]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_irq.c
drm/i915: Update a couple of hangcheck comments to talk about engines
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266         ilk_update_gt_irq(dev_priv, mask, mask);
267         POSTING_READ_FW(GTIMR);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         spin_lock_irq(&dev_priv->irq_lock);
344         I915_WRITE(reg, dev_priv->pm_rps_events);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         POSTING_READ(reg);
347         dev_priv->rps.pm_iir = 0;
348         spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353         spin_lock_irq(&dev_priv->irq_lock);
354         WARN_ON_ONCE(dev_priv->rps.pm_iir);
355         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
356         dev_priv->rps.interrupts_enabled = true;
357         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
358                                 dev_priv->pm_rps_events);
359         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
360
361         spin_unlock_irq(&dev_priv->irq_lock);
362 }
363
364 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
365 {
366         return (mask & ~dev_priv->rps.pm_intr_keep);
367 }
368
369 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
370 {
371         spin_lock_irq(&dev_priv->irq_lock);
372         dev_priv->rps.interrupts_enabled = false;
373
374         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
375
376         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
377         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
378                                 ~dev_priv->pm_rps_events);
379
380         spin_unlock_irq(&dev_priv->irq_lock);
381         synchronize_irq(dev_priv->drm.irq);
382
383         /* Now that we will not be generating any more work, flush any
384          * outsanding tasks. As we are called on the RPS idle path,
385          * we will reset the GPU to minimum frequencies, so the current
386          * state of the worker can be discarded.
387          */
388         cancel_work_sync(&dev_priv->rps.work);
389         gen6_reset_rps_interrupts(dev_priv);
390 }
391
392 /**
393  * bdw_update_port_irq - update DE port interrupt
394  * @dev_priv: driver private
395  * @interrupt_mask: mask of interrupt bits to update
396  * @enabled_irq_mask: mask of interrupt bits to enable
397  */
398 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
399                                 uint32_t interrupt_mask,
400                                 uint32_t enabled_irq_mask)
401 {
402         uint32_t new_val;
403         uint32_t old_val;
404
405         assert_spin_locked(&dev_priv->irq_lock);
406
407         WARN_ON(enabled_irq_mask & ~interrupt_mask);
408
409         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
410                 return;
411
412         old_val = I915_READ(GEN8_DE_PORT_IMR);
413
414         new_val = old_val;
415         new_val &= ~interrupt_mask;
416         new_val |= (~enabled_irq_mask & interrupt_mask);
417
418         if (new_val != old_val) {
419                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
420                 POSTING_READ(GEN8_DE_PORT_IMR);
421         }
422 }
423
424 /**
425  * bdw_update_pipe_irq - update DE pipe interrupt
426  * @dev_priv: driver private
427  * @pipe: pipe whose interrupt to update
428  * @interrupt_mask: mask of interrupt bits to update
429  * @enabled_irq_mask: mask of interrupt bits to enable
430  */
431 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
432                          enum pipe pipe,
433                          uint32_t interrupt_mask,
434                          uint32_t enabled_irq_mask)
435 {
436         uint32_t new_val;
437
438         assert_spin_locked(&dev_priv->irq_lock);
439
440         WARN_ON(enabled_irq_mask & ~interrupt_mask);
441
442         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
443                 return;
444
445         new_val = dev_priv->de_irq_mask[pipe];
446         new_val &= ~interrupt_mask;
447         new_val |= (~enabled_irq_mask & interrupt_mask);
448
449         if (new_val != dev_priv->de_irq_mask[pipe]) {
450                 dev_priv->de_irq_mask[pipe] = new_val;
451                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
452                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
453         }
454 }
455
456 /**
457  * ibx_display_interrupt_update - update SDEIMR
458  * @dev_priv: driver private
459  * @interrupt_mask: mask of interrupt bits to update
460  * @enabled_irq_mask: mask of interrupt bits to enable
461  */
462 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
463                                   uint32_t interrupt_mask,
464                                   uint32_t enabled_irq_mask)
465 {
466         uint32_t sdeimr = I915_READ(SDEIMR);
467         sdeimr &= ~interrupt_mask;
468         sdeimr |= (~enabled_irq_mask & interrupt_mask);
469
470         WARN_ON(enabled_irq_mask & ~interrupt_mask);
471
472         assert_spin_locked(&dev_priv->irq_lock);
473
474         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
475                 return;
476
477         I915_WRITE(SDEIMR, sdeimr);
478         POSTING_READ(SDEIMR);
479 }
480
481 static void
482 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
483                        u32 enable_mask, u32 status_mask)
484 {
485         i915_reg_t reg = PIPESTAT(pipe);
486         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
487
488         assert_spin_locked(&dev_priv->irq_lock);
489         WARN_ON(!intel_irqs_enabled(dev_priv));
490
491         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
493                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494                       pipe_name(pipe), enable_mask, status_mask))
495                 return;
496
497         if ((pipestat & enable_mask) == enable_mask)
498                 return;
499
500         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
501
502         /* Enable the interrupt, clear any pending status */
503         pipestat |= enable_mask | status_mask;
504         I915_WRITE(reg, pipestat);
505         POSTING_READ(reg);
506 }
507
508 static void
509 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
510                         u32 enable_mask, u32 status_mask)
511 {
512         i915_reg_t reg = PIPESTAT(pipe);
513         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
514
515         assert_spin_locked(&dev_priv->irq_lock);
516         WARN_ON(!intel_irqs_enabled(dev_priv));
517
518         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
519                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
520                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
521                       pipe_name(pipe), enable_mask, status_mask))
522                 return;
523
524         if ((pipestat & enable_mask) == 0)
525                 return;
526
527         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
528
529         pipestat &= ~enable_mask;
530         I915_WRITE(reg, pipestat);
531         POSTING_READ(reg);
532 }
533
534 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
535 {
536         u32 enable_mask = status_mask << 16;
537
538         /*
539          * On pipe A we don't support the PSR interrupt yet,
540          * on pipe B and C the same bit MBZ.
541          */
542         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
543                 return 0;
544         /*
545          * On pipe B and C we don't support the PSR interrupt yet, on pipe
546          * A the same bit is for perf counters which we don't use either.
547          */
548         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
549                 return 0;
550
551         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
552                          SPRITE0_FLIP_DONE_INT_EN_VLV |
553                          SPRITE1_FLIP_DONE_INT_EN_VLV);
554         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
555                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
556         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
557                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
558
559         return enable_mask;
560 }
561
562 void
563 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
564                      u32 status_mask)
565 {
566         u32 enable_mask;
567
568         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
569                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
570                                                            status_mask);
571         else
572                 enable_mask = status_mask << 16;
573         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
574 }
575
576 void
577 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
578                       u32 status_mask)
579 {
580         u32 enable_mask;
581
582         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
583                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
584                                                            status_mask);
585         else
586                 enable_mask = status_mask << 16;
587         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
588 }
589
590 /**
591  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
592  * @dev_priv: i915 device private
593  */
594 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
595 {
596         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
597                 return;
598
599         spin_lock_irq(&dev_priv->irq_lock);
600
601         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
602         if (INTEL_GEN(dev_priv) >= 4)
603                 i915_enable_pipestat(dev_priv, PIPE_A,
604                                      PIPE_LEGACY_BLC_EVENT_STATUS);
605
606         spin_unlock_irq(&dev_priv->irq_lock);
607 }
608
609 /*
610  * This timing diagram depicts the video signal in and
611  * around the vertical blanking period.
612  *
613  * Assumptions about the fictitious mode used in this example:
614  *  vblank_start >= 3
615  *  vsync_start = vblank_start + 1
616  *  vsync_end = vblank_start + 2
617  *  vtotal = vblank_start + 3
618  *
619  *           start of vblank:
620  *           latch double buffered registers
621  *           increment frame counter (ctg+)
622  *           generate start of vblank interrupt (gen4+)
623  *           |
624  *           |          frame start:
625  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
626  *           |          may be shifted forward 1-3 extra lines via PIPECONF
627  *           |          |
628  *           |          |  start of vsync:
629  *           |          |  generate vsync interrupt
630  *           |          |  |
631  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
632  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
633  * ----va---> <-----------------vb--------------------> <--------va-------------
634  *       |          |       <----vs----->                     |
635  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
636  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
637  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
638  *       |          |                                         |
639  *       last visible pixel                                   first visible pixel
640  *                  |                                         increment frame counter (gen3/4)
641  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
642  *
643  * x  = horizontal active
644  * _  = horizontal blanking
645  * hs = horizontal sync
646  * va = vertical active
647  * vb = vertical blanking
648  * vs = vertical sync
649  * vbs = vblank_start (number)
650  *
651  * Summary:
652  * - most events happen at the start of horizontal sync
653  * - frame start happens at the start of horizontal blank, 1-4 lines
654  *   (depending on PIPECONF settings) after the start of vblank
655  * - gen3/4 pixel and frame counter are synchronized with the start
656  *   of horizontal active on the first line of vertical active
657  */
658
659 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
660 {
661         /* Gen2 doesn't have a hardware frame counter */
662         return 0;
663 }
664
665 /* Called from drm generic code, passed a 'crtc', which
666  * we use as a pipe index
667  */
668 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
669 {
670         struct drm_i915_private *dev_priv = to_i915(dev);
671         i915_reg_t high_frame, low_frame;
672         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
673         struct intel_crtc *intel_crtc =
674                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
675         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
676
677         htotal = mode->crtc_htotal;
678         hsync_start = mode->crtc_hsync_start;
679         vbl_start = mode->crtc_vblank_start;
680         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
681                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
682
683         /* Convert to pixel count */
684         vbl_start *= htotal;
685
686         /* Start of vblank event occurs at start of hsync */
687         vbl_start -= htotal - hsync_start;
688
689         high_frame = PIPEFRAME(pipe);
690         low_frame = PIPEFRAMEPIXEL(pipe);
691
692         /*
693          * High & low register fields aren't synchronized, so make sure
694          * we get a low value that's stable across two reads of the high
695          * register.
696          */
697         do {
698                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699                 low   = I915_READ(low_frame);
700                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
701         } while (high1 != high2);
702
703         high1 >>= PIPE_FRAME_HIGH_SHIFT;
704         pixel = low & PIPE_PIXEL_MASK;
705         low >>= PIPE_FRAME_LOW_SHIFT;
706
707         /*
708          * The frame counter increments at beginning of active.
709          * Cook up a vblank counter by also checking the pixel
710          * counter against vblank start.
711          */
712         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
713 }
714
715 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
716 {
717         struct drm_i915_private *dev_priv = to_i915(dev);
718
719         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
720 }
721
722 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725         struct drm_device *dev = crtc->base.dev;
726         struct drm_i915_private *dev_priv = to_i915(dev);
727         const struct drm_display_mode *mode = &crtc->base.hwmode;
728         enum pipe pipe = crtc->pipe;
729         int position, vtotal;
730
731         vtotal = mode->crtc_vtotal;
732         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733                 vtotal /= 2;
734
735         if (IS_GEN2(dev_priv))
736                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737         else
738                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739
740         /*
741          * On HSW, the DSL reg (0x70000) appears to return 0 if we
742          * read it just before the start of vblank.  So try it again
743          * so we don't accidentally end up spanning a vblank frame
744          * increment, causing the pipe_update_end() code to squak at us.
745          *
746          * The nature of this problem means we can't simply check the ISR
747          * bit and return the vblank start value; nor can we use the scanline
748          * debug register in the transcoder as it appears to have the same
749          * problem.  We may need to extend this to include other platforms,
750          * but so far testing only shows the problem on HSW.
751          */
752         if (HAS_DDI(dev_priv) && !position) {
753                 int i, temp;
754
755                 for (i = 0; i < 100; i++) {
756                         udelay(1);
757                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758                                 DSL_LINEMASK_GEN3;
759                         if (temp != position) {
760                                 position = temp;
761                                 break;
762                         }
763                 }
764         }
765
766         /*
767          * See update_scanline_offset() for the details on the
768          * scanline_offset adjustment.
769          */
770         return (position + crtc->scanline_offset) % vtotal;
771 }
772
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774                                     unsigned int flags, int *vpos, int *hpos,
775                                     ktime_t *stime, ktime_t *etime,
776                                     const struct drm_display_mode *mode)
777 {
778         struct drm_i915_private *dev_priv = to_i915(dev);
779         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781         int position;
782         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783         bool in_vbl = true;
784         int ret = 0;
785         unsigned long irqflags;
786
787         if (WARN_ON(!mode->crtc_clock)) {
788                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789                                  "pipe %c\n", pipe_name(pipe));
790                 return 0;
791         }
792
793         htotal = mode->crtc_htotal;
794         hsync_start = mode->crtc_hsync_start;
795         vtotal = mode->crtc_vtotal;
796         vbl_start = mode->crtc_vblank_start;
797         vbl_end = mode->crtc_vblank_end;
798
799         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
801                 vbl_end /= 2;
802                 vtotal /= 2;
803         }
804
805         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806
807         /*
808          * Lock uncore.lock, as we will do multiple timing critical raw
809          * register reads, potentially with preemption disabled, so the
810          * following code must not block on uncore.lock.
811          */
812         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813
814         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815
816         /* Get optional system timestamp before query. */
817         if (stime)
818                 *stime = ktime_get();
819
820         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
821                 /* No obvious pixelcount register. Only query vertical
822                  * scanout position from Display scan line register.
823                  */
824                 position = __intel_get_crtc_scanline(intel_crtc);
825         } else {
826                 /* Have access to pixelcount since start of frame.
827                  * We can split this into vertical and horizontal
828                  * scanout position.
829                  */
830                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831
832                 /* convert to pixel counts */
833                 vbl_start *= htotal;
834                 vbl_end *= htotal;
835                 vtotal *= htotal;
836
837                 /*
838                  * In interlaced modes, the pixel counter counts all pixels,
839                  * so one field will have htotal more pixels. In order to avoid
840                  * the reported position from jumping backwards when the pixel
841                  * counter is beyond the length of the shorter field, just
842                  * clamp the position the length of the shorter field. This
843                  * matches how the scanline counter based position works since
844                  * the scanline counter doesn't count the two half lines.
845                  */
846                 if (position >= vtotal)
847                         position = vtotal - 1;
848
849                 /*
850                  * Start of vblank interrupt is triggered at start of hsync,
851                  * just prior to the first active line of vblank. However we
852                  * consider lines to start at the leading edge of horizontal
853                  * active. So, should we get here before we've crossed into
854                  * the horizontal active of the first line in vblank, we would
855                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856                  * always add htotal-hsync_start to the current pixel position.
857                  */
858                 position = (position + htotal - hsync_start) % vtotal;
859         }
860
861         /* Get optional system timestamp after query. */
862         if (etime)
863                 *etime = ktime_get();
864
865         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866
867         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868
869         in_vbl = position >= vbl_start && position < vbl_end;
870
871         /*
872          * While in vblank, position will be negative
873          * counting up towards 0 at vbl_end. And outside
874          * vblank, position will be positive counting
875          * up since vbl_end.
876          */
877         if (position >= vbl_start)
878                 position -= vbl_end;
879         else
880                 position += vtotal - vbl_end;
881
882         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
883                 *vpos = position;
884                 *hpos = 0;
885         } else {
886                 *vpos = position / htotal;
887                 *hpos = position - (*vpos * htotal);
888         }
889
890         /* In vblank? */
891         if (in_vbl)
892                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
893
894         return ret;
895 }
896
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900         unsigned long irqflags;
901         int position;
902
903         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904         position = __intel_get_crtc_scanline(crtc);
905         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906
907         return position;
908 }
909
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911                               int *max_error,
912                               struct timeval *vblank_time,
913                               unsigned flags)
914 {
915         struct drm_crtc *crtc;
916
917         if (pipe >= INTEL_INFO(dev)->num_pipes) {
918                 DRM_ERROR("Invalid crtc %u\n", pipe);
919                 return -EINVAL;
920         }
921
922         /* Get drm_crtc to timestamp: */
923         crtc = intel_get_crtc_for_pipe(dev, pipe);
924         if (crtc == NULL) {
925                 DRM_ERROR("Invalid crtc %u\n", pipe);
926                 return -EINVAL;
927         }
928
929         if (!crtc->hwmode.crtc_clock) {
930                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931                 return -EBUSY;
932         }
933
934         /* Helper routine in DRM core does all the work: */
935         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936                                                      vblank_time, flags,
937                                                      &crtc->hwmode);
938 }
939
940 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
941 {
942         u32 busy_up, busy_down, max_avg, min_avg;
943         u8 new_delay;
944
945         spin_lock(&mchdev_lock);
946
947         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
948
949         new_delay = dev_priv->ips.cur_delay;
950
951         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
952         busy_up = I915_READ(RCPREVBSYTUPAVG);
953         busy_down = I915_READ(RCPREVBSYTDNAVG);
954         max_avg = I915_READ(RCBMAXAVG);
955         min_avg = I915_READ(RCBMINAVG);
956
957         /* Handle RCS change request from hw */
958         if (busy_up > max_avg) {
959                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
960                         new_delay = dev_priv->ips.cur_delay - 1;
961                 if (new_delay < dev_priv->ips.max_delay)
962                         new_delay = dev_priv->ips.max_delay;
963         } else if (busy_down < min_avg) {
964                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
965                         new_delay = dev_priv->ips.cur_delay + 1;
966                 if (new_delay > dev_priv->ips.min_delay)
967                         new_delay = dev_priv->ips.min_delay;
968         }
969
970         if (ironlake_set_drps(dev_priv, new_delay))
971                 dev_priv->ips.cur_delay = new_delay;
972
973         spin_unlock(&mchdev_lock);
974
975         return;
976 }
977
978 static void notify_ring(struct intel_engine_cs *engine)
979 {
980         smp_store_mb(engine->breadcrumbs.irq_posted, true);
981         if (intel_engine_wakeup(engine)) {
982                 trace_i915_gem_request_notify(engine);
983                 engine->breadcrumbs.irq_wakeups++;
984         }
985 }
986
987 static void vlv_c0_read(struct drm_i915_private *dev_priv,
988                         struct intel_rps_ei *ei)
989 {
990         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
991         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
992         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
993 }
994
995 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
996                          const struct intel_rps_ei *old,
997                          const struct intel_rps_ei *now,
998                          int threshold)
999 {
1000         u64 time, c0;
1001         unsigned int mul = 100;
1002
1003         if (old->cz_clock == 0)
1004                 return false;
1005
1006         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1007                 mul <<= 8;
1008
1009         time = now->cz_clock - old->cz_clock;
1010         time *= threshold * dev_priv->czclk_freq;
1011
1012         /* Workload can be split between render + media, e.g. SwapBuffers
1013          * being blitted in X after being rendered in mesa. To account for
1014          * this we need to combine both engines into our activity counter.
1015          */
1016         c0 = now->render_c0 - old->render_c0;
1017         c0 += now->media_c0 - old->media_c0;
1018         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1019
1020         return c0 >= time;
1021 }
1022
1023 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1024 {
1025         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1026         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1027 }
1028
1029 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1030 {
1031         struct intel_rps_ei now;
1032         u32 events = 0;
1033
1034         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1035                 return 0;
1036
1037         vlv_c0_read(dev_priv, &now);
1038         if (now.cz_clock == 0)
1039                 return 0;
1040
1041         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1042                 if (!vlv_c0_above(dev_priv,
1043                                   &dev_priv->rps.down_ei, &now,
1044                                   dev_priv->rps.down_threshold))
1045                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1046                 dev_priv->rps.down_ei = now;
1047         }
1048
1049         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1050                 if (vlv_c0_above(dev_priv,
1051                                  &dev_priv->rps.up_ei, &now,
1052                                  dev_priv->rps.up_threshold))
1053                         events |= GEN6_PM_RP_UP_THRESHOLD;
1054                 dev_priv->rps.up_ei = now;
1055         }
1056
1057         return events;
1058 }
1059
1060 static bool any_waiters(struct drm_i915_private *dev_priv)
1061 {
1062         struct intel_engine_cs *engine;
1063
1064         for_each_engine(engine, dev_priv)
1065                 if (intel_engine_has_waiter(engine))
1066                         return true;
1067
1068         return false;
1069 }
1070
1071 static void gen6_pm_rps_work(struct work_struct *work)
1072 {
1073         struct drm_i915_private *dev_priv =
1074                 container_of(work, struct drm_i915_private, rps.work);
1075         bool client_boost;
1076         int new_delay, adj, min, max;
1077         u32 pm_iir;
1078
1079         spin_lock_irq(&dev_priv->irq_lock);
1080         /* Speed up work cancelation during disabling rps interrupts. */
1081         if (!dev_priv->rps.interrupts_enabled) {
1082                 spin_unlock_irq(&dev_priv->irq_lock);
1083                 return;
1084         }
1085
1086         pm_iir = dev_priv->rps.pm_iir;
1087         dev_priv->rps.pm_iir = 0;
1088         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1089         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1090         client_boost = dev_priv->rps.client_boost;
1091         dev_priv->rps.client_boost = false;
1092         spin_unlock_irq(&dev_priv->irq_lock);
1093
1094         /* Make sure we didn't queue anything we're not going to process. */
1095         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1096
1097         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1098                 return;
1099
1100         mutex_lock(&dev_priv->rps.hw_lock);
1101
1102         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1103
1104         adj = dev_priv->rps.last_adj;
1105         new_delay = dev_priv->rps.cur_freq;
1106         min = dev_priv->rps.min_freq_softlimit;
1107         max = dev_priv->rps.max_freq_softlimit;
1108         if (client_boost || any_waiters(dev_priv))
1109                 max = dev_priv->rps.max_freq;
1110         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1111                 new_delay = dev_priv->rps.boost_freq;
1112                 adj = 0;
1113         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1114                 if (adj > 0)
1115                         adj *= 2;
1116                 else /* CHV needs even encode values */
1117                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1118                 /*
1119                  * For better performance, jump directly
1120                  * to RPe if we're below it.
1121                  */
1122                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1123                         new_delay = dev_priv->rps.efficient_freq;
1124                         adj = 0;
1125                 }
1126         } else if (client_boost || any_waiters(dev_priv)) {
1127                 adj = 0;
1128         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1129                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1130                         new_delay = dev_priv->rps.efficient_freq;
1131                 else
1132                         new_delay = dev_priv->rps.min_freq_softlimit;
1133                 adj = 0;
1134         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1135                 if (adj < 0)
1136                         adj *= 2;
1137                 else /* CHV needs even encode values */
1138                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1139         } else { /* unknown event */
1140                 adj = 0;
1141         }
1142
1143         dev_priv->rps.last_adj = adj;
1144
1145         /* sysfs frequency interfaces may have snuck in while servicing the
1146          * interrupt
1147          */
1148         new_delay += adj;
1149         new_delay = clamp_t(int, new_delay, min, max);
1150
1151         intel_set_rps(dev_priv, new_delay);
1152
1153         mutex_unlock(&dev_priv->rps.hw_lock);
1154 }
1155
1156
1157 /**
1158  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1159  * occurred.
1160  * @work: workqueue struct
1161  *
1162  * Doesn't actually do anything except notify userspace. As a consequence of
1163  * this event, userspace should try to remap the bad rows since statistically
1164  * it is likely the same row is more likely to go bad again.
1165  */
1166 static void ivybridge_parity_work(struct work_struct *work)
1167 {
1168         struct drm_i915_private *dev_priv =
1169                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1170         u32 error_status, row, bank, subbank;
1171         char *parity_event[6];
1172         uint32_t misccpctl;
1173         uint8_t slice = 0;
1174
1175         /* We must turn off DOP level clock gating to access the L3 registers.
1176          * In order to prevent a get/put style interface, acquire struct mutex
1177          * any time we access those registers.
1178          */
1179         mutex_lock(&dev_priv->drm.struct_mutex);
1180
1181         /* If we've screwed up tracking, just let the interrupt fire again */
1182         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1183                 goto out;
1184
1185         misccpctl = I915_READ(GEN7_MISCCPCTL);
1186         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1187         POSTING_READ(GEN7_MISCCPCTL);
1188
1189         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1190                 i915_reg_t reg;
1191
1192                 slice--;
1193                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1194                         break;
1195
1196                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1197
1198                 reg = GEN7_L3CDERRST1(slice);
1199
1200                 error_status = I915_READ(reg);
1201                 row = GEN7_PARITY_ERROR_ROW(error_status);
1202                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1203                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1204
1205                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1206                 POSTING_READ(reg);
1207
1208                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1209                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1210                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1211                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1212                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1213                 parity_event[5] = NULL;
1214
1215                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1216                                    KOBJ_CHANGE, parity_event);
1217
1218                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1219                           slice, row, bank, subbank);
1220
1221                 kfree(parity_event[4]);
1222                 kfree(parity_event[3]);
1223                 kfree(parity_event[2]);
1224                 kfree(parity_event[1]);
1225         }
1226
1227         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1228
1229 out:
1230         WARN_ON(dev_priv->l3_parity.which_slice);
1231         spin_lock_irq(&dev_priv->irq_lock);
1232         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1233         spin_unlock_irq(&dev_priv->irq_lock);
1234
1235         mutex_unlock(&dev_priv->drm.struct_mutex);
1236 }
1237
1238 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1239                                                u32 iir)
1240 {
1241         if (!HAS_L3_DPF(dev_priv))
1242                 return;
1243
1244         spin_lock(&dev_priv->irq_lock);
1245         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1246         spin_unlock(&dev_priv->irq_lock);
1247
1248         iir &= GT_PARITY_ERROR(dev_priv);
1249         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1250                 dev_priv->l3_parity.which_slice |= 1 << 1;
1251
1252         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1253                 dev_priv->l3_parity.which_slice |= 1 << 0;
1254
1255         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1256 }
1257
1258 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1259                                u32 gt_iir)
1260 {
1261         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1262                 notify_ring(&dev_priv->engine[RCS]);
1263         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1264                 notify_ring(&dev_priv->engine[VCS]);
1265 }
1266
1267 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1268                                u32 gt_iir)
1269 {
1270         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1271                 notify_ring(&dev_priv->engine[RCS]);
1272         if (gt_iir & GT_BSD_USER_INTERRUPT)
1273                 notify_ring(&dev_priv->engine[VCS]);
1274         if (gt_iir & GT_BLT_USER_INTERRUPT)
1275                 notify_ring(&dev_priv->engine[BCS]);
1276
1277         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1278                       GT_BSD_CS_ERROR_INTERRUPT |
1279                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1280                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1281
1282         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1283                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1284 }
1285
1286 static __always_inline void
1287 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1288 {
1289         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1290                 notify_ring(engine);
1291         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1292                 tasklet_schedule(&engine->irq_tasklet);
1293 }
1294
1295 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1296                                    u32 master_ctl,
1297                                    u32 gt_iir[4])
1298 {
1299         irqreturn_t ret = IRQ_NONE;
1300
1301         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1302                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1303                 if (gt_iir[0]) {
1304                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1305                         ret = IRQ_HANDLED;
1306                 } else
1307                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1308         }
1309
1310         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1311                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1312                 if (gt_iir[1]) {
1313                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1314                         ret = IRQ_HANDLED;
1315                 } else
1316                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1317         }
1318
1319         if (master_ctl & GEN8_GT_VECS_IRQ) {
1320                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1321                 if (gt_iir[3]) {
1322                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1323                         ret = IRQ_HANDLED;
1324                 } else
1325                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1326         }
1327
1328         if (master_ctl & GEN8_GT_PM_IRQ) {
1329                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1330                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1331                         I915_WRITE_FW(GEN8_GT_IIR(2),
1332                                       gt_iir[2] & dev_priv->pm_rps_events);
1333                         ret = IRQ_HANDLED;
1334                 } else
1335                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1336         }
1337
1338         return ret;
1339 }
1340
1341 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1342                                 u32 gt_iir[4])
1343 {
1344         if (gt_iir[0]) {
1345                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1346                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1347                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1348                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1349         }
1350
1351         if (gt_iir[1]) {
1352                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1353                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1354                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1355                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1356         }
1357
1358         if (gt_iir[3])
1359                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1360                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1361
1362         if (gt_iir[2] & dev_priv->pm_rps_events)
1363                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1364 }
1365
1366 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1367 {
1368         switch (port) {
1369         case PORT_A:
1370                 return val & PORTA_HOTPLUG_LONG_DETECT;
1371         case PORT_B:
1372                 return val & PORTB_HOTPLUG_LONG_DETECT;
1373         case PORT_C:
1374                 return val & PORTC_HOTPLUG_LONG_DETECT;
1375         default:
1376                 return false;
1377         }
1378 }
1379
1380 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1381 {
1382         switch (port) {
1383         case PORT_E:
1384                 return val & PORTE_HOTPLUG_LONG_DETECT;
1385         default:
1386                 return false;
1387         }
1388 }
1389
1390 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1391 {
1392         switch (port) {
1393         case PORT_A:
1394                 return val & PORTA_HOTPLUG_LONG_DETECT;
1395         case PORT_B:
1396                 return val & PORTB_HOTPLUG_LONG_DETECT;
1397         case PORT_C:
1398                 return val & PORTC_HOTPLUG_LONG_DETECT;
1399         case PORT_D:
1400                 return val & PORTD_HOTPLUG_LONG_DETECT;
1401         default:
1402                 return false;
1403         }
1404 }
1405
1406 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1407 {
1408         switch (port) {
1409         case PORT_A:
1410                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1411         default:
1412                 return false;
1413         }
1414 }
1415
1416 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1417 {
1418         switch (port) {
1419         case PORT_B:
1420                 return val & PORTB_HOTPLUG_LONG_DETECT;
1421         case PORT_C:
1422                 return val & PORTC_HOTPLUG_LONG_DETECT;
1423         case PORT_D:
1424                 return val & PORTD_HOTPLUG_LONG_DETECT;
1425         default:
1426                 return false;
1427         }
1428 }
1429
1430 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1431 {
1432         switch (port) {
1433         case PORT_B:
1434                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1435         case PORT_C:
1436                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1437         case PORT_D:
1438                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1439         default:
1440                 return false;
1441         }
1442 }
1443
1444 /*
1445  * Get a bit mask of pins that have triggered, and which ones may be long.
1446  * This can be called multiple times with the same masks to accumulate
1447  * hotplug detection results from several registers.
1448  *
1449  * Note that the caller is expected to zero out the masks initially.
1450  */
1451 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1452                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1453                              const u32 hpd[HPD_NUM_PINS],
1454                              bool long_pulse_detect(enum port port, u32 val))
1455 {
1456         enum port port;
1457         int i;
1458
1459         for_each_hpd_pin(i) {
1460                 if ((hpd[i] & hotplug_trigger) == 0)
1461                         continue;
1462
1463                 *pin_mask |= BIT(i);
1464
1465                 if (!intel_hpd_pin_to_port(i, &port))
1466                         continue;
1467
1468                 if (long_pulse_detect(port, dig_hotplug_reg))
1469                         *long_mask |= BIT(i);
1470         }
1471
1472         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1473                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1474
1475 }
1476
1477 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1478 {
1479         wake_up_all(&dev_priv->gmbus_wait_queue);
1480 }
1481
1482 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1483 {
1484         wake_up_all(&dev_priv->gmbus_wait_queue);
1485 }
1486
1487 #if defined(CONFIG_DEBUG_FS)
1488 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1489                                          enum pipe pipe,
1490                                          uint32_t crc0, uint32_t crc1,
1491                                          uint32_t crc2, uint32_t crc3,
1492                                          uint32_t crc4)
1493 {
1494         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1495         struct intel_pipe_crc_entry *entry;
1496         int head, tail;
1497
1498         spin_lock(&pipe_crc->lock);
1499
1500         if (!pipe_crc->entries) {
1501                 spin_unlock(&pipe_crc->lock);
1502                 DRM_DEBUG_KMS("spurious interrupt\n");
1503                 return;
1504         }
1505
1506         head = pipe_crc->head;
1507         tail = pipe_crc->tail;
1508
1509         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1510                 spin_unlock(&pipe_crc->lock);
1511                 DRM_ERROR("CRC buffer overflowing\n");
1512                 return;
1513         }
1514
1515         entry = &pipe_crc->entries[head];
1516
1517         entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1518                                                                  pipe);
1519         entry->crc[0] = crc0;
1520         entry->crc[1] = crc1;
1521         entry->crc[2] = crc2;
1522         entry->crc[3] = crc3;
1523         entry->crc[4] = crc4;
1524
1525         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1526         pipe_crc->head = head;
1527
1528         spin_unlock(&pipe_crc->lock);
1529
1530         wake_up_interruptible(&pipe_crc->wq);
1531 }
1532 #else
1533 static inline void
1534 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1535                              enum pipe pipe,
1536                              uint32_t crc0, uint32_t crc1,
1537                              uint32_t crc2, uint32_t crc3,
1538                              uint32_t crc4) {}
1539 #endif
1540
1541
1542 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1543                                      enum pipe pipe)
1544 {
1545         display_pipe_crc_irq_handler(dev_priv, pipe,
1546                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1547                                      0, 0, 0, 0);
1548 }
1549
1550 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1551                                      enum pipe pipe)
1552 {
1553         display_pipe_crc_irq_handler(dev_priv, pipe,
1554                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1555                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1556                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1557                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1558                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1559 }
1560
1561 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1562                                       enum pipe pipe)
1563 {
1564         uint32_t res1, res2;
1565
1566         if (INTEL_GEN(dev_priv) >= 3)
1567                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1568         else
1569                 res1 = 0;
1570
1571         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1572                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1573         else
1574                 res2 = 0;
1575
1576         display_pipe_crc_irq_handler(dev_priv, pipe,
1577                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1578                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1579                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1580                                      res1, res2);
1581 }
1582
1583 /* The RPS events need forcewake, so we add them to a work queue and mask their
1584  * IMR bits until the work is done. Other interrupts can be processed without
1585  * the work queue. */
1586 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1587 {
1588         if (pm_iir & dev_priv->pm_rps_events) {
1589                 spin_lock(&dev_priv->irq_lock);
1590                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1591                 if (dev_priv->rps.interrupts_enabled) {
1592                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1593                         schedule_work(&dev_priv->rps.work);
1594                 }
1595                 spin_unlock(&dev_priv->irq_lock);
1596         }
1597
1598         if (INTEL_INFO(dev_priv)->gen >= 8)
1599                 return;
1600
1601         if (HAS_VEBOX(dev_priv)) {
1602                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1603                         notify_ring(&dev_priv->engine[VECS]);
1604
1605                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1606                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1607         }
1608 }
1609
1610 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1611                                      enum pipe pipe)
1612 {
1613         bool ret;
1614
1615         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1616         if (ret)
1617                 intel_finish_page_flip_mmio(dev_priv, pipe);
1618
1619         return ret;
1620 }
1621
1622 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1623                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1624 {
1625         int pipe;
1626
1627         spin_lock(&dev_priv->irq_lock);
1628
1629         if (!dev_priv->display_irqs_enabled) {
1630                 spin_unlock(&dev_priv->irq_lock);
1631                 return;
1632         }
1633
1634         for_each_pipe(dev_priv, pipe) {
1635                 i915_reg_t reg;
1636                 u32 mask, iir_bit = 0;
1637
1638                 /*
1639                  * PIPESTAT bits get signalled even when the interrupt is
1640                  * disabled with the mask bits, and some of the status bits do
1641                  * not generate interrupts at all (like the underrun bit). Hence
1642                  * we need to be careful that we only handle what we want to
1643                  * handle.
1644                  */
1645
1646                 /* fifo underruns are filterered in the underrun handler. */
1647                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1648
1649                 switch (pipe) {
1650                 case PIPE_A:
1651                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1652                         break;
1653                 case PIPE_B:
1654                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1655                         break;
1656                 case PIPE_C:
1657                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1658                         break;
1659                 }
1660                 if (iir & iir_bit)
1661                         mask |= dev_priv->pipestat_irq_mask[pipe];
1662
1663                 if (!mask)
1664                         continue;
1665
1666                 reg = PIPESTAT(pipe);
1667                 mask |= PIPESTAT_INT_ENABLE_MASK;
1668                 pipe_stats[pipe] = I915_READ(reg) & mask;
1669
1670                 /*
1671                  * Clear the PIPE*STAT regs before the IIR
1672                  */
1673                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1674                                         PIPESTAT_INT_STATUS_MASK))
1675                         I915_WRITE(reg, pipe_stats[pipe]);
1676         }
1677         spin_unlock(&dev_priv->irq_lock);
1678 }
1679
1680 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1681                                             u32 pipe_stats[I915_MAX_PIPES])
1682 {
1683         enum pipe pipe;
1684
1685         for_each_pipe(dev_priv, pipe) {
1686                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1687                     intel_pipe_handle_vblank(dev_priv, pipe))
1688                         intel_check_page_flip(dev_priv, pipe);
1689
1690                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1691                         intel_finish_page_flip_cs(dev_priv, pipe);
1692
1693                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1694                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1695
1696                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1697                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1698         }
1699
1700         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1701                 gmbus_irq_handler(dev_priv);
1702 }
1703
1704 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1705 {
1706         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1707
1708         if (hotplug_status)
1709                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1710
1711         return hotplug_status;
1712 }
1713
1714 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1715                                  u32 hotplug_status)
1716 {
1717         u32 pin_mask = 0, long_mask = 0;
1718
1719         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1720             IS_CHERRYVIEW(dev_priv)) {
1721                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1722
1723                 if (hotplug_trigger) {
1724                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1725                                            hotplug_trigger, hpd_status_g4x,
1726                                            i9xx_port_hotplug_long_detect);
1727
1728                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1729                 }
1730
1731                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1732                         dp_aux_irq_handler(dev_priv);
1733         } else {
1734                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1735
1736                 if (hotplug_trigger) {
1737                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1738                                            hotplug_trigger, hpd_status_i915,
1739                                            i9xx_port_hotplug_long_detect);
1740                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1741                 }
1742         }
1743 }
1744
1745 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1746 {
1747         struct drm_device *dev = arg;
1748         struct drm_i915_private *dev_priv = to_i915(dev);
1749         irqreturn_t ret = IRQ_NONE;
1750
1751         if (!intel_irqs_enabled(dev_priv))
1752                 return IRQ_NONE;
1753
1754         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1755         disable_rpm_wakeref_asserts(dev_priv);
1756
1757         do {
1758                 u32 iir, gt_iir, pm_iir;
1759                 u32 pipe_stats[I915_MAX_PIPES] = {};
1760                 u32 hotplug_status = 0;
1761                 u32 ier = 0;
1762
1763                 gt_iir = I915_READ(GTIIR);
1764                 pm_iir = I915_READ(GEN6_PMIIR);
1765                 iir = I915_READ(VLV_IIR);
1766
1767                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1768                         break;
1769
1770                 ret = IRQ_HANDLED;
1771
1772                 /*
1773                  * Theory on interrupt generation, based on empirical evidence:
1774                  *
1775                  * x = ((VLV_IIR & VLV_IER) ||
1776                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1777                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1778                  *
1779                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1780                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1781                  * guarantee the CPU interrupt will be raised again even if we
1782                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1783                  * bits this time around.
1784                  */
1785                 I915_WRITE(VLV_MASTER_IER, 0);
1786                 ier = I915_READ(VLV_IER);
1787                 I915_WRITE(VLV_IER, 0);
1788
1789                 if (gt_iir)
1790                         I915_WRITE(GTIIR, gt_iir);
1791                 if (pm_iir)
1792                         I915_WRITE(GEN6_PMIIR, pm_iir);
1793
1794                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1796
1797                 /* Call regardless, as some status bits might not be
1798                  * signalled in iir */
1799                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1800
1801                 /*
1802                  * VLV_IIR is single buffered, and reflects the level
1803                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1804                  */
1805                 if (iir)
1806                         I915_WRITE(VLV_IIR, iir);
1807
1808                 I915_WRITE(VLV_IER, ier);
1809                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1810                 POSTING_READ(VLV_MASTER_IER);
1811
1812                 if (gt_iir)
1813                         snb_gt_irq_handler(dev_priv, gt_iir);
1814                 if (pm_iir)
1815                         gen6_rps_irq_handler(dev_priv, pm_iir);
1816
1817                 if (hotplug_status)
1818                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1819
1820                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1821         } while (0);
1822
1823         enable_rpm_wakeref_asserts(dev_priv);
1824
1825         return ret;
1826 }
1827
1828 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1829 {
1830         struct drm_device *dev = arg;
1831         struct drm_i915_private *dev_priv = to_i915(dev);
1832         irqreturn_t ret = IRQ_NONE;
1833
1834         if (!intel_irqs_enabled(dev_priv))
1835                 return IRQ_NONE;
1836
1837         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1838         disable_rpm_wakeref_asserts(dev_priv);
1839
1840         do {
1841                 u32 master_ctl, iir;
1842                 u32 gt_iir[4] = {};
1843                 u32 pipe_stats[I915_MAX_PIPES] = {};
1844                 u32 hotplug_status = 0;
1845                 u32 ier = 0;
1846
1847                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1848                 iir = I915_READ(VLV_IIR);
1849
1850                 if (master_ctl == 0 && iir == 0)
1851                         break;
1852
1853                 ret = IRQ_HANDLED;
1854
1855                 /*
1856                  * Theory on interrupt generation, based on empirical evidence:
1857                  *
1858                  * x = ((VLV_IIR & VLV_IER) ||
1859                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1860                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1861                  *
1862                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1863                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1864                  * guarantee the CPU interrupt will be raised again even if we
1865                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1866                  * bits this time around.
1867                  */
1868                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1869                 ier = I915_READ(VLV_IER);
1870                 I915_WRITE(VLV_IER, 0);
1871
1872                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1873
1874                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1875                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1876
1877                 /* Call regardless, as some status bits might not be
1878                  * signalled in iir */
1879                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1880
1881                 /*
1882                  * VLV_IIR is single buffered, and reflects the level
1883                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1884                  */
1885                 if (iir)
1886                         I915_WRITE(VLV_IIR, iir);
1887
1888                 I915_WRITE(VLV_IER, ier);
1889                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1890                 POSTING_READ(GEN8_MASTER_IRQ);
1891
1892                 gen8_gt_irq_handler(dev_priv, gt_iir);
1893
1894                 if (hotplug_status)
1895                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1896
1897                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1898         } while (0);
1899
1900         enable_rpm_wakeref_asserts(dev_priv);
1901
1902         return ret;
1903 }
1904
1905 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1906                                 u32 hotplug_trigger,
1907                                 const u32 hpd[HPD_NUM_PINS])
1908 {
1909         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1910
1911         /*
1912          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1913          * unless we touch the hotplug register, even if hotplug_trigger is
1914          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1915          * errors.
1916          */
1917         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1918         if (!hotplug_trigger) {
1919                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1920                         PORTD_HOTPLUG_STATUS_MASK |
1921                         PORTC_HOTPLUG_STATUS_MASK |
1922                         PORTB_HOTPLUG_STATUS_MASK;
1923                 dig_hotplug_reg &= ~mask;
1924         }
1925
1926         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1927         if (!hotplug_trigger)
1928                 return;
1929
1930         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1931                            dig_hotplug_reg, hpd,
1932                            pch_port_hotplug_long_detect);
1933
1934         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1935 }
1936
1937 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1938 {
1939         int pipe;
1940         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1941
1942         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1943
1944         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1945                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1946                                SDE_AUDIO_POWER_SHIFT);
1947                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1948                                  port_name(port));
1949         }
1950
1951         if (pch_iir & SDE_AUX_MASK)
1952                 dp_aux_irq_handler(dev_priv);
1953
1954         if (pch_iir & SDE_GMBUS)
1955                 gmbus_irq_handler(dev_priv);
1956
1957         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1958                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1959
1960         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1961                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1962
1963         if (pch_iir & SDE_POISON)
1964                 DRM_ERROR("PCH poison interrupt\n");
1965
1966         if (pch_iir & SDE_FDI_MASK)
1967                 for_each_pipe(dev_priv, pipe)
1968                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1969                                          pipe_name(pipe),
1970                                          I915_READ(FDI_RX_IIR(pipe)));
1971
1972         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1973                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1974
1975         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1976                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1977
1978         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1979                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1980
1981         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1982                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1983 }
1984
1985 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1986 {
1987         u32 err_int = I915_READ(GEN7_ERR_INT);
1988         enum pipe pipe;
1989
1990         if (err_int & ERR_INT_POISON)
1991                 DRM_ERROR("Poison interrupt\n");
1992
1993         for_each_pipe(dev_priv, pipe) {
1994                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1995                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1996
1997                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1998                         if (IS_IVYBRIDGE(dev_priv))
1999                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2000                         else
2001                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2002                 }
2003         }
2004
2005         I915_WRITE(GEN7_ERR_INT, err_int);
2006 }
2007
2008 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2009 {
2010         u32 serr_int = I915_READ(SERR_INT);
2011
2012         if (serr_int & SERR_INT_POISON)
2013                 DRM_ERROR("PCH poison interrupt\n");
2014
2015         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2016                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2017
2018         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2019                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2020
2021         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2022                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2023
2024         I915_WRITE(SERR_INT, serr_int);
2025 }
2026
2027 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2028 {
2029         int pipe;
2030         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2031
2032         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2033
2034         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2035                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2036                                SDE_AUDIO_POWER_SHIFT_CPT);
2037                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2038                                  port_name(port));
2039         }
2040
2041         if (pch_iir & SDE_AUX_MASK_CPT)
2042                 dp_aux_irq_handler(dev_priv);
2043
2044         if (pch_iir & SDE_GMBUS_CPT)
2045                 gmbus_irq_handler(dev_priv);
2046
2047         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2048                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2049
2050         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2051                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2052
2053         if (pch_iir & SDE_FDI_MASK_CPT)
2054                 for_each_pipe(dev_priv, pipe)
2055                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2056                                          pipe_name(pipe),
2057                                          I915_READ(FDI_RX_IIR(pipe)));
2058
2059         if (pch_iir & SDE_ERROR_CPT)
2060                 cpt_serr_int_handler(dev_priv);
2061 }
2062
2063 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2064 {
2065         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2066                 ~SDE_PORTE_HOTPLUG_SPT;
2067         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2068         u32 pin_mask = 0, long_mask = 0;
2069
2070         if (hotplug_trigger) {
2071                 u32 dig_hotplug_reg;
2072
2073                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2074                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2075
2076                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2077                                    dig_hotplug_reg, hpd_spt,
2078                                    spt_port_hotplug_long_detect);
2079         }
2080
2081         if (hotplug2_trigger) {
2082                 u32 dig_hotplug_reg;
2083
2084                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2085                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2086
2087                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2088                                    dig_hotplug_reg, hpd_spt,
2089                                    spt_port_hotplug2_long_detect);
2090         }
2091
2092         if (pin_mask)
2093                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2094
2095         if (pch_iir & SDE_GMBUS_CPT)
2096                 gmbus_irq_handler(dev_priv);
2097 }
2098
2099 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2100                                 u32 hotplug_trigger,
2101                                 const u32 hpd[HPD_NUM_PINS])
2102 {
2103         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2104
2105         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2106         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2107
2108         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2109                            dig_hotplug_reg, hpd,
2110                            ilk_port_hotplug_long_detect);
2111
2112         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2113 }
2114
2115 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2116                                     u32 de_iir)
2117 {
2118         enum pipe pipe;
2119         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2120
2121         if (hotplug_trigger)
2122                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2123
2124         if (de_iir & DE_AUX_CHANNEL_A)
2125                 dp_aux_irq_handler(dev_priv);
2126
2127         if (de_iir & DE_GSE)
2128                 intel_opregion_asle_intr(dev_priv);
2129
2130         if (de_iir & DE_POISON)
2131                 DRM_ERROR("Poison interrupt\n");
2132
2133         for_each_pipe(dev_priv, pipe) {
2134                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2135                     intel_pipe_handle_vblank(dev_priv, pipe))
2136                         intel_check_page_flip(dev_priv, pipe);
2137
2138                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2139                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2140
2141                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2142                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2143
2144                 /* plane/pipes map 1:1 on ilk+ */
2145                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2146                         intel_finish_page_flip_cs(dev_priv, pipe);
2147         }
2148
2149         /* check event from PCH */
2150         if (de_iir & DE_PCH_EVENT) {
2151                 u32 pch_iir = I915_READ(SDEIIR);
2152
2153                 if (HAS_PCH_CPT(dev_priv))
2154                         cpt_irq_handler(dev_priv, pch_iir);
2155                 else
2156                         ibx_irq_handler(dev_priv, pch_iir);
2157
2158                 /* should clear PCH hotplug event before clear CPU irq */
2159                 I915_WRITE(SDEIIR, pch_iir);
2160         }
2161
2162         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2163                 ironlake_rps_change_irq_handler(dev_priv);
2164 }
2165
2166 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2167                                     u32 de_iir)
2168 {
2169         enum pipe pipe;
2170         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2171
2172         if (hotplug_trigger)
2173                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2174
2175         if (de_iir & DE_ERR_INT_IVB)
2176                 ivb_err_int_handler(dev_priv);
2177
2178         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2179                 dp_aux_irq_handler(dev_priv);
2180
2181         if (de_iir & DE_GSE_IVB)
2182                 intel_opregion_asle_intr(dev_priv);
2183
2184         for_each_pipe(dev_priv, pipe) {
2185                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2186                     intel_pipe_handle_vblank(dev_priv, pipe))
2187                         intel_check_page_flip(dev_priv, pipe);
2188
2189                 /* plane/pipes map 1:1 on ilk+ */
2190                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2191                         intel_finish_page_flip_cs(dev_priv, pipe);
2192         }
2193
2194         /* check event from PCH */
2195         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2196                 u32 pch_iir = I915_READ(SDEIIR);
2197
2198                 cpt_irq_handler(dev_priv, pch_iir);
2199
2200                 /* clear PCH hotplug event before clear CPU irq */
2201                 I915_WRITE(SDEIIR, pch_iir);
2202         }
2203 }
2204
2205 /*
2206  * To handle irqs with the minimum potential races with fresh interrupts, we:
2207  * 1 - Disable Master Interrupt Control.
2208  * 2 - Find the source(s) of the interrupt.
2209  * 3 - Clear the Interrupt Identity bits (IIR).
2210  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2211  * 5 - Re-enable Master Interrupt Control.
2212  */
2213 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2214 {
2215         struct drm_device *dev = arg;
2216         struct drm_i915_private *dev_priv = to_i915(dev);
2217         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2218         irqreturn_t ret = IRQ_NONE;
2219
2220         if (!intel_irqs_enabled(dev_priv))
2221                 return IRQ_NONE;
2222
2223         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2224         disable_rpm_wakeref_asserts(dev_priv);
2225
2226         /* disable master interrupt before clearing iir  */
2227         de_ier = I915_READ(DEIER);
2228         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2229         POSTING_READ(DEIER);
2230
2231         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2232          * interrupts will will be stored on its back queue, and then we'll be
2233          * able to process them after we restore SDEIER (as soon as we restore
2234          * it, we'll get an interrupt if SDEIIR still has something to process
2235          * due to its back queue). */
2236         if (!HAS_PCH_NOP(dev_priv)) {
2237                 sde_ier = I915_READ(SDEIER);
2238                 I915_WRITE(SDEIER, 0);
2239                 POSTING_READ(SDEIER);
2240         }
2241
2242         /* Find, clear, then process each source of interrupt */
2243
2244         gt_iir = I915_READ(GTIIR);
2245         if (gt_iir) {
2246                 I915_WRITE(GTIIR, gt_iir);
2247                 ret = IRQ_HANDLED;
2248                 if (INTEL_GEN(dev_priv) >= 6)
2249                         snb_gt_irq_handler(dev_priv, gt_iir);
2250                 else
2251                         ilk_gt_irq_handler(dev_priv, gt_iir);
2252         }
2253
2254         de_iir = I915_READ(DEIIR);
2255         if (de_iir) {
2256                 I915_WRITE(DEIIR, de_iir);
2257                 ret = IRQ_HANDLED;
2258                 if (INTEL_GEN(dev_priv) >= 7)
2259                         ivb_display_irq_handler(dev_priv, de_iir);
2260                 else
2261                         ilk_display_irq_handler(dev_priv, de_iir);
2262         }
2263
2264         if (INTEL_GEN(dev_priv) >= 6) {
2265                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2266                 if (pm_iir) {
2267                         I915_WRITE(GEN6_PMIIR, pm_iir);
2268                         ret = IRQ_HANDLED;
2269                         gen6_rps_irq_handler(dev_priv, pm_iir);
2270                 }
2271         }
2272
2273         I915_WRITE(DEIER, de_ier);
2274         POSTING_READ(DEIER);
2275         if (!HAS_PCH_NOP(dev_priv)) {
2276                 I915_WRITE(SDEIER, sde_ier);
2277                 POSTING_READ(SDEIER);
2278         }
2279
2280         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2281         enable_rpm_wakeref_asserts(dev_priv);
2282
2283         return ret;
2284 }
2285
2286 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2287                                 u32 hotplug_trigger,
2288                                 const u32 hpd[HPD_NUM_PINS])
2289 {
2290         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2291
2292         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2293         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2294
2295         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2296                            dig_hotplug_reg, hpd,
2297                            bxt_port_hotplug_long_detect);
2298
2299         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300 }
2301
2302 static irqreturn_t
2303 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2304 {
2305         irqreturn_t ret = IRQ_NONE;
2306         u32 iir;
2307         enum pipe pipe;
2308
2309         if (master_ctl & GEN8_DE_MISC_IRQ) {
2310                 iir = I915_READ(GEN8_DE_MISC_IIR);
2311                 if (iir) {
2312                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2313                         ret = IRQ_HANDLED;
2314                         if (iir & GEN8_DE_MISC_GSE)
2315                                 intel_opregion_asle_intr(dev_priv);
2316                         else
2317                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2318                 }
2319                 else
2320                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2321         }
2322
2323         if (master_ctl & GEN8_DE_PORT_IRQ) {
2324                 iir = I915_READ(GEN8_DE_PORT_IIR);
2325                 if (iir) {
2326                         u32 tmp_mask;
2327                         bool found = false;
2328
2329                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2330                         ret = IRQ_HANDLED;
2331
2332                         tmp_mask = GEN8_AUX_CHANNEL_A;
2333                         if (INTEL_INFO(dev_priv)->gen >= 9)
2334                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2335                                             GEN9_AUX_CHANNEL_C |
2336                                             GEN9_AUX_CHANNEL_D;
2337
2338                         if (iir & tmp_mask) {
2339                                 dp_aux_irq_handler(dev_priv);
2340                                 found = true;
2341                         }
2342
2343                         if (IS_BROXTON(dev_priv)) {
2344                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2345                                 if (tmp_mask) {
2346                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2347                                                             hpd_bxt);
2348                                         found = true;
2349                                 }
2350                         } else if (IS_BROADWELL(dev_priv)) {
2351                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2352                                 if (tmp_mask) {
2353                                         ilk_hpd_irq_handler(dev_priv,
2354                                                             tmp_mask, hpd_bdw);
2355                                         found = true;
2356                                 }
2357                         }
2358
2359                         if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2360                                 gmbus_irq_handler(dev_priv);
2361                                 found = true;
2362                         }
2363
2364                         if (!found)
2365                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2366                 }
2367                 else
2368                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2369         }
2370
2371         for_each_pipe(dev_priv, pipe) {
2372                 u32 flip_done, fault_errors;
2373
2374                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2375                         continue;
2376
2377                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2378                 if (!iir) {
2379                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2380                         continue;
2381                 }
2382
2383                 ret = IRQ_HANDLED;
2384                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2385
2386                 if (iir & GEN8_PIPE_VBLANK &&
2387                     intel_pipe_handle_vblank(dev_priv, pipe))
2388                         intel_check_page_flip(dev_priv, pipe);
2389
2390                 flip_done = iir;
2391                 if (INTEL_INFO(dev_priv)->gen >= 9)
2392                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2393                 else
2394                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2395
2396                 if (flip_done)
2397                         intel_finish_page_flip_cs(dev_priv, pipe);
2398
2399                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2400                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2401
2402                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2403                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2404
2405                 fault_errors = iir;
2406                 if (INTEL_INFO(dev_priv)->gen >= 9)
2407                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2408                 else
2409                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2410
2411                 if (fault_errors)
2412                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2413                                   pipe_name(pipe),
2414                                   fault_errors);
2415         }
2416
2417         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2418             master_ctl & GEN8_DE_PCH_IRQ) {
2419                 /*
2420                  * FIXME(BDW): Assume for now that the new interrupt handling
2421                  * scheme also closed the SDE interrupt handling race we've seen
2422                  * on older pch-split platforms. But this needs testing.
2423                  */
2424                 iir = I915_READ(SDEIIR);
2425                 if (iir) {
2426                         I915_WRITE(SDEIIR, iir);
2427                         ret = IRQ_HANDLED;
2428
2429                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2430                                 spt_irq_handler(dev_priv, iir);
2431                         else
2432                                 cpt_irq_handler(dev_priv, iir);
2433                 } else {
2434                         /*
2435                          * Like on previous PCH there seems to be something
2436                          * fishy going on with forwarding PCH interrupts.
2437                          */
2438                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2439                 }
2440         }
2441
2442         return ret;
2443 }
2444
2445 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2446 {
2447         struct drm_device *dev = arg;
2448         struct drm_i915_private *dev_priv = to_i915(dev);
2449         u32 master_ctl;
2450         u32 gt_iir[4] = {};
2451         irqreturn_t ret;
2452
2453         if (!intel_irqs_enabled(dev_priv))
2454                 return IRQ_NONE;
2455
2456         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2457         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2458         if (!master_ctl)
2459                 return IRQ_NONE;
2460
2461         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2462
2463         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2464         disable_rpm_wakeref_asserts(dev_priv);
2465
2466         /* Find, clear, then process each source of interrupt */
2467         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2468         gen8_gt_irq_handler(dev_priv, gt_iir);
2469         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2470
2471         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2472         POSTING_READ_FW(GEN8_MASTER_IRQ);
2473
2474         enable_rpm_wakeref_asserts(dev_priv);
2475
2476         return ret;
2477 }
2478
2479 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2480 {
2481         /*
2482          * Notify all waiters for GPU completion events that reset state has
2483          * been changed, and that they need to restart their wait after
2484          * checking for potential errors (and bail out to drop locks if there is
2485          * a gpu reset pending so that i915_error_work_func can acquire them).
2486          */
2487
2488         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2489         wake_up_all(&dev_priv->gpu_error.wait_queue);
2490
2491         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2492         wake_up_all(&dev_priv->pending_flip_queue);
2493 }
2494
2495 /**
2496  * i915_reset_and_wakeup - do process context error handling work
2497  * @dev_priv: i915 device private
2498  *
2499  * Fire an error uevent so userspace can see that a hang or error
2500  * was detected.
2501  */
2502 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2503 {
2504         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2505         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2506         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2507         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2508         int ret;
2509
2510         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2511
2512         /*
2513          * Note that there's only one work item which does gpu resets, so we
2514          * need not worry about concurrent gpu resets potentially incrementing
2515          * error->reset_counter twice. We only need to take care of another
2516          * racing irq/hangcheck declaring the gpu dead for a second time. A
2517          * quick check for that is good enough: schedule_work ensures the
2518          * correct ordering between hang detection and this work item, and since
2519          * the reset in-progress bit is only ever set by code outside of this
2520          * work we don't need to worry about any other races.
2521          */
2522         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2523                 DRM_DEBUG_DRIVER("resetting chip\n");
2524                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2525
2526                 /*
2527                  * In most cases it's guaranteed that we get here with an RPM
2528                  * reference held, for example because there is a pending GPU
2529                  * request that won't finish until the reset is done. This
2530                  * isn't the case at least when we get here by doing a
2531                  * simulated reset via debugs, so get an RPM reference.
2532                  */
2533                 intel_runtime_pm_get(dev_priv);
2534
2535                 intel_prepare_reset(dev_priv);
2536
2537                 /*
2538                  * All state reset _must_ be completed before we update the
2539                  * reset counter, for otherwise waiters might miss the reset
2540                  * pending state and not properly drop locks, resulting in
2541                  * deadlocks with the reset work.
2542                  */
2543                 ret = i915_reset(dev_priv);
2544
2545                 intel_finish_reset(dev_priv);
2546
2547                 intel_runtime_pm_put(dev_priv);
2548
2549                 if (ret == 0)
2550                         kobject_uevent_env(kobj,
2551                                            KOBJ_CHANGE, reset_done_event);
2552
2553                 /*
2554                  * Note: The wake_up also serves as a memory barrier so that
2555                  * waiters see the update value of the reset counter atomic_t.
2556                  */
2557                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2558         }
2559 }
2560
2561 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2562 {
2563         uint32_t instdone[I915_NUM_INSTDONE_REG];
2564         u32 eir = I915_READ(EIR);
2565         int pipe, i;
2566
2567         if (!eir)
2568                 return;
2569
2570         pr_err("render error detected, EIR: 0x%08x\n", eir);
2571
2572         i915_get_extra_instdone(dev_priv, instdone);
2573
2574         if (IS_G4X(dev_priv)) {
2575                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2576                         u32 ipeir = I915_READ(IPEIR_I965);
2577
2578                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2579                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2580                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2581                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2582                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2583                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2584                         I915_WRITE(IPEIR_I965, ipeir);
2585                         POSTING_READ(IPEIR_I965);
2586                 }
2587                 if (eir & GM45_ERROR_PAGE_TABLE) {
2588                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2589                         pr_err("page table error\n");
2590                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2591                         I915_WRITE(PGTBL_ER, pgtbl_err);
2592                         POSTING_READ(PGTBL_ER);
2593                 }
2594         }
2595
2596         if (!IS_GEN2(dev_priv)) {
2597                 if (eir & I915_ERROR_PAGE_TABLE) {
2598                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2599                         pr_err("page table error\n");
2600                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2601                         I915_WRITE(PGTBL_ER, pgtbl_err);
2602                         POSTING_READ(PGTBL_ER);
2603                 }
2604         }
2605
2606         if (eir & I915_ERROR_MEMORY_REFRESH) {
2607                 pr_err("memory refresh error:\n");
2608                 for_each_pipe(dev_priv, pipe)
2609                         pr_err("pipe %c stat: 0x%08x\n",
2610                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2611                 /* pipestat has already been acked */
2612         }
2613         if (eir & I915_ERROR_INSTRUCTION) {
2614                 pr_err("instruction error\n");
2615                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2616                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2617                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2618                 if (INTEL_GEN(dev_priv) < 4) {
2619                         u32 ipeir = I915_READ(IPEIR);
2620
2621                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2622                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2623                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2624                         I915_WRITE(IPEIR, ipeir);
2625                         POSTING_READ(IPEIR);
2626                 } else {
2627                         u32 ipeir = I915_READ(IPEIR_I965);
2628
2629                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2630                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2631                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2632                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2633                         I915_WRITE(IPEIR_I965, ipeir);
2634                         POSTING_READ(IPEIR_I965);
2635                 }
2636         }
2637
2638         I915_WRITE(EIR, eir);
2639         POSTING_READ(EIR);
2640         eir = I915_READ(EIR);
2641         if (eir) {
2642                 /*
2643                  * some errors might have become stuck,
2644                  * mask them.
2645                  */
2646                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2647                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2648                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2649         }
2650 }
2651
2652 /**
2653  * i915_handle_error - handle a gpu error
2654  * @dev_priv: i915 device private
2655  * @engine_mask: mask representing engines that are hung
2656  * Do some basic checking of register state at error time and
2657  * dump it to the syslog.  Also call i915_capture_error_state() to make
2658  * sure we get a record and make it available in debugfs.  Fire a uevent
2659  * so userspace knows something bad happened (should trigger collection
2660  * of a ring dump etc.).
2661  * @fmt: Error message format string
2662  */
2663 void i915_handle_error(struct drm_i915_private *dev_priv,
2664                        u32 engine_mask,
2665                        const char *fmt, ...)
2666 {
2667         va_list args;
2668         char error_msg[80];
2669
2670         va_start(args, fmt);
2671         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672         va_end(args);
2673
2674         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2675         i915_report_and_clear_eir(dev_priv);
2676
2677         if (engine_mask) {
2678                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679                                 &dev_priv->gpu_error.reset_counter);
2680
2681                 /*
2682                  * Wakeup waiting processes so that the reset function
2683                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2684                  * various locks. By bumping the reset counter first, the woken
2685                  * processes will see a reset in progress and back off,
2686                  * releasing their locks and then wait for the reset completion.
2687                  * We must do this for _all_ gpu waiters that might hold locks
2688                  * that the reset work needs to acquire.
2689                  *
2690                  * Note: The wake_up serves as the required memory barrier to
2691                  * ensure that the waiters see the updated value of the reset
2692                  * counter atomic_t.
2693                  */
2694                 i915_error_wake_up(dev_priv);
2695         }
2696
2697         i915_reset_and_wakeup(dev_priv);
2698 }
2699
2700 /* Called from drm generic code, passed 'crtc' which
2701  * we use as a pipe index
2702  */
2703 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704 {
2705         struct drm_i915_private *dev_priv = to_i915(dev);
2706         unsigned long irqflags;
2707
2708         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709         if (INTEL_INFO(dev)->gen >= 4)
2710                 i915_enable_pipestat(dev_priv, pipe,
2711                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2712         else
2713                 i915_enable_pipestat(dev_priv, pipe,
2714                                      PIPE_VBLANK_INTERRUPT_STATUS);
2715         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717         return 0;
2718 }
2719
2720 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721 {
2722         struct drm_i915_private *dev_priv = to_i915(dev);
2723         unsigned long irqflags;
2724         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725                                                      DE_PIPE_VBLANK(pipe);
2726
2727         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728         ilk_enable_display_irq(dev_priv, bit);
2729         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731         return 0;
2732 }
2733
2734 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735 {
2736         struct drm_i915_private *dev_priv = to_i915(dev);
2737         unsigned long irqflags;
2738
2739         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740         i915_enable_pipestat(dev_priv, pipe,
2741                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2742         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744         return 0;
2745 }
2746
2747 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748 {
2749         struct drm_i915_private *dev_priv = to_i915(dev);
2750         unsigned long irqflags;
2751
2752         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756         return 0;
2757 }
2758
2759 /* Called from drm generic code, passed 'crtc' which
2760  * we use as a pipe index
2761  */
2762 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763 {
2764         struct drm_i915_private *dev_priv = to_i915(dev);
2765         unsigned long irqflags;
2766
2767         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768         i915_disable_pipestat(dev_priv, pipe,
2769                               PIPE_VBLANK_INTERRUPT_STATUS |
2770                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2771         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 }
2773
2774 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775 {
2776         struct drm_i915_private *dev_priv = to_i915(dev);
2777         unsigned long irqflags;
2778         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779                                                      DE_PIPE_VBLANK(pipe);
2780
2781         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782         ilk_disable_display_irq(dev_priv, bit);
2783         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784 }
2785
2786 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788         struct drm_i915_private *dev_priv = to_i915(dev);
2789         unsigned long irqflags;
2790
2791         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792         i915_disable_pipestat(dev_priv, pipe,
2793                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2794         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795 }
2796
2797 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799         struct drm_i915_private *dev_priv = to_i915(dev);
2800         unsigned long irqflags;
2801
2802         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805 }
2806
2807 static bool
2808 ring_idle(struct intel_engine_cs *engine, u32 seqno)
2809 {
2810         return i915_seqno_passed(seqno,
2811                                  READ_ONCE(engine->last_submitted_seqno));
2812 }
2813
2814 static bool
2815 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2816 {
2817         if (INTEL_GEN(engine->i915) >= 8) {
2818                 return (ipehr >> 23) == 0x1c;
2819         } else {
2820                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822                                  MI_SEMAPHORE_REGISTER);
2823         }
2824 }
2825
2826 static struct intel_engine_cs *
2827 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2828                                  u64 offset)
2829 {
2830         struct drm_i915_private *dev_priv = engine->i915;
2831         struct intel_engine_cs *signaller;
2832
2833         if (INTEL_GEN(dev_priv) >= 8) {
2834                 for_each_engine(signaller, dev_priv) {
2835                         if (engine == signaller)
2836                                 continue;
2837
2838                         if (offset == signaller->semaphore.signal_ggtt[engine->id])
2839                                 return signaller;
2840                 }
2841         } else {
2842                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844                 for_each_engine(signaller, dev_priv) {
2845                         if(engine == signaller)
2846                                 continue;
2847
2848                         if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2849                                 return signaller;
2850                 }
2851         }
2852
2853         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854                   engine->id, ipehr, offset);
2855
2856         return NULL;
2857 }
2858
2859 static struct intel_engine_cs *
2860 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2861 {
2862         struct drm_i915_private *dev_priv = engine->i915;
2863         void __iomem *vaddr;
2864         u32 cmd, ipehr, head;
2865         u64 offset = 0;
2866         int i, backwards;
2867
2868         /*
2869          * This function does not support execlist mode - any attempt to
2870          * proceed further into this function will result in a kernel panic
2871          * when dereferencing ring->buffer, which is not set up in execlist
2872          * mode.
2873          *
2874          * The correct way of doing it would be to derive the currently
2875          * executing ring buffer from the current context, which is derived
2876          * from the currently running request. Unfortunately, to get the
2877          * current request we would have to grab the struct_mutex before doing
2878          * anything else, which would be ill-advised since some other thread
2879          * might have grabbed it already and managed to hang itself, causing
2880          * the hang checker to deadlock.
2881          *
2882          * Therefore, this function does not support execlist mode in its
2883          * current form. Just return NULL and move on.
2884          */
2885         if (engine->buffer == NULL)
2886                 return NULL;
2887
2888         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2889         if (!ipehr_is_semaphore_wait(engine, ipehr))
2890                 return NULL;
2891
2892         /*
2893          * HEAD is likely pointing to the dword after the actual command,
2894          * so scan backwards until we find the MBOX. But limit it to just 3
2895          * or 4 dwords depending on the semaphore wait command size.
2896          * Note that we don't care about ACTHD here since that might
2897          * point at at batch, and semaphores are always emitted into the
2898          * ringbuffer itself.
2899          */
2900         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2901         backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2902         vaddr = (void __iomem *)engine->buffer->vaddr;
2903
2904         for (i = backwards; i; --i) {
2905                 /*
2906                  * Be paranoid and presume the hw has gone off into the wild -
2907                  * our ring is smaller than what the hardware (and hence
2908                  * HEAD_ADDR) allows. Also handles wrap-around.
2909                  */
2910                 head &= engine->buffer->size - 1;
2911
2912                 /* This here seems to blow up */
2913                 cmd = ioread32(vaddr + head);
2914                 if (cmd == ipehr)
2915                         break;
2916
2917                 head -= 4;
2918         }
2919
2920         if (!i)
2921                 return NULL;
2922
2923         *seqno = ioread32(vaddr + head + 4) + 1;
2924         if (INTEL_GEN(dev_priv) >= 8) {
2925                 offset = ioread32(vaddr + head + 12);
2926                 offset <<= 32;
2927                 offset |= ioread32(vaddr + head + 8);
2928         }
2929         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2930 }
2931
2932 static int semaphore_passed(struct intel_engine_cs *engine)
2933 {
2934         struct drm_i915_private *dev_priv = engine->i915;
2935         struct intel_engine_cs *signaller;
2936         u32 seqno;
2937
2938         engine->hangcheck.deadlock++;
2939
2940         signaller = semaphore_waits_for(engine, &seqno);
2941         if (signaller == NULL)
2942                 return -1;
2943
2944         /* Prevent pathological recursion due to driver bugs */
2945         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2946                 return -1;
2947
2948         if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2949                 return 1;
2950
2951         /* cursory check for an unkickable deadlock */
2952         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2953             semaphore_passed(signaller) < 0)
2954                 return -1;
2955
2956         return 0;
2957 }
2958
2959 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2960 {
2961         struct intel_engine_cs *engine;
2962
2963         for_each_engine(engine, dev_priv)
2964                 engine->hangcheck.deadlock = 0;
2965 }
2966
2967 static bool subunits_stuck(struct intel_engine_cs *engine)
2968 {
2969         u32 instdone[I915_NUM_INSTDONE_REG];
2970         bool stuck;
2971         int i;
2972
2973         if (engine->id != RCS)
2974                 return true;
2975
2976         i915_get_extra_instdone(engine->i915, instdone);
2977
2978         /* There might be unstable subunit states even when
2979          * actual head is not moving. Filter out the unstable ones by
2980          * accumulating the undone -> done transitions and only
2981          * consider those as progress.
2982          */
2983         stuck = true;
2984         for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2985                 const u32 tmp = instdone[i] | engine->hangcheck.instdone[i];
2986
2987                 if (tmp != engine->hangcheck.instdone[i])
2988                         stuck = false;
2989
2990                 engine->hangcheck.instdone[i] |= tmp;
2991         }
2992
2993         return stuck;
2994 }
2995
2996 static enum intel_ring_hangcheck_action
2997 head_stuck(struct intel_engine_cs *engine, u64 acthd)
2998 {
2999         if (acthd != engine->hangcheck.acthd) {
3000
3001                 /* Clear subunit states on head movement */
3002                 memset(engine->hangcheck.instdone, 0,
3003                        sizeof(engine->hangcheck.instdone));
3004
3005                 return HANGCHECK_ACTIVE;
3006         }
3007
3008         if (!subunits_stuck(engine))
3009                 return HANGCHECK_ACTIVE;
3010
3011         return HANGCHECK_HUNG;
3012 }
3013
3014 static enum intel_ring_hangcheck_action
3015 ring_stuck(struct intel_engine_cs *engine, u64 acthd)
3016 {
3017         struct drm_i915_private *dev_priv = engine->i915;
3018         enum intel_ring_hangcheck_action ha;
3019         u32 tmp;
3020
3021         ha = head_stuck(engine, acthd);
3022         if (ha != HANGCHECK_HUNG)
3023                 return ha;
3024
3025         if (IS_GEN2(dev_priv))
3026                 return HANGCHECK_HUNG;
3027
3028         /* Is the chip hanging on a WAIT_FOR_EVENT?
3029          * If so we can simply poke the RB_WAIT bit
3030          * and break the hang. This should work on
3031          * all but the second generation chipsets.
3032          */
3033         tmp = I915_READ_CTL(engine);
3034         if (tmp & RING_WAIT) {
3035                 i915_handle_error(dev_priv, 0,
3036                                   "Kicking stuck wait on %s",
3037                                   engine->name);
3038                 I915_WRITE_CTL(engine, tmp);
3039                 return HANGCHECK_KICK;
3040         }
3041
3042         if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3043                 switch (semaphore_passed(engine)) {
3044                 default:
3045                         return HANGCHECK_HUNG;
3046                 case 1:
3047                         i915_handle_error(dev_priv, 0,
3048                                           "Kicking stuck semaphore on %s",
3049                                           engine->name);
3050                         I915_WRITE_CTL(engine, tmp);
3051                         return HANGCHECK_KICK;
3052                 case 0:
3053                         return HANGCHECK_WAIT;
3054                 }
3055         }
3056
3057         return HANGCHECK_HUNG;
3058 }
3059
3060 static unsigned long kick_waiters(struct intel_engine_cs *engine)
3061 {
3062         struct drm_i915_private *i915 = engine->i915;
3063         unsigned long irq_count = READ_ONCE(engine->breadcrumbs.irq_wakeups);
3064
3065         if (engine->hangcheck.user_interrupts == irq_count &&
3066             !test_and_set_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
3067                 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
3068                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3069                                   engine->name);
3070
3071                 intel_engine_enable_fake_irq(engine);
3072         }
3073
3074         return irq_count;
3075 }
3076 /*
3077  * This is called when the chip hasn't reported back with completed
3078  * batchbuffers in a long time. We keep track per ring seqno progress and
3079  * if there are no progress, hangcheck score for that ring is increased.
3080  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3081  * we kick the ring. If we see no progress on three subsequent calls
3082  * we assume chip is wedged and try to fix it by resetting the chip.
3083  */
3084 static void i915_hangcheck_elapsed(struct work_struct *work)
3085 {
3086         struct drm_i915_private *dev_priv =
3087                 container_of(work, typeof(*dev_priv),
3088                              gpu_error.hangcheck_work.work);
3089         struct intel_engine_cs *engine;
3090         unsigned int hung = 0, stuck = 0;
3091         int busy_count = 0;
3092 #define BUSY 1
3093 #define KICK 5
3094 #define HUNG 20
3095 #define ACTIVE_DECAY 15
3096
3097         if (!i915.enable_hangcheck)
3098                 return;
3099
3100         if (!READ_ONCE(dev_priv->gt.awake))
3101                 return;
3102
3103         /* As enabling the GPU requires fairly extensive mmio access,
3104          * periodically arm the mmio checker to see if we are triggering
3105          * any invalid access.
3106          */
3107         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3108
3109         for_each_engine(engine, dev_priv) {
3110                 bool busy = intel_engine_has_waiter(engine);
3111                 u64 acthd;
3112                 u32 seqno;
3113                 unsigned user_interrupts;
3114
3115                 semaphore_clear_deadlocks(dev_priv);
3116
3117                 /* We don't strictly need an irq-barrier here, as we are not
3118                  * serving an interrupt request, be paranoid in case the
3119                  * barrier has side-effects (such as preventing a broken
3120                  * cacheline snoop) and so be sure that we can see the seqno
3121                  * advance. If the seqno should stick, due to a stale
3122                  * cacheline, we would erroneously declare the GPU hung.
3123                  */
3124                 if (engine->irq_seqno_barrier)
3125                         engine->irq_seqno_barrier(engine);
3126
3127                 acthd = intel_ring_get_active_head(engine);
3128                 seqno = intel_engine_get_seqno(engine);
3129
3130                 /* Reset stuck interrupts between batch advances */
3131                 user_interrupts = 0;
3132
3133                 if (engine->hangcheck.seqno == seqno) {
3134                         if (ring_idle(engine, seqno)) {
3135                                 engine->hangcheck.action = HANGCHECK_IDLE;
3136                                 if (busy) {
3137                                         /* Safeguard against driver failure */
3138                                         user_interrupts = kick_waiters(engine);
3139                                         engine->hangcheck.score += BUSY;
3140                                 }
3141                         } else {
3142                                 /* We always increment the hangcheck score
3143                                  * if the engine is busy and still processing
3144                                  * the same request, so that no single request
3145                                  * can run indefinitely (such as a chain of
3146                                  * batches). The only time we do not increment
3147                                  * the hangcheck score on this ring, if this
3148                                  * engine is in a legitimate wait for another
3149                                  * engine. In that case the waiting engine is a
3150                                  * victim and we want to be sure we catch the
3151                                  * right culprit. Then every time we do kick
3152                                  * the ring, add a small increment to the
3153                                  * score so that we can catch a batch that is
3154                                  * being repeatedly kicked and so responsible
3155                                  * for stalling the machine.
3156                                  */
3157                                 engine->hangcheck.action = ring_stuck(engine,
3158                                                                       acthd);
3159
3160                                 switch (engine->hangcheck.action) {
3161                                 case HANGCHECK_IDLE:
3162                                 case HANGCHECK_WAIT:
3163                                         break;
3164                                 case HANGCHECK_ACTIVE:
3165                                         engine->hangcheck.score += BUSY;
3166                                         break;
3167                                 case HANGCHECK_KICK:
3168                                         engine->hangcheck.score += KICK;
3169                                         break;
3170                                 case HANGCHECK_HUNG:
3171                                         engine->hangcheck.score += HUNG;
3172                                         break;
3173                                 }
3174                         }
3175
3176                         if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3177                                 hung |= intel_engine_flag(engine);
3178                                 if (engine->hangcheck.action != HANGCHECK_HUNG)
3179                                         stuck |= intel_engine_flag(engine);
3180                         }
3181                 } else {
3182                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3183
3184                         /* Gradually reduce the count so that we catch DoS
3185                          * attempts across multiple batches.
3186                          */
3187                         if (engine->hangcheck.score > 0)
3188                                 engine->hangcheck.score -= ACTIVE_DECAY;
3189                         if (engine->hangcheck.score < 0)
3190                                 engine->hangcheck.score = 0;
3191
3192                         /* Clear head and subunit states on seqno movement */
3193                         acthd = 0;
3194
3195                         memset(engine->hangcheck.instdone, 0,
3196                                sizeof(engine->hangcheck.instdone));
3197                 }
3198
3199                 engine->hangcheck.seqno = seqno;
3200                 engine->hangcheck.acthd = acthd;
3201                 engine->hangcheck.user_interrupts = user_interrupts;
3202                 busy_count += busy;
3203         }
3204
3205         if (hung) {
3206                 char msg[80];
3207                 int len;
3208
3209                 /* If some rings hung but others were still busy, only
3210                  * blame the hanging rings in the synopsis.
3211                  */
3212                 if (stuck != hung)
3213                         hung &= ~stuck;
3214                 len = scnprintf(msg, sizeof(msg),
3215                                 "%s on ", stuck == hung ? "No progress" : "Hang");
3216                 for_each_engine_masked(engine, dev_priv, hung)
3217                         len += scnprintf(msg + len, sizeof(msg) - len,
3218                                          "%s, ", engine->name);
3219                 msg[len-2] = '\0';
3220
3221                 return i915_handle_error(dev_priv, hung, msg);
3222         }
3223
3224         /* Reset timer in case GPU hangs without another request being added */
3225         if (busy_count)
3226                 i915_queue_hangcheck(dev_priv);
3227 }
3228
3229 static void ibx_irq_reset(struct drm_device *dev)
3230 {
3231         struct drm_i915_private *dev_priv = to_i915(dev);
3232
3233         if (HAS_PCH_NOP(dev))
3234                 return;
3235
3236         GEN5_IRQ_RESET(SDE);
3237
3238         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3239                 I915_WRITE(SERR_INT, 0xffffffff);
3240 }
3241
3242 /*
3243  * SDEIER is also touched by the interrupt handler to work around missed PCH
3244  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3245  * instead we unconditionally enable all PCH interrupt sources here, but then
3246  * only unmask them as needed with SDEIMR.
3247  *
3248  * This function needs to be called before interrupts are enabled.
3249  */
3250 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3251 {
3252         struct drm_i915_private *dev_priv = to_i915(dev);
3253
3254         if (HAS_PCH_NOP(dev))
3255                 return;
3256
3257         WARN_ON(I915_READ(SDEIER) != 0);
3258         I915_WRITE(SDEIER, 0xffffffff);
3259         POSTING_READ(SDEIER);
3260 }
3261
3262 static void gen5_gt_irq_reset(struct drm_device *dev)
3263 {
3264         struct drm_i915_private *dev_priv = to_i915(dev);
3265
3266         GEN5_IRQ_RESET(GT);
3267         if (INTEL_INFO(dev)->gen >= 6)
3268                 GEN5_IRQ_RESET(GEN6_PM);
3269 }
3270
3271 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3272 {
3273         enum pipe pipe;
3274
3275         if (IS_CHERRYVIEW(dev_priv))
3276                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3277         else
3278                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3279
3280         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3281         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3282
3283         for_each_pipe(dev_priv, pipe) {
3284                 I915_WRITE(PIPESTAT(pipe),
3285                            PIPE_FIFO_UNDERRUN_STATUS |
3286                            PIPESTAT_INT_STATUS_MASK);
3287                 dev_priv->pipestat_irq_mask[pipe] = 0;
3288         }
3289
3290         GEN5_IRQ_RESET(VLV_);
3291         dev_priv->irq_mask = ~0;
3292 }
3293
3294 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3295 {
3296         u32 pipestat_mask;
3297         u32 enable_mask;
3298         enum pipe pipe;
3299
3300         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3301                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3302
3303         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3304         for_each_pipe(dev_priv, pipe)
3305                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3306
3307         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3308                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3309                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3310         if (IS_CHERRYVIEW(dev_priv))
3311                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3312
3313         WARN_ON(dev_priv->irq_mask != ~0);
3314
3315         dev_priv->irq_mask = ~enable_mask;
3316
3317         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3318 }
3319
3320 /* drm_dma.h hooks
3321 */
3322 static void ironlake_irq_reset(struct drm_device *dev)
3323 {
3324         struct drm_i915_private *dev_priv = to_i915(dev);
3325
3326         I915_WRITE(HWSTAM, 0xffffffff);
3327
3328         GEN5_IRQ_RESET(DE);
3329         if (IS_GEN7(dev))
3330                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3331
3332         gen5_gt_irq_reset(dev);
3333
3334         ibx_irq_reset(dev);
3335 }
3336
3337 static void valleyview_irq_preinstall(struct drm_device *dev)
3338 {
3339         struct drm_i915_private *dev_priv = to_i915(dev);
3340
3341         I915_WRITE(VLV_MASTER_IER, 0);
3342         POSTING_READ(VLV_MASTER_IER);
3343
3344         gen5_gt_irq_reset(dev);
3345
3346         spin_lock_irq(&dev_priv->irq_lock);
3347         if (dev_priv->display_irqs_enabled)
3348                 vlv_display_irq_reset(dev_priv);
3349         spin_unlock_irq(&dev_priv->irq_lock);
3350 }
3351
3352 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3353 {
3354         GEN8_IRQ_RESET_NDX(GT, 0);
3355         GEN8_IRQ_RESET_NDX(GT, 1);
3356         GEN8_IRQ_RESET_NDX(GT, 2);
3357         GEN8_IRQ_RESET_NDX(GT, 3);
3358 }
3359
3360 static void gen8_irq_reset(struct drm_device *dev)
3361 {
3362         struct drm_i915_private *dev_priv = to_i915(dev);
3363         int pipe;
3364
3365         I915_WRITE(GEN8_MASTER_IRQ, 0);
3366         POSTING_READ(GEN8_MASTER_IRQ);
3367
3368         gen8_gt_irq_reset(dev_priv);
3369
3370         for_each_pipe(dev_priv, pipe)
3371                 if (intel_display_power_is_enabled(dev_priv,
3372                                                    POWER_DOMAIN_PIPE(pipe)))
3373                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3374
3375         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3376         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3377         GEN5_IRQ_RESET(GEN8_PCU_);
3378
3379         if (HAS_PCH_SPLIT(dev))
3380                 ibx_irq_reset(dev);
3381 }
3382
3383 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3384                                      unsigned int pipe_mask)
3385 {
3386         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3387         enum pipe pipe;
3388
3389         spin_lock_irq(&dev_priv->irq_lock);
3390         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3391                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3392                                   dev_priv->de_irq_mask[pipe],
3393                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3394         spin_unlock_irq(&dev_priv->irq_lock);
3395 }
3396
3397 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3398                                      unsigned int pipe_mask)
3399 {
3400         enum pipe pipe;
3401
3402         spin_lock_irq(&dev_priv->irq_lock);
3403         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3404                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3405         spin_unlock_irq(&dev_priv->irq_lock);
3406
3407         /* make sure we're done processing display irqs */
3408         synchronize_irq(dev_priv->drm.irq);
3409 }
3410
3411 static void cherryview_irq_preinstall(struct drm_device *dev)
3412 {
3413         struct drm_i915_private *dev_priv = to_i915(dev);
3414
3415         I915_WRITE(GEN8_MASTER_IRQ, 0);
3416         POSTING_READ(GEN8_MASTER_IRQ);
3417
3418         gen8_gt_irq_reset(dev_priv);
3419
3420         GEN5_IRQ_RESET(GEN8_PCU_);
3421
3422         spin_lock_irq(&dev_priv->irq_lock);
3423         if (dev_priv->display_irqs_enabled)
3424                 vlv_display_irq_reset(dev_priv);
3425         spin_unlock_irq(&dev_priv->irq_lock);
3426 }
3427
3428 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3429                                   const u32 hpd[HPD_NUM_PINS])
3430 {
3431         struct intel_encoder *encoder;
3432         u32 enabled_irqs = 0;
3433
3434         for_each_intel_encoder(&dev_priv->drm, encoder)
3435                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3436                         enabled_irqs |= hpd[encoder->hpd_pin];
3437
3438         return enabled_irqs;
3439 }
3440
3441 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3442 {
3443         u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445         if (HAS_PCH_IBX(dev_priv)) {
3446                 hotplug_irqs = SDE_HOTPLUG_MASK;
3447                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3448         } else {
3449                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3450                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3451         }
3452
3453         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3454
3455         /*
3456          * Enable digital hotplug on the PCH, and configure the DP short pulse
3457          * duration to 2ms (which is the minimum in the Display Port spec).
3458          * The pulse duration bits are reserved on LPT+.
3459          */
3460         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3461         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3462         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3463         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3464         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3465         /*
3466          * When CPU and PCH are on the same package, port A
3467          * HPD must be enabled in both north and south.
3468          */
3469         if (HAS_PCH_LPT_LP(dev_priv))
3470                 hotplug |= PORTA_HOTPLUG_ENABLE;
3471         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3472 }
3473
3474 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3475 {
3476         u32 hotplug_irqs, hotplug, enabled_irqs;
3477
3478         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3479         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3480
3481         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3482
3483         /* Enable digital hotplug on the PCH */
3484         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3485         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3486                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3487         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3488
3489         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3490         hotplug |= PORTE_HOTPLUG_ENABLE;
3491         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3492 }
3493
3494 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3495 {
3496         u32 hotplug_irqs, hotplug, enabled_irqs;
3497
3498         if (INTEL_GEN(dev_priv) >= 8) {
3499                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3500                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3501
3502                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3503         } else if (INTEL_GEN(dev_priv) >= 7) {
3504                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3505                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3506
3507                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3508         } else {
3509                 hotplug_irqs = DE_DP_A_HOTPLUG;
3510                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3511
3512                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3513         }
3514
3515         /*
3516          * Enable digital hotplug on the CPU, and configure the DP short pulse
3517          * duration to 2ms (which is the minimum in the Display Port spec)
3518          * The pulse duration bits are reserved on HSW+.
3519          */
3520         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3521         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3522         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3523         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3524
3525         ibx_hpd_irq_setup(dev_priv);
3526 }
3527
3528 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3529 {
3530         u32 hotplug_irqs, hotplug, enabled_irqs;
3531
3532         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3533         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3534
3535         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3536
3537         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3539                 PORTA_HOTPLUG_ENABLE;
3540
3541         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3542                       hotplug, enabled_irqs);
3543         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3544
3545         /*
3546          * For BXT invert bit has to be set based on AOB design
3547          * for HPD detection logic, update it based on VBT fields.
3548          */
3549
3550         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3551             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3552                 hotplug |= BXT_DDIA_HPD_INVERT;
3553         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3554             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3555                 hotplug |= BXT_DDIB_HPD_INVERT;
3556         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3557             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3558                 hotplug |= BXT_DDIC_HPD_INVERT;
3559
3560         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3561 }
3562
3563 static void ibx_irq_postinstall(struct drm_device *dev)
3564 {
3565         struct drm_i915_private *dev_priv = to_i915(dev);
3566         u32 mask;
3567
3568         if (HAS_PCH_NOP(dev))
3569                 return;
3570
3571         if (HAS_PCH_IBX(dev))
3572                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3573         else
3574                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3575
3576         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3577         I915_WRITE(SDEIMR, ~mask);
3578 }
3579
3580 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3581 {
3582         struct drm_i915_private *dev_priv = to_i915(dev);
3583         u32 pm_irqs, gt_irqs;
3584
3585         pm_irqs = gt_irqs = 0;
3586
3587         dev_priv->gt_irq_mask = ~0;
3588         if (HAS_L3_DPF(dev)) {
3589                 /* L3 parity interrupt is always unmasked. */
3590                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3591                 gt_irqs |= GT_PARITY_ERROR(dev);
3592         }
3593
3594         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3595         if (IS_GEN5(dev)) {
3596                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3597         } else {
3598                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3599         }
3600
3601         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3602
3603         if (INTEL_INFO(dev)->gen >= 6) {
3604                 /*
3605                  * RPS interrupts will get enabled/disabled on demand when RPS
3606                  * itself is enabled/disabled.
3607                  */
3608                 if (HAS_VEBOX(dev))
3609                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3610
3611                 dev_priv->pm_irq_mask = 0xffffffff;
3612                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3613         }
3614 }
3615
3616 static int ironlake_irq_postinstall(struct drm_device *dev)
3617 {
3618         struct drm_i915_private *dev_priv = to_i915(dev);
3619         u32 display_mask, extra_mask;
3620
3621         if (INTEL_INFO(dev)->gen >= 7) {
3622                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3623                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3624                                 DE_PLANEB_FLIP_DONE_IVB |
3625                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3626                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3627                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3628                               DE_DP_A_HOTPLUG_IVB);
3629         } else {
3630                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3631                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3632                                 DE_AUX_CHANNEL_A |
3633                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3634                                 DE_POISON);
3635                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3636                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3637                               DE_DP_A_HOTPLUG);
3638         }
3639
3640         dev_priv->irq_mask = ~display_mask;
3641
3642         I915_WRITE(HWSTAM, 0xeffe);
3643
3644         ibx_irq_pre_postinstall(dev);
3645
3646         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3647
3648         gen5_gt_irq_postinstall(dev);
3649
3650         ibx_irq_postinstall(dev);
3651
3652         if (IS_IRONLAKE_M(dev)) {
3653                 /* Enable PCU event interrupts
3654                  *
3655                  * spinlocking not required here for correctness since interrupt
3656                  * setup is guaranteed to run in single-threaded context. But we
3657                  * need it to make the assert_spin_locked happy. */
3658                 spin_lock_irq(&dev_priv->irq_lock);
3659                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3660                 spin_unlock_irq(&dev_priv->irq_lock);
3661         }
3662
3663         return 0;
3664 }
3665
3666 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3667 {
3668         assert_spin_locked(&dev_priv->irq_lock);
3669
3670         if (dev_priv->display_irqs_enabled)
3671                 return;
3672
3673         dev_priv->display_irqs_enabled = true;
3674
3675         if (intel_irqs_enabled(dev_priv)) {
3676                 vlv_display_irq_reset(dev_priv);
3677                 vlv_display_irq_postinstall(dev_priv);
3678         }
3679 }
3680
3681 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3682 {
3683         assert_spin_locked(&dev_priv->irq_lock);
3684
3685         if (!dev_priv->display_irqs_enabled)
3686                 return;
3687
3688         dev_priv->display_irqs_enabled = false;
3689
3690         if (intel_irqs_enabled(dev_priv))
3691                 vlv_display_irq_reset(dev_priv);
3692 }
3693
3694
3695 static int valleyview_irq_postinstall(struct drm_device *dev)
3696 {
3697         struct drm_i915_private *dev_priv = to_i915(dev);
3698
3699         gen5_gt_irq_postinstall(dev);
3700
3701         spin_lock_irq(&dev_priv->irq_lock);
3702         if (dev_priv->display_irqs_enabled)
3703                 vlv_display_irq_postinstall(dev_priv);
3704         spin_unlock_irq(&dev_priv->irq_lock);
3705
3706         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3707         POSTING_READ(VLV_MASTER_IER);
3708
3709         return 0;
3710 }
3711
3712 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3713 {
3714         /* These are interrupts we'll toggle with the ring mask register */
3715         uint32_t gt_interrupts[] = {
3716                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3717                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3718                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3719                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3720                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3721                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3722                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3723                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3724                 0,
3725                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3726                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3727                 };
3728
3729         if (HAS_L3_DPF(dev_priv))
3730                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3731
3732         dev_priv->pm_irq_mask = 0xffffffff;
3733         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3734         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3735         /*
3736          * RPS interrupts will get enabled/disabled on demand when RPS itself
3737          * is enabled/disabled.
3738          */
3739         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3740         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3741 }
3742
3743 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3744 {
3745         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3746         uint32_t de_pipe_enables;
3747         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3748         u32 de_port_enables;
3749         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3750         enum pipe pipe;
3751
3752         if (INTEL_INFO(dev_priv)->gen >= 9) {
3753                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3754                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3755                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3756                                   GEN9_AUX_CHANNEL_D;
3757                 if (IS_BROXTON(dev_priv))
3758                         de_port_masked |= BXT_DE_PORT_GMBUS;
3759         } else {
3760                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3761                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3762         }
3763
3764         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3765                                            GEN8_PIPE_FIFO_UNDERRUN;
3766
3767         de_port_enables = de_port_masked;
3768         if (IS_BROXTON(dev_priv))
3769                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3770         else if (IS_BROADWELL(dev_priv))
3771                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3772
3773         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3774         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3775         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3776
3777         for_each_pipe(dev_priv, pipe)
3778                 if (intel_display_power_is_enabled(dev_priv,
3779                                 POWER_DOMAIN_PIPE(pipe)))
3780                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3781                                           dev_priv->de_irq_mask[pipe],
3782                                           de_pipe_enables);
3783
3784         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3785         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3786 }
3787
3788 static int gen8_irq_postinstall(struct drm_device *dev)
3789 {
3790         struct drm_i915_private *dev_priv = to_i915(dev);
3791
3792         if (HAS_PCH_SPLIT(dev))
3793                 ibx_irq_pre_postinstall(dev);
3794
3795         gen8_gt_irq_postinstall(dev_priv);
3796         gen8_de_irq_postinstall(dev_priv);
3797
3798         if (HAS_PCH_SPLIT(dev))
3799                 ibx_irq_postinstall(dev);
3800
3801         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3802         POSTING_READ(GEN8_MASTER_IRQ);
3803
3804         return 0;
3805 }
3806
3807 static int cherryview_irq_postinstall(struct drm_device *dev)
3808 {
3809         struct drm_i915_private *dev_priv = to_i915(dev);
3810
3811         gen8_gt_irq_postinstall(dev_priv);
3812
3813         spin_lock_irq(&dev_priv->irq_lock);
3814         if (dev_priv->display_irqs_enabled)
3815                 vlv_display_irq_postinstall(dev_priv);
3816         spin_unlock_irq(&dev_priv->irq_lock);
3817
3818         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3819         POSTING_READ(GEN8_MASTER_IRQ);
3820
3821         return 0;
3822 }
3823
3824 static void gen8_irq_uninstall(struct drm_device *dev)
3825 {
3826         struct drm_i915_private *dev_priv = to_i915(dev);
3827
3828         if (!dev_priv)
3829                 return;
3830
3831         gen8_irq_reset(dev);
3832 }
3833
3834 static void valleyview_irq_uninstall(struct drm_device *dev)
3835 {
3836         struct drm_i915_private *dev_priv = to_i915(dev);
3837
3838         if (!dev_priv)
3839                 return;
3840
3841         I915_WRITE(VLV_MASTER_IER, 0);
3842         POSTING_READ(VLV_MASTER_IER);
3843
3844         gen5_gt_irq_reset(dev);
3845
3846         I915_WRITE(HWSTAM, 0xffffffff);
3847
3848         spin_lock_irq(&dev_priv->irq_lock);
3849         if (dev_priv->display_irqs_enabled)
3850                 vlv_display_irq_reset(dev_priv);
3851         spin_unlock_irq(&dev_priv->irq_lock);
3852 }
3853
3854 static void cherryview_irq_uninstall(struct drm_device *dev)
3855 {
3856         struct drm_i915_private *dev_priv = to_i915(dev);
3857
3858         if (!dev_priv)
3859                 return;
3860
3861         I915_WRITE(GEN8_MASTER_IRQ, 0);
3862         POSTING_READ(GEN8_MASTER_IRQ);
3863
3864         gen8_gt_irq_reset(dev_priv);
3865
3866         GEN5_IRQ_RESET(GEN8_PCU_);
3867
3868         spin_lock_irq(&dev_priv->irq_lock);
3869         if (dev_priv->display_irqs_enabled)
3870                 vlv_display_irq_reset(dev_priv);
3871         spin_unlock_irq(&dev_priv->irq_lock);
3872 }
3873
3874 static void ironlake_irq_uninstall(struct drm_device *dev)
3875 {
3876         struct drm_i915_private *dev_priv = to_i915(dev);
3877
3878         if (!dev_priv)
3879                 return;
3880
3881         ironlake_irq_reset(dev);
3882 }
3883
3884 static void i8xx_irq_preinstall(struct drm_device * dev)
3885 {
3886         struct drm_i915_private *dev_priv = to_i915(dev);
3887         int pipe;
3888
3889         for_each_pipe(dev_priv, pipe)
3890                 I915_WRITE(PIPESTAT(pipe), 0);
3891         I915_WRITE16(IMR, 0xffff);
3892         I915_WRITE16(IER, 0x0);
3893         POSTING_READ16(IER);
3894 }
3895
3896 static int i8xx_irq_postinstall(struct drm_device *dev)
3897 {
3898         struct drm_i915_private *dev_priv = to_i915(dev);
3899
3900         I915_WRITE16(EMR,
3901                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3902
3903         /* Unmask the interrupts that we always want on. */
3904         dev_priv->irq_mask =
3905                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3906                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3907                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3908                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3909         I915_WRITE16(IMR, dev_priv->irq_mask);
3910
3911         I915_WRITE16(IER,
3912                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3913                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3914                      I915_USER_INTERRUPT);
3915         POSTING_READ16(IER);
3916
3917         /* Interrupt setup is already guaranteed to be single-threaded, this is
3918          * just to make the assert_spin_locked check happy. */
3919         spin_lock_irq(&dev_priv->irq_lock);
3920         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3921         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3922         spin_unlock_irq(&dev_priv->irq_lock);
3923
3924         return 0;
3925 }
3926
3927 /*
3928  * Returns true when a page flip has completed.
3929  */
3930 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3931                                int plane, int pipe, u32 iir)
3932 {
3933         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3934
3935         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3936                 return false;
3937
3938         if ((iir & flip_pending) == 0)
3939                 goto check_page_flip;
3940
3941         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3942          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3943          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3944          * the flip is completed (no longer pending). Since this doesn't raise
3945          * an interrupt per se, we watch for the change at vblank.
3946          */
3947         if (I915_READ16(ISR) & flip_pending)
3948                 goto check_page_flip;
3949
3950         intel_finish_page_flip_cs(dev_priv, pipe);
3951         return true;
3952
3953 check_page_flip:
3954         intel_check_page_flip(dev_priv, pipe);
3955         return false;
3956 }
3957
3958 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3959 {
3960         struct drm_device *dev = arg;
3961         struct drm_i915_private *dev_priv = to_i915(dev);
3962         u16 iir, new_iir;
3963         u32 pipe_stats[2];
3964         int pipe;
3965         u16 flip_mask =
3966                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3967                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3968         irqreturn_t ret;
3969
3970         if (!intel_irqs_enabled(dev_priv))
3971                 return IRQ_NONE;
3972
3973         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3974         disable_rpm_wakeref_asserts(dev_priv);
3975
3976         ret = IRQ_NONE;
3977         iir = I915_READ16(IIR);
3978         if (iir == 0)
3979                 goto out;
3980
3981         while (iir & ~flip_mask) {
3982                 /* Can't rely on pipestat interrupt bit in iir as it might
3983                  * have been cleared after the pipestat interrupt was received.
3984                  * It doesn't set the bit in iir again, but it still produces
3985                  * interrupts (for non-MSI).
3986                  */
3987                 spin_lock(&dev_priv->irq_lock);
3988                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3989                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3990
3991                 for_each_pipe(dev_priv, pipe) {
3992                         i915_reg_t reg = PIPESTAT(pipe);
3993                         pipe_stats[pipe] = I915_READ(reg);
3994
3995                         /*
3996                          * Clear the PIPE*STAT regs before the IIR
3997                          */
3998                         if (pipe_stats[pipe] & 0x8000ffff)
3999                                 I915_WRITE(reg, pipe_stats[pipe]);
4000                 }
4001                 spin_unlock(&dev_priv->irq_lock);
4002
4003                 I915_WRITE16(IIR, iir & ~flip_mask);
4004                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4005
4006                 if (iir & I915_USER_INTERRUPT)
4007                         notify_ring(&dev_priv->engine[RCS]);
4008
4009                 for_each_pipe(dev_priv, pipe) {
4010                         int plane = pipe;
4011                         if (HAS_FBC(dev_priv))
4012                                 plane = !plane;
4013
4014                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4015                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4016                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4017
4018                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4019                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4020
4021                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4022                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4023                                                                     pipe);
4024                 }
4025
4026                 iir = new_iir;
4027         }
4028         ret = IRQ_HANDLED;
4029
4030 out:
4031         enable_rpm_wakeref_asserts(dev_priv);
4032
4033         return ret;
4034 }
4035
4036 static void i8xx_irq_uninstall(struct drm_device * dev)
4037 {
4038         struct drm_i915_private *dev_priv = to_i915(dev);
4039         int pipe;
4040
4041         for_each_pipe(dev_priv, pipe) {
4042                 /* Clear enable bits; then clear status bits */
4043                 I915_WRITE(PIPESTAT(pipe), 0);
4044                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4045         }
4046         I915_WRITE16(IMR, 0xffff);
4047         I915_WRITE16(IER, 0x0);
4048         I915_WRITE16(IIR, I915_READ16(IIR));
4049 }
4050
4051 static void i915_irq_preinstall(struct drm_device * dev)
4052 {
4053         struct drm_i915_private *dev_priv = to_i915(dev);
4054         int pipe;
4055
4056         if (I915_HAS_HOTPLUG(dev)) {
4057                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4058                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4059         }
4060
4061         I915_WRITE16(HWSTAM, 0xeffe);
4062         for_each_pipe(dev_priv, pipe)
4063                 I915_WRITE(PIPESTAT(pipe), 0);
4064         I915_WRITE(IMR, 0xffffffff);
4065         I915_WRITE(IER, 0x0);
4066         POSTING_READ(IER);
4067 }
4068
4069 static int i915_irq_postinstall(struct drm_device *dev)
4070 {
4071         struct drm_i915_private *dev_priv = to_i915(dev);
4072         u32 enable_mask;
4073
4074         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4075
4076         /* Unmask the interrupts that we always want on. */
4077         dev_priv->irq_mask =
4078                 ~(I915_ASLE_INTERRUPT |
4079                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4080                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4081                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4082                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4083
4084         enable_mask =
4085                 I915_ASLE_INTERRUPT |
4086                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4087                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4088                 I915_USER_INTERRUPT;
4089
4090         if (I915_HAS_HOTPLUG(dev)) {
4091                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4092                 POSTING_READ(PORT_HOTPLUG_EN);
4093
4094                 /* Enable in IER... */
4095                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096                 /* and unmask in IMR */
4097                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098         }
4099
4100         I915_WRITE(IMR, dev_priv->irq_mask);
4101         I915_WRITE(IER, enable_mask);
4102         POSTING_READ(IER);
4103
4104         i915_enable_asle_pipestat(dev_priv);
4105
4106         /* Interrupt setup is already guaranteed to be single-threaded, this is
4107          * just to make the assert_spin_locked check happy. */
4108         spin_lock_irq(&dev_priv->irq_lock);
4109         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4110         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4111         spin_unlock_irq(&dev_priv->irq_lock);
4112
4113         return 0;
4114 }
4115
4116 /*
4117  * Returns true when a page flip has completed.
4118  */
4119 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4120                                int plane, int pipe, u32 iir)
4121 {
4122         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4123
4124         if (!intel_pipe_handle_vblank(dev_priv, pipe))
4125                 return false;
4126
4127         if ((iir & flip_pending) == 0)
4128                 goto check_page_flip;
4129
4130         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4131          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4132          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4133          * the flip is completed (no longer pending). Since this doesn't raise
4134          * an interrupt per se, we watch for the change at vblank.
4135          */
4136         if (I915_READ(ISR) & flip_pending)
4137                 goto check_page_flip;
4138
4139         intel_finish_page_flip_cs(dev_priv, pipe);
4140         return true;
4141
4142 check_page_flip:
4143         intel_check_page_flip(dev_priv, pipe);
4144         return false;
4145 }
4146
4147 static irqreturn_t i915_irq_handler(int irq, void *arg)
4148 {
4149         struct drm_device *dev = arg;
4150         struct drm_i915_private *dev_priv = to_i915(dev);
4151         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4152         u32 flip_mask =
4153                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4154                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4155         int pipe, ret = IRQ_NONE;
4156
4157         if (!intel_irqs_enabled(dev_priv))
4158                 return IRQ_NONE;
4159
4160         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4161         disable_rpm_wakeref_asserts(dev_priv);
4162
4163         iir = I915_READ(IIR);
4164         do {
4165                 bool irq_received = (iir & ~flip_mask) != 0;
4166                 bool blc_event = false;
4167
4168                 /* Can't rely on pipestat interrupt bit in iir as it might
4169                  * have been cleared after the pipestat interrupt was received.
4170                  * It doesn't set the bit in iir again, but it still produces
4171                  * interrupts (for non-MSI).
4172                  */
4173                 spin_lock(&dev_priv->irq_lock);
4174                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4175                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4176
4177                 for_each_pipe(dev_priv, pipe) {
4178                         i915_reg_t reg = PIPESTAT(pipe);
4179                         pipe_stats[pipe] = I915_READ(reg);
4180
4181                         /* Clear the PIPE*STAT regs before the IIR */
4182                         if (pipe_stats[pipe] & 0x8000ffff) {
4183                                 I915_WRITE(reg, pipe_stats[pipe]);
4184                                 irq_received = true;
4185                         }
4186                 }
4187                 spin_unlock(&dev_priv->irq_lock);
4188
4189                 if (!irq_received)
4190                         break;
4191
4192                 /* Consume port.  Then clear IIR or we'll miss events */
4193                 if (I915_HAS_HOTPLUG(dev_priv) &&
4194                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4195                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4196                         if (hotplug_status)
4197                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4198                 }
4199
4200                 I915_WRITE(IIR, iir & ~flip_mask);
4201                 new_iir = I915_READ(IIR); /* Flush posted writes */
4202
4203                 if (iir & I915_USER_INTERRUPT)
4204                         notify_ring(&dev_priv->engine[RCS]);
4205
4206                 for_each_pipe(dev_priv, pipe) {
4207                         int plane = pipe;
4208                         if (HAS_FBC(dev_priv))
4209                                 plane = !plane;
4210
4211                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4212                             i915_handle_vblank(dev_priv, plane, pipe, iir))
4213                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4214
4215                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4216                                 blc_event = true;
4217
4218                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4219                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4220
4221                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4222                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4223                                                                     pipe);
4224                 }
4225
4226                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4227                         intel_opregion_asle_intr(dev_priv);
4228
4229                 /* With MSI, interrupts are only generated when iir
4230                  * transitions from zero to nonzero.  If another bit got
4231                  * set while we were handling the existing iir bits, then
4232                  * we would never get another interrupt.
4233                  *
4234                  * This is fine on non-MSI as well, as if we hit this path
4235                  * we avoid exiting the interrupt handler only to generate
4236                  * another one.
4237                  *
4238                  * Note that for MSI this could cause a stray interrupt report
4239                  * if an interrupt landed in the time between writing IIR and
4240                  * the posting read.  This should be rare enough to never
4241                  * trigger the 99% of 100,000 interrupts test for disabling
4242                  * stray interrupts.
4243                  */
4244                 ret = IRQ_HANDLED;
4245                 iir = new_iir;
4246         } while (iir & ~flip_mask);
4247
4248         enable_rpm_wakeref_asserts(dev_priv);
4249
4250         return ret;
4251 }
4252
4253 static void i915_irq_uninstall(struct drm_device * dev)
4254 {
4255         struct drm_i915_private *dev_priv = to_i915(dev);
4256         int pipe;
4257
4258         if (I915_HAS_HOTPLUG(dev)) {
4259                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4260                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4261         }
4262
4263         I915_WRITE16(HWSTAM, 0xffff);
4264         for_each_pipe(dev_priv, pipe) {
4265                 /* Clear enable bits; then clear status bits */
4266                 I915_WRITE(PIPESTAT(pipe), 0);
4267                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4268         }
4269         I915_WRITE(IMR, 0xffffffff);
4270         I915_WRITE(IER, 0x0);
4271
4272         I915_WRITE(IIR, I915_READ(IIR));
4273 }
4274
4275 static void i965_irq_preinstall(struct drm_device * dev)
4276 {
4277         struct drm_i915_private *dev_priv = to_i915(dev);
4278         int pipe;
4279
4280         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4281         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4282
4283         I915_WRITE(HWSTAM, 0xeffe);
4284         for_each_pipe(dev_priv, pipe)
4285                 I915_WRITE(PIPESTAT(pipe), 0);
4286         I915_WRITE(IMR, 0xffffffff);
4287         I915_WRITE(IER, 0x0);
4288         POSTING_READ(IER);
4289 }
4290
4291 static int i965_irq_postinstall(struct drm_device *dev)
4292 {
4293         struct drm_i915_private *dev_priv = to_i915(dev);
4294         u32 enable_mask;
4295         u32 error_mask;
4296
4297         /* Unmask the interrupts that we always want on. */
4298         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4299                                I915_DISPLAY_PORT_INTERRUPT |
4300                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4301                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4302                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4303                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4304                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4305
4306         enable_mask = ~dev_priv->irq_mask;
4307         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4308                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4309         enable_mask |= I915_USER_INTERRUPT;
4310
4311         if (IS_G4X(dev_priv))
4312                 enable_mask |= I915_BSD_USER_INTERRUPT;
4313
4314         /* Interrupt setup is already guaranteed to be single-threaded, this is
4315          * just to make the assert_spin_locked check happy. */
4316         spin_lock_irq(&dev_priv->irq_lock);
4317         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4318         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4319         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4320         spin_unlock_irq(&dev_priv->irq_lock);
4321
4322         /*
4323          * Enable some error detection, note the instruction error mask
4324          * bit is reserved, so we leave it masked.
4325          */
4326         if (IS_G4X(dev_priv)) {
4327                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4328                                GM45_ERROR_MEM_PRIV |
4329                                GM45_ERROR_CP_PRIV |
4330                                I915_ERROR_MEMORY_REFRESH);
4331         } else {
4332                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4333                                I915_ERROR_MEMORY_REFRESH);
4334         }
4335         I915_WRITE(EMR, error_mask);
4336
4337         I915_WRITE(IMR, dev_priv->irq_mask);
4338         I915_WRITE(IER, enable_mask);
4339         POSTING_READ(IER);
4340
4341         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4342         POSTING_READ(PORT_HOTPLUG_EN);
4343
4344         i915_enable_asle_pipestat(dev_priv);
4345
4346         return 0;
4347 }
4348
4349 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4350 {
4351         u32 hotplug_en;
4352
4353         assert_spin_locked(&dev_priv->irq_lock);
4354
4355         /* Note HDMI and DP share hotplug bits */
4356         /* enable bits are the same for all generations */
4357         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4358         /* Programming the CRT detection parameters tends
4359            to generate a spurious hotplug event about three
4360            seconds later.  So just do it once.
4361         */
4362         if (IS_G4X(dev_priv))
4363                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4364         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4365
4366         /* Ignore TV since it's buggy */
4367         i915_hotplug_interrupt_update_locked(dev_priv,
4368                                              HOTPLUG_INT_EN_MASK |
4369                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4370                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4371                                              hotplug_en);
4372 }
4373
4374 static irqreturn_t i965_irq_handler(int irq, void *arg)
4375 {
4376         struct drm_device *dev = arg;
4377         struct drm_i915_private *dev_priv = to_i915(dev);
4378         u32 iir, new_iir;
4379         u32 pipe_stats[I915_MAX_PIPES];
4380         int ret = IRQ_NONE, pipe;
4381         u32 flip_mask =
4382                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4383                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4384
4385         if (!intel_irqs_enabled(dev_priv))
4386                 return IRQ_NONE;
4387
4388         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4389         disable_rpm_wakeref_asserts(dev_priv);
4390
4391         iir = I915_READ(IIR);
4392
4393         for (;;) {
4394                 bool irq_received = (iir & ~flip_mask) != 0;
4395                 bool blc_event = false;
4396
4397                 /* Can't rely on pipestat interrupt bit in iir as it might
4398                  * have been cleared after the pipestat interrupt was received.
4399                  * It doesn't set the bit in iir again, but it still produces
4400                  * interrupts (for non-MSI).
4401                  */
4402                 spin_lock(&dev_priv->irq_lock);
4403                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4404                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4405
4406                 for_each_pipe(dev_priv, pipe) {
4407                         i915_reg_t reg = PIPESTAT(pipe);
4408                         pipe_stats[pipe] = I915_READ(reg);
4409
4410                         /*
4411                          * Clear the PIPE*STAT regs before the IIR
4412                          */
4413                         if (pipe_stats[pipe] & 0x8000ffff) {
4414                                 I915_WRITE(reg, pipe_stats[pipe]);
4415                                 irq_received = true;
4416                         }
4417                 }
4418                 spin_unlock(&dev_priv->irq_lock);
4419
4420                 if (!irq_received)
4421                         break;
4422
4423                 ret = IRQ_HANDLED;
4424
4425                 /* Consume port.  Then clear IIR or we'll miss events */
4426                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4427                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4428                         if (hotplug_status)
4429                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4430                 }
4431
4432                 I915_WRITE(IIR, iir & ~flip_mask);
4433                 new_iir = I915_READ(IIR); /* Flush posted writes */
4434
4435                 if (iir & I915_USER_INTERRUPT)
4436                         notify_ring(&dev_priv->engine[RCS]);
4437                 if (iir & I915_BSD_USER_INTERRUPT)
4438                         notify_ring(&dev_priv->engine[VCS]);
4439
4440                 for_each_pipe(dev_priv, pipe) {
4441                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4442                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4443                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4444
4445                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4446                                 blc_event = true;
4447
4448                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4449                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4450
4451                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4452                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4453                 }
4454
4455                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4456                         intel_opregion_asle_intr(dev_priv);
4457
4458                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4459                         gmbus_irq_handler(dev_priv);
4460
4461                 /* With MSI, interrupts are only generated when iir
4462                  * transitions from zero to nonzero.  If another bit got
4463                  * set while we were handling the existing iir bits, then
4464                  * we would never get another interrupt.
4465                  *
4466                  * This is fine on non-MSI as well, as if we hit this path
4467                  * we avoid exiting the interrupt handler only to generate
4468                  * another one.
4469                  *
4470                  * Note that for MSI this could cause a stray interrupt report
4471                  * if an interrupt landed in the time between writing IIR and
4472                  * the posting read.  This should be rare enough to never
4473                  * trigger the 99% of 100,000 interrupts test for disabling
4474                  * stray interrupts.
4475                  */
4476                 iir = new_iir;
4477         }
4478
4479         enable_rpm_wakeref_asserts(dev_priv);
4480
4481         return ret;
4482 }
4483
4484 static void i965_irq_uninstall(struct drm_device * dev)
4485 {
4486         struct drm_i915_private *dev_priv = to_i915(dev);
4487         int pipe;
4488
4489         if (!dev_priv)
4490                 return;
4491
4492         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4493         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4494
4495         I915_WRITE(HWSTAM, 0xffffffff);
4496         for_each_pipe(dev_priv, pipe)
4497                 I915_WRITE(PIPESTAT(pipe), 0);
4498         I915_WRITE(IMR, 0xffffffff);
4499         I915_WRITE(IER, 0x0);
4500
4501         for_each_pipe(dev_priv, pipe)
4502                 I915_WRITE(PIPESTAT(pipe),
4503                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4504         I915_WRITE(IIR, I915_READ(IIR));
4505 }
4506
4507 /**
4508  * intel_irq_init - initializes irq support
4509  * @dev_priv: i915 device instance
4510  *
4511  * This function initializes all the irq support including work items, timers
4512  * and all the vtables. It does not setup the interrupt itself though.
4513  */
4514 void intel_irq_init(struct drm_i915_private *dev_priv)
4515 {
4516         struct drm_device *dev = &dev_priv->drm;
4517
4518         intel_hpd_init_work(dev_priv);
4519
4520         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4521         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4522
4523         /* Let's track the enabled rps events */
4524         if (IS_VALLEYVIEW(dev_priv))
4525                 /* WaGsvRC0ResidencyMethod:vlv */
4526                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4527         else
4528                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4529
4530         dev_priv->rps.pm_intr_keep = 0;
4531
4532         /*
4533          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4534          * if GEN6_PM_UP_EI_EXPIRED is masked.
4535          *
4536          * TODO: verify if this can be reproduced on VLV,CHV.
4537          */
4538         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4539                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4540
4541         if (INTEL_INFO(dev_priv)->gen >= 8)
4542                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
4543
4544         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4545                           i915_hangcheck_elapsed);
4546
4547         if (IS_GEN2(dev_priv)) {
4548                 dev->max_vblank_count = 0;
4549                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4550         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4551                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4552                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4553         } else {
4554                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4555                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4556         }
4557
4558         /*
4559          * Opt out of the vblank disable timer on everything except gen2.
4560          * Gen2 doesn't have a hardware frame counter and so depends on
4561          * vblank interrupts to produce sane vblank seuquence numbers.
4562          */
4563         if (!IS_GEN2(dev_priv))
4564                 dev->vblank_disable_immediate = true;
4565
4566         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4567         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4568
4569         if (IS_CHERRYVIEW(dev_priv)) {
4570                 dev->driver->irq_handler = cherryview_irq_handler;
4571                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4572                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4573                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4574                 dev->driver->enable_vblank = valleyview_enable_vblank;
4575                 dev->driver->disable_vblank = valleyview_disable_vblank;
4576                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4577         } else if (IS_VALLEYVIEW(dev_priv)) {
4578                 dev->driver->irq_handler = valleyview_irq_handler;
4579                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4580                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4581                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4582                 dev->driver->enable_vblank = valleyview_enable_vblank;
4583                 dev->driver->disable_vblank = valleyview_disable_vblank;
4584                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4585         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4586                 dev->driver->irq_handler = gen8_irq_handler;
4587                 dev->driver->irq_preinstall = gen8_irq_reset;
4588                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4589                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4590                 dev->driver->enable_vblank = gen8_enable_vblank;
4591                 dev->driver->disable_vblank = gen8_disable_vblank;
4592                 if (IS_BROXTON(dev))
4593                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4594                 else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4595                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4596                 else
4597                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4598         } else if (HAS_PCH_SPLIT(dev)) {
4599                 dev->driver->irq_handler = ironlake_irq_handler;
4600                 dev->driver->irq_preinstall = ironlake_irq_reset;
4601                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4602                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4603                 dev->driver->enable_vblank = ironlake_enable_vblank;
4604                 dev->driver->disable_vblank = ironlake_disable_vblank;
4605                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4606         } else {
4607                 if (IS_GEN2(dev_priv)) {
4608                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4609                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4610                         dev->driver->irq_handler = i8xx_irq_handler;
4611                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4612                 } else if (IS_GEN3(dev_priv)) {
4613                         dev->driver->irq_preinstall = i915_irq_preinstall;
4614                         dev->driver->irq_postinstall = i915_irq_postinstall;
4615                         dev->driver->irq_uninstall = i915_irq_uninstall;
4616                         dev->driver->irq_handler = i915_irq_handler;
4617                 } else {
4618                         dev->driver->irq_preinstall = i965_irq_preinstall;
4619                         dev->driver->irq_postinstall = i965_irq_postinstall;
4620                         dev->driver->irq_uninstall = i965_irq_uninstall;
4621                         dev->driver->irq_handler = i965_irq_handler;
4622                 }
4623                 if (I915_HAS_HOTPLUG(dev_priv))
4624                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4625                 dev->driver->enable_vblank = i915_enable_vblank;
4626                 dev->driver->disable_vblank = i915_disable_vblank;
4627         }
4628 }
4629
4630 /**
4631  * intel_irq_install - enables the hardware interrupt
4632  * @dev_priv: i915 device instance
4633  *
4634  * This function enables the hardware interrupt handling, but leaves the hotplug
4635  * handling still disabled. It is called after intel_irq_init().
4636  *
4637  * In the driver load and resume code we need working interrupts in a few places
4638  * but don't want to deal with the hassle of concurrent probe and hotplug
4639  * workers. Hence the split into this two-stage approach.
4640  */
4641 int intel_irq_install(struct drm_i915_private *dev_priv)
4642 {
4643         /*
4644          * We enable some interrupt sources in our postinstall hooks, so mark
4645          * interrupts as enabled _before_ actually enabling them to avoid
4646          * special cases in our ordering checks.
4647          */
4648         dev_priv->pm.irqs_enabled = true;
4649
4650         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4651 }
4652
4653 /**
4654  * intel_irq_uninstall - finilizes all irq handling
4655  * @dev_priv: i915 device instance
4656  *
4657  * This stops interrupt and hotplug handling and unregisters and frees all
4658  * resources acquired in the init functions.
4659  */
4660 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4661 {
4662         drm_irq_uninstall(&dev_priv->drm);
4663         intel_hpd_cancel_work(dev_priv);
4664         dev_priv->pm.irqs_enabled = false;
4665 }
4666
4667 /**
4668  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4669  * @dev_priv: i915 device instance
4670  *
4671  * This function is used to disable interrupts at runtime, both in the runtime
4672  * pm and the system suspend/resume code.
4673  */
4674 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4675 {
4676         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4677         dev_priv->pm.irqs_enabled = false;
4678         synchronize_irq(dev_priv->drm.irq);
4679 }
4680
4681 /**
4682  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4683  * @dev_priv: i915 device instance
4684  *
4685  * This function is used to enable interrupts at runtime, both in the runtime
4686  * pm and the system suspend/resume code.
4687  */
4688 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4689 {
4690         dev_priv->pm.irqs_enabled = true;
4691         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4692         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4693 }