]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: rename intel_enable_pch_pll to ironlake_enable_pch_pll
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = dev->dev_private;
87
88         WARN_ON(!HAS_PCH_SPLIT(dev));
89
90         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95                     int target, int refclk, intel_clock_t *match_clock,
96                     intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99                         int target, int refclk, intel_clock_t *match_clock,
100                         intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104                       int target, int refclk, intel_clock_t *match_clock,
105                       intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108                            int target, int refclk, intel_clock_t *match_clock,
109                            intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119         if (IS_GEN5(dev)) {
120                 struct drm_i915_private *dev_priv = dev->dev_private;
121                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122         } else
123                 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 2, .max = 33 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 4, .p2_fast = 2 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 1, .max = 6 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 14, .p2_fast = 7 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 5, .max = 80 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 200000,
164                 .p2_slow = 10, .p2_fast = 5 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 10, .max = 22 },
174         .m2 = { .min = 5, .max = 9 },
175         .p = { .min = 7, .max = 98 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 112000,
178                 .p2_slow = 14, .p2_fast = 7 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184         .dot = { .min = 25000, .max = 270000 },
185         .vco = { .min = 1750000, .max = 3500000},
186         .n = { .min = 1, .max = 4 },
187         .m = { .min = 104, .max = 138 },
188         .m1 = { .min = 17, .max = 23 },
189         .m2 = { .min = 5, .max = 11 },
190         .p = { .min = 10, .max = 30 },
191         .p1 = { .min = 1, .max = 3},
192         .p2 = { .dot_limit = 270000,
193                 .p2_slow = 10,
194                 .p2_fast = 10
195         },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200         .dot = { .min = 22000, .max = 400000 },
201         .vco = { .min = 1750000, .max = 3500000},
202         .n = { .min = 1, .max = 4 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 16, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8},
208         .p2 = { .dot_limit = 165000,
209                 .p2_slow = 10, .p2_fast = 5 },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214         .dot = { .min = 20000, .max = 115000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 28, .max = 112 },
221         .p1 = { .min = 2, .max = 8 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 14, .p2_fast = 14
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229         .dot = { .min = 80000, .max = 224000 },
230         .vco = { .min = 1750000, .max = 3500000 },
231         .n = { .min = 1, .max = 3 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 17, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 14, .max = 42 },
236         .p1 = { .min = 2, .max = 6 },
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 7, .p2_fast = 7
239         },
240         .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244         .dot = { .min = 161670, .max = 227000 },
245         .vco = { .min = 1750000, .max = 3500000},
246         .n = { .min = 1, .max = 2 },
247         .m = { .min = 97, .max = 108 },
248         .m1 = { .min = 0x10, .max = 0x12 },
249         .m2 = { .min = 0x05, .max = 0x06 },
250         .p = { .min = 10, .max = 20 },
251         .p1 = { .min = 1, .max = 2},
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 10, .p2_fast = 10 },
254         .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258         .dot = { .min = 20000, .max = 400000},
259         .vco = { .min = 1700000, .max = 3500000 },
260         /* Pineview's Ncounter is a ring counter */
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         /* Pineview only has one combined m divider, which we treat as m2. */
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 5, .max = 80 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 200000,
269                 .p2_slow = 10, .p2_fast = 5 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274         .dot = { .min = 20000, .max = 400000 },
275         .vco = { .min = 1700000, .max = 3500000 },
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 7, .max = 112 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 112000,
283                 .p2_slow = 14, .p2_fast = 14 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288  *
289  * We calculate clock using (register_value + 2) for N/M1/M2, so here
290  * the range value for them is (actual_value - 2).
291  */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 5 },
296         .m = { .min = 79, .max = 127 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 5, .max = 80 },
300         .p1 = { .min = 1, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 10, .p2_fast = 5 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 118 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 28, .max = 112 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 14, .p2_fast = 14 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 127 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 14, .max = 56 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 7, .p2_fast = 7 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 2 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 28, .max = 112 },
343         .p1 = { .min = 2, .max = 8 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 14, .p2_fast = 14 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 3 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 14, .max = 42 },
357         .p1 = { .min = 2, .max = 6 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 7, .p2_fast = 7 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000},
366         .n = { .min = 1, .max = 2 },
367         .m = { .min = 81, .max = 90 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 10, .max = 20 },
371         .p1 = { .min = 1, .max = 2},
372         .p2 = { .dot_limit = 0,
373                 .p2_slow = 10, .p2_fast = 10 },
374         .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378         .dot = { .min = 25000, .max = 270000 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m = { .min = 22, .max = 450 }, /* guess */
382         .m1 = { .min = 2, .max = 3 },
383         .m2 = { .min = 11, .max = 156 },
384         .p = { .min = 10, .max = 30 },
385         .p1 = { .min = 2, .max = 3 },
386         .p2 = { .dot_limit = 270000,
387                 .p2_slow = 2, .p2_fast = 20 },
388         .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392         .dot = { .min = 20000, .max = 165000 },
393         .vco = { .min = 4000000, .max = 5994000},
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 60, .max = 300 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406         .dot = { .min = 25000, .max = 270000 },
407         .vco = { .min = 4000000, .max = 6000000 },
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 22, .max = 450 },
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421         unsigned long flags;
422         u32 val = 0;
423
424         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426                 DRM_ERROR("DPIO idle wait timed out\n");
427                 goto out_unlock;
428         }
429
430         I915_WRITE(DPIO_REG, reg);
431         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432                    DPIO_BYTE);
433         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434                 DRM_ERROR("DPIO read wait timed out\n");
435                 goto out_unlock;
436         }
437         val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441         return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445                              u32 val)
446 {
447         unsigned long flags;
448
449         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451                 DRM_ERROR("DPIO idle wait timed out\n");
452                 goto out_unlock;
453         }
454
455         I915_WRITE(DPIO_DATA, val);
456         I915_WRITE(DPIO_REG, reg);
457         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458                    DPIO_BYTE);
459         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460                 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468         struct drm_i915_private *dev_priv = dev->dev_private;
469
470         /* Reset the DPIO config */
471         I915_WRITE(DPIO_CTL, 0);
472         POSTING_READ(DPIO_CTL);
473         I915_WRITE(DPIO_CTL, 1);
474         POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480         return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484         {
485                 .callback = intel_dual_link_lvds_callback,
486                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487                 .matches = {
488                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490                 },
491         },
492         { }     /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496                               unsigned int reg)
497 {
498         unsigned int val;
499
500         /* use the module option value if specified */
501         if (i915_lvds_channel_mode > 0)
502                 return i915_lvds_channel_mode == 2;
503
504         if (dmi_check_system(intel_dual_link_lvds))
505                 return true;
506
507         if (dev_priv->lvds_val)
508                 val = dev_priv->lvds_val;
509         else {
510                 /* BIOS should set the proper LVDS register value at boot, but
511                  * in reality, it doesn't set the value when the lid is closed;
512                  * we need to check "the value to be set" in VBT when LVDS
513                  * register is uninitialized.
514                  */
515                 val = I915_READ(reg);
516                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517                         val = dev_priv->bios_lvds_val;
518                 dev_priv->lvds_val = val;
519         }
520         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524                                                 int refclk)
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         const intel_limit_t *limit;
529
530         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532                         /* LVDS dual channel */
533                         if (refclk == 100000)
534                                 limit = &intel_limits_ironlake_dual_lvds_100m;
535                         else
536                                 limit = &intel_limits_ironlake_dual_lvds;
537                 } else {
538                         if (refclk == 100000)
539                                 limit = &intel_limits_ironlake_single_lvds_100m;
540                         else
541                                 limit = &intel_limits_ironlake_single_lvds;
542                 }
543         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544                         HAS_eDP)
545                 limit = &intel_limits_ironlake_display_port;
546         else
547                 limit = &intel_limits_ironlake_dac;
548
549         return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554         struct drm_device *dev = crtc->dev;
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559                 if (is_dual_link_lvds(dev_priv, LVDS))
560                         /* LVDS with dual channel */
561                         limit = &intel_limits_g4x_dual_channel_lvds;
562                 else
563                         /* LVDS with dual channel */
564                         limit = &intel_limits_g4x_single_channel_lvds;
565         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567                 limit = &intel_limits_g4x_hdmi;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569                 limit = &intel_limits_g4x_sdvo;
570         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571                 limit = &intel_limits_g4x_display_port;
572         } else /* The option is for other outputs */
573                 limit = &intel_limits_i9xx_sdvo;
574
575         return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580         struct drm_device *dev = crtc->dev;
581         const intel_limit_t *limit;
582
583         if (HAS_PCH_SPLIT(dev))
584                 limit = intel_ironlake_limit(crtc, refclk);
585         else if (IS_G4X(dev)) {
586                 limit = intel_g4x_limit(crtc);
587         } else if (IS_PINEVIEW(dev)) {
588                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589                         limit = &intel_limits_pineview_lvds;
590                 else
591                         limit = &intel_limits_pineview_sdvo;
592         } else if (IS_VALLEYVIEW(dev)) {
593                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594                         limit = &intel_limits_vlv_dac;
595                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596                         limit = &intel_limits_vlv_hdmi;
597                 else
598                         limit = &intel_limits_vlv_dp;
599         } else if (!IS_GEN2(dev)) {
600                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601                         limit = &intel_limits_i9xx_lvds;
602                 else
603                         limit = &intel_limits_i9xx_sdvo;
604         } else {
605                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606                         limit = &intel_limits_i8xx_lvds;
607                 else
608                         limit = &intel_limits_i8xx_dvo;
609         }
610         return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m2 + 2;
617         clock->p = clock->p1 * clock->p2;
618         clock->vco = refclk * clock->m / clock->n;
619         clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624         if (IS_PINEVIEW(dev)) {
625                 pineview_clock(refclk, clock);
626                 return;
627         }
628         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629         clock->p = clock->p1 * clock->p2;
630         clock->vco = refclk * clock->m / (clock->n + 2);
631         clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635  * Returns whether any output on the specified pipe is of the specified type
636  */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639         struct drm_device *dev = crtc->dev;
640         struct intel_encoder *encoder;
641
642         for_each_encoder_on_crtc(dev, crtc, encoder)
643                 if (encoder->type == type)
644                         return true;
645
646         return false;
647 }
648
649 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651  * Returns whether the given set of divisors are valid for a given refclk with
652  * the given connectors.
653  */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656                                const intel_limit_t *limit,
657                                const intel_clock_t *clock)
658 {
659         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
660                 INTELPllInvalid("p1 out of range\n");
661         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
662                 INTELPllInvalid("p out of range\n");
663         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
664                 INTELPllInvalid("m2 out of range\n");
665         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
666                 INTELPllInvalid("m1 out of range\n");
667         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668                 INTELPllInvalid("m1 <= m2\n");
669         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
670                 INTELPllInvalid("m out of range\n");
671         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
672                 INTELPllInvalid("n out of range\n");
673         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674                 INTELPllInvalid("vco out of range\n");
675         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676          * connector, etc., rather than just a single range.
677          */
678         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679                 INTELPllInvalid("dot out of range\n");
680
681         return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686                     int target, int refclk, intel_clock_t *match_clock,
687                     intel_clock_t *best_clock)
688
689 {
690         struct drm_device *dev = crtc->dev;
691         struct drm_i915_private *dev_priv = dev->dev_private;
692         intel_clock_t clock;
693         int err = target;
694
695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696             (I915_READ(LVDS)) != 0) {
697                 /*
698                  * For LVDS, if the panel is on, just rely on its current
699                  * settings for dual-channel.  We haven't figured out how to
700                  * reliably set up different single/dual channel state, if we
701                  * even can.
702                  */
703                 if (is_dual_link_lvds(dev_priv, LVDS))
704                         clock.p2 = limit->p2.p2_fast;
705                 else
706                         clock.p2 = limit->p2.p2_slow;
707         } else {
708                 if (target < limit->p2.dot_limit)
709                         clock.p2 = limit->p2.p2_slow;
710                 else
711                         clock.p2 = limit->p2.p2_fast;
712         }
713
714         memset(best_clock, 0, sizeof(*best_clock));
715
716         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717              clock.m1++) {
718                 for (clock.m2 = limit->m2.min;
719                      clock.m2 <= limit->m2.max; clock.m2++) {
720                         /* m1 is always 0 in Pineview */
721                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722                                 break;
723                         for (clock.n = limit->n.min;
724                              clock.n <= limit->n.max; clock.n++) {
725                                 for (clock.p1 = limit->p1.min;
726                                         clock.p1 <= limit->p1.max; clock.p1++) {
727                                         int this_err;
728
729                                         intel_clock(dev, refclk, &clock);
730                                         if (!intel_PLL_is_valid(dev, limit,
731                                                                 &clock))
732                                                 continue;
733                                         if (match_clock &&
734                                             clock.p != match_clock->p)
735                                                 continue;
736
737                                         this_err = abs(clock.dot - target);
738                                         if (this_err < err) {
739                                                 *best_clock = clock;
740                                                 err = this_err;
741                                         }
742                                 }
743                         }
744                 }
745         }
746
747         return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752                         int target, int refclk, intel_clock_t *match_clock,
753                         intel_clock_t *best_clock)
754 {
755         struct drm_device *dev = crtc->dev;
756         struct drm_i915_private *dev_priv = dev->dev_private;
757         intel_clock_t clock;
758         int max_n;
759         bool found;
760         /* approximately equals target * 0.00585 */
761         int err_most = (target >> 8) + (target >> 9);
762         found = false;
763
764         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765                 int lvds_reg;
766
767                 if (HAS_PCH_SPLIT(dev))
768                         lvds_reg = PCH_LVDS;
769                 else
770                         lvds_reg = LVDS;
771                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772                     LVDS_CLKB_POWER_UP)
773                         clock.p2 = limit->p2.p2_fast;
774                 else
775                         clock.p2 = limit->p2.p2_slow;
776         } else {
777                 if (target < limit->p2.dot_limit)
778                         clock.p2 = limit->p2.p2_slow;
779                 else
780                         clock.p2 = limit->p2.p2_fast;
781         }
782
783         memset(best_clock, 0, sizeof(*best_clock));
784         max_n = limit->n.max;
785         /* based on hardware requirement, prefer smaller n to precision */
786         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787                 /* based on hardware requirement, prefere larger m1,m2 */
788                 for (clock.m1 = limit->m1.max;
789                      clock.m1 >= limit->m1.min; clock.m1--) {
790                         for (clock.m2 = limit->m2.max;
791                              clock.m2 >= limit->m2.min; clock.m2--) {
792                                 for (clock.p1 = limit->p1.max;
793                                      clock.p1 >= limit->p1.min; clock.p1--) {
794                                         int this_err;
795
796                                         intel_clock(dev, refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err_most) {
806                                                 *best_clock = clock;
807                                                 err_most = this_err;
808                                                 max_n = clock.n;
809                                                 found = true;
810                                         }
811                                 }
812                         }
813                 }
814         }
815         return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820                            int target, int refclk, intel_clock_t *match_clock,
821                            intel_clock_t *best_clock)
822 {
823         struct drm_device *dev = crtc->dev;
824         intel_clock_t clock;
825
826         if (target < 200000) {
827                 clock.n = 1;
828                 clock.p1 = 2;
829                 clock.p2 = 10;
830                 clock.m1 = 12;
831                 clock.m2 = 9;
832         } else {
833                 clock.n = 2;
834                 clock.p1 = 1;
835                 clock.p2 = 10;
836                 clock.m1 = 14;
837                 clock.m2 = 8;
838         }
839         intel_clock(dev, refclk, &clock);
840         memcpy(best_clock, &clock, sizeof(intel_clock_t));
841         return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847                       int target, int refclk, intel_clock_t *match_clock,
848                       intel_clock_t *best_clock)
849 {
850         intel_clock_t clock;
851         if (target < 200000) {
852                 clock.p1 = 2;
853                 clock.p2 = 10;
854                 clock.n = 2;
855                 clock.m1 = 23;
856                 clock.m2 = 8;
857         } else {
858                 clock.p1 = 1;
859                 clock.p2 = 10;
860                 clock.n = 1;
861                 clock.m1 = 14;
862                 clock.m2 = 2;
863         }
864         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865         clock.p = (clock.p1 * clock.p2);
866         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867         clock.vco = 0;
868         memcpy(best_clock, &clock, sizeof(intel_clock_t));
869         return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873                         int target, int refclk, intel_clock_t *match_clock,
874                         intel_clock_t *best_clock)
875 {
876         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877         u32 m, n, fastclk;
878         u32 updrate, minupdate, fracbits, p;
879         unsigned long bestppm, ppm, absppm;
880         int dotclk, flag;
881
882         flag = 0;
883         dotclk = target * 1000;
884         bestppm = 1000000;
885         ppm = absppm = 0;
886         fastclk = dotclk / (2*100);
887         updrate = 0;
888         minupdate = 19200;
889         fracbits = 1;
890         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891         bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893         /* based on hardware requirement, prefer smaller n to precision */
894         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895                 updrate = refclk / n;
896                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898                                 if (p2 > 10)
899                                         p2 = p2 - 1;
900                                 p = p1 * p2;
901                                 /* based on hardware requirement, prefer bigger m1,m2 values */
902                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903                                         m2 = (((2*(fastclk * p * n / m1 )) +
904                                                refclk) / (2*refclk));
905                                         m = m1 * m2;
906                                         vco = updrate * m;
907                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
908                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909                                                 absppm = (ppm > 0) ? ppm : (-ppm);
910                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911                                                         bestppm = 0;
912                                                         flag = 1;
913                                                 }
914                                                 if (absppm < bestppm - 10) {
915                                                         bestppm = absppm;
916                                                         flag = 1;
917                                                 }
918                                                 if (flag) {
919                                                         bestn = n;
920                                                         bestm1 = m1;
921                                                         bestm2 = m2;
922                                                         bestp1 = p1;
923                                                         bestp2 = p2;
924                                                         flag = 0;
925                                                 }
926                                         }
927                                 }
928                         }
929                 }
930         }
931         best_clock->n = bestn;
932         best_clock->m1 = bestm1;
933         best_clock->m2 = bestm2;
934         best_clock->p1 = bestp1;
935         best_clock->p2 = bestp2;
936
937         return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941                                              enum pipe pipe)
942 {
943         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946         return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 frame, frame_reg = PIPEFRAME(pipe);
953
954         frame = I915_READ(frame_reg);
955
956         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957                 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961  * intel_wait_for_vblank - wait for vblank on a given pipe
962  * @dev: drm device
963  * @pipe: pipe to wait for
964  *
965  * Wait for vblank to occur on a given pipe.  Needed for various bits of
966  * mode setting code.
967  */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971         int pipestat_reg = PIPESTAT(pipe);
972
973         if (INTEL_INFO(dev)->gen >= 5) {
974                 ironlake_wait_for_vblank(dev, pipe);
975                 return;
976         }
977
978         /* Clear existing vblank status. Note this will clear any other
979          * sticky status fields as well.
980          *
981          * This races with i915_driver_irq_handler() with the result
982          * that either function could miss a vblank event.  Here it is not
983          * fatal, as we will either wait upon the next vblank interrupt or
984          * timeout.  Generally speaking intel_wait_for_vblank() is only
985          * called during modeset at which time the GPU should be idle and
986          * should *not* be performing page flips and thus not waiting on
987          * vblanks...
988          * Currently, the result of us stealing a vblank from the irq
989          * handler is that a single frame will be skipped during swapbuffers.
990          */
991         I915_WRITE(pipestat_reg,
992                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994         /* Wait for vblank interrupt bit to set */
995         if (wait_for(I915_READ(pipestat_reg) &
996                      PIPE_VBLANK_INTERRUPT_STATUS,
997                      50))
998                 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002  * intel_wait_for_pipe_off - wait for pipe to turn off
1003  * @dev: drm device
1004  * @pipe: pipe to wait for
1005  *
1006  * After disabling a pipe, we can't wait for vblank in the usual way,
1007  * spinning on the vblank interrupt status bit, since we won't actually
1008  * see an interrupt when the pipe is disabled.
1009  *
1010  * On Gen4 and above:
1011  *   wait for the pipe register state bit to turn off
1012  *
1013  * Otherwise:
1014  *   wait for the display line value to settle (it usually
1015  *   ends up stopping at the start of the next frame).
1016  *
1017  */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020         struct drm_i915_private *dev_priv = dev->dev_private;
1021         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022                                                                       pipe);
1023
1024         if (INTEL_INFO(dev)->gen >= 4) {
1025                 int reg = PIPECONF(cpu_transcoder);
1026
1027                 /* Wait for the Pipe State to go off */
1028                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029                              100))
1030                         WARN(1, "pipe_off wait timed out\n");
1031         } else {
1032                 u32 last_line, line_mask;
1033                 int reg = PIPEDSL(pipe);
1034                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036                 if (IS_GEN2(dev))
1037                         line_mask = DSL_LINEMASK_GEN2;
1038                 else
1039                         line_mask = DSL_LINEMASK_GEN3;
1040
1041                 /* Wait for the display line to settle */
1042                 do {
1043                         last_line = I915_READ(reg) & line_mask;
1044                         mdelay(5);
1045                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046                          time_after(timeout, jiffies));
1047                 if (time_after(jiffies, timeout))
1048                         WARN(1, "pipe_off wait timed out\n");
1049         }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054         return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059                        enum pipe pipe, bool state)
1060 {
1061         int reg;
1062         u32 val;
1063         bool cur_state;
1064
1065         reg = DPLL(pipe);
1066         val = I915_READ(reg);
1067         cur_state = !!(val & DPLL_VCO_ENABLE);
1068         WARN(cur_state != state,
1069              "PLL state assertion failure (expected %s, current %s)\n",
1070              state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077                            struct intel_pch_pll *pll,
1078                            struct intel_crtc *crtc,
1079                            bool state)
1080 {
1081         u32 val;
1082         bool cur_state;
1083
1084         if (HAS_PCH_LPT(dev_priv->dev)) {
1085                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086                 return;
1087         }
1088
1089         if (WARN (!pll,
1090                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091                 return;
1092
1093         val = I915_READ(pll->pll_reg);
1094         cur_state = !!(val & DPLL_VCO_ENABLE);
1095         WARN(cur_state != state,
1096              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097              pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099         /* Make sure the selected PLL is correctly attached to the transcoder */
1100         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101                 u32 pch_dpll;
1102
1103                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1107                           cur_state, crtc->pipe, pch_dpll)) {
1108                         cur_state = !!(val >> (4*crtc->pipe + 3));
1109                         WARN(cur_state != state,
1110                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1111                              pll->pll_reg == _PCH_DPLL_B,
1112                              state_string(state),
1113                              crtc->pipe,
1114                              val);
1115                 }
1116         }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122                           enum pipe pipe, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128                                                                       pipe);
1129
1130         if (IS_HASWELL(dev_priv->dev)) {
1131                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133                 val = I915_READ(reg);
1134                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135         } else {
1136                 reg = FDI_TX_CTL(pipe);
1137                 val = I915_READ(reg);
1138                 cur_state = !!(val & FDI_TX_ENABLE);
1139         }
1140         WARN(cur_state != state,
1141              "FDI TX state assertion failure (expected %s, current %s)\n",
1142              state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148                           enum pipe pipe, bool state)
1149 {
1150         int reg;
1151         u32 val;
1152         bool cur_state;
1153
1154         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156                         return;
1157         } else {
1158                 reg = FDI_RX_CTL(pipe);
1159                 val = I915_READ(reg);
1160                 cur_state = !!(val & FDI_RX_ENABLE);
1161         }
1162         WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (dev_priv->info->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (IS_HASWELL(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189                                       enum pipe pipe)
1190 {
1191         int reg;
1192         u32 val;
1193
1194         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196                 return;
1197         }
1198         reg = FDI_RX_CTL(pipe);
1199         val = I915_READ(reg);
1200         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                                   enum pipe pipe)
1205 {
1206         int pp_reg, lvds_reg;
1207         u32 val;
1208         enum pipe panel_pipe = PIPE_A;
1209         bool locked = true;
1210
1211         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212                 pp_reg = PCH_PP_CONTROL;
1213                 lvds_reg = PCH_LVDS;
1214         } else {
1215                 pp_reg = PP_CONTROL;
1216                 lvds_reg = LVDS;
1217         }
1218
1219         val = I915_READ(pp_reg);
1220         if (!(val & PANEL_POWER_ON) ||
1221             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222                 locked = false;
1223
1224         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225                 panel_pipe = PIPE_B;
1226
1227         WARN(panel_pipe == pipe && locked,
1228              "panel assertion failure, pipe %c regs locked\n",
1229              pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233                  enum pipe pipe, bool state)
1234 {
1235         int reg;
1236         u32 val;
1237         bool cur_state;
1238         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239                                                                       pipe);
1240
1241         /* if we need the pipe A quirk it must be always on */
1242         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243                 state = true;
1244
1245         reg = PIPECONF(cpu_transcoder);
1246         val = I915_READ(reg);
1247         cur_state = !!(val & PIPECONF_ENABLE);
1248         WARN(cur_state != state,
1249              "pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254                          enum plane plane, bool state)
1255 {
1256         int reg;
1257         u32 val;
1258         bool cur_state;
1259
1260         reg = DSPCNTR(plane);
1261         val = I915_READ(reg);
1262         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263         WARN(cur_state != state,
1264              "plane %c assertion failure (expected %s, current %s)\n",
1265              plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272                                    enum pipe pipe)
1273 {
1274         int reg, i;
1275         u32 val;
1276         int cur_pipe;
1277
1278         /* Planes are fixed to pipes on ILK+ */
1279         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280                 reg = DSPCNTR(pipe);
1281                 val = I915_READ(reg);
1282                 WARN((val & DISPLAY_PLANE_ENABLE),
1283                      "plane %c assertion failure, should be disabled but not\n",
1284                      plane_name(pipe));
1285                 return;
1286         }
1287
1288         /* Need to check both planes against the pipe */
1289         for (i = 0; i < 2; i++) {
1290                 reg = DSPCNTR(i);
1291                 val = I915_READ(reg);
1292                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293                         DISPPLANE_SEL_PIPE_SHIFT;
1294                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296                      plane_name(i), pipe_name(pipe));
1297         }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302         u32 val;
1303         bool enabled;
1304
1305         if (HAS_PCH_LPT(dev_priv->dev)) {
1306                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307                 return;
1308         }
1309
1310         val = I915_READ(PCH_DREF_CONTROL);
1311         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312                             DREF_SUPERSPREAD_SOURCE_MASK));
1313         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317                                        enum pipe pipe)
1318 {
1319         int reg;
1320         u32 val;
1321         bool enabled;
1322
1323         reg = TRANSCONF(pipe);
1324         val = I915_READ(reg);
1325         enabled = !!(val & TRANS_ENABLE);
1326         WARN(enabled,
1327              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328              pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332                             enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334         if ((val & DP_PORT_EN) == 0)
1335                 return false;
1336
1337         if (HAS_PCH_CPT(dev_priv->dev)) {
1338                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341                         return false;
1342         } else {
1343                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344                         return false;
1345         }
1346         return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350                               enum pipe pipe, u32 val)
1351 {
1352         if ((val & PORT_ENABLE) == 0)
1353                 return false;
1354
1355         if (HAS_PCH_CPT(dev_priv->dev)) {
1356                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357                         return false;
1358         } else {
1359                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360                         return false;
1361         }
1362         return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366                               enum pipe pipe, u32 val)
1367 {
1368         if ((val & LVDS_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373                         return false;
1374         } else {
1375                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376                         return false;
1377         }
1378         return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382                               enum pipe pipe, u32 val)
1383 {
1384         if ((val & ADPA_DAC_ENABLE) == 0)
1385                 return false;
1386         if (HAS_PCH_CPT(dev_priv->dev)) {
1387                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388                         return false;
1389         } else {
1390                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391                         return false;
1392         }
1393         return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397                                    enum pipe pipe, int reg, u32 port_sel)
1398 {
1399         u32 val = I915_READ(reg);
1400         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402              reg, pipe_name(pipe));
1403
1404         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405              && (val & DP_PIPEB_SELECT),
1406              "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410                                      enum pipe pipe, int reg)
1411 {
1412         u32 val = I915_READ(reg);
1413         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415              reg, pipe_name(pipe));
1416
1417         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418              && (val & SDVO_PIPE_B_SELECT),
1419              "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423                                       enum pipe pipe)
1424 {
1425         int reg;
1426         u32 val;
1427
1428         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432         reg = PCH_ADPA;
1433         val = I915_READ(reg);
1434         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435              "PCH VGA enabled on transcoder %c, should be disabled\n",
1436              pipe_name(pipe));
1437
1438         reg = PCH_LVDS;
1439         val = I915_READ(reg);
1440         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442              pipe_name(pipe));
1443
1444         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450  * intel_enable_pll - enable a PLL
1451  * @dev_priv: i915 private structure
1452  * @pipe: pipe PLL to enable
1453  *
1454  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1455  * make sure the PLL reg is writable first though, since the panel write
1456  * protect mechanism may be enabled.
1457  *
1458  * Note!  This is for pre-ILK only.
1459  *
1460  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461  */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464         int reg;
1465         u32 val;
1466
1467         /* No really, not for ILK+ */
1468         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470         /* PLL is protected by panel, make sure we can write it */
1471         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472                 assert_panel_unlocked(dev_priv, pipe);
1473
1474         reg = DPLL(pipe);
1475         val = I915_READ(reg);
1476         val |= DPLL_VCO_ENABLE;
1477
1478         /* We do this three times for luck */
1479         I915_WRITE(reg, val);
1480         POSTING_READ(reg);
1481         udelay(150); /* wait for warmup */
1482         I915_WRITE(reg, val);
1483         POSTING_READ(reg);
1484         udelay(150); /* wait for warmup */
1485         I915_WRITE(reg, val);
1486         POSTING_READ(reg);
1487         udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491  * intel_disable_pll - disable a PLL
1492  * @dev_priv: i915 private structure
1493  * @pipe: pipe PLL to disable
1494  *
1495  * Disable the PLL for @pipe, making sure the pipe is off first.
1496  *
1497  * Note!  This is for pre-ILK only.
1498  */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501         int reg;
1502         u32 val;
1503
1504         /* Don't disable pipe A or pipe A PLLs if needed */
1505         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506                 return;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         reg = DPLL(pipe);
1512         val = I915_READ(reg);
1513         val &= ~DPLL_VCO_ENABLE;
1514         I915_WRITE(reg, val);
1515         POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522         unsigned long flags;
1523
1524         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526                                 100)) {
1527                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528                 goto out_unlock;
1529         }
1530
1531         I915_WRITE(SBI_ADDR,
1532                         (reg << 16));
1533         I915_WRITE(SBI_DATA,
1534                         value);
1535         I915_WRITE(SBI_CTL_STAT,
1536                         SBI_BUSY |
1537                         SBI_CTL_OP_CRWR);
1538
1539         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540                                 100)) {
1541                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542                 goto out_unlock;
1543         }
1544
1545 out_unlock:
1546         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552         unsigned long flags;
1553         u32 value = 0;
1554
1555         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557                                 100)) {
1558                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559                 goto out_unlock;
1560         }
1561
1562         I915_WRITE(SBI_ADDR,
1563                         (reg << 16));
1564         I915_WRITE(SBI_CTL_STAT,
1565                         SBI_BUSY |
1566                         SBI_CTL_OP_CRRD);
1567
1568         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569                                 100)) {
1570                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571                 goto out_unlock;
1572         }
1573
1574         value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578         return value;
1579 }
1580
1581 /**
1582  * ironlake_enable_pch_pll - enable PCH PLL
1583  * @dev_priv: i915 private structure
1584  * @pipe: pipe PLL to enable
1585  *
1586  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587  * drives the transcoder clock.
1588  */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592         struct intel_pch_pll *pll;
1593         int reg;
1594         u32 val;
1595
1596         /* PCH PLLs only available on ILK, SNB and IVB */
1597         BUG_ON(dev_priv->info->gen < 5);
1598         pll = intel_crtc->pch_pll;
1599         if (pll == NULL)
1600                 return;
1601
1602         if (WARN_ON(pll->refcount == 0))
1603                 return;
1604
1605         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606                       pll->pll_reg, pll->active, pll->on,
1607                       intel_crtc->base.base.id);
1608
1609         /* PCH refclock must be enabled first */
1610         assert_pch_refclk_enabled(dev_priv);
1611
1612         if (pll->active++ && pll->on) {
1613                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614                 return;
1615         }
1616
1617         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619         reg = pll->pll_reg;
1620         val = I915_READ(reg);
1621         val |= DPLL_VCO_ENABLE;
1622         I915_WRITE(reg, val);
1623         POSTING_READ(reg);
1624         udelay(200);
1625
1626         pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633         int reg;
1634         u32 val;
1635
1636         /* PCH only available on ILK+ */
1637         BUG_ON(dev_priv->info->gen < 5);
1638         if (pll == NULL)
1639                return;
1640
1641         if (WARN_ON(pll->refcount == 0))
1642                 return;
1643
1644         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645                       pll->pll_reg, pll->active, pll->on,
1646                       intel_crtc->base.base.id);
1647
1648         if (WARN_ON(pll->active == 0)) {
1649                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650                 return;
1651         }
1652
1653         if (--pll->active) {
1654                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655                 return;
1656         }
1657
1658         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660         /* Make sure transcoder isn't still depending on us */
1661         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663         reg = pll->pll_reg;
1664         val = I915_READ(reg);
1665         val &= ~DPLL_VCO_ENABLE;
1666         I915_WRITE(reg, val);
1667         POSTING_READ(reg);
1668         udelay(200);
1669
1670         pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674                                     enum pipe pipe)
1675 {
1676         int reg;
1677         u32 val, pipeconf_val;
1678         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680         /* PCH only available on ILK+ */
1681         BUG_ON(dev_priv->info->gen < 5);
1682
1683         /* Make sure PCH DPLL is enabled */
1684         assert_pch_pll_enabled(dev_priv,
1685                                to_intel_crtc(crtc)->pch_pll,
1686                                to_intel_crtc(crtc));
1687
1688         /* FDI must be feeding us bits for PCH ports */
1689         assert_fdi_tx_enabled(dev_priv, pipe);
1690         assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694                 return;
1695         }
1696         reg = TRANSCONF(pipe);
1697         val = I915_READ(reg);
1698         pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700         if (HAS_PCH_IBX(dev_priv->dev)) {
1701                 /*
1702                  * make the BPC in transcoder be consistent with
1703                  * that in pipeconf reg.
1704                  */
1705                 val &= ~PIPE_BPC_MASK;
1706                 val |= pipeconf_val & PIPE_BPC_MASK;
1707         }
1708
1709         val &= ~TRANS_INTERLACE_MASK;
1710         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711                 if (HAS_PCH_IBX(dev_priv->dev) &&
1712                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713                         val |= TRANS_LEGACY_INTERLACED_ILK;
1714                 else
1715                         val |= TRANS_INTERLACED;
1716         else
1717                 val |= TRANS_PROGRESSIVE;
1718
1719         I915_WRITE(reg, val | TRANS_ENABLE);
1720         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725                                      enum pipe pipe)
1726 {
1727         int reg;
1728         u32 val;
1729
1730         /* FDI relies on the transcoder */
1731         assert_fdi_tx_disabled(dev_priv, pipe);
1732         assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734         /* Ports must be off as well */
1735         assert_pch_ports_disabled(dev_priv, pipe);
1736
1737         reg = TRANSCONF(pipe);
1738         val = I915_READ(reg);
1739         val &= ~TRANS_ENABLE;
1740         I915_WRITE(reg, val);
1741         /* wait for PCH transcoder off, transcoder state */
1742         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747  * intel_enable_pipe - enable a pipe, asserting requirements
1748  * @dev_priv: i915 private structure
1749  * @pipe: pipe to enable
1750  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751  *
1752  * Enable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe is actually running (i.e. first vblank) before
1758  * returning.
1759  */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761                               bool pch_port)
1762 {
1763         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764                                                                       pipe);
1765         int reg;
1766         u32 val;
1767
1768         /*
1769          * A pipe without a PLL won't actually be able to drive bits from
1770          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1771          * need the check.
1772          */
1773         if (!HAS_PCH_SPLIT(dev_priv->dev))
1774                 assert_pll_enabled(dev_priv, pipe);
1775         else {
1776                 if (pch_port) {
1777                         /* if driving the PCH, we need FDI enabled */
1778                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818
1819         /* Don't disable pipe A or pipe A PLLs if needed */
1820         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821                 return;
1822
1823         reg = PIPECONF(cpu_transcoder);
1824         val = I915_READ(reg);
1825         if ((val & PIPECONF_ENABLE) == 0)
1826                 return;
1827
1828         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833  * Plane regs are double buffered, going from enabled->disabled needs a
1834  * trigger in order to latch.  The display address reg provides this.
1835  */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837                                       enum plane plane)
1838 {
1839         if (dev_priv->info->gen >= 4)
1840                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841         else
1842                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1843 }
1844
1845 /**
1846  * intel_enable_plane - enable a display plane on a given pipe
1847  * @dev_priv: i915 private structure
1848  * @plane: plane to enable
1849  * @pipe: pipe being fed
1850  *
1851  * Enable @plane on @pipe, making sure that @pipe is running first.
1852  */
1853 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854                                enum plane plane, enum pipe pipe)
1855 {
1856         int reg;
1857         u32 val;
1858
1859         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860         assert_pipe_enabled(dev_priv, pipe);
1861
1862         reg = DSPCNTR(plane);
1863         val = I915_READ(reg);
1864         if (val & DISPLAY_PLANE_ENABLE)
1865                 return;
1866
1867         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1868         intel_flush_display_plane(dev_priv, plane);
1869         intel_wait_for_vblank(dev_priv->dev, pipe);
1870 }
1871
1872 /**
1873  * intel_disable_plane - disable a display plane
1874  * @dev_priv: i915 private structure
1875  * @plane: plane to disable
1876  * @pipe: pipe consuming the data
1877  *
1878  * Disable @plane; should be an independent operation.
1879  */
1880 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881                                 enum plane plane, enum pipe pipe)
1882 {
1883         int reg;
1884         u32 val;
1885
1886         reg = DSPCNTR(plane);
1887         val = I915_READ(reg);
1888         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889                 return;
1890
1891         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1892         intel_flush_display_plane(dev_priv, plane);
1893         intel_wait_for_vblank(dev_priv->dev, pipe);
1894 }
1895
1896 int
1897 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1898                            struct drm_i915_gem_object *obj,
1899                            struct intel_ring_buffer *pipelined)
1900 {
1901         struct drm_i915_private *dev_priv = dev->dev_private;
1902         u32 alignment;
1903         int ret;
1904
1905         switch (obj->tiling_mode) {
1906         case I915_TILING_NONE:
1907                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908                         alignment = 128 * 1024;
1909                 else if (INTEL_INFO(dev)->gen >= 4)
1910                         alignment = 4 * 1024;
1911                 else
1912                         alignment = 64 * 1024;
1913                 break;
1914         case I915_TILING_X:
1915                 /* pin() will align the object as required by fence */
1916                 alignment = 0;
1917                 break;
1918         case I915_TILING_Y:
1919                 /* FIXME: Is this true? */
1920                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921                 return -EINVAL;
1922         default:
1923                 BUG();
1924         }
1925
1926         dev_priv->mm.interruptible = false;
1927         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1928         if (ret)
1929                 goto err_interruptible;
1930
1931         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932          * fence, whereas 965+ only requires a fence if using
1933          * framebuffer compression.  For simplicity, we always install
1934          * a fence as the cost is not that onerous.
1935          */
1936         ret = i915_gem_object_get_fence(obj);
1937         if (ret)
1938                 goto err_unpin;
1939
1940         i915_gem_object_pin_fence(obj);
1941
1942         dev_priv->mm.interruptible = true;
1943         return 0;
1944
1945 err_unpin:
1946         i915_gem_object_unpin(obj);
1947 err_interruptible:
1948         dev_priv->mm.interruptible = true;
1949         return ret;
1950 }
1951
1952 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953 {
1954         i915_gem_object_unpin_fence(obj);
1955         i915_gem_object_unpin(obj);
1956 }
1957
1958 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959  * is assumed to be a power-of-two. */
1960 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961                                                unsigned int bpp,
1962                                                unsigned int pitch)
1963 {
1964         int tile_rows, tiles;
1965
1966         tile_rows = *y / 8;
1967         *y %= 8;
1968         tiles = *x / (512/bpp);
1969         *x %= 512/bpp;
1970
1971         return tile_rows * pitch * 8 + tiles * 4096;
1972 }
1973
1974 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975                              int x, int y)
1976 {
1977         struct drm_device *dev = crtc->dev;
1978         struct drm_i915_private *dev_priv = dev->dev_private;
1979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980         struct intel_framebuffer *intel_fb;
1981         struct drm_i915_gem_object *obj;
1982         int plane = intel_crtc->plane;
1983         unsigned long linear_offset;
1984         u32 dspcntr;
1985         u32 reg;
1986
1987         switch (plane) {
1988         case 0:
1989         case 1:
1990                 break;
1991         default:
1992                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993                 return -EINVAL;
1994         }
1995
1996         intel_fb = to_intel_framebuffer(fb);
1997         obj = intel_fb->obj;
1998
1999         reg = DSPCNTR(plane);
2000         dspcntr = I915_READ(reg);
2001         /* Mask out pixel format bits in case we change it */
2002         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2003         switch (fb->pixel_format) {
2004         case DRM_FORMAT_C8:
2005                 dspcntr |= DISPPLANE_8BPP;
2006                 break;
2007         case DRM_FORMAT_XRGB1555:
2008         case DRM_FORMAT_ARGB1555:
2009                 dspcntr |= DISPPLANE_BGRX555;
2010                 break;
2011         case DRM_FORMAT_RGB565:
2012                 dspcntr |= DISPPLANE_BGRX565;
2013                 break;
2014         case DRM_FORMAT_XRGB8888:
2015         case DRM_FORMAT_ARGB8888:
2016                 dspcntr |= DISPPLANE_BGRX888;
2017                 break;
2018         case DRM_FORMAT_XBGR8888:
2019         case DRM_FORMAT_ABGR8888:
2020                 dspcntr |= DISPPLANE_RGBX888;
2021                 break;
2022         case DRM_FORMAT_XRGB2101010:
2023         case DRM_FORMAT_ARGB2101010:
2024                 dspcntr |= DISPPLANE_BGRX101010;
2025                 break;
2026         case DRM_FORMAT_XBGR2101010:
2027         case DRM_FORMAT_ABGR2101010:
2028                 dspcntr |= DISPPLANE_RGBX101010;
2029                 break;
2030         default:
2031                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2032                 return -EINVAL;
2033         }
2034
2035         if (INTEL_INFO(dev)->gen >= 4) {
2036                 if (obj->tiling_mode != I915_TILING_NONE)
2037                         dspcntr |= DISPPLANE_TILED;
2038                 else
2039                         dspcntr &= ~DISPPLANE_TILED;
2040         }
2041
2042         I915_WRITE(reg, dspcntr);
2043
2044         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2045
2046         if (INTEL_INFO(dev)->gen >= 4) {
2047                 intel_crtc->dspaddr_offset =
2048                         intel_gen4_compute_offset_xtiled(&x, &y,
2049                                                          fb->bits_per_pixel / 8,
2050                                                          fb->pitches[0]);
2051                 linear_offset -= intel_crtc->dspaddr_offset;
2052         } else {
2053                 intel_crtc->dspaddr_offset = linear_offset;
2054         }
2055
2056         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2057                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2058         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2059         if (INTEL_INFO(dev)->gen >= 4) {
2060                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2061                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2062                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2063                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2064         } else
2065                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2066         POSTING_READ(reg);
2067
2068         return 0;
2069 }
2070
2071 static int ironlake_update_plane(struct drm_crtc *crtc,
2072                                  struct drm_framebuffer *fb, int x, int y)
2073 {
2074         struct drm_device *dev = crtc->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077         struct intel_framebuffer *intel_fb;
2078         struct drm_i915_gem_object *obj;
2079         int plane = intel_crtc->plane;
2080         unsigned long linear_offset;
2081         u32 dspcntr;
2082         u32 reg;
2083
2084         switch (plane) {
2085         case 0:
2086         case 1:
2087         case 2:
2088                 break;
2089         default:
2090                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091                 return -EINVAL;
2092         }
2093
2094         intel_fb = to_intel_framebuffer(fb);
2095         obj = intel_fb->obj;
2096
2097         reg = DSPCNTR(plane);
2098         dspcntr = I915_READ(reg);
2099         /* Mask out pixel format bits in case we change it */
2100         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2101         switch (fb->pixel_format) {
2102         case DRM_FORMAT_C8:
2103                 dspcntr |= DISPPLANE_8BPP;
2104                 break;
2105         case DRM_FORMAT_RGB565:
2106                 dspcntr |= DISPPLANE_BGRX565;
2107                 break;
2108         case DRM_FORMAT_XRGB8888:
2109         case DRM_FORMAT_ARGB8888:
2110                 dspcntr |= DISPPLANE_BGRX888;
2111                 break;
2112         case DRM_FORMAT_XBGR8888:
2113         case DRM_FORMAT_ABGR8888:
2114                 dspcntr |= DISPPLANE_RGBX888;
2115                 break;
2116         case DRM_FORMAT_XRGB2101010:
2117         case DRM_FORMAT_ARGB2101010:
2118                 dspcntr |= DISPPLANE_BGRX101010;
2119                 break;
2120         case DRM_FORMAT_XBGR2101010:
2121         case DRM_FORMAT_ABGR2101010:
2122                 dspcntr |= DISPPLANE_RGBX101010;
2123                 break;
2124         default:
2125                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2126                 return -EINVAL;
2127         }
2128
2129         if (obj->tiling_mode != I915_TILING_NONE)
2130                 dspcntr |= DISPPLANE_TILED;
2131         else
2132                 dspcntr &= ~DISPPLANE_TILED;
2133
2134         /* must disable */
2135         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137         I915_WRITE(reg, dspcntr);
2138
2139         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2140         intel_crtc->dspaddr_offset =
2141                 intel_gen4_compute_offset_xtiled(&x, &y,
2142                                                  fb->bits_per_pixel / 8,
2143                                                  fb->pitches[0]);
2144         linear_offset -= intel_crtc->dspaddr_offset;
2145
2146         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2148         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2149         I915_MODIFY_DISPBASE(DSPSURF(plane),
2150                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2151         if (IS_HASWELL(dev)) {
2152                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2153         } else {
2154                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2155                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2156         }
2157         POSTING_READ(reg);
2158
2159         return 0;
2160 }
2161
2162 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2163 static int
2164 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2165                            int x, int y, enum mode_set_atomic state)
2166 {
2167         struct drm_device *dev = crtc->dev;
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169
2170         if (dev_priv->display.disable_fbc)
2171                 dev_priv->display.disable_fbc(dev);
2172         intel_increase_pllclock(crtc);
2173
2174         return dev_priv->display.update_plane(crtc, fb, x, y);
2175 }
2176
2177 static int
2178 intel_finish_fb(struct drm_framebuffer *old_fb)
2179 {
2180         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2181         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182         bool was_interruptible = dev_priv->mm.interruptible;
2183         int ret;
2184
2185         wait_event(dev_priv->pending_flip_queue,
2186                    atomic_read(&dev_priv->mm.wedged) ||
2187                    atomic_read(&obj->pending_flip) == 0);
2188
2189         /* Big Hammer, we also need to ensure that any pending
2190          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2191          * current scanout is retired before unpinning the old
2192          * framebuffer.
2193          *
2194          * This should only fail upon a hung GPU, in which case we
2195          * can safely continue.
2196          */
2197         dev_priv->mm.interruptible = false;
2198         ret = i915_gem_object_finish_gpu(obj);
2199         dev_priv->mm.interruptible = was_interruptible;
2200
2201         return ret;
2202 }
2203
2204 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2205 {
2206         struct drm_device *dev = crtc->dev;
2207         struct drm_i915_master_private *master_priv;
2208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210         if (!dev->primary->master)
2211                 return;
2212
2213         master_priv = dev->primary->master->driver_priv;
2214         if (!master_priv->sarea_priv)
2215                 return;
2216
2217         switch (intel_crtc->pipe) {
2218         case 0:
2219                 master_priv->sarea_priv->pipeA_x = x;
2220                 master_priv->sarea_priv->pipeA_y = y;
2221                 break;
2222         case 1:
2223                 master_priv->sarea_priv->pipeB_x = x;
2224                 master_priv->sarea_priv->pipeB_y = y;
2225                 break;
2226         default:
2227                 break;
2228         }
2229 }
2230
2231 static int
2232 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2233                     struct drm_framebuffer *fb)
2234 {
2235         struct drm_device *dev = crtc->dev;
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2238         struct drm_framebuffer *old_fb;
2239         int ret;
2240
2241         /* no fb bound */
2242         if (!fb) {
2243                 DRM_ERROR("No FB bound\n");
2244                 return 0;
2245         }
2246
2247         if(intel_crtc->plane > dev_priv->num_pipe) {
2248                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2249                                 intel_crtc->plane,
2250                                 dev_priv->num_pipe);
2251                 return -EINVAL;
2252         }
2253
2254         mutex_lock(&dev->struct_mutex);
2255         ret = intel_pin_and_fence_fb_obj(dev,
2256                                          to_intel_framebuffer(fb)->obj,
2257                                          NULL);
2258         if (ret != 0) {
2259                 mutex_unlock(&dev->struct_mutex);
2260                 DRM_ERROR("pin & fence failed\n");
2261                 return ret;
2262         }
2263
2264         if (crtc->fb)
2265                 intel_finish_fb(crtc->fb);
2266
2267         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2268         if (ret) {
2269                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2270                 mutex_unlock(&dev->struct_mutex);
2271                 DRM_ERROR("failed to update base address\n");
2272                 return ret;
2273         }
2274
2275         old_fb = crtc->fb;
2276         crtc->fb = fb;
2277         crtc->x = x;
2278         crtc->y = y;
2279
2280         if (old_fb) {
2281                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2282                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2283         }
2284
2285         intel_update_fbc(dev);
2286         mutex_unlock(&dev->struct_mutex);
2287
2288         intel_crtc_update_sarea_pos(crtc, x, y);
2289
2290         return 0;
2291 }
2292
2293 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         u32 dpa_ctl;
2298
2299         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2300         dpa_ctl = I915_READ(DP_A);
2301         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2302
2303         if (clock < 200000) {
2304                 u32 temp;
2305                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2306                 /* workaround for 160Mhz:
2307                    1) program 0x4600c bits 15:0 = 0x8124
2308                    2) program 0x46010 bit 0 = 1
2309                    3) program 0x46034 bit 24 = 1
2310                    4) program 0x64000 bit 14 = 1
2311                    */
2312                 temp = I915_READ(0x4600c);
2313                 temp &= 0xffff0000;
2314                 I915_WRITE(0x4600c, temp | 0x8124);
2315
2316                 temp = I915_READ(0x46010);
2317                 I915_WRITE(0x46010, temp | 1);
2318
2319                 temp = I915_READ(0x46034);
2320                 I915_WRITE(0x46034, temp | (1 << 24));
2321         } else {
2322                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2323         }
2324         I915_WRITE(DP_A, dpa_ctl);
2325
2326         POSTING_READ(DP_A);
2327         udelay(500);
2328 }
2329
2330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331 {
2332         struct drm_device *dev = crtc->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335         int pipe = intel_crtc->pipe;
2336         u32 reg, temp;
2337
2338         /* enable normal train */
2339         reg = FDI_TX_CTL(pipe);
2340         temp = I915_READ(reg);
2341         if (IS_IVYBRIDGE(dev)) {
2342                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2344         } else {
2345                 temp &= ~FDI_LINK_TRAIN_NONE;
2346                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2347         }
2348         I915_WRITE(reg, temp);
2349
2350         reg = FDI_RX_CTL(pipe);
2351         temp = I915_READ(reg);
2352         if (HAS_PCH_CPT(dev)) {
2353                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355         } else {
2356                 temp &= ~FDI_LINK_TRAIN_NONE;
2357                 temp |= FDI_LINK_TRAIN_NONE;
2358         }
2359         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361         /* wait one idle pattern time */
2362         POSTING_READ(reg);
2363         udelay(1000);
2364
2365         /* IVB wants error correction enabled */
2366         if (IS_IVYBRIDGE(dev))
2367                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368                            FDI_FE_ERRC_ENABLE);
2369 }
2370
2371 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         u32 flags = I915_READ(SOUTH_CHICKEN1);
2375
2376         flags |= FDI_PHASE_SYNC_OVR(pipe);
2377         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2378         flags |= FDI_PHASE_SYNC_EN(pipe);
2379         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2380         POSTING_READ(SOUTH_CHICKEN1);
2381 }
2382
2383 static void ivb_modeset_global_resources(struct drm_device *dev)
2384 {
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct intel_crtc *pipe_B_crtc =
2387                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2388         struct intel_crtc *pipe_C_crtc =
2389                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2390         uint32_t temp;
2391
2392         /* When everything is off disable fdi C so that we could enable fdi B
2393          * with all lanes. XXX: This misses the case where a pipe is not using
2394          * any pch resources and so doesn't need any fdi lanes. */
2395         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2396                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2397                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2398
2399                 temp = I915_READ(SOUTH_CHICKEN1);
2400                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2401                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2402                 I915_WRITE(SOUTH_CHICKEN1, temp);
2403         }
2404 }
2405
2406 /* The FDI link training functions for ILK/Ibexpeak. */
2407 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2408 {
2409         struct drm_device *dev = crtc->dev;
2410         struct drm_i915_private *dev_priv = dev->dev_private;
2411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412         int pipe = intel_crtc->pipe;
2413         int plane = intel_crtc->plane;
2414         u32 reg, temp, tries;
2415
2416         /* FDI needs bits from pipe & plane first */
2417         assert_pipe_enabled(dev_priv, pipe);
2418         assert_plane_enabled(dev_priv, plane);
2419
2420         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2421            for train result */
2422         reg = FDI_RX_IMR(pipe);
2423         temp = I915_READ(reg);
2424         temp &= ~FDI_RX_SYMBOL_LOCK;
2425         temp &= ~FDI_RX_BIT_LOCK;
2426         I915_WRITE(reg, temp);
2427         I915_READ(reg);
2428         udelay(150);
2429
2430         /* enable CPU FDI TX and PCH FDI RX */
2431         reg = FDI_TX_CTL(pipe);
2432         temp = I915_READ(reg);
2433         temp &= ~(7 << 19);
2434         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2435         temp &= ~FDI_LINK_TRAIN_NONE;
2436         temp |= FDI_LINK_TRAIN_PATTERN_1;
2437         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2438
2439         reg = FDI_RX_CTL(pipe);
2440         temp = I915_READ(reg);
2441         temp &= ~FDI_LINK_TRAIN_NONE;
2442         temp |= FDI_LINK_TRAIN_PATTERN_1;
2443         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2444
2445         POSTING_READ(reg);
2446         udelay(150);
2447
2448         /* Ironlake workaround, enable clock pointer after FDI enable*/
2449         if (HAS_PCH_IBX(dev)) {
2450                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2451                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2452                            FDI_RX_PHASE_SYNC_POINTER_EN);
2453         }
2454
2455         reg = FDI_RX_IIR(pipe);
2456         for (tries = 0; tries < 5; tries++) {
2457                 temp = I915_READ(reg);
2458                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2459
2460                 if ((temp & FDI_RX_BIT_LOCK)) {
2461                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2462                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2463                         break;
2464                 }
2465         }
2466         if (tries == 5)
2467                 DRM_ERROR("FDI train 1 fail!\n");
2468
2469         /* Train 2 */
2470         reg = FDI_TX_CTL(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_LINK_TRAIN_NONE;
2473         temp |= FDI_LINK_TRAIN_PATTERN_2;
2474         I915_WRITE(reg, temp);
2475
2476         reg = FDI_RX_CTL(pipe);
2477         temp = I915_READ(reg);
2478         temp &= ~FDI_LINK_TRAIN_NONE;
2479         temp |= FDI_LINK_TRAIN_PATTERN_2;
2480         I915_WRITE(reg, temp);
2481
2482         POSTING_READ(reg);
2483         udelay(150);
2484
2485         reg = FDI_RX_IIR(pipe);
2486         for (tries = 0; tries < 5; tries++) {
2487                 temp = I915_READ(reg);
2488                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2489
2490                 if (temp & FDI_RX_SYMBOL_LOCK) {
2491                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2492                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2493                         break;
2494                 }
2495         }
2496         if (tries == 5)
2497                 DRM_ERROR("FDI train 2 fail!\n");
2498
2499         DRM_DEBUG_KMS("FDI train done\n");
2500
2501 }
2502
2503 static const int snb_b_fdi_train_param[] = {
2504         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2505         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2506         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2507         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2508 };
2509
2510 /* The FDI link training functions for SNB/Cougarpoint. */
2511 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2512 {
2513         struct drm_device *dev = crtc->dev;
2514         struct drm_i915_private *dev_priv = dev->dev_private;
2515         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2516         int pipe = intel_crtc->pipe;
2517         u32 reg, temp, i, retry;
2518
2519         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2520            for train result */
2521         reg = FDI_RX_IMR(pipe);
2522         temp = I915_READ(reg);
2523         temp &= ~FDI_RX_SYMBOL_LOCK;
2524         temp &= ~FDI_RX_BIT_LOCK;
2525         I915_WRITE(reg, temp);
2526
2527         POSTING_READ(reg);
2528         udelay(150);
2529
2530         /* enable CPU FDI TX and PCH FDI RX */
2531         reg = FDI_TX_CTL(pipe);
2532         temp = I915_READ(reg);
2533         temp &= ~(7 << 19);
2534         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2535         temp &= ~FDI_LINK_TRAIN_NONE;
2536         temp |= FDI_LINK_TRAIN_PATTERN_1;
2537         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538         /* SNB-B */
2539         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2540         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2541
2542         I915_WRITE(FDI_RX_MISC(pipe),
2543                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2544
2545         reg = FDI_RX_CTL(pipe);
2546         temp = I915_READ(reg);
2547         if (HAS_PCH_CPT(dev)) {
2548                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2550         } else {
2551                 temp &= ~FDI_LINK_TRAIN_NONE;
2552                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2553         }
2554         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556         POSTING_READ(reg);
2557         udelay(150);
2558
2559         if (HAS_PCH_CPT(dev))
2560                 cpt_phase_pointer_enable(dev, pipe);
2561
2562         for (i = 0; i < 4; i++) {
2563                 reg = FDI_TX_CTL(pipe);
2564                 temp = I915_READ(reg);
2565                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566                 temp |= snb_b_fdi_train_param[i];
2567                 I915_WRITE(reg, temp);
2568
2569                 POSTING_READ(reg);
2570                 udelay(500);
2571
2572                 for (retry = 0; retry < 5; retry++) {
2573                         reg = FDI_RX_IIR(pipe);
2574                         temp = I915_READ(reg);
2575                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576                         if (temp & FDI_RX_BIT_LOCK) {
2577                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579                                 break;
2580                         }
2581                         udelay(50);
2582                 }
2583                 if (retry < 5)
2584                         break;
2585         }
2586         if (i == 4)
2587                 DRM_ERROR("FDI train 1 fail!\n");
2588
2589         /* Train 2 */
2590         reg = FDI_TX_CTL(pipe);
2591         temp = I915_READ(reg);
2592         temp &= ~FDI_LINK_TRAIN_NONE;
2593         temp |= FDI_LINK_TRAIN_PATTERN_2;
2594         if (IS_GEN6(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596                 /* SNB-B */
2597                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598         }
2599         I915_WRITE(reg, temp);
2600
2601         reg = FDI_RX_CTL(pipe);
2602         temp = I915_READ(reg);
2603         if (HAS_PCH_CPT(dev)) {
2604                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606         } else {
2607                 temp &= ~FDI_LINK_TRAIN_NONE;
2608                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609         }
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         for (i = 0; i < 4; i++) {
2616                 reg = FDI_TX_CTL(pipe);
2617                 temp = I915_READ(reg);
2618                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619                 temp |= snb_b_fdi_train_param[i];
2620                 I915_WRITE(reg, temp);
2621
2622                 POSTING_READ(reg);
2623                 udelay(500);
2624
2625                 for (retry = 0; retry < 5; retry++) {
2626                         reg = FDI_RX_IIR(pipe);
2627                         temp = I915_READ(reg);
2628                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629                         if (temp & FDI_RX_SYMBOL_LOCK) {
2630                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632                                 break;
2633                         }
2634                         udelay(50);
2635                 }
2636                 if (retry < 5)
2637                         break;
2638         }
2639         if (i == 4)
2640                 DRM_ERROR("FDI train 2 fail!\n");
2641
2642         DRM_DEBUG_KMS("FDI train done.\n");
2643 }
2644
2645 /* Manual link training for Ivy Bridge A0 parts */
2646 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         int pipe = intel_crtc->pipe;
2652         u32 reg, temp, i;
2653
2654         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655            for train result */
2656         reg = FDI_RX_IMR(pipe);
2657         temp = I915_READ(reg);
2658         temp &= ~FDI_RX_SYMBOL_LOCK;
2659         temp &= ~FDI_RX_BIT_LOCK;
2660         I915_WRITE(reg, temp);
2661
2662         POSTING_READ(reg);
2663         udelay(150);
2664
2665         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666                       I915_READ(FDI_RX_IIR(pipe)));
2667
2668         /* enable CPU FDI TX and PCH FDI RX */
2669         reg = FDI_TX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~(7 << 19);
2672         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2677         temp |= FDI_COMPOSITE_SYNC;
2678         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
2680         I915_WRITE(FDI_RX_MISC(pipe),
2681                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         temp &= ~FDI_LINK_TRAIN_AUTO;
2686         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2688         temp |= FDI_COMPOSITE_SYNC;
2689         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691         POSTING_READ(reg);
2692         udelay(150);
2693
2694         if (HAS_PCH_CPT(dev))
2695                 cpt_phase_pointer_enable(dev, pipe);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 reg = FDI_RX_IIR(pipe);
2708                 temp = I915_READ(reg);
2709                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2710
2711                 if (temp & FDI_RX_BIT_LOCK ||
2712                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2713                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2714                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2715                         break;
2716                 }
2717         }
2718         if (i == 4)
2719                 DRM_ERROR("FDI train 1 fail!\n");
2720
2721         /* Train 2 */
2722         reg = FDI_TX_CTL(pipe);
2723         temp = I915_READ(reg);
2724         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2725         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2726         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2727         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2728         I915_WRITE(reg, temp);
2729
2730         reg = FDI_RX_CTL(pipe);
2731         temp = I915_READ(reg);
2732         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2733         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2734         I915_WRITE(reg, temp);
2735
2736         POSTING_READ(reg);
2737         udelay(150);
2738
2739         for (i = 0; i < 4; i++) {
2740                 reg = FDI_TX_CTL(pipe);
2741                 temp = I915_READ(reg);
2742                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743                 temp |= snb_b_fdi_train_param[i];
2744                 I915_WRITE(reg, temp);
2745
2746                 POSTING_READ(reg);
2747                 udelay(500);
2748
2749                 reg = FDI_RX_IIR(pipe);
2750                 temp = I915_READ(reg);
2751                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753                 if (temp & FDI_RX_SYMBOL_LOCK) {
2754                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2755                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2756                         break;
2757                 }
2758         }
2759         if (i == 4)
2760                 DRM_ERROR("FDI train 2 fail!\n");
2761
2762         DRM_DEBUG_KMS("FDI train done.\n");
2763 }
2764
2765 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2766 {
2767         struct drm_device *dev = intel_crtc->base.dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         int pipe = intel_crtc->pipe;
2770         u32 reg, temp;
2771
2772
2773         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2774         reg = FDI_RX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         temp &= ~((0x7 << 19) | (0x7 << 16));
2777         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2778         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2780
2781         POSTING_READ(reg);
2782         udelay(200);
2783
2784         /* Switch from Rawclk to PCDclk */
2785         temp = I915_READ(reg);
2786         I915_WRITE(reg, temp | FDI_PCDCLK);
2787
2788         POSTING_READ(reg);
2789         udelay(200);
2790
2791         /* On Haswell, the PLL configuration for ports and pipes is handled
2792          * separately, as part of DDI setup */
2793         if (!IS_HASWELL(dev)) {
2794                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2798                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2799
2800                         POSTING_READ(reg);
2801                         udelay(100);
2802                 }
2803         }
2804 }
2805
2806 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2807 {
2808         struct drm_device *dev = intel_crtc->base.dev;
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         int pipe = intel_crtc->pipe;
2811         u32 reg, temp;
2812
2813         /* Switch from PCDclk to Rawclk */
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2817
2818         /* Disable CPU FDI TX PLL */
2819         reg = FDI_TX_CTL(pipe);
2820         temp = I915_READ(reg);
2821         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2822
2823         POSTING_READ(reg);
2824         udelay(100);
2825
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2829
2830         /* Wait for the clocks to turn off. */
2831         POSTING_READ(reg);
2832         udelay(100);
2833 }
2834
2835 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2836 {
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         u32 flags = I915_READ(SOUTH_CHICKEN1);
2839
2840         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2841         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2842         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2843         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2844         POSTING_READ(SOUTH_CHICKEN1);
2845 }
2846 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp;
2853
2854         /* disable CPU FDI tx and PCH FDI rx */
2855         reg = FDI_TX_CTL(pipe);
2856         temp = I915_READ(reg);
2857         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2858         POSTING_READ(reg);
2859
2860         reg = FDI_RX_CTL(pipe);
2861         temp = I915_READ(reg);
2862         temp &= ~(0x7 << 16);
2863         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2864         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2865
2866         POSTING_READ(reg);
2867         udelay(100);
2868
2869         /* Ironlake workaround, disable clock pointer after downing FDI */
2870         if (HAS_PCH_IBX(dev)) {
2871                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2872                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2873                            I915_READ(FDI_RX_CHICKEN(pipe) &
2874                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2875         } else if (HAS_PCH_CPT(dev)) {
2876                 cpt_phase_pointer_disable(dev, pipe);
2877         }
2878
2879         /* still set train pattern 1 */
2880         reg = FDI_TX_CTL(pipe);
2881         temp = I915_READ(reg);
2882         temp &= ~FDI_LINK_TRAIN_NONE;
2883         temp |= FDI_LINK_TRAIN_PATTERN_1;
2884         I915_WRITE(reg, temp);
2885
2886         reg = FDI_RX_CTL(pipe);
2887         temp = I915_READ(reg);
2888         if (HAS_PCH_CPT(dev)) {
2889                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2890                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2891         } else {
2892                 temp &= ~FDI_LINK_TRAIN_NONE;
2893                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2894         }
2895         /* BPC in FDI rx is consistent with that in PIPECONF */
2896         temp &= ~(0x07 << 16);
2897         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2898         I915_WRITE(reg, temp);
2899
2900         POSTING_READ(reg);
2901         udelay(100);
2902 }
2903
2904 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2905 {
2906         struct drm_device *dev = crtc->dev;
2907         struct drm_i915_private *dev_priv = dev->dev_private;
2908         unsigned long flags;
2909         bool pending;
2910
2911         if (atomic_read(&dev_priv->mm.wedged))
2912                 return false;
2913
2914         spin_lock_irqsave(&dev->event_lock, flags);
2915         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916         spin_unlock_irqrestore(&dev->event_lock, flags);
2917
2918         return pending;
2919 }
2920
2921 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2922 {
2923         struct drm_device *dev = crtc->dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925
2926         if (crtc->fb == NULL)
2927                 return;
2928
2929         wait_event(dev_priv->pending_flip_queue,
2930                    !intel_crtc_has_pending_flip(crtc));
2931
2932         mutex_lock(&dev->struct_mutex);
2933         intel_finish_fb(crtc->fb);
2934         mutex_unlock(&dev->struct_mutex);
2935 }
2936
2937 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2938 {
2939         struct drm_device *dev = crtc->dev;
2940         struct intel_encoder *intel_encoder;
2941
2942         /*
2943          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2944          * must be driven by its own crtc; no sharing is possible.
2945          */
2946         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2947                 switch (intel_encoder->type) {
2948                 case INTEL_OUTPUT_EDP:
2949                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2950                                 return false;
2951                         continue;
2952                 }
2953         }
2954
2955         return true;
2956 }
2957
2958 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2959 {
2960         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2961 }
2962
2963 /* Program iCLKIP clock to the desired frequency */
2964 static void lpt_program_iclkip(struct drm_crtc *crtc)
2965 {
2966         struct drm_device *dev = crtc->dev;
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2969         u32 temp;
2970
2971         /* It is necessary to ungate the pixclk gate prior to programming
2972          * the divisors, and gate it back when it is done.
2973          */
2974         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2975
2976         /* Disable SSCCTL */
2977         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2978                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2979                                         SBI_SSCCTL_DISABLE);
2980
2981         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2982         if (crtc->mode.clock == 20000) {
2983                 auxdiv = 1;
2984                 divsel = 0x41;
2985                 phaseinc = 0x20;
2986         } else {
2987                 /* The iCLK virtual clock root frequency is in MHz,
2988                  * but the crtc->mode.clock in in KHz. To get the divisors,
2989                  * it is necessary to divide one by another, so we
2990                  * convert the virtual clock precision to KHz here for higher
2991                  * precision.
2992                  */
2993                 u32 iclk_virtual_root_freq = 172800 * 1000;
2994                 u32 iclk_pi_range = 64;
2995                 u32 desired_divisor, msb_divisor_value, pi_value;
2996
2997                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2998                 msb_divisor_value = desired_divisor / iclk_pi_range;
2999                 pi_value = desired_divisor % iclk_pi_range;
3000
3001                 auxdiv = 0;
3002                 divsel = msb_divisor_value - 2;
3003                 phaseinc = pi_value;
3004         }
3005
3006         /* This should not happen with any sane values */
3007         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3008                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3009         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3010                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3011
3012         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3013                         crtc->mode.clock,
3014                         auxdiv,
3015                         divsel,
3016                         phasedir,
3017                         phaseinc);
3018
3019         /* Program SSCDIVINTPHASE6 */
3020         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3021         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3022         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3023         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3024         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3025         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3026         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3027
3028         intel_sbi_write(dev_priv,
3029                         SBI_SSCDIVINTPHASE6,
3030                         temp);
3031
3032         /* Program SSCAUXDIV */
3033         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3034         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3035         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3036         intel_sbi_write(dev_priv,
3037                         SBI_SSCAUXDIV6,
3038                         temp);
3039
3040
3041         /* Enable modulator and associated divider */
3042         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3043         temp &= ~SBI_SSCCTL_DISABLE;
3044         intel_sbi_write(dev_priv,
3045                         SBI_SSCCTL6,
3046                         temp);
3047
3048         /* Wait for initialization time */
3049         udelay(24);
3050
3051         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3052 }
3053
3054 /*
3055  * Enable PCH resources required for PCH ports:
3056  *   - PCH PLLs
3057  *   - FDI training & RX/TX
3058  *   - update transcoder timings
3059  *   - DP transcoding bits
3060  *   - transcoder
3061  */
3062 static void ironlake_pch_enable(struct drm_crtc *crtc)
3063 {
3064         struct drm_device *dev = crtc->dev;
3065         struct drm_i915_private *dev_priv = dev->dev_private;
3066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067         int pipe = intel_crtc->pipe;
3068         u32 reg, temp;
3069
3070         assert_transcoder_disabled(dev_priv, pipe);
3071
3072         /* Write the TU size bits before fdi link training, so that error
3073          * detection works. */
3074         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3075                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3076
3077         /* For PCH output, training FDI link */
3078         dev_priv->display.fdi_link_train(crtc);
3079
3080         /* XXX: pch pll's can be enabled any time before we enable the PCH
3081          * transcoder, and we actually should do this to not upset any PCH
3082          * transcoder that already use the clock when we share it.
3083          *
3084          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3085          * unconditionally resets the pll - we need that to have the right LVDS
3086          * enable sequence. */
3087         ironlake_enable_pch_pll(intel_crtc);
3088
3089         if (HAS_PCH_CPT(dev)) {
3090                 u32 sel;
3091
3092                 temp = I915_READ(PCH_DPLL_SEL);
3093                 switch (pipe) {
3094                 default:
3095                 case 0:
3096                         temp |= TRANSA_DPLL_ENABLE;
3097                         sel = TRANSA_DPLLB_SEL;
3098                         break;
3099                 case 1:
3100                         temp |= TRANSB_DPLL_ENABLE;
3101                         sel = TRANSB_DPLLB_SEL;
3102                         break;
3103                 case 2:
3104                         temp |= TRANSC_DPLL_ENABLE;
3105                         sel = TRANSC_DPLLB_SEL;
3106                         break;
3107                 }
3108                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3109                         temp |= sel;
3110                 else
3111                         temp &= ~sel;
3112                 I915_WRITE(PCH_DPLL_SEL, temp);
3113         }
3114
3115         /* set transcoder timing, panel must allow it */
3116         assert_panel_unlocked(dev_priv, pipe);
3117         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3118         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3119         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3120
3121         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3122         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3123         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3124         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3125
3126         intel_fdi_normal_train(crtc);
3127
3128         /* For PCH DP, enable TRANS_DP_CTL */
3129         if (HAS_PCH_CPT(dev) &&
3130             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3131              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3132                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3133                 reg = TRANS_DP_CTL(pipe);
3134                 temp = I915_READ(reg);
3135                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3136                           TRANS_DP_SYNC_MASK |
3137                           TRANS_DP_BPC_MASK);
3138                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3139                          TRANS_DP_ENH_FRAMING);
3140                 temp |= bpc << 9; /* same format but at 11:9 */
3141
3142                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3143                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3144                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3145                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3146
3147                 switch (intel_trans_dp_port_sel(crtc)) {
3148                 case PCH_DP_B:
3149                         temp |= TRANS_DP_PORT_SEL_B;
3150                         break;
3151                 case PCH_DP_C:
3152                         temp |= TRANS_DP_PORT_SEL_C;
3153                         break;
3154                 case PCH_DP_D:
3155                         temp |= TRANS_DP_PORT_SEL_D;
3156                         break;
3157                 default:
3158                         BUG();
3159                 }
3160
3161                 I915_WRITE(reg, temp);
3162         }
3163
3164         intel_enable_transcoder(dev_priv, pipe);
3165 }
3166
3167 static void lpt_pch_enable(struct drm_crtc *crtc)
3168 {
3169         struct drm_device *dev = crtc->dev;
3170         struct drm_i915_private *dev_priv = dev->dev_private;
3171         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172         int pipe = intel_crtc->pipe;
3173
3174         assert_transcoder_disabled(dev_priv, pipe);
3175
3176         /* Write the TU size bits before fdi link training, so that error
3177          * detection works. */
3178         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3179                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3180
3181         /* For PCH output, training FDI link */
3182         dev_priv->display.fdi_link_train(crtc);
3183
3184         /* XXX: pch pll's can be enabled any time before we enable the PCH
3185          * transcoder, and we actually should do this to not upset any PCH
3186          * transcoder that already use the clock when we share it.
3187          *
3188          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3189          * unconditionally resets the pll - we need that to have the right LVDS
3190          * enable sequence. */
3191         ironlake_enable_pch_pll(intel_crtc);
3192
3193         lpt_program_iclkip(crtc);
3194
3195         /* set transcoder timing, panel must allow it */
3196         assert_panel_unlocked(dev_priv, pipe);
3197         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3198         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3199         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3200
3201         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3202         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3203         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3204         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3205
3206         intel_enable_transcoder(dev_priv, pipe);
3207 }
3208
3209 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3210 {
3211         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3212
3213         if (pll == NULL)
3214                 return;
3215
3216         if (pll->refcount == 0) {
3217                 WARN(1, "bad PCH PLL refcount\n");
3218                 return;
3219         }
3220
3221         --pll->refcount;
3222         intel_crtc->pch_pll = NULL;
3223 }
3224
3225 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3226 {
3227         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3228         struct intel_pch_pll *pll;
3229         int i;
3230
3231         pll = intel_crtc->pch_pll;
3232         if (pll) {
3233                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3234                               intel_crtc->base.base.id, pll->pll_reg);
3235                 goto prepare;
3236         }
3237
3238         if (HAS_PCH_IBX(dev_priv->dev)) {
3239                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3240                 i = intel_crtc->pipe;
3241                 pll = &dev_priv->pch_plls[i];
3242
3243                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3244                               intel_crtc->base.base.id, pll->pll_reg);
3245
3246                 goto found;
3247         }
3248
3249         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3250                 pll = &dev_priv->pch_plls[i];
3251
3252                 /* Only want to check enabled timings first */
3253                 if (pll->refcount == 0)
3254                         continue;
3255
3256                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3257                     fp == I915_READ(pll->fp0_reg)) {
3258                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3259                                       intel_crtc->base.base.id,
3260                                       pll->pll_reg, pll->refcount, pll->active);
3261
3262                         goto found;
3263                 }
3264         }
3265
3266         /* Ok no matching timings, maybe there's a free one? */
3267         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3268                 pll = &dev_priv->pch_plls[i];
3269                 if (pll->refcount == 0) {
3270                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3271                                       intel_crtc->base.base.id, pll->pll_reg);
3272                         goto found;
3273                 }
3274         }
3275
3276         return NULL;
3277
3278 found:
3279         intel_crtc->pch_pll = pll;
3280         pll->refcount++;
3281         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3282 prepare: /* separate function? */
3283         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3284
3285         /* Wait for the clocks to stabilize before rewriting the regs */
3286         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3287         POSTING_READ(pll->pll_reg);
3288         udelay(150);
3289
3290         I915_WRITE(pll->fp0_reg, fp);
3291         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3292         pll->on = false;
3293         return pll;
3294 }
3295
3296 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3297 {
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3300         u32 temp;
3301
3302         temp = I915_READ(dslreg);
3303         udelay(500);
3304         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3305                 /* Without this, mode sets may fail silently on FDI */
3306                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3307                 udelay(250);
3308                 I915_WRITE(tc2reg, 0);
3309                 if (wait_for(I915_READ(dslreg) != temp, 5))
3310                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3311         }
3312 }
3313
3314 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3315 {
3316         struct drm_device *dev = crtc->dev;
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3319         struct intel_encoder *encoder;
3320         int pipe = intel_crtc->pipe;
3321         int plane = intel_crtc->plane;
3322         u32 temp;
3323         bool is_pch_port;
3324
3325         WARN_ON(!crtc->enabled);
3326
3327         if (intel_crtc->active)
3328                 return;
3329
3330         intel_crtc->active = true;
3331         intel_update_watermarks(dev);
3332
3333         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3334                 temp = I915_READ(PCH_LVDS);
3335                 if ((temp & LVDS_PORT_EN) == 0)
3336                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3337         }
3338
3339         is_pch_port = ironlake_crtc_driving_pch(crtc);
3340
3341         if (is_pch_port) {
3342                 /* Note: FDI PLL enabling _must_ be done before we enable the
3343                  * cpu pipes, hence this is separate from all the other fdi/pch
3344                  * enabling. */
3345                 ironlake_fdi_pll_enable(intel_crtc);
3346         } else {
3347                 assert_fdi_tx_disabled(dev_priv, pipe);
3348                 assert_fdi_rx_disabled(dev_priv, pipe);
3349         }
3350
3351         for_each_encoder_on_crtc(dev, crtc, encoder)
3352                 if (encoder->pre_enable)
3353                         encoder->pre_enable(encoder);
3354
3355         /* Enable panel fitting for LVDS */
3356         if (dev_priv->pch_pf_size &&
3357             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3358                 /* Force use of hard-coded filter coefficients
3359                  * as some pre-programmed values are broken,
3360                  * e.g. x201.
3361                  */
3362                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3363                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3364                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3365         }
3366
3367         /*
3368          * On ILK+ LUT must be loaded before the pipe is running but with
3369          * clocks enabled
3370          */
3371         intel_crtc_load_lut(crtc);
3372
3373         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3374         intel_enable_plane(dev_priv, plane, pipe);
3375
3376         if (is_pch_port)
3377                 ironlake_pch_enable(crtc);
3378
3379         mutex_lock(&dev->struct_mutex);
3380         intel_update_fbc(dev);
3381         mutex_unlock(&dev->struct_mutex);
3382
3383         intel_crtc_update_cursor(crtc, true);
3384
3385         for_each_encoder_on_crtc(dev, crtc, encoder)
3386                 encoder->enable(encoder);
3387
3388         if (HAS_PCH_CPT(dev))
3389                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3390
3391         /*
3392          * There seems to be a race in PCH platform hw (at least on some
3393          * outputs) where an enabled pipe still completes any pageflip right
3394          * away (as if the pipe is off) instead of waiting for vblank. As soon
3395          * as the first vblank happend, everything works as expected. Hence just
3396          * wait for one vblank before returning to avoid strange things
3397          * happening.
3398          */
3399         intel_wait_for_vblank(dev, intel_crtc->pipe);
3400 }
3401
3402 static void haswell_crtc_enable(struct drm_crtc *crtc)
3403 {
3404         struct drm_device *dev = crtc->dev;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         struct intel_encoder *encoder;
3408         int pipe = intel_crtc->pipe;
3409         int plane = intel_crtc->plane;
3410         bool is_pch_port;
3411
3412         WARN_ON(!crtc->enabled);
3413
3414         if (intel_crtc->active)
3415                 return;
3416
3417         intel_crtc->active = true;
3418         intel_update_watermarks(dev);
3419
3420         is_pch_port = haswell_crtc_driving_pch(crtc);
3421
3422         if (is_pch_port)
3423                 ironlake_fdi_pll_enable(intel_crtc);
3424
3425         for_each_encoder_on_crtc(dev, crtc, encoder)
3426                 if (encoder->pre_enable)
3427                         encoder->pre_enable(encoder);
3428
3429         intel_ddi_enable_pipe_clock(intel_crtc);
3430
3431         /* Enable panel fitting for eDP */
3432         if (dev_priv->pch_pf_size && HAS_eDP) {
3433                 /* Force use of hard-coded filter coefficients
3434                  * as some pre-programmed values are broken,
3435                  * e.g. x201.
3436                  */
3437                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3438                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3439                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3440         }
3441
3442         /*
3443          * On ILK+ LUT must be loaded before the pipe is running but with
3444          * clocks enabled
3445          */
3446         intel_crtc_load_lut(crtc);
3447
3448         intel_ddi_set_pipe_settings(crtc);
3449         intel_ddi_enable_pipe_func(crtc);
3450
3451         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3452         intel_enable_plane(dev_priv, plane, pipe);
3453
3454         if (is_pch_port)
3455                 lpt_pch_enable(crtc);
3456
3457         mutex_lock(&dev->struct_mutex);
3458         intel_update_fbc(dev);
3459         mutex_unlock(&dev->struct_mutex);
3460
3461         intel_crtc_update_cursor(crtc, true);
3462
3463         for_each_encoder_on_crtc(dev, crtc, encoder)
3464                 encoder->enable(encoder);
3465
3466         /*
3467          * There seems to be a race in PCH platform hw (at least on some
3468          * outputs) where an enabled pipe still completes any pageflip right
3469          * away (as if the pipe is off) instead of waiting for vblank. As soon
3470          * as the first vblank happend, everything works as expected. Hence just
3471          * wait for one vblank before returning to avoid strange things
3472          * happening.
3473          */
3474         intel_wait_for_vblank(dev, intel_crtc->pipe);
3475 }
3476
3477 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3478 {
3479         struct drm_device *dev = crtc->dev;
3480         struct drm_i915_private *dev_priv = dev->dev_private;
3481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3482         struct intel_encoder *encoder;
3483         int pipe = intel_crtc->pipe;
3484         int plane = intel_crtc->plane;
3485         u32 reg, temp;
3486
3487
3488         if (!intel_crtc->active)
3489                 return;
3490
3491         for_each_encoder_on_crtc(dev, crtc, encoder)
3492                 encoder->disable(encoder);
3493
3494         intel_crtc_wait_for_pending_flips(crtc);
3495         drm_vblank_off(dev, pipe);
3496         intel_crtc_update_cursor(crtc, false);
3497
3498         intel_disable_plane(dev_priv, plane, pipe);
3499
3500         if (dev_priv->cfb_plane == plane)
3501                 intel_disable_fbc(dev);
3502
3503         intel_disable_pipe(dev_priv, pipe);
3504
3505         /* Disable PF */
3506         I915_WRITE(PF_CTL(pipe), 0);
3507         I915_WRITE(PF_WIN_SZ(pipe), 0);
3508
3509         for_each_encoder_on_crtc(dev, crtc, encoder)
3510                 if (encoder->post_disable)
3511                         encoder->post_disable(encoder);
3512
3513         ironlake_fdi_disable(crtc);
3514
3515         intel_disable_transcoder(dev_priv, pipe);
3516
3517         if (HAS_PCH_CPT(dev)) {
3518                 /* disable TRANS_DP_CTL */
3519                 reg = TRANS_DP_CTL(pipe);
3520                 temp = I915_READ(reg);
3521                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3522                 temp |= TRANS_DP_PORT_SEL_NONE;
3523                 I915_WRITE(reg, temp);
3524
3525                 /* disable DPLL_SEL */
3526                 temp = I915_READ(PCH_DPLL_SEL);
3527                 switch (pipe) {
3528                 case 0:
3529                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3530                         break;
3531                 case 1:
3532                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3533                         break;
3534                 case 2:
3535                         /* C shares PLL A or B */
3536                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3537                         break;
3538                 default:
3539                         BUG(); /* wtf */
3540                 }
3541                 I915_WRITE(PCH_DPLL_SEL, temp);
3542         }
3543
3544         /* disable PCH DPLL */
3545         intel_disable_pch_pll(intel_crtc);
3546
3547         ironlake_fdi_pll_disable(intel_crtc);
3548
3549         intel_crtc->active = false;
3550         intel_update_watermarks(dev);
3551
3552         mutex_lock(&dev->struct_mutex);
3553         intel_update_fbc(dev);
3554         mutex_unlock(&dev->struct_mutex);
3555 }
3556
3557 static void haswell_crtc_disable(struct drm_crtc *crtc)
3558 {
3559         struct drm_device *dev = crtc->dev;
3560         struct drm_i915_private *dev_priv = dev->dev_private;
3561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3562         struct intel_encoder *encoder;
3563         int pipe = intel_crtc->pipe;
3564         int plane = intel_crtc->plane;
3565         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3566         bool is_pch_port;
3567
3568         if (!intel_crtc->active)
3569                 return;
3570
3571         is_pch_port = haswell_crtc_driving_pch(crtc);
3572
3573         for_each_encoder_on_crtc(dev, crtc, encoder)
3574                 encoder->disable(encoder);
3575
3576         intel_crtc_wait_for_pending_flips(crtc);
3577         drm_vblank_off(dev, pipe);
3578         intel_crtc_update_cursor(crtc, false);
3579
3580         intel_disable_plane(dev_priv, plane, pipe);
3581
3582         if (dev_priv->cfb_plane == plane)
3583                 intel_disable_fbc(dev);
3584
3585         intel_disable_pipe(dev_priv, pipe);
3586
3587         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3588
3589         /* Disable PF */
3590         I915_WRITE(PF_CTL(pipe), 0);
3591         I915_WRITE(PF_WIN_SZ(pipe), 0);
3592
3593         intel_ddi_disable_pipe_clock(intel_crtc);
3594
3595         for_each_encoder_on_crtc(dev, crtc, encoder)
3596                 if (encoder->post_disable)
3597                         encoder->post_disable(encoder);
3598
3599         if (is_pch_port) {
3600                 ironlake_fdi_disable(crtc);
3601                 intel_disable_transcoder(dev_priv, pipe);
3602                 intel_disable_pch_pll(intel_crtc);
3603                 ironlake_fdi_pll_disable(intel_crtc);
3604         }
3605
3606         intel_crtc->active = false;
3607         intel_update_watermarks(dev);
3608
3609         mutex_lock(&dev->struct_mutex);
3610         intel_update_fbc(dev);
3611         mutex_unlock(&dev->struct_mutex);
3612 }
3613
3614 static void ironlake_crtc_off(struct drm_crtc *crtc)
3615 {
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         intel_put_pch_pll(intel_crtc);
3618 }
3619
3620 static void haswell_crtc_off(struct drm_crtc *crtc)
3621 {
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623
3624         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3625          * start using it. */
3626         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3627
3628         intel_ddi_put_crtc_pll(crtc);
3629 }
3630
3631 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3632 {
3633         if (!enable && intel_crtc->overlay) {
3634                 struct drm_device *dev = intel_crtc->base.dev;
3635                 struct drm_i915_private *dev_priv = dev->dev_private;
3636
3637                 mutex_lock(&dev->struct_mutex);
3638                 dev_priv->mm.interruptible = false;
3639                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3640                 dev_priv->mm.interruptible = true;
3641                 mutex_unlock(&dev->struct_mutex);
3642         }
3643
3644         /* Let userspace switch the overlay on again. In most cases userspace
3645          * has to recompute where to put it anyway.
3646          */
3647 }
3648
3649 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3650 {
3651         struct drm_device *dev = crtc->dev;
3652         struct drm_i915_private *dev_priv = dev->dev_private;
3653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3654         struct intel_encoder *encoder;
3655         int pipe = intel_crtc->pipe;
3656         int plane = intel_crtc->plane;
3657
3658         WARN_ON(!crtc->enabled);
3659
3660         if (intel_crtc->active)
3661                 return;
3662
3663         intel_crtc->active = true;
3664         intel_update_watermarks(dev);
3665
3666         intel_enable_pll(dev_priv, pipe);
3667         intel_enable_pipe(dev_priv, pipe, false);
3668         intel_enable_plane(dev_priv, plane, pipe);
3669
3670         intel_crtc_load_lut(crtc);
3671         intel_update_fbc(dev);
3672
3673         /* Give the overlay scaler a chance to enable if it's on this pipe */
3674         intel_crtc_dpms_overlay(intel_crtc, true);
3675         intel_crtc_update_cursor(crtc, true);
3676
3677         for_each_encoder_on_crtc(dev, crtc, encoder)
3678                 encoder->enable(encoder);
3679 }
3680
3681 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3682 {
3683         struct drm_device *dev = crtc->dev;
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3686         struct intel_encoder *encoder;
3687         int pipe = intel_crtc->pipe;
3688         int plane = intel_crtc->plane;
3689
3690
3691         if (!intel_crtc->active)
3692                 return;
3693
3694         for_each_encoder_on_crtc(dev, crtc, encoder)
3695                 encoder->disable(encoder);
3696
3697         /* Give the overlay scaler a chance to disable if it's on this pipe */
3698         intel_crtc_wait_for_pending_flips(crtc);
3699         drm_vblank_off(dev, pipe);
3700         intel_crtc_dpms_overlay(intel_crtc, false);
3701         intel_crtc_update_cursor(crtc, false);
3702
3703         if (dev_priv->cfb_plane == plane)
3704                 intel_disable_fbc(dev);
3705
3706         intel_disable_plane(dev_priv, plane, pipe);
3707         intel_disable_pipe(dev_priv, pipe);
3708         intel_disable_pll(dev_priv, pipe);
3709
3710         intel_crtc->active = false;
3711         intel_update_fbc(dev);
3712         intel_update_watermarks(dev);
3713 }
3714
3715 static void i9xx_crtc_off(struct drm_crtc *crtc)
3716 {
3717 }
3718
3719 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3720                                     bool enabled)
3721 {
3722         struct drm_device *dev = crtc->dev;
3723         struct drm_i915_master_private *master_priv;
3724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725         int pipe = intel_crtc->pipe;
3726
3727         if (!dev->primary->master)
3728                 return;
3729
3730         master_priv = dev->primary->master->driver_priv;
3731         if (!master_priv->sarea_priv)
3732                 return;
3733
3734         switch (pipe) {
3735         case 0:
3736                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3737                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3738                 break;
3739         case 1:
3740                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3741                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3742                 break;
3743         default:
3744                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3745                 break;
3746         }
3747 }
3748
3749 /**
3750  * Sets the power management mode of the pipe and plane.
3751  */
3752 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3753 {
3754         struct drm_device *dev = crtc->dev;
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_encoder *intel_encoder;
3757         bool enable = false;
3758
3759         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3760                 enable |= intel_encoder->connectors_active;
3761
3762         if (enable)
3763                 dev_priv->display.crtc_enable(crtc);
3764         else
3765                 dev_priv->display.crtc_disable(crtc);
3766
3767         intel_crtc_update_sarea(crtc, enable);
3768 }
3769
3770 static void intel_crtc_noop(struct drm_crtc *crtc)
3771 {
3772 }
3773
3774 static void intel_crtc_disable(struct drm_crtc *crtc)
3775 {
3776         struct drm_device *dev = crtc->dev;
3777         struct drm_connector *connector;
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780         /* crtc should still be enabled when we disable it. */
3781         WARN_ON(!crtc->enabled);
3782
3783         dev_priv->display.crtc_disable(crtc);
3784         intel_crtc_update_sarea(crtc, false);
3785         dev_priv->display.off(crtc);
3786
3787         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3788         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3789
3790         if (crtc->fb) {
3791                 mutex_lock(&dev->struct_mutex);
3792                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3793                 mutex_unlock(&dev->struct_mutex);
3794                 crtc->fb = NULL;
3795         }
3796
3797         /* Update computed state. */
3798         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3799                 if (!connector->encoder || !connector->encoder->crtc)
3800                         continue;
3801
3802                 if (connector->encoder->crtc != crtc)
3803                         continue;
3804
3805                 connector->dpms = DRM_MODE_DPMS_OFF;
3806                 to_intel_encoder(connector->encoder)->connectors_active = false;
3807         }
3808 }
3809
3810 void intel_modeset_disable(struct drm_device *dev)
3811 {
3812         struct drm_crtc *crtc;
3813
3814         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3815                 if (crtc->enabled)
3816                         intel_crtc_disable(crtc);
3817         }
3818 }
3819
3820 void intel_encoder_noop(struct drm_encoder *encoder)
3821 {
3822 }
3823
3824 void intel_encoder_destroy(struct drm_encoder *encoder)
3825 {
3826         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3827
3828         drm_encoder_cleanup(encoder);
3829         kfree(intel_encoder);
3830 }
3831
3832 /* Simple dpms helper for encodres with just one connector, no cloning and only
3833  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3834  * state of the entire output pipe. */
3835 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3836 {
3837         if (mode == DRM_MODE_DPMS_ON) {
3838                 encoder->connectors_active = true;
3839
3840                 intel_crtc_update_dpms(encoder->base.crtc);
3841         } else {
3842                 encoder->connectors_active = false;
3843
3844                 intel_crtc_update_dpms(encoder->base.crtc);
3845         }
3846 }
3847
3848 /* Cross check the actual hw state with our own modeset state tracking (and it's
3849  * internal consistency). */
3850 static void intel_connector_check_state(struct intel_connector *connector)
3851 {
3852         if (connector->get_hw_state(connector)) {
3853                 struct intel_encoder *encoder = connector->encoder;
3854                 struct drm_crtc *crtc;
3855                 bool encoder_enabled;
3856                 enum pipe pipe;
3857
3858                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3859                               connector->base.base.id,
3860                               drm_get_connector_name(&connector->base));
3861
3862                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3863                      "wrong connector dpms state\n");
3864                 WARN(connector->base.encoder != &encoder->base,
3865                      "active connector not linked to encoder\n");
3866                 WARN(!encoder->connectors_active,
3867                      "encoder->connectors_active not set\n");
3868
3869                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3870                 WARN(!encoder_enabled, "encoder not enabled\n");
3871                 if (WARN_ON(!encoder->base.crtc))
3872                         return;
3873
3874                 crtc = encoder->base.crtc;
3875
3876                 WARN(!crtc->enabled, "crtc not enabled\n");
3877                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3878                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3879                      "encoder active on the wrong pipe\n");
3880         }
3881 }
3882
3883 /* Even simpler default implementation, if there's really no special case to
3884  * consider. */
3885 void intel_connector_dpms(struct drm_connector *connector, int mode)
3886 {
3887         struct intel_encoder *encoder = intel_attached_encoder(connector);
3888
3889         /* All the simple cases only support two dpms states. */
3890         if (mode != DRM_MODE_DPMS_ON)
3891                 mode = DRM_MODE_DPMS_OFF;
3892
3893         if (mode == connector->dpms)
3894                 return;
3895
3896         connector->dpms = mode;
3897
3898         /* Only need to change hw state when actually enabled */
3899         if (encoder->base.crtc)
3900                 intel_encoder_dpms(encoder, mode);
3901         else
3902                 WARN_ON(encoder->connectors_active != false);
3903
3904         intel_modeset_check_state(connector->dev);
3905 }
3906
3907 /* Simple connector->get_hw_state implementation for encoders that support only
3908  * one connector and no cloning and hence the encoder state determines the state
3909  * of the connector. */
3910 bool intel_connector_get_hw_state(struct intel_connector *connector)
3911 {
3912         enum pipe pipe = 0;
3913         struct intel_encoder *encoder = connector->encoder;
3914
3915         return encoder->get_hw_state(encoder, &pipe);
3916 }
3917
3918 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3919                                   const struct drm_display_mode *mode,
3920                                   struct drm_display_mode *adjusted_mode)
3921 {
3922         struct drm_device *dev = crtc->dev;
3923
3924         if (HAS_PCH_SPLIT(dev)) {
3925                 /* FDI link clock is fixed at 2.7G */
3926                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3927                         return false;
3928         }
3929
3930         /* All interlaced capable intel hw wants timings in frames. Note though
3931          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3932          * timings, so we need to be careful not to clobber these.*/
3933         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3934                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3935
3936         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3937          * with a hsync front porch of 0.
3938          */
3939         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3940                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3941                 return false;
3942
3943         return true;
3944 }
3945
3946 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3947 {
3948         return 400000; /* FIXME */
3949 }
3950
3951 static int i945_get_display_clock_speed(struct drm_device *dev)
3952 {
3953         return 400000;
3954 }
3955
3956 static int i915_get_display_clock_speed(struct drm_device *dev)
3957 {
3958         return 333000;
3959 }
3960
3961 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3962 {
3963         return 200000;
3964 }
3965
3966 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3967 {
3968         u16 gcfgc = 0;
3969
3970         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3971
3972         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3973                 return 133000;
3974         else {
3975                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3976                 case GC_DISPLAY_CLOCK_333_MHZ:
3977                         return 333000;
3978                 default:
3979                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3980                         return 190000;
3981                 }
3982         }
3983 }
3984
3985 static int i865_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 266000;
3988 }
3989
3990 static int i855_get_display_clock_speed(struct drm_device *dev)
3991 {
3992         u16 hpllcc = 0;
3993         /* Assume that the hardware is in the high speed state.  This
3994          * should be the default.
3995          */
3996         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3997         case GC_CLOCK_133_200:
3998         case GC_CLOCK_100_200:
3999                 return 200000;
4000         case GC_CLOCK_166_250:
4001                 return 250000;
4002         case GC_CLOCK_100_133:
4003                 return 133000;
4004         }
4005
4006         /* Shouldn't happen */
4007         return 0;
4008 }
4009
4010 static int i830_get_display_clock_speed(struct drm_device *dev)
4011 {
4012         return 133000;
4013 }
4014
4015 struct fdi_m_n {
4016         u32        tu;
4017         u32        gmch_m;
4018         u32        gmch_n;
4019         u32        link_m;
4020         u32        link_n;
4021 };
4022
4023 static void
4024 fdi_reduce_ratio(u32 *num, u32 *den)
4025 {
4026         while (*num > 0xffffff || *den > 0xffffff) {
4027                 *num >>= 1;
4028                 *den >>= 1;
4029         }
4030 }
4031
4032 static void
4033 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4034                      int link_clock, struct fdi_m_n *m_n)
4035 {
4036         m_n->tu = 64; /* default size */
4037
4038         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4039         m_n->gmch_m = bits_per_pixel * pixel_clock;
4040         m_n->gmch_n = link_clock * nlanes * 8;
4041         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4042
4043         m_n->link_m = pixel_clock;
4044         m_n->link_n = link_clock;
4045         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4046 }
4047
4048 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4049 {
4050         if (i915_panel_use_ssc >= 0)
4051                 return i915_panel_use_ssc != 0;
4052         return dev_priv->lvds_use_ssc
4053                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4054 }
4055
4056 /**
4057  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4058  * @crtc: CRTC structure
4059  * @mode: requested mode
4060  *
4061  * A pipe may be connected to one or more outputs.  Based on the depth of the
4062  * attached framebuffer, choose a good color depth to use on the pipe.
4063  *
4064  * If possible, match the pipe depth to the fb depth.  In some cases, this
4065  * isn't ideal, because the connected output supports a lesser or restricted
4066  * set of depths.  Resolve that here:
4067  *    LVDS typically supports only 6bpc, so clamp down in that case
4068  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4069  *    Displays may support a restricted set as well, check EDID and clamp as
4070  *      appropriate.
4071  *    DP may want to dither down to 6bpc to fit larger modes
4072  *
4073  * RETURNS:
4074  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4075  * true if they don't match).
4076  */
4077 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4078                                          struct drm_framebuffer *fb,
4079                                          unsigned int *pipe_bpp,
4080                                          struct drm_display_mode *mode)
4081 {
4082         struct drm_device *dev = crtc->dev;
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084         struct drm_connector *connector;
4085         struct intel_encoder *intel_encoder;
4086         unsigned int display_bpc = UINT_MAX, bpc;
4087
4088         /* Walk the encoders & connectors on this crtc, get min bpc */
4089         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4090
4091                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4092                         unsigned int lvds_bpc;
4093
4094                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4095                             LVDS_A3_POWER_UP)
4096                                 lvds_bpc = 8;
4097                         else
4098                                 lvds_bpc = 6;
4099
4100                         if (lvds_bpc < display_bpc) {
4101                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4102                                 display_bpc = lvds_bpc;
4103                         }
4104                         continue;
4105                 }
4106
4107                 /* Not one of the known troublemakers, check the EDID */
4108                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4109                                     head) {
4110                         if (connector->encoder != &intel_encoder->base)
4111                                 continue;
4112
4113                         /* Don't use an invalid EDID bpc value */
4114                         if (connector->display_info.bpc &&
4115                             connector->display_info.bpc < display_bpc) {
4116                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4117                                 display_bpc = connector->display_info.bpc;
4118                         }
4119                 }
4120
4121                 /*
4122                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4123                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4124                  */
4125                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4126                         if (display_bpc > 8 && display_bpc < 12) {
4127                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4128                                 display_bpc = 12;
4129                         } else {
4130                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4131                                 display_bpc = 8;
4132                         }
4133                 }
4134         }
4135
4136         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4137                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4138                 display_bpc = 6;
4139         }
4140
4141         /*
4142          * We could just drive the pipe at the highest bpc all the time and
4143          * enable dithering as needed, but that costs bandwidth.  So choose
4144          * the minimum value that expresses the full color range of the fb but
4145          * also stays within the max display bpc discovered above.
4146          */
4147
4148         switch (fb->depth) {
4149         case 8:
4150                 bpc = 8; /* since we go through a colormap */
4151                 break;
4152         case 15:
4153         case 16:
4154                 bpc = 6; /* min is 18bpp */
4155                 break;
4156         case 24:
4157                 bpc = 8;
4158                 break;
4159         case 30:
4160                 bpc = 10;
4161                 break;
4162         case 48:
4163                 bpc = 12;
4164                 break;
4165         default:
4166                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4167                 bpc = min((unsigned int)8, display_bpc);
4168                 break;
4169         }
4170
4171         display_bpc = min(display_bpc, bpc);
4172
4173         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4174                       bpc, display_bpc);
4175
4176         *pipe_bpp = display_bpc * 3;
4177
4178         return display_bpc != bpc;
4179 }
4180
4181 static int vlv_get_refclk(struct drm_crtc *crtc)
4182 {
4183         struct drm_device *dev = crtc->dev;
4184         struct drm_i915_private *dev_priv = dev->dev_private;
4185         int refclk = 27000; /* for DP & HDMI */
4186
4187         return 100000; /* only one validated so far */
4188
4189         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4190                 refclk = 96000;
4191         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4192                 if (intel_panel_use_ssc(dev_priv))
4193                         refclk = 100000;
4194                 else
4195                         refclk = 96000;
4196         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4197                 refclk = 100000;
4198         }
4199
4200         return refclk;
4201 }
4202
4203 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4204 {
4205         struct drm_device *dev = crtc->dev;
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207         int refclk;
4208
4209         if (IS_VALLEYVIEW(dev)) {
4210                 refclk = vlv_get_refclk(crtc);
4211         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4212             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4213                 refclk = dev_priv->lvds_ssc_freq * 1000;
4214                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4215                               refclk / 1000);
4216         } else if (!IS_GEN2(dev)) {
4217                 refclk = 96000;
4218         } else {
4219                 refclk = 48000;
4220         }
4221
4222         return refclk;
4223 }
4224
4225 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4226                                       intel_clock_t *clock)
4227 {
4228         /* SDVO TV has fixed PLL values depend on its clock range,
4229            this mirrors vbios setting. */
4230         if (adjusted_mode->clock >= 100000
4231             && adjusted_mode->clock < 140500) {
4232                 clock->p1 = 2;
4233                 clock->p2 = 10;
4234                 clock->n = 3;
4235                 clock->m1 = 16;
4236                 clock->m2 = 8;
4237         } else if (adjusted_mode->clock >= 140500
4238                    && adjusted_mode->clock <= 200000) {
4239                 clock->p1 = 1;
4240                 clock->p2 = 10;
4241                 clock->n = 6;
4242                 clock->m1 = 12;
4243                 clock->m2 = 8;
4244         }
4245 }
4246
4247 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4248                                      intel_clock_t *clock,
4249                                      intel_clock_t *reduced_clock)
4250 {
4251         struct drm_device *dev = crtc->dev;
4252         struct drm_i915_private *dev_priv = dev->dev_private;
4253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4254         int pipe = intel_crtc->pipe;
4255         u32 fp, fp2 = 0;
4256
4257         if (IS_PINEVIEW(dev)) {
4258                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4259                 if (reduced_clock)
4260                         fp2 = (1 << reduced_clock->n) << 16 |
4261                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4262         } else {
4263                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4264                 if (reduced_clock)
4265                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4266                                 reduced_clock->m2;
4267         }
4268
4269         I915_WRITE(FP0(pipe), fp);
4270
4271         intel_crtc->lowfreq_avail = false;
4272         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4273             reduced_clock && i915_powersave) {
4274                 I915_WRITE(FP1(pipe), fp2);
4275                 intel_crtc->lowfreq_avail = true;
4276         } else {
4277                 I915_WRITE(FP1(pipe), fp);
4278         }
4279 }
4280
4281 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4282                               struct drm_display_mode *adjusted_mode)
4283 {
4284         struct drm_device *dev = crtc->dev;
4285         struct drm_i915_private *dev_priv = dev->dev_private;
4286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4287         int pipe = intel_crtc->pipe;
4288         u32 temp;
4289
4290         temp = I915_READ(LVDS);
4291         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4292         if (pipe == 1) {
4293                 temp |= LVDS_PIPEB_SELECT;
4294         } else {
4295                 temp &= ~LVDS_PIPEB_SELECT;
4296         }
4297         /* set the corresponsding LVDS_BORDER bit */
4298         temp |= dev_priv->lvds_border_bits;
4299         /* Set the B0-B3 data pairs corresponding to whether we're going to
4300          * set the DPLLs for dual-channel mode or not.
4301          */
4302         if (clock->p2 == 7)
4303                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4304         else
4305                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4306
4307         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4308          * appropriately here, but we need to look more thoroughly into how
4309          * panels behave in the two modes.
4310          */
4311         /* set the dithering flag on LVDS as needed */
4312         if (INTEL_INFO(dev)->gen >= 4) {
4313                 if (dev_priv->lvds_dither)
4314                         temp |= LVDS_ENABLE_DITHER;
4315                 else
4316                         temp &= ~LVDS_ENABLE_DITHER;
4317         }
4318         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4319         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4320                 temp |= LVDS_HSYNC_POLARITY;
4321         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4322                 temp |= LVDS_VSYNC_POLARITY;
4323         I915_WRITE(LVDS, temp);
4324 }
4325
4326 static void vlv_update_pll(struct drm_crtc *crtc,
4327                            struct drm_display_mode *mode,
4328                            struct drm_display_mode *adjusted_mode,
4329                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4330                            int num_connectors)
4331 {
4332         struct drm_device *dev = crtc->dev;
4333         struct drm_i915_private *dev_priv = dev->dev_private;
4334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4335         int pipe = intel_crtc->pipe;
4336         u32 dpll, mdiv, pdiv;
4337         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4338         bool is_sdvo;
4339         u32 temp;
4340
4341         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4342                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4343
4344         dpll = DPLL_VGA_MODE_DIS;
4345         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4346         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4347         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4348
4349         I915_WRITE(DPLL(pipe), dpll);
4350         POSTING_READ(DPLL(pipe));
4351
4352         bestn = clock->n;
4353         bestm1 = clock->m1;
4354         bestm2 = clock->m2;
4355         bestp1 = clock->p1;
4356         bestp2 = clock->p2;
4357
4358         /*
4359          * In Valleyview PLL and program lane counter registers are exposed
4360          * through DPIO interface
4361          */
4362         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4363         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4364         mdiv |= ((bestn << DPIO_N_SHIFT));
4365         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4366         mdiv |= (1 << DPIO_K_SHIFT);
4367         mdiv |= DPIO_ENABLE_CALIBRATION;
4368         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4369
4370         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4371
4372         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4373                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4374                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4375                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4376         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4377
4378         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4379
4380         dpll |= DPLL_VCO_ENABLE;
4381         I915_WRITE(DPLL(pipe), dpll);
4382         POSTING_READ(DPLL(pipe));
4383         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4384                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4385
4386         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4387
4388         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4389                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4390
4391         I915_WRITE(DPLL(pipe), dpll);
4392
4393         /* Wait for the clocks to stabilize. */
4394         POSTING_READ(DPLL(pipe));
4395         udelay(150);
4396
4397         temp = 0;
4398         if (is_sdvo) {
4399                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4400                 if (temp > 1)
4401                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4402                 else
4403                         temp = 0;
4404         }
4405         I915_WRITE(DPLL_MD(pipe), temp);
4406         POSTING_READ(DPLL_MD(pipe));
4407
4408         /* Now program lane control registers */
4409         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4410                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4411         {
4412                 temp = 0x1000C4;
4413                 if(pipe == 1)
4414                         temp |= (1 << 21);
4415                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4416         }
4417         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4418         {
4419                 temp = 0x1000C4;
4420                 if(pipe == 1)
4421                         temp |= (1 << 21);
4422                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4423         }
4424 }
4425
4426 static void i9xx_update_pll(struct drm_crtc *crtc,
4427                             struct drm_display_mode *mode,
4428                             struct drm_display_mode *adjusted_mode,
4429                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4430                             int num_connectors)
4431 {
4432         struct drm_device *dev = crtc->dev;
4433         struct drm_i915_private *dev_priv = dev->dev_private;
4434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435         int pipe = intel_crtc->pipe;
4436         u32 dpll;
4437         bool is_sdvo;
4438
4439         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4440
4441         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4442                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4443
4444         dpll = DPLL_VGA_MODE_DIS;
4445
4446         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4447                 dpll |= DPLLB_MODE_LVDS;
4448         else
4449                 dpll |= DPLLB_MODE_DAC_SERIAL;
4450         if (is_sdvo) {
4451                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4452                 if (pixel_multiplier > 1) {
4453                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4454                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4455                 }
4456                 dpll |= DPLL_DVO_HIGH_SPEED;
4457         }
4458         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4459                 dpll |= DPLL_DVO_HIGH_SPEED;
4460
4461         /* compute bitmask from p1 value */
4462         if (IS_PINEVIEW(dev))
4463                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4464         else {
4465                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4466                 if (IS_G4X(dev) && reduced_clock)
4467                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4468         }
4469         switch (clock->p2) {
4470         case 5:
4471                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4472                 break;
4473         case 7:
4474                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4475                 break;
4476         case 10:
4477                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4478                 break;
4479         case 14:
4480                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4481                 break;
4482         }
4483         if (INTEL_INFO(dev)->gen >= 4)
4484                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4485
4486         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4487                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4488         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4489                 /* XXX: just matching BIOS for now */
4490                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4491                 dpll |= 3;
4492         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4493                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4494                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4495         else
4496                 dpll |= PLL_REF_INPUT_DREFCLK;
4497
4498         dpll |= DPLL_VCO_ENABLE;
4499         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4500         POSTING_READ(DPLL(pipe));
4501         udelay(150);
4502
4503         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4504          * This is an exception to the general rule that mode_set doesn't turn
4505          * things on.
4506          */
4507         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4508                 intel_update_lvds(crtc, clock, adjusted_mode);
4509
4510         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4511                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4512
4513         I915_WRITE(DPLL(pipe), dpll);
4514
4515         /* Wait for the clocks to stabilize. */
4516         POSTING_READ(DPLL(pipe));
4517         udelay(150);
4518
4519         if (INTEL_INFO(dev)->gen >= 4) {
4520                 u32 temp = 0;
4521                 if (is_sdvo) {
4522                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4523                         if (temp > 1)
4524                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4525                         else
4526                                 temp = 0;
4527                 }
4528                 I915_WRITE(DPLL_MD(pipe), temp);
4529         } else {
4530                 /* The pixel multiplier can only be updated once the
4531                  * DPLL is enabled and the clocks are stable.
4532                  *
4533                  * So write it again.
4534                  */
4535                 I915_WRITE(DPLL(pipe), dpll);
4536         }
4537 }
4538
4539 static void i8xx_update_pll(struct drm_crtc *crtc,
4540                             struct drm_display_mode *adjusted_mode,
4541                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4542                             int num_connectors)
4543 {
4544         struct drm_device *dev = crtc->dev;
4545         struct drm_i915_private *dev_priv = dev->dev_private;
4546         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4547         int pipe = intel_crtc->pipe;
4548         u32 dpll;
4549
4550         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4551
4552         dpll = DPLL_VGA_MODE_DIS;
4553
4554         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4555                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4556         } else {
4557                 if (clock->p1 == 2)
4558                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4559                 else
4560                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4561                 if (clock->p2 == 4)
4562                         dpll |= PLL_P2_DIVIDE_BY_4;
4563         }
4564
4565         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4566                 /* XXX: just matching BIOS for now */
4567                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4568                 dpll |= 3;
4569         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4570                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4571                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4572         else
4573                 dpll |= PLL_REF_INPUT_DREFCLK;
4574
4575         dpll |= DPLL_VCO_ENABLE;
4576         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4577         POSTING_READ(DPLL(pipe));
4578         udelay(150);
4579
4580         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4581          * This is an exception to the general rule that mode_set doesn't turn
4582          * things on.
4583          */
4584         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4585                 intel_update_lvds(crtc, clock, adjusted_mode);
4586
4587         I915_WRITE(DPLL(pipe), dpll);
4588
4589         /* Wait for the clocks to stabilize. */
4590         POSTING_READ(DPLL(pipe));
4591         udelay(150);
4592
4593         /* The pixel multiplier can only be updated once the
4594          * DPLL is enabled and the clocks are stable.
4595          *
4596          * So write it again.
4597          */
4598         I915_WRITE(DPLL(pipe), dpll);
4599 }
4600
4601 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4602                                    struct drm_display_mode *mode,
4603                                    struct drm_display_mode *adjusted_mode)
4604 {
4605         struct drm_device *dev = intel_crtc->base.dev;
4606         struct drm_i915_private *dev_priv = dev->dev_private;
4607         enum pipe pipe = intel_crtc->pipe;
4608         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4609         uint32_t vsyncshift;
4610
4611         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4612                 /* the chip adds 2 halflines automatically */
4613                 adjusted_mode->crtc_vtotal -= 1;
4614                 adjusted_mode->crtc_vblank_end -= 1;
4615                 vsyncshift = adjusted_mode->crtc_hsync_start
4616                              - adjusted_mode->crtc_htotal / 2;
4617         } else {
4618                 vsyncshift = 0;
4619         }
4620
4621         if (INTEL_INFO(dev)->gen > 3)
4622                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4623
4624         I915_WRITE(HTOTAL(cpu_transcoder),
4625                    (adjusted_mode->crtc_hdisplay - 1) |
4626                    ((adjusted_mode->crtc_htotal - 1) << 16));
4627         I915_WRITE(HBLANK(cpu_transcoder),
4628                    (adjusted_mode->crtc_hblank_start - 1) |
4629                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4630         I915_WRITE(HSYNC(cpu_transcoder),
4631                    (adjusted_mode->crtc_hsync_start - 1) |
4632                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4633
4634         I915_WRITE(VTOTAL(cpu_transcoder),
4635                    (adjusted_mode->crtc_vdisplay - 1) |
4636                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4637         I915_WRITE(VBLANK(cpu_transcoder),
4638                    (adjusted_mode->crtc_vblank_start - 1) |
4639                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4640         I915_WRITE(VSYNC(cpu_transcoder),
4641                    (adjusted_mode->crtc_vsync_start - 1) |
4642                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4643
4644         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4645          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4646          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4647          * bits. */
4648         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4649             (pipe == PIPE_B || pipe == PIPE_C))
4650                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4651
4652         /* pipesrc controls the size that is scaled from, which should
4653          * always be the user's requested size.
4654          */
4655         I915_WRITE(PIPESRC(pipe),
4656                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4657 }
4658
4659 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4660                               struct drm_display_mode *mode,
4661                               struct drm_display_mode *adjusted_mode,
4662                               int x, int y,
4663                               struct drm_framebuffer *fb)
4664 {
4665         struct drm_device *dev = crtc->dev;
4666         struct drm_i915_private *dev_priv = dev->dev_private;
4667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4668         int pipe = intel_crtc->pipe;
4669         int plane = intel_crtc->plane;
4670         int refclk, num_connectors = 0;
4671         intel_clock_t clock, reduced_clock;
4672         u32 dspcntr, pipeconf;
4673         bool ok, has_reduced_clock = false, is_sdvo = false;
4674         bool is_lvds = false, is_tv = false, is_dp = false;
4675         struct intel_encoder *encoder;
4676         const intel_limit_t *limit;
4677         int ret;
4678
4679         for_each_encoder_on_crtc(dev, crtc, encoder) {
4680                 switch (encoder->type) {
4681                 case INTEL_OUTPUT_LVDS:
4682                         is_lvds = true;
4683                         break;
4684                 case INTEL_OUTPUT_SDVO:
4685                 case INTEL_OUTPUT_HDMI:
4686                         is_sdvo = true;
4687                         if (encoder->needs_tv_clock)
4688                                 is_tv = true;
4689                         break;
4690                 case INTEL_OUTPUT_TVOUT:
4691                         is_tv = true;
4692                         break;
4693                 case INTEL_OUTPUT_DISPLAYPORT:
4694                         is_dp = true;
4695                         break;
4696                 }
4697
4698                 num_connectors++;
4699         }
4700
4701         refclk = i9xx_get_refclk(crtc, num_connectors);
4702
4703         /*
4704          * Returns a set of divisors for the desired target clock with the given
4705          * refclk, or FALSE.  The returned values represent the clock equation:
4706          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4707          */
4708         limit = intel_limit(crtc, refclk);
4709         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4710                              &clock);
4711         if (!ok) {
4712                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4713                 return -EINVAL;
4714         }
4715
4716         /* Ensure that the cursor is valid for the new mode before changing... */
4717         intel_crtc_update_cursor(crtc, true);
4718
4719         if (is_lvds && dev_priv->lvds_downclock_avail) {
4720                 /*
4721                  * Ensure we match the reduced clock's P to the target clock.
4722                  * If the clocks don't match, we can't switch the display clock
4723                  * by using the FP0/FP1. In such case we will disable the LVDS
4724                  * downclock feature.
4725                 */
4726                 has_reduced_clock = limit->find_pll(limit, crtc,
4727                                                     dev_priv->lvds_downclock,
4728                                                     refclk,
4729                                                     &clock,
4730                                                     &reduced_clock);
4731         }
4732
4733         if (is_sdvo && is_tv)
4734                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4735
4736         if (IS_GEN2(dev))
4737                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4738                                 has_reduced_clock ? &reduced_clock : NULL,
4739                                 num_connectors);
4740         else if (IS_VALLEYVIEW(dev))
4741                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4742                                 has_reduced_clock ? &reduced_clock : NULL,
4743                                 num_connectors);
4744         else
4745                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4746                                 has_reduced_clock ? &reduced_clock : NULL,
4747                                 num_connectors);
4748
4749         /* setup pipeconf */
4750         pipeconf = I915_READ(PIPECONF(pipe));
4751
4752         /* Set up the display plane register */
4753         dspcntr = DISPPLANE_GAMMA_ENABLE;
4754
4755         if (pipe == 0)
4756                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4757         else
4758                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4759
4760         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4761                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4762                  * core speed.
4763                  *
4764                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4765                  * pipe == 0 check?
4766                  */
4767                 if (mode->clock >
4768                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4769                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4770                 else
4771                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4772         }
4773
4774         /* default to 8bpc */
4775         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4776         if (is_dp) {
4777                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4778                         pipeconf |= PIPECONF_BPP_6 |
4779                                     PIPECONF_DITHER_EN |
4780                                     PIPECONF_DITHER_TYPE_SP;
4781                 }
4782         }
4783
4784         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4785                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4786                         pipeconf |= PIPECONF_BPP_6 |
4787                                         PIPECONF_ENABLE |
4788                                         I965_PIPECONF_ACTIVE;
4789                 }
4790         }
4791
4792         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4793         drm_mode_debug_printmodeline(mode);
4794
4795         if (HAS_PIPE_CXSR(dev)) {
4796                 if (intel_crtc->lowfreq_avail) {
4797                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4798                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4799                 } else {
4800                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4801                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4802                 }
4803         }
4804
4805         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4806         if (!IS_GEN2(dev) &&
4807             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4808                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4809         else
4810                 pipeconf |= PIPECONF_PROGRESSIVE;
4811
4812         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4813
4814         /* pipesrc and dspsize control the size that is scaled from,
4815          * which should always be the user's requested size.
4816          */
4817         I915_WRITE(DSPSIZE(plane),
4818                    ((mode->vdisplay - 1) << 16) |
4819                    (mode->hdisplay - 1));
4820         I915_WRITE(DSPPOS(plane), 0);
4821
4822         I915_WRITE(PIPECONF(pipe), pipeconf);
4823         POSTING_READ(PIPECONF(pipe));
4824         intel_enable_pipe(dev_priv, pipe, false);
4825
4826         intel_wait_for_vblank(dev, pipe);
4827
4828         I915_WRITE(DSPCNTR(plane), dspcntr);
4829         POSTING_READ(DSPCNTR(plane));
4830
4831         ret = intel_pipe_set_base(crtc, x, y, fb);
4832
4833         intel_update_watermarks(dev);
4834
4835         return ret;
4836 }
4837
4838 /*
4839  * Initialize reference clocks when the driver loads
4840  */
4841 void ironlake_init_pch_refclk(struct drm_device *dev)
4842 {
4843         struct drm_i915_private *dev_priv = dev->dev_private;
4844         struct drm_mode_config *mode_config = &dev->mode_config;
4845         struct intel_encoder *encoder;
4846         u32 temp;
4847         bool has_lvds = false;
4848         bool has_cpu_edp = false;
4849         bool has_pch_edp = false;
4850         bool has_panel = false;
4851         bool has_ck505 = false;
4852         bool can_ssc = false;
4853
4854         /* We need to take the global config into account */
4855         list_for_each_entry(encoder, &mode_config->encoder_list,
4856                             base.head) {
4857                 switch (encoder->type) {
4858                 case INTEL_OUTPUT_LVDS:
4859                         has_panel = true;
4860                         has_lvds = true;
4861                         break;
4862                 case INTEL_OUTPUT_EDP:
4863                         has_panel = true;
4864                         if (intel_encoder_is_pch_edp(&encoder->base))
4865                                 has_pch_edp = true;
4866                         else
4867                                 has_cpu_edp = true;
4868                         break;
4869                 }
4870         }
4871
4872         if (HAS_PCH_IBX(dev)) {
4873                 has_ck505 = dev_priv->display_clock_mode;
4874                 can_ssc = has_ck505;
4875         } else {
4876                 has_ck505 = false;
4877                 can_ssc = true;
4878         }
4879
4880         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4881                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4882                       has_ck505);
4883
4884         /* Ironlake: try to setup display ref clock before DPLL
4885          * enabling. This is only under driver's control after
4886          * PCH B stepping, previous chipset stepping should be
4887          * ignoring this setting.
4888          */
4889         temp = I915_READ(PCH_DREF_CONTROL);
4890         /* Always enable nonspread source */
4891         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4892
4893         if (has_ck505)
4894                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4895         else
4896                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4897
4898         if (has_panel) {
4899                 temp &= ~DREF_SSC_SOURCE_MASK;
4900                 temp |= DREF_SSC_SOURCE_ENABLE;
4901
4902                 /* SSC must be turned on before enabling the CPU output  */
4903                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4904                         DRM_DEBUG_KMS("Using SSC on panel\n");
4905                         temp |= DREF_SSC1_ENABLE;
4906                 } else
4907                         temp &= ~DREF_SSC1_ENABLE;
4908
4909                 /* Get SSC going before enabling the outputs */
4910                 I915_WRITE(PCH_DREF_CONTROL, temp);
4911                 POSTING_READ(PCH_DREF_CONTROL);
4912                 udelay(200);
4913
4914                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4915
4916                 /* Enable CPU source on CPU attached eDP */
4917                 if (has_cpu_edp) {
4918                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4919                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4920                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4921                         }
4922                         else
4923                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4924                 } else
4925                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4926
4927                 I915_WRITE(PCH_DREF_CONTROL, temp);
4928                 POSTING_READ(PCH_DREF_CONTROL);
4929                 udelay(200);
4930         } else {
4931                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4932
4933                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4934
4935                 /* Turn off CPU output */
4936                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4937
4938                 I915_WRITE(PCH_DREF_CONTROL, temp);
4939                 POSTING_READ(PCH_DREF_CONTROL);
4940                 udelay(200);
4941
4942                 /* Turn off the SSC source */
4943                 temp &= ~DREF_SSC_SOURCE_MASK;
4944                 temp |= DREF_SSC_SOURCE_DISABLE;
4945
4946                 /* Turn off SSC1 */
4947                 temp &= ~ DREF_SSC1_ENABLE;
4948
4949                 I915_WRITE(PCH_DREF_CONTROL, temp);
4950                 POSTING_READ(PCH_DREF_CONTROL);
4951                 udelay(200);
4952         }
4953 }
4954
4955 static int ironlake_get_refclk(struct drm_crtc *crtc)
4956 {
4957         struct drm_device *dev = crtc->dev;
4958         struct drm_i915_private *dev_priv = dev->dev_private;
4959         struct intel_encoder *encoder;
4960         struct intel_encoder *edp_encoder = NULL;
4961         int num_connectors = 0;
4962         bool is_lvds = false;
4963
4964         for_each_encoder_on_crtc(dev, crtc, encoder) {
4965                 switch (encoder->type) {
4966                 case INTEL_OUTPUT_LVDS:
4967                         is_lvds = true;
4968                         break;
4969                 case INTEL_OUTPUT_EDP:
4970                         edp_encoder = encoder;
4971                         break;
4972                 }
4973                 num_connectors++;
4974         }
4975
4976         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4977                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4978                               dev_priv->lvds_ssc_freq);
4979                 return dev_priv->lvds_ssc_freq * 1000;
4980         }
4981
4982         return 120000;
4983 }
4984
4985 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4986                                   struct drm_display_mode *adjusted_mode,
4987                                   bool dither)
4988 {
4989         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4991         int pipe = intel_crtc->pipe;
4992         uint32_t val;
4993
4994         val = I915_READ(PIPECONF(pipe));
4995
4996         val &= ~PIPE_BPC_MASK;
4997         switch (intel_crtc->bpp) {
4998         case 18:
4999                 val |= PIPE_6BPC;
5000                 break;
5001         case 24:
5002                 val |= PIPE_8BPC;
5003                 break;
5004         case 30:
5005                 val |= PIPE_10BPC;
5006                 break;
5007         case 36:
5008                 val |= PIPE_12BPC;
5009                 break;
5010         default:
5011                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5012                 BUG();
5013         }
5014
5015         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5016         if (dither)
5017                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5018
5019         val &= ~PIPECONF_INTERLACE_MASK;
5020         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5021                 val |= PIPECONF_INTERLACED_ILK;
5022         else
5023                 val |= PIPECONF_PROGRESSIVE;
5024
5025         I915_WRITE(PIPECONF(pipe), val);
5026         POSTING_READ(PIPECONF(pipe));
5027 }
5028
5029 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5030                                  struct drm_display_mode *adjusted_mode,
5031                                  bool dither)
5032 {
5033         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5035         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5036         uint32_t val;
5037
5038         val = I915_READ(PIPECONF(cpu_transcoder));
5039
5040         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5041         if (dither)
5042                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5043
5044         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5045         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5046                 val |= PIPECONF_INTERLACED_ILK;
5047         else
5048                 val |= PIPECONF_PROGRESSIVE;
5049
5050         I915_WRITE(PIPECONF(cpu_transcoder), val);
5051         POSTING_READ(PIPECONF(cpu_transcoder));
5052 }
5053
5054 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5055                                     struct drm_display_mode *adjusted_mode,
5056                                     intel_clock_t *clock,
5057                                     bool *has_reduced_clock,
5058                                     intel_clock_t *reduced_clock)
5059 {
5060         struct drm_device *dev = crtc->dev;
5061         struct drm_i915_private *dev_priv = dev->dev_private;
5062         struct intel_encoder *intel_encoder;
5063         int refclk;
5064         const intel_limit_t *limit;
5065         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5066
5067         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5068                 switch (intel_encoder->type) {
5069                 case INTEL_OUTPUT_LVDS:
5070                         is_lvds = true;
5071                         break;
5072                 case INTEL_OUTPUT_SDVO:
5073                 case INTEL_OUTPUT_HDMI:
5074                         is_sdvo = true;
5075                         if (intel_encoder->needs_tv_clock)
5076                                 is_tv = true;
5077                         break;
5078                 case INTEL_OUTPUT_TVOUT:
5079                         is_tv = true;
5080                         break;
5081                 }
5082         }
5083
5084         refclk = ironlake_get_refclk(crtc);
5085
5086         /*
5087          * Returns a set of divisors for the desired target clock with the given
5088          * refclk, or FALSE.  The returned values represent the clock equation:
5089          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5090          */
5091         limit = intel_limit(crtc, refclk);
5092         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5093                               clock);
5094         if (!ret)
5095                 return false;
5096
5097         if (is_lvds && dev_priv->lvds_downclock_avail) {
5098                 /*
5099                  * Ensure we match the reduced clock's P to the target clock.
5100                  * If the clocks don't match, we can't switch the display clock
5101                  * by using the FP0/FP1. In such case we will disable the LVDS
5102                  * downclock feature.
5103                 */
5104                 *has_reduced_clock = limit->find_pll(limit, crtc,
5105                                                      dev_priv->lvds_downclock,
5106                                                      refclk,
5107                                                      clock,
5108                                                      reduced_clock);
5109         }
5110
5111         if (is_sdvo && is_tv)
5112                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5113
5114         return true;
5115 }
5116
5117 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5118 {
5119         struct drm_i915_private *dev_priv = dev->dev_private;
5120         uint32_t temp;
5121
5122         temp = I915_READ(SOUTH_CHICKEN1);
5123         if (temp & FDI_BC_BIFURCATION_SELECT)
5124                 return;
5125
5126         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5127         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5128
5129         temp |= FDI_BC_BIFURCATION_SELECT;
5130         DRM_DEBUG_KMS("enabling fdi C rx\n");
5131         I915_WRITE(SOUTH_CHICKEN1, temp);
5132         POSTING_READ(SOUTH_CHICKEN1);
5133 }
5134
5135 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5136 {
5137         struct drm_device *dev = intel_crtc->base.dev;
5138         struct drm_i915_private *dev_priv = dev->dev_private;
5139         struct intel_crtc *pipe_B_crtc =
5140                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5141
5142         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5143                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5144         if (intel_crtc->fdi_lanes > 4) {
5145                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5146                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5147                 /* Clamp lanes to avoid programming the hw with bogus values. */
5148                 intel_crtc->fdi_lanes = 4;
5149
5150                 return false;
5151         }
5152
5153         if (dev_priv->num_pipe == 2)
5154                 return true;
5155
5156         switch (intel_crtc->pipe) {
5157         case PIPE_A:
5158                 return true;
5159         case PIPE_B:
5160                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5161                     intel_crtc->fdi_lanes > 2) {
5162                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5163                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5164                         /* Clamp lanes to avoid programming the hw with bogus values. */
5165                         intel_crtc->fdi_lanes = 2;
5166
5167                         return false;
5168                 }
5169
5170                 if (intel_crtc->fdi_lanes > 2)
5171                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5172                 else
5173                         cpt_enable_fdi_bc_bifurcation(dev);
5174
5175                 return true;
5176         case PIPE_C:
5177                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5178                         if (intel_crtc->fdi_lanes > 2) {
5179                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5180                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5181                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5182                                 intel_crtc->fdi_lanes = 2;
5183
5184                                 return false;
5185                         }
5186                 } else {
5187                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5188                         return false;
5189                 }
5190
5191                 cpt_enable_fdi_bc_bifurcation(dev);
5192
5193                 return true;
5194         default:
5195                 BUG();
5196         }
5197 }
5198
5199 static void ironlake_set_m_n(struct drm_crtc *crtc,
5200                              struct drm_display_mode *mode,
5201                              struct drm_display_mode *adjusted_mode)
5202 {
5203         struct drm_device *dev = crtc->dev;
5204         struct drm_i915_private *dev_priv = dev->dev_private;
5205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5207         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5208         struct fdi_m_n m_n = {0};
5209         int target_clock, pixel_multiplier, lane, link_bw;
5210         bool is_dp = false, is_cpu_edp = false;
5211
5212         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5213                 switch (intel_encoder->type) {
5214                 case INTEL_OUTPUT_DISPLAYPORT:
5215                         is_dp = true;
5216                         break;
5217                 case INTEL_OUTPUT_EDP:
5218                         is_dp = true;
5219                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5220                                 is_cpu_edp = true;
5221                         edp_encoder = intel_encoder;
5222                         break;
5223                 }
5224         }
5225
5226         /* FDI link */
5227         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5228         lane = 0;
5229         /* CPU eDP doesn't require FDI link, so just set DP M/N
5230            according to current link config */
5231         if (is_cpu_edp) {
5232                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5233         } else {
5234                 /* FDI is a binary signal running at ~2.7GHz, encoding
5235                  * each output octet as 10 bits. The actual frequency
5236                  * is stored as a divider into a 100MHz clock, and the
5237                  * mode pixel clock is stored in units of 1KHz.
5238                  * Hence the bw of each lane in terms of the mode signal
5239                  * is:
5240                  */
5241                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5242         }
5243
5244         /* [e]DP over FDI requires target mode clock instead of link clock. */
5245         if (edp_encoder)
5246                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5247         else if (is_dp)
5248                 target_clock = mode->clock;
5249         else
5250                 target_clock = adjusted_mode->clock;
5251
5252         if (!lane) {
5253                 /*
5254                  * Account for spread spectrum to avoid
5255                  * oversubscribing the link. Max center spread
5256                  * is 2.5%; use 5% for safety's sake.
5257                  */
5258                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5259                 lane = bps / (link_bw * 8) + 1;
5260         }
5261
5262         intel_crtc->fdi_lanes = lane;
5263
5264         if (pixel_multiplier > 1)
5265                 link_bw *= pixel_multiplier;
5266         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5267                              &m_n);
5268
5269         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5270         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5271         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5272         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5273 }
5274
5275 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5276                                       struct drm_display_mode *adjusted_mode,
5277                                       intel_clock_t *clock, u32 fp)
5278 {
5279         struct drm_crtc *crtc = &intel_crtc->base;
5280         struct drm_device *dev = crtc->dev;
5281         struct drm_i915_private *dev_priv = dev->dev_private;
5282         struct intel_encoder *intel_encoder;
5283         uint32_t dpll;
5284         int factor, pixel_multiplier, num_connectors = 0;
5285         bool is_lvds = false, is_sdvo = false, is_tv = false;
5286         bool is_dp = false, is_cpu_edp = false;
5287
5288         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5289                 switch (intel_encoder->type) {
5290                 case INTEL_OUTPUT_LVDS:
5291                         is_lvds = true;
5292                         break;
5293                 case INTEL_OUTPUT_SDVO:
5294                 case INTEL_OUTPUT_HDMI:
5295                         is_sdvo = true;
5296                         if (intel_encoder->needs_tv_clock)
5297                                 is_tv = true;
5298                         break;
5299                 case INTEL_OUTPUT_TVOUT:
5300                         is_tv = true;
5301                         break;
5302                 case INTEL_OUTPUT_DISPLAYPORT:
5303                         is_dp = true;
5304                         break;
5305                 case INTEL_OUTPUT_EDP:
5306                         is_dp = true;
5307                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5308                                 is_cpu_edp = true;
5309                         break;
5310                 }
5311
5312                 num_connectors++;
5313         }
5314
5315         /* Enable autotuning of the PLL clock (if permissible) */
5316         factor = 21;
5317         if (is_lvds) {
5318                 if ((intel_panel_use_ssc(dev_priv) &&
5319                      dev_priv->lvds_ssc_freq == 100) ||
5320                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5321                         factor = 25;
5322         } else if (is_sdvo && is_tv)
5323                 factor = 20;
5324
5325         if (clock->m < factor * clock->n)
5326                 fp |= FP_CB_TUNE;
5327
5328         dpll = 0;
5329
5330         if (is_lvds)
5331                 dpll |= DPLLB_MODE_LVDS;
5332         else
5333                 dpll |= DPLLB_MODE_DAC_SERIAL;
5334         if (is_sdvo) {
5335                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5336                 if (pixel_multiplier > 1) {
5337                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5338                 }
5339                 dpll |= DPLL_DVO_HIGH_SPEED;
5340         }
5341         if (is_dp && !is_cpu_edp)
5342                 dpll |= DPLL_DVO_HIGH_SPEED;
5343
5344         /* compute bitmask from p1 value */
5345         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5346         /* also FPA1 */
5347         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5348
5349         switch (clock->p2) {
5350         case 5:
5351                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5352                 break;
5353         case 7:
5354                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5355                 break;
5356         case 10:
5357                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5358                 break;
5359         case 14:
5360                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5361                 break;
5362         }
5363
5364         if (is_sdvo && is_tv)
5365                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5366         else if (is_tv)
5367                 /* XXX: just matching BIOS for now */
5368                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5369                 dpll |= 3;
5370         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5371                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5372         else
5373                 dpll |= PLL_REF_INPUT_DREFCLK;
5374
5375         return dpll;
5376 }
5377
5378 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5379                                   struct drm_display_mode *mode,
5380                                   struct drm_display_mode *adjusted_mode,
5381                                   int x, int y,
5382                                   struct drm_framebuffer *fb)
5383 {
5384         struct drm_device *dev = crtc->dev;
5385         struct drm_i915_private *dev_priv = dev->dev_private;
5386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5387         int pipe = intel_crtc->pipe;
5388         int plane = intel_crtc->plane;
5389         int num_connectors = 0;
5390         intel_clock_t clock, reduced_clock;
5391         u32 dpll, fp = 0, fp2 = 0;
5392         bool ok, has_reduced_clock = false;
5393         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5394         struct intel_encoder *encoder;
5395         u32 temp;
5396         int ret;
5397         bool dither, fdi_config_ok;
5398
5399         for_each_encoder_on_crtc(dev, crtc, encoder) {
5400                 switch (encoder->type) {
5401                 case INTEL_OUTPUT_LVDS:
5402                         is_lvds = true;
5403                         break;
5404                 case INTEL_OUTPUT_DISPLAYPORT:
5405                         is_dp = true;
5406                         break;
5407                 case INTEL_OUTPUT_EDP:
5408                         is_dp = true;
5409                         if (!intel_encoder_is_pch_edp(&encoder->base))
5410                                 is_cpu_edp = true;
5411                         break;
5412                 }
5413
5414                 num_connectors++;
5415         }
5416
5417         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5418              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5419
5420         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5421                                      &has_reduced_clock, &reduced_clock);
5422         if (!ok) {
5423                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5424                 return -EINVAL;
5425         }
5426
5427         /* Ensure that the cursor is valid for the new mode before changing... */
5428         intel_crtc_update_cursor(crtc, true);
5429
5430         /* determine panel color depth */
5431         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5432                                               adjusted_mode);
5433         if (is_lvds && dev_priv->lvds_dither)
5434                 dither = true;
5435
5436         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5437         if (has_reduced_clock)
5438                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5439                         reduced_clock.m2;
5440
5441         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5442
5443         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5444         drm_mode_debug_printmodeline(mode);
5445
5446         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5447         if (!is_cpu_edp) {
5448                 struct intel_pch_pll *pll;
5449
5450                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5451                 if (pll == NULL) {
5452                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5453                                          pipe);
5454                         return -EINVAL;
5455                 }
5456         } else
5457                 intel_put_pch_pll(intel_crtc);
5458
5459         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5460          * This is an exception to the general rule that mode_set doesn't turn
5461          * things on.
5462          */
5463         if (is_lvds) {
5464                 temp = I915_READ(PCH_LVDS);
5465                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5466                 if (HAS_PCH_CPT(dev)) {
5467                         temp &= ~PORT_TRANS_SEL_MASK;
5468                         temp |= PORT_TRANS_SEL_CPT(pipe);
5469                 } else {
5470                         if (pipe == 1)
5471                                 temp |= LVDS_PIPEB_SELECT;
5472                         else
5473                                 temp &= ~LVDS_PIPEB_SELECT;
5474                 }
5475
5476                 /* set the corresponsding LVDS_BORDER bit */
5477                 temp |= dev_priv->lvds_border_bits;
5478                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5479                  * set the DPLLs for dual-channel mode or not.
5480                  */
5481                 if (clock.p2 == 7)
5482                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5483                 else
5484                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5485
5486                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5487                  * appropriately here, but we need to look more thoroughly into how
5488                  * panels behave in the two modes.
5489                  */
5490                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5491                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5492                         temp |= LVDS_HSYNC_POLARITY;
5493                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5494                         temp |= LVDS_VSYNC_POLARITY;
5495                 I915_WRITE(PCH_LVDS, temp);
5496         }
5497
5498         if (is_dp && !is_cpu_edp) {
5499                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5500         } else {
5501                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5502                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5503                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5504                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5505                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5506         }
5507
5508         if (intel_crtc->pch_pll) {
5509                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5510
5511                 /* Wait for the clocks to stabilize. */
5512                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5513                 udelay(150);
5514
5515                 /* The pixel multiplier can only be updated once the
5516                  * DPLL is enabled and the clocks are stable.
5517                  *
5518                  * So write it again.
5519                  */
5520                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5521         }
5522
5523         intel_crtc->lowfreq_avail = false;
5524         if (intel_crtc->pch_pll) {
5525                 if (is_lvds && has_reduced_clock && i915_powersave) {
5526                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5527                         intel_crtc->lowfreq_avail = true;
5528                 } else {
5529                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5530                 }
5531         }
5532
5533         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5534
5535         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5536          * ironlake_check_fdi_lanes. */
5537         ironlake_set_m_n(crtc, mode, adjusted_mode);
5538
5539         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5540
5541         if (is_cpu_edp)
5542                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5543
5544         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5545
5546         intel_wait_for_vblank(dev, pipe);
5547
5548         /* Set up the display plane register */
5549         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5550         POSTING_READ(DSPCNTR(plane));
5551
5552         ret = intel_pipe_set_base(crtc, x, y, fb);
5553
5554         intel_update_watermarks(dev);
5555
5556         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5557
5558         return fdi_config_ok ? ret : -EINVAL;
5559 }
5560
5561 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5562                                  struct drm_display_mode *mode,
5563                                  struct drm_display_mode *adjusted_mode,
5564                                  int x, int y,
5565                                  struct drm_framebuffer *fb)
5566 {
5567         struct drm_device *dev = crtc->dev;
5568         struct drm_i915_private *dev_priv = dev->dev_private;
5569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5570         int pipe = intel_crtc->pipe;
5571         int plane = intel_crtc->plane;
5572         int num_connectors = 0;
5573         intel_clock_t clock, reduced_clock;
5574         u32 dpll = 0, fp = 0, fp2 = 0;
5575         bool ok, has_reduced_clock = false;
5576         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5577         struct intel_encoder *encoder;
5578         u32 temp;
5579         int ret;
5580         bool dither;
5581
5582         for_each_encoder_on_crtc(dev, crtc, encoder) {
5583                 switch (encoder->type) {
5584                 case INTEL_OUTPUT_LVDS:
5585                         is_lvds = true;
5586                         break;
5587                 case INTEL_OUTPUT_DISPLAYPORT:
5588                         is_dp = true;
5589                         break;
5590                 case INTEL_OUTPUT_EDP:
5591                         is_dp = true;
5592                         if (!intel_encoder_is_pch_edp(&encoder->base))
5593                                 is_cpu_edp = true;
5594                         break;
5595                 }
5596
5597                 num_connectors++;
5598         }
5599
5600         if (is_cpu_edp)
5601                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5602         else
5603                 intel_crtc->cpu_transcoder = pipe;
5604
5605         /* We are not sure yet this won't happen. */
5606         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5607              INTEL_PCH_TYPE(dev));
5608
5609         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5610              num_connectors, pipe_name(pipe));
5611
5612         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5613                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5614
5615         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5616
5617         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5618                 return -EINVAL;
5619
5620         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5621                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5622                                              &has_reduced_clock,
5623                                              &reduced_clock);
5624                 if (!ok) {
5625                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5626                         return -EINVAL;
5627                 }
5628         }
5629
5630         /* Ensure that the cursor is valid for the new mode before changing... */
5631         intel_crtc_update_cursor(crtc, true);
5632
5633         /* determine panel color depth */
5634         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5635                                               adjusted_mode);
5636         if (is_lvds && dev_priv->lvds_dither)
5637                 dither = true;
5638
5639         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5640         drm_mode_debug_printmodeline(mode);
5641
5642         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5643                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5644                 if (has_reduced_clock)
5645                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5646                               reduced_clock.m2;
5647
5648                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5649                                              fp);
5650
5651                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5652                  * own on pre-Haswell/LPT generation */
5653                 if (!is_cpu_edp) {
5654                         struct intel_pch_pll *pll;
5655
5656                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5657                         if (pll == NULL) {
5658                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5659                                                  pipe);
5660                                 return -EINVAL;
5661                         }
5662                 } else
5663                         intel_put_pch_pll(intel_crtc);
5664
5665                 /* The LVDS pin pair needs to be on before the DPLLs are
5666                  * enabled.  This is an exception to the general rule that
5667                  * mode_set doesn't turn things on.
5668                  */
5669                 if (is_lvds) {
5670                         temp = I915_READ(PCH_LVDS);
5671                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5672                         if (HAS_PCH_CPT(dev)) {
5673                                 temp &= ~PORT_TRANS_SEL_MASK;
5674                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5675                         } else {
5676                                 if (pipe == 1)
5677                                         temp |= LVDS_PIPEB_SELECT;
5678                                 else
5679                                         temp &= ~LVDS_PIPEB_SELECT;
5680                         }
5681
5682                         /* set the corresponsding LVDS_BORDER bit */
5683                         temp |= dev_priv->lvds_border_bits;
5684                         /* Set the B0-B3 data pairs corresponding to whether
5685                          * we're going to set the DPLLs for dual-channel mode or
5686                          * not.
5687                          */
5688                         if (clock.p2 == 7)
5689                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5690                         else
5691                                 temp &= ~(LVDS_B0B3_POWER_UP |
5692                                           LVDS_CLKB_POWER_UP);
5693
5694                         /* It would be nice to set 24 vs 18-bit mode
5695                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5696                          * look more thoroughly into how panels behave in the
5697                          * two modes.
5698                          */
5699                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5700                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5701                                 temp |= LVDS_HSYNC_POLARITY;
5702                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5703                                 temp |= LVDS_VSYNC_POLARITY;
5704                         I915_WRITE(PCH_LVDS, temp);
5705                 }
5706         }
5707
5708         if (is_dp && !is_cpu_edp) {
5709                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5710         } else {
5711                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5712                         /* For non-DP output, clear any trans DP clock recovery
5713                          * setting.*/
5714                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5715                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5716                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5717                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5718                 }
5719         }
5720
5721         intel_crtc->lowfreq_avail = false;
5722         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5723                 if (intel_crtc->pch_pll) {
5724                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5725
5726                         /* Wait for the clocks to stabilize. */
5727                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5728                         udelay(150);
5729
5730                         /* The pixel multiplier can only be updated once the
5731                          * DPLL is enabled and the clocks are stable.
5732                          *
5733                          * So write it again.
5734                          */
5735                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5736                 }
5737
5738                 if (intel_crtc->pch_pll) {
5739                         if (is_lvds && has_reduced_clock && i915_powersave) {
5740                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5741                                 intel_crtc->lowfreq_avail = true;
5742                         } else {
5743                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5744                         }
5745                 }
5746         }
5747
5748         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5749
5750         if (!is_dp || is_cpu_edp)
5751                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5752
5753         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5754                 if (is_cpu_edp)
5755                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5756
5757         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5758
5759         /* Set up the display plane register */
5760         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5761         POSTING_READ(DSPCNTR(plane));
5762
5763         ret = intel_pipe_set_base(crtc, x, y, fb);
5764
5765         intel_update_watermarks(dev);
5766
5767         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5768
5769         return ret;
5770 }
5771
5772 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5773                                struct drm_display_mode *mode,
5774                                struct drm_display_mode *adjusted_mode,
5775                                int x, int y,
5776                                struct drm_framebuffer *fb)
5777 {
5778         struct drm_device *dev = crtc->dev;
5779         struct drm_i915_private *dev_priv = dev->dev_private;
5780         struct drm_encoder_helper_funcs *encoder_funcs;
5781         struct intel_encoder *encoder;
5782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5783         int pipe = intel_crtc->pipe;
5784         int ret;
5785
5786         drm_vblank_pre_modeset(dev, pipe);
5787
5788         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5789                                               x, y, fb);
5790         drm_vblank_post_modeset(dev, pipe);
5791
5792         if (ret != 0)
5793                 return ret;
5794
5795         for_each_encoder_on_crtc(dev, crtc, encoder) {
5796                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5797                         encoder->base.base.id,
5798                         drm_get_encoder_name(&encoder->base),
5799                         mode->base.id, mode->name);
5800                 encoder_funcs = encoder->base.helper_private;
5801                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5802         }
5803
5804         return 0;
5805 }
5806
5807 static bool intel_eld_uptodate(struct drm_connector *connector,
5808                                int reg_eldv, uint32_t bits_eldv,
5809                                int reg_elda, uint32_t bits_elda,
5810                                int reg_edid)
5811 {
5812         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5813         uint8_t *eld = connector->eld;
5814         uint32_t i;
5815
5816         i = I915_READ(reg_eldv);
5817         i &= bits_eldv;
5818
5819         if (!eld[0])
5820                 return !i;
5821
5822         if (!i)
5823                 return false;
5824
5825         i = I915_READ(reg_elda);
5826         i &= ~bits_elda;
5827         I915_WRITE(reg_elda, i);
5828
5829         for (i = 0; i < eld[2]; i++)
5830                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5831                         return false;
5832
5833         return true;
5834 }
5835
5836 static void g4x_write_eld(struct drm_connector *connector,
5837                           struct drm_crtc *crtc)
5838 {
5839         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5840         uint8_t *eld = connector->eld;
5841         uint32_t eldv;
5842         uint32_t len;
5843         uint32_t i;
5844
5845         i = I915_READ(G4X_AUD_VID_DID);
5846
5847         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5848                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5849         else
5850                 eldv = G4X_ELDV_DEVCTG;
5851
5852         if (intel_eld_uptodate(connector,
5853                                G4X_AUD_CNTL_ST, eldv,
5854                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5855                                G4X_HDMIW_HDMIEDID))
5856                 return;
5857
5858         i = I915_READ(G4X_AUD_CNTL_ST);
5859         i &= ~(eldv | G4X_ELD_ADDR);
5860         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5861         I915_WRITE(G4X_AUD_CNTL_ST, i);
5862
5863         if (!eld[0])
5864                 return;
5865
5866         len = min_t(uint8_t, eld[2], len);
5867         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5868         for (i = 0; i < len; i++)
5869                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5870
5871         i = I915_READ(G4X_AUD_CNTL_ST);
5872         i |= eldv;
5873         I915_WRITE(G4X_AUD_CNTL_ST, i);
5874 }
5875
5876 static void haswell_write_eld(struct drm_connector *connector,
5877                                      struct drm_crtc *crtc)
5878 {
5879         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5880         uint8_t *eld = connector->eld;
5881         struct drm_device *dev = crtc->dev;
5882         uint32_t eldv;
5883         uint32_t i;
5884         int len;
5885         int pipe = to_intel_crtc(crtc)->pipe;
5886         int tmp;
5887
5888         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5889         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5890         int aud_config = HSW_AUD_CFG(pipe);
5891         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5892
5893
5894         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5895
5896         /* Audio output enable */
5897         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5898         tmp = I915_READ(aud_cntrl_st2);
5899         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5900         I915_WRITE(aud_cntrl_st2, tmp);
5901
5902         /* Wait for 1 vertical blank */
5903         intel_wait_for_vblank(dev, pipe);
5904
5905         /* Set ELD valid state */
5906         tmp = I915_READ(aud_cntrl_st2);
5907         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5908         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5909         I915_WRITE(aud_cntrl_st2, tmp);
5910         tmp = I915_READ(aud_cntrl_st2);
5911         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5912
5913         /* Enable HDMI mode */
5914         tmp = I915_READ(aud_config);
5915         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5916         /* clear N_programing_enable and N_value_index */
5917         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5918         I915_WRITE(aud_config, tmp);
5919
5920         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5921
5922         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5923
5924         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5925                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5926                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5927                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5928         } else
5929                 I915_WRITE(aud_config, 0);
5930
5931         if (intel_eld_uptodate(connector,
5932                                aud_cntrl_st2, eldv,
5933                                aud_cntl_st, IBX_ELD_ADDRESS,
5934                                hdmiw_hdmiedid))
5935                 return;
5936
5937         i = I915_READ(aud_cntrl_st2);
5938         i &= ~eldv;
5939         I915_WRITE(aud_cntrl_st2, i);
5940
5941         if (!eld[0])
5942                 return;
5943
5944         i = I915_READ(aud_cntl_st);
5945         i &= ~IBX_ELD_ADDRESS;
5946         I915_WRITE(aud_cntl_st, i);
5947         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5948         DRM_DEBUG_DRIVER("port num:%d\n", i);
5949
5950         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5951         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5952         for (i = 0; i < len; i++)
5953                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5954
5955         i = I915_READ(aud_cntrl_st2);
5956         i |= eldv;
5957         I915_WRITE(aud_cntrl_st2, i);
5958
5959 }
5960
5961 static void ironlake_write_eld(struct drm_connector *connector,
5962                                      struct drm_crtc *crtc)
5963 {
5964         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5965         uint8_t *eld = connector->eld;
5966         uint32_t eldv;
5967         uint32_t i;
5968         int len;
5969         int hdmiw_hdmiedid;
5970         int aud_config;
5971         int aud_cntl_st;
5972         int aud_cntrl_st2;
5973         int pipe = to_intel_crtc(crtc)->pipe;
5974
5975         if (HAS_PCH_IBX(connector->dev)) {
5976                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5977                 aud_config = IBX_AUD_CFG(pipe);
5978                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5979                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5980         } else {
5981                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5982                 aud_config = CPT_AUD_CFG(pipe);
5983                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5984                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5985         }
5986
5987         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5988
5989         i = I915_READ(aud_cntl_st);
5990         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5991         if (!i) {
5992                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5993                 /* operate blindly on all ports */
5994                 eldv = IBX_ELD_VALIDB;
5995                 eldv |= IBX_ELD_VALIDB << 4;
5996                 eldv |= IBX_ELD_VALIDB << 8;
5997         } else {
5998                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5999                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6000         }
6001
6002         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6003                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6004                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6005                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6006         } else
6007                 I915_WRITE(aud_config, 0);
6008
6009         if (intel_eld_uptodate(connector,
6010                                aud_cntrl_st2, eldv,
6011                                aud_cntl_st, IBX_ELD_ADDRESS,
6012                                hdmiw_hdmiedid))
6013                 return;
6014
6015         i = I915_READ(aud_cntrl_st2);
6016         i &= ~eldv;
6017         I915_WRITE(aud_cntrl_st2, i);
6018
6019         if (!eld[0])
6020                 return;
6021
6022         i = I915_READ(aud_cntl_st);
6023         i &= ~IBX_ELD_ADDRESS;
6024         I915_WRITE(aud_cntl_st, i);
6025
6026         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6027         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6028         for (i = 0; i < len; i++)
6029                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6030
6031         i = I915_READ(aud_cntrl_st2);
6032         i |= eldv;
6033         I915_WRITE(aud_cntrl_st2, i);
6034 }
6035
6036 void intel_write_eld(struct drm_encoder *encoder,
6037                      struct drm_display_mode *mode)
6038 {
6039         struct drm_crtc *crtc = encoder->crtc;
6040         struct drm_connector *connector;
6041         struct drm_device *dev = encoder->dev;
6042         struct drm_i915_private *dev_priv = dev->dev_private;
6043
6044         connector = drm_select_eld(encoder, mode);
6045         if (!connector)
6046                 return;
6047
6048         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6049                          connector->base.id,
6050                          drm_get_connector_name(connector),
6051                          connector->encoder->base.id,
6052                          drm_get_encoder_name(connector->encoder));
6053
6054         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6055
6056         if (dev_priv->display.write_eld)
6057                 dev_priv->display.write_eld(connector, crtc);
6058 }
6059
6060 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6061 void intel_crtc_load_lut(struct drm_crtc *crtc)
6062 {
6063         struct drm_device *dev = crtc->dev;
6064         struct drm_i915_private *dev_priv = dev->dev_private;
6065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6066         int palreg = PALETTE(intel_crtc->pipe);
6067         int i;
6068
6069         /* The clocks have to be on to load the palette. */
6070         if (!crtc->enabled || !intel_crtc->active)
6071                 return;
6072
6073         /* use legacy palette for Ironlake */
6074         if (HAS_PCH_SPLIT(dev))
6075                 palreg = LGC_PALETTE(intel_crtc->pipe);
6076
6077         for (i = 0; i < 256; i++) {
6078                 I915_WRITE(palreg + 4 * i,
6079                            (intel_crtc->lut_r[i] << 16) |
6080                            (intel_crtc->lut_g[i] << 8) |
6081                            intel_crtc->lut_b[i]);
6082         }
6083 }
6084
6085 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6086 {
6087         struct drm_device *dev = crtc->dev;
6088         struct drm_i915_private *dev_priv = dev->dev_private;
6089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090         bool visible = base != 0;
6091         u32 cntl;
6092
6093         if (intel_crtc->cursor_visible == visible)
6094                 return;
6095
6096         cntl = I915_READ(_CURACNTR);
6097         if (visible) {
6098                 /* On these chipsets we can only modify the base whilst
6099                  * the cursor is disabled.
6100                  */
6101                 I915_WRITE(_CURABASE, base);
6102
6103                 cntl &= ~(CURSOR_FORMAT_MASK);
6104                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6105                 cntl |= CURSOR_ENABLE |
6106                         CURSOR_GAMMA_ENABLE |
6107                         CURSOR_FORMAT_ARGB;
6108         } else
6109                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6110         I915_WRITE(_CURACNTR, cntl);
6111
6112         intel_crtc->cursor_visible = visible;
6113 }
6114
6115 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6116 {
6117         struct drm_device *dev = crtc->dev;
6118         struct drm_i915_private *dev_priv = dev->dev_private;
6119         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6120         int pipe = intel_crtc->pipe;
6121         bool visible = base != 0;
6122
6123         if (intel_crtc->cursor_visible != visible) {
6124                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6125                 if (base) {
6126                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6127                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6128                         cntl |= pipe << 28; /* Connect to correct pipe */
6129                 } else {
6130                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6131                         cntl |= CURSOR_MODE_DISABLE;
6132                 }
6133                 I915_WRITE(CURCNTR(pipe), cntl);
6134
6135                 intel_crtc->cursor_visible = visible;
6136         }
6137         /* and commit changes on next vblank */
6138         I915_WRITE(CURBASE(pipe), base);
6139 }
6140
6141 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6142 {
6143         struct drm_device *dev = crtc->dev;
6144         struct drm_i915_private *dev_priv = dev->dev_private;
6145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6146         int pipe = intel_crtc->pipe;
6147         bool visible = base != 0;
6148
6149         if (intel_crtc->cursor_visible != visible) {
6150                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6151                 if (base) {
6152                         cntl &= ~CURSOR_MODE;
6153                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6154                 } else {
6155                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6156                         cntl |= CURSOR_MODE_DISABLE;
6157                 }
6158                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6159
6160                 intel_crtc->cursor_visible = visible;
6161         }
6162         /* and commit changes on next vblank */
6163         I915_WRITE(CURBASE_IVB(pipe), base);
6164 }
6165
6166 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6167 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6168                                      bool on)
6169 {
6170         struct drm_device *dev = crtc->dev;
6171         struct drm_i915_private *dev_priv = dev->dev_private;
6172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6173         int pipe = intel_crtc->pipe;
6174         int x = intel_crtc->cursor_x;
6175         int y = intel_crtc->cursor_y;
6176         u32 base, pos;
6177         bool visible;
6178
6179         pos = 0;
6180
6181         if (on && crtc->enabled && crtc->fb) {
6182                 base = intel_crtc->cursor_addr;
6183                 if (x > (int) crtc->fb->width)
6184                         base = 0;
6185
6186                 if (y > (int) crtc->fb->height)
6187                         base = 0;
6188         } else
6189                 base = 0;
6190
6191         if (x < 0) {
6192                 if (x + intel_crtc->cursor_width < 0)
6193                         base = 0;
6194
6195                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6196                 x = -x;
6197         }
6198         pos |= x << CURSOR_X_SHIFT;
6199
6200         if (y < 0) {
6201                 if (y + intel_crtc->cursor_height < 0)
6202                         base = 0;
6203
6204                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6205                 y = -y;
6206         }
6207         pos |= y << CURSOR_Y_SHIFT;
6208
6209         visible = base != 0;
6210         if (!visible && !intel_crtc->cursor_visible)
6211                 return;
6212
6213         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6214                 I915_WRITE(CURPOS_IVB(pipe), pos);
6215                 ivb_update_cursor(crtc, base);
6216         } else {
6217                 I915_WRITE(CURPOS(pipe), pos);
6218                 if (IS_845G(dev) || IS_I865G(dev))
6219                         i845_update_cursor(crtc, base);
6220                 else
6221                         i9xx_update_cursor(crtc, base);
6222         }
6223 }
6224
6225 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6226                                  struct drm_file *file,
6227                                  uint32_t handle,
6228                                  uint32_t width, uint32_t height)
6229 {
6230         struct drm_device *dev = crtc->dev;
6231         struct drm_i915_private *dev_priv = dev->dev_private;
6232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6233         struct drm_i915_gem_object *obj;
6234         uint32_t addr;
6235         int ret;
6236
6237         /* if we want to turn off the cursor ignore width and height */
6238         if (!handle) {
6239                 DRM_DEBUG_KMS("cursor off\n");
6240                 addr = 0;
6241                 obj = NULL;
6242                 mutex_lock(&dev->struct_mutex);
6243                 goto finish;
6244         }
6245
6246         /* Currently we only support 64x64 cursors */
6247         if (width != 64 || height != 64) {
6248                 DRM_ERROR("we currently only support 64x64 cursors\n");
6249                 return -EINVAL;
6250         }
6251
6252         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6253         if (&obj->base == NULL)
6254                 return -ENOENT;
6255
6256         if (obj->base.size < width * height * 4) {
6257                 DRM_ERROR("buffer is to small\n");
6258                 ret = -ENOMEM;
6259                 goto fail;
6260         }
6261
6262         /* we only need to pin inside GTT if cursor is non-phy */
6263         mutex_lock(&dev->struct_mutex);
6264         if (!dev_priv->info->cursor_needs_physical) {
6265                 if (obj->tiling_mode) {
6266                         DRM_ERROR("cursor cannot be tiled\n");
6267                         ret = -EINVAL;
6268                         goto fail_locked;
6269                 }
6270
6271                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6272                 if (ret) {
6273                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6274                         goto fail_locked;
6275                 }
6276
6277                 ret = i915_gem_object_put_fence(obj);
6278                 if (ret) {
6279                         DRM_ERROR("failed to release fence for cursor");
6280                         goto fail_unpin;
6281                 }
6282
6283                 addr = obj->gtt_offset;
6284         } else {
6285                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6286                 ret = i915_gem_attach_phys_object(dev, obj,
6287                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6288                                                   align);
6289                 if (ret) {
6290                         DRM_ERROR("failed to attach phys object\n");
6291                         goto fail_locked;
6292                 }
6293                 addr = obj->phys_obj->handle->busaddr;
6294         }
6295
6296         if (IS_GEN2(dev))
6297                 I915_WRITE(CURSIZE, (height << 12) | width);
6298
6299  finish:
6300         if (intel_crtc->cursor_bo) {
6301                 if (dev_priv->info->cursor_needs_physical) {
6302                         if (intel_crtc->cursor_bo != obj)
6303                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6304                 } else
6305                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6306                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6307         }
6308
6309         mutex_unlock(&dev->struct_mutex);
6310
6311         intel_crtc->cursor_addr = addr;
6312         intel_crtc->cursor_bo = obj;
6313         intel_crtc->cursor_width = width;
6314         intel_crtc->cursor_height = height;
6315
6316         intel_crtc_update_cursor(crtc, true);
6317
6318         return 0;
6319 fail_unpin:
6320         i915_gem_object_unpin(obj);
6321 fail_locked:
6322         mutex_unlock(&dev->struct_mutex);
6323 fail:
6324         drm_gem_object_unreference_unlocked(&obj->base);
6325         return ret;
6326 }
6327
6328 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6329 {
6330         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6331
6332         intel_crtc->cursor_x = x;
6333         intel_crtc->cursor_y = y;
6334
6335         intel_crtc_update_cursor(crtc, true);
6336
6337         return 0;
6338 }
6339
6340 /** Sets the color ramps on behalf of RandR */
6341 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6342                                  u16 blue, int regno)
6343 {
6344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6345
6346         intel_crtc->lut_r[regno] = red >> 8;
6347         intel_crtc->lut_g[regno] = green >> 8;
6348         intel_crtc->lut_b[regno] = blue >> 8;
6349 }
6350
6351 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6352                              u16 *blue, int regno)
6353 {
6354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6355
6356         *red = intel_crtc->lut_r[regno] << 8;
6357         *green = intel_crtc->lut_g[regno] << 8;
6358         *blue = intel_crtc->lut_b[regno] << 8;
6359 }
6360
6361 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6362                                  u16 *blue, uint32_t start, uint32_t size)
6363 {
6364         int end = (start + size > 256) ? 256 : start + size, i;
6365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6366
6367         for (i = start; i < end; i++) {
6368                 intel_crtc->lut_r[i] = red[i] >> 8;
6369                 intel_crtc->lut_g[i] = green[i] >> 8;
6370                 intel_crtc->lut_b[i] = blue[i] >> 8;
6371         }
6372
6373         intel_crtc_load_lut(crtc);
6374 }
6375
6376 /**
6377  * Get a pipe with a simple mode set on it for doing load-based monitor
6378  * detection.
6379  *
6380  * It will be up to the load-detect code to adjust the pipe as appropriate for
6381  * its requirements.  The pipe will be connected to no other encoders.
6382  *
6383  * Currently this code will only succeed if there is a pipe with no encoders
6384  * configured for it.  In the future, it could choose to temporarily disable
6385  * some outputs to free up a pipe for its use.
6386  *
6387  * \return crtc, or NULL if no pipes are available.
6388  */
6389
6390 /* VESA 640x480x72Hz mode to set on the pipe */
6391 static struct drm_display_mode load_detect_mode = {
6392         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6393                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6394 };
6395
6396 static struct drm_framebuffer *
6397 intel_framebuffer_create(struct drm_device *dev,
6398                          struct drm_mode_fb_cmd2 *mode_cmd,
6399                          struct drm_i915_gem_object *obj)
6400 {
6401         struct intel_framebuffer *intel_fb;
6402         int ret;
6403
6404         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6405         if (!intel_fb) {
6406                 drm_gem_object_unreference_unlocked(&obj->base);
6407                 return ERR_PTR(-ENOMEM);
6408         }
6409
6410         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6411         if (ret) {
6412                 drm_gem_object_unreference_unlocked(&obj->base);
6413                 kfree(intel_fb);
6414                 return ERR_PTR(ret);
6415         }
6416
6417         return &intel_fb->base;
6418 }
6419
6420 static u32
6421 intel_framebuffer_pitch_for_width(int width, int bpp)
6422 {
6423         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6424         return ALIGN(pitch, 64);
6425 }
6426
6427 static u32
6428 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6429 {
6430         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6431         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6432 }
6433
6434 static struct drm_framebuffer *
6435 intel_framebuffer_create_for_mode(struct drm_device *dev,
6436                                   struct drm_display_mode *mode,
6437                                   int depth, int bpp)
6438 {
6439         struct drm_i915_gem_object *obj;
6440         struct drm_mode_fb_cmd2 mode_cmd;
6441
6442         obj = i915_gem_alloc_object(dev,
6443                                     intel_framebuffer_size_for_mode(mode, bpp));
6444         if (obj == NULL)
6445                 return ERR_PTR(-ENOMEM);
6446
6447         mode_cmd.width = mode->hdisplay;
6448         mode_cmd.height = mode->vdisplay;
6449         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6450                                                                 bpp);
6451         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6452
6453         return intel_framebuffer_create(dev, &mode_cmd, obj);
6454 }
6455
6456 static struct drm_framebuffer *
6457 mode_fits_in_fbdev(struct drm_device *dev,
6458                    struct drm_display_mode *mode)
6459 {
6460         struct drm_i915_private *dev_priv = dev->dev_private;
6461         struct drm_i915_gem_object *obj;
6462         struct drm_framebuffer *fb;
6463
6464         if (dev_priv->fbdev == NULL)
6465                 return NULL;
6466
6467         obj = dev_priv->fbdev->ifb.obj;
6468         if (obj == NULL)
6469                 return NULL;
6470
6471         fb = &dev_priv->fbdev->ifb.base;
6472         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6473                                                                fb->bits_per_pixel))
6474                 return NULL;
6475
6476         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6477                 return NULL;
6478
6479         return fb;
6480 }
6481
6482 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6483                                 struct drm_display_mode *mode,
6484                                 struct intel_load_detect_pipe *old)
6485 {
6486         struct intel_crtc *intel_crtc;
6487         struct intel_encoder *intel_encoder =
6488                 intel_attached_encoder(connector);
6489         struct drm_crtc *possible_crtc;
6490         struct drm_encoder *encoder = &intel_encoder->base;
6491         struct drm_crtc *crtc = NULL;
6492         struct drm_device *dev = encoder->dev;
6493         struct drm_framebuffer *fb;
6494         int i = -1;
6495
6496         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6497                       connector->base.id, drm_get_connector_name(connector),
6498                       encoder->base.id, drm_get_encoder_name(encoder));
6499
6500         /*
6501          * Algorithm gets a little messy:
6502          *
6503          *   - if the connector already has an assigned crtc, use it (but make
6504          *     sure it's on first)
6505          *
6506          *   - try to find the first unused crtc that can drive this connector,
6507          *     and use that if we find one
6508          */
6509
6510         /* See if we already have a CRTC for this connector */
6511         if (encoder->crtc) {
6512                 crtc = encoder->crtc;
6513
6514                 old->dpms_mode = connector->dpms;
6515                 old->load_detect_temp = false;
6516
6517                 /* Make sure the crtc and connector are running */
6518                 if (connector->dpms != DRM_MODE_DPMS_ON)
6519                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6520
6521                 return true;
6522         }
6523
6524         /* Find an unused one (if possible) */
6525         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6526                 i++;
6527                 if (!(encoder->possible_crtcs & (1 << i)))
6528                         continue;
6529                 if (!possible_crtc->enabled) {
6530                         crtc = possible_crtc;
6531                         break;
6532                 }
6533         }
6534
6535         /*
6536          * If we didn't find an unused CRTC, don't use any.
6537          */
6538         if (!crtc) {
6539                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6540                 return false;
6541         }
6542
6543         intel_encoder->new_crtc = to_intel_crtc(crtc);
6544         to_intel_connector(connector)->new_encoder = intel_encoder;
6545
6546         intel_crtc = to_intel_crtc(crtc);
6547         old->dpms_mode = connector->dpms;
6548         old->load_detect_temp = true;
6549         old->release_fb = NULL;
6550
6551         if (!mode)
6552                 mode = &load_detect_mode;
6553
6554         /* We need a framebuffer large enough to accommodate all accesses
6555          * that the plane may generate whilst we perform load detection.
6556          * We can not rely on the fbcon either being present (we get called
6557          * during its initialisation to detect all boot displays, or it may
6558          * not even exist) or that it is large enough to satisfy the
6559          * requested mode.
6560          */
6561         fb = mode_fits_in_fbdev(dev, mode);
6562         if (fb == NULL) {
6563                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6564                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6565                 old->release_fb = fb;
6566         } else
6567                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6568         if (IS_ERR(fb)) {
6569                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6570                 goto fail;
6571         }
6572
6573         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6574                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6575                 if (old->release_fb)
6576                         old->release_fb->funcs->destroy(old->release_fb);
6577                 goto fail;
6578         }
6579
6580         /* let the connector get through one full cycle before testing */
6581         intel_wait_for_vblank(dev, intel_crtc->pipe);
6582
6583         return true;
6584 fail:
6585         connector->encoder = NULL;
6586         encoder->crtc = NULL;
6587         return false;
6588 }
6589
6590 void intel_release_load_detect_pipe(struct drm_connector *connector,
6591                                     struct intel_load_detect_pipe *old)
6592 {
6593         struct intel_encoder *intel_encoder =
6594                 intel_attached_encoder(connector);
6595         struct drm_encoder *encoder = &intel_encoder->base;
6596
6597         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6598                       connector->base.id, drm_get_connector_name(connector),
6599                       encoder->base.id, drm_get_encoder_name(encoder));
6600
6601         if (old->load_detect_temp) {
6602                 struct drm_crtc *crtc = encoder->crtc;
6603
6604                 to_intel_connector(connector)->new_encoder = NULL;
6605                 intel_encoder->new_crtc = NULL;
6606                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6607
6608                 if (old->release_fb)
6609                         old->release_fb->funcs->destroy(old->release_fb);
6610
6611                 return;
6612         }
6613
6614         /* Switch crtc and encoder back off if necessary */
6615         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6616                 connector->funcs->dpms(connector, old->dpms_mode);
6617 }
6618
6619 /* Returns the clock of the currently programmed mode of the given pipe. */
6620 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6621 {
6622         struct drm_i915_private *dev_priv = dev->dev_private;
6623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6624         int pipe = intel_crtc->pipe;
6625         u32 dpll = I915_READ(DPLL(pipe));
6626         u32 fp;
6627         intel_clock_t clock;
6628
6629         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6630                 fp = I915_READ(FP0(pipe));
6631         else
6632                 fp = I915_READ(FP1(pipe));
6633
6634         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6635         if (IS_PINEVIEW(dev)) {
6636                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6637                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6638         } else {
6639                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6640                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6641         }
6642
6643         if (!IS_GEN2(dev)) {
6644                 if (IS_PINEVIEW(dev))
6645                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6646                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6647                 else
6648                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6649                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6650
6651                 switch (dpll & DPLL_MODE_MASK) {
6652                 case DPLLB_MODE_DAC_SERIAL:
6653                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6654                                 5 : 10;
6655                         break;
6656                 case DPLLB_MODE_LVDS:
6657                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6658                                 7 : 14;
6659                         break;
6660                 default:
6661                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6662                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6663                         return 0;
6664                 }
6665
6666                 /* XXX: Handle the 100Mhz refclk */
6667                 intel_clock(dev, 96000, &clock);
6668         } else {
6669                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6670
6671                 if (is_lvds) {
6672                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6673                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6674                         clock.p2 = 14;
6675
6676                         if ((dpll & PLL_REF_INPUT_MASK) ==
6677                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6678                                 /* XXX: might not be 66MHz */
6679                                 intel_clock(dev, 66000, &clock);
6680                         } else
6681                                 intel_clock(dev, 48000, &clock);
6682                 } else {
6683                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6684                                 clock.p1 = 2;
6685                         else {
6686                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6687                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6688                         }
6689                         if (dpll & PLL_P2_DIVIDE_BY_4)
6690                                 clock.p2 = 4;
6691                         else
6692                                 clock.p2 = 2;
6693
6694                         intel_clock(dev, 48000, &clock);
6695                 }
6696         }
6697
6698         /* XXX: It would be nice to validate the clocks, but we can't reuse
6699          * i830PllIsValid() because it relies on the xf86_config connector
6700          * configuration being accurate, which it isn't necessarily.
6701          */
6702
6703         return clock.dot;
6704 }
6705
6706 /** Returns the currently programmed mode of the given pipe. */
6707 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6708                                              struct drm_crtc *crtc)
6709 {
6710         struct drm_i915_private *dev_priv = dev->dev_private;
6711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6712         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6713         struct drm_display_mode *mode;
6714         int htot = I915_READ(HTOTAL(cpu_transcoder));
6715         int hsync = I915_READ(HSYNC(cpu_transcoder));
6716         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6717         int vsync = I915_READ(VSYNC(cpu_transcoder));
6718
6719         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6720         if (!mode)
6721                 return NULL;
6722
6723         mode->clock = intel_crtc_clock_get(dev, crtc);
6724         mode->hdisplay = (htot & 0xffff) + 1;
6725         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6726         mode->hsync_start = (hsync & 0xffff) + 1;
6727         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6728         mode->vdisplay = (vtot & 0xffff) + 1;
6729         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6730         mode->vsync_start = (vsync & 0xffff) + 1;
6731         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6732
6733         drm_mode_set_name(mode);
6734
6735         return mode;
6736 }
6737
6738 static void intel_increase_pllclock(struct drm_crtc *crtc)
6739 {
6740         struct drm_device *dev = crtc->dev;
6741         drm_i915_private_t *dev_priv = dev->dev_private;
6742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6743         int pipe = intel_crtc->pipe;
6744         int dpll_reg = DPLL(pipe);
6745         int dpll;
6746
6747         if (HAS_PCH_SPLIT(dev))
6748                 return;
6749
6750         if (!dev_priv->lvds_downclock_avail)
6751                 return;
6752
6753         dpll = I915_READ(dpll_reg);
6754         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6755                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6756
6757                 assert_panel_unlocked(dev_priv, pipe);
6758
6759                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6760                 I915_WRITE(dpll_reg, dpll);
6761                 intel_wait_for_vblank(dev, pipe);
6762
6763                 dpll = I915_READ(dpll_reg);
6764                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6765                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6766         }
6767 }
6768
6769 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6770 {
6771         struct drm_device *dev = crtc->dev;
6772         drm_i915_private_t *dev_priv = dev->dev_private;
6773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6774
6775         if (HAS_PCH_SPLIT(dev))
6776                 return;
6777
6778         if (!dev_priv->lvds_downclock_avail)
6779                 return;
6780
6781         /*
6782          * Since this is called by a timer, we should never get here in
6783          * the manual case.
6784          */
6785         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6786                 int pipe = intel_crtc->pipe;
6787                 int dpll_reg = DPLL(pipe);
6788                 int dpll;
6789
6790                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6791
6792                 assert_panel_unlocked(dev_priv, pipe);
6793
6794                 dpll = I915_READ(dpll_reg);
6795                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6796                 I915_WRITE(dpll_reg, dpll);
6797                 intel_wait_for_vblank(dev, pipe);
6798                 dpll = I915_READ(dpll_reg);
6799                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6800                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6801         }
6802
6803 }
6804
6805 void intel_mark_busy(struct drm_device *dev)
6806 {
6807         i915_update_gfx_val(dev->dev_private);
6808 }
6809
6810 void intel_mark_idle(struct drm_device *dev)
6811 {
6812 }
6813
6814 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6815 {
6816         struct drm_device *dev = obj->base.dev;
6817         struct drm_crtc *crtc;
6818
6819         if (!i915_powersave)
6820                 return;
6821
6822         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6823                 if (!crtc->fb)
6824                         continue;
6825
6826                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6827                         intel_increase_pllclock(crtc);
6828         }
6829 }
6830
6831 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6832 {
6833         struct drm_device *dev = obj->base.dev;
6834         struct drm_crtc *crtc;
6835
6836         if (!i915_powersave)
6837                 return;
6838
6839         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6840                 if (!crtc->fb)
6841                         continue;
6842
6843                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6844                         intel_decrease_pllclock(crtc);
6845         }
6846 }
6847
6848 static void intel_crtc_destroy(struct drm_crtc *crtc)
6849 {
6850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6851         struct drm_device *dev = crtc->dev;
6852         struct intel_unpin_work *work;
6853         unsigned long flags;
6854
6855         spin_lock_irqsave(&dev->event_lock, flags);
6856         work = intel_crtc->unpin_work;
6857         intel_crtc->unpin_work = NULL;
6858         spin_unlock_irqrestore(&dev->event_lock, flags);
6859
6860         if (work) {
6861                 cancel_work_sync(&work->work);
6862                 kfree(work);
6863         }
6864
6865         drm_crtc_cleanup(crtc);
6866
6867         kfree(intel_crtc);
6868 }
6869
6870 static void intel_unpin_work_fn(struct work_struct *__work)
6871 {
6872         struct intel_unpin_work *work =
6873                 container_of(__work, struct intel_unpin_work, work);
6874
6875         mutex_lock(&work->dev->struct_mutex);
6876         intel_unpin_fb_obj(work->old_fb_obj);
6877         drm_gem_object_unreference(&work->pending_flip_obj->base);
6878         drm_gem_object_unreference(&work->old_fb_obj->base);
6879
6880         intel_update_fbc(work->dev);
6881         mutex_unlock(&work->dev->struct_mutex);
6882         kfree(work);
6883 }
6884
6885 static void do_intel_finish_page_flip(struct drm_device *dev,
6886                                       struct drm_crtc *crtc)
6887 {
6888         drm_i915_private_t *dev_priv = dev->dev_private;
6889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6890         struct intel_unpin_work *work;
6891         struct drm_i915_gem_object *obj;
6892         struct drm_pending_vblank_event *e;
6893         struct timeval tvbl;
6894         unsigned long flags;
6895
6896         /* Ignore early vblank irqs */
6897         if (intel_crtc == NULL)
6898                 return;
6899
6900         spin_lock_irqsave(&dev->event_lock, flags);
6901         work = intel_crtc->unpin_work;
6902         if (work == NULL || !work->pending) {
6903                 spin_unlock_irqrestore(&dev->event_lock, flags);
6904                 return;
6905         }
6906
6907         intel_crtc->unpin_work = NULL;
6908
6909         if (work->event) {
6910                 e = work->event;
6911                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6912
6913                 e->event.tv_sec = tvbl.tv_sec;
6914                 e->event.tv_usec = tvbl.tv_usec;
6915
6916                 list_add_tail(&e->base.link,
6917                               &e->base.file_priv->event_list);
6918                 wake_up_interruptible(&e->base.file_priv->event_wait);
6919         }
6920
6921         drm_vblank_put(dev, intel_crtc->pipe);
6922
6923         spin_unlock_irqrestore(&dev->event_lock, flags);
6924
6925         obj = work->old_fb_obj;
6926
6927         atomic_clear_mask(1 << intel_crtc->plane,
6928                           &obj->pending_flip.counter);
6929
6930         wake_up(&dev_priv->pending_flip_queue);
6931         schedule_work(&work->work);
6932
6933         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6934 }
6935
6936 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6937 {
6938         drm_i915_private_t *dev_priv = dev->dev_private;
6939         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6940
6941         do_intel_finish_page_flip(dev, crtc);
6942 }
6943
6944 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6945 {
6946         drm_i915_private_t *dev_priv = dev->dev_private;
6947         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6948
6949         do_intel_finish_page_flip(dev, crtc);
6950 }
6951
6952 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6953 {
6954         drm_i915_private_t *dev_priv = dev->dev_private;
6955         struct intel_crtc *intel_crtc =
6956                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6957         unsigned long flags;
6958
6959         spin_lock_irqsave(&dev->event_lock, flags);
6960         if (intel_crtc->unpin_work) {
6961                 if ((++intel_crtc->unpin_work->pending) > 1)
6962                         DRM_ERROR("Prepared flip multiple times\n");
6963         } else {
6964                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6965         }
6966         spin_unlock_irqrestore(&dev->event_lock, flags);
6967 }
6968
6969 static int intel_gen2_queue_flip(struct drm_device *dev,
6970                                  struct drm_crtc *crtc,
6971                                  struct drm_framebuffer *fb,
6972                                  struct drm_i915_gem_object *obj)
6973 {
6974         struct drm_i915_private *dev_priv = dev->dev_private;
6975         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6976         u32 flip_mask;
6977         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6978         int ret;
6979
6980         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6981         if (ret)
6982                 goto err;
6983
6984         ret = intel_ring_begin(ring, 6);
6985         if (ret)
6986                 goto err_unpin;
6987
6988         /* Can't queue multiple flips, so wait for the previous
6989          * one to finish before executing the next.
6990          */
6991         if (intel_crtc->plane)
6992                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6993         else
6994                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6995         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6996         intel_ring_emit(ring, MI_NOOP);
6997         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6998                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6999         intel_ring_emit(ring, fb->pitches[0]);
7000         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7001         intel_ring_emit(ring, 0); /* aux display base address, unused */
7002         intel_ring_advance(ring);
7003         return 0;
7004
7005 err_unpin:
7006         intel_unpin_fb_obj(obj);
7007 err:
7008         return ret;
7009 }
7010
7011 static int intel_gen3_queue_flip(struct drm_device *dev,
7012                                  struct drm_crtc *crtc,
7013                                  struct drm_framebuffer *fb,
7014                                  struct drm_i915_gem_object *obj)
7015 {
7016         struct drm_i915_private *dev_priv = dev->dev_private;
7017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7018         u32 flip_mask;
7019         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7020         int ret;
7021
7022         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7023         if (ret)
7024                 goto err;
7025
7026         ret = intel_ring_begin(ring, 6);
7027         if (ret)
7028                 goto err_unpin;
7029
7030         if (intel_crtc->plane)
7031                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7032         else
7033                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7034         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7035         intel_ring_emit(ring, MI_NOOP);
7036         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7037                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7038         intel_ring_emit(ring, fb->pitches[0]);
7039         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7040         intel_ring_emit(ring, MI_NOOP);
7041
7042         intel_ring_advance(ring);
7043         return 0;
7044
7045 err_unpin:
7046         intel_unpin_fb_obj(obj);
7047 err:
7048         return ret;
7049 }
7050
7051 static int intel_gen4_queue_flip(struct drm_device *dev,
7052                                  struct drm_crtc *crtc,
7053                                  struct drm_framebuffer *fb,
7054                                  struct drm_i915_gem_object *obj)
7055 {
7056         struct drm_i915_private *dev_priv = dev->dev_private;
7057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7058         uint32_t pf, pipesrc;
7059         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7060         int ret;
7061
7062         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7063         if (ret)
7064                 goto err;
7065
7066         ret = intel_ring_begin(ring, 4);
7067         if (ret)
7068                 goto err_unpin;
7069
7070         /* i965+ uses the linear or tiled offsets from the
7071          * Display Registers (which do not change across a page-flip)
7072          * so we need only reprogram the base address.
7073          */
7074         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7075                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7076         intel_ring_emit(ring, fb->pitches[0]);
7077         intel_ring_emit(ring,
7078                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7079                         obj->tiling_mode);
7080
7081         /* XXX Enabling the panel-fitter across page-flip is so far
7082          * untested on non-native modes, so ignore it for now.
7083          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7084          */
7085         pf = 0;
7086         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7087         intel_ring_emit(ring, pf | pipesrc);
7088         intel_ring_advance(ring);
7089         return 0;
7090
7091 err_unpin:
7092         intel_unpin_fb_obj(obj);
7093 err:
7094         return ret;
7095 }
7096
7097 static int intel_gen6_queue_flip(struct drm_device *dev,
7098                                  struct drm_crtc *crtc,
7099                                  struct drm_framebuffer *fb,
7100                                  struct drm_i915_gem_object *obj)
7101 {
7102         struct drm_i915_private *dev_priv = dev->dev_private;
7103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7104         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7105         uint32_t pf, pipesrc;
7106         int ret;
7107
7108         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7109         if (ret)
7110                 goto err;
7111
7112         ret = intel_ring_begin(ring, 4);
7113         if (ret)
7114                 goto err_unpin;
7115
7116         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7117                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7118         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7119         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7120
7121         /* Contrary to the suggestions in the documentation,
7122          * "Enable Panel Fitter" does not seem to be required when page
7123          * flipping with a non-native mode, and worse causes a normal
7124          * modeset to fail.
7125          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7126          */
7127         pf = 0;
7128         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7129         intel_ring_emit(ring, pf | pipesrc);
7130         intel_ring_advance(ring);
7131         return 0;
7132
7133 err_unpin:
7134         intel_unpin_fb_obj(obj);
7135 err:
7136         return ret;
7137 }
7138
7139 /*
7140  * On gen7 we currently use the blit ring because (in early silicon at least)
7141  * the render ring doesn't give us interrpts for page flip completion, which
7142  * means clients will hang after the first flip is queued.  Fortunately the
7143  * blit ring generates interrupts properly, so use it instead.
7144  */
7145 static int intel_gen7_queue_flip(struct drm_device *dev,
7146                                  struct drm_crtc *crtc,
7147                                  struct drm_framebuffer *fb,
7148                                  struct drm_i915_gem_object *obj)
7149 {
7150         struct drm_i915_private *dev_priv = dev->dev_private;
7151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7152         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7153         uint32_t plane_bit = 0;
7154         int ret;
7155
7156         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7157         if (ret)
7158                 goto err;
7159
7160         switch(intel_crtc->plane) {
7161         case PLANE_A:
7162                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7163                 break;
7164         case PLANE_B:
7165                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7166                 break;
7167         case PLANE_C:
7168                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7169                 break;
7170         default:
7171                 WARN_ONCE(1, "unknown plane in flip command\n");
7172                 ret = -ENODEV;
7173                 goto err_unpin;
7174         }
7175
7176         ret = intel_ring_begin(ring, 4);
7177         if (ret)
7178                 goto err_unpin;
7179
7180         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7181         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7182         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7183         intel_ring_emit(ring, (MI_NOOP));
7184         intel_ring_advance(ring);
7185         return 0;
7186
7187 err_unpin:
7188         intel_unpin_fb_obj(obj);
7189 err:
7190         return ret;
7191 }
7192
7193 static int intel_default_queue_flip(struct drm_device *dev,
7194                                     struct drm_crtc *crtc,
7195                                     struct drm_framebuffer *fb,
7196                                     struct drm_i915_gem_object *obj)
7197 {
7198         return -ENODEV;
7199 }
7200
7201 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7202                                 struct drm_framebuffer *fb,
7203                                 struct drm_pending_vblank_event *event)
7204 {
7205         struct drm_device *dev = crtc->dev;
7206         struct drm_i915_private *dev_priv = dev->dev_private;
7207         struct intel_framebuffer *intel_fb;
7208         struct drm_i915_gem_object *obj;
7209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7210         struct intel_unpin_work *work;
7211         unsigned long flags;
7212         int ret;
7213
7214         /* Can't change pixel format via MI display flips. */
7215         if (fb->pixel_format != crtc->fb->pixel_format)
7216                 return -EINVAL;
7217
7218         /*
7219          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7220          * Note that pitch changes could also affect these register.
7221          */
7222         if (INTEL_INFO(dev)->gen > 3 &&
7223             (fb->offsets[0] != crtc->fb->offsets[0] ||
7224              fb->pitches[0] != crtc->fb->pitches[0]))
7225                 return -EINVAL;
7226
7227         work = kzalloc(sizeof *work, GFP_KERNEL);
7228         if (work == NULL)
7229                 return -ENOMEM;
7230
7231         work->event = event;
7232         work->dev = crtc->dev;
7233         intel_fb = to_intel_framebuffer(crtc->fb);
7234         work->old_fb_obj = intel_fb->obj;
7235         INIT_WORK(&work->work, intel_unpin_work_fn);
7236
7237         ret = drm_vblank_get(dev, intel_crtc->pipe);
7238         if (ret)
7239                 goto free_work;
7240
7241         /* We borrow the event spin lock for protecting unpin_work */
7242         spin_lock_irqsave(&dev->event_lock, flags);
7243         if (intel_crtc->unpin_work) {
7244                 spin_unlock_irqrestore(&dev->event_lock, flags);
7245                 kfree(work);
7246                 drm_vblank_put(dev, intel_crtc->pipe);
7247
7248                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7249                 return -EBUSY;
7250         }
7251         intel_crtc->unpin_work = work;
7252         spin_unlock_irqrestore(&dev->event_lock, flags);
7253
7254         intel_fb = to_intel_framebuffer(fb);
7255         obj = intel_fb->obj;
7256
7257         ret = i915_mutex_lock_interruptible(dev);
7258         if (ret)
7259                 goto cleanup;
7260
7261         /* Reference the objects for the scheduled work. */
7262         drm_gem_object_reference(&work->old_fb_obj->base);
7263         drm_gem_object_reference(&obj->base);
7264
7265         crtc->fb = fb;
7266
7267         work->pending_flip_obj = obj;
7268
7269         work->enable_stall_check = true;
7270
7271         /* Block clients from rendering to the new back buffer until
7272          * the flip occurs and the object is no longer visible.
7273          */
7274         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7275
7276         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7277         if (ret)
7278                 goto cleanup_pending;
7279
7280         intel_disable_fbc(dev);
7281         intel_mark_fb_busy(obj);
7282         mutex_unlock(&dev->struct_mutex);
7283
7284         trace_i915_flip_request(intel_crtc->plane, obj);
7285
7286         return 0;
7287
7288 cleanup_pending:
7289         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7290         drm_gem_object_unreference(&work->old_fb_obj->base);
7291         drm_gem_object_unreference(&obj->base);
7292         mutex_unlock(&dev->struct_mutex);
7293
7294 cleanup:
7295         spin_lock_irqsave(&dev->event_lock, flags);
7296         intel_crtc->unpin_work = NULL;
7297         spin_unlock_irqrestore(&dev->event_lock, flags);
7298
7299         drm_vblank_put(dev, intel_crtc->pipe);
7300 free_work:
7301         kfree(work);
7302
7303         return ret;
7304 }
7305
7306 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7307         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7308         .load_lut = intel_crtc_load_lut,
7309         .disable = intel_crtc_noop,
7310 };
7311
7312 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7313 {
7314         struct intel_encoder *other_encoder;
7315         struct drm_crtc *crtc = &encoder->new_crtc->base;
7316
7317         if (WARN_ON(!crtc))
7318                 return false;
7319
7320         list_for_each_entry(other_encoder,
7321                             &crtc->dev->mode_config.encoder_list,
7322                             base.head) {
7323
7324                 if (&other_encoder->new_crtc->base != crtc ||
7325                     encoder == other_encoder)
7326                         continue;
7327                 else
7328                         return true;
7329         }
7330
7331         return false;
7332 }
7333
7334 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7335                                   struct drm_crtc *crtc)
7336 {
7337         struct drm_device *dev;
7338         struct drm_crtc *tmp;
7339         int crtc_mask = 1;
7340
7341         WARN(!crtc, "checking null crtc?\n");
7342
7343         dev = crtc->dev;
7344
7345         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7346                 if (tmp == crtc)
7347                         break;
7348                 crtc_mask <<= 1;
7349         }
7350
7351         if (encoder->possible_crtcs & crtc_mask)
7352                 return true;
7353         return false;
7354 }
7355
7356 /**
7357  * intel_modeset_update_staged_output_state
7358  *
7359  * Updates the staged output configuration state, e.g. after we've read out the
7360  * current hw state.
7361  */
7362 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7363 {
7364         struct intel_encoder *encoder;
7365         struct intel_connector *connector;
7366
7367         list_for_each_entry(connector, &dev->mode_config.connector_list,
7368                             base.head) {
7369                 connector->new_encoder =
7370                         to_intel_encoder(connector->base.encoder);
7371         }
7372
7373         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7374                             base.head) {
7375                 encoder->new_crtc =
7376                         to_intel_crtc(encoder->base.crtc);
7377         }
7378 }
7379
7380 /**
7381  * intel_modeset_commit_output_state
7382  *
7383  * This function copies the stage display pipe configuration to the real one.
7384  */
7385 static void intel_modeset_commit_output_state(struct drm_device *dev)
7386 {
7387         struct intel_encoder *encoder;
7388         struct intel_connector *connector;
7389
7390         list_for_each_entry(connector, &dev->mode_config.connector_list,
7391                             base.head) {
7392                 connector->base.encoder = &connector->new_encoder->base;
7393         }
7394
7395         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7396                             base.head) {
7397                 encoder->base.crtc = &encoder->new_crtc->base;
7398         }
7399 }
7400
7401 static struct drm_display_mode *
7402 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7403                             struct drm_display_mode *mode)
7404 {
7405         struct drm_device *dev = crtc->dev;
7406         struct drm_display_mode *adjusted_mode;
7407         struct drm_encoder_helper_funcs *encoder_funcs;
7408         struct intel_encoder *encoder;
7409
7410         adjusted_mode = drm_mode_duplicate(dev, mode);
7411         if (!adjusted_mode)
7412                 return ERR_PTR(-ENOMEM);
7413
7414         /* Pass our mode to the connectors and the CRTC to give them a chance to
7415          * adjust it according to limitations or connector properties, and also
7416          * a chance to reject the mode entirely.
7417          */
7418         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7419                             base.head) {
7420
7421                 if (&encoder->new_crtc->base != crtc)
7422                         continue;
7423                 encoder_funcs = encoder->base.helper_private;
7424                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7425                                                 adjusted_mode))) {
7426                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7427                         goto fail;
7428                 }
7429         }
7430
7431         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7432                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7433                 goto fail;
7434         }
7435         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7436
7437         return adjusted_mode;
7438 fail:
7439         drm_mode_destroy(dev, adjusted_mode);
7440         return ERR_PTR(-EINVAL);
7441 }
7442
7443 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7444  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7445 static void
7446 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7447                              unsigned *prepare_pipes, unsigned *disable_pipes)
7448 {
7449         struct intel_crtc *intel_crtc;
7450         struct drm_device *dev = crtc->dev;
7451         struct intel_encoder *encoder;
7452         struct intel_connector *connector;
7453         struct drm_crtc *tmp_crtc;
7454
7455         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7456
7457         /* Check which crtcs have changed outputs connected to them, these need
7458          * to be part of the prepare_pipes mask. We don't (yet) support global
7459          * modeset across multiple crtcs, so modeset_pipes will only have one
7460          * bit set at most. */
7461         list_for_each_entry(connector, &dev->mode_config.connector_list,
7462                             base.head) {
7463                 if (connector->base.encoder == &connector->new_encoder->base)
7464                         continue;
7465
7466                 if (connector->base.encoder) {
7467                         tmp_crtc = connector->base.encoder->crtc;
7468
7469                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7470                 }
7471
7472                 if (connector->new_encoder)
7473                         *prepare_pipes |=
7474                                 1 << connector->new_encoder->new_crtc->pipe;
7475         }
7476
7477         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7478                             base.head) {
7479                 if (encoder->base.crtc == &encoder->new_crtc->base)
7480                         continue;
7481
7482                 if (encoder->base.crtc) {
7483                         tmp_crtc = encoder->base.crtc;
7484
7485                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7486                 }
7487
7488                 if (encoder->new_crtc)
7489                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7490         }
7491
7492         /* Check for any pipes that will be fully disabled ... */
7493         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7494                             base.head) {
7495                 bool used = false;
7496
7497                 /* Don't try to disable disabled crtcs. */
7498                 if (!intel_crtc->base.enabled)
7499                         continue;
7500
7501                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7502                                     base.head) {
7503                         if (encoder->new_crtc == intel_crtc)
7504                                 used = true;
7505                 }
7506
7507                 if (!used)
7508                         *disable_pipes |= 1 << intel_crtc->pipe;
7509         }
7510
7511
7512         /* set_mode is also used to update properties on life display pipes. */
7513         intel_crtc = to_intel_crtc(crtc);
7514         if (crtc->enabled)
7515                 *prepare_pipes |= 1 << intel_crtc->pipe;
7516
7517         /* We only support modeset on one single crtc, hence we need to do that
7518          * only for the passed in crtc iff we change anything else than just
7519          * disable crtcs.
7520          *
7521          * This is actually not true, to be fully compatible with the old crtc
7522          * helper we automatically disable _any_ output (i.e. doesn't need to be
7523          * connected to the crtc we're modesetting on) if it's disconnected.
7524          * Which is a rather nutty api (since changed the output configuration
7525          * without userspace's explicit request can lead to confusion), but
7526          * alas. Hence we currently need to modeset on all pipes we prepare. */
7527         if (*prepare_pipes)
7528                 *modeset_pipes = *prepare_pipes;
7529
7530         /* ... and mask these out. */
7531         *modeset_pipes &= ~(*disable_pipes);
7532         *prepare_pipes &= ~(*disable_pipes);
7533 }
7534
7535 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7536 {
7537         struct drm_encoder *encoder;
7538         struct drm_device *dev = crtc->dev;
7539
7540         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7541                 if (encoder->crtc == crtc)
7542                         return true;
7543
7544         return false;
7545 }
7546
7547 static void
7548 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7549 {
7550         struct intel_encoder *intel_encoder;
7551         struct intel_crtc *intel_crtc;
7552         struct drm_connector *connector;
7553
7554         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7555                             base.head) {
7556                 if (!intel_encoder->base.crtc)
7557                         continue;
7558
7559                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7560
7561                 if (prepare_pipes & (1 << intel_crtc->pipe))
7562                         intel_encoder->connectors_active = false;
7563         }
7564
7565         intel_modeset_commit_output_state(dev);
7566
7567         /* Update computed state. */
7568         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7569                             base.head) {
7570                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7571         }
7572
7573         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7574                 if (!connector->encoder || !connector->encoder->crtc)
7575                         continue;
7576
7577                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7578
7579                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7580                         struct drm_property *dpms_property =
7581                                 dev->mode_config.dpms_property;
7582
7583                         connector->dpms = DRM_MODE_DPMS_ON;
7584                         drm_connector_property_set_value(connector,
7585                                                          dpms_property,
7586                                                          DRM_MODE_DPMS_ON);
7587
7588                         intel_encoder = to_intel_encoder(connector->encoder);
7589                         intel_encoder->connectors_active = true;
7590                 }
7591         }
7592
7593 }
7594
7595 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7596         list_for_each_entry((intel_crtc), \
7597                             &(dev)->mode_config.crtc_list, \
7598                             base.head) \
7599                 if (mask & (1 <<(intel_crtc)->pipe)) \
7600
7601 void
7602 intel_modeset_check_state(struct drm_device *dev)
7603 {
7604         struct intel_crtc *crtc;
7605         struct intel_encoder *encoder;
7606         struct intel_connector *connector;
7607
7608         list_for_each_entry(connector, &dev->mode_config.connector_list,
7609                             base.head) {
7610                 /* This also checks the encoder/connector hw state with the
7611                  * ->get_hw_state callbacks. */
7612                 intel_connector_check_state(connector);
7613
7614                 WARN(&connector->new_encoder->base != connector->base.encoder,
7615                      "connector's staged encoder doesn't match current encoder\n");
7616         }
7617
7618         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7619                             base.head) {
7620                 bool enabled = false;
7621                 bool active = false;
7622                 enum pipe pipe, tracked_pipe;
7623
7624                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7625                               encoder->base.base.id,
7626                               drm_get_encoder_name(&encoder->base));
7627
7628                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7629                      "encoder's stage crtc doesn't match current crtc\n");
7630                 WARN(encoder->connectors_active && !encoder->base.crtc,
7631                      "encoder's active_connectors set, but no crtc\n");
7632
7633                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7634                                     base.head) {
7635                         if (connector->base.encoder != &encoder->base)
7636                                 continue;
7637                         enabled = true;
7638                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7639                                 active = true;
7640                 }
7641                 WARN(!!encoder->base.crtc != enabled,
7642                      "encoder's enabled state mismatch "
7643                      "(expected %i, found %i)\n",
7644                      !!encoder->base.crtc, enabled);
7645                 WARN(active && !encoder->base.crtc,
7646                      "active encoder with no crtc\n");
7647
7648                 WARN(encoder->connectors_active != active,
7649                      "encoder's computed active state doesn't match tracked active state "
7650                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7651
7652                 active = encoder->get_hw_state(encoder, &pipe);
7653                 WARN(active != encoder->connectors_active,
7654                      "encoder's hw state doesn't match sw tracking "
7655                      "(expected %i, found %i)\n",
7656                      encoder->connectors_active, active);
7657
7658                 if (!encoder->base.crtc)
7659                         continue;
7660
7661                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7662                 WARN(active && pipe != tracked_pipe,
7663                      "active encoder's pipe doesn't match"
7664                      "(expected %i, found %i)\n",
7665                      tracked_pipe, pipe);
7666
7667         }
7668
7669         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7670                             base.head) {
7671                 bool enabled = false;
7672                 bool active = false;
7673
7674                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7675                               crtc->base.base.id);
7676
7677                 WARN(crtc->active && !crtc->base.enabled,
7678                      "active crtc, but not enabled in sw tracking\n");
7679
7680                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7681                                     base.head) {
7682                         if (encoder->base.crtc != &crtc->base)
7683                                 continue;
7684                         enabled = true;
7685                         if (encoder->connectors_active)
7686                                 active = true;
7687                 }
7688                 WARN(active != crtc->active,
7689                      "crtc's computed active state doesn't match tracked active state "
7690                      "(expected %i, found %i)\n", active, crtc->active);
7691                 WARN(enabled != crtc->base.enabled,
7692                      "crtc's computed enabled state doesn't match tracked enabled state "
7693                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7694
7695                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7696         }
7697 }
7698
7699 bool intel_set_mode(struct drm_crtc *crtc,
7700                     struct drm_display_mode *mode,
7701                     int x, int y, struct drm_framebuffer *fb)
7702 {
7703         struct drm_device *dev = crtc->dev;
7704         drm_i915_private_t *dev_priv = dev->dev_private;
7705         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7706         struct intel_crtc *intel_crtc;
7707         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7708         bool ret = true;
7709
7710         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7711                                      &prepare_pipes, &disable_pipes);
7712
7713         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7714                       modeset_pipes, prepare_pipes, disable_pipes);
7715
7716         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7717                 intel_crtc_disable(&intel_crtc->base);
7718
7719         saved_hwmode = crtc->hwmode;
7720         saved_mode = crtc->mode;
7721
7722         /* Hack: Because we don't (yet) support global modeset on multiple
7723          * crtcs, we don't keep track of the new mode for more than one crtc.
7724          * Hence simply check whether any bit is set in modeset_pipes in all the
7725          * pieces of code that are not yet converted to deal with mutliple crtcs
7726          * changing their mode at the same time. */
7727         adjusted_mode = NULL;
7728         if (modeset_pipes) {
7729                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7730                 if (IS_ERR(adjusted_mode)) {
7731                         return false;
7732                 }
7733         }
7734
7735         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7736                 if (intel_crtc->base.enabled)
7737                         dev_priv->display.crtc_disable(&intel_crtc->base);
7738         }
7739
7740         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7741          * to set it here already despite that we pass it down the callchain.
7742          */
7743         if (modeset_pipes)
7744                 crtc->mode = *mode;
7745
7746         /* Only after disabling all output pipelines that will be changed can we
7747          * update the the output configuration. */
7748         intel_modeset_update_state(dev, prepare_pipes);
7749
7750         if (dev_priv->display.modeset_global_resources)
7751                 dev_priv->display.modeset_global_resources(dev);
7752
7753         /* Set up the DPLL and any encoders state that needs to adjust or depend
7754          * on the DPLL.
7755          */
7756         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7757                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7758                                            mode, adjusted_mode,
7759                                            x, y, fb);
7760                 if (!ret)
7761                     goto done;
7762         }
7763
7764         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7765         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7766                 dev_priv->display.crtc_enable(&intel_crtc->base);
7767
7768         if (modeset_pipes) {
7769                 /* Store real post-adjustment hardware mode. */
7770                 crtc->hwmode = *adjusted_mode;
7771
7772                 /* Calculate and store various constants which
7773                  * are later needed by vblank and swap-completion
7774                  * timestamping. They are derived from true hwmode.
7775                  */
7776                 drm_calc_timestamping_constants(crtc);
7777         }
7778
7779         /* FIXME: add subpixel order */
7780 done:
7781         drm_mode_destroy(dev, adjusted_mode);
7782         if (!ret && crtc->enabled) {
7783                 crtc->hwmode = saved_hwmode;
7784                 crtc->mode = saved_mode;
7785         } else {
7786                 intel_modeset_check_state(dev);
7787         }
7788
7789         return ret;
7790 }
7791
7792 #undef for_each_intel_crtc_masked
7793
7794 static void intel_set_config_free(struct intel_set_config *config)
7795 {
7796         if (!config)
7797                 return;
7798
7799         kfree(config->save_connector_encoders);
7800         kfree(config->save_encoder_crtcs);
7801         kfree(config);
7802 }
7803
7804 static int intel_set_config_save_state(struct drm_device *dev,
7805                                        struct intel_set_config *config)
7806 {
7807         struct drm_encoder *encoder;
7808         struct drm_connector *connector;
7809         int count;
7810
7811         config->save_encoder_crtcs =
7812                 kcalloc(dev->mode_config.num_encoder,
7813                         sizeof(struct drm_crtc *), GFP_KERNEL);
7814         if (!config->save_encoder_crtcs)
7815                 return -ENOMEM;
7816
7817         config->save_connector_encoders =
7818                 kcalloc(dev->mode_config.num_connector,
7819                         sizeof(struct drm_encoder *), GFP_KERNEL);
7820         if (!config->save_connector_encoders)
7821                 return -ENOMEM;
7822
7823         /* Copy data. Note that driver private data is not affected.
7824          * Should anything bad happen only the expected state is
7825          * restored, not the drivers personal bookkeeping.
7826          */
7827         count = 0;
7828         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7829                 config->save_encoder_crtcs[count++] = encoder->crtc;
7830         }
7831
7832         count = 0;
7833         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7834                 config->save_connector_encoders[count++] = connector->encoder;
7835         }
7836
7837         return 0;
7838 }
7839
7840 static void intel_set_config_restore_state(struct drm_device *dev,
7841                                            struct intel_set_config *config)
7842 {
7843         struct intel_encoder *encoder;
7844         struct intel_connector *connector;
7845         int count;
7846
7847         count = 0;
7848         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7849                 encoder->new_crtc =
7850                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7851         }
7852
7853         count = 0;
7854         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7855                 connector->new_encoder =
7856                         to_intel_encoder(config->save_connector_encoders[count++]);
7857         }
7858 }
7859
7860 static void
7861 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7862                                       struct intel_set_config *config)
7863 {
7864
7865         /* We should be able to check here if the fb has the same properties
7866          * and then just flip_or_move it */
7867         if (set->crtc->fb != set->fb) {
7868                 /* If we have no fb then treat it as a full mode set */
7869                 if (set->crtc->fb == NULL) {
7870                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7871                         config->mode_changed = true;
7872                 } else if (set->fb == NULL) {
7873                         config->mode_changed = true;
7874                 } else if (set->fb->depth != set->crtc->fb->depth) {
7875                         config->mode_changed = true;
7876                 } else if (set->fb->bits_per_pixel !=
7877                            set->crtc->fb->bits_per_pixel) {
7878                         config->mode_changed = true;
7879                 } else
7880                         config->fb_changed = true;
7881         }
7882
7883         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7884                 config->fb_changed = true;
7885
7886         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7887                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7888                 drm_mode_debug_printmodeline(&set->crtc->mode);
7889                 drm_mode_debug_printmodeline(set->mode);
7890                 config->mode_changed = true;
7891         }
7892 }
7893
7894 static int
7895 intel_modeset_stage_output_state(struct drm_device *dev,
7896                                  struct drm_mode_set *set,
7897                                  struct intel_set_config *config)
7898 {
7899         struct drm_crtc *new_crtc;
7900         struct intel_connector *connector;
7901         struct intel_encoder *encoder;
7902         int count, ro;
7903
7904         /* The upper layers ensure that we either disabl a crtc or have a list
7905          * of connectors. For paranoia, double-check this. */
7906         WARN_ON(!set->fb && (set->num_connectors != 0));
7907         WARN_ON(set->fb && (set->num_connectors == 0));
7908
7909         count = 0;
7910         list_for_each_entry(connector, &dev->mode_config.connector_list,
7911                             base.head) {
7912                 /* Otherwise traverse passed in connector list and get encoders
7913                  * for them. */
7914                 for (ro = 0; ro < set->num_connectors; ro++) {
7915                         if (set->connectors[ro] == &connector->base) {
7916                                 connector->new_encoder = connector->encoder;
7917                                 break;
7918                         }
7919                 }
7920
7921                 /* If we disable the crtc, disable all its connectors. Also, if
7922                  * the connector is on the changing crtc but not on the new
7923                  * connector list, disable it. */
7924                 if ((!set->fb || ro == set->num_connectors) &&
7925                     connector->base.encoder &&
7926                     connector->base.encoder->crtc == set->crtc) {
7927                         connector->new_encoder = NULL;
7928
7929                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7930                                 connector->base.base.id,
7931                                 drm_get_connector_name(&connector->base));
7932                 }
7933
7934
7935                 if (&connector->new_encoder->base != connector->base.encoder) {
7936                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7937                         config->mode_changed = true;
7938                 }
7939
7940                 /* Disable all disconnected encoders. */
7941                 if (connector->base.status == connector_status_disconnected)
7942                         connector->new_encoder = NULL;
7943         }
7944         /* connector->new_encoder is now updated for all connectors. */
7945
7946         /* Update crtc of enabled connectors. */
7947         count = 0;
7948         list_for_each_entry(connector, &dev->mode_config.connector_list,
7949                             base.head) {
7950                 if (!connector->new_encoder)
7951                         continue;
7952
7953                 new_crtc = connector->new_encoder->base.crtc;
7954
7955                 for (ro = 0; ro < set->num_connectors; ro++) {
7956                         if (set->connectors[ro] == &connector->base)
7957                                 new_crtc = set->crtc;
7958                 }
7959
7960                 /* Make sure the new CRTC will work with the encoder */
7961                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7962                                            new_crtc)) {
7963                         return -EINVAL;
7964                 }
7965                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7966
7967                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7968                         connector->base.base.id,
7969                         drm_get_connector_name(&connector->base),
7970                         new_crtc->base.id);
7971         }
7972
7973         /* Check for any encoders that needs to be disabled. */
7974         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7975                             base.head) {
7976                 list_for_each_entry(connector,
7977                                     &dev->mode_config.connector_list,
7978                                     base.head) {
7979                         if (connector->new_encoder == encoder) {
7980                                 WARN_ON(!connector->new_encoder->new_crtc);
7981
7982                                 goto next_encoder;
7983                         }
7984                 }
7985                 encoder->new_crtc = NULL;
7986 next_encoder:
7987                 /* Only now check for crtc changes so we don't miss encoders
7988                  * that will be disabled. */
7989                 if (&encoder->new_crtc->base != encoder->base.crtc) {
7990                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7991                         config->mode_changed = true;
7992                 }
7993         }
7994         /* Now we've also updated encoder->new_crtc for all encoders. */
7995
7996         return 0;
7997 }
7998
7999 static int intel_crtc_set_config(struct drm_mode_set *set)
8000 {
8001         struct drm_device *dev;
8002         struct drm_mode_set save_set;
8003         struct intel_set_config *config;
8004         int ret;
8005
8006         BUG_ON(!set);
8007         BUG_ON(!set->crtc);
8008         BUG_ON(!set->crtc->helper_private);
8009
8010         if (!set->mode)
8011                 set->fb = NULL;
8012
8013         /* The fb helper likes to play gross jokes with ->mode_set_config.
8014          * Unfortunately the crtc helper doesn't do much at all for this case,
8015          * so we have to cope with this madness until the fb helper is fixed up. */
8016         if (set->fb && set->num_connectors == 0)
8017                 return 0;
8018
8019         if (set->fb) {
8020                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8021                                 set->crtc->base.id, set->fb->base.id,
8022                                 (int)set->num_connectors, set->x, set->y);
8023         } else {
8024                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8025         }
8026
8027         dev = set->crtc->dev;
8028
8029         ret = -ENOMEM;
8030         config = kzalloc(sizeof(*config), GFP_KERNEL);
8031         if (!config)
8032                 goto out_config;
8033
8034         ret = intel_set_config_save_state(dev, config);
8035         if (ret)
8036                 goto out_config;
8037
8038         save_set.crtc = set->crtc;
8039         save_set.mode = &set->crtc->mode;
8040         save_set.x = set->crtc->x;
8041         save_set.y = set->crtc->y;
8042         save_set.fb = set->crtc->fb;
8043
8044         /* Compute whether we need a full modeset, only an fb base update or no
8045          * change at all. In the future we might also check whether only the
8046          * mode changed, e.g. for LVDS where we only change the panel fitter in
8047          * such cases. */
8048         intel_set_config_compute_mode_changes(set, config);
8049
8050         ret = intel_modeset_stage_output_state(dev, set, config);
8051         if (ret)
8052                 goto fail;
8053
8054         if (config->mode_changed) {
8055                 if (set->mode) {
8056                         DRM_DEBUG_KMS("attempting to set mode from"
8057                                         " userspace\n");
8058                         drm_mode_debug_printmodeline(set->mode);
8059                 }
8060
8061                 if (!intel_set_mode(set->crtc, set->mode,
8062                                     set->x, set->y, set->fb)) {
8063                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8064                                   set->crtc->base.id);
8065                         ret = -EINVAL;
8066                         goto fail;
8067                 }
8068         } else if (config->fb_changed) {
8069                 ret = intel_pipe_set_base(set->crtc,
8070                                           set->x, set->y, set->fb);
8071         }
8072
8073         intel_set_config_free(config);
8074
8075         return 0;
8076
8077 fail:
8078         intel_set_config_restore_state(dev, config);
8079
8080         /* Try to restore the config */
8081         if (config->mode_changed &&
8082             !intel_set_mode(save_set.crtc, save_set.mode,
8083                             save_set.x, save_set.y, save_set.fb))
8084                 DRM_ERROR("failed to restore config after modeset failure\n");
8085
8086 out_config:
8087         intel_set_config_free(config);
8088         return ret;
8089 }
8090
8091 static const struct drm_crtc_funcs intel_crtc_funcs = {
8092         .cursor_set = intel_crtc_cursor_set,
8093         .cursor_move = intel_crtc_cursor_move,
8094         .gamma_set = intel_crtc_gamma_set,
8095         .set_config = intel_crtc_set_config,
8096         .destroy = intel_crtc_destroy,
8097         .page_flip = intel_crtc_page_flip,
8098 };
8099
8100 static void intel_cpu_pll_init(struct drm_device *dev)
8101 {
8102         if (IS_HASWELL(dev))
8103                 intel_ddi_pll_init(dev);
8104 }
8105
8106 static void intel_pch_pll_init(struct drm_device *dev)
8107 {
8108         drm_i915_private_t *dev_priv = dev->dev_private;
8109         int i;
8110
8111         if (dev_priv->num_pch_pll == 0) {
8112                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8113                 return;
8114         }
8115
8116         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8117                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8118                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8119                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8120         }
8121 }
8122
8123 static void intel_crtc_init(struct drm_device *dev, int pipe)
8124 {
8125         drm_i915_private_t *dev_priv = dev->dev_private;
8126         struct intel_crtc *intel_crtc;
8127         int i;
8128
8129         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8130         if (intel_crtc == NULL)
8131                 return;
8132
8133         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8134
8135         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8136         for (i = 0; i < 256; i++) {
8137                 intel_crtc->lut_r[i] = i;
8138                 intel_crtc->lut_g[i] = i;
8139                 intel_crtc->lut_b[i] = i;
8140         }
8141
8142         /* Swap pipes & planes for FBC on pre-965 */
8143         intel_crtc->pipe = pipe;
8144         intel_crtc->plane = pipe;
8145         intel_crtc->cpu_transcoder = pipe;
8146         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8147                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8148                 intel_crtc->plane = !pipe;
8149         }
8150
8151         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8152                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8153         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8154         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8155
8156         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8157
8158         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8159 }
8160
8161 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8162                                 struct drm_file *file)
8163 {
8164         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8165         struct drm_mode_object *drmmode_obj;
8166         struct intel_crtc *crtc;
8167
8168         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8169                 return -ENODEV;
8170
8171         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8172                         DRM_MODE_OBJECT_CRTC);
8173
8174         if (!drmmode_obj) {
8175                 DRM_ERROR("no such CRTC id\n");
8176                 return -EINVAL;
8177         }
8178
8179         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8180         pipe_from_crtc_id->pipe = crtc->pipe;
8181
8182         return 0;
8183 }
8184
8185 static int intel_encoder_clones(struct intel_encoder *encoder)
8186 {
8187         struct drm_device *dev = encoder->base.dev;
8188         struct intel_encoder *source_encoder;
8189         int index_mask = 0;
8190         int entry = 0;
8191
8192         list_for_each_entry(source_encoder,
8193                             &dev->mode_config.encoder_list, base.head) {
8194
8195                 if (encoder == source_encoder)
8196                         index_mask |= (1 << entry);
8197
8198                 /* Intel hw has only one MUX where enocoders could be cloned. */
8199                 if (encoder->cloneable && source_encoder->cloneable)
8200                         index_mask |= (1 << entry);
8201
8202                 entry++;
8203         }
8204
8205         return index_mask;
8206 }
8207
8208 static bool has_edp_a(struct drm_device *dev)
8209 {
8210         struct drm_i915_private *dev_priv = dev->dev_private;
8211
8212         if (!IS_MOBILE(dev))
8213                 return false;
8214
8215         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8216                 return false;
8217
8218         if (IS_GEN5(dev) &&
8219             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8220                 return false;
8221
8222         return true;
8223 }
8224
8225 static void intel_setup_outputs(struct drm_device *dev)
8226 {
8227         struct drm_i915_private *dev_priv = dev->dev_private;
8228         struct intel_encoder *encoder;
8229         bool dpd_is_edp = false;
8230         bool has_lvds;
8231
8232         has_lvds = intel_lvds_init(dev);
8233         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8234                 /* disable the panel fitter on everything but LVDS */
8235                 I915_WRITE(PFIT_CONTROL, 0);
8236         }
8237
8238         if (HAS_PCH_SPLIT(dev)) {
8239                 dpd_is_edp = intel_dpd_is_edp(dev);
8240
8241                 if (has_edp_a(dev))
8242                         intel_dp_init(dev, DP_A, PORT_A);
8243
8244                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8245                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8246         }
8247
8248         intel_crt_init(dev);
8249
8250         if (IS_HASWELL(dev)) {
8251                 int found;
8252
8253                 /* Haswell uses DDI functions to detect digital outputs */
8254                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8255                 /* DDI A only supports eDP */
8256                 if (found)
8257                         intel_ddi_init(dev, PORT_A);
8258
8259                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8260                  * register */
8261                 found = I915_READ(SFUSE_STRAP);
8262
8263                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8264                         intel_ddi_init(dev, PORT_B);
8265                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8266                         intel_ddi_init(dev, PORT_C);
8267                 if (found & SFUSE_STRAP_DDID_DETECTED)
8268                         intel_ddi_init(dev, PORT_D);
8269         } else if (HAS_PCH_SPLIT(dev)) {
8270                 int found;
8271
8272                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8273                         /* PCH SDVOB multiplex with HDMIB */
8274                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8275                         if (!found)
8276                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8277                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8278                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8279                 }
8280
8281                 if (I915_READ(HDMIC) & PORT_DETECTED)
8282                         intel_hdmi_init(dev, HDMIC, PORT_C);
8283
8284                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8285                         intel_hdmi_init(dev, HDMID, PORT_D);
8286
8287                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8288                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8289
8290                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8291                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8292         } else if (IS_VALLEYVIEW(dev)) {
8293                 int found;
8294
8295                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8296                 if (I915_READ(DP_C) & DP_DETECTED)
8297                         intel_dp_init(dev, DP_C, PORT_C);
8298
8299                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8300                         /* SDVOB multiplex with HDMIB */
8301                         found = intel_sdvo_init(dev, SDVOB, true);
8302                         if (!found)
8303                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8304                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8305                                 intel_dp_init(dev, DP_B, PORT_B);
8306                 }
8307
8308                 if (I915_READ(SDVOC) & PORT_DETECTED)
8309                         intel_hdmi_init(dev, SDVOC, PORT_C);
8310
8311         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8312                 bool found = false;
8313
8314                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8315                         DRM_DEBUG_KMS("probing SDVOB\n");
8316                         found = intel_sdvo_init(dev, SDVOB, true);
8317                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8318                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8319                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8320                         }
8321
8322                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8323                                 DRM_DEBUG_KMS("probing DP_B\n");
8324                                 intel_dp_init(dev, DP_B, PORT_B);
8325                         }
8326                 }
8327
8328                 /* Before G4X SDVOC doesn't have its own detect register */
8329
8330                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8331                         DRM_DEBUG_KMS("probing SDVOC\n");
8332                         found = intel_sdvo_init(dev, SDVOC, false);
8333                 }
8334
8335                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8336
8337                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8338                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8339                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8340                         }
8341                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8342                                 DRM_DEBUG_KMS("probing DP_C\n");
8343                                 intel_dp_init(dev, DP_C, PORT_C);
8344                         }
8345                 }
8346
8347                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8348                     (I915_READ(DP_D) & DP_DETECTED)) {
8349                         DRM_DEBUG_KMS("probing DP_D\n");
8350                         intel_dp_init(dev, DP_D, PORT_D);
8351                 }
8352         } else if (IS_GEN2(dev))
8353                 intel_dvo_init(dev);
8354
8355         if (SUPPORTS_TV(dev))
8356                 intel_tv_init(dev);
8357
8358         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8359                 encoder->base.possible_crtcs = encoder->crtc_mask;
8360                 encoder->base.possible_clones =
8361                         intel_encoder_clones(encoder);
8362         }
8363
8364         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8365                 ironlake_init_pch_refclk(dev);
8366 }
8367
8368 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8369 {
8370         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8371
8372         drm_framebuffer_cleanup(fb);
8373         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8374
8375         kfree(intel_fb);
8376 }
8377
8378 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8379                                                 struct drm_file *file,
8380                                                 unsigned int *handle)
8381 {
8382         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8383         struct drm_i915_gem_object *obj = intel_fb->obj;
8384
8385         return drm_gem_handle_create(file, &obj->base, handle);
8386 }
8387
8388 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8389         .destroy = intel_user_framebuffer_destroy,
8390         .create_handle = intel_user_framebuffer_create_handle,
8391 };
8392
8393 int intel_framebuffer_init(struct drm_device *dev,
8394                            struct intel_framebuffer *intel_fb,
8395                            struct drm_mode_fb_cmd2 *mode_cmd,
8396                            struct drm_i915_gem_object *obj)
8397 {
8398         int ret;
8399
8400         if (obj->tiling_mode == I915_TILING_Y)
8401                 return -EINVAL;
8402
8403         if (mode_cmd->pitches[0] & 63)
8404                 return -EINVAL;
8405
8406         /* FIXME <= Gen4 stride limits are bit unclear */
8407         if (mode_cmd->pitches[0] > 32768)
8408                 return -EINVAL;
8409
8410         if (obj->tiling_mode != I915_TILING_NONE &&
8411             mode_cmd->pitches[0] != obj->stride)
8412                 return -EINVAL;
8413
8414         /* Reject formats not supported by any plane early. */
8415         switch (mode_cmd->pixel_format) {
8416         case DRM_FORMAT_C8:
8417         case DRM_FORMAT_RGB565:
8418         case DRM_FORMAT_XRGB8888:
8419         case DRM_FORMAT_ARGB8888:
8420                 break;
8421         case DRM_FORMAT_XRGB1555:
8422         case DRM_FORMAT_ARGB1555:
8423                 if (INTEL_INFO(dev)->gen > 3)
8424                         return -EINVAL;
8425                 break;
8426         case DRM_FORMAT_XBGR8888:
8427         case DRM_FORMAT_ABGR8888:
8428         case DRM_FORMAT_XRGB2101010:
8429         case DRM_FORMAT_ARGB2101010:
8430         case DRM_FORMAT_XBGR2101010:
8431         case DRM_FORMAT_ABGR2101010:
8432                 if (INTEL_INFO(dev)->gen < 4)
8433                         return -EINVAL;
8434                 break;
8435         case DRM_FORMAT_YUYV:
8436         case DRM_FORMAT_UYVY:
8437         case DRM_FORMAT_YVYU:
8438         case DRM_FORMAT_VYUY:
8439                 if (INTEL_INFO(dev)->gen < 6)
8440                         return -EINVAL;
8441                 break;
8442         default:
8443                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8444                 return -EINVAL;
8445         }
8446
8447         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8448         if (mode_cmd->offsets[0] != 0)
8449                 return -EINVAL;
8450
8451         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8452         if (ret) {
8453                 DRM_ERROR("framebuffer init failed %d\n", ret);
8454                 return ret;
8455         }
8456
8457         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8458         intel_fb->obj = obj;
8459         return 0;
8460 }
8461
8462 static struct drm_framebuffer *
8463 intel_user_framebuffer_create(struct drm_device *dev,
8464                               struct drm_file *filp,
8465                               struct drm_mode_fb_cmd2 *mode_cmd)
8466 {
8467         struct drm_i915_gem_object *obj;
8468
8469         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8470                                                 mode_cmd->handles[0]));
8471         if (&obj->base == NULL)
8472                 return ERR_PTR(-ENOENT);
8473
8474         return intel_framebuffer_create(dev, mode_cmd, obj);
8475 }
8476
8477 static const struct drm_mode_config_funcs intel_mode_funcs = {
8478         .fb_create = intel_user_framebuffer_create,
8479         .output_poll_changed = intel_fb_output_poll_changed,
8480 };
8481
8482 /* Set up chip specific display functions */
8483 static void intel_init_display(struct drm_device *dev)
8484 {
8485         struct drm_i915_private *dev_priv = dev->dev_private;
8486
8487         /* We always want a DPMS function */
8488         if (IS_HASWELL(dev)) {
8489                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8490                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8491                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8492                 dev_priv->display.off = haswell_crtc_off;
8493                 dev_priv->display.update_plane = ironlake_update_plane;
8494         } else if (HAS_PCH_SPLIT(dev)) {
8495                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8496                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8497                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8498                 dev_priv->display.off = ironlake_crtc_off;
8499                 dev_priv->display.update_plane = ironlake_update_plane;
8500         } else {
8501                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8502                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8503                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8504                 dev_priv->display.off = i9xx_crtc_off;
8505                 dev_priv->display.update_plane = i9xx_update_plane;
8506         }
8507
8508         /* Returns the core display clock speed */
8509         if (IS_VALLEYVIEW(dev))
8510                 dev_priv->display.get_display_clock_speed =
8511                         valleyview_get_display_clock_speed;
8512         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8513                 dev_priv->display.get_display_clock_speed =
8514                         i945_get_display_clock_speed;
8515         else if (IS_I915G(dev))
8516                 dev_priv->display.get_display_clock_speed =
8517                         i915_get_display_clock_speed;
8518         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8519                 dev_priv->display.get_display_clock_speed =
8520                         i9xx_misc_get_display_clock_speed;
8521         else if (IS_I915GM(dev))
8522                 dev_priv->display.get_display_clock_speed =
8523                         i915gm_get_display_clock_speed;
8524         else if (IS_I865G(dev))
8525                 dev_priv->display.get_display_clock_speed =
8526                         i865_get_display_clock_speed;
8527         else if (IS_I85X(dev))
8528                 dev_priv->display.get_display_clock_speed =
8529                         i855_get_display_clock_speed;
8530         else /* 852, 830 */
8531                 dev_priv->display.get_display_clock_speed =
8532                         i830_get_display_clock_speed;
8533
8534         if (HAS_PCH_SPLIT(dev)) {
8535                 if (IS_GEN5(dev)) {
8536                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8537                         dev_priv->display.write_eld = ironlake_write_eld;
8538                 } else if (IS_GEN6(dev)) {
8539                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8540                         dev_priv->display.write_eld = ironlake_write_eld;
8541                 } else if (IS_IVYBRIDGE(dev)) {
8542                         /* FIXME: detect B0+ stepping and use auto training */
8543                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8544                         dev_priv->display.write_eld = ironlake_write_eld;
8545                         dev_priv->display.modeset_global_resources =
8546                                 ivb_modeset_global_resources;
8547                 } else if (IS_HASWELL(dev)) {
8548                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8549                         dev_priv->display.write_eld = haswell_write_eld;
8550                 } else
8551                         dev_priv->display.update_wm = NULL;
8552         } else if (IS_G4X(dev)) {
8553                 dev_priv->display.write_eld = g4x_write_eld;
8554         }
8555
8556         /* Default just returns -ENODEV to indicate unsupported */
8557         dev_priv->display.queue_flip = intel_default_queue_flip;
8558
8559         switch (INTEL_INFO(dev)->gen) {
8560         case 2:
8561                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8562                 break;
8563
8564         case 3:
8565                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8566                 break;
8567
8568         case 4:
8569         case 5:
8570                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8571                 break;
8572
8573         case 6:
8574                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8575                 break;
8576         case 7:
8577                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8578                 break;
8579         }
8580 }
8581
8582 /*
8583  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8584  * resume, or other times.  This quirk makes sure that's the case for
8585  * affected systems.
8586  */
8587 static void quirk_pipea_force(struct drm_device *dev)
8588 {
8589         struct drm_i915_private *dev_priv = dev->dev_private;
8590
8591         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8592         DRM_INFO("applying pipe a force quirk\n");
8593 }
8594
8595 /*
8596  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8597  */
8598 static void quirk_ssc_force_disable(struct drm_device *dev)
8599 {
8600         struct drm_i915_private *dev_priv = dev->dev_private;
8601         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8602         DRM_INFO("applying lvds SSC disable quirk\n");
8603 }
8604
8605 /*
8606  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8607  * brightness value
8608  */
8609 static void quirk_invert_brightness(struct drm_device *dev)
8610 {
8611         struct drm_i915_private *dev_priv = dev->dev_private;
8612         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8613         DRM_INFO("applying inverted panel brightness quirk\n");
8614 }
8615
8616 struct intel_quirk {
8617         int device;
8618         int subsystem_vendor;
8619         int subsystem_device;
8620         void (*hook)(struct drm_device *dev);
8621 };
8622
8623 static struct intel_quirk intel_quirks[] = {
8624         /* HP Mini needs pipe A force quirk (LP: #322104) */
8625         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8626
8627         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8628         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8629
8630         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8631         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8632
8633         /* 830/845 need to leave pipe A & dpll A up */
8634         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8635         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8636
8637         /* Lenovo U160 cannot use SSC on LVDS */
8638         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8639
8640         /* Sony Vaio Y cannot use SSC on LVDS */
8641         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8642
8643         /* Acer Aspire 5734Z must invert backlight brightness */
8644         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8645 };
8646
8647 static void intel_init_quirks(struct drm_device *dev)
8648 {
8649         struct pci_dev *d = dev->pdev;
8650         int i;
8651
8652         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8653                 struct intel_quirk *q = &intel_quirks[i];
8654
8655                 if (d->device == q->device &&
8656                     (d->subsystem_vendor == q->subsystem_vendor ||
8657                      q->subsystem_vendor == PCI_ANY_ID) &&
8658                     (d->subsystem_device == q->subsystem_device ||
8659                      q->subsystem_device == PCI_ANY_ID))
8660                         q->hook(dev);
8661         }
8662 }
8663
8664 /* Disable the VGA plane that we never use */
8665 static void i915_disable_vga(struct drm_device *dev)
8666 {
8667         struct drm_i915_private *dev_priv = dev->dev_private;
8668         u8 sr1;
8669         u32 vga_reg;
8670
8671         if (HAS_PCH_SPLIT(dev))
8672                 vga_reg = CPU_VGACNTRL;
8673         else
8674                 vga_reg = VGACNTRL;
8675
8676         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8677         outb(SR01, VGA_SR_INDEX);
8678         sr1 = inb(VGA_SR_DATA);
8679         outb(sr1 | 1<<5, VGA_SR_DATA);
8680         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8681         udelay(300);
8682
8683         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8684         POSTING_READ(vga_reg);
8685 }
8686
8687 void intel_modeset_init_hw(struct drm_device *dev)
8688 {
8689         /* We attempt to init the necessary power wells early in the initialization
8690          * time, so the subsystems that expect power to be enabled can work.
8691          */
8692         intel_init_power_wells(dev);
8693
8694         intel_prepare_ddi(dev);
8695
8696         intel_init_clock_gating(dev);
8697
8698         mutex_lock(&dev->struct_mutex);
8699         intel_enable_gt_powersave(dev);
8700         mutex_unlock(&dev->struct_mutex);
8701 }
8702
8703 void intel_modeset_init(struct drm_device *dev)
8704 {
8705         struct drm_i915_private *dev_priv = dev->dev_private;
8706         int i, ret;
8707
8708         drm_mode_config_init(dev);
8709
8710         dev->mode_config.min_width = 0;
8711         dev->mode_config.min_height = 0;
8712
8713         dev->mode_config.preferred_depth = 24;
8714         dev->mode_config.prefer_shadow = 1;
8715
8716         dev->mode_config.funcs = &intel_mode_funcs;
8717
8718         intel_init_quirks(dev);
8719
8720         intel_init_pm(dev);
8721
8722         intel_init_display(dev);
8723
8724         if (IS_GEN2(dev)) {
8725                 dev->mode_config.max_width = 2048;
8726                 dev->mode_config.max_height = 2048;
8727         } else if (IS_GEN3(dev)) {
8728                 dev->mode_config.max_width = 4096;
8729                 dev->mode_config.max_height = 4096;
8730         } else {
8731                 dev->mode_config.max_width = 8192;
8732                 dev->mode_config.max_height = 8192;
8733         }
8734         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8735
8736         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8737                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8738
8739         for (i = 0; i < dev_priv->num_pipe; i++) {
8740                 intel_crtc_init(dev, i);
8741                 ret = intel_plane_init(dev, i);
8742                 if (ret)
8743                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8744         }
8745
8746         intel_cpu_pll_init(dev);
8747         intel_pch_pll_init(dev);
8748
8749         /* Just disable it once at startup */
8750         i915_disable_vga(dev);
8751         intel_setup_outputs(dev);
8752 }
8753
8754 static void
8755 intel_connector_break_all_links(struct intel_connector *connector)
8756 {
8757         connector->base.dpms = DRM_MODE_DPMS_OFF;
8758         connector->base.encoder = NULL;
8759         connector->encoder->connectors_active = false;
8760         connector->encoder->base.crtc = NULL;
8761 }
8762
8763 static void intel_enable_pipe_a(struct drm_device *dev)
8764 {
8765         struct intel_connector *connector;
8766         struct drm_connector *crt = NULL;
8767         struct intel_load_detect_pipe load_detect_temp;
8768
8769         /* We can't just switch on the pipe A, we need to set things up with a
8770          * proper mode and output configuration. As a gross hack, enable pipe A
8771          * by enabling the load detect pipe once. */
8772         list_for_each_entry(connector,
8773                             &dev->mode_config.connector_list,
8774                             base.head) {
8775                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8776                         crt = &connector->base;
8777                         break;
8778                 }
8779         }
8780
8781         if (!crt)
8782                 return;
8783
8784         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8785                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8786
8787
8788 }
8789
8790 static bool
8791 intel_check_plane_mapping(struct intel_crtc *crtc)
8792 {
8793         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8794         u32 reg, val;
8795
8796         if (dev_priv->num_pipe == 1)
8797                 return true;
8798
8799         reg = DSPCNTR(!crtc->plane);
8800         val = I915_READ(reg);
8801
8802         if ((val & DISPLAY_PLANE_ENABLE) &&
8803             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8804                 return false;
8805
8806         return true;
8807 }
8808
8809 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8810 {
8811         struct drm_device *dev = crtc->base.dev;
8812         struct drm_i915_private *dev_priv = dev->dev_private;
8813         u32 reg;
8814
8815         /* Clear any frame start delays used for debugging left by the BIOS */
8816         reg = PIPECONF(crtc->cpu_transcoder);
8817         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8818
8819         /* We need to sanitize the plane -> pipe mapping first because this will
8820          * disable the crtc (and hence change the state) if it is wrong. Note
8821          * that gen4+ has a fixed plane -> pipe mapping.  */
8822         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8823                 struct intel_connector *connector;
8824                 bool plane;
8825
8826                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8827                               crtc->base.base.id);
8828
8829                 /* Pipe has the wrong plane attached and the plane is active.
8830                  * Temporarily change the plane mapping and disable everything
8831                  * ...  */
8832                 plane = crtc->plane;
8833                 crtc->plane = !plane;
8834                 dev_priv->display.crtc_disable(&crtc->base);
8835                 crtc->plane = plane;
8836
8837                 /* ... and break all links. */
8838                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8839                                     base.head) {
8840                         if (connector->encoder->base.crtc != &crtc->base)
8841                                 continue;
8842
8843                         intel_connector_break_all_links(connector);
8844                 }
8845
8846                 WARN_ON(crtc->active);
8847                 crtc->base.enabled = false;
8848         }
8849
8850         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8851             crtc->pipe == PIPE_A && !crtc->active) {
8852                 /* BIOS forgot to enable pipe A, this mostly happens after
8853                  * resume. Force-enable the pipe to fix this, the update_dpms
8854                  * call below we restore the pipe to the right state, but leave
8855                  * the required bits on. */
8856                 intel_enable_pipe_a(dev);
8857         }
8858
8859         /* Adjust the state of the output pipe according to whether we
8860          * have active connectors/encoders. */
8861         intel_crtc_update_dpms(&crtc->base);
8862
8863         if (crtc->active != crtc->base.enabled) {
8864                 struct intel_encoder *encoder;
8865
8866                 /* This can happen either due to bugs in the get_hw_state
8867                  * functions or because the pipe is force-enabled due to the
8868                  * pipe A quirk. */
8869                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8870                               crtc->base.base.id,
8871                               crtc->base.enabled ? "enabled" : "disabled",
8872                               crtc->active ? "enabled" : "disabled");
8873
8874                 crtc->base.enabled = crtc->active;
8875
8876                 /* Because we only establish the connector -> encoder ->
8877                  * crtc links if something is active, this means the
8878                  * crtc is now deactivated. Break the links. connector
8879                  * -> encoder links are only establish when things are
8880                  *  actually up, hence no need to break them. */
8881                 WARN_ON(crtc->active);
8882
8883                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8884                         WARN_ON(encoder->connectors_active);
8885                         encoder->base.crtc = NULL;
8886                 }
8887         }
8888 }
8889
8890 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8891 {
8892         struct intel_connector *connector;
8893         struct drm_device *dev = encoder->base.dev;
8894
8895         /* We need to check both for a crtc link (meaning that the
8896          * encoder is active and trying to read from a pipe) and the
8897          * pipe itself being active. */
8898         bool has_active_crtc = encoder->base.crtc &&
8899                 to_intel_crtc(encoder->base.crtc)->active;
8900
8901         if (encoder->connectors_active && !has_active_crtc) {
8902                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8903                               encoder->base.base.id,
8904                               drm_get_encoder_name(&encoder->base));
8905
8906                 /* Connector is active, but has no active pipe. This is
8907                  * fallout from our resume register restoring. Disable
8908                  * the encoder manually again. */
8909                 if (encoder->base.crtc) {
8910                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8911                                       encoder->base.base.id,
8912                                       drm_get_encoder_name(&encoder->base));
8913                         encoder->disable(encoder);
8914                 }
8915
8916                 /* Inconsistent output/port/pipe state happens presumably due to
8917                  * a bug in one of the get_hw_state functions. Or someplace else
8918                  * in our code, like the register restore mess on resume. Clamp
8919                  * things to off as a safer default. */
8920                 list_for_each_entry(connector,
8921                                     &dev->mode_config.connector_list,
8922                                     base.head) {
8923                         if (connector->encoder != encoder)
8924                                 continue;
8925
8926                         intel_connector_break_all_links(connector);
8927                 }
8928         }
8929         /* Enabled encoders without active connectors will be fixed in
8930          * the crtc fixup. */
8931 }
8932
8933 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8934  * and i915 state tracking structures. */
8935 void intel_modeset_setup_hw_state(struct drm_device *dev)
8936 {
8937         struct drm_i915_private *dev_priv = dev->dev_private;
8938         enum pipe pipe;
8939         u32 tmp;
8940         struct intel_crtc *crtc;
8941         struct intel_encoder *encoder;
8942         struct intel_connector *connector;
8943
8944         if (IS_HASWELL(dev)) {
8945                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8946
8947                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8948                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8949                         case TRANS_DDI_EDP_INPUT_A_ON:
8950                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
8951                                 pipe = PIPE_A;
8952                                 break;
8953                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
8954                                 pipe = PIPE_B;
8955                                 break;
8956                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
8957                                 pipe = PIPE_C;
8958                                 break;
8959                         }
8960
8961                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8962                         crtc->cpu_transcoder = TRANSCODER_EDP;
8963
8964                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8965                                       pipe_name(pipe));
8966                 }
8967         }
8968
8969         for_each_pipe(pipe) {
8970                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8971
8972                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8973                 if (tmp & PIPECONF_ENABLE)
8974                         crtc->active = true;
8975                 else
8976                         crtc->active = false;
8977
8978                 crtc->base.enabled = crtc->active;
8979
8980                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8981                               crtc->base.base.id,
8982                               crtc->active ? "enabled" : "disabled");
8983         }
8984
8985         if (IS_HASWELL(dev))
8986                 intel_ddi_setup_hw_pll_state(dev);
8987
8988         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8989                             base.head) {
8990                 pipe = 0;
8991
8992                 if (encoder->get_hw_state(encoder, &pipe)) {
8993                         encoder->base.crtc =
8994                                 dev_priv->pipe_to_crtc_mapping[pipe];
8995                 } else {
8996                         encoder->base.crtc = NULL;
8997                 }
8998
8999                 encoder->connectors_active = false;
9000                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9001                               encoder->base.base.id,
9002                               drm_get_encoder_name(&encoder->base),
9003                               encoder->base.crtc ? "enabled" : "disabled",
9004                               pipe);
9005         }
9006
9007         list_for_each_entry(connector, &dev->mode_config.connector_list,
9008                             base.head) {
9009                 if (connector->get_hw_state(connector)) {
9010                         connector->base.dpms = DRM_MODE_DPMS_ON;
9011                         connector->encoder->connectors_active = true;
9012                         connector->base.encoder = &connector->encoder->base;
9013                 } else {
9014                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9015                         connector->base.encoder = NULL;
9016                 }
9017                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9018                               connector->base.base.id,
9019                               drm_get_connector_name(&connector->base),
9020                               connector->base.encoder ? "enabled" : "disabled");
9021         }
9022
9023         /* HW state is read out, now we need to sanitize this mess. */
9024         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9025                             base.head) {
9026                 intel_sanitize_encoder(encoder);
9027         }
9028
9029         for_each_pipe(pipe) {
9030                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9031                 intel_sanitize_crtc(crtc);
9032         }
9033
9034         intel_modeset_update_staged_output_state(dev);
9035
9036         intel_modeset_check_state(dev);
9037
9038         drm_mode_config_reset(dev);
9039 }
9040
9041 void intel_modeset_gem_init(struct drm_device *dev)
9042 {
9043         intel_modeset_init_hw(dev);
9044
9045         intel_setup_overlay(dev);
9046
9047         intel_modeset_setup_hw_state(dev);
9048 }
9049
9050 void intel_modeset_cleanup(struct drm_device *dev)
9051 {
9052         struct drm_i915_private *dev_priv = dev->dev_private;
9053         struct drm_crtc *crtc;
9054         struct intel_crtc *intel_crtc;
9055
9056         drm_kms_helper_poll_fini(dev);
9057         mutex_lock(&dev->struct_mutex);
9058
9059         intel_unregister_dsm_handler();
9060
9061
9062         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9063                 /* Skip inactive CRTCs */
9064                 if (!crtc->fb)
9065                         continue;
9066
9067                 intel_crtc = to_intel_crtc(crtc);
9068                 intel_increase_pllclock(crtc);
9069         }
9070
9071         intel_disable_fbc(dev);
9072
9073         intel_disable_gt_powersave(dev);
9074
9075         ironlake_teardown_rc6(dev);
9076
9077         if (IS_VALLEYVIEW(dev))
9078                 vlv_init_dpio(dev);
9079
9080         mutex_unlock(&dev->struct_mutex);
9081
9082         /* Disable the irq before mode object teardown, for the irq might
9083          * enqueue unpin/hotplug work. */
9084         drm_irq_uninstall(dev);
9085         cancel_work_sync(&dev_priv->hotplug_work);
9086         cancel_work_sync(&dev_priv->rps.work);
9087
9088         /* flush any delayed tasks or pending work */
9089         flush_scheduled_work();
9090
9091         drm_mode_config_cleanup(dev);
9092 }
9093
9094 /*
9095  * Return which encoder is currently attached for connector.
9096  */
9097 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9098 {
9099         return &intel_attached_encoder(connector)->base;
9100 }
9101
9102 void intel_connector_attach_encoder(struct intel_connector *connector,
9103                                     struct intel_encoder *encoder)
9104 {
9105         connector->encoder = encoder;
9106         drm_mode_connector_attach_encoder(&connector->base,
9107                                           &encoder->base);
9108 }
9109
9110 /*
9111  * set vga decode state - true == enable VGA decode
9112  */
9113 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9114 {
9115         struct drm_i915_private *dev_priv = dev->dev_private;
9116         u16 gmch_ctrl;
9117
9118         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9119         if (state)
9120                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9121         else
9122                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9123         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9124         return 0;
9125 }
9126
9127 #ifdef CONFIG_DEBUG_FS
9128 #include <linux/seq_file.h>
9129
9130 struct intel_display_error_state {
9131         struct intel_cursor_error_state {
9132                 u32 control;
9133                 u32 position;
9134                 u32 base;
9135                 u32 size;
9136         } cursor[I915_MAX_PIPES];
9137
9138         struct intel_pipe_error_state {
9139                 u32 conf;
9140                 u32 source;
9141
9142                 u32 htotal;
9143                 u32 hblank;
9144                 u32 hsync;
9145                 u32 vtotal;
9146                 u32 vblank;
9147                 u32 vsync;
9148         } pipe[I915_MAX_PIPES];
9149
9150         struct intel_plane_error_state {
9151                 u32 control;
9152                 u32 stride;
9153                 u32 size;
9154                 u32 pos;
9155                 u32 addr;
9156                 u32 surface;
9157                 u32 tile_offset;
9158         } plane[I915_MAX_PIPES];
9159 };
9160
9161 struct intel_display_error_state *
9162 intel_display_capture_error_state(struct drm_device *dev)
9163 {
9164         drm_i915_private_t *dev_priv = dev->dev_private;
9165         struct intel_display_error_state *error;
9166         enum transcoder cpu_transcoder;
9167         int i;
9168
9169         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9170         if (error == NULL)
9171                 return NULL;
9172
9173         for_each_pipe(i) {
9174                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9175
9176                 error->cursor[i].control = I915_READ(CURCNTR(i));
9177                 error->cursor[i].position = I915_READ(CURPOS(i));
9178                 error->cursor[i].base = I915_READ(CURBASE(i));
9179
9180                 error->plane[i].control = I915_READ(DSPCNTR(i));
9181                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9182                 error->plane[i].size = I915_READ(DSPSIZE(i));
9183                 error->plane[i].pos = I915_READ(DSPPOS(i));
9184                 error->plane[i].addr = I915_READ(DSPADDR(i));
9185                 if (INTEL_INFO(dev)->gen >= 4) {
9186                         error->plane[i].surface = I915_READ(DSPSURF(i));
9187                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9188                 }
9189
9190                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9191                 error->pipe[i].source = I915_READ(PIPESRC(i));
9192                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9193                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9194                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9195                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9196                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9197                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9198         }
9199
9200         return error;
9201 }
9202
9203 void
9204 intel_display_print_error_state(struct seq_file *m,
9205                                 struct drm_device *dev,
9206                                 struct intel_display_error_state *error)
9207 {
9208         drm_i915_private_t *dev_priv = dev->dev_private;
9209         int i;
9210
9211         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9212         for_each_pipe(i) {
9213                 seq_printf(m, "Pipe [%d]:\n", i);
9214                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9215                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9216                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9217                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9218                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9219                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9220                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9221                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9222
9223                 seq_printf(m, "Plane [%d]:\n", i);
9224                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9225                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9226                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9227                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9228                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9229                 if (INTEL_INFO(dev)->gen >= 4) {
9230                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9231                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9232                 }
9233
9234                 seq_printf(m, "Cursor [%d]:\n", i);
9235                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9236                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9237                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9238         }
9239 }
9240 #endif