(GTIIR));
3127         I915_WRITE(GTIIR, I915_READ(GTIIR));
3128
3129         gen5_gt_irq_reset(dev);
3130
3131         I915_WRITE(DPINVGTT, 0xff);
3132
3133         I915_WRITE(PORT_HOTPLUG_EN, 0);
3134         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3135         for_each_pipe(pipe)
3136                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3137         I915_WRITE(VLV_IIR, 0xffffffff);
3138         I915_WRITE(VLV_IMR, 0xffffffff);
3139         I915_WRITE(VLV_IER, 0x0);
3140         POSTING_READ(VLV_IER);
3141 }
3142
3143 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3144 {
3145         GEN8_IRQ_RESET_NDX(GT, 0);
3146         GEN8_IRQ_RESET_NDX(GT, 1);
3147         GEN8_IRQ_RESET_NDX(GT, 2);
3148         GEN8_IRQ_RESET_NDX(GT, 3);
3149 }
3150
3151 static void gen8_irq_reset(struct drm_device *dev)
3152 {
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154         int pipe;
3155
3156         I915_WRITE(GEN8_MASTER_IRQ, 0);
3157         POSTING_READ(GEN8_MASTER_IRQ);
3158
3159         gen8_gt_irq_reset(dev_priv);
3160
3161         for_each_pipe(pipe)
3162                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3163
3164         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3165         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3166         GEN5_IRQ_RESET(GEN8_PCU_);
3167
3168         ibx_irq_reset(dev);
3169 }
3170
3171 static void cherryview_irq_preinstall(struct drm_device *dev)
3172 {
3173         struct drm_i915_private *dev_priv = dev->dev_private;
3174         int pipe;
3175
3176         I915_WRITE(GEN8_MASTER_IRQ, 0);
3177         POSTING_READ(GEN8_MASTER_IRQ);
3178
3179         gen8_gt_irq_reset(dev_priv);
3180
3181         GEN5_IRQ_RESET(GEN8_PCU_);
3182
3183         POSTING_READ(GEN8_PCU_IIR);
3184
3185         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3186
3187         I915_WRITE(PORT_HOTPLUG_EN, 0);
3188         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3189
3190         for_each_pipe(pipe)
3191                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3192
3193         I915_WRITE(VLV_IMR, 0xffffffff);
3194         I915_WRITE(VLV_IER, 0x0);
3195         I915_WRITE(VLV_IIR, 0xffffffff);
3196         POSTING_READ(VLV_IIR);
3197 }
3198
3199 static void ibx_hpd_irq_setup(struct drm_device *dev)
3200 {
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         struct drm_mode_config *mode_config = &dev->mode_config;
3203         struct intel_encoder *intel_encoder;
3204         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3205
3206         if (HAS_PCH_IBX(dev)) {
3207                 hotplug_irqs = SDE_HOTPLUG_MASK;
3208                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3209                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3210                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3211         } else {
3212                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3213                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3214                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3215                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3216         }
3217
3218         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3219
3220         /*
3221          * Enable digital hotplug on the PCH, and configure the DP short pulse
3222          * duration to 2ms (which is the minimum in the Display Port spec)
3223          *
3224          * This register is the same on all known PCH chips.
3225          */
3226         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3227         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3228         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3229         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3230         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3231         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3232 }
3233
3234 static void ibx_irq_postinstall(struct drm_device *dev)
3235 {
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         u32 mask;
3238
3239         if (HAS_PCH_NOP(dev))
3240                 return;
3241
3242         if (HAS_PCH_IBX(dev))
3243                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3244         else
3245                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3246
3247         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3248         I915_WRITE(SDEIMR, ~mask);
3249 }
3250
3251 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3252 {
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         u32 pm_irqs, gt_irqs;
3255
3256         pm_irqs = gt_irqs = 0;
3257
3258         dev_priv->gt_irq_mask = ~0;
3259         if (HAS_L3_DPF(dev)) {
3260                 /* L3 parity interrupt is always unmasked. */
3261                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3262                 gt_irqs |= GT_PARITY_ERROR(dev);
3263         }
3264
3265         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3266         if (IS_GEN5(dev)) {
3267                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3268                            ILK_BSD_USER_INTERRUPT;
3269         } else {
3270                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3271         }
3272
3273         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3274
3275         if (INTEL_INFO(dev)->gen >= 6) {
3276                 pm_irqs |= dev_priv->pm_rps_events;
3277
3278                 if (HAS_VEBOX(dev))
3279                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3280
3281                 dev_priv->pm_irq_mask = 0xffffffff;
3282                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3283         }
3284 }
3285
3286 static int ironlake_irq_postinstall(struct drm_device *dev)
3287 {
3288         unsigned long irqflags;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         u32 display_mask, extra_mask;
3291
3292         if (INTEL_INFO(dev)->gen >= 7) {
3293                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3294                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3295                                 DE_PLANEB_FLIP_DONE_IVB |
3296                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3297                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3298                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3299         } else {
3300                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3301                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3302                                 DE_AUX_CHANNEL_A |
3303                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3304                                 DE_POISON);
3305                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3306                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3307         }
3308
3309         dev_priv->irq_mask = ~display_mask;
3310
3311         I915_WRITE(HWSTAM, 0xeffe);
3312
3313         ibx_irq_pre_postinstall(dev);
3314
3315         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3316
3317         gen5_gt_irq_postinstall(dev);
3318
3319         ibx_irq_postinstall(dev);
3320
3321         if (IS_IRONLAKE_M(dev)) {
3322                 /* Enable PCU event interrupts
3323                  *
3324                  * spinlocking not required here for correctness since interrupt
3325                  * setup is guaranteed to run in single-threaded context. But we
3326                  * need it to make the assert_spin_locked happy. */
3327                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3328                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3329                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3330         }
3331
3332         return 0;
3333 }
3334
3335 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3336 {
3337         u32 pipestat_mask;
3338         u32 iir_mask;
3339
3340         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3341                         PIPE_FIFO_UNDERRUN_STATUS;
3342
3343         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3344         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3345         POSTING_READ(PIPESTAT(PIPE_A));
3346
3347         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3348                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3349
3350         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3351                                                PIPE_GMBUS_INTERRUPT_STATUS);
3352         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3353
3354         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3355                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3356                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3357         dev_priv->irq_mask &= ~iir_mask;
3358
3359         I915_WRITE(VLV_IIR, iir_mask);
3360         I915_WRITE(VLV_IIR, iir_mask);
3361         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3362         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3363         POSTING_READ(VLV_IER);
3364 }
3365
3366 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3367 {
3368         u32 pipestat_mask;
3369         u32 iir_mask;
3370
3371         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3372                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3373                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3374
3375         dev_priv->irq_mask |= iir_mask;
3376         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3377         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3378         I915_WRITE(VLV_IIR, iir_mask);
3379         I915_WRITE(VLV_IIR, iir_mask);
3380         POSTING_READ(VLV_IIR);
3381
3382         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3383                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3384
3385         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3386                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3387         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3388
3389         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3390                         PIPE_FIFO_UNDERRUN_STATUS;
3391         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3392         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3393         POSTING_READ(PIPESTAT(PIPE_A));
3394 }
3395
3396 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3397 {
3398         assert_spin_locked(&dev_priv->irq_lock);
3399
3400         if (dev_priv->display_irqs_enabled)
3401                 return;
3402
3403         dev_priv->display_irqs_enabled = true;
3404
3405         if (dev_priv->dev->irq_enabled)
3406                 valleyview_display_irqs_install(dev_priv);
3407 }
3408
3409 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3410 {
3411         assert_spin_locked(&dev_priv->irq_lock);
3412
3413         if (!dev_priv->display_irqs_enabled)
3414                 return;
3415
3416         dev_priv->display_irqs_enabled = false;
3417
3418         if (dev_priv->dev->irq_enabled)
3419                 valleyview_display_irqs_uninstall(dev_priv);
3420 }
3421
3422 static int valleyview_irq_postinstall(struct drm_device *dev)
3423 {
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         unsigned long irqflags;
3426
3427         dev_priv->irq_mask = ~0;
3428
3429         I915_WRITE(PORT_HOTPLUG_EN, 0);
3430         POSTING_READ(PORT_HOTPLUG_EN);
3431
3432         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3433         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3434         I915_WRITE(VLV_IIR, 0xffffffff);
3435         POSTING_READ(VLV_IER);
3436
3437         /* Interrupt setup is already guaranteed to be single-threaded, this is
3438          * just to make the assert_spin_locked check happy. */
3439         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3440         if (dev_priv->display_irqs_enabled)
3441                 valleyview_display_irqs_install(dev_priv);
3442         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3443
3444         I915_WRITE(VLV_IIR, 0xffffffff);
3445         I915_WRITE(VLV_IIR, 0xffffffff);
3446
3447         gen5_gt_irq_postinstall(dev);
3448
3449         /* ack & enable invalid PTE error interrupts */
3450 #if 0 /* FIXME: add support to irq handler for checking these bits */
3451         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3452         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3453 #endif
3454
3455         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3456
3457         return 0;
3458 }
3459
3460 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3461 {
3462         int i;
3463
3464         /* These are interrupts we'll toggle with the ring mask register */
3465         uint32_t gt_interrupts[] = {
3466                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3467                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3468                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3469                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3470                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3471                 0,
3472                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3473                 };
3474
3475         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3476                 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3477
3478         dev_priv->pm_irq_mask = 0xffffffff;
3479 }
3480
3481 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3482 {
3483         struct drm_device *dev = dev_priv->dev;
3484         uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3485                 GEN8_PIPE_CDCLK_CRC_DONE |
3486                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3487         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3488                 GEN8_PIPE_FIFO_UNDERRUN;
3489         int pipe;
3490         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3491         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3492         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3493
3494         for_each_pipe(pipe)
3495                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3496                                   de_pipe_enables);
3497
3498         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3499 }
3500
3501 static int gen8_irq_postinstall(struct drm_device *dev)
3502 {
3503         struct drm_i915_private *dev_priv = dev->dev_private;
3504
3505         ibx_irq_pre_postinstall(dev);
3506
3507         gen8_gt_irq_postinstall(dev_priv);
3508         gen8_de_irq_postinstall(dev_priv);
3509
3510         ibx_irq_postinstall(dev);
3511
3512         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3513         POSTING_READ(GEN8_MASTER_IRQ);
3514
3515         return 0;
3516 }
3517
3518 static int cherryview_irq_postinstall(struct drm_device *dev)
3519 {
3520         struct drm_i915_private *dev_priv = dev->dev_private;
3521         u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3522                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3523                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3524                 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3525         u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3526                 PIPE_CRC_DONE_INTERRUPT_STATUS;
3527         unsigned long irqflags;
3528         int pipe;
3529
3530         /*
3531          * Leave vblank interrupts masked initially.  enable/disable will
3532          * toggle them based on usage.
3533          */
3534         dev_priv->irq_mask = ~enable_mask;
3535
3536         for_each_pipe(pipe)
3537                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3538
3539         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3540         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3541         for_each_pipe(pipe)
3542                 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3543         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3544
3545         I915_WRITE(VLV_IIR, 0xffffffff);
3546         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3547         I915_WRITE(VLV_IER, enable_mask);
3548
3549         gen8_gt_irq_postinstall(dev_priv);
3550
3551         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3552         POSTING_READ(GEN8_MASTER_IRQ);
3553
3554         return 0;
3555 }
3556
3557 static void gen8_irq_uninstall(struct drm_device *dev)
3558 {
3559         struct drm_i915_private *dev_priv = dev->dev_private;
3560
3561         if (!dev_priv)
3562                 return;
3563
3564         intel_hpd_irq_uninstall(dev_priv);
3565
3566         gen8_irq_reset(dev);
3567 }
3568
3569 static void valleyview_irq_uninstall(struct drm_device *dev)
3570 {
3571         struct drm_i915_private *dev_priv = dev->dev_private;
3572         unsigned long irqflags;
3573         int pipe;
3574
3575         if (!dev_priv)
3576                 return;
3577
3578         I915_WRITE(VLV_MASTER_IER, 0);
3579
3580         intel_hpd_irq_uninstall(dev_priv);
3581
3582         for_each_pipe(pipe)
3583                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3584
3585         I915_WRITE(HWSTAM, 0xffffffff);
3586         I915_WRITE(PORT_HOTPLUG_EN, 0);
3587         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3588
3589         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3590         if (dev_priv->display_irqs_enabled)
3591                 valleyview_display_irqs_uninstall(dev_priv);
3592         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3593
3594         dev_priv->irq_mask = 0;
3595
3596         I915_WRITE(VLV_IIR, 0xffffffff);
3597         I915_WRITE(VLV_IMR, 0xffffffff);
3598         I915_WRITE(VLV_IER, 0x0);
3599         POSTING_READ(VLV_IER);
3600 }
3601
3602 static void cherryview_irq_uninstall(struct drm_device *dev)
3603 {
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         int pipe;
3606
3607         if (!dev_priv)
3608                 return;
3609
3610         I915_WRITE(GEN8_MASTER_IRQ, 0);
3611         POSTING_READ(GEN8_MASTER_IRQ);
3612
3613 #define GEN8_IRQ_FINI_NDX(type, which)                          \
3614 do {                                                            \
3615         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);       \
3616         I915_WRITE(GEN8_##type##_IER(which), 0);                \
3617         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3618         POSTING_READ(GEN8_##type##_IIR(which));                 \
3619         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3620 } while (0)
3621
3622 #define GEN8_IRQ_FINI(type)                             \
3623 do {                                                    \
3624         I915_WRITE(GEN8_##type##_IMR, 0xffffffff);      \
3625         I915_WRITE(GEN8_##type##_IER, 0);               \
3626         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3627         POSTING_READ(GEN8_##type##_IIR);                \
3628         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3629 } while (0)
3630
3631         GEN8_IRQ_FINI_NDX(GT, 0);
3632         GEN8_IRQ_FINI_NDX(GT, 1);
3633         GEN8_IRQ_FINI_NDX(GT, 2);
3634         GEN8_IRQ_FINI_NDX(GT, 3);
3635
3636         GEN8_IRQ_FINI(PCU);
3637
3638 #undef GEN8_IRQ_FINI
3639 #undef GEN8_IRQ_FINI_NDX
3640
3641         I915_WRITE(PORT_HOTPLUG_EN, 0);
3642         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3643
3644         for_each_pipe(pipe)
3645                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3646
3647         I915_WRITE(VLV_IMR, 0xffffffff);
3648         I915_WRITE(VLV_IER, 0x0);
3649         I915_WRITE(VLV_IIR, 0xffffffff);
3650         POSTING_READ(VLV_IIR);
3651 }
3652
3653 static void ironlake_irq_uninstall(struct drm_device *dev)
3654 {
3655         struct drm_i915_private *dev_priv = dev->dev_private;
3656
3657         if (!dev_priv)
3658                 return;
3659
3660         intel_hpd_irq_uninstall(dev_priv);
3661
3662         ironlake_irq_reset(dev);
3663 }
3664
3665 static void i8xx_irq_preinstall(struct drm_device * dev)
3666 {
3667         struct drm_i915_private *dev_priv = dev->dev_private;
3668         int pipe;
3669
3670         for_each_pipe(pipe)
3671                 I915_WRITE(PIPESTAT(pipe), 0);
3672         I915_WRITE16(IMR, 0xffff);
3673         I915_WRITE16(IER, 0x0);
3674         POSTING_READ16(IER);
3675 }
3676
3677 static int i8xx_irq_postinstall(struct drm_device *dev)
3678 {
3679         struct drm_i915_private *dev_priv = dev->dev_private;
3680         unsigned long irqflags;
3681
3682         I915_WRITE16(EMR,
3683                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3684
3685         /* Unmask the interrupts that we always want on. */
3686         dev_priv->irq_mask =
3687                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3688                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3689                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3690                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3691                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3692         I915_WRITE16(IMR, dev_priv->irq_mask);
3693
3694         I915_WRITE16(IER,
3695                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3696                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3697                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3698                      I915_USER_INTERRUPT);
3699         POSTING_READ16(IER);
3700
3701         /* Interrupt setup is already guaranteed to be single-threaded, this is
3702          * just to make the assert_spin_locked check happy. */
3703         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3704         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3705         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3706         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3707
3708         return 0;
3709 }
3710
3711 /*
3712  * Returns true when a page flip has completed.
3713  */
3714 static bool i8xx_handle_vblank(struct drm_device *dev,
3715                                int plane, int pipe, u32 iir)
3716 {
3717         struct drm_i915_private *dev_priv = dev->dev_private;
3718         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3719
3720         if (!intel_pipe_handle_vblank(dev, pipe))
3721                 return false;
3722
3723         if ((iir & flip_pending) == 0)
3724                 return false;
3725
3726         intel_prepare_page_flip(dev, plane);
3727
3728         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3729          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3730          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3731          * the flip is completed (no longer pending). Since this doesn't raise
3732          * an interrupt per se, we watch for the change at vblank.
3733          */
3734         if (I915_READ16(ISR) & flip_pending)
3735                 return false;
3736
3737         intel_finish_page_flip(dev, pipe);
3738
3739         return true;
3740 }
3741
3742 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3743 {
3744         struct drm_device *dev = arg;
3745         struct drm_i915_private *dev_priv = dev->dev_private;
3746         u16 iir, new_iir;
3747         u32 pipe_stats[2];
3748         unsigned long irqflags;
3749         int pipe;
3750         u16 flip_mask =
3751                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3752                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3753
3754         iir = I915_READ16(IIR);
3755         if (iir == 0)
3756                 return IRQ_NONE;
3757
3758         while (iir & ~flip_mask) {
3759                 /* Can't rely on pipestat interrupt bit in iir as it might
3760                  * have been cleared after the pipestat interrupt was received.
3761                  * It doesn't set the bit in iir again, but it still produces
3762                  * interrupts (for non-MSI).
3763                  */
3764                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3765                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3766                         i915_handle_error(dev, false,
3767                                           "Command parser error, iir 0x%08x",
3768                                           iir);
3769
3770                 for_each_pipe(pipe) {
3771                         int reg = PIPESTAT(pipe);
3772                         pipe_stats[pipe] = I915_READ(reg);
3773
3774                         /*
3775                          * Clear the PIPE*STAT regs before the IIR
3776                          */
3777                         if (pipe_stats[pipe] & 0x8000ffff)
3778                                 I915_WRITE(reg, pipe_stats[pipe]);
3779                 }
3780                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3781
3782                 I915_WRITE16(IIR, iir & ~flip_mask);
3783                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3784
3785                 i915_update_dri1_breadcrumb(dev);
3786
3787                 if (iir & I915_USER_INTERRUPT)
3788                         notify_ring(dev, &dev_priv->ring[RCS]);
3789
3790                 for_each_pipe(pipe) {
3791                         int plane = pipe;
3792                         if (HAS_FBC(dev))
3793                                 plane = !plane;
3794
3795                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3796                             i8xx_handle_vblank(dev, plane, pipe, iir))
3797                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3798
3799                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3800                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3801
3802                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3803                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3804                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3805                 }
3806
3807                 iir = new_iir;
3808         }
3809
3810         return IRQ_HANDLED;
3811 }
3812
3813 static void i8xx_irq_uninstall(struct drm_device * dev)
3814 {
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         int pipe;
3817
3818         for_each_pipe(pipe) {
3819                 /* Clear enable bits; then clear status bits */
3820                 I915_WRITE(PIPESTAT(pipe), 0);
3821                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3822         }
3823         I915_WRITE16(IMR, 0xffff);
3824         I915_WRITE16(IER, 0x0);
3825         I915_WRITE16(IIR, I915_READ16(IIR));
3826 }
3827
3828 static void i915_irq_preinstall(struct drm_device * dev)
3829 {
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         int pipe;
3832
3833         if (I915_HAS_HOTPLUG(dev)) {
3834                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3835                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3836         }
3837
3838         I915_WRITE16(HWSTAM, 0xeffe);
3839         for_each_pipe(pipe)
3840                 I915_WRITE(PIPESTAT(pipe), 0);
3841         I915_WRITE(IMR, 0xffffffff);
3842         I915_WRITE(IER, 0x0);
3843         POSTING_READ(IER);
3844 }
3845
3846 static int i915_irq_postinstall(struct drm_device *dev)
3847 {
3848         struct drm_i915_private *dev_priv = dev->dev_private;
3849         u32 enable_mask;
3850         unsigned long irqflags;
3851
3852         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3853
3854         /* Unmask the interrupts that we always want on. */
3855         dev_priv->irq_mask =
3856                 ~(I915_ASLE_INTERRUPT |
3857                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3858                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3859                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3860                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3861                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3862
3863         enable_mask =
3864                 I915_ASLE_INTERRUPT |
3865                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3866                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3867                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3868                 I915_USER_INTERRUPT;
3869
3870         if (I915_HAS_HOTPLUG(dev)) {
3871                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3872                 POSTING_READ(PORT_HOTPLUG_EN);
3873
3874                 /* Enable in IER... */
3875                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3876                 /* and unmask in IMR */
3877                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3878         }
3879
3880         I915_WRITE(IMR, dev_priv->irq_mask);
3881         I915_WRITE(IER, enable_mask);
3882         POSTING_READ(IER);
3883
3884         i915_enable_asle_pipestat(dev);
3885
3886         /* Interrupt setup is already guaranteed to be single-threaded, this is
3887          * just to make the assert_spin_locked check happy. */
3888         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3889         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3890         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3891         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3892
3893         return 0;
3894 }
3895
3896 /*
3897  * Returns true when a page flip has completed.
3898  */
3899 static bool i915_handle_vblank(struct drm_device *dev,
3900                                int plane, int pipe, u32 iir)
3901 {
3902         struct drm_i915_private *dev_priv = dev->dev_private;
3903         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3904
3905         if (!intel_pipe_handle_vblank(dev, pipe))
3906                 return false;
3907
3908         if ((iir & flip_pending) == 0)
3909                 return false;
3910
3911         intel_prepare_page_flip(dev, plane);
3912
3913         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3914          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3915          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3916          * the flip is completed (no longer pending). Since this doesn't raise
3917          * an interrupt per se, we watch for the change at vblank.
3918          */
3919         if (I915_READ(ISR) & flip_pending)
3920                 return false;
3921
3922         intel_finish_page_flip(dev, pipe);
3923
3924         return true;
3925 }
3926
3927 static irqreturn_t i915_irq_handler(int irq, void *arg)
3928 {
3929         struct drm_device *dev = arg;
3930         struct drm_i915_private *dev_priv = dev->dev_private;
3931         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3932         unsigned long irqflags;
3933         u32 flip_mask =
3934                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3935                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3936         int pipe, ret = IRQ_NONE;
3937
3938         iir = I915_READ(IIR);
3939         do {
3940                 bool irq_received = (iir & ~flip_mask) != 0;
3941                 bool blc_event = false;
3942
3943                 /* Can't rely on pipestat interrupt bit in iir as it might
3944                  * have been cleared after the pipestat interrupt was received.
3945                  * It doesn't set the bit in iir again, but it still produces
3946                  * interrupts (for non-MSI).
3947                  */
3948                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3949                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3950                         i915_handle_error(dev, false,
3951                                           "Command parser error, iir 0x%08x",
3952                                           iir);
3953
3954                 for_each_pipe(pipe) {
3955                         int reg = PIPESTAT(pipe);
3956                         pipe_stats[pipe] = I915_READ(reg);
3957
3958                         /* Clear the PIPE*STAT regs before the IIR */
3959                         if (pipe_stats[pipe] & 0x8000ffff) {
3960                                 I915_WRITE(reg, pipe_stats[pipe]);
3961                                 irq_received = true;
3962                         }
3963                 }
3964                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3965
3966                 if (!irq_received)
3967                         break;
3968
3969                 /* Consume port.  Then clear IIR or we'll miss events */
3970                 if (I915_HAS_HOTPLUG(dev) &&
3971                     iir & I915_DISPLAY_PORT_INTERRUPT)
3972                         i9xx_hpd_irq_handler(dev);
3973
3974                 I915_WRITE(IIR, iir & ~flip_mask);
3975                 new_iir = I915_READ(IIR); /* Flush posted writes */
3976
3977                 if (iir & I915_USER_INTERRUPT)
3978                         notify_ring(dev, &dev_priv->ring[RCS]);
3979
3980                 for_each_pipe(pipe) {
3981                         int plane = pipe;
3982                         if (HAS_FBC(dev))
3983                                 plane = !plane;
3984
3985                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3986                             i915_handle_vblank(dev, plane, pipe, iir))
3987                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3988
3989                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3990                                 blc_event = true;
3991
3992                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3993                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3994
3995                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3996                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3997                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3998                 }
3999
4000                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4001                         intel_opregion_asle_intr(dev);
4002
4003                 /* With MSI, interrupts are only generated when iir
4004                  * transitions from zero to nonzero.  If another bit got
4005                  * set while we were handling the existing iir bits, then
4006                  * we would never get another interrupt.
4007                  *
4008                  * This is fine on non-MSI as well, as if we hit this path
4009                  * we avoid exiting the interrupt handler only to generate
4010                  * another one.
4011                  *
4012                  * Note that for MSI this could cause a stray interrupt report
4013                  * if an interrupt landed in the time between writing IIR and
4014                  * the posting read.  This should be rare enough to never
4015                  * trigger the 99% of 100,000 interrupts test for disabling
4016                  * stray interrupts.
4017                  */
4018                 ret = IRQ_HANDLED;
4019                 iir = new_iir;
4020         } while (iir & ~flip_mask);
4021
4022         i915_update_dri1_breadcrumb(dev);
4023
4024         return ret;
4025 }
4026
4027 static void i915_irq_uninstall(struct drm_device * dev)
4028 {
4029         struct drm_i915_private *dev_priv = dev->dev_private;
4030         int pipe;
4031
4032         intel_hpd_irq_uninstall(dev_priv);
4033
4034         if (I915_HAS_HOTPLUG(dev)) {
4035                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4036                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4037         }
4038
4039         I915_WRITE16(HWSTAM, 0xffff);
4040         for_each_pipe(pipe) {
4041                 /* Clear enable bits; then clear status bits */
4042                 I915_WRITE(PIPESTAT(pipe), 0);
4043                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4044         }
4045         I915_WRITE(IMR, 0xffffffff);
4046         I915_WRITE(IER, 0x0);
4047
4048         I915_WRITE(IIR, I915_READ(IIR));
4049 }
4050
4051 static void i965_irq_preinstall(struct drm_device * dev)
4052 {
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054         int pipe;
4055
4056         I915_WRITE(PORT_HOTPLUG_EN, 0);
4057         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4058
4059         I915_WRITE(HWSTAM, 0xeffe);
4060         for_each_pipe(pipe)
4061                 I915_WRITE(PIPESTAT(pipe), 0);
4062         I915_WRITE(IMR, 0xffffffff);
4063         I915_WRITE(IER, 0x0);
4064         POSTING_READ(IER);
4065 }
4066
4067 static int i965_irq_postinstall(struct drm_device *dev)
4068 {
4069         struct drm_i915_private *dev_priv = dev->dev_private;
4070         u32 enable_mask;
4071         u32 error_mask;
4072         unsigned long irqflags;
4073
4074         /* Unmask the interrupts that we always want on. */
4075         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4076                                I915_DISPLAY_PORT_INTERRUPT |
4077                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4078                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4079                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4080                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4081                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4082
4083         enable_mask = ~dev_priv->irq_mask;
4084         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4085                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4086         enable_mask |= I915_USER_INTERRUPT;
4087
4088         if (IS_G4X(dev))
4089                 enable_mask |= I915_BSD_USER_INTERRUPT;
4090
4091         /* Interrupt setup is already guaranteed to be single-threaded, this is
4092          * just to make the assert_spin_locked check happy. */
4093         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4094         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4095         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4096         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4097         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4098
4099         /*
4100          * Enable some error detection, note the instruction error mask
4101          * bit is reserved, so we leave it masked.
4102          */
4103         if (IS_G4X(dev)) {
4104                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4105                                GM45_ERROR_MEM_PRIV |
4106                                GM45_ERROR_CP_PRIV |
4107                                I915_ERROR_MEMORY_REFRESH);
4108         } else {
4109                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4110                                I915_ERROR_MEMORY_REFRESH);
4111         }
4112         I915_WRITE(EMR, error_mask);
4113
4114         I915_WRITE(IMR, dev_priv->irq_mask);
4115         I915_WRITE(IER, enable_mask);
4116         POSTING_READ(IER);
4117
4118         I915_WRITE(PORT_HOTPLUG_EN, 0);
4119         POSTING_READ(PORT_HOTPLUG_EN);
4120
4121         i915_enable_asle_pipestat(dev);
4122
4123         return 0;
4124 }
4125
4126 static void i915_hpd_irq_setup(struct drm_device *dev)
4127 {
4128         struct drm_i915_private *dev_priv = dev->dev_private;
4129         struct drm_mode_config *mode_config = &dev->mode_config;
4130         struct intel_encoder *intel_encoder;
4131         u32 hotplug_en;
4132
4133         assert_spin_locked(&dev_priv->irq_lock);
4134
4135         if (I915_HAS_HOTPLUG(dev)) {
4136                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4137                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4138                 /* Note HDMI and DP share hotplug bits */
4139                 /* enable bits are the same for all generations */
4140                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
4141                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4142                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4143                 /* Programming the CRT detection parameters tends
4144                    to generate a spurious hotplug event about three
4145                    seconds later.  So just do it once.
4146                 */
4147                 if (IS_G4X(dev))
4148                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4149                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4150                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4151
4152                 /* Ignore TV since it's buggy */
4153                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4154         }
4155 }
4156
4157 static irqreturn_t i965_irq_handler(int irq, void *arg)
4158 {
4159         struct drm_device *dev = arg;
4160         struct drm_i915_private *dev_priv = dev->dev_private;
4161         u32 iir, new_iir;
4162         u32 pipe_stats[I915_MAX_PIPES];
4163         unsigned long irqflags;
4164         int ret = IRQ_NONE, pipe;
4165         u32 flip_mask =
4166                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4167                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4168
4169         iir = I915_READ(IIR);
4170
4171         for (;;) {
4172                 bool irq_received = (iir & ~flip_mask) != 0;
4173                 bool blc_event = false;
4174
4175                 /* Can't rely on pipestat interrupt bit in iir as it might
4176                  * have been cleared after the pipestat interrupt was received.
4177                  * It doesn't set the bit in iir again, but it still produces
4178                  * interrupts (for non-MSI).
4179                  */
4180                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4181                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4182                         i915_handle_error(dev, false,
4183                                           "Command parser error, iir 0x%08x",
4184                                           iir);
4185
4186                 for_each_pipe(pipe) {
4187                         int reg = PIPESTAT(pipe);
4188                         pipe_stats[pipe] = I915_READ(reg);
4189
4190                         /*
4191                          * Clear the PIPE*STAT regs before the IIR
4192                          */
4193                         if (pipe_stats[pipe] & 0x8000ffff) {
4194                                 I915_WRITE(reg, pipe_stats[pipe]);
4195                                 irq_received = true;
4196                         }
4197                 }
4198                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4199
4200                 if (!irq_received)
4201                         break;
4202
4203                 ret = IRQ_HANDLED;
4204
4205                 /* Consume port.  Then clear IIR or we'll miss events */
4206                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4207                         i9xx_hpd_irq_handler(dev);
4208
4209                 I915_WRITE(IIR, iir & ~flip_mask);
4210                 new_iir = I915_READ(IIR); /* Flush posted writes */
4211
4212                 if (iir & I915_USER_INTERRUPT)
4213                         notify_ring(dev, &dev_priv->ring[RCS]);
4214                 if (iir & I915_BSD_USER_INTERRUPT)
4215                         notify_ring(dev, &dev_priv->ring[VCS]);
4216
4217                 for_each_pipe(pipe) {
4218                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4219                             i915_handle_vblank(dev, pipe, pipe, iir))
4220                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4221
4222                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4223                                 blc_event = true;
4224
4225                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4226                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4227
4228                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4229                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4230                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4231                 }
4232
4233                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4234                         intel_opregion_asle_intr(dev);
4235
4236                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4237                         gmbus_irq_handler(dev);
4238
4239                 /* With MSI, interrupts are only generated when iir
4240                  * transitions from zero to nonzero.  If another bit got
4241                  * set while we were handling the existing iir bits, then
4242                  * we would never get another interrupt.
4243                  *
4244                  * This is fine on non-MSI as well, as if we hit this path
4245                  * we avoid exiting the interrupt handler only to generate
4246                  * another one.
4247                  *
4248                  * Note that for MSI this could cause a stray interrupt report
4249                  * if an interrupt landed in the time between writing IIR and
4250                  * the posting read.  This should be rare enough to never
4251                  * trigger the 99% of 100,000 interrupts test for disabling
4252                  * stray interrupts.
4253                  */
4254                 iir = new_iir;
4255         }
4256
4257         i915_update_dri1_breadcrumb(dev);
4258
4259         return ret;
4260 }
4261
4262 static void i965_irq_uninstall(struct drm_device * dev)
4263 {
4264         struct drm_i915_private *dev_priv = dev->dev_private;
4265         int pipe;
4266
4267         if (!dev_priv)
4268                 return;
4269
4270         intel_hpd_irq_uninstall(dev_priv);
4271
4272         I915_WRITE(PORT_HOTPLUG_EN, 0);
4273         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4274
4275         I915_WRITE(HWSTAM, 0xffffffff);
4276         for_each_pipe(pipe)
4277                 I915_WRITE(PIPESTAT(pipe), 0);
4278         I915_WRITE(IMR, 0xffffffff);
4279         I915_WRITE(IER, 0x0);
4280
4281         for_each_pipe(pipe)
4282                 I915_WRITE(PIPESTAT(pipe),
4283                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4284         I915_WRITE(IIR, I915_READ(IIR));
4285 }
4286
4287 static void intel_hpd_irq_reenable(unsigned long data)
4288 {
4289         struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
4290         struct drm_device *dev = dev_priv->dev;
4291         struct drm_mode_config *mode_config = &dev->mode_config;
4292         unsigned long irqflags;
4293         int i;
4294
4295         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4296         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4297                 struct drm_connector *connector;
4298
4299                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4300                         continue;
4301
4302                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4303
4304                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4305                         struct intel_connector *intel_connector = to_intel_connector(connector);
4306
4307                         if (intel_connector->encoder->hpd_pin == i) {
4308                                 if (connector->polled != intel_connector->polled)
4309                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4310                                                          connector->name);
4311                                 connector->polled = intel_connector->polled;
4312                                 if (!connector->polled)
4313                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4314                         }
4315                 }
4316         }
4317         if (dev_priv->display.hpd_irq_setup)
4318                 dev_priv->display.hpd_irq_setup(dev);
4319         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4320 }
4321
4322 void intel_irq_init(struct drm_device *dev)
4323 {
4324         struct drm_i915_private *dev_priv = dev->dev_private;
4325
4326         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4327         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4328         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4329         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4330
4331         /* Let's track the enabled rps events */
4332         dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4333
4334         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4335                     i915_hangcheck_elapsed,
4336                     (unsigned long) dev);
4337         setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4338                     (unsigned long) dev_priv);
4339
4340         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4341
4342         if (IS_GEN2(dev)) {
4343                 dev->max_vblank_count = 0;
4344                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4345         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4346                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4347                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4348         } else {
4349                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4350                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4351         }
4352
4353         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4354                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4355                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4356         }
4357
4358         if (IS_CHERRYVIEW(dev)) {
4359                 dev->driver->irq_handler = cherryview_irq_handler;
4360                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4361                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4362                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4363                 dev->driver->enable_vblank = valleyview_enable_vblank;
4364                 dev->driver->disable_vblank = valleyview_disable_vblank;
4365                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4366         } else if (IS_VALLEYVIEW(dev)) {
4367                 dev->driver->irq_handler = valleyview_irq_handler;
4368                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4369                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4370                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4371                 dev->driver->enable_vblank = valleyview_enable_vblank;
4372                 dev->driver->disable_vblank = valleyview_disable_vblank;
4373                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4374         } else if (IS_GEN8(dev)) {
4375                 dev->driver->irq_handler = gen8_irq_handler;
4376                 dev->driver->irq_preinstall = gen8_irq_reset;
4377                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4378                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4379                 dev->driver->enable_vblank = gen8_enable_vblank;
4380                 dev->driver->disable_vblank = gen8_disable_vblank;
4381                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4382         } else if (HAS_PCH_SPLIT(dev)) {
4383                 dev->driver->irq_handler = ironlake_irq_handler;
4384                 dev->driver->irq_preinstall = ironlake_irq_reset;
4385                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4386                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4387                 dev->driver->enable_vblank = ironlake_enable_vblank;
4388                 dev->driver->disable_vblank = ironlake_disable_vblank;
4389                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4390         } else {
4391                 if (INTEL_INFO(dev)->gen == 2) {
4392                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4393                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4394                         dev->driver->irq_handler = i8xx_irq_handler;
4395                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4396                 } else if (INTEL_INFO(dev)->gen == 3) {
4397                         dev->driver->irq_preinstall = i915_irq_preinstall;
4398                         dev->driver->irq_postinstall = i915_irq_postinstall;
4399                         dev->driver->irq_uninstall = i915_irq_uninstall;
4400                         dev->driver->irq_handler = i915_irq_handler;
4401                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4402                 } else {
4403                         dev->driver->irq_preinstall = i965_irq_preinstall;
4404                         dev->driver->irq_postinstall = i965_irq_postinstall;
4405                         dev->driver->irq_uninstall = i965_irq_uninstall;
4406                         dev->driver->irq_handler = i965_irq_handler;
4407                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4408                 }
4409                 dev->driver->enable_vblank = i915_enable_vblank;
4410                 dev->driver->disable_vblank = i915_disable_vblank;
4411         }
4412 }
4413
4414 void intel_hpd_init(struct drm_device *dev)
4415 {
4416         struct drm_i915_private *dev_priv = dev->dev_private;
4417         struct drm_mode_config *mode_config = &dev->mode_config;
4418         struct drm_connector *connector;
4419         unsigned long irqflags;
4420         int i;
4421
4422         for (i = 1; i < HPD_NUM_PINS; i++) {
4423                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4424                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4425         }
4426         list_for_each_entry(connector, &mode_config->connector_list, head) {
4427                 struct intel_connector *intel_connector = to_intel_connector(connector);
4428                 connector->polled = intel_connector->polled;
4429                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4430                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4431         }
4432
4433         /* Interrupt setup is already guaranteed to be single-threaded, this is
4434          * just to make the assert_spin_locked checks happy. */
4435         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4436         if (dev_priv->display.hpd_irq_setup)
4437                 dev_priv->display.hpd_irq_setup(dev);
4438         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4439 }
4440
4441 /* Disable interrupts so we can allow runtime PM. */
4442 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4443 {
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446         dev->driver->irq_uninstall(dev);
4447         dev_priv->pm.irqs_disabled = true;
4448 }
4449
4450 /* Restore interrupts so we can recover from runtime PM. */
4451 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4452 {
4453         struct drm_i915_private *dev_priv = dev->dev_private;
4454
4455         dev_priv->pm.irqs_disabled = false;
4456         dev->driver->irq_preinstall(dev);
4457         dev->driver->irq_postinstall(dev);
4458 }