]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
f04d799153caaaad79aeab63c1b6d1662ca7c3d4
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262         POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344         spin_lock_irq(&dev_priv->irq_lock);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         I915_WRITE(reg, dev_priv->pm_rps_events);
347         POSTING_READ(reg);
348         dev_priv->rps.pm_iir = 0;
349         spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354         struct drm_i915_private *dev_priv = dev->dev_private;
355
356         spin_lock_irq(&dev_priv->irq_lock);
357
358         WARN_ON(dev_priv->rps.pm_iir);
359         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360         dev_priv->rps.interrupts_enabled = true;
361         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362                                 dev_priv->pm_rps_events);
363         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365         spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370         /*
371          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372          * if GEN6_PM_UP_EI_EXPIRED is masked.
373          *
374          * TODO: verify if this can be reproduced on VLV,CHV.
375          */
376         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379         if (INTEL_INFO(dev_priv)->gen >= 8)
380                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382         return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387         struct drm_i915_private *dev_priv = dev->dev_private;
388
389         spin_lock_irq(&dev_priv->irq_lock);
390         dev_priv->rps.interrupts_enabled = false;
391         spin_unlock_irq(&dev_priv->irq_lock);
392
393         cancel_work_sync(&dev_priv->rps.work);
394
395         spin_lock_irq(&dev_priv->irq_lock);
396
397         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401                                 ~dev_priv->pm_rps_events);
402
403         spin_unlock_irq(&dev_priv->irq_lock);
404
405         synchronize_irq(dev->irq);
406 }
407
408 /**
409  * bdw_update_port_irq - update DE port interrupt
410  * @dev_priv: driver private
411  * @interrupt_mask: mask of interrupt bits to update
412  * @enabled_irq_mask: mask of interrupt bits to enable
413  */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415                                 uint32_t interrupt_mask,
416                                 uint32_t enabled_irq_mask)
417 {
418         uint32_t new_val;
419         uint32_t old_val;
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426                 return;
427
428         old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430         new_val = old_val;
431         new_val &= ~interrupt_mask;
432         new_val |= (~enabled_irq_mask & interrupt_mask);
433
434         if (new_val != old_val) {
435                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436                 POSTING_READ(GEN8_DE_PORT_IMR);
437         }
438 }
439
440 /**
441  * bdw_update_pipe_irq - update DE pipe interrupt
442  * @dev_priv: driver private
443  * @pipe: pipe whose interrupt to update
444  * @interrupt_mask: mask of interrupt bits to update
445  * @enabled_irq_mask: mask of interrupt bits to enable
446  */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448                          enum pipe pipe,
449                          uint32_t interrupt_mask,
450                          uint32_t enabled_irq_mask)
451 {
452         uint32_t new_val;
453
454         assert_spin_locked(&dev_priv->irq_lock);
455
456         WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459                 return;
460
461         new_val = dev_priv->de_irq_mask[pipe];
462         new_val &= ~interrupt_mask;
463         new_val |= (~enabled_irq_mask & interrupt_mask);
464
465         if (new_val != dev_priv->de_irq_mask[pipe]) {
466                 dev_priv->de_irq_mask[pipe] = new_val;
467                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469         }
470 }
471
472 /**
473  * ibx_display_interrupt_update - update SDEIMR
474  * @dev_priv: driver private
475  * @interrupt_mask: mask of interrupt bits to update
476  * @enabled_irq_mask: mask of interrupt bits to enable
477  */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479                                   uint32_t interrupt_mask,
480                                   uint32_t enabled_irq_mask)
481 {
482         uint32_t sdeimr = I915_READ(SDEIMR);
483         sdeimr &= ~interrupt_mask;
484         sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486         WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488         assert_spin_locked(&dev_priv->irq_lock);
489
490         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491                 return;
492
493         I915_WRITE(SDEIMR, sdeimr);
494         POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499                        u32 enable_mask, u32 status_mask)
500 {
501         i915_reg_t reg = PIPESTAT(pipe);
502         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504         assert_spin_locked(&dev_priv->irq_lock);
505         WARN_ON(!intel_irqs_enabled(dev_priv));
506
507         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
509                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510                       pipe_name(pipe), enable_mask, status_mask))
511                 return;
512
513         if ((pipestat & enable_mask) == enable_mask)
514                 return;
515
516         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518         /* Enable the interrupt, clear any pending status */
519         pipestat |= enable_mask | status_mask;
520         I915_WRITE(reg, pipestat);
521         POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526                         u32 enable_mask, u32 status_mask)
527 {
528         i915_reg_t reg = PIPESTAT(pipe);
529         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531         assert_spin_locked(&dev_priv->irq_lock);
532         WARN_ON(!intel_irqs_enabled(dev_priv));
533
534         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
536                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537                       pipe_name(pipe), enable_mask, status_mask))
538                 return;
539
540         if ((pipestat & enable_mask) == 0)
541                 return;
542
543         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545         pipestat &= ~enable_mask;
546         I915_WRITE(reg, pipestat);
547         POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552         u32 enable_mask = status_mask << 16;
553
554         /*
555          * On pipe A we don't support the PSR interrupt yet,
556          * on pipe B and C the same bit MBZ.
557          */
558         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559                 return 0;
560         /*
561          * On pipe B and C we don't support the PSR interrupt yet, on pipe
562          * A the same bit is for perf counters which we don't use either.
563          */
564         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565                 return 0;
566
567         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568                          SPRITE0_FLIP_DONE_INT_EN_VLV |
569                          SPRITE1_FLIP_DONE_INT_EN_VLV);
570         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575         return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580                      u32 status_mask)
581 {
582         u32 enable_mask;
583
584         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586                                                            status_mask);
587         else
588                 enable_mask = status_mask << 16;
589         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594                       u32 status_mask)
595 {
596         u32 enable_mask;
597
598         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600                                                            status_mask);
601         else
602                 enable_mask = status_mask << 16;
603         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608  * @dev: drm device
609  */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612         struct drm_i915_private *dev_priv = dev->dev_private;
613
614         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615                 return;
616
617         spin_lock_irq(&dev_priv->irq_lock);
618
619         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620         if (INTEL_INFO(dev)->gen >= 4)
621                 i915_enable_pipestat(dev_priv, PIPE_A,
622                                      PIPE_LEGACY_BLC_EVENT_STATUS);
623
624         spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628  * This timing diagram depicts the video signal in and
629  * around the vertical blanking period.
630  *
631  * Assumptions about the fictitious mode used in this example:
632  *  vblank_start >= 3
633  *  vsync_start = vblank_start + 1
634  *  vsync_end = vblank_start + 2
635  *  vtotal = vblank_start + 3
636  *
637  *           start of vblank:
638  *           latch double buffered registers
639  *           increment frame counter (ctg+)
640  *           generate start of vblank interrupt (gen4+)
641  *           |
642  *           |          frame start:
643  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
644  *           |          may be shifted forward 1-3 extra lines via PIPECONF
645  *           |          |
646  *           |          |  start of vsync:
647  *           |          |  generate vsync interrupt
648  *           |          |  |
649  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
650  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
651  * ----va---> <-----------------vb--------------------> <--------va-------------
652  *       |          |       <----vs----->                     |
653  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656  *       |          |                                         |
657  *       last visible pixel                                   first visible pixel
658  *                  |                                         increment frame counter (gen3/4)
659  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
660  *
661  * x  = horizontal active
662  * _  = horizontal blanking
663  * hs = horizontal sync
664  * va = vertical active
665  * vb = vertical blanking
666  * vs = vertical sync
667  * vbs = vblank_start (number)
668  *
669  * Summary:
670  * - most events happen at the start of horizontal sync
671  * - frame start happens at the start of horizontal blank, 1-4 lines
672  *   (depending on PIPECONF settings) after the start of vblank
673  * - gen3/4 pixel and frame counter are synchronized with the start
674  *   of horizontal active on the first line of vertical active
675  */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679         /* Gen2 doesn't have a hardware frame counter */
680         return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684  * we use as a pipe index
685  */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688         struct drm_i915_private *dev_priv = dev->dev_private;
689         i915_reg_t high_frame, low_frame;
690         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691         struct intel_crtc *intel_crtc =
692                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695         htotal = mode->crtc_htotal;
696         hsync_start = mode->crtc_hsync_start;
697         vbl_start = mode->crtc_vblank_start;
698         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701         /* Convert to pixel count */
702         vbl_start *= htotal;
703
704         /* Start of vblank event occurs at start of hsync */
705         vbl_start -= htotal - hsync_start;
706
707         high_frame = PIPEFRAME(pipe);
708         low_frame = PIPEFRAMEPIXEL(pipe);
709
710         /*
711          * High & low register fields aren't synchronized, so make sure
712          * we get a low value that's stable across two reads of the high
713          * register.
714          */
715         do {
716                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717                 low   = I915_READ(low_frame);
718                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719         } while (high1 != high2);
720
721         high1 >>= PIPE_FRAME_HIGH_SHIFT;
722         pixel = low & PIPE_PIXEL_MASK;
723         low >>= PIPE_FRAME_LOW_SHIFT;
724
725         /*
726          * The frame counter increments at beginning of active.
727          * Cook up a vblank counter by also checking the pixel
728          * counter against vblank start.
729          */
730         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735         struct drm_i915_private *dev_priv = dev->dev_private;
736
737         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743         struct drm_device *dev = crtc->base.dev;
744         struct drm_i915_private *dev_priv = dev->dev_private;
745         const struct drm_display_mode *mode = &crtc->base.hwmode;
746         enum pipe pipe = crtc->pipe;
747         int position, vtotal;
748
749         vtotal = mode->crtc_vtotal;
750         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751                 vtotal /= 2;
752
753         if (IS_GEN2(dev))
754                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755         else
756                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758         /*
759          * On HSW, the DSL reg (0x70000) appears to return 0 if we
760          * read it just before the start of vblank.  So try it again
761          * so we don't accidentally end up spanning a vblank frame
762          * increment, causing the pipe_update_end() code to squak at us.
763          *
764          * The nature of this problem means we can't simply check the ISR
765          * bit and return the vblank start value; nor can we use the scanline
766          * debug register in the transcoder as it appears to have the same
767          * problem.  We may need to extend this to include other platforms,
768          * but so far testing only shows the problem on HSW.
769          */
770         if (HAS_DDI(dev) && !position) {
771                 int i, temp;
772
773                 for (i = 0; i < 100; i++) {
774                         udelay(1);
775                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776                                 DSL_LINEMASK_GEN3;
777                         if (temp != position) {
778                                 position = temp;
779                                 break;
780                         }
781                 }
782         }
783
784         /*
785          * See update_scanline_offset() for the details on the
786          * scanline_offset adjustment.
787          */
788         return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792                                     unsigned int flags, int *vpos, int *hpos,
793                                     ktime_t *stime, ktime_t *etime,
794                                     const struct drm_display_mode *mode)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799         int position;
800         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801         bool in_vbl = true;
802         int ret = 0;
803         unsigned long irqflags;
804
805         if (WARN_ON(!mode->crtc_clock)) {
806                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807                                  "pipe %c\n", pipe_name(pipe));
808                 return 0;
809         }
810
811         htotal = mode->crtc_htotal;
812         hsync_start = mode->crtc_hsync_start;
813         vtotal = mode->crtc_vtotal;
814         vbl_start = mode->crtc_vblank_start;
815         vbl_end = mode->crtc_vblank_end;
816
817         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819                 vbl_end /= 2;
820                 vtotal /= 2;
821         }
822
823         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825         /*
826          * Lock uncore.lock, as we will do multiple timing critical raw
827          * register reads, potentially with preemption disabled, so the
828          * following code must not block on uncore.lock.
829          */
830         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834         /* Get optional system timestamp before query. */
835         if (stime)
836                 *stime = ktime_get();
837
838         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839                 /* No obvious pixelcount register. Only query vertical
840                  * scanout position from Display scan line register.
841                  */
842                 position = __intel_get_crtc_scanline(intel_crtc);
843         } else {
844                 /* Have access to pixelcount since start of frame.
845                  * We can split this into vertical and horizontal
846                  * scanout position.
847                  */
848                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850                 /* convert to pixel counts */
851                 vbl_start *= htotal;
852                 vbl_end *= htotal;
853                 vtotal *= htotal;
854
855                 /*
856                  * In interlaced modes, the pixel counter counts all pixels,
857                  * so one field will have htotal more pixels. In order to avoid
858                  * the reported position from jumping backwards when the pixel
859                  * counter is beyond the length of the shorter field, just
860                  * clamp the position the length of the shorter field. This
861                  * matches how the scanline counter based position works since
862                  * the scanline counter doesn't count the two half lines.
863                  */
864                 if (position >= vtotal)
865                         position = vtotal - 1;
866
867                 /*
868                  * Start of vblank interrupt is triggered at start of hsync,
869                  * just prior to the first active line of vblank. However we
870                  * consider lines to start at the leading edge of horizontal
871                  * active. So, should we get here before we've crossed into
872                  * the horizontal active of the first line in vblank, we would
873                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874                  * always add htotal-hsync_start to the current pixel position.
875                  */
876                 position = (position + htotal - hsync_start) % vtotal;
877         }
878
879         /* Get optional system timestamp after query. */
880         if (etime)
881                 *etime = ktime_get();
882
883         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887         in_vbl = position >= vbl_start && position < vbl_end;
888
889         /*
890          * While in vblank, position will be negative
891          * counting up towards 0 at vbl_end. And outside
892          * vblank, position will be positive counting
893          * up since vbl_end.
894          */
895         if (position >= vbl_start)
896                 position -= vbl_end;
897         else
898                 position += vtotal - vbl_end;
899
900         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901                 *vpos = position;
902                 *hpos = 0;
903         } else {
904                 *vpos = position / htotal;
905                 *hpos = position - (*vpos * htotal);
906         }
907
908         /* In vblank? */
909         if (in_vbl)
910                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912         return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918         unsigned long irqflags;
919         int position;
920
921         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922         position = __intel_get_crtc_scanline(crtc);
923         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925         return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929                               int *max_error,
930                               struct timeval *vblank_time,
931                               unsigned flags)
932 {
933         struct drm_crtc *crtc;
934
935         if (pipe >= INTEL_INFO(dev)->num_pipes) {
936                 DRM_ERROR("Invalid crtc %u\n", pipe);
937                 return -EINVAL;
938         }
939
940         /* Get drm_crtc to timestamp: */
941         crtc = intel_get_crtc_for_pipe(dev, pipe);
942         if (crtc == NULL) {
943                 DRM_ERROR("Invalid crtc %u\n", pipe);
944                 return -EINVAL;
945         }
946
947         if (!crtc->hwmode.crtc_clock) {
948                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949                 return -EBUSY;
950         }
951
952         /* Helper routine in DRM core does all the work: */
953         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954                                                      vblank_time, flags,
955                                                      &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 busy_up, busy_down, max_avg, min_avg;
962         u8 new_delay;
963
964         spin_lock(&mchdev_lock);
965
966         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968         new_delay = dev_priv->ips.cur_delay;
969
970         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971         busy_up = I915_READ(RCPREVBSYTUPAVG);
972         busy_down = I915_READ(RCPREVBSYTDNAVG);
973         max_avg = I915_READ(RCBMAXAVG);
974         min_avg = I915_READ(RCBMINAVG);
975
976         /* Handle RCS change request from hw */
977         if (busy_up > max_avg) {
978                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979                         new_delay = dev_priv->ips.cur_delay - 1;
980                 if (new_delay < dev_priv->ips.max_delay)
981                         new_delay = dev_priv->ips.max_delay;
982         } else if (busy_down < min_avg) {
983                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984                         new_delay = dev_priv->ips.cur_delay + 1;
985                 if (new_delay > dev_priv->ips.min_delay)
986                         new_delay = dev_priv->ips.min_delay;
987         }
988
989         if (ironlake_set_drps(dev, new_delay))
990                 dev_priv->ips.cur_delay = new_delay;
991
992         spin_unlock(&mchdev_lock);
993
994         return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *ring)
998 {
999         if (!intel_ring_initialized(ring))
1000                 return;
1001
1002         trace_i915_gem_request_notify(ring);
1003
1004         wake_up_all(&ring->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008                         struct intel_rps_ei *ei)
1009 {
1010         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016                          const struct intel_rps_ei *old,
1017                          const struct intel_rps_ei *now,
1018                          int threshold)
1019 {
1020         u64 time, c0;
1021         unsigned int mul = 100;
1022
1023         if (old->cz_clock == 0)
1024                 return false;
1025
1026         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027                 mul <<= 8;
1028
1029         time = now->cz_clock - old->cz_clock;
1030         time *= threshold * dev_priv->czclk_freq;
1031
1032         /* Workload can be split between render + media, e.g. SwapBuffers
1033          * being blitted in X after being rendered in mesa. To account for
1034          * this we need to combine both engines into our activity counter.
1035          */
1036         c0 = now->render_c0 - old->render_c0;
1037         c0 += now->media_c0 - old->media_c0;
1038         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040         return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051         struct intel_rps_ei now;
1052         u32 events = 0;
1053
1054         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055                 return 0;
1056
1057         vlv_c0_read(dev_priv, &now);
1058         if (now.cz_clock == 0)
1059                 return 0;
1060
1061         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062                 if (!vlv_c0_above(dev_priv,
1063                                   &dev_priv->rps.down_ei, &now,
1064                                   dev_priv->rps.down_threshold))
1065                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066                 dev_priv->rps.down_ei = now;
1067         }
1068
1069         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070                 if (vlv_c0_above(dev_priv,
1071                                  &dev_priv->rps.up_ei, &now,
1072                                  dev_priv->rps.up_threshold))
1073                         events |= GEN6_PM_RP_UP_THRESHOLD;
1074                 dev_priv->rps.up_ei = now;
1075         }
1076
1077         return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082         struct intel_engine_cs *ring;
1083         int i;
1084
1085         for_each_ring(ring, dev_priv, i)
1086                 if (ring->irq_refcount)
1087                         return true;
1088
1089         return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094         struct drm_i915_private *dev_priv =
1095                 container_of(work, struct drm_i915_private, rps.work);
1096         bool client_boost;
1097         int new_delay, adj, min, max;
1098         u32 pm_iir;
1099
1100         spin_lock_irq(&dev_priv->irq_lock);
1101         /* Speed up work cancelation during disabling rps interrupts. */
1102         if (!dev_priv->rps.interrupts_enabled) {
1103                 spin_unlock_irq(&dev_priv->irq_lock);
1104                 return;
1105         }
1106
1107         /*
1108          * The RPS work is synced during runtime suspend, we don't require a
1109          * wakeref. TODO: instead of disabling the asserts make sure that we
1110          * always hold an RPM reference while the work is running.
1111          */
1112         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114         pm_iir = dev_priv->rps.pm_iir;
1115         dev_priv->rps.pm_iir = 0;
1116         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118         client_boost = dev_priv->rps.client_boost;
1119         dev_priv->rps.client_boost = false;
1120         spin_unlock_irq(&dev_priv->irq_lock);
1121
1122         /* Make sure we didn't queue anything we're not going to process. */
1123         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126                 goto out;
1127
1128         mutex_lock(&dev_priv->rps.hw_lock);
1129
1130         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132         adj = dev_priv->rps.last_adj;
1133         new_delay = dev_priv->rps.cur_freq;
1134         min = dev_priv->rps.min_freq_softlimit;
1135         max = dev_priv->rps.max_freq_softlimit;
1136
1137         if (client_boost) {
1138                 new_delay = dev_priv->rps.max_freq_softlimit;
1139                 adj = 0;
1140         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141                 if (adj > 0)
1142                         adj *= 2;
1143                 else /* CHV needs even encode values */
1144                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145                 /*
1146                  * For better performance, jump directly
1147                  * to RPe if we're below it.
1148                  */
1149                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150                         new_delay = dev_priv->rps.efficient_freq;
1151                         adj = 0;
1152                 }
1153         } else if (any_waiters(dev_priv)) {
1154                 adj = 0;
1155         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157                         new_delay = dev_priv->rps.efficient_freq;
1158                 else
1159                         new_delay = dev_priv->rps.min_freq_softlimit;
1160                 adj = 0;
1161         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162                 if (adj < 0)
1163                         adj *= 2;
1164                 else /* CHV needs even encode values */
1165                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166         } else { /* unknown event */
1167                 adj = 0;
1168         }
1169
1170         dev_priv->rps.last_adj = adj;
1171
1172         /* sysfs frequency interfaces may have snuck in while servicing the
1173          * interrupt
1174          */
1175         new_delay += adj;
1176         new_delay = clamp_t(int, new_delay, min, max);
1177
1178         intel_set_rps(dev_priv->dev, new_delay);
1179
1180         mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188  * occurred.
1189  * @work: workqueue struct
1190  *
1191  * Doesn't actually do anything except notify userspace. As a consequence of
1192  * this event, userspace should try to remap the bad rows since statistically
1193  * it is likely the same row is more likely to go bad again.
1194  */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197         struct drm_i915_private *dev_priv =
1198                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199         u32 error_status, row, bank, subbank;
1200         char *parity_event[6];
1201         uint32_t misccpctl;
1202         uint8_t slice = 0;
1203
1204         /* We must turn off DOP level clock gating to access the L3 registers.
1205          * In order to prevent a get/put style interface, acquire struct mutex
1206          * any time we access those registers.
1207          */
1208         mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210         /* If we've screwed up tracking, just let the interrupt fire again */
1211         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212                 goto out;
1213
1214         misccpctl = I915_READ(GEN7_MISCCPCTL);
1215         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216         POSTING_READ(GEN7_MISCCPCTL);
1217
1218         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219                 i915_reg_t reg;
1220
1221                 slice--;
1222                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223                         break;
1224
1225                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227                 reg = GEN7_L3CDERRST1(slice);
1228
1229                 error_status = I915_READ(reg);
1230                 row = GEN7_PARITY_ERROR_ROW(error_status);
1231                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235                 POSTING_READ(reg);
1236
1237                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242                 parity_event[5] = NULL;
1243
1244                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245                                    KOBJ_CHANGE, parity_event);
1246
1247                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248                           slice, row, bank, subbank);
1249
1250                 kfree(parity_event[4]);
1251                 kfree(parity_event[3]);
1252                 kfree(parity_event[2]);
1253                 kfree(parity_event[1]);
1254         }
1255
1256         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259         WARN_ON(dev_priv->l3_parity.which_slice);
1260         spin_lock_irq(&dev_priv->irq_lock);
1261         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262         spin_unlock_irq(&dev_priv->irq_lock);
1263
1264         mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271         if (!HAS_L3_DPF(dev))
1272                 return;
1273
1274         spin_lock(&dev_priv->irq_lock);
1275         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276         spin_unlock(&dev_priv->irq_lock);
1277
1278         iir &= GT_PARITY_ERROR(dev);
1279         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280                 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283                 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289                                struct drm_i915_private *dev_priv,
1290                                u32 gt_iir)
1291 {
1292         if (gt_iir &
1293             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294                 notify_ring(&dev_priv->ring[RCS]);
1295         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296                 notify_ring(&dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300                                struct drm_i915_private *dev_priv,
1301                                u32 gt_iir)
1302 {
1303
1304         if (gt_iir &
1305             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306                 notify_ring(&dev_priv->ring[RCS]);
1307         if (gt_iir & GT_BSD_USER_INTERRUPT)
1308                 notify_ring(&dev_priv->ring[VCS]);
1309         if (gt_iir & GT_BLT_USER_INTERRUPT)
1310                 notify_ring(&dev_priv->ring[BCS]);
1311
1312         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313                       GT_BSD_CS_ERROR_INTERRUPT |
1314                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317         if (gt_iir & GT_PARITY_ERROR(dev))
1318                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323 {
1324         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325                 notify_ring(ring);
1326         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327                 intel_lrc_irq_handler(ring);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331                                        u32 master_ctl)
1332 {
1333         irqreturn_t ret = IRQ_NONE;
1334
1335         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336                 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337                 if (iir) {
1338                         I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339                         ret = IRQ_HANDLED;
1340
1341                         gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342                                         iir, GEN8_RCS_IRQ_SHIFT);
1343
1344                         gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345                                         iir, GEN8_BCS_IRQ_SHIFT);
1346                 } else
1347                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348         }
1349
1350         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351                 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352                 if (iir) {
1353                         I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354                         ret = IRQ_HANDLED;
1355
1356                         gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357                                         iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359                         gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360                                         iir, GEN8_VCS2_IRQ_SHIFT);
1361                 } else
1362                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363         }
1364
1365         if (master_ctl & GEN8_GT_VECS_IRQ) {
1366                 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367                 if (iir) {
1368                         I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369                         ret = IRQ_HANDLED;
1370
1371                         gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372                                         iir, GEN8_VECS_IRQ_SHIFT);
1373                 } else
1374                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375         }
1376
1377         if (master_ctl & GEN8_GT_PM_IRQ) {
1378                 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379                 if (iir & dev_priv->pm_rps_events) {
1380                         I915_WRITE_FW(GEN8_GT_IIR(2),
1381                                       iir & dev_priv->pm_rps_events);
1382                         ret = IRQ_HANDLED;
1383                         gen6_rps_irq_handler(dev_priv, iir);
1384                 } else
1385                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1386         }
1387
1388         return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393         switch (port) {
1394         case PORT_A:
1395                 return val & PORTA_HOTPLUG_LONG_DETECT;
1396         case PORT_B:
1397                 return val & PORTB_HOTPLUG_LONG_DETECT;
1398         case PORT_C:
1399                 return val & PORTC_HOTPLUG_LONG_DETECT;
1400         default:
1401                 return false;
1402         }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407         switch (port) {
1408         case PORT_E:
1409                 return val & PORTE_HOTPLUG_LONG_DETECT;
1410         default:
1411                 return false;
1412         }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417         switch (port) {
1418         case PORT_A:
1419                 return val & PORTA_HOTPLUG_LONG_DETECT;
1420         case PORT_B:
1421                 return val & PORTB_HOTPLUG_LONG_DETECT;
1422         case PORT_C:
1423                 return val & PORTC_HOTPLUG_LONG_DETECT;
1424         case PORT_D:
1425                 return val & PORTD_HOTPLUG_LONG_DETECT;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433         switch (port) {
1434         case PORT_A:
1435                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436         default:
1437                 return false;
1438         }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443         switch (port) {
1444         case PORT_B:
1445                 return val & PORTB_HOTPLUG_LONG_DETECT;
1446         case PORT_C:
1447                 return val & PORTC_HOTPLUG_LONG_DETECT;
1448         case PORT_D:
1449                 return val & PORTD_HOTPLUG_LONG_DETECT;
1450         default:
1451                 return false;
1452         }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457         switch (port) {
1458         case PORT_B:
1459                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460         case PORT_C:
1461                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462         case PORT_D:
1463                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464         default:
1465                 return false;
1466         }
1467 }
1468
1469 /*
1470  * Get a bit mask of pins that have triggered, and which ones may be long.
1471  * This can be called multiple times with the same masks to accumulate
1472  * hotplug detection results from several registers.
1473  *
1474  * Note that the caller is expected to zero out the masks initially.
1475  */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1478                              const u32 hpd[HPD_NUM_PINS],
1479                              bool long_pulse_detect(enum port port, u32 val))
1480 {
1481         enum port port;
1482         int i;
1483
1484         for_each_hpd_pin(i) {
1485                 if ((hpd[i] & hotplug_trigger) == 0)
1486                         continue;
1487
1488                 *pin_mask |= BIT(i);
1489
1490                 if (!intel_hpd_pin_to_port(i, &port))
1491                         continue;
1492
1493                 if (long_pulse_detect(port, dig_hotplug_reg))
1494                         *long_mask |= BIT(i);
1495         }
1496
1497         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504         struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506         wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513         wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518                                          uint32_t crc0, uint32_t crc1,
1519                                          uint32_t crc2, uint32_t crc3,
1520                                          uint32_t crc4)
1521 {
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524         struct intel_pipe_crc_entry *entry;
1525         int head, tail;
1526
1527         spin_lock(&pipe_crc->lock);
1528
1529         if (!pipe_crc->entries) {
1530                 spin_unlock(&pipe_crc->lock);
1531                 DRM_DEBUG_KMS("spurious interrupt\n");
1532                 return;
1533         }
1534
1535         head = pipe_crc->head;
1536         tail = pipe_crc->tail;
1537
1538         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539                 spin_unlock(&pipe_crc->lock);
1540                 DRM_ERROR("CRC buffer overflowing\n");
1541                 return;
1542         }
1543
1544         entry = &pipe_crc->entries[head];
1545
1546         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547         entry->crc[0] = crc0;
1548         entry->crc[1] = crc1;
1549         entry->crc[2] = crc2;
1550         entry->crc[3] = crc3;
1551         entry->crc[4] = crc4;
1552
1553         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554         pipe_crc->head = head;
1555
1556         spin_unlock(&pipe_crc->lock);
1557
1558         wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563                              uint32_t crc0, uint32_t crc1,
1564                              uint32_t crc2, uint32_t crc3,
1565                              uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571         struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573         display_pipe_crc_irq_handler(dev, pipe,
1574                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575                                      0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582         display_pipe_crc_irq_handler(dev, pipe,
1583                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592         struct drm_i915_private *dev_priv = dev->dev_private;
1593         uint32_t res1, res2;
1594
1595         if (INTEL_INFO(dev)->gen >= 3)
1596                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597         else
1598                 res1 = 0;
1599
1600         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602         else
1603                 res2 = 0;
1604
1605         display_pipe_crc_irq_handler(dev, pipe,
1606                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1607                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609                                      res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613  * IMR bits until the work is done. Other interrupts can be processed without
1614  * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617         if (pm_iir & dev_priv->pm_rps_events) {
1618                 spin_lock(&dev_priv->irq_lock);
1619                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620                 if (dev_priv->rps.interrupts_enabled) {
1621                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1623                 }
1624                 spin_unlock(&dev_priv->irq_lock);
1625         }
1626
1627         if (INTEL_INFO(dev_priv)->gen >= 8)
1628                 return;
1629
1630         if (HAS_VEBOX(dev_priv->dev)) {
1631                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632                         notify_ring(&dev_priv->ring[VECS]);
1633
1634                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636         }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641         if (!drm_handle_vblank(dev, pipe))
1642                 return false;
1643
1644         return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650         u32 pipe_stats[I915_MAX_PIPES] = { };
1651         int pipe;
1652
1653         spin_lock(&dev_priv->irq_lock);
1654         for_each_pipe(dev_priv, pipe) {
1655                 i915_reg_t reg;
1656                 u32 mask, iir_bit = 0;
1657
1658                 /*
1659                  * PIPESTAT bits get signalled even when the interrupt is
1660                  * disabled with the mask bits, and some of the status bits do
1661                  * not generate interrupts at all (like the underrun bit). Hence
1662                  * we need to be careful that we only handle what we want to
1663                  * handle.
1664                  */
1665
1666                 /* fifo underruns are filterered in the underrun handler. */
1667                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1668
1669                 switch (pipe) {
1670                 case PIPE_A:
1671                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1672                         break;
1673                 case PIPE_B:
1674                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1675                         break;
1676                 case PIPE_C:
1677                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1678                         break;
1679                 }
1680                 if (iir & iir_bit)
1681                         mask |= dev_priv->pipestat_irq_mask[pipe];
1682
1683                 if (!mask)
1684                         continue;
1685
1686                 reg = PIPESTAT(pipe);
1687                 mask |= PIPESTAT_INT_ENABLE_MASK;
1688                 pipe_stats[pipe] = I915_READ(reg) & mask;
1689
1690                 /*
1691                  * Clear the PIPE*STAT regs before the IIR
1692                  */
1693                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1694                                         PIPESTAT_INT_STATUS_MASK))
1695                         I915_WRITE(reg, pipe_stats[pipe]);
1696         }
1697         spin_unlock(&dev_priv->irq_lock);
1698
1699         for_each_pipe(dev_priv, pipe) {
1700                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1701                     intel_pipe_handle_vblank(dev, pipe))
1702                         intel_check_page_flip(dev, pipe);
1703
1704                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1705                         intel_prepare_page_flip(dev, pipe);
1706                         intel_finish_page_flip(dev, pipe);
1707                 }
1708
1709                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1710                         i9xx_pipe_crc_irq_handler(dev, pipe);
1711
1712                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1713                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1714         }
1715
1716         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1717                 gmbus_irq_handler(dev);
1718 }
1719
1720 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1721 {
1722         struct drm_i915_private *dev_priv = dev->dev_private;
1723         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1724         u32 pin_mask = 0, long_mask = 0;
1725
1726         if (!hotplug_status)
1727                 return;
1728
1729         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1730         /*
1731          * Make sure hotplug status is cleared before we clear IIR, or else we
1732          * may miss hotplug events.
1733          */
1734         POSTING_READ(PORT_HOTPLUG_STAT);
1735
1736         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1737                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1738
1739                 if (hotplug_trigger) {
1740                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1741                                            hotplug_trigger, hpd_status_g4x,
1742                                            i9xx_port_hotplug_long_detect);
1743
1744                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1745                 }
1746
1747                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1748                         dp_aux_irq_handler(dev);
1749         } else {
1750                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1751
1752                 if (hotplug_trigger) {
1753                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1754                                            hotplug_trigger, hpd_status_i915,
1755                                            i9xx_port_hotplug_long_detect);
1756                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1757                 }
1758         }
1759 }
1760
1761 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1762 {
1763         struct drm_device *dev = arg;
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765         u32 iir, gt_iir, pm_iir;
1766         irqreturn_t ret = IRQ_NONE;
1767
1768         if (!intel_irqs_enabled(dev_priv))
1769                 return IRQ_NONE;
1770
1771         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1772         disable_rpm_wakeref_asserts(dev_priv);
1773
1774         while (true) {
1775                 /* Find, clear, then process each source of interrupt */
1776
1777                 gt_iir = I915_READ(GTIIR);
1778                 if (gt_iir)
1779                         I915_WRITE(GTIIR, gt_iir);
1780
1781                 pm_iir = I915_READ(GEN6_PMIIR);
1782                 if (pm_iir)
1783                         I915_WRITE(GEN6_PMIIR, pm_iir);
1784
1785                 iir = I915_READ(VLV_IIR);
1786                 if (iir) {
1787                         /* Consume port before clearing IIR or we'll miss events */
1788                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1789                                 i9xx_hpd_irq_handler(dev);
1790                         I915_WRITE(VLV_IIR, iir);
1791                 }
1792
1793                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1794                         goto out;
1795
1796                 ret = IRQ_HANDLED;
1797
1798                 if (gt_iir)
1799                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1800                 if (pm_iir)
1801                         gen6_rps_irq_handler(dev_priv, pm_iir);
1802                 /* Call regardless, as some status bits might not be
1803                  * signalled in iir */
1804                 valleyview_pipestat_irq_handler(dev, iir);
1805         }
1806
1807 out:
1808         enable_rpm_wakeref_asserts(dev_priv);
1809
1810         return ret;
1811 }
1812
1813 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1814 {
1815         struct drm_device *dev = arg;
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         u32 master_ctl, iir;
1818         irqreturn_t ret = IRQ_NONE;
1819
1820         if (!intel_irqs_enabled(dev_priv))
1821                 return IRQ_NONE;
1822
1823         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1824         disable_rpm_wakeref_asserts(dev_priv);
1825
1826         for (;;) {
1827                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1828                 iir = I915_READ(VLV_IIR);
1829
1830                 if (master_ctl == 0 && iir == 0)
1831                         break;
1832
1833                 ret = IRQ_HANDLED;
1834
1835                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1836
1837                 /* Find, clear, then process each source of interrupt */
1838
1839                 if (iir) {
1840                         /* Consume port before clearing IIR or we'll miss events */
1841                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1842                                 i9xx_hpd_irq_handler(dev);
1843                         I915_WRITE(VLV_IIR, iir);
1844                 }
1845
1846                 gen8_gt_irq_handler(dev_priv, master_ctl);
1847
1848                 /* Call regardless, as some status bits might not be
1849                  * signalled in iir */
1850                 valleyview_pipestat_irq_handler(dev, iir);
1851
1852                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1853                 POSTING_READ(GEN8_MASTER_IRQ);
1854         }
1855
1856         enable_rpm_wakeref_asserts(dev_priv);
1857
1858         return ret;
1859 }
1860
1861 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1862                                 const u32 hpd[HPD_NUM_PINS])
1863 {
1864         struct drm_i915_private *dev_priv = to_i915(dev);
1865         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1866
1867         /*
1868          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1869          * unless we touch the hotplug register, even if hotplug_trigger is
1870          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1871          * errors.
1872          */
1873         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1874         if (!hotplug_trigger) {
1875                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1876                         PORTD_HOTPLUG_STATUS_MASK |
1877                         PORTC_HOTPLUG_STATUS_MASK |
1878                         PORTB_HOTPLUG_STATUS_MASK;
1879                 dig_hotplug_reg &= ~mask;
1880         }
1881
1882         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1883         if (!hotplug_trigger)
1884                 return;
1885
1886         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1887                            dig_hotplug_reg, hpd,
1888                            pch_port_hotplug_long_detect);
1889
1890         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1891 }
1892
1893 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1894 {
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         int pipe;
1897         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1898
1899         ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1900
1901         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1902                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1903                                SDE_AUDIO_POWER_SHIFT);
1904                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1905                                  port_name(port));
1906         }
1907
1908         if (pch_iir & SDE_AUX_MASK)
1909                 dp_aux_irq_handler(dev);
1910
1911         if (pch_iir & SDE_GMBUS)
1912                 gmbus_irq_handler(dev);
1913
1914         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1915                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1916
1917         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1918                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1919
1920         if (pch_iir & SDE_POISON)
1921                 DRM_ERROR("PCH poison interrupt\n");
1922
1923         if (pch_iir & SDE_FDI_MASK)
1924                 for_each_pipe(dev_priv, pipe)
1925                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1926                                          pipe_name(pipe),
1927                                          I915_READ(FDI_RX_IIR(pipe)));
1928
1929         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1930                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1931
1932         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1933                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1934
1935         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1936                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1937
1938         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1939                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1940 }
1941
1942 static void ivb_err_int_handler(struct drm_device *dev)
1943 {
1944         struct drm_i915_private *dev_priv = dev->dev_private;
1945         u32 err_int = I915_READ(GEN7_ERR_INT);
1946         enum pipe pipe;
1947
1948         if (err_int & ERR_INT_POISON)
1949                 DRM_ERROR("Poison interrupt\n");
1950
1951         for_each_pipe(dev_priv, pipe) {
1952                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1953                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1954
1955                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1956                         if (IS_IVYBRIDGE(dev))
1957                                 ivb_pipe_crc_irq_handler(dev, pipe);
1958                         else
1959                                 hsw_pipe_crc_irq_handler(dev, pipe);
1960                 }
1961         }
1962
1963         I915_WRITE(GEN7_ERR_INT, err_int);
1964 }
1965
1966 static void cpt_serr_int_handler(struct drm_device *dev)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         u32 serr_int = I915_READ(SERR_INT);
1970
1971         if (serr_int & SERR_INT_POISON)
1972                 DRM_ERROR("PCH poison interrupt\n");
1973
1974         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1975                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1976
1977         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1978                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1979
1980         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1981                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1982
1983         I915_WRITE(SERR_INT, serr_int);
1984 }
1985
1986 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1987 {
1988         struct drm_i915_private *dev_priv = dev->dev_private;
1989         int pipe;
1990         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1991
1992         ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1993
1994         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1995                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1996                                SDE_AUDIO_POWER_SHIFT_CPT);
1997                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1998                                  port_name(port));
1999         }
2000
2001         if (pch_iir & SDE_AUX_MASK_CPT)
2002                 dp_aux_irq_handler(dev);
2003
2004         if (pch_iir & SDE_GMBUS_CPT)
2005                 gmbus_irq_handler(dev);
2006
2007         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2008                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2009
2010         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2011                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2012
2013         if (pch_iir & SDE_FDI_MASK_CPT)
2014                 for_each_pipe(dev_priv, pipe)
2015                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2016                                          pipe_name(pipe),
2017                                          I915_READ(FDI_RX_IIR(pipe)));
2018
2019         if (pch_iir & SDE_ERROR_CPT)
2020                 cpt_serr_int_handler(dev);
2021 }
2022
2023 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2024 {
2025         struct drm_i915_private *dev_priv = dev->dev_private;
2026         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2027                 ~SDE_PORTE_HOTPLUG_SPT;
2028         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2029         u32 pin_mask = 0, long_mask = 0;
2030
2031         if (hotplug_trigger) {
2032                 u32 dig_hotplug_reg;
2033
2034                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2035                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2036
2037                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2038                                    dig_hotplug_reg, hpd_spt,
2039                                    spt_port_hotplug_long_detect);
2040         }
2041
2042         if (hotplug2_trigger) {
2043                 u32 dig_hotplug_reg;
2044
2045                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2046                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2047
2048                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2049                                    dig_hotplug_reg, hpd_spt,
2050                                    spt_port_hotplug2_long_detect);
2051         }
2052
2053         if (pin_mask)
2054                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2055
2056         if (pch_iir & SDE_GMBUS_CPT)
2057                 gmbus_irq_handler(dev);
2058 }
2059
2060 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2061                                 const u32 hpd[HPD_NUM_PINS])
2062 {
2063         struct drm_i915_private *dev_priv = to_i915(dev);
2064         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2065
2066         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2067         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2068
2069         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2070                            dig_hotplug_reg, hpd,
2071                            ilk_port_hotplug_long_detect);
2072
2073         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2074 }
2075
2076 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2077 {
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         enum pipe pipe;
2080         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2081
2082         if (hotplug_trigger)
2083                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2084
2085         if (de_iir & DE_AUX_CHANNEL_A)
2086                 dp_aux_irq_handler(dev);
2087
2088         if (de_iir & DE_GSE)
2089                 intel_opregion_asle_intr(dev);
2090
2091         if (de_iir & DE_POISON)
2092                 DRM_ERROR("Poison interrupt\n");
2093
2094         for_each_pipe(dev_priv, pipe) {
2095                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2096                     intel_pipe_handle_vblank(dev, pipe))
2097                         intel_check_page_flip(dev, pipe);
2098
2099                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2100                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2101
2102                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2103                         i9xx_pipe_crc_irq_handler(dev, pipe);
2104
2105                 /* plane/pipes map 1:1 on ilk+ */
2106                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2107                         intel_prepare_page_flip(dev, pipe);
2108                         intel_finish_page_flip_plane(dev, pipe);
2109                 }
2110         }
2111
2112         /* check event from PCH */
2113         if (de_iir & DE_PCH_EVENT) {
2114                 u32 pch_iir = I915_READ(SDEIIR);
2115
2116                 if (HAS_PCH_CPT(dev))
2117                         cpt_irq_handler(dev, pch_iir);
2118                 else
2119                         ibx_irq_handler(dev, pch_iir);
2120
2121                 /* should clear PCH hotplug event before clear CPU irq */
2122                 I915_WRITE(SDEIIR, pch_iir);
2123         }
2124
2125         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2126                 ironlake_rps_change_irq_handler(dev);
2127 }
2128
2129 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2130 {
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         enum pipe pipe;
2133         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2134
2135         if (hotplug_trigger)
2136                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2137
2138         if (de_iir & DE_ERR_INT_IVB)
2139                 ivb_err_int_handler(dev);
2140
2141         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2142                 dp_aux_irq_handler(dev);
2143
2144         if (de_iir & DE_GSE_IVB)
2145                 intel_opregion_asle_intr(dev);
2146
2147         for_each_pipe(dev_priv, pipe) {
2148                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2149                     intel_pipe_handle_vblank(dev, pipe))
2150                         intel_check_page_flip(dev, pipe);
2151
2152                 /* plane/pipes map 1:1 on ilk+ */
2153                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2154                         intel_prepare_page_flip(dev, pipe);
2155                         intel_finish_page_flip_plane(dev, pipe);
2156                 }
2157         }
2158
2159         /* check event from PCH */
2160         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2161                 u32 pch_iir = I915_READ(SDEIIR);
2162
2163                 cpt_irq_handler(dev, pch_iir);
2164
2165                 /* clear PCH hotplug event before clear CPU irq */
2166                 I915_WRITE(SDEIIR, pch_iir);
2167         }
2168 }
2169
2170 /*
2171  * To handle irqs with the minimum potential races with fresh interrupts, we:
2172  * 1 - Disable Master Interrupt Control.
2173  * 2 - Find the source(s) of the interrupt.
2174  * 3 - Clear the Interrupt Identity bits (IIR).
2175  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2176  * 5 - Re-enable Master Interrupt Control.
2177  */
2178 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2179 {
2180         struct drm_device *dev = arg;
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2183         irqreturn_t ret = IRQ_NONE;
2184
2185         if (!intel_irqs_enabled(dev_priv))
2186                 return IRQ_NONE;
2187
2188         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2189         disable_rpm_wakeref_asserts(dev_priv);
2190
2191         /* disable master interrupt before clearing iir  */
2192         de_ier = I915_READ(DEIER);
2193         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2194         POSTING_READ(DEIER);
2195
2196         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2197          * interrupts will will be stored on its back queue, and then we'll be
2198          * able to process them after we restore SDEIER (as soon as we restore
2199          * it, we'll get an interrupt if SDEIIR still has something to process
2200          * due to its back queue). */
2201         if (!HAS_PCH_NOP(dev)) {
2202                 sde_ier = I915_READ(SDEIER);
2203                 I915_WRITE(SDEIER, 0);
2204                 POSTING_READ(SDEIER);
2205         }
2206
2207         /* Find, clear, then process each source of interrupt */
2208
2209         gt_iir = I915_READ(GTIIR);
2210         if (gt_iir) {
2211                 I915_WRITE(GTIIR, gt_iir);
2212                 ret = IRQ_HANDLED;
2213                 if (INTEL_INFO(dev)->gen >= 6)
2214                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2215                 else
2216                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2217         }
2218
2219         de_iir = I915_READ(DEIIR);
2220         if (de_iir) {
2221                 I915_WRITE(DEIIR, de_iir);
2222                 ret = IRQ_HANDLED;
2223                 if (INTEL_INFO(dev)->gen >= 7)
2224                         ivb_display_irq_handler(dev, de_iir);
2225                 else
2226                         ilk_display_irq_handler(dev, de_iir);
2227         }
2228
2229         if (INTEL_INFO(dev)->gen >= 6) {
2230                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2231                 if (pm_iir) {
2232                         I915_WRITE(GEN6_PMIIR, pm_iir);
2233                         ret = IRQ_HANDLED;
2234                         gen6_rps_irq_handler(dev_priv, pm_iir);
2235                 }
2236         }
2237
2238         I915_WRITE(DEIER, de_ier);
2239         POSTING_READ(DEIER);
2240         if (!HAS_PCH_NOP(dev)) {
2241                 I915_WRITE(SDEIER, sde_ier);
2242                 POSTING_READ(SDEIER);
2243         }
2244
2245         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2246         enable_rpm_wakeref_asserts(dev_priv);
2247
2248         return ret;
2249 }
2250
2251 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2252                                 const u32 hpd[HPD_NUM_PINS])
2253 {
2254         struct drm_i915_private *dev_priv = to_i915(dev);
2255         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2256
2257         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2258         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2259
2260         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2261                            dig_hotplug_reg, hpd,
2262                            bxt_port_hotplug_long_detect);
2263
2264         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2265 }
2266
2267 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2268 {
2269         struct drm_device *dev = arg;
2270         struct drm_i915_private *dev_priv = dev->dev_private;
2271         u32 master_ctl;
2272         irqreturn_t ret = IRQ_NONE;
2273         uint32_t tmp = 0;
2274         enum pipe pipe;
2275         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2276
2277         if (!intel_irqs_enabled(dev_priv))
2278                 return IRQ_NONE;
2279
2280         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2281         disable_rpm_wakeref_asserts(dev_priv);
2282
2283         if (INTEL_INFO(dev_priv)->gen >= 9)
2284                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2285                         GEN9_AUX_CHANNEL_D;
2286
2287         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2288         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2289         if (!master_ctl)
2290                 goto out;
2291
2292         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2293
2294         /* Find, clear, then process each source of interrupt */
2295
2296         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2297
2298         if (master_ctl & GEN8_DE_MISC_IRQ) {
2299                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2300                 if (tmp) {
2301                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2302                         ret = IRQ_HANDLED;
2303                         if (tmp & GEN8_DE_MISC_GSE)
2304                                 intel_opregion_asle_intr(dev);
2305                         else
2306                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2307                 }
2308                 else
2309                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2310         }
2311
2312         if (master_ctl & GEN8_DE_PORT_IRQ) {
2313                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2314                 if (tmp) {
2315                         bool found = false;
2316                         u32 hotplug_trigger = 0;
2317
2318                         if (IS_BROXTON(dev_priv))
2319                                 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2320                         else if (IS_BROADWELL(dev_priv))
2321                                 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2322
2323                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2324                         ret = IRQ_HANDLED;
2325
2326                         if (tmp & aux_mask) {
2327                                 dp_aux_irq_handler(dev);
2328                                 found = true;
2329                         }
2330
2331                         if (hotplug_trigger) {
2332                                 if (IS_BROXTON(dev))
2333                                         bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2334                                 else
2335                                         ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2336                                 found = true;
2337                         }
2338
2339                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2340                                 gmbus_irq_handler(dev);
2341                                 found = true;
2342                         }
2343
2344                         if (!found)
2345                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2346                 }
2347                 else
2348                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2349         }
2350
2351         for_each_pipe(dev_priv, pipe) {
2352                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2353
2354                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2355                         continue;
2356
2357                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2358                 if (pipe_iir) {
2359                         ret = IRQ_HANDLED;
2360                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2361
2362                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2363                             intel_pipe_handle_vblank(dev, pipe))
2364                                 intel_check_page_flip(dev, pipe);
2365
2366                         if (INTEL_INFO(dev_priv)->gen >= 9)
2367                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2368                         else
2369                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2370
2371                         if (flip_done) {
2372                                 intel_prepare_page_flip(dev, pipe);
2373                                 intel_finish_page_flip_plane(dev, pipe);
2374                         }
2375
2376                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2377                                 hsw_pipe_crc_irq_handler(dev, pipe);
2378
2379                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2380                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2381                                                                     pipe);
2382
2383
2384                         if (INTEL_INFO(dev_priv)->gen >= 9)
2385                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2386                         else
2387                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2388
2389                         if (fault_errors)
2390                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2391                                           pipe_name(pipe),
2392                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2393                 } else
2394                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2395         }
2396
2397         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2398             master_ctl & GEN8_DE_PCH_IRQ) {
2399                 /*
2400                  * FIXME(BDW): Assume for now that the new interrupt handling
2401                  * scheme also closed the SDE interrupt handling race we've seen
2402                  * on older pch-split platforms. But this needs testing.
2403                  */
2404                 u32 pch_iir = I915_READ(SDEIIR);
2405                 if (pch_iir) {
2406                         I915_WRITE(SDEIIR, pch_iir);
2407                         ret = IRQ_HANDLED;
2408
2409                         if (HAS_PCH_SPT(dev_priv))
2410                                 spt_irq_handler(dev, pch_iir);
2411                         else
2412                                 cpt_irq_handler(dev, pch_iir);
2413                 } else {
2414                         /*
2415                          * Like on previous PCH there seems to be something
2416                          * fishy going on with forwarding PCH interrupts.
2417                          */
2418                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2419                 }
2420         }
2421
2422         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2423         POSTING_READ_FW(GEN8_MASTER_IRQ);
2424
2425 out:
2426         enable_rpm_wakeref_asserts(dev_priv);
2427
2428         return ret;
2429 }
2430
2431 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2432                                bool reset_completed)
2433 {
2434         struct intel_engine_cs *ring;
2435         int i;
2436
2437         /*
2438          * Notify all waiters for GPU completion events that reset state has
2439          * been changed, and that they need to restart their wait after
2440          * checking for potential errors (and bail out to drop locks if there is
2441          * a gpu reset pending so that i915_error_work_func can acquire them).
2442          */
2443
2444         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2445         for_each_ring(ring, dev_priv, i)
2446                 wake_up_all(&ring->irq_queue);
2447
2448         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2449         wake_up_all(&dev_priv->pending_flip_queue);
2450
2451         /*
2452          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2453          * reset state is cleared.
2454          */
2455         if (reset_completed)
2456                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2457 }
2458
2459 /**
2460  * i915_reset_and_wakeup - do process context error handling work
2461  * @dev: drm device
2462  *
2463  * Fire an error uevent so userspace can see that a hang or error
2464  * was detected.
2465  */
2466 static void i915_reset_and_wakeup(struct drm_device *dev)
2467 {
2468         struct drm_i915_private *dev_priv = to_i915(dev);
2469         struct i915_gpu_error *error = &dev_priv->gpu_error;
2470         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2471         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2472         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2473         int ret;
2474
2475         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2476
2477         /*
2478          * Note that there's only one work item which does gpu resets, so we
2479          * need not worry about concurrent gpu resets potentially incrementing
2480          * error->reset_counter twice. We only need to take care of another
2481          * racing irq/hangcheck declaring the gpu dead for a second time. A
2482          * quick check for that is good enough: schedule_work ensures the
2483          * correct ordering between hang detection and this work item, and since
2484          * the reset in-progress bit is only ever set by code outside of this
2485          * work we don't need to worry about any other races.
2486          */
2487         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2488                 DRM_DEBUG_DRIVER("resetting chip\n");
2489                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2490                                    reset_event);
2491
2492                 /*
2493                  * In most cases it's guaranteed that we get here with an RPM
2494                  * reference held, for example because there is a pending GPU
2495                  * request that won't finish until the reset is done. This
2496                  * isn't the case at least when we get here by doing a
2497                  * simulated reset via debugs, so get an RPM reference.
2498                  */
2499                 intel_runtime_pm_get(dev_priv);
2500
2501                 intel_prepare_reset(dev);
2502
2503                 /*
2504                  * All state reset _must_ be completed before we update the
2505                  * reset counter, for otherwise waiters might miss the reset
2506                  * pending state and not properly drop locks, resulting in
2507                  * deadlocks with the reset work.
2508                  */
2509                 ret = i915_reset(dev);
2510
2511                 intel_finish_reset(dev);
2512
2513                 intel_runtime_pm_put(dev_priv);
2514
2515                 if (ret == 0) {
2516                         /*
2517                          * After all the gem state is reset, increment the reset
2518                          * counter and wake up everyone waiting for the reset to
2519                          * complete.
2520                          *
2521                          * Since unlock operations are a one-sided barrier only,
2522                          * we need to insert a barrier here to order any seqno
2523                          * updates before
2524                          * the counter increment.
2525                          */
2526                         smp_mb__before_atomic();
2527                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2528
2529                         kobject_uevent_env(&dev->primary->kdev->kobj,
2530                                            KOBJ_CHANGE, reset_done_event);
2531                 } else {
2532                         atomic_or(I915_WEDGED, &error->reset_counter);
2533                 }
2534
2535                 /*
2536                  * Note: The wake_up also serves as a memory barrier so that
2537                  * waiters see the update value of the reset counter atomic_t.
2538                  */
2539                 i915_error_wake_up(dev_priv, true);
2540         }
2541 }
2542
2543 static void i915_report_and_clear_eir(struct drm_device *dev)
2544 {
2545         struct drm_i915_private *dev_priv = dev->dev_private;
2546         uint32_t instdone[I915_NUM_INSTDONE_REG];
2547         u32 eir = I915_READ(EIR);
2548         int pipe, i;
2549
2550         if (!eir)
2551                 return;
2552
2553         pr_err("render error detected, EIR: 0x%08x\n", eir);
2554
2555         i915_get_extra_instdone(dev, instdone);
2556
2557         if (IS_G4X(dev)) {
2558                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2559                         u32 ipeir = I915_READ(IPEIR_I965);
2560
2561                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2562                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2563                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2564                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2565                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2566                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2567                         I915_WRITE(IPEIR_I965, ipeir);
2568                         POSTING_READ(IPEIR_I965);
2569                 }
2570                 if (eir & GM45_ERROR_PAGE_TABLE) {
2571                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2572                         pr_err("page table error\n");
2573                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2574                         I915_WRITE(PGTBL_ER, pgtbl_err);
2575                         POSTING_READ(PGTBL_ER);
2576                 }
2577         }
2578
2579         if (!IS_GEN2(dev)) {
2580                 if (eir & I915_ERROR_PAGE_TABLE) {
2581                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2582                         pr_err("page table error\n");
2583                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2584                         I915_WRITE(PGTBL_ER, pgtbl_err);
2585                         POSTING_READ(PGTBL_ER);
2586                 }
2587         }
2588
2589         if (eir & I915_ERROR_MEMORY_REFRESH) {
2590                 pr_err("memory refresh error:\n");
2591                 for_each_pipe(dev_priv, pipe)
2592                         pr_err("pipe %c stat: 0x%08x\n",
2593                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2594                 /* pipestat has already been acked */
2595         }
2596         if (eir & I915_ERROR_INSTRUCTION) {
2597                 pr_err("instruction error\n");
2598                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2599                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2600                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2601                 if (INTEL_INFO(dev)->gen < 4) {
2602                         u32 ipeir = I915_READ(IPEIR);
2603
2604                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2605                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2606                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2607                         I915_WRITE(IPEIR, ipeir);
2608                         POSTING_READ(IPEIR);
2609                 } else {
2610                         u32 ipeir = I915_READ(IPEIR_I965);
2611
2612                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2613                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2614                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2615                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2616                         I915_WRITE(IPEIR_I965, ipeir);
2617                         POSTING_READ(IPEIR_I965);
2618                 }
2619         }
2620
2621         I915_WRITE(EIR, eir);
2622         POSTING_READ(EIR);
2623         eir = I915_READ(EIR);
2624         if (eir) {
2625                 /*
2626                  * some errors might have become stuck,
2627                  * mask them.
2628                  */
2629                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2630                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2631                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2632         }
2633 }
2634
2635 /**
2636  * i915_handle_error - handle a gpu error
2637  * @dev: drm device
2638  *
2639  * Do some basic checking of register state at error time and
2640  * dump it to the syslog.  Also call i915_capture_error_state() to make
2641  * sure we get a record and make it available in debugfs.  Fire a uevent
2642  * so userspace knows something bad happened (should trigger collection
2643  * of a ring dump etc.).
2644  */
2645 void i915_handle_error(struct drm_device *dev, bool wedged,
2646                        const char *fmt, ...)
2647 {
2648         struct drm_i915_private *dev_priv = dev->dev_private;
2649         va_list args;
2650         char error_msg[80];
2651
2652         va_start(args, fmt);
2653         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2654         va_end(args);
2655
2656         i915_capture_error_state(dev, wedged, error_msg);
2657         i915_report_and_clear_eir(dev);
2658
2659         if (wedged) {
2660                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2661                                 &dev_priv->gpu_error.reset_counter);
2662
2663                 /*
2664                  * Wakeup waiting processes so that the reset function
2665                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2666                  * various locks. By bumping the reset counter first, the woken
2667                  * processes will see a reset in progress and back off,
2668                  * releasing their locks and then wait for the reset completion.
2669                  * We must do this for _all_ gpu waiters that might hold locks
2670                  * that the reset work needs to acquire.
2671                  *
2672                  * Note: The wake_up serves as the required memory barrier to
2673                  * ensure that the waiters see the updated value of the reset
2674                  * counter atomic_t.
2675                  */
2676                 i915_error_wake_up(dev_priv, false);
2677         }
2678
2679         i915_reset_and_wakeup(dev);
2680 }
2681
2682 /* Called from drm generic code, passed 'crtc' which
2683  * we use as a pipe index
2684  */
2685 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2686 {
2687         struct drm_i915_private *dev_priv = dev->dev_private;
2688         unsigned long irqflags;
2689
2690         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2691         if (INTEL_INFO(dev)->gen >= 4)
2692                 i915_enable_pipestat(dev_priv, pipe,
2693                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2694         else
2695                 i915_enable_pipestat(dev_priv, pipe,
2696                                      PIPE_VBLANK_INTERRUPT_STATUS);
2697         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2698
2699         return 0;
2700 }
2701
2702 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2703 {
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         unsigned long irqflags;
2706         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2707                                                      DE_PIPE_VBLANK(pipe);
2708
2709         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2710         ilk_enable_display_irq(dev_priv, bit);
2711         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2712
2713         return 0;
2714 }
2715
2716 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2717 {
2718         struct drm_i915_private *dev_priv = dev->dev_private;
2719         unsigned long irqflags;
2720
2721         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722         i915_enable_pipestat(dev_priv, pipe,
2723                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2724         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2725
2726         return 0;
2727 }
2728
2729 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2730 {
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         unsigned long irqflags;
2733
2734         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2735         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2736         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2737
2738         return 0;
2739 }
2740
2741 /* Called from drm generic code, passed 'crtc' which
2742  * we use as a pipe index
2743  */
2744 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2745 {
2746         struct drm_i915_private *dev_priv = dev->dev_private;
2747         unsigned long irqflags;
2748
2749         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2750         i915_disable_pipestat(dev_priv, pipe,
2751                               PIPE_VBLANK_INTERRUPT_STATUS |
2752                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2753         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2754 }
2755
2756 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2757 {
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759         unsigned long irqflags;
2760         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2761                                                      DE_PIPE_VBLANK(pipe);
2762
2763         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2764         ilk_disable_display_irq(dev_priv, bit);
2765         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766 }
2767
2768 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2769 {
2770         struct drm_i915_private *dev_priv = dev->dev_private;
2771         unsigned long irqflags;
2772
2773         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2774         i915_disable_pipestat(dev_priv, pipe,
2775                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2776         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2777 }
2778
2779 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2780 {
2781         struct drm_i915_private *dev_priv = dev->dev_private;
2782         unsigned long irqflags;
2783
2784         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2785         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2786         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2787 }
2788
2789 static bool
2790 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2791 {
2792         return (list_empty(&ring->request_list) ||
2793                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2794 }
2795
2796 static bool
2797 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2798 {
2799         if (INTEL_INFO(dev)->gen >= 8) {
2800                 return (ipehr >> 23) == 0x1c;
2801         } else {
2802                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2803                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2804                                  MI_SEMAPHORE_REGISTER);
2805         }
2806 }
2807
2808 static struct intel_engine_cs *
2809 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2810 {
2811         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2812         struct intel_engine_cs *signaller;
2813         int i;
2814
2815         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2816                 for_each_ring(signaller, dev_priv, i) {
2817                         if (ring == signaller)
2818                                 continue;
2819
2820                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2821                                 return signaller;
2822                 }
2823         } else {
2824                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2825
2826                 for_each_ring(signaller, dev_priv, i) {
2827                         if(ring == signaller)
2828                                 continue;
2829
2830                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2831                                 return signaller;
2832                 }
2833         }
2834
2835         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2836                   ring->id, ipehr, offset);
2837
2838         return NULL;
2839 }
2840
2841 static struct intel_engine_cs *
2842 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2843 {
2844         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2845         u32 cmd, ipehr, head;
2846         u64 offset = 0;
2847         int i, backwards;
2848
2849         /*
2850          * This function does not support execlist mode - any attempt to
2851          * proceed further into this function will result in a kernel panic
2852          * when dereferencing ring->buffer, which is not set up in execlist
2853          * mode.
2854          *
2855          * The correct way of doing it would be to derive the currently
2856          * executing ring buffer from the current context, which is derived
2857          * from the currently running request. Unfortunately, to get the
2858          * current request we would have to grab the struct_mutex before doing
2859          * anything else, which would be ill-advised since some other thread
2860          * might have grabbed it already and managed to hang itself, causing
2861          * the hang checker to deadlock.
2862          *
2863          * Therefore, this function does not support execlist mode in its
2864          * current form. Just return NULL and move on.
2865          */
2866         if (ring->buffer == NULL)
2867                 return NULL;
2868
2869         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2870         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2871                 return NULL;
2872
2873         /*
2874          * HEAD is likely pointing to the dword after the actual command,
2875          * so scan backwards until we find the MBOX. But limit it to just 3
2876          * or 4 dwords depending on the semaphore wait command size.
2877          * Note that we don't care about ACTHD here since that might
2878          * point at at batch, and semaphores are always emitted into the
2879          * ringbuffer itself.
2880          */
2881         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2882         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2883
2884         for (i = backwards; i; --i) {
2885                 /*
2886                  * Be paranoid and presume the hw has gone off into the wild -
2887                  * our ring is smaller than what the hardware (and hence
2888                  * HEAD_ADDR) allows. Also handles wrap-around.
2889                  */
2890                 head &= ring->buffer->size - 1;
2891
2892                 /* This here seems to blow up */
2893                 cmd = ioread32(ring->buffer->virtual_start + head);
2894                 if (cmd == ipehr)
2895                         break;
2896
2897                 head -= 4;
2898         }
2899
2900         if (!i)
2901                 return NULL;
2902
2903         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2904         if (INTEL_INFO(ring->dev)->gen >= 8) {
2905                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2906                 offset <<= 32;
2907                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2908         }
2909         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2910 }
2911
2912 static int semaphore_passed(struct intel_engine_cs *ring)
2913 {
2914         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2915         struct intel_engine_cs *signaller;
2916         u32 seqno;
2917
2918         ring->hangcheck.deadlock++;
2919
2920         signaller = semaphore_waits_for(ring, &seqno);
2921         if (signaller == NULL)
2922                 return -1;
2923
2924         /* Prevent pathological recursion due to driver bugs */
2925         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2926                 return -1;
2927
2928         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2929                 return 1;
2930
2931         /* cursory check for an unkickable deadlock */
2932         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2933             semaphore_passed(signaller) < 0)
2934                 return -1;
2935
2936         return 0;
2937 }
2938
2939 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2940 {
2941         struct intel_engine_cs *ring;
2942         int i;
2943
2944         for_each_ring(ring, dev_priv, i)
2945                 ring->hangcheck.deadlock = 0;
2946 }
2947
2948 static bool subunits_stuck(struct intel_engine_cs *ring)
2949 {
2950         u32 instdone[I915_NUM_INSTDONE_REG];
2951         bool stuck;
2952         int i;
2953
2954         if (ring->id != RCS)
2955                 return true;
2956
2957         i915_get_extra_instdone(ring->dev, instdone);
2958
2959         /* There might be unstable subunit states even when
2960          * actual head is not moving. Filter out the unstable ones by
2961          * accumulating the undone -> done transitions and only
2962          * consider those as progress.
2963          */
2964         stuck = true;
2965         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2966                 const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2967
2968                 if (tmp != ring->hangcheck.instdone[i])
2969                         stuck = false;
2970
2971                 ring->hangcheck.instdone[i] |= tmp;
2972         }
2973
2974         return stuck;
2975 }
2976
2977 static enum intel_ring_hangcheck_action
2978 head_stuck(struct intel_engine_cs *ring, u64 acthd)
2979 {
2980         if (acthd != ring->hangcheck.acthd) {
2981
2982                 /* Clear subunit states on head movement */
2983                 memset(ring->hangcheck.instdone, 0,
2984                        sizeof(ring->hangcheck.instdone));
2985
2986                 if (acthd > ring->hangcheck.max_acthd) {
2987                         ring->hangcheck.max_acthd = acthd;
2988                         return HANGCHECK_ACTIVE;
2989                 }
2990
2991                 return HANGCHECK_ACTIVE_LOOP;
2992         }
2993
2994         if (!subunits_stuck(ring))
2995                 return HANGCHECK_ACTIVE;
2996
2997         return HANGCHECK_HUNG;
2998 }
2999
3000 static enum intel_ring_hangcheck_action
3001 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3002 {
3003         struct drm_device *dev = ring->dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         enum intel_ring_hangcheck_action ha;
3006         u32 tmp;
3007
3008         ha = head_stuck(ring, acthd);
3009         if (ha != HANGCHECK_HUNG)
3010                 return ha;
3011
3012         if (IS_GEN2(dev))
3013                 return HANGCHECK_HUNG;
3014
3015         /* Is the chip hanging on a WAIT_FOR_EVENT?
3016          * If so we can simply poke the RB_WAIT bit
3017          * and break the hang. This should work on
3018          * all but the second generation chipsets.
3019          */
3020         tmp = I915_READ_CTL(ring);
3021         if (tmp & RING_WAIT) {
3022                 i915_handle_error(dev, false,
3023                                   "Kicking stuck wait on %s",
3024                                   ring->name);
3025                 I915_WRITE_CTL(ring, tmp);
3026                 return HANGCHECK_KICK;
3027         }
3028
3029         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3030                 switch (semaphore_passed(ring)) {
3031                 default:
3032                         return HANGCHECK_HUNG;
3033                 case 1:
3034                         i915_handle_error(dev, false,
3035                                           "Kicking stuck semaphore on %s",
3036                                           ring->name);
3037                         I915_WRITE_CTL(ring, tmp);
3038                         return HANGCHECK_KICK;
3039                 case 0:
3040                         return HANGCHECK_WAIT;
3041                 }
3042         }
3043
3044         return HANGCHECK_HUNG;
3045 }
3046
3047 /*
3048  * This is called when the chip hasn't reported back with completed
3049  * batchbuffers in a long time. We keep track per ring seqno progress and
3050  * if there are no progress, hangcheck score for that ring is increased.
3051  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3052  * we kick the ring. If we see no progress on three subsequent calls
3053  * we assume chip is wedged and try to fix it by resetting the chip.
3054  */
3055 static void i915_hangcheck_elapsed(struct work_struct *work)
3056 {
3057         struct drm_i915_private *dev_priv =
3058                 container_of(work, typeof(*dev_priv),
3059                              gpu_error.hangcheck_work.work);
3060         struct drm_device *dev = dev_priv->dev;
3061         struct intel_engine_cs *ring;
3062         int i;
3063         int busy_count = 0, rings_hung = 0;
3064         bool stuck[I915_NUM_RINGS] = { 0 };
3065 #define BUSY 1
3066 #define KICK 5
3067 #define HUNG 20
3068
3069         if (!i915.enable_hangcheck)
3070                 return;
3071
3072         /*
3073          * The hangcheck work is synced during runtime suspend, we don't
3074          * require a wakeref. TODO: instead of disabling the asserts make
3075          * sure that we hold a reference when this work is running.
3076          */
3077         DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3078
3079         /* As enabling the GPU requires fairly extensive mmio access,
3080          * periodically arm the mmio checker to see if we are triggering
3081          * any invalid access.
3082          */
3083         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3084
3085         for_each_ring(ring, dev_priv, i) {
3086                 u64 acthd;
3087                 u32 seqno;
3088                 bool busy = true;
3089
3090                 semaphore_clear_deadlocks(dev_priv);
3091
3092                 seqno = ring->get_seqno(ring, false);
3093                 acthd = intel_ring_get_active_head(ring);
3094
3095                 if (ring->hangcheck.seqno == seqno) {
3096                         if (ring_idle(ring, seqno)) {
3097                                 ring->hangcheck.action = HANGCHECK_IDLE;
3098
3099                                 if (waitqueue_active(&ring->irq_queue)) {
3100                                         /* Issue a wake-up to catch stuck h/w. */
3101                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3102                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3103                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3104                                                                   ring->name);
3105                                                 else
3106                                                         DRM_INFO("Fake missed irq on %s\n",
3107                                                                  ring->name);
3108                                                 wake_up_all(&ring->irq_queue);
3109                                         }
3110                                         /* Safeguard against driver failure */
3111                                         ring->hangcheck.score += BUSY;
3112                                 } else
3113                                         busy = false;
3114                         } else {
3115                                 /* We always increment the hangcheck score
3116                                  * if the ring is busy and still processing
3117                                  * the same request, so that no single request
3118                                  * can run indefinitely (such as a chain of
3119                                  * batches). The only time we do not increment
3120                                  * the hangcheck score on this ring, if this
3121                                  * ring is in a legitimate wait for another
3122                                  * ring. In that case the waiting ring is a
3123                                  * victim and we want to be sure we catch the
3124                                  * right culprit. Then every time we do kick
3125                                  * the ring, add a small increment to the
3126                                  * score so that we can catch a batch that is
3127                                  * being repeatedly kicked and so responsible
3128                                  * for stalling the machine.
3129                                  */
3130                                 ring->hangcheck.action = ring_stuck(ring,
3131                                                                     acthd);
3132
3133                                 switch (ring->hangcheck.action) {
3134                                 case HANGCHECK_IDLE:
3135                                 case HANGCHECK_WAIT:
3136                                 case HANGCHECK_ACTIVE:
3137                                         break;
3138                                 case HANGCHECK_ACTIVE_LOOP:
3139                                         ring->hangcheck.score += BUSY;
3140                                         break;
3141                                 case HANGCHECK_KICK:
3142                                         ring->hangcheck.score += KICK;
3143                                         break;
3144                                 case HANGCHECK_HUNG:
3145                                         ring->hangcheck.score += HUNG;
3146                                         stuck[i] = true;
3147                                         break;
3148                                 }
3149                         }
3150                 } else {
3151                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3152
3153                         /* Gradually reduce the count so that we catch DoS
3154                          * attempts across multiple batches.
3155                          */
3156                         if (ring->hangcheck.score > 0)
3157                                 ring->hangcheck.score--;
3158
3159                         /* Clear head and subunit states on seqno movement */
3160                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3161
3162                         memset(ring->hangcheck.instdone, 0,
3163                                sizeof(ring->hangcheck.instdone));
3164                 }
3165
3166                 ring->hangcheck.seqno = seqno;
3167                 ring->hangcheck.acthd = acthd;
3168                 busy_count += busy;
3169         }
3170
3171         for_each_ring(ring, dev_priv, i) {
3172                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3173                         DRM_INFO("%s on %s\n",
3174                                  stuck[i] ? "stuck" : "no progress",
3175                                  ring->name);
3176                         rings_hung++;
3177                 }
3178         }
3179
3180         if (rings_hung) {
3181                 i915_handle_error(dev, true, "Ring hung");
3182                 goto out;
3183         }
3184
3185         if (busy_count)
3186                 /* Reset timer case chip hangs without another request
3187                  * being added */
3188                 i915_queue_hangcheck(dev);
3189
3190 out:
3191         ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3192 }
3193
3194 void i915_queue_hangcheck(struct drm_device *dev)
3195 {
3196         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3197
3198         if (!i915.enable_hangcheck)
3199                 return;
3200
3201         /* Don't continually defer the hangcheck so that it is always run at
3202          * least once after work has been scheduled on any ring. Otherwise,
3203          * we will ignore a hung ring if a second ring is kept busy.
3204          */
3205
3206         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3207                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3208 }
3209
3210 static void ibx_irq_reset(struct drm_device *dev)
3211 {
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213
3214         if (HAS_PCH_NOP(dev))
3215                 return;
3216
3217         GEN5_IRQ_RESET(SDE);
3218
3219         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3220                 I915_WRITE(SERR_INT, 0xffffffff);
3221 }
3222
3223 /*
3224  * SDEIER is also touched by the interrupt handler to work around missed PCH
3225  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3226  * instead we unconditionally enable all PCH interrupt sources here, but then
3227  * only unmask them as needed with SDEIMR.
3228  *
3229  * This function needs to be called before interrupts are enabled.
3230  */
3231 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3232 {
3233         struct drm_i915_private *dev_priv = dev->dev_private;
3234
3235         if (HAS_PCH_NOP(dev))
3236                 return;
3237
3238         WARN_ON(I915_READ(SDEIER) != 0);
3239         I915_WRITE(SDEIER, 0xffffffff);
3240         POSTING_READ(SDEIER);
3241 }
3242
3243 static void gen5_gt_irq_reset(struct drm_device *dev)
3244 {
3245         struct drm_i915_private *dev_priv = dev->dev_private;
3246
3247         GEN5_IRQ_RESET(GT);
3248         if (INTEL_INFO(dev)->gen >= 6)
3249                 GEN5_IRQ_RESET(GEN6_PM);
3250 }
3251
3252 /* drm_dma.h hooks
3253 */
3254 static void ironlake_irq_reset(struct drm_device *dev)
3255 {
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257
3258         I915_WRITE(HWSTAM, 0xffffffff);
3259
3260         GEN5_IRQ_RESET(DE);
3261         if (IS_GEN7(dev))
3262                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3263
3264         gen5_gt_irq_reset(dev);
3265
3266         ibx_irq_reset(dev);
3267 }
3268
3269 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3270 {
3271         enum pipe pipe;
3272
3273         i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3274         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3275
3276         for_each_pipe(dev_priv, pipe)
3277                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3278
3279         GEN5_IRQ_RESET(VLV_);
3280 }
3281
3282 static void valleyview_irq_preinstall(struct drm_device *dev)
3283 {
3284         struct drm_i915_private *dev_priv = dev->dev_private;
3285
3286         /* VLV magic */
3287         I915_WRITE(VLV_IMR, 0);
3288         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3289         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3290         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3291
3292         gen5_gt_irq_reset(dev);
3293
3294         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3295
3296         vlv_display_irq_reset(dev_priv);
3297 }
3298
3299 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3300 {
3301         GEN8_IRQ_RESET_NDX(GT, 0);
3302         GEN8_IRQ_RESET_NDX(GT, 1);
3303         GEN8_IRQ_RESET_NDX(GT, 2);
3304         GEN8_IRQ_RESET_NDX(GT, 3);
3305 }
3306
3307 static void gen8_irq_reset(struct drm_device *dev)
3308 {
3309         struct drm_i915_private *dev_priv = dev->dev_private;
3310         int pipe;
3311
3312         I915_WRITE(GEN8_MASTER_IRQ, 0);
3313         POSTING_READ(GEN8_MASTER_IRQ);
3314
3315         gen8_gt_irq_reset(dev_priv);
3316
3317         for_each_pipe(dev_priv, pipe)
3318                 if (intel_display_power_is_enabled(dev_priv,
3319                                                    POWER_DOMAIN_PIPE(pipe)))
3320                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3321
3322         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3323         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3324         GEN5_IRQ_RESET(GEN8_PCU_);
3325
3326         if (HAS_PCH_SPLIT(dev))
3327                 ibx_irq_reset(dev);
3328 }
3329
3330 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3331                                      unsigned int pipe_mask)
3332 {
3333         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3334
3335         spin_lock_irq(&dev_priv->irq_lock);
3336         if (pipe_mask & 1 << PIPE_A)
3337                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3338                                   dev_priv->de_irq_mask[PIPE_A],
3339                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3340         if (pipe_mask & 1 << PIPE_B)
3341                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3342                                   dev_priv->de_irq_mask[PIPE_B],
3343                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3344         if (pipe_mask & 1 << PIPE_C)
3345                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3346                                   dev_priv->de_irq_mask[PIPE_C],
3347                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3348         spin_unlock_irq(&dev_priv->irq_lock);
3349 }
3350
3351 static void cherryview_irq_preinstall(struct drm_device *dev)
3352 {
3353         struct drm_i915_private *dev_priv = dev->dev_private;
3354
3355         I915_WRITE(GEN8_MASTER_IRQ, 0);
3356         POSTING_READ(GEN8_MASTER_IRQ);
3357
3358         gen8_gt_irq_reset(dev_priv);
3359
3360         GEN5_IRQ_RESET(GEN8_PCU_);
3361
3362         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3363
3364         vlv_display_irq_reset(dev_priv);
3365 }
3366
3367 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3368                                   const u32 hpd[HPD_NUM_PINS])
3369 {
3370         struct drm_i915_private *dev_priv = to_i915(dev);
3371         struct intel_encoder *encoder;
3372         u32 enabled_irqs = 0;
3373
3374         for_each_intel_encoder(dev, encoder)
3375                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3376                         enabled_irqs |= hpd[encoder->hpd_pin];
3377
3378         return enabled_irqs;
3379 }
3380
3381 static void ibx_hpd_irq_setup(struct drm_device *dev)
3382 {
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         u32 hotplug_irqs, hotplug, enabled_irqs;
3385
3386         if (HAS_PCH_IBX(dev)) {
3387                 hotplug_irqs = SDE_HOTPLUG_MASK;
3388                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3389         } else {
3390                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3391                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3392         }
3393
3394         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3395
3396         /*
3397          * Enable digital hotplug on the PCH, and configure the DP short pulse
3398          * duration to 2ms (which is the minimum in the Display Port spec).
3399          * The pulse duration bits are reserved on LPT+.
3400          */
3401         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3402         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3403         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3404         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3405         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3406         /*
3407          * When CPU and PCH are on the same package, port A
3408          * HPD must be enabled in both north and south.
3409          */
3410         if (HAS_PCH_LPT_LP(dev))
3411                 hotplug |= PORTA_HOTPLUG_ENABLE;
3412         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3413 }
3414
3415 static void spt_hpd_irq_setup(struct drm_device *dev)
3416 {
3417         struct drm_i915_private *dev_priv = dev->dev_private;
3418         u32 hotplug_irqs, hotplug, enabled_irqs;
3419
3420         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3421         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3422
3423         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3424
3425         /* Enable digital hotplug on the PCH */
3426         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3428                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3429         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3430
3431         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3432         hotplug |= PORTE_HOTPLUG_ENABLE;
3433         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3434 }
3435
3436 static void ilk_hpd_irq_setup(struct drm_device *dev)
3437 {
3438         struct drm_i915_private *dev_priv = dev->dev_private;
3439         u32 hotplug_irqs, hotplug, enabled_irqs;
3440
3441         if (INTEL_INFO(dev)->gen >= 8) {
3442                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3443                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3444
3445                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3446         } else if (INTEL_INFO(dev)->gen >= 7) {
3447                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3448                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3449
3450                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3451         } else {
3452                 hotplug_irqs = DE_DP_A_HOTPLUG;
3453                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3454
3455                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3456         }
3457
3458         /*
3459          * Enable digital hotplug on the CPU, and configure the DP short pulse
3460          * duration to 2ms (which is the minimum in the Display Port spec)
3461          * The pulse duration bits are reserved on HSW+.
3462          */
3463         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3464         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3465         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3466         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3467
3468         ibx_hpd_irq_setup(dev);
3469 }
3470
3471 static void bxt_hpd_irq_setup(struct drm_device *dev)
3472 {
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474         u32 hotplug_irqs, hotplug, enabled_irqs;
3475
3476         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3477         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3478
3479         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3480
3481         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3482         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3483                 PORTA_HOTPLUG_ENABLE;
3484         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3485 }
3486
3487 static void ibx_irq_postinstall(struct drm_device *dev)
3488 {
3489         struct drm_i915_private *dev_priv = dev->dev_private;
3490         u32 mask;
3491
3492         if (HAS_PCH_NOP(dev))
3493                 return;
3494
3495         if (HAS_PCH_IBX(dev))
3496                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3497         else
3498                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3499
3500         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3501         I915_WRITE(SDEIMR, ~mask);
3502 }
3503
3504 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507         u32 pm_irqs, gt_irqs;
3508
3509         pm_irqs = gt_irqs = 0;
3510
3511         dev_priv->gt_irq_mask = ~0;
3512         if (HAS_L3_DPF(dev)) {
3513                 /* L3 parity interrupt is always unmasked. */
3514                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3515                 gt_irqs |= GT_PARITY_ERROR(dev);
3516         }
3517
3518         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3519         if (IS_GEN5(dev)) {
3520                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3521                            ILK_BSD_USER_INTERRUPT;
3522         } else {
3523                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3524         }
3525
3526         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3527
3528         if (INTEL_INFO(dev)->gen >= 6) {
3529                 /*
3530                  * RPS interrupts will get enabled/disabled on demand when RPS
3531                  * itself is enabled/disabled.
3532                  */
3533                 if (HAS_VEBOX(dev))
3534                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3535
3536                 dev_priv->pm_irq_mask = 0xffffffff;
3537                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3538         }
3539 }
3540
3541 static int ironlake_irq_postinstall(struct drm_device *dev)
3542 {
3543         struct drm_i915_private *dev_priv = dev->dev_private;
3544         u32 display_mask, extra_mask;
3545
3546         if (INTEL_INFO(dev)->gen >= 7) {
3547                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3548                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3549                                 DE_PLANEB_FLIP_DONE_IVB |
3550                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3551                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3552                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3553                               DE_DP_A_HOTPLUG_IVB);
3554         } else {
3555                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3556                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3557                                 DE_AUX_CHANNEL_A |
3558                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3559                                 DE_POISON);
3560                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3561                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3562                               DE_DP_A_HOTPLUG);
3563         }
3564
3565         dev_priv->irq_mask = ~display_mask;
3566
3567         I915_WRITE(HWSTAM, 0xeffe);
3568
3569         ibx_irq_pre_postinstall(dev);
3570
3571         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3572
3573         gen5_gt_irq_postinstall(dev);
3574
3575         ibx_irq_postinstall(dev);
3576
3577         if (IS_IRONLAKE_M(dev)) {
3578                 /* Enable PCU event interrupts
3579                  *
3580                  * spinlocking not required here for correctness since interrupt
3581                  * setup is guaranteed to run in single-threaded context. But we
3582                  * need it to make the assert_spin_locked happy. */
3583                 spin_lock_irq(&dev_priv->irq_lock);
3584                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3585                 spin_unlock_irq(&dev_priv->irq_lock);
3586         }
3587
3588         return 0;
3589 }
3590
3591 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3592 {
3593         u32 pipestat_mask;
3594         u32 iir_mask;
3595         enum pipe pipe;
3596
3597         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3598                         PIPE_FIFO_UNDERRUN_STATUS;
3599
3600         for_each_pipe(dev_priv, pipe)
3601                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3602         POSTING_READ(PIPESTAT(PIPE_A));
3603
3604         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3605                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3606
3607         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3608         for_each_pipe(dev_priv, pipe)
3609                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3610
3611         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3612                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3613                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3614         if (IS_CHERRYVIEW(dev_priv))
3615                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3616         dev_priv->irq_mask &= ~iir_mask;
3617
3618         I915_WRITE(VLV_IIR, iir_mask);
3619         I915_WRITE(VLV_IIR, iir_mask);
3620         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3621         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3622         POSTING_READ(VLV_IMR);
3623 }
3624
3625 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3626 {
3627         u32 pipestat_mask;
3628         u32 iir_mask;
3629         enum pipe pipe;
3630
3631         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3632                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3633                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3634         if (IS_CHERRYVIEW(dev_priv))
3635                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3636
3637         dev_priv->irq_mask |= iir_mask;
3638         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3639         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3640         I915_WRITE(VLV_IIR, iir_mask);
3641         I915_WRITE(VLV_IIR, iir_mask);
3642         POSTING_READ(VLV_IIR);
3643
3644         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3645                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3646
3647         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3648         for_each_pipe(dev_priv, pipe)
3649                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3650
3651         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3652                         PIPE_FIFO_UNDERRUN_STATUS;
3653
3654         for_each_pipe(dev_priv, pipe)
3655                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3656         POSTING_READ(PIPESTAT(PIPE_A));
3657 }
3658
3659 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3660 {
3661         assert_spin_locked(&dev_priv->irq_lock);
3662
3663         if (dev_priv->display_irqs_enabled)
3664                 return;
3665
3666         dev_priv->display_irqs_enabled = true;
3667
3668         if (intel_irqs_enabled(dev_priv))
3669                 valleyview_display_irqs_install(dev_priv);
3670 }
3671
3672 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3673 {
3674         assert_spin_locked(&dev_priv->irq_lock);
3675
3676         if (!dev_priv->display_irqs_enabled)
3677                 return;
3678
3679         dev_priv->display_irqs_enabled = false;
3680
3681         if (intel_irqs_enabled(dev_priv))
3682                 valleyview_display_irqs_uninstall(dev_priv);
3683 }
3684
3685 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3686 {
3687         dev_priv->irq_mask = ~0;
3688
3689         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3690         POSTING_READ(PORT_HOTPLUG_EN);
3691
3692         I915_WRITE(VLV_IIR, 0xffffffff);
3693         I915_WRITE(VLV_IIR, 0xffffffff);
3694         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3695         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3696         POSTING_READ(VLV_IMR);
3697
3698         /* Interrupt setup is already guaranteed to be single-threaded, this is
3699          * just to make the assert_spin_locked check happy. */
3700         spin_lock_irq(&dev_priv->irq_lock);
3701         if (dev_priv->display_irqs_enabled)
3702                 valleyview_display_irqs_install(dev_priv);
3703         spin_unlock_irq(&dev_priv->irq_lock);
3704 }
3705
3706 static int valleyview_irq_postinstall(struct drm_device *dev)
3707 {
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710         vlv_display_irq_postinstall(dev_priv);
3711
3712         gen5_gt_irq_postinstall(dev);
3713
3714         /* ack & enable invalid PTE error interrupts */
3715 #if 0 /* FIXME: add support to irq handler for checking these bits */
3716         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3717         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3718 #endif
3719
3720         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3721
3722         return 0;
3723 }
3724
3725 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3726 {
3727         /* These are interrupts we'll toggle with the ring mask register */
3728         uint32_t gt_interrupts[] = {
3729                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3730                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3731                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3732                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3733                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3734                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3735                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3736                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3737                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3738                 0,
3739                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3740                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3741                 };
3742
3743         dev_priv->pm_irq_mask = 0xffffffff;
3744         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3745         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3746         /*
3747          * RPS interrupts will get enabled/disabled on demand when RPS itself
3748          * is enabled/disabled.
3749          */
3750         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3751         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3752 }
3753
3754 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3755 {
3756         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3757         uint32_t de_pipe_enables;
3758         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3759         u32 de_port_enables;
3760         enum pipe pipe;
3761
3762         if (INTEL_INFO(dev_priv)->gen >= 9) {
3763                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3764                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3765                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3766                                   GEN9_AUX_CHANNEL_D;
3767                 if (IS_BROXTON(dev_priv))
3768                         de_port_masked |= BXT_DE_PORT_GMBUS;
3769         } else {
3770                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3771                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3772         }
3773
3774         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3775                                            GEN8_PIPE_FIFO_UNDERRUN;
3776
3777         de_port_enables = de_port_masked;
3778         if (IS_BROXTON(dev_priv))
3779                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3780         else if (IS_BROADWELL(dev_priv))
3781                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3782
3783         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3784         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3785         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3786
3787         for_each_pipe(dev_priv, pipe)
3788                 if (intel_display_power_is_enabled(dev_priv,
3789                                 POWER_DOMAIN_PIPE(pipe)))
3790                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3791                                           dev_priv->de_irq_mask[pipe],
3792                                           de_pipe_enables);
3793
3794         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3795 }
3796
3797 static int gen8_irq_postinstall(struct drm_device *dev)
3798 {
3799         struct drm_i915_private *dev_priv = dev->dev_private;
3800
3801         if (HAS_PCH_SPLIT(dev))
3802                 ibx_irq_pre_postinstall(dev);
3803
3804         gen8_gt_irq_postinstall(dev_priv);
3805         gen8_de_irq_postinstall(dev_priv);
3806
3807         if (HAS_PCH_SPLIT(dev))
3808                 ibx_irq_postinstall(dev);
3809
3810         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3811         POSTING_READ(GEN8_MASTER_IRQ);
3812
3813         return 0;
3814 }
3815
3816 static int cherryview_irq_postinstall(struct drm_device *dev)
3817 {
3818         struct drm_i915_private *dev_priv = dev->dev_private;
3819
3820         vlv_display_irq_postinstall(dev_priv);
3821
3822         gen8_gt_irq_postinstall(dev_priv);
3823
3824         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3825         POSTING_READ(GEN8_MASTER_IRQ);
3826
3827         return 0;
3828 }
3829
3830 static void gen8_irq_uninstall(struct drm_device *dev)
3831 {
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833
3834         if (!dev_priv)
3835                 return;
3836
3837         gen8_irq_reset(dev);
3838 }
3839
3840 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3841 {
3842         /* Interrupt setup is already guaranteed to be single-threaded, this is
3843          * just to make the assert_spin_locked check happy. */
3844         spin_lock_irq(&dev_priv->irq_lock);
3845         if (dev_priv->display_irqs_enabled)
3846                 valleyview_display_irqs_uninstall(dev_priv);
3847         spin_unlock_irq(&dev_priv->irq_lock);
3848
3849         vlv_display_irq_reset(dev_priv);
3850
3851         dev_priv->irq_mask = ~0;
3852 }
3853
3854 static void valleyview_irq_uninstall(struct drm_device *dev)
3855 {
3856         struct drm_i915_private *dev_priv = dev->dev_private;
3857
3858         if (!dev_priv)
3859                 return;
3860
3861         I915_WRITE(VLV_MASTER_IER, 0);
3862
3863         gen5_gt_irq_reset(dev);
3864
3865         I915_WRITE(HWSTAM, 0xffffffff);
3866
3867         vlv_display_irq_uninstall(dev_priv);
3868 }
3869
3870 static void cherryview_irq_uninstall(struct drm_device *dev)
3871 {
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873
3874         if (!dev_priv)
3875                 return;
3876
3877         I915_WRITE(GEN8_MASTER_IRQ, 0);
3878         POSTING_READ(GEN8_MASTER_IRQ);
3879
3880         gen8_gt_irq_reset(dev_priv);
3881
3882         GEN5_IRQ_RESET(GEN8_PCU_);
3883
3884         vlv_display_irq_uninstall(dev_priv);
3885 }
3886
3887 static void ironlake_irq_uninstall(struct drm_device *dev)
3888 {
3889         struct drm_i915_private *dev_priv = dev->dev_private;
3890
3891         if (!dev_priv)
3892                 return;
3893
3894         ironlake_irq_reset(dev);
3895 }
3896
3897 static void i8xx_irq_preinstall(struct drm_device * dev)
3898 {
3899         struct drm_i915_private *dev_priv = dev->dev_private;
3900         int pipe;
3901
3902         for_each_pipe(dev_priv, pipe)
3903                 I915_WRITE(PIPESTAT(pipe), 0);
3904         I915_WRITE16(IMR, 0xffff);
3905         I915_WRITE16(IER, 0x0);
3906         POSTING_READ16(IER);
3907 }
3908
3909 static int i8xx_irq_postinstall(struct drm_device *dev)
3910 {
3911         struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913         I915_WRITE16(EMR,
3914                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3915
3916         /* Unmask the interrupts that we always want on. */
3917         dev_priv->irq_mask =
3918                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3919                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3920                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3921                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3922         I915_WRITE16(IMR, dev_priv->irq_mask);
3923
3924         I915_WRITE16(IER,
3925                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3926                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3927                      I915_USER_INTERRUPT);
3928         POSTING_READ16(IER);
3929
3930         /* Interrupt setup is already guaranteed to be single-threaded, this is
3931          * just to make the assert_spin_locked check happy. */
3932         spin_lock_irq(&dev_priv->irq_lock);
3933         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3934         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3935         spin_unlock_irq(&dev_priv->irq_lock);
3936
3937         return 0;
3938 }
3939
3940 /*
3941  * Returns true when a page flip has completed.
3942  */
3943 static bool i8xx_handle_vblank(struct drm_device *dev,
3944                                int plane, int pipe, u32 iir)
3945 {
3946         struct drm_i915_private *dev_priv = dev->dev_private;
3947         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3948
3949         if (!intel_pipe_handle_vblank(dev, pipe))
3950                 return false;
3951
3952         if ((iir & flip_pending) == 0)
3953                 goto check_page_flip;
3954
3955         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3956          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3957          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3958          * the flip is completed (no longer pending). Since this doesn't raise
3959          * an interrupt per se, we watch for the change at vblank.
3960          */
3961         if (I915_READ16(ISR) & flip_pending)
3962                 goto check_page_flip;
3963
3964         intel_prepare_page_flip(dev, plane);
3965         intel_finish_page_flip(dev, pipe);
3966         return true;
3967
3968 check_page_flip:
3969         intel_check_page_flip(dev, pipe);
3970         return false;
3971 }
3972
3973 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3974 {
3975         struct drm_device *dev = arg;
3976         struct drm_i915_private *dev_priv = dev->dev_private;
3977         u16 iir, new_iir;
3978         u32 pipe_stats[2];
3979         int pipe;
3980         u16 flip_mask =
3981                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3982                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3983         irqreturn_t ret;
3984
3985         if (!intel_irqs_enabled(dev_priv))
3986                 return IRQ_NONE;
3987
3988         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3989         disable_rpm_wakeref_asserts(dev_priv);
3990
3991         ret = IRQ_NONE;
3992         iir = I915_READ16(IIR);
3993         if (iir == 0)
3994                 goto out;
3995
3996         while (iir & ~flip_mask) {
3997                 /* Can't rely on pipestat interrupt bit in iir as it might
3998                  * have been cleared after the pipestat interrupt was received.
3999                  * It doesn't set the bit in iir again, but it still produces
4000                  * interrupts (for non-MSI).
4001                  */
4002                 spin_lock(&dev_priv->irq_lock);
4003                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4004                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4005
4006                 for_each_pipe(dev_priv, pipe) {
4007                         i915_reg_t reg = PIPESTAT(pipe);
4008                         pipe_stats[pipe] = I915_READ(reg);
4009
4010                         /*
4011                          * Clear the PIPE*STAT regs before the IIR
4012                          */
4013                         if (pipe_stats[pipe] & 0x8000ffff)
4014                                 I915_WRITE(reg, pipe_stats[pipe]);
4015                 }
4016                 spin_unlock(&dev_priv->irq_lock);
4017
4018                 I915_WRITE16(IIR, iir & ~flip_mask);
4019                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4020
4021                 if (iir & I915_USER_INTERRUPT)
4022                         notify_ring(&dev_priv->ring[RCS]);
4023
4024                 for_each_pipe(dev_priv, pipe) {
4025                         int plane = pipe;
4026                         if (HAS_FBC(dev))
4027                                 plane = !plane;
4028
4029                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4030                             i8xx_handle_vblank(dev, plane, pipe, iir))
4031                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4032
4033                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4034                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4035
4036                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4037                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4038                                                                     pipe);
4039                 }
4040
4041                 iir = new_iir;
4042         }
4043         ret = IRQ_HANDLED;
4044
4045 out:
4046         enable_rpm_wakeref_asserts(dev_priv);
4047
4048         return ret;
4049 }
4050
4051 static void i8xx_irq_uninstall(struct drm_device * dev)
4052 {
4053         struct drm_i915_private *dev_priv = dev->dev_private;
4054         int pipe;
4055
4056         for_each_pipe(dev_priv, pipe) {
4057                 /* Clear enable bits; then clear status bits */
4058                 I915_WRITE(PIPESTAT(pipe), 0);
4059                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4060         }
4061         I915_WRITE16(IMR, 0xffff);
4062         I915_WRITE16(IER, 0x0);
4063         I915_WRITE16(IIR, I915_READ16(IIR));
4064 }
4065
4066 static void i915_irq_preinstall(struct drm_device * dev)
4067 {
4068         struct drm_i915_private *dev_priv = dev->dev_private;
4069         int pipe;
4070
4071         if (I915_HAS_HOTPLUG(dev)) {
4072                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4073                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4074         }
4075
4076         I915_WRITE16(HWSTAM, 0xeffe);
4077         for_each_pipe(dev_priv, pipe)
4078                 I915_WRITE(PIPESTAT(pipe), 0);
4079         I915_WRITE(IMR, 0xffffffff);
4080         I915_WRITE(IER, 0x0);
4081         POSTING_READ(IER);
4082 }
4083
4084 static int i915_irq_postinstall(struct drm_device *dev)
4085 {
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         u32 enable_mask;
4088
4089         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4090
4091         /* Unmask the interrupts that we always want on. */
4092         dev_priv->irq_mask =
4093                 ~(I915_ASLE_INTERRUPT |
4094                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4095                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4096                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4097                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4098
4099         enable_mask =
4100                 I915_ASLE_INTERRUPT |
4101                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4102                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4103                 I915_USER_INTERRUPT;
4104
4105         if (I915_HAS_HOTPLUG(dev)) {
4106                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4107                 POSTING_READ(PORT_HOTPLUG_EN);
4108
4109                 /* Enable in IER... */
4110                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4111                 /* and unmask in IMR */
4112                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4113         }
4114
4115         I915_WRITE(IMR, dev_priv->irq_mask);
4116         I915_WRITE(IER, enable_mask);
4117         POSTING_READ(IER);
4118
4119         i915_enable_asle_pipestat(dev);
4120
4121         /* Interrupt setup is already guaranteed to be single-threaded, this is
4122          * just to make the assert_spin_locked check happy. */
4123         spin_lock_irq(&dev_priv->irq_lock);
4124         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4125         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4126         spin_unlock_irq(&dev_priv->irq_lock);
4127
4128         return 0;
4129 }
4130
4131 /*
4132  * Returns true when a page flip has completed.
4133  */
4134 static bool i915_handle_vblank(struct drm_device *dev,
4135                                int plane, int pipe, u32 iir)
4136 {
4137         struct drm_i915_private *dev_priv = dev->dev_private;
4138         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4139
4140         if (!intel_pipe_handle_vblank(dev, pipe))
4141                 return false;
4142
4143         if ((iir & flip_pending) == 0)
4144                 goto check_page_flip;
4145
4146         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4147          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4148          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4149          * the flip is completed (no longer pending). Since this doesn't raise
4150          * an interrupt per se, we watch for the change at vblank.
4151          */
4152         if (I915_READ(ISR) & flip_pending)
4153                 goto check_page_flip;
4154
4155         intel_prepare_page_flip(dev, plane);
4156         intel_finish_page_flip(dev, pipe);
4157         return true;
4158
4159 check_page_flip:
4160         intel_check_page_flip(dev, pipe);
4161         return false;
4162 }
4163
4164 static irqreturn_t i915_irq_handler(int irq, void *arg)
4165 {
4166         struct drm_device *dev = arg;
4167         struct drm_i915_private *dev_priv = dev->dev_private;
4168         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4169         u32 flip_mask =
4170                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4171                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4172         int pipe, ret = IRQ_NONE;
4173
4174         if (!intel_irqs_enabled(dev_priv))
4175                 return IRQ_NONE;
4176
4177         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4178         disable_rpm_wakeref_asserts(dev_priv);
4179
4180         iir = I915_READ(IIR);
4181         do {
4182                 bool irq_received = (iir & ~flip_mask) != 0;
4183                 bool blc_event = false;
4184
4185                 /* Can't rely on pipestat interrupt bit in iir as it might
4186                  * have been cleared after the pipestat interrupt was received.
4187                  * It doesn't set the bit in iir again, but it still produces
4188                  * interrupts (for non-MSI).
4189                  */
4190                 spin_lock(&dev_priv->irq_lock);
4191                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4192                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4193
4194                 for_each_pipe(dev_priv, pipe) {
4195                         i915_reg_t reg = PIPESTAT(pipe);
4196                         pipe_stats[pipe] = I915_READ(reg);
4197
4198                         /* Clear the PIPE*STAT regs before the IIR */
4199                         if (pipe_stats[pipe] & 0x8000ffff) {
4200                                 I915_WRITE(reg, pipe_stats[pipe]);
4201                                 irq_received = true;
4202                         }
4203                 }
4204                 spin_unlock(&dev_priv->irq_lock);
4205
4206                 if (!irq_received)
4207                         break;
4208
4209                 /* Consume port.  Then clear IIR or we'll miss events */
4210                 if (I915_HAS_HOTPLUG(dev) &&
4211                     iir & I915_DISPLAY_PORT_INTERRUPT)
4212                         i9xx_hpd_irq_handler(dev);
4213
4214                 I915_WRITE(IIR, iir & ~flip_mask);
4215                 new_iir = I915_READ(IIR); /* Flush posted writes */
4216
4217                 if (iir & I915_USER_INTERRUPT)
4218                         notify_ring(&dev_priv->ring[RCS]);
4219
4220                 for_each_pipe(dev_priv, pipe) {
4221                         int plane = pipe;
4222                         if (HAS_FBC(dev))
4223                                 plane = !plane;
4224
4225                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4226                             i915_handle_vblank(dev, plane, pipe, iir))
4227                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4228
4229                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4230                                 blc_event = true;
4231
4232                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4233                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4234
4235                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4236                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4237                                                                     pipe);
4238                 }
4239
4240                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4241                         intel_opregion_asle_intr(dev);
4242
4243                 /* With MSI, interrupts are only generated when iir
4244                  * transitions from zero to nonzero.  If another bit got
4245                  * set while we were handling the existing iir bits, then
4246                  * we would never get another interrupt.
4247                  *
4248                  * This is fine on non-MSI as well, as if we hit this path
4249                  * we avoid exiting the interrupt handler only to generate
4250                  * another one.
4251                  *
4252                  * Note that for MSI this could cause a stray interrupt report
4253                  * if an interrupt landed in the time between writing IIR and
4254                  * the posting read.  This should be rare enough to never
4255                  * trigger the 99% of 100,000 interrupts test for disabling
4256                  * stray interrupts.
4257                  */
4258                 ret = IRQ_HANDLED;
4259                 iir = new_iir;
4260         } while (iir & ~flip_mask);
4261
4262         enable_rpm_wakeref_asserts(dev_priv);
4263
4264         return ret;
4265 }
4266
4267 static void i915_irq_uninstall(struct drm_device * dev)
4268 {
4269         struct drm_i915_private *dev_priv = dev->dev_private;
4270         int pipe;
4271
4272         if (I915_HAS_HOTPLUG(dev)) {
4273                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4274                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4275         }
4276
4277         I915_WRITE16(HWSTAM, 0xffff);
4278         for_each_pipe(dev_priv, pipe) {
4279                 /* Clear enable bits; then clear status bits */
4280                 I915_WRITE(PIPESTAT(pipe), 0);
4281                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4282         }
4283         I915_WRITE(IMR, 0xffffffff);
4284         I915_WRITE(IER, 0x0);
4285
4286         I915_WRITE(IIR, I915_READ(IIR));
4287 }
4288
4289 static void i965_irq_preinstall(struct drm_device * dev)
4290 {
4291         struct drm_i915_private *dev_priv = dev->dev_private;
4292         int pipe;
4293
4294         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4295         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4296
4297         I915_WRITE(HWSTAM, 0xeffe);
4298         for_each_pipe(dev_priv, pipe)
4299                 I915_WRITE(PIPESTAT(pipe), 0);
4300         I915_WRITE(IMR, 0xffffffff);
4301         I915_WRITE(IER, 0x0);
4302         POSTING_READ(IER);
4303 }
4304
4305 static int i965_irq_postinstall(struct drm_device *dev)
4306 {
4307         struct drm_i915_private *dev_priv = dev->dev_private;
4308         u32 enable_mask;
4309         u32 error_mask;
4310
4311         /* Unmask the interrupts that we always want on. */
4312         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4313                                I915_DISPLAY_PORT_INTERRUPT |
4314                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4315                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4316                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4317                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4318                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4319
4320         enable_mask = ~dev_priv->irq_mask;
4321         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4322                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4323         enable_mask |= I915_USER_INTERRUPT;
4324
4325         if (IS_G4X(dev))
4326                 enable_mask |= I915_BSD_USER_INTERRUPT;
4327
4328         /* Interrupt setup is already guaranteed to be single-threaded, this is
4329          * just to make the assert_spin_locked check happy. */
4330         spin_lock_irq(&dev_priv->irq_lock);
4331         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4332         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4333         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4334         spin_unlock_irq(&dev_priv->irq_lock);
4335
4336         /*
4337          * Enable some error detection, note the instruction error mask
4338          * bit is reserved, so we leave it masked.
4339          */
4340         if (IS_G4X(dev)) {
4341                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4342                                GM45_ERROR_MEM_PRIV |
4343                                GM45_ERROR_CP_PRIV |
4344                                I915_ERROR_MEMORY_REFRESH);
4345         } else {
4346                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4347                                I915_ERROR_MEMORY_REFRESH);
4348         }
4349         I915_WRITE(EMR, error_mask);
4350
4351         I915_WRITE(IMR, dev_priv->irq_mask);
4352         I915_WRITE(IER, enable_mask);
4353         POSTING_READ(IER);
4354
4355         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4356         POSTING_READ(PORT_HOTPLUG_EN);
4357
4358         i915_enable_asle_pipestat(dev);
4359
4360         return 0;
4361 }
4362
4363 static void i915_hpd_irq_setup(struct drm_device *dev)
4364 {
4365         struct drm_i915_private *dev_priv = dev->dev_private;
4366         u32 hotplug_en;
4367
4368         assert_spin_locked(&dev_priv->irq_lock);
4369
4370         /* Note HDMI and DP share hotplug bits */
4371         /* enable bits are the same for all generations */
4372         hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4373         /* Programming the CRT detection parameters tends
4374            to generate a spurious hotplug event about three
4375            seconds later.  So just do it once.
4376         */
4377         if (IS_G4X(dev))
4378                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4379         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4380
4381         /* Ignore TV since it's buggy */
4382         i915_hotplug_interrupt_update_locked(dev_priv,
4383                                              HOTPLUG_INT_EN_MASK |
4384                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4385                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4386                                              hotplug_en);
4387 }
4388
4389 static irqreturn_t i965_irq_handler(int irq, void *arg)
4390 {
4391         struct drm_device *dev = arg;
4392         struct drm_i915_private *dev_priv = dev->dev_private;
4393         u32 iir, new_iir;
4394         u32 pipe_stats[I915_MAX_PIPES];
4395         int ret = IRQ_NONE, pipe;
4396         u32 flip_mask =
4397                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4398                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4399
4400         if (!intel_irqs_enabled(dev_priv))
4401                 return IRQ_NONE;
4402
4403         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4404         disable_rpm_wakeref_asserts(dev_priv);
4405
4406         iir = I915_READ(IIR);
4407
4408         for (;;) {
4409                 bool irq_received = (iir & ~flip_mask) != 0;
4410                 bool blc_event = false;
4411
4412                 /* Can't rely on pipestat interrupt bit in iir as it might
4413                  * have been cleared after the pipestat interrupt was received.
4414                  * It doesn't set the bit in iir again, but it still produces
4415                  * interrupts (for non-MSI).
4416                  */
4417                 spin_lock(&dev_priv->irq_lock);
4418                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4419                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4420
4421                 for_each_pipe(dev_priv, pipe) {
4422                         i915_reg_t reg = PIPESTAT(pipe);
4423                         pipe_stats[pipe] = I915_READ(reg);
4424
4425                         /*
4426                          * Clear the PIPE*STAT regs before the IIR
4427                          */
4428                         if (pipe_stats[pipe] & 0x8000ffff) {
4429                                 I915_WRITE(reg, pipe_stats[pipe]);
4430                                 irq_received = true;
4431                         }
4432                 }
4433                 spin_unlock(&dev_priv->irq_lock);
4434
4435                 if (!irq_received)
4436                         break;
4437
4438                 ret = IRQ_HANDLED;
4439
4440                 /* Consume port.  Then clear IIR or we'll miss events */
4441                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4442                         i9xx_hpd_irq_handler(dev);
4443
4444                 I915_WRITE(IIR, iir & ~flip_mask);
4445                 new_iir = I915_READ(IIR); /* Flush posted writes */
4446
4447                 if (iir & I915_USER_INTERRUPT)
4448                         notify_ring(&dev_priv->ring[RCS]);
4449                 if (iir & I915_BSD_USER_INTERRUPT)
4450                         notify_ring(&dev_priv->ring[VCS]);
4451
4452                 for_each_pipe(dev_priv, pipe) {
4453                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4454                             i915_handle_vblank(dev, pipe, pipe, iir))
4455                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4456
4457                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4458                                 blc_event = true;
4459
4460                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4461                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4462
4463                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4464                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4465                 }
4466
4467                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4468                         intel_opregion_asle_intr(dev);
4469
4470                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4471                         gmbus_irq_handler(dev);
4472
4473                 /* With MSI, interrupts are only generated when iir
4474                  * transitions from zero to nonzero.  If another bit got
4475                  * set while we were handling the existing iir bits, then
4476                  * we would never get another interrupt.
4477                  *
4478                  * This is fine on non-MSI as well, as if we hit this path
4479                  * we avoid exiting the interrupt handler only to generate
4480                  * another one.
4481                  *
4482                  * Note that for MSI this could cause a stray interrupt report
4483                  * if an interrupt landed in the time between writing IIR and
4484                  * the posting read.  This should be rare enough to never
4485                  * trigger the 99% of 100,000 interrupts test for disabling
4486                  * stray interrupts.
4487                  */
4488                 iir = new_iir;
4489         }
4490
4491         enable_rpm_wakeref_asserts(dev_priv);
4492
4493         return ret;
4494 }
4495
4496 static void i965_irq_uninstall(struct drm_device * dev)
4497 {
4498         struct drm_i915_private *dev_priv = dev->dev_private;
4499         int pipe;
4500
4501         if (!dev_priv)
4502                 return;
4503
4504         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4505         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4506
4507         I915_WRITE(HWSTAM, 0xffffffff);
4508         for_each_pipe(dev_priv, pipe)
4509                 I915_WRITE(PIPESTAT(pipe), 0);
4510         I915_WRITE(IMR, 0xffffffff);
4511         I915_WRITE(IER, 0x0);
4512
4513         for_each_pipe(dev_priv, pipe)
4514                 I915_WRITE(PIPESTAT(pipe),
4515                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4516         I915_WRITE(IIR, I915_READ(IIR));
4517 }
4518
4519 /**
4520  * intel_irq_init - initializes irq support
4521  * @dev_priv: i915 device instance
4522  *
4523  * This function initializes all the irq support including work items, timers
4524  * and all the vtables. It does not setup the interrupt itself though.
4525  */
4526 void intel_irq_init(struct drm_i915_private *dev_priv)
4527 {
4528         struct drm_device *dev = dev_priv->dev;
4529
4530         intel_hpd_init_work(dev_priv);
4531
4532         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4533         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4534
4535         /* Let's track the enabled rps events */
4536         if (IS_VALLEYVIEW(dev_priv))
4537                 /* WaGsvRC0ResidencyMethod:vlv */
4538                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4539         else
4540                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4541
4542         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4543                           i915_hangcheck_elapsed);
4544
4545         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4546
4547         if (IS_GEN2(dev_priv)) {
4548                 dev->max_vblank_count = 0;
4549                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4550         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4551                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4552                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4553         } else {
4554                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4555                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4556         }
4557
4558         /*
4559          * Opt out of the vblank disable timer on everything except gen2.
4560          * Gen2 doesn't have a hardware frame counter and so depends on
4561          * vblank interrupts to produce sane vblank seuquence numbers.
4562          */
4563         if (!IS_GEN2(dev_priv))
4564                 dev->vblank_disable_immediate = true;
4565
4566         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4567         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4568
4569         if (IS_CHERRYVIEW(dev_priv)) {
4570                 dev->driver->irq_handler = cherryview_irq_handler;
4571                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4572                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4573                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4574                 dev->driver->enable_vblank = valleyview_enable_vblank;
4575                 dev->driver->disable_vblank = valleyview_disable_vblank;
4576                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4577         } else if (IS_VALLEYVIEW(dev_priv)) {
4578                 dev->driver->irq_handler = valleyview_irq_handler;
4579                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4580                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4581                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4582                 dev->driver->enable_vblank = valleyview_enable_vblank;
4583                 dev->driver->disable_vblank = valleyview_disable_vblank;
4584                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4585         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4586                 dev->driver->irq_handler = gen8_irq_handler;
4587                 dev->driver->irq_preinstall = gen8_irq_reset;
4588                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4589                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4590                 dev->driver->enable_vblank = gen8_enable_vblank;
4591                 dev->driver->disable_vblank = gen8_disable_vblank;
4592                 if (IS_BROXTON(dev))
4593                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4594                 else if (HAS_PCH_SPT(dev))
4595                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4596                 else
4597                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4598         } else if (HAS_PCH_SPLIT(dev)) {
4599                 dev->driver->irq_handler = ironlake_irq_handler;
4600                 dev->driver->irq_preinstall = ironlake_irq_reset;
4601                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4602                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4603                 dev->driver->enable_vblank = ironlake_enable_vblank;
4604                 dev->driver->disable_vblank = ironlake_disable_vblank;
4605                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4606         } else {
4607                 if (INTEL_INFO(dev_priv)->gen == 2) {
4608                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4609                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4610                         dev->driver->irq_handler = i8xx_irq_handler;
4611                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4612                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4613                         dev->driver->irq_preinstall = i915_irq_preinstall;
4614                         dev->driver->irq_postinstall = i915_irq_postinstall;
4615                         dev->driver->irq_uninstall = i915_irq_uninstall;
4616                         dev->driver->irq_handler = i915_irq_handler;
4617                 } else {
4618                         dev->driver->irq_preinstall = i965_irq_preinstall;
4619                         dev->driver->irq_postinstall = i965_irq_postinstall;
4620                         dev->driver->irq_uninstall = i965_irq_uninstall;
4621                         dev->driver->irq_handler = i965_irq_handler;
4622                 }
4623                 if (I915_HAS_HOTPLUG(dev_priv))
4624                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4625                 dev->driver->enable_vblank = i915_enable_vblank;
4626                 dev->driver->disable_vblank = i915_disable_vblank;
4627         }
4628 }
4629
4630 /**
4631  * intel_irq_install - enables the hardware interrupt
4632  * @dev_priv: i915 device instance
4633  *
4634  * This function enables the hardware interrupt handling, but leaves the hotplug
4635  * handling still disabled. It is called after intel_irq_init().
4636  *
4637  * In the driver load and resume code we need working interrupts in a few places
4638  * but don't want to deal with the hassle of concurrent probe and hotplug
4639  * workers. Hence the split into this two-stage approach.
4640  */
4641 int intel_irq_install(struct drm_i915_private *dev_priv)
4642 {
4643         /*
4644          * We enable some interrupt sources in our postinstall hooks, so mark
4645          * interrupts as enabled _before_ actually enabling them to avoid
4646          * special cases in our ordering checks.
4647          */
4648         dev_priv->pm.irqs_enabled = true;
4649
4650         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4651 }
4652
4653 /**
4654  * intel_irq_uninstall - finilizes all irq handling
4655  * @dev_priv: i915 device instance
4656  *
4657  * This stops interrupt and hotplug handling and unregisters and frees all
4658  * resources acquired in the init functions.
4659  */
4660 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4661 {
4662         drm_irq_uninstall(dev_priv->dev);
4663         intel_hpd_cancel_work(dev_priv);
4664         dev_priv->pm.irqs_enabled = false;
4665 }
4666
4667 /**
4668  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4669  * @dev_priv: i915 device instance
4670  *
4671  * This function is used to disable interrupts at runtime, both in the runtime
4672  * pm and the system suspend/resume code.
4673  */
4674 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4675 {
4676         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4677         dev_priv->pm.irqs_enabled = false;
4678         synchronize_irq(dev_priv->dev->irq);
4679 }
4680
4681 /**
4682  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4683  * @dev_priv: i915 device instance
4684  *
4685  * This function is used to enable interrupts at runtime, both in the runtime
4686  * pm and the system suspend/resume code.
4687  */
4688 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4689 {
4690         dev_priv->pm.irqs_enabled = true;
4691         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4692         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4693 }