]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/intel_display.c
Squashfs: simplify CONFIG_SQUASHFS_LZO handling
[mv-sheeva.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646                                                 int refclk)
647 {
648         struct drm_device *dev = crtc->dev;
649         struct drm_i915_private *dev_priv = dev->dev_private;
650         const intel_limit_t *limit;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654                     LVDS_CLKB_POWER_UP) {
655                         /* LVDS dual channel */
656                         if (refclk == 100000)
657                                 limit = &intel_limits_ironlake_dual_lvds_100m;
658                         else
659                                 limit = &intel_limits_ironlake_dual_lvds;
660                 } else {
661                         if (refclk == 100000)
662                                 limit = &intel_limits_ironlake_single_lvds_100m;
663                         else
664                                 limit = &intel_limits_ironlake_single_lvds;
665                 }
666         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667                         HAS_eDP)
668                 limit = &intel_limits_ironlake_display_port;
669         else
670                 limit = &intel_limits_ironlake_dac;
671
672         return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677         struct drm_device *dev = crtc->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         const intel_limit_t *limit;
680
681         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683                     LVDS_CLKB_POWER_UP)
684                         /* LVDS with dual channel */
685                         limit = &intel_limits_g4x_dual_channel_lvds;
686                 else
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_single_channel_lvds;
689         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691                 limit = &intel_limits_g4x_hdmi;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693                 limit = &intel_limits_g4x_sdvo;
694         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695                 limit = &intel_limits_g4x_display_port;
696         } else /* The option is for other outputs */
697                 limit = &intel_limits_i9xx_sdvo;
698
699         return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
703 {
704         struct drm_device *dev = crtc->dev;
705         const intel_limit_t *limit;
706
707         if (HAS_PCH_SPLIT(dev))
708                 limit = intel_ironlake_limit(crtc, refclk);
709         else if (IS_G4X(dev)) {
710                 limit = intel_g4x_limit(crtc);
711         } else if (IS_PINEVIEW(dev)) {
712                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713                         limit = &intel_limits_pineview_lvds;
714                 else
715                         limit = &intel_limits_pineview_sdvo;
716         } else if (!IS_GEN2(dev)) {
717                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718                         limit = &intel_limits_i9xx_lvds;
719                 else
720                         limit = &intel_limits_i9xx_sdvo;
721         } else {
722                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723                         limit = &intel_limits_i8xx_lvds;
724                 else
725                         limit = &intel_limits_i8xx_dvo;
726         }
727         return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733         clock->m = clock->m2 + 2;
734         clock->p = clock->p1 * clock->p2;
735         clock->vco = refclk * clock->m / clock->n;
736         clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741         if (IS_PINEVIEW(dev)) {
742                 pineview_clock(refclk, clock);
743                 return;
744         }
745         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746         clock->p = clock->p1 * clock->p2;
747         clock->vco = refclk * clock->m / (clock->n + 2);
748         clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752  * Returns whether any output on the specified pipe is of the specified type
753  */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct intel_encoder *encoder;
759
760         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761                 if (encoder->base.crtc == crtc && encoder->type == type)
762                         return true;
763
764         return false;
765 }
766
767 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769  * Returns whether the given set of divisors are valid for a given refclk with
770  * the given connectors.
771  */
772
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774                                const intel_limit_t *limit,
775                                const intel_clock_t *clock)
776 {
777         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
778                 INTELPllInvalid ("p1 out of range\n");
779         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
780                 INTELPllInvalid ("p out of range\n");
781         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
782                 INTELPllInvalid ("m2 out of range\n");
783         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
784                 INTELPllInvalid ("m1 out of range\n");
785         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786                 INTELPllInvalid ("m1 <= m2\n");
787         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
788                 INTELPllInvalid ("m out of range\n");
789         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
790                 INTELPllInvalid ("n out of range\n");
791         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792                 INTELPllInvalid ("vco out of range\n");
793         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794          * connector, etc., rather than just a single range.
795          */
796         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797                 INTELPllInvalid ("dot out of range\n");
798
799         return true;
800 }
801
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804                     int target, int refclk, intel_clock_t *best_clock)
805
806 {
807         struct drm_device *dev = crtc->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809         intel_clock_t clock;
810         int err = target;
811
812         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813             (I915_READ(LVDS)) != 0) {
814                 /*
815                  * For LVDS, if the panel is on, just rely on its current
816                  * settings for dual-channel.  We haven't figured out how to
817                  * reliably set up different single/dual channel state, if we
818                  * even can.
819                  */
820                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821                     LVDS_CLKB_POWER_UP)
822                         clock.p2 = limit->p2.p2_fast;
823                 else
824                         clock.p2 = limit->p2.p2_slow;
825         } else {
826                 if (target < limit->p2.dot_limit)
827                         clock.p2 = limit->p2.p2_slow;
828                 else
829                         clock.p2 = limit->p2.p2_fast;
830         }
831
832         memset (best_clock, 0, sizeof (*best_clock));
833
834         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835              clock.m1++) {
836                 for (clock.m2 = limit->m2.min;
837                      clock.m2 <= limit->m2.max; clock.m2++) {
838                         /* m1 is always 0 in Pineview */
839                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840                                 break;
841                         for (clock.n = limit->n.min;
842                              clock.n <= limit->n.max; clock.n++) {
843                                 for (clock.p1 = limit->p1.min;
844                                         clock.p1 <= limit->p1.max; clock.p1++) {
845                                         int this_err;
846
847                                         intel_clock(dev, refclk, &clock);
848                                         if (!intel_PLL_is_valid(dev, limit,
849                                                                 &clock))
850                                                 continue;
851
852                                         this_err = abs(clock.dot - target);
853                                         if (this_err < err) {
854                                                 *best_clock = clock;
855                                                 err = this_err;
856                                         }
857                                 }
858                         }
859                 }
860         }
861
862         return (err != target);
863 }
864
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867                         int target, int refclk, intel_clock_t *best_clock)
868 {
869         struct drm_device *dev = crtc->dev;
870         struct drm_i915_private *dev_priv = dev->dev_private;
871         intel_clock_t clock;
872         int max_n;
873         bool found;
874         /* approximately equals target * 0.00585 */
875         int err_most = (target >> 8) + (target >> 9);
876         found = false;
877
878         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879                 int lvds_reg;
880
881                 if (HAS_PCH_SPLIT(dev))
882                         lvds_reg = PCH_LVDS;
883                 else
884                         lvds_reg = LVDS;
885                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886                     LVDS_CLKB_POWER_UP)
887                         clock.p2 = limit->p2.p2_fast;
888                 else
889                         clock.p2 = limit->p2.p2_slow;
890         } else {
891                 if (target < limit->p2.dot_limit)
892                         clock.p2 = limit->p2.p2_slow;
893                 else
894                         clock.p2 = limit->p2.p2_fast;
895         }
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         max_n = limit->n.max;
899         /* based on hardware requirement, prefer smaller n to precision */
900         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901                 /* based on hardware requirement, prefere larger m1,m2 */
902                 for (clock.m1 = limit->m1.max;
903                      clock.m1 >= limit->m1.min; clock.m1--) {
904                         for (clock.m2 = limit->m2.max;
905                              clock.m2 >= limit->m2.min; clock.m2--) {
906                                 for (clock.p1 = limit->p1.max;
907                                      clock.p1 >= limit->p1.min; clock.p1--) {
908                                         int this_err;
909
910                                         intel_clock(dev, refclk, &clock);
911                                         if (!intel_PLL_is_valid(dev, limit,
912                                                                 &clock))
913                                                 continue;
914
915                                         this_err = abs(clock.dot - target);
916                                         if (this_err < err_most) {
917                                                 *best_clock = clock;
918                                                 err_most = this_err;
919                                                 max_n = clock.n;
920                                                 found = true;
921                                         }
922                                 }
923                         }
924                 }
925         }
926         return found;
927 }
928
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931                            int target, int refclk, intel_clock_t *best_clock)
932 {
933         struct drm_device *dev = crtc->dev;
934         intel_clock_t clock;
935
936         if (target < 200000) {
937                 clock.n = 1;
938                 clock.p1 = 2;
939                 clock.p2 = 10;
940                 clock.m1 = 12;
941                 clock.m2 = 9;
942         } else {
943                 clock.n = 2;
944                 clock.p1 = 1;
945                 clock.p2 = 10;
946                 clock.m1 = 14;
947                 clock.m2 = 8;
948         }
949         intel_clock(dev, refclk, &clock);
950         memcpy(best_clock, &clock, sizeof(intel_clock_t));
951         return true;
952 }
953
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957                       int target, int refclk, intel_clock_t *best_clock)
958 {
959         intel_clock_t clock;
960         if (target < 200000) {
961                 clock.p1 = 2;
962                 clock.p2 = 10;
963                 clock.n = 2;
964                 clock.m1 = 23;
965                 clock.m2 = 8;
966         } else {
967                 clock.p1 = 1;
968                 clock.p2 = 10;
969                 clock.n = 1;
970                 clock.m1 = 14;
971                 clock.m2 = 2;
972         }
973         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974         clock.p = (clock.p1 * clock.p2);
975         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976         clock.vco = 0;
977         memcpy(best_clock, &clock, sizeof(intel_clock_t));
978         return true;
979 }
980
981 /**
982  * intel_wait_for_vblank - wait for vblank on a given pipe
983  * @dev: drm device
984  * @pipe: pipe to wait for
985  *
986  * Wait for vblank to occur on a given pipe.  Needed for various bits of
987  * mode setting code.
988  */
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 {
991         struct drm_i915_private *dev_priv = dev->dev_private;
992         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
993
994         /* Clear existing vblank status. Note this will clear any other
995          * sticky status fields as well.
996          *
997          * This races with i915_driver_irq_handler() with the result
998          * that either function could miss a vblank event.  Here it is not
999          * fatal, as we will either wait upon the next vblank interrupt or
1000          * timeout.  Generally speaking intel_wait_for_vblank() is only
1001          * called during modeset at which time the GPU should be idle and
1002          * should *not* be performing page flips and thus not waiting on
1003          * vblanks...
1004          * Currently, the result of us stealing a vblank from the irq
1005          * handler is that a single frame will be skipped during swapbuffers.
1006          */
1007         I915_WRITE(pipestat_reg,
1008                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009
1010         /* Wait for vblank interrupt bit to set */
1011         if (wait_for(I915_READ(pipestat_reg) &
1012                      PIPE_VBLANK_INTERRUPT_STATUS,
1013                      50))
1014                 DRM_DEBUG_KMS("vblank wait timed out\n");
1015 }
1016
1017 /*
1018  * intel_wait_for_pipe_off - wait for pipe to turn off
1019  * @dev: drm device
1020  * @pipe: pipe to wait for
1021  *
1022  * After disabling a pipe, we can't wait for vblank in the usual way,
1023  * spinning on the vblank interrupt status bit, since we won't actually
1024  * see an interrupt when the pipe is disabled.
1025  *
1026  * On Gen4 and above:
1027  *   wait for the pipe register state bit to turn off
1028  *
1029  * Otherwise:
1030  *   wait for the display line value to settle (it usually
1031  *   ends up stopping at the start of the next frame).
1032  *
1033  */
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 {
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037
1038         if (INTEL_INFO(dev)->gen >= 4) {
1039                 int reg = PIPECONF(pipe);
1040
1041                 /* Wait for the Pipe State to go off */
1042                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043                              100))
1044                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045         } else {
1046                 u32 last_line;
1047                 int reg = PIPEDSL(pipe);
1048                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049
1050                 /* Wait for the display line to settle */
1051                 do {
1052                         last_line = I915_READ(reg) & DSL_LINEMASK;
1053                         mdelay(5);
1054                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055                          time_after(timeout, jiffies));
1056                 if (time_after(jiffies, timeout))
1057                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1058         }
1059 }
1060
1061 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1062 {
1063         struct drm_device *dev = crtc->dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065         struct drm_framebuffer *fb = crtc->fb;
1066         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1067         struct drm_i915_gem_object *obj = intel_fb->obj;
1068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069         int plane, i;
1070         u32 fbc_ctl, fbc_ctl2;
1071
1072         if (fb->pitch == dev_priv->cfb_pitch &&
1073             obj->fence_reg == dev_priv->cfb_fence &&
1074             intel_crtc->plane == dev_priv->cfb_plane &&
1075             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1076                 return;
1077
1078         i8xx_disable_fbc(dev);
1079
1080         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1081
1082         if (fb->pitch < dev_priv->cfb_pitch)
1083                 dev_priv->cfb_pitch = fb->pitch;
1084
1085         /* FBC_CTL wants 64B units */
1086         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1087         dev_priv->cfb_fence = obj->fence_reg;
1088         dev_priv->cfb_plane = intel_crtc->plane;
1089         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1090
1091         /* Clear old tags */
1092         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1093                 I915_WRITE(FBC_TAG + (i * 4), 0);
1094
1095         /* Set it up... */
1096         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1097         if (obj->tiling_mode != I915_TILING_NONE)
1098                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1099         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1100         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1101
1102         /* enable it... */
1103         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1104         if (IS_I945GM(dev))
1105                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1106         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1107         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1108         if (obj->tiling_mode != I915_TILING_NONE)
1109                 fbc_ctl |= dev_priv->cfb_fence;
1110         I915_WRITE(FBC_CONTROL, fbc_ctl);
1111
1112         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1113                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1114 }
1115
1116 void i8xx_disable_fbc(struct drm_device *dev)
1117 {
1118         struct drm_i915_private *dev_priv = dev->dev_private;
1119         u32 fbc_ctl;
1120
1121         /* Disable compression */
1122         fbc_ctl = I915_READ(FBC_CONTROL);
1123         if ((fbc_ctl & FBC_CTL_EN) == 0)
1124                 return;
1125
1126         fbc_ctl &= ~FBC_CTL_EN;
1127         I915_WRITE(FBC_CONTROL, fbc_ctl);
1128
1129         /* Wait for compressing bit to clear */
1130         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1131                 DRM_DEBUG_KMS("FBC idle timed out\n");
1132                 return;
1133         }
1134
1135         DRM_DEBUG_KMS("disabled FBC\n");
1136 }
1137
1138 static bool i8xx_fbc_enabled(struct drm_device *dev)
1139 {
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141
1142         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1143 }
1144
1145 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1146 {
1147         struct drm_device *dev = crtc->dev;
1148         struct drm_i915_private *dev_priv = dev->dev_private;
1149         struct drm_framebuffer *fb = crtc->fb;
1150         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1151         struct drm_i915_gem_object *obj = intel_fb->obj;
1152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1153         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1154         unsigned long stall_watermark = 200;
1155         u32 dpfc_ctl;
1156
1157         dpfc_ctl = I915_READ(DPFC_CONTROL);
1158         if (dpfc_ctl & DPFC_CTL_EN) {
1159                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1160                     dev_priv->cfb_fence == obj->fence_reg &&
1161                     dev_priv->cfb_plane == intel_crtc->plane &&
1162                     dev_priv->cfb_y == crtc->y)
1163                         return;
1164
1165                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1166                 POSTING_READ(DPFC_CONTROL);
1167                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1168         }
1169
1170         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1171         dev_priv->cfb_fence = obj->fence_reg;
1172         dev_priv->cfb_plane = intel_crtc->plane;
1173         dev_priv->cfb_y = crtc->y;
1174
1175         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1176         if (obj->tiling_mode != I915_TILING_NONE) {
1177                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1178                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1179         } else {
1180                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1181         }
1182
1183         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1184                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1185                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1186         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1187
1188         /* enable it... */
1189         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1190
1191         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1192 }
1193
1194 void g4x_disable_fbc(struct drm_device *dev)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         u32 dpfc_ctl;
1198
1199         /* Disable compression */
1200         dpfc_ctl = I915_READ(DPFC_CONTROL);
1201         if (dpfc_ctl & DPFC_CTL_EN) {
1202                 dpfc_ctl &= ~DPFC_CTL_EN;
1203                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1204
1205                 DRM_DEBUG_KMS("disabled FBC\n");
1206         }
1207 }
1208
1209 static bool g4x_fbc_enabled(struct drm_device *dev)
1210 {
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212
1213         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1214 }
1215
1216 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1217 {
1218         struct drm_device *dev = crtc->dev;
1219         struct drm_i915_private *dev_priv = dev->dev_private;
1220         struct drm_framebuffer *fb = crtc->fb;
1221         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1222         struct drm_i915_gem_object *obj = intel_fb->obj;
1223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1224         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1225         unsigned long stall_watermark = 200;
1226         u32 dpfc_ctl;
1227
1228         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1229         if (dpfc_ctl & DPFC_CTL_EN) {
1230                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1231                     dev_priv->cfb_fence == obj->fence_reg &&
1232                     dev_priv->cfb_plane == intel_crtc->plane &&
1233                     dev_priv->cfb_offset == obj->gtt_offset &&
1234                     dev_priv->cfb_y == crtc->y)
1235                         return;
1236
1237                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1238                 POSTING_READ(ILK_DPFC_CONTROL);
1239                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1240         }
1241
1242         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1243         dev_priv->cfb_fence = obj->fence_reg;
1244         dev_priv->cfb_plane = intel_crtc->plane;
1245         dev_priv->cfb_offset = obj->gtt_offset;
1246         dev_priv->cfb_y = crtc->y;
1247
1248         dpfc_ctl &= DPFC_RESERVED;
1249         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1250         if (obj->tiling_mode != I915_TILING_NONE) {
1251                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1252                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1253         } else {
1254                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1255         }
1256
1257         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1258                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1259                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1260         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1261         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1262         /* enable it... */
1263         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1264
1265         if (IS_GEN6(dev)) {
1266                 I915_WRITE(SNB_DPFC_CTL_SA,
1267                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1268                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1269         }
1270
1271         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1272 }
1273
1274 void ironlake_disable_fbc(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         u32 dpfc_ctl;
1278
1279         /* Disable compression */
1280         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1281         if (dpfc_ctl & DPFC_CTL_EN) {
1282                 dpfc_ctl &= ~DPFC_CTL_EN;
1283                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1284
1285                 DRM_DEBUG_KMS("disabled FBC\n");
1286         }
1287 }
1288
1289 static bool ironlake_fbc_enabled(struct drm_device *dev)
1290 {
1291         struct drm_i915_private *dev_priv = dev->dev_private;
1292
1293         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1294 }
1295
1296 bool intel_fbc_enabled(struct drm_device *dev)
1297 {
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299
1300         if (!dev_priv->display.fbc_enabled)
1301                 return false;
1302
1303         return dev_priv->display.fbc_enabled(dev);
1304 }
1305
1306 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1307 {
1308         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1309
1310         if (!dev_priv->display.enable_fbc)
1311                 return;
1312
1313         dev_priv->display.enable_fbc(crtc, interval);
1314 }
1315
1316 void intel_disable_fbc(struct drm_device *dev)
1317 {
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319
1320         if (!dev_priv->display.disable_fbc)
1321                 return;
1322
1323         dev_priv->display.disable_fbc(dev);
1324 }
1325
1326 /**
1327  * intel_update_fbc - enable/disable FBC as needed
1328  * @dev: the drm_device
1329  *
1330  * Set up the framebuffer compression hardware at mode set time.  We
1331  * enable it if possible:
1332  *   - plane A only (on pre-965)
1333  *   - no pixel mulitply/line duplication
1334  *   - no alpha buffer discard
1335  *   - no dual wide
1336  *   - framebuffer <= 2048 in width, 1536 in height
1337  *
1338  * We can't assume that any compression will take place (worst case),
1339  * so the compressed buffer has to be the same size as the uncompressed
1340  * one.  It also must reside (along with the line length buffer) in
1341  * stolen memory.
1342  *
1343  * We need to enable/disable FBC on a global basis.
1344  */
1345 static void intel_update_fbc(struct drm_device *dev)
1346 {
1347         struct drm_i915_private *dev_priv = dev->dev_private;
1348         struct drm_crtc *crtc = NULL, *tmp_crtc;
1349         struct intel_crtc *intel_crtc;
1350         struct drm_framebuffer *fb;
1351         struct intel_framebuffer *intel_fb;
1352         struct drm_i915_gem_object *obj;
1353
1354         DRM_DEBUG_KMS("\n");
1355
1356         if (!i915_powersave)
1357                 return;
1358
1359         if (!I915_HAS_FBC(dev))
1360                 return;
1361
1362         /*
1363          * If FBC is already on, we just have to verify that we can
1364          * keep it that way...
1365          * Need to disable if:
1366          *   - more than one pipe is active
1367          *   - changing FBC params (stride, fence, mode)
1368          *   - new fb is too large to fit in compressed buffer
1369          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1370          */
1371         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1372                 if (tmp_crtc->enabled) {
1373                         if (crtc) {
1374                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1375                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1376                                 goto out_disable;
1377                         }
1378                         crtc = tmp_crtc;
1379                 }
1380         }
1381
1382         if (!crtc || crtc->fb == NULL) {
1383                 DRM_DEBUG_KMS("no output, disabling\n");
1384                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1385                 goto out_disable;
1386         }
1387
1388         intel_crtc = to_intel_crtc(crtc);
1389         fb = crtc->fb;
1390         intel_fb = to_intel_framebuffer(fb);
1391         obj = intel_fb->obj;
1392
1393         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1394                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1395                               "compression\n");
1396                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1397                 goto out_disable;
1398         }
1399         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1400             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1401                 DRM_DEBUG_KMS("mode incompatible with compression, "
1402                               "disabling\n");
1403                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1404                 goto out_disable;
1405         }
1406         if ((crtc->mode.hdisplay > 2048) ||
1407             (crtc->mode.vdisplay > 1536)) {
1408                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1409                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1410                 goto out_disable;
1411         }
1412         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1413                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1414                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1415                 goto out_disable;
1416         }
1417         if (obj->tiling_mode != I915_TILING_X) {
1418                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1419                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1420                 goto out_disable;
1421         }
1422
1423         /* If the kernel debugger is active, always disable compression */
1424         if (in_dbg_master())
1425                 goto out_disable;
1426
1427         intel_enable_fbc(crtc, 500);
1428         return;
1429
1430 out_disable:
1431         /* Multiple disables should be harmless */
1432         if (intel_fbc_enabled(dev)) {
1433                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1434                 intel_disable_fbc(dev);
1435         }
1436 }
1437
1438 int
1439 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1440                            struct drm_i915_gem_object *obj,
1441                            struct intel_ring_buffer *pipelined)
1442 {
1443         u32 alignment;
1444         int ret;
1445
1446         switch (obj->tiling_mode) {
1447         case I915_TILING_NONE:
1448                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1449                         alignment = 128 * 1024;
1450                 else if (INTEL_INFO(dev)->gen >= 4)
1451                         alignment = 4 * 1024;
1452                 else
1453                         alignment = 64 * 1024;
1454                 break;
1455         case I915_TILING_X:
1456                 /* pin() will align the object as required by fence */
1457                 alignment = 0;
1458                 break;
1459         case I915_TILING_Y:
1460                 /* FIXME: Is this true? */
1461                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1462                 return -EINVAL;
1463         default:
1464                 BUG();
1465         }
1466
1467         ret = i915_gem_object_pin(obj, alignment, true);
1468         if (ret)
1469                 return ret;
1470
1471         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1472         if (ret)
1473                 goto err_unpin;
1474
1475         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1476          * fence, whereas 965+ only requires a fence if using
1477          * framebuffer compression.  For simplicity, we always install
1478          * a fence as the cost is not that onerous.
1479          */
1480         if (obj->tiling_mode != I915_TILING_NONE) {
1481                 ret = i915_gem_object_get_fence(obj, pipelined, false);
1482                 if (ret)
1483                         goto err_unpin;
1484         }
1485
1486         return 0;
1487
1488 err_unpin:
1489         i915_gem_object_unpin(obj);
1490         return ret;
1491 }
1492
1493 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1494 static int
1495 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1496                            int x, int y, enum mode_set_atomic state)
1497 {
1498         struct drm_device *dev = crtc->dev;
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1501         struct intel_framebuffer *intel_fb;
1502         struct drm_i915_gem_object *obj;
1503         int plane = intel_crtc->plane;
1504         unsigned long Start, Offset;
1505         u32 dspcntr;
1506         u32 reg;
1507
1508         switch (plane) {
1509         case 0:
1510         case 1:
1511                 break;
1512         default:
1513                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1514                 return -EINVAL;
1515         }
1516
1517         intel_fb = to_intel_framebuffer(fb);
1518         obj = intel_fb->obj;
1519
1520         reg = DSPCNTR(plane);
1521         dspcntr = I915_READ(reg);
1522         /* Mask out pixel format bits in case we change it */
1523         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1524         switch (fb->bits_per_pixel) {
1525         case 8:
1526                 dspcntr |= DISPPLANE_8BPP;
1527                 break;
1528         case 16:
1529                 if (fb->depth == 15)
1530                         dspcntr |= DISPPLANE_15_16BPP;
1531                 else
1532                         dspcntr |= DISPPLANE_16BPP;
1533                 break;
1534         case 24:
1535         case 32:
1536                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1537                 break;
1538         default:
1539                 DRM_ERROR("Unknown color depth\n");
1540                 return -EINVAL;
1541         }
1542         if (INTEL_INFO(dev)->gen >= 4) {
1543                 if (obj->tiling_mode != I915_TILING_NONE)
1544                         dspcntr |= DISPPLANE_TILED;
1545                 else
1546                         dspcntr &= ~DISPPLANE_TILED;
1547         }
1548
1549         if (HAS_PCH_SPLIT(dev))
1550                 /* must disable */
1551                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1552
1553         I915_WRITE(reg, dspcntr);
1554
1555         Start = obj->gtt_offset;
1556         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1557
1558         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1559                       Start, Offset, x, y, fb->pitch);
1560         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1561         if (INTEL_INFO(dev)->gen >= 4) {
1562                 I915_WRITE(DSPSURF(plane), Start);
1563                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1564                 I915_WRITE(DSPADDR(plane), Offset);
1565         } else
1566                 I915_WRITE(DSPADDR(plane), Start + Offset);
1567         POSTING_READ(reg);
1568
1569         intel_update_fbc(dev);
1570         intel_increase_pllclock(crtc);
1571
1572         return 0;
1573 }
1574
1575 static int
1576 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1577                     struct drm_framebuffer *old_fb)
1578 {
1579         struct drm_device *dev = crtc->dev;
1580         struct drm_i915_master_private *master_priv;
1581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1582         int ret;
1583
1584         /* no fb bound */
1585         if (!crtc->fb) {
1586                 DRM_DEBUG_KMS("No FB bound\n");
1587                 return 0;
1588         }
1589
1590         switch (intel_crtc->plane) {
1591         case 0:
1592         case 1:
1593                 break;
1594         default:
1595                 return -EINVAL;
1596         }
1597
1598         mutex_lock(&dev->struct_mutex);
1599         ret = intel_pin_and_fence_fb_obj(dev,
1600                                          to_intel_framebuffer(crtc->fb)->obj,
1601                                          NULL);
1602         if (ret != 0) {
1603                 mutex_unlock(&dev->struct_mutex);
1604                 return ret;
1605         }
1606
1607         if (old_fb) {
1608                 struct drm_i915_private *dev_priv = dev->dev_private;
1609                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1610
1611                 wait_event(dev_priv->pending_flip_queue,
1612                            atomic_read(&obj->pending_flip) == 0);
1613
1614                 /* Big Hammer, we also need to ensure that any pending
1615                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1616                  * current scanout is retired before unpinning the old
1617                  * framebuffer.
1618                  */
1619                 ret = i915_gem_object_flush_gpu(obj, false);
1620                 if (ret) {
1621                         i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1622                         mutex_unlock(&dev->struct_mutex);
1623                         return ret;
1624                 }
1625         }
1626
1627         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1628                                          LEAVE_ATOMIC_MODE_SET);
1629         if (ret) {
1630                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1631                 mutex_unlock(&dev->struct_mutex);
1632                 return ret;
1633         }
1634
1635         if (old_fb) {
1636                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1637                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1638         }
1639
1640         mutex_unlock(&dev->struct_mutex);
1641
1642         if (!dev->primary->master)
1643                 return 0;
1644
1645         master_priv = dev->primary->master->driver_priv;
1646         if (!master_priv->sarea_priv)
1647                 return 0;
1648
1649         if (intel_crtc->pipe) {
1650                 master_priv->sarea_priv->pipeB_x = x;
1651                 master_priv->sarea_priv->pipeB_y = y;
1652         } else {
1653                 master_priv->sarea_priv->pipeA_x = x;
1654                 master_priv->sarea_priv->pipeA_y = y;
1655         }
1656
1657         return 0;
1658 }
1659
1660 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1661 {
1662         struct drm_device *dev = crtc->dev;
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         u32 dpa_ctl;
1665
1666         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1667         dpa_ctl = I915_READ(DP_A);
1668         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1669
1670         if (clock < 200000) {
1671                 u32 temp;
1672                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1673                 /* workaround for 160Mhz:
1674                    1) program 0x4600c bits 15:0 = 0x8124
1675                    2) program 0x46010 bit 0 = 1
1676                    3) program 0x46034 bit 24 = 1
1677                    4) program 0x64000 bit 14 = 1
1678                    */
1679                 temp = I915_READ(0x4600c);
1680                 temp &= 0xffff0000;
1681                 I915_WRITE(0x4600c, temp | 0x8124);
1682
1683                 temp = I915_READ(0x46010);
1684                 I915_WRITE(0x46010, temp | 1);
1685
1686                 temp = I915_READ(0x46034);
1687                 I915_WRITE(0x46034, temp | (1 << 24));
1688         } else {
1689                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1690         }
1691         I915_WRITE(DP_A, dpa_ctl);
1692
1693         POSTING_READ(DP_A);
1694         udelay(500);
1695 }
1696
1697 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1698 {
1699         struct drm_device *dev = crtc->dev;
1700         struct drm_i915_private *dev_priv = dev->dev_private;
1701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1702         int pipe = intel_crtc->pipe;
1703         u32 reg, temp;
1704
1705         /* enable normal train */
1706         reg = FDI_TX_CTL(pipe);
1707         temp = I915_READ(reg);
1708         temp &= ~FDI_LINK_TRAIN_NONE;
1709         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1710         I915_WRITE(reg, temp);
1711
1712         reg = FDI_RX_CTL(pipe);
1713         temp = I915_READ(reg);
1714         if (HAS_PCH_CPT(dev)) {
1715                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1716                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1717         } else {
1718                 temp &= ~FDI_LINK_TRAIN_NONE;
1719                 temp |= FDI_LINK_TRAIN_NONE;
1720         }
1721         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1722
1723         /* wait one idle pattern time */
1724         POSTING_READ(reg);
1725         udelay(1000);
1726 }
1727
1728 /* The FDI link training functions for ILK/Ibexpeak. */
1729 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1730 {
1731         struct drm_device *dev = crtc->dev;
1732         struct drm_i915_private *dev_priv = dev->dev_private;
1733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1734         int pipe = intel_crtc->pipe;
1735         u32 reg, temp, tries;
1736
1737         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1738            for train result */
1739         reg = FDI_RX_IMR(pipe);
1740         temp = I915_READ(reg);
1741         temp &= ~FDI_RX_SYMBOL_LOCK;
1742         temp &= ~FDI_RX_BIT_LOCK;
1743         I915_WRITE(reg, temp);
1744         I915_READ(reg);
1745         udelay(150);
1746
1747         /* enable CPU FDI TX and PCH FDI RX */
1748         reg = FDI_TX_CTL(pipe);
1749         temp = I915_READ(reg);
1750         temp &= ~(7 << 19);
1751         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1752         temp &= ~FDI_LINK_TRAIN_NONE;
1753         temp |= FDI_LINK_TRAIN_PATTERN_1;
1754         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1755
1756         reg = FDI_RX_CTL(pipe);
1757         temp = I915_READ(reg);
1758         temp &= ~FDI_LINK_TRAIN_NONE;
1759         temp |= FDI_LINK_TRAIN_PATTERN_1;
1760         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1761
1762         POSTING_READ(reg);
1763         udelay(150);
1764
1765         /* Ironlake workaround, enable clock pointer after FDI enable*/
1766         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1767
1768         reg = FDI_RX_IIR(pipe);
1769         for (tries = 0; tries < 5; tries++) {
1770                 temp = I915_READ(reg);
1771                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1772
1773                 if ((temp & FDI_RX_BIT_LOCK)) {
1774                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1775                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1776                         break;
1777                 }
1778         }
1779         if (tries == 5)
1780                 DRM_ERROR("FDI train 1 fail!\n");
1781
1782         /* Train 2 */
1783         reg = FDI_TX_CTL(pipe);
1784         temp = I915_READ(reg);
1785         temp &= ~FDI_LINK_TRAIN_NONE;
1786         temp |= FDI_LINK_TRAIN_PATTERN_2;
1787         I915_WRITE(reg, temp);
1788
1789         reg = FDI_RX_CTL(pipe);
1790         temp = I915_READ(reg);
1791         temp &= ~FDI_LINK_TRAIN_NONE;
1792         temp |= FDI_LINK_TRAIN_PATTERN_2;
1793         I915_WRITE(reg, temp);
1794
1795         POSTING_READ(reg);
1796         udelay(150);
1797
1798         reg = FDI_RX_IIR(pipe);
1799         for (tries = 0; tries < 5; tries++) {
1800                 temp = I915_READ(reg);
1801                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1802
1803                 if (temp & FDI_RX_SYMBOL_LOCK) {
1804                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1805                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1806                         break;
1807                 }
1808         }
1809         if (tries == 5)
1810                 DRM_ERROR("FDI train 2 fail!\n");
1811
1812         DRM_DEBUG_KMS("FDI train done\n");
1813
1814 }
1815
1816 static const int const snb_b_fdi_train_param [] = {
1817         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1818         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1819         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1820         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1821 };
1822
1823 /* The FDI link training functions for SNB/Cougarpoint. */
1824 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1825 {
1826         struct drm_device *dev = crtc->dev;
1827         struct drm_i915_private *dev_priv = dev->dev_private;
1828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1829         int pipe = intel_crtc->pipe;
1830         u32 reg, temp, i;
1831
1832         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1833            for train result */
1834         reg = FDI_RX_IMR(pipe);
1835         temp = I915_READ(reg);
1836         temp &= ~FDI_RX_SYMBOL_LOCK;
1837         temp &= ~FDI_RX_BIT_LOCK;
1838         I915_WRITE(reg, temp);
1839
1840         POSTING_READ(reg);
1841         udelay(150);
1842
1843         /* enable CPU FDI TX and PCH FDI RX */
1844         reg = FDI_TX_CTL(pipe);
1845         temp = I915_READ(reg);
1846         temp &= ~(7 << 19);
1847         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1848         temp &= ~FDI_LINK_TRAIN_NONE;
1849         temp |= FDI_LINK_TRAIN_PATTERN_1;
1850         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1851         /* SNB-B */
1852         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1853         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1854
1855         reg = FDI_RX_CTL(pipe);
1856         temp = I915_READ(reg);
1857         if (HAS_PCH_CPT(dev)) {
1858                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1859                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1860         } else {
1861                 temp &= ~FDI_LINK_TRAIN_NONE;
1862                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1863         }
1864         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1865
1866         POSTING_READ(reg);
1867         udelay(150);
1868
1869         for (i = 0; i < 4; i++ ) {
1870                 reg = FDI_TX_CTL(pipe);
1871                 temp = I915_READ(reg);
1872                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1873                 temp |= snb_b_fdi_train_param[i];
1874                 I915_WRITE(reg, temp);
1875
1876                 POSTING_READ(reg);
1877                 udelay(500);
1878
1879                 reg = FDI_RX_IIR(pipe);
1880                 temp = I915_READ(reg);
1881                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1882
1883                 if (temp & FDI_RX_BIT_LOCK) {
1884                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1885                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1886                         break;
1887                 }
1888         }
1889         if (i == 4)
1890                 DRM_ERROR("FDI train 1 fail!\n");
1891
1892         /* Train 2 */
1893         reg = FDI_TX_CTL(pipe);
1894         temp = I915_READ(reg);
1895         temp &= ~FDI_LINK_TRAIN_NONE;
1896         temp |= FDI_LINK_TRAIN_PATTERN_2;
1897         if (IS_GEN6(dev)) {
1898                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1899                 /* SNB-B */
1900                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1901         }
1902         I915_WRITE(reg, temp);
1903
1904         reg = FDI_RX_CTL(pipe);
1905         temp = I915_READ(reg);
1906         if (HAS_PCH_CPT(dev)) {
1907                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1908                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1909         } else {
1910                 temp &= ~FDI_LINK_TRAIN_NONE;
1911                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1912         }
1913         I915_WRITE(reg, temp);
1914
1915         POSTING_READ(reg);
1916         udelay(150);
1917
1918         for (i = 0; i < 4; i++ ) {
1919                 reg = FDI_TX_CTL(pipe);
1920                 temp = I915_READ(reg);
1921                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1922                 temp |= snb_b_fdi_train_param[i];
1923                 I915_WRITE(reg, temp);
1924
1925                 POSTING_READ(reg);
1926                 udelay(500);
1927
1928                 reg = FDI_RX_IIR(pipe);
1929                 temp = I915_READ(reg);
1930                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1931
1932                 if (temp & FDI_RX_SYMBOL_LOCK) {
1933                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1934                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1935                         break;
1936                 }
1937         }
1938         if (i == 4)
1939                 DRM_ERROR("FDI train 2 fail!\n");
1940
1941         DRM_DEBUG_KMS("FDI train done.\n");
1942 }
1943
1944 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1945 {
1946         struct drm_device *dev = crtc->dev;
1947         struct drm_i915_private *dev_priv = dev->dev_private;
1948         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949         int pipe = intel_crtc->pipe;
1950         u32 reg, temp;
1951
1952         /* Write the TU size bits so error detection works */
1953         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1954                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1955
1956         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1957         reg = FDI_RX_CTL(pipe);
1958         temp = I915_READ(reg);
1959         temp &= ~((0x7 << 19) | (0x7 << 16));
1960         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1961         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1962         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1963
1964         POSTING_READ(reg);
1965         udelay(200);
1966
1967         /* Switch from Rawclk to PCDclk */
1968         temp = I915_READ(reg);
1969         I915_WRITE(reg, temp | FDI_PCDCLK);
1970
1971         POSTING_READ(reg);
1972         udelay(200);
1973
1974         /* Enable CPU FDI TX PLL, always on for Ironlake */
1975         reg = FDI_TX_CTL(pipe);
1976         temp = I915_READ(reg);
1977         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1978                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1979
1980                 POSTING_READ(reg);
1981                 udelay(100);
1982         }
1983 }
1984
1985 static void intel_flush_display_plane(struct drm_device *dev,
1986                                       int plane)
1987 {
1988         struct drm_i915_private *dev_priv = dev->dev_private;
1989         u32 reg = DSPADDR(plane);
1990         I915_WRITE(reg, I915_READ(reg));
1991 }
1992
1993 /*
1994  * When we disable a pipe, we need to clear any pending scanline wait events
1995  * to avoid hanging the ring, which we assume we are waiting on.
1996  */
1997 static void intel_clear_scanline_wait(struct drm_device *dev)
1998 {
1999         struct drm_i915_private *dev_priv = dev->dev_private;
2000         struct intel_ring_buffer *ring;
2001         u32 tmp;
2002
2003         if (IS_GEN2(dev))
2004                 /* Can't break the hang on i8xx */
2005                 return;
2006
2007         ring = LP_RING(dev_priv);
2008         tmp = I915_READ_CTL(ring);
2009         if (tmp & RING_WAIT)
2010                 I915_WRITE_CTL(ring, tmp);
2011 }
2012
2013 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2014 {
2015         struct drm_i915_gem_object *obj;
2016         struct drm_i915_private *dev_priv;
2017
2018         if (crtc->fb == NULL)
2019                 return;
2020
2021         obj = to_intel_framebuffer(crtc->fb)->obj;
2022         dev_priv = crtc->dev->dev_private;
2023         wait_event(dev_priv->pending_flip_queue,
2024                    atomic_read(&obj->pending_flip) == 0);
2025 }
2026
2027 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2028 {
2029         struct drm_device *dev = crtc->dev;
2030         struct drm_i915_private *dev_priv = dev->dev_private;
2031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032         int pipe = intel_crtc->pipe;
2033         int plane = intel_crtc->plane;
2034         u32 reg, temp;
2035
2036         if (intel_crtc->active)
2037                 return;
2038
2039         intel_crtc->active = true;
2040         intel_update_watermarks(dev);
2041
2042         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2043                 temp = I915_READ(PCH_LVDS);
2044                 if ((temp & LVDS_PORT_EN) == 0)
2045                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2046         }
2047
2048         ironlake_fdi_enable(crtc);
2049
2050         /* Enable panel fitting for LVDS */
2051         if (dev_priv->pch_pf_size &&
2052             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2053                 /* Force use of hard-coded filter coefficients
2054                  * as some pre-programmed values are broken,
2055                  * e.g. x201.
2056                  */
2057                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2058                            PF_ENABLE | PF_FILTER_MED_3x3);
2059                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2060                            dev_priv->pch_pf_pos);
2061                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2062                            dev_priv->pch_pf_size);
2063         }
2064
2065         /* Enable CPU pipe */
2066         reg = PIPECONF(pipe);
2067         temp = I915_READ(reg);
2068         if ((temp & PIPECONF_ENABLE) == 0) {
2069                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2070                 POSTING_READ(reg);
2071                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2072         }
2073
2074         /* configure and enable CPU plane */
2075         reg = DSPCNTR(plane);
2076         temp = I915_READ(reg);
2077         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2078                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2079                 intel_flush_display_plane(dev, plane);
2080         }
2081
2082         /* For PCH output, training FDI link */
2083         if (IS_GEN6(dev))
2084                 gen6_fdi_link_train(crtc);
2085         else
2086                 ironlake_fdi_link_train(crtc);
2087
2088         /* enable PCH DPLL */
2089         reg = PCH_DPLL(pipe);
2090         temp = I915_READ(reg);
2091         if ((temp & DPLL_VCO_ENABLE) == 0) {
2092                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2093                 POSTING_READ(reg);
2094                 udelay(200);
2095         }
2096
2097         if (HAS_PCH_CPT(dev)) {
2098                 /* Be sure PCH DPLL SEL is set */
2099                 temp = I915_READ(PCH_DPLL_SEL);
2100                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2101                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2102                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2103                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2104                 I915_WRITE(PCH_DPLL_SEL, temp);
2105         }
2106
2107         /* set transcoder timing */
2108         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2109         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2110         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2111
2112         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2113         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2114         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2115
2116         intel_fdi_normal_train(crtc);
2117
2118         /* For PCH DP, enable TRANS_DP_CTL */
2119         if (HAS_PCH_CPT(dev) &&
2120             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2121                 reg = TRANS_DP_CTL(pipe);
2122                 temp = I915_READ(reg);
2123                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2124                           TRANS_DP_SYNC_MASK |
2125                           TRANS_DP_BPC_MASK);
2126                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2127                          TRANS_DP_ENH_FRAMING);
2128                 temp |= TRANS_DP_8BPC;
2129
2130                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2131                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2132                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2133                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2134
2135                 switch (intel_trans_dp_port_sel(crtc)) {
2136                 case PCH_DP_B:
2137                         temp |= TRANS_DP_PORT_SEL_B;
2138                         break;
2139                 case PCH_DP_C:
2140                         temp |= TRANS_DP_PORT_SEL_C;
2141                         break;
2142                 case PCH_DP_D:
2143                         temp |= TRANS_DP_PORT_SEL_D;
2144                         break;
2145                 default:
2146                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2147                         temp |= TRANS_DP_PORT_SEL_B;
2148                         break;
2149                 }
2150
2151                 I915_WRITE(reg, temp);
2152         }
2153
2154         /* enable PCH transcoder */
2155         reg = TRANSCONF(pipe);
2156         temp = I915_READ(reg);
2157         /*
2158          * make the BPC in transcoder be consistent with
2159          * that in pipeconf reg.
2160          */
2161         temp &= ~PIPE_BPC_MASK;
2162         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2163         I915_WRITE(reg, temp | TRANS_ENABLE);
2164         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2165                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2166
2167         intel_crtc_load_lut(crtc);
2168         intel_update_fbc(dev);
2169         intel_crtc_update_cursor(crtc, true);
2170 }
2171
2172 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2173 {
2174         struct drm_device *dev = crtc->dev;
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2177         int pipe = intel_crtc->pipe;
2178         int plane = intel_crtc->plane;
2179         u32 reg, temp;
2180
2181         if (!intel_crtc->active)
2182                 return;
2183
2184         intel_crtc_wait_for_pending_flips(crtc);
2185         drm_vblank_off(dev, pipe);
2186         intel_crtc_update_cursor(crtc, false);
2187
2188         /* Disable display plane */
2189         reg = DSPCNTR(plane);
2190         temp = I915_READ(reg);
2191         if (temp & DISPLAY_PLANE_ENABLE) {
2192                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2193                 intel_flush_display_plane(dev, plane);
2194         }
2195
2196         if (dev_priv->cfb_plane == plane &&
2197             dev_priv->display.disable_fbc)
2198                 dev_priv->display.disable_fbc(dev);
2199
2200         /* disable cpu pipe, disable after all planes disabled */
2201         reg = PIPECONF(pipe);
2202         temp = I915_READ(reg);
2203         if (temp & PIPECONF_ENABLE) {
2204                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2205                 POSTING_READ(reg);
2206                 /* wait for cpu pipe off, pipe state */
2207                 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2208         }
2209
2210         /* Disable PF */
2211         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2212         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2213
2214         /* disable CPU FDI tx and PCH FDI rx */
2215         reg = FDI_TX_CTL(pipe);
2216         temp = I915_READ(reg);
2217         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2218         POSTING_READ(reg);
2219
2220         reg = FDI_RX_CTL(pipe);
2221         temp = I915_READ(reg);
2222         temp &= ~(0x7 << 16);
2223         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2224         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2225
2226         POSTING_READ(reg);
2227         udelay(100);
2228
2229         /* Ironlake workaround, disable clock pointer after downing FDI */
2230         if (HAS_PCH_IBX(dev))
2231                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2232                            I915_READ(FDI_RX_CHICKEN(pipe) &
2233                                      ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2234
2235         /* still set train pattern 1 */
2236         reg = FDI_TX_CTL(pipe);
2237         temp = I915_READ(reg);
2238         temp &= ~FDI_LINK_TRAIN_NONE;
2239         temp |= FDI_LINK_TRAIN_PATTERN_1;
2240         I915_WRITE(reg, temp);
2241
2242         reg = FDI_RX_CTL(pipe);
2243         temp = I915_READ(reg);
2244         if (HAS_PCH_CPT(dev)) {
2245                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2246                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2247         } else {
2248                 temp &= ~FDI_LINK_TRAIN_NONE;
2249                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2250         }
2251         /* BPC in FDI rx is consistent with that in PIPECONF */
2252         temp &= ~(0x07 << 16);
2253         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2254         I915_WRITE(reg, temp);
2255
2256         POSTING_READ(reg);
2257         udelay(100);
2258
2259         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2260                 temp = I915_READ(PCH_LVDS);
2261                 if (temp & LVDS_PORT_EN) {
2262                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2263                         POSTING_READ(PCH_LVDS);
2264                         udelay(100);
2265                 }
2266         }
2267
2268         /* disable PCH transcoder */
2269         reg = TRANSCONF(plane);
2270         temp = I915_READ(reg);
2271         if (temp & TRANS_ENABLE) {
2272                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2273                 /* wait for PCH transcoder off, transcoder state */
2274                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2275                         DRM_ERROR("failed to disable transcoder\n");
2276         }
2277
2278         if (HAS_PCH_CPT(dev)) {
2279                 /* disable TRANS_DP_CTL */
2280                 reg = TRANS_DP_CTL(pipe);
2281                 temp = I915_READ(reg);
2282                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2283                 I915_WRITE(reg, temp);
2284
2285                 /* disable DPLL_SEL */
2286                 temp = I915_READ(PCH_DPLL_SEL);
2287                 if (pipe == 0)
2288                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2289                 else
2290                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2291                 I915_WRITE(PCH_DPLL_SEL, temp);
2292         }
2293
2294         /* disable PCH DPLL */
2295         reg = PCH_DPLL(pipe);
2296         temp = I915_READ(reg);
2297         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2298
2299         /* Switch from PCDclk to Rawclk */
2300         reg = FDI_RX_CTL(pipe);
2301         temp = I915_READ(reg);
2302         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2303
2304         /* Disable CPU FDI TX PLL */
2305         reg = FDI_TX_CTL(pipe);
2306         temp = I915_READ(reg);
2307         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2308
2309         POSTING_READ(reg);
2310         udelay(100);
2311
2312         reg = FDI_RX_CTL(pipe);
2313         temp = I915_READ(reg);
2314         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2315
2316         /* Wait for the clocks to turn off. */
2317         POSTING_READ(reg);
2318         udelay(100);
2319
2320         intel_crtc->active = false;
2321         intel_update_watermarks(dev);
2322         intel_update_fbc(dev);
2323         intel_clear_scanline_wait(dev);
2324 }
2325
2326 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2327 {
2328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2329         int pipe = intel_crtc->pipe;
2330         int plane = intel_crtc->plane;
2331
2332         /* XXX: When our outputs are all unaware of DPMS modes other than off
2333          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2334          */
2335         switch (mode) {
2336         case DRM_MODE_DPMS_ON:
2337         case DRM_MODE_DPMS_STANDBY:
2338         case DRM_MODE_DPMS_SUSPEND:
2339                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2340                 ironlake_crtc_enable(crtc);
2341                 break;
2342
2343         case DRM_MODE_DPMS_OFF:
2344                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2345                 ironlake_crtc_disable(crtc);
2346                 break;
2347         }
2348 }
2349
2350 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2351 {
2352         if (!enable && intel_crtc->overlay) {
2353                 struct drm_device *dev = intel_crtc->base.dev;
2354
2355                 mutex_lock(&dev->struct_mutex);
2356                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2357                 mutex_unlock(&dev->struct_mutex);
2358         }
2359
2360         /* Let userspace switch the overlay on again. In most cases userspace
2361          * has to recompute where to put it anyway.
2362          */
2363 }
2364
2365 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2366 {
2367         struct drm_device *dev = crtc->dev;
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2370         int pipe = intel_crtc->pipe;
2371         int plane = intel_crtc->plane;
2372         u32 reg, temp;
2373
2374         if (intel_crtc->active)
2375                 return;
2376
2377         intel_crtc->active = true;
2378         intel_update_watermarks(dev);
2379
2380         /* Enable the DPLL */
2381         reg = DPLL(pipe);
2382         temp = I915_READ(reg);
2383         if ((temp & DPLL_VCO_ENABLE) == 0) {
2384                 I915_WRITE(reg, temp);
2385
2386                 /* Wait for the clocks to stabilize. */
2387                 POSTING_READ(reg);
2388                 udelay(150);
2389
2390                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2391
2392                 /* Wait for the clocks to stabilize. */
2393                 POSTING_READ(reg);
2394                 udelay(150);
2395
2396                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2397
2398                 /* Wait for the clocks to stabilize. */
2399                 POSTING_READ(reg);
2400                 udelay(150);
2401         }
2402
2403         /* Enable the pipe */
2404         reg = PIPECONF(pipe);
2405         temp = I915_READ(reg);
2406         if ((temp & PIPECONF_ENABLE) == 0)
2407                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2408
2409         /* Enable the plane */
2410         reg = DSPCNTR(plane);
2411         temp = I915_READ(reg);
2412         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2413                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2414                 intel_flush_display_plane(dev, plane);
2415         }
2416
2417         intel_crtc_load_lut(crtc);
2418         intel_update_fbc(dev);
2419
2420         /* Give the overlay scaler a chance to enable if it's on this pipe */
2421         intel_crtc_dpms_overlay(intel_crtc, true);
2422         intel_crtc_update_cursor(crtc, true);
2423 }
2424
2425 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2426 {
2427         struct drm_device *dev = crtc->dev;
2428         struct drm_i915_private *dev_priv = dev->dev_private;
2429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2430         int pipe = intel_crtc->pipe;
2431         int plane = intel_crtc->plane;
2432         u32 reg, temp;
2433
2434         if (!intel_crtc->active)
2435                 return;
2436
2437         /* Give the overlay scaler a chance to disable if it's on this pipe */
2438         intel_crtc_wait_for_pending_flips(crtc);
2439         drm_vblank_off(dev, pipe);
2440         intel_crtc_dpms_overlay(intel_crtc, false);
2441         intel_crtc_update_cursor(crtc, false);
2442
2443         if (dev_priv->cfb_plane == plane &&
2444             dev_priv->display.disable_fbc)
2445                 dev_priv->display.disable_fbc(dev);
2446
2447         /* Disable display plane */
2448         reg = DSPCNTR(plane);
2449         temp = I915_READ(reg);
2450         if (temp & DISPLAY_PLANE_ENABLE) {
2451                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2452                 /* Flush the plane changes */
2453                 intel_flush_display_plane(dev, plane);
2454
2455                 /* Wait for vblank for the disable to take effect */
2456                 if (IS_GEN2(dev))
2457                         intel_wait_for_vblank(dev, pipe);
2458         }
2459
2460         /* Don't disable pipe A or pipe A PLLs if needed */
2461         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2462                 goto done;
2463
2464         /* Next, disable display pipes */
2465         reg = PIPECONF(pipe);
2466         temp = I915_READ(reg);
2467         if (temp & PIPECONF_ENABLE) {
2468                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2469
2470                 /* Wait for the pipe to turn off */
2471                 POSTING_READ(reg);
2472                 intel_wait_for_pipe_off(dev, pipe);
2473         }
2474
2475         reg = DPLL(pipe);
2476         temp = I915_READ(reg);
2477         if (temp & DPLL_VCO_ENABLE) {
2478                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2479
2480                 /* Wait for the clocks to turn off. */
2481                 POSTING_READ(reg);
2482                 udelay(150);
2483         }
2484
2485 done:
2486         intel_crtc->active = false;
2487         intel_update_fbc(dev);
2488         intel_update_watermarks(dev);
2489         intel_clear_scanline_wait(dev);
2490 }
2491
2492 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2493 {
2494         /* XXX: When our outputs are all unaware of DPMS modes other than off
2495          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2496          */
2497         switch (mode) {
2498         case DRM_MODE_DPMS_ON:
2499         case DRM_MODE_DPMS_STANDBY:
2500         case DRM_MODE_DPMS_SUSPEND:
2501                 i9xx_crtc_enable(crtc);
2502                 break;
2503         case DRM_MODE_DPMS_OFF:
2504                 i9xx_crtc_disable(crtc);
2505                 break;
2506         }
2507 }
2508
2509 /**
2510  * Sets the power management mode of the pipe and plane.
2511  */
2512 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2513 {
2514         struct drm_device *dev = crtc->dev;
2515         struct drm_i915_private *dev_priv = dev->dev_private;
2516         struct drm_i915_master_private *master_priv;
2517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2518         int pipe = intel_crtc->pipe;
2519         bool enabled;
2520
2521         if (intel_crtc->dpms_mode == mode)
2522                 return;
2523
2524         intel_crtc->dpms_mode = mode;
2525
2526         dev_priv->display.dpms(crtc, mode);
2527
2528         if (!dev->primary->master)
2529                 return;
2530
2531         master_priv = dev->primary->master->driver_priv;
2532         if (!master_priv->sarea_priv)
2533                 return;
2534
2535         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2536
2537         switch (pipe) {
2538         case 0:
2539                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2540                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2541                 break;
2542         case 1:
2543                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2544                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2545                 break;
2546         default:
2547                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2548                 break;
2549         }
2550 }
2551
2552 static void intel_crtc_disable(struct drm_crtc *crtc)
2553 {
2554         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2555         struct drm_device *dev = crtc->dev;
2556
2557         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2558
2559         if (crtc->fb) {
2560                 mutex_lock(&dev->struct_mutex);
2561                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2562                 mutex_unlock(&dev->struct_mutex);
2563         }
2564 }
2565
2566 /* Prepare for a mode set.
2567  *
2568  * Note we could be a lot smarter here.  We need to figure out which outputs
2569  * will be enabled, which disabled (in short, how the config will changes)
2570  * and perform the minimum necessary steps to accomplish that, e.g. updating
2571  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2572  * panel fitting is in the proper state, etc.
2573  */
2574 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2575 {
2576         i9xx_crtc_disable(crtc);
2577 }
2578
2579 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2580 {
2581         i9xx_crtc_enable(crtc);
2582 }
2583
2584 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2585 {
2586         ironlake_crtc_disable(crtc);
2587 }
2588
2589 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2590 {
2591         ironlake_crtc_enable(crtc);
2592 }
2593
2594 void intel_encoder_prepare (struct drm_encoder *encoder)
2595 {
2596         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2597         /* lvds has its own version of prepare see intel_lvds_prepare */
2598         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2599 }
2600
2601 void intel_encoder_commit (struct drm_encoder *encoder)
2602 {
2603         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2604         /* lvds has its own version of commit see intel_lvds_commit */
2605         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2606 }
2607
2608 void intel_encoder_destroy(struct drm_encoder *encoder)
2609 {
2610         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2611
2612         drm_encoder_cleanup(encoder);
2613         kfree(intel_encoder);
2614 }
2615
2616 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2617                                   struct drm_display_mode *mode,
2618                                   struct drm_display_mode *adjusted_mode)
2619 {
2620         struct drm_device *dev = crtc->dev;
2621
2622         if (HAS_PCH_SPLIT(dev)) {
2623                 /* FDI link clock is fixed at 2.7G */
2624                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2625                         return false;
2626         }
2627
2628         /* XXX some encoders set the crtcinfo, others don't.
2629          * Obviously we need some form of conflict resolution here...
2630          */
2631         if (adjusted_mode->crtc_htotal == 0)
2632                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2633
2634         return true;
2635 }
2636
2637 static int i945_get_display_clock_speed(struct drm_device *dev)
2638 {
2639         return 400000;
2640 }
2641
2642 static int i915_get_display_clock_speed(struct drm_device *dev)
2643 {
2644         return 333000;
2645 }
2646
2647 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2648 {
2649         return 200000;
2650 }
2651
2652 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2653 {
2654         u16 gcfgc = 0;
2655
2656         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2657
2658         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2659                 return 133000;
2660         else {
2661                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2662                 case GC_DISPLAY_CLOCK_333_MHZ:
2663                         return 333000;
2664                 default:
2665                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2666                         return 190000;
2667                 }
2668         }
2669 }
2670
2671 static int i865_get_display_clock_speed(struct drm_device *dev)
2672 {
2673         return 266000;
2674 }
2675
2676 static int i855_get_display_clock_speed(struct drm_device *dev)
2677 {
2678         u16 hpllcc = 0;
2679         /* Assume that the hardware is in the high speed state.  This
2680          * should be the default.
2681          */
2682         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2683         case GC_CLOCK_133_200:
2684         case GC_CLOCK_100_200:
2685                 return 200000;
2686         case GC_CLOCK_166_250:
2687                 return 250000;
2688         case GC_CLOCK_100_133:
2689                 return 133000;
2690         }
2691
2692         /* Shouldn't happen */
2693         return 0;
2694 }
2695
2696 static int i830_get_display_clock_speed(struct drm_device *dev)
2697 {
2698         return 133000;
2699 }
2700
2701 struct fdi_m_n {
2702         u32        tu;
2703         u32        gmch_m;
2704         u32        gmch_n;
2705         u32        link_m;
2706         u32        link_n;
2707 };
2708
2709 static void
2710 fdi_reduce_ratio(u32 *num, u32 *den)
2711 {
2712         while (*num > 0xffffff || *den > 0xffffff) {
2713                 *num >>= 1;
2714                 *den >>= 1;
2715         }
2716 }
2717
2718 static void
2719 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2720                      int link_clock, struct fdi_m_n *m_n)
2721 {
2722         m_n->tu = 64; /* default size */
2723
2724         /* BUG_ON(pixel_clock > INT_MAX / 36); */
2725         m_n->gmch_m = bits_per_pixel * pixel_clock;
2726         m_n->gmch_n = link_clock * nlanes * 8;
2727         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2728
2729         m_n->link_m = pixel_clock;
2730         m_n->link_n = link_clock;
2731         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2732 }
2733
2734
2735 struct intel_watermark_params {
2736         unsigned long fifo_size;
2737         unsigned long max_wm;
2738         unsigned long default_wm;
2739         unsigned long guard_size;
2740         unsigned long cacheline_size;
2741 };
2742
2743 /* Pineview has different values for various configs */
2744 static struct intel_watermark_params pineview_display_wm = {
2745         PINEVIEW_DISPLAY_FIFO,
2746         PINEVIEW_MAX_WM,
2747         PINEVIEW_DFT_WM,
2748         PINEVIEW_GUARD_WM,
2749         PINEVIEW_FIFO_LINE_SIZE
2750 };
2751 static struct intel_watermark_params pineview_display_hplloff_wm = {
2752         PINEVIEW_DISPLAY_FIFO,
2753         PINEVIEW_MAX_WM,
2754         PINEVIEW_DFT_HPLLOFF_WM,
2755         PINEVIEW_GUARD_WM,
2756         PINEVIEW_FIFO_LINE_SIZE
2757 };
2758 static struct intel_watermark_params pineview_cursor_wm = {
2759         PINEVIEW_CURSOR_FIFO,
2760         PINEVIEW_CURSOR_MAX_WM,
2761         PINEVIEW_CURSOR_DFT_WM,
2762         PINEVIEW_CURSOR_GUARD_WM,
2763         PINEVIEW_FIFO_LINE_SIZE,
2764 };
2765 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2766         PINEVIEW_CURSOR_FIFO,
2767         PINEVIEW_CURSOR_MAX_WM,
2768         PINEVIEW_CURSOR_DFT_WM,
2769         PINEVIEW_CURSOR_GUARD_WM,
2770         PINEVIEW_FIFO_LINE_SIZE
2771 };
2772 static struct intel_watermark_params g4x_wm_info = {
2773         G4X_FIFO_SIZE,
2774         G4X_MAX_WM,
2775         G4X_MAX_WM,
2776         2,
2777         G4X_FIFO_LINE_SIZE,
2778 };
2779 static struct intel_watermark_params g4x_cursor_wm_info = {
2780         I965_CURSOR_FIFO,
2781         I965_CURSOR_MAX_WM,
2782         I965_CURSOR_DFT_WM,
2783         2,
2784         G4X_FIFO_LINE_SIZE,
2785 };
2786 static struct intel_watermark_params i965_cursor_wm_info = {
2787         I965_CURSOR_FIFO,
2788         I965_CURSOR_MAX_WM,
2789         I965_CURSOR_DFT_WM,
2790         2,
2791         I915_FIFO_LINE_SIZE,
2792 };
2793 static struct intel_watermark_params i945_wm_info = {
2794         I945_FIFO_SIZE,
2795         I915_MAX_WM,
2796         1,
2797         2,
2798         I915_FIFO_LINE_SIZE
2799 };
2800 static struct intel_watermark_params i915_wm_info = {
2801         I915_FIFO_SIZE,
2802         I915_MAX_WM,
2803         1,
2804         2,
2805         I915_FIFO_LINE_SIZE
2806 };
2807 static struct intel_watermark_params i855_wm_info = {
2808         I855GM_FIFO_SIZE,
2809         I915_MAX_WM,
2810         1,
2811         2,
2812         I830_FIFO_LINE_SIZE
2813 };
2814 static struct intel_watermark_params i830_wm_info = {
2815         I830_FIFO_SIZE,
2816         I915_MAX_WM,
2817         1,
2818         2,
2819         I830_FIFO_LINE_SIZE
2820 };
2821
2822 static struct intel_watermark_params ironlake_display_wm_info = {
2823         ILK_DISPLAY_FIFO,
2824         ILK_DISPLAY_MAXWM,
2825         ILK_DISPLAY_DFTWM,
2826         2,
2827         ILK_FIFO_LINE_SIZE
2828 };
2829
2830 static struct intel_watermark_params ironlake_cursor_wm_info = {
2831         ILK_CURSOR_FIFO,
2832         ILK_CURSOR_MAXWM,
2833         ILK_CURSOR_DFTWM,
2834         2,
2835         ILK_FIFO_LINE_SIZE
2836 };
2837
2838 static struct intel_watermark_params ironlake_display_srwm_info = {
2839         ILK_DISPLAY_SR_FIFO,
2840         ILK_DISPLAY_MAX_SRWM,
2841         ILK_DISPLAY_DFT_SRWM,
2842         2,
2843         ILK_FIFO_LINE_SIZE
2844 };
2845
2846 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2847         ILK_CURSOR_SR_FIFO,
2848         ILK_CURSOR_MAX_SRWM,
2849         ILK_CURSOR_DFT_SRWM,
2850         2,
2851         ILK_FIFO_LINE_SIZE
2852 };
2853
2854 static struct intel_watermark_params sandybridge_display_wm_info = {
2855         SNB_DISPLAY_FIFO,
2856         SNB_DISPLAY_MAXWM,
2857         SNB_DISPLAY_DFTWM,
2858         2,
2859         SNB_FIFO_LINE_SIZE
2860 };
2861
2862 static struct intel_watermark_params sandybridge_cursor_wm_info = {
2863         SNB_CURSOR_FIFO,
2864         SNB_CURSOR_MAXWM,
2865         SNB_CURSOR_DFTWM,
2866         2,
2867         SNB_FIFO_LINE_SIZE
2868 };
2869
2870 static struct intel_watermark_params sandybridge_display_srwm_info = {
2871         SNB_DISPLAY_SR_FIFO,
2872         SNB_DISPLAY_MAX_SRWM,
2873         SNB_DISPLAY_DFT_SRWM,
2874         2,
2875         SNB_FIFO_LINE_SIZE
2876 };
2877
2878 static struct intel_watermark_params sandybridge_cursor_srwm_info = {
2879         SNB_CURSOR_SR_FIFO,
2880         SNB_CURSOR_MAX_SRWM,
2881         SNB_CURSOR_DFT_SRWM,
2882         2,
2883         SNB_FIFO_LINE_SIZE
2884 };
2885
2886
2887 /**
2888  * intel_calculate_wm - calculate watermark level
2889  * @clock_in_khz: pixel clock
2890  * @wm: chip FIFO params
2891  * @pixel_size: display pixel size
2892  * @latency_ns: memory latency for the platform
2893  *
2894  * Calculate the watermark level (the level at which the display plane will
2895  * start fetching from memory again).  Each chip has a different display
2896  * FIFO size and allocation, so the caller needs to figure that out and pass
2897  * in the correct intel_watermark_params structure.
2898  *
2899  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2900  * on the pixel size.  When it reaches the watermark level, it'll start
2901  * fetching FIFO line sized based chunks from memory until the FIFO fills
2902  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2903  * will occur, and a display engine hang could result.
2904  */
2905 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2906                                         struct intel_watermark_params *wm,
2907                                         int pixel_size,
2908                                         unsigned long latency_ns)
2909 {
2910         long entries_required, wm_size;
2911
2912         /*
2913          * Note: we need to make sure we don't overflow for various clock &
2914          * latency values.
2915          * clocks go from a few thousand to several hundred thousand.
2916          * latency is usually a few thousand
2917          */
2918         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2919                 1000;
2920         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2921
2922         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2923
2924         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2925
2926         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2927
2928         /* Don't promote wm_size to unsigned... */
2929         if (wm_size > (long)wm->max_wm)
2930                 wm_size = wm->max_wm;
2931         if (wm_size <= 0)
2932                 wm_size = wm->default_wm;
2933         return wm_size;
2934 }
2935
2936 struct cxsr_latency {
2937         int is_desktop;
2938         int is_ddr3;
2939         unsigned long fsb_freq;
2940         unsigned long mem_freq;
2941         unsigned long display_sr;
2942         unsigned long display_hpll_disable;
2943         unsigned long cursor_sr;
2944         unsigned long cursor_hpll_disable;
2945 };
2946
2947 static const struct cxsr_latency cxsr_latency_table[] = {
2948         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2949         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2950         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2951         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2952         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2953
2954         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2955         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2956         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2957         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2958         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2959
2960         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2961         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2962         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2963         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2964         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2965
2966         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2967         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2968         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2969         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2970         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2971
2972         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2973         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2974         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2975         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2976         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2977
2978         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2979         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2980         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2981         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2982         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2983 };
2984
2985 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2986                                                          int is_ddr3,
2987                                                          int fsb,
2988                                                          int mem)
2989 {
2990         const struct cxsr_latency *latency;
2991         int i;
2992
2993         if (fsb == 0 || mem == 0)
2994                 return NULL;
2995
2996         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2997                 latency = &cxsr_latency_table[i];
2998                 if (is_desktop == latency->is_desktop &&
2999                     is_ddr3 == latency->is_ddr3 &&
3000                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3001                         return latency;
3002         }
3003
3004         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3005
3006         return NULL;
3007 }
3008
3009 static void pineview_disable_cxsr(struct drm_device *dev)
3010 {
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012
3013         /* deactivate cxsr */
3014         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3015 }
3016
3017 /*
3018  * Latency for FIFO fetches is dependent on several factors:
3019  *   - memory configuration (speed, channels)
3020  *   - chipset
3021  *   - current MCH state
3022  * It can be fairly high in some situations, so here we assume a fairly
3023  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3024  * set this value too high, the FIFO will fetch frequently to stay full)
3025  * and power consumption (set it too low to save power and we might see
3026  * FIFO underruns and display "flicker").
3027  *
3028  * A value of 5us seems to be a good balance; safe for very low end
3029  * platforms but not overly aggressive on lower latency configs.
3030  */
3031 static const int latency_ns = 5000;
3032
3033 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3034 {
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         uint32_t dsparb = I915_READ(DSPARB);
3037         int size;
3038
3039         size = dsparb & 0x7f;
3040         if (plane)
3041                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3042
3043         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3044                       plane ? "B" : "A", size);
3045
3046         return size;
3047 }
3048
3049 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3050 {
3051         struct drm_i915_private *dev_priv = dev->dev_private;
3052         uint32_t dsparb = I915_READ(DSPARB);
3053         int size;
3054
3055         size = dsparb & 0x1ff;
3056         if (plane)
3057                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3058         size >>= 1; /* Convert to cachelines */
3059
3060         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3061                       plane ? "B" : "A", size);
3062
3063         return size;
3064 }
3065
3066 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3067 {
3068         struct drm_i915_private *dev_priv = dev->dev_private;
3069         uint32_t dsparb = I915_READ(DSPARB);
3070         int size;
3071
3072         size = dsparb & 0x7f;
3073         size >>= 2; /* Convert to cachelines */
3074
3075         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3076                       plane ? "B" : "A",
3077                       size);
3078
3079         return size;
3080 }
3081
3082 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3083 {
3084         struct drm_i915_private *dev_priv = dev->dev_private;
3085         uint32_t dsparb = I915_READ(DSPARB);
3086         int size;
3087
3088         size = dsparb & 0x7f;
3089         size >>= 1; /* Convert to cachelines */
3090
3091         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3092                       plane ? "B" : "A", size);
3093
3094         return size;
3095 }
3096
3097 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3098                                int planeb_clock, int sr_hdisplay, int unused,
3099                                int pixel_size)
3100 {
3101         struct drm_i915_private *dev_priv = dev->dev_private;
3102         const struct cxsr_latency *latency;
3103         u32 reg;
3104         unsigned long wm;
3105         int sr_clock;
3106
3107         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3108                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3109         if (!latency) {
3110                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3111                 pineview_disable_cxsr(dev);
3112                 return;
3113         }
3114
3115         if (!planea_clock || !planeb_clock) {
3116                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3117
3118                 /* Display SR */
3119                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3120                                         pixel_size, latency->display_sr);
3121                 reg = I915_READ(DSPFW1);
3122                 reg &= ~DSPFW_SR_MASK;
3123                 reg |= wm << DSPFW_SR_SHIFT;
3124                 I915_WRITE(DSPFW1, reg);
3125                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3126
3127                 /* cursor SR */
3128                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3129                                         pixel_size, latency->cursor_sr);
3130                 reg = I915_READ(DSPFW3);
3131                 reg &= ~DSPFW_CURSOR_SR_MASK;
3132                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3133                 I915_WRITE(DSPFW3, reg);
3134
3135                 /* Display HPLL off SR */
3136                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3137                                         pixel_size, latency->display_hpll_disable);
3138                 reg = I915_READ(DSPFW3);
3139                 reg &= ~DSPFW_HPLL_SR_MASK;
3140                 reg |= wm & DSPFW_HPLL_SR_MASK;
3141                 I915_WRITE(DSPFW3, reg);
3142
3143                 /* cursor HPLL off SR */
3144                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3145                                         pixel_size, latency->cursor_hpll_disable);
3146                 reg = I915_READ(DSPFW3);
3147                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3148                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3149                 I915_WRITE(DSPFW3, reg);
3150                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3151
3152                 /* activate cxsr */
3153                 I915_WRITE(DSPFW3,
3154                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3155                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3156         } else {
3157                 pineview_disable_cxsr(dev);
3158                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3159         }
3160 }
3161
3162 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3163                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3164                           int pixel_size)
3165 {
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167         int total_size, cacheline_size;
3168         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3169         struct intel_watermark_params planea_params, planeb_params;
3170         unsigned long line_time_us;
3171         int sr_clock, sr_entries = 0, entries_required;
3172
3173         /* Create copies of the base settings for each pipe */
3174         planea_params = planeb_params = g4x_wm_info;
3175
3176         /* Grab a couple of global values before we overwrite them */
3177         total_size = planea_params.fifo_size;
3178         cacheline_size = planea_params.cacheline_size;
3179
3180         /*
3181          * Note: we need to make sure we don't overflow for various clock &
3182          * latency values.
3183          * clocks go from a few thousand to several hundred thousand.
3184          * latency is usually a few thousand
3185          */
3186         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3187                 1000;
3188         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3189         planea_wm = entries_required + planea_params.guard_size;
3190
3191         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3192                 1000;
3193         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3194         planeb_wm = entries_required + planeb_params.guard_size;
3195
3196         cursora_wm = cursorb_wm = 16;
3197         cursor_sr = 32;
3198
3199         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3200
3201         /* Calc sr entries for one plane configs */
3202         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3203                 /* self-refresh has much higher latency */
3204                 static const int sr_latency_ns = 12000;
3205
3206                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3207                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3208
3209                 /* Use ns/us then divide to preserve precision */
3210                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3211                         pixel_size * sr_hdisplay;
3212                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3213
3214                 entries_required = (((sr_latency_ns / line_time_us) +
3215                                      1000) / 1000) * pixel_size * 64;
3216                 entries_required = DIV_ROUND_UP(entries_required,
3217                                                 g4x_cursor_wm_info.cacheline_size);
3218                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3219
3220                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3221                         cursor_sr = g4x_cursor_wm_info.max_wm;
3222                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3223                               "cursor %d\n", sr_entries, cursor_sr);
3224
3225                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3226         } else {
3227                 /* Turn off self refresh if both pipes are enabled */
3228                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3229                            & ~FW_BLC_SELF_EN);
3230         }
3231
3232         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3233                   planea_wm, planeb_wm, sr_entries);
3234
3235         planea_wm &= 0x3f;
3236         planeb_wm &= 0x3f;
3237
3238         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3239                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3240                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3241         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3242                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3243         /* HPLL off in SR has some issues on G4x... disable it */
3244         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3245                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3246 }
3247
3248 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3249                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3250                            int pixel_size)
3251 {
3252         struct drm_i915_private *dev_priv = dev->dev_private;
3253         unsigned long line_time_us;
3254         int sr_clock, sr_entries, srwm = 1;
3255         int cursor_sr = 16;
3256
3257         /* Calc sr entries for one plane configs */
3258         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3259                 /* self-refresh has much higher latency */
3260                 static const int sr_latency_ns = 12000;
3261
3262                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3263                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3264
3265                 /* Use ns/us then divide to preserve precision */
3266                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3267                         pixel_size * sr_hdisplay;
3268                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3269                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3270                 srwm = I965_FIFO_SIZE - sr_entries;
3271                 if (srwm < 0)
3272                         srwm = 1;
3273                 srwm &= 0x1ff;
3274
3275                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3276                         pixel_size * 64;
3277                 sr_entries = DIV_ROUND_UP(sr_entries,
3278                                           i965_cursor_wm_info.cacheline_size);
3279                 cursor_sr = i965_cursor_wm_info.fifo_size -
3280                         (sr_entries + i965_cursor_wm_info.guard_size);
3281
3282                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3283                         cursor_sr = i965_cursor_wm_info.max_wm;
3284
3285                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3286                               "cursor %d\n", srwm, cursor_sr);
3287
3288                 if (IS_CRESTLINE(dev))
3289                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3290         } else {
3291                 /* Turn off self refresh if both pipes are enabled */
3292                 if (IS_CRESTLINE(dev))
3293                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3294                                    & ~FW_BLC_SELF_EN);
3295         }
3296
3297         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3298                       srwm);
3299
3300         /* 965 has limitations... */
3301         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3302                    (8 << 0));
3303         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3304         /* update cursor SR watermark */
3305         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3306 }
3307
3308 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3309                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3310                            int pixel_size)
3311 {
3312         struct drm_i915_private *dev_priv = dev->dev_private;
3313         uint32_t fwater_lo;
3314         uint32_t fwater_hi;
3315         int total_size, cacheline_size, cwm, srwm = 1;
3316         int planea_wm, planeb_wm;
3317         struct intel_watermark_params planea_params, planeb_params;
3318         unsigned long line_time_us;
3319         int sr_clock, sr_entries = 0;
3320
3321         /* Create copies of the base settings for each pipe */
3322         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3323                 planea_params = planeb_params = i945_wm_info;
3324         else if (!IS_GEN2(dev))
3325                 planea_params = planeb_params = i915_wm_info;
3326         else
3327                 planea_params = planeb_params = i855_wm_info;
3328
3329         /* Grab a couple of global values before we overwrite them */
3330         total_size = planea_params.fifo_size;
3331         cacheline_size = planea_params.cacheline_size;
3332
3333         /* Update per-plane FIFO sizes */
3334         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3335         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3336
3337         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3338                                        pixel_size, latency_ns);
3339         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3340                                        pixel_size, latency_ns);
3341         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3342
3343         /*
3344          * Overlay gets an aggressive default since video jitter is bad.
3345          */
3346         cwm = 2;
3347
3348         /* Calc sr entries for one plane configs */
3349         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3350             (!planea_clock || !planeb_clock)) {
3351                 /* self-refresh has much higher latency */
3352                 static const int sr_latency_ns = 6000;
3353
3354                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3355                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3356
3357                 /* Use ns/us then divide to preserve precision */
3358                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3359                         pixel_size * sr_hdisplay;
3360                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3361                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3362                 srwm = total_size - sr_entries;
3363                 if (srwm < 0)
3364                         srwm = 1;
3365
3366                 if (IS_I945G(dev) || IS_I945GM(dev))
3367                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3368                 else if (IS_I915GM(dev)) {
3369                         /* 915M has a smaller SRWM field */
3370                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3371                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3372                 }
3373         } else {
3374                 /* Turn off self refresh if both pipes are enabled */
3375                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3376                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3377                                    & ~FW_BLC_SELF_EN);
3378                 } else if (IS_I915GM(dev)) {
3379                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3380                 }
3381         }
3382
3383         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3384                       planea_wm, planeb_wm, cwm, srwm);
3385
3386         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3387         fwater_hi = (cwm & 0x1f);
3388
3389         /* Set request length to 8 cachelines per fetch */
3390         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3391         fwater_hi = fwater_hi | (1 << 8);
3392
3393         I915_WRITE(FW_BLC, fwater_lo);
3394         I915_WRITE(FW_BLC2, fwater_hi);
3395 }
3396
3397 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3398                            int unused2, int unused3, int pixel_size)
3399 {
3400         struct drm_i915_private *dev_priv = dev->dev_private;
3401         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3402         int planea_wm;
3403
3404         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3405
3406         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3407                                        pixel_size, latency_ns);
3408         fwater_lo |= (3<<8) | planea_wm;
3409
3410         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3411
3412         I915_WRITE(FW_BLC, fwater_lo);
3413 }
3414
3415 #define ILK_LP0_PLANE_LATENCY           700
3416 #define ILK_LP0_CURSOR_LATENCY          1300
3417
3418 static bool ironlake_compute_wm0(struct drm_device *dev,
3419                                  int pipe,
3420                                  const struct intel_watermark_params *display,
3421                                  int display_latency_ns,
3422                                  const struct intel_watermark_params *cursor,
3423                                  int cursor_latency_ns,
3424                                  int *plane_wm,
3425                                  int *cursor_wm)
3426 {
3427         struct drm_crtc *crtc;
3428         int htotal, hdisplay, clock, pixel_size;
3429         int line_time_us, line_count;
3430         int entries, tlb_miss;
3431
3432         crtc = intel_get_crtc_for_pipe(dev, pipe);
3433         if (crtc->fb == NULL || !crtc->enabled)
3434                 return false;
3435
3436         htotal = crtc->mode.htotal;
3437         hdisplay = crtc->mode.hdisplay;
3438         clock = crtc->mode.clock;
3439         pixel_size = crtc->fb->bits_per_pixel / 8;
3440
3441         /* Use the small buffer method to calculate plane watermark */
3442         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3443         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3444         if (tlb_miss > 0)
3445                 entries += tlb_miss;
3446         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3447         *plane_wm = entries + display->guard_size;
3448         if (*plane_wm > (int)display->max_wm)
3449                 *plane_wm = display->max_wm;
3450
3451         /* Use the large buffer method to calculate cursor watermark */
3452         line_time_us = ((htotal * 1000) / clock);
3453         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3454         entries = line_count * 64 * pixel_size;
3455         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3456         if (tlb_miss > 0)
3457                 entries += tlb_miss;
3458         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3459         *cursor_wm = entries + cursor->guard_size;
3460         if (*cursor_wm > (int)cursor->max_wm)
3461                 *cursor_wm = (int)cursor->max_wm;
3462
3463         return true;
3464 }
3465
3466 /*
3467  * Check the wm result.
3468  *
3469  * If any calculated watermark values is larger than the maximum value that
3470  * can be programmed into the associated watermark register, that watermark
3471  * must be disabled.
3472  */
3473 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3474                                 int fbc_wm, int display_wm, int cursor_wm,
3475                                 const struct intel_watermark_params *display,
3476                                 const struct intel_watermark_params *cursor)
3477 {
3478         struct drm_i915_private *dev_priv = dev->dev_private;
3479
3480         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
3481                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
3482
3483         if (fbc_wm > SNB_FBC_MAX_SRWM) {
3484                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
3485                               fbc_wm, SNB_FBC_MAX_SRWM, level);
3486
3487                 /* fbc has it's own way to disable FBC WM */
3488                 I915_WRITE(DISP_ARB_CTL,
3489                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
3490                 return false;
3491         }
3492
3493         if (display_wm > display->max_wm) {
3494                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
3495                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
3496                 return false;
3497         }
3498
3499         if (cursor_wm > cursor->max_wm) {
3500                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
3501                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
3502                 return false;
3503         }
3504
3505         if (!(fbc_wm || display_wm || cursor_wm)) {
3506                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
3507                 return false;
3508         }
3509
3510         return true;
3511 }
3512
3513 /*
3514  * Compute watermark values of WM[1-3],
3515  */
3516 static bool ironlake_compute_srwm(struct drm_device *dev, int level,
3517                                   int hdisplay, int htotal,
3518                                   int pixel_size, int clock, int latency_ns,
3519                                   const struct intel_watermark_params *display,
3520                                   const struct intel_watermark_params *cursor,
3521                                   int *fbc_wm, int *display_wm, int *cursor_wm)
3522 {
3523
3524         unsigned long line_time_us;
3525         int line_count, line_size;
3526         int small, large;
3527         int entries;
3528
3529         if (!latency_ns) {
3530                 *fbc_wm = *display_wm = *cursor_wm = 0;
3531                 return false;
3532         }
3533
3534         line_time_us = (htotal * 1000) / clock;
3535         line_count = (latency_ns / line_time_us + 1000) / 1000;
3536         line_size = hdisplay * pixel_size;
3537
3538         /* Use the minimum of the small and large buffer method for primary */
3539         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3540         large = line_count * line_size;
3541
3542         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3543         *display_wm = entries + display->guard_size;
3544
3545         /*
3546          * Spec says:
3547          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
3548          */
3549         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
3550
3551         /* calculate the self-refresh watermark for display cursor */
3552         entries = line_count * pixel_size * 64;
3553         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3554         *cursor_wm = entries + cursor->guard_size;
3555
3556         return ironlake_check_srwm(dev, level,
3557                                    *fbc_wm, *display_wm, *cursor_wm,
3558                                    display, cursor);
3559 }
3560
3561 static void ironlake_update_wm(struct drm_device *dev,
3562                                int planea_clock, int planeb_clock,
3563                                int hdisplay, int htotal,
3564                                int pixel_size)
3565 {
3566         struct drm_i915_private *dev_priv = dev->dev_private;
3567         int fbc_wm, plane_wm, cursor_wm, enabled;
3568         int clock;
3569
3570         enabled = 0;
3571         if (ironlake_compute_wm0(dev, 0,
3572                                  &ironlake_display_wm_info,
3573                                  ILK_LP0_PLANE_LATENCY,
3574                                  &ironlake_cursor_wm_info,
3575                                  ILK_LP0_CURSOR_LATENCY,
3576                                  &plane_wm, &cursor_wm)) {
3577                 I915_WRITE(WM0_PIPEA_ILK,
3578                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3579                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3580                               " plane %d, " "cursor: %d\n",
3581                               plane_wm, cursor_wm);
3582                 enabled++;
3583         }
3584
3585         if (ironlake_compute_wm0(dev, 1,
3586                                  &ironlake_display_wm_info,
3587                                  ILK_LP0_PLANE_LATENCY,
3588                                  &ironlake_cursor_wm_info,
3589                                  ILK_LP0_CURSOR_LATENCY,
3590                                  &plane_wm, &cursor_wm)) {
3591                 I915_WRITE(WM0_PIPEB_ILK,
3592                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3593                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3594                               " plane %d, cursor: %d\n",
3595                               plane_wm, cursor_wm);
3596                 enabled++;
3597         }
3598
3599         /*
3600          * Calculate and update the self-refresh watermark only when one
3601          * display plane is used.
3602          */
3603         I915_WRITE(WM3_LP_ILK, 0);
3604         I915_WRITE(WM2_LP_ILK, 0);
3605         I915_WRITE(WM1_LP_ILK, 0);
3606
3607         if (enabled != 1)
3608                 return;
3609
3610         clock = planea_clock ? planea_clock : planeb_clock;
3611
3612         /* WM1 */
3613         if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
3614                                    clock, ILK_READ_WM1_LATENCY() * 500,
3615                                    &ironlake_display_srwm_info,
3616                                    &ironlake_cursor_srwm_info,
3617                                    &fbc_wm, &plane_wm, &cursor_wm))
3618                 return;
3619
3620         I915_WRITE(WM1_LP_ILK,
3621                    WM1_LP_SR_EN |
3622                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3623                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3624                    (plane_wm << WM1_LP_SR_SHIFT) |
3625                    cursor_wm);
3626
3627         /* WM2 */
3628         if (!ironlake_compute_srwm(dev, 2, hdisplay, htotal, pixel_size,
3629                                    clock, ILK_READ_WM2_LATENCY() * 500,
3630                                    &ironlake_display_srwm_info,
3631                                    &ironlake_cursor_srwm_info,
3632                                    &fbc_wm, &plane_wm, &cursor_wm))
3633                 return;
3634
3635         I915_WRITE(WM2_LP_ILK,
3636                    WM2_LP_EN |
3637                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3638                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3639                    (plane_wm << WM1_LP_SR_SHIFT) |
3640                    cursor_wm);
3641
3642         /*
3643          * WM3 is unsupported on ILK, probably because we don't have latency
3644          * data for that power state
3645          */
3646 }
3647
3648 static void sandybridge_update_wm(struct drm_device *dev,
3649                                int planea_clock, int planeb_clock,
3650                                int hdisplay, int htotal,
3651                                int pixel_size)
3652 {
3653         struct drm_i915_private *dev_priv = dev->dev_private;
3654         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
3655         int fbc_wm, plane_wm, cursor_wm, enabled;
3656         int clock;
3657
3658         enabled = 0;
3659         if (ironlake_compute_wm0(dev, 0,
3660                                  &sandybridge_display_wm_info, latency,
3661                                  &sandybridge_cursor_wm_info, latency,
3662                                  &plane_wm, &cursor_wm)) {
3663                 I915_WRITE(WM0_PIPEA_ILK,
3664                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3665                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3666                               " plane %d, " "cursor: %d\n",
3667                               plane_wm, cursor_wm);
3668                 enabled++;
3669         }
3670
3671         if (ironlake_compute_wm0(dev, 1,
3672                                  &sandybridge_display_wm_info, latency,
3673                                  &sandybridge_cursor_wm_info, latency,
3674                                  &plane_wm, &cursor_wm)) {
3675                 I915_WRITE(WM0_PIPEB_ILK,
3676                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3677                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3678                               " plane %d, cursor: %d\n",
3679                               plane_wm, cursor_wm);
3680                 enabled++;
3681         }
3682
3683         /*
3684          * Calculate and update the self-refresh watermark only when one
3685          * display plane is used.
3686          *
3687          * SNB support 3 levels of watermark.
3688          *
3689          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
3690          * and disabled in the descending order
3691          *
3692          */
3693         I915_WRITE(WM3_LP_ILK, 0);
3694         I915_WRITE(WM2_LP_ILK, 0);
3695         I915_WRITE(WM1_LP_ILK, 0);
3696
3697         if (enabled != 1)
3698                 return;
3699
3700         clock = planea_clock ? planea_clock : planeb_clock;
3701
3702         /* WM1 */
3703         if (!ironlake_compute_srwm(dev, 1, hdisplay, htotal, pixel_size,
3704                                    clock, SNB_READ_WM1_LATENCY() * 500,
3705                                    &sandybridge_display_srwm_info,
3706                                    &sandybridge_cursor_srwm_info,
3707                                    &fbc_wm, &plane_wm, &cursor_wm))
3708                 return;
3709
3710         I915_WRITE(WM1_LP_ILK,
3711                    WM1_LP_SR_EN |
3712                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3713                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3714                    (plane_wm << WM1_LP_SR_SHIFT) |
3715                    cursor_wm);
3716
3717         /* WM2 */
3718         if (!ironlake_compute_srwm(dev, 2,
3719                                    hdisplay, htotal, pixel_size,
3720                                    clock, SNB_READ_WM2_LATENCY() * 500,
3721                                    &sandybridge_display_srwm_info,
3722                                    &sandybridge_cursor_srwm_info,
3723                                    &fbc_wm, &plane_wm, &cursor_wm))
3724                 return;
3725
3726         I915_WRITE(WM2_LP_ILK,
3727                    WM2_LP_EN |
3728                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3729                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3730                    (plane_wm << WM1_LP_SR_SHIFT) |
3731                    cursor_wm);
3732
3733         /* WM3 */
3734         if (!ironlake_compute_srwm(dev, 3,
3735                                    hdisplay, htotal, pixel_size,
3736                                    clock, SNB_READ_WM3_LATENCY() * 500,
3737                                    &sandybridge_display_srwm_info,
3738                                    &sandybridge_cursor_srwm_info,
3739                                    &fbc_wm, &plane_wm, &cursor_wm))
3740                 return;
3741
3742         I915_WRITE(WM3_LP_ILK,
3743                    WM3_LP_EN |
3744                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
3745                    (fbc_wm << WM1_LP_FBC_SHIFT) |
3746                    (plane_wm << WM1_LP_SR_SHIFT) |
3747                    cursor_wm);
3748 }
3749
3750 /**
3751  * intel_update_watermarks - update FIFO watermark values based on current modes
3752  *
3753  * Calculate watermark values for the various WM regs based on current mode
3754  * and plane configuration.
3755  *
3756  * There are several cases to deal with here:
3757  *   - normal (i.e. non-self-refresh)
3758  *   - self-refresh (SR) mode
3759  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3760  *   - lines are small relative to FIFO size (buffer can hold more than 2
3761  *     lines), so need to account for TLB latency
3762  *
3763  *   The normal calculation is:
3764  *     watermark = dotclock * bytes per pixel * latency
3765  *   where latency is platform & configuration dependent (we assume pessimal
3766  *   values here).
3767  *
3768  *   The SR calculation is:
3769  *     watermark = (trunc(latency/line time)+1) * surface width *
3770  *       bytes per pixel
3771  *   where
3772  *     line time = htotal / dotclock
3773  *     surface width = hdisplay for normal plane and 64 for cursor
3774  *   and latency is assumed to be high, as above.
3775  *
3776  * The final value programmed to the register should always be rounded up,
3777  * and include an extra 2 entries to account for clock crossings.
3778  *
3779  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3780  * to set the non-SR watermarks to 8.
3781  */
3782 static void intel_update_watermarks(struct drm_device *dev)
3783 {
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         struct drm_crtc *crtc;
3786         int sr_hdisplay = 0;
3787         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3788         int enabled = 0, pixel_size = 0;
3789         int sr_htotal = 0;
3790
3791         if (!dev_priv->display.update_wm)
3792                 return;
3793
3794         /* Get the clock config from both planes */
3795         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3796                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797                 if (intel_crtc->active) {
3798                         enabled++;
3799                         if (intel_crtc->plane == 0) {
3800                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3801                                               intel_crtc->pipe, crtc->mode.clock);
3802                                 planea_clock = crtc->mode.clock;
3803                         } else {
3804                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3805                                               intel_crtc->pipe, crtc->mode.clock);
3806                                 planeb_clock = crtc->mode.clock;
3807                         }
3808                         sr_hdisplay = crtc->mode.hdisplay;
3809                         sr_clock = crtc->mode.clock;
3810                         sr_htotal = crtc->mode.htotal;
3811                         if (crtc->fb)
3812                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3813                         else
3814                                 pixel_size = 4; /* by default */
3815                 }
3816         }
3817
3818         if (enabled <= 0)
3819                 return;
3820
3821         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3822                                     sr_hdisplay, sr_htotal, pixel_size);
3823 }
3824
3825 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3826                                struct drm_display_mode *mode,
3827                                struct drm_display_mode *adjusted_mode,
3828                                int x, int y,
3829                                struct drm_framebuffer *old_fb)
3830 {
3831         struct drm_device *dev = crtc->dev;
3832         struct drm_i915_private *dev_priv = dev->dev_private;
3833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3834         int pipe = intel_crtc->pipe;
3835         int plane = intel_crtc->plane;
3836         u32 fp_reg, dpll_reg;
3837         int refclk, num_connectors = 0;
3838         intel_clock_t clock, reduced_clock;
3839         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3840         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3841         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3842         struct intel_encoder *has_edp_encoder = NULL;
3843         struct drm_mode_config *mode_config = &dev->mode_config;
3844         struct intel_encoder *encoder;
3845         const intel_limit_t *limit;
3846         int ret;
3847         struct fdi_m_n m_n = {0};
3848         u32 reg, temp;
3849         int target_clock;
3850
3851         drm_vblank_pre_modeset(dev, pipe);
3852
3853         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3854                 if (encoder->base.crtc != crtc)
3855                         continue;
3856
3857                 switch (encoder->type) {
3858                 case INTEL_OUTPUT_LVDS:
3859                         is_lvds = true;
3860                         break;
3861                 case INTEL_OUTPUT_SDVO:
3862                 case INTEL_OUTPUT_HDMI:
3863                         is_sdvo = true;
3864                         if (encoder->needs_tv_clock)
3865                                 is_tv = true;
3866                         break;
3867                 case INTEL_OUTPUT_DVO:
3868                         is_dvo = true;
3869                         break;
3870                 case INTEL_OUTPUT_TVOUT:
3871                         is_tv = true;
3872                         break;
3873                 case INTEL_OUTPUT_ANALOG:
3874                         is_crt = true;
3875                         break;
3876                 case INTEL_OUTPUT_DISPLAYPORT:
3877                         is_dp = true;
3878                         break;
3879                 case INTEL_OUTPUT_EDP:
3880                         has_edp_encoder = encoder;
3881                         break;
3882                 }
3883
3884                 num_connectors++;
3885         }
3886
3887         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3888                 refclk = dev_priv->lvds_ssc_freq * 1000;
3889                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3890                               refclk / 1000);
3891         } else if (!IS_GEN2(dev)) {
3892                 refclk = 96000;
3893                 if (HAS_PCH_SPLIT(dev) &&
3894                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3895                         refclk = 120000; /* 120Mhz refclk */
3896         } else {
3897                 refclk = 48000;
3898         }
3899
3900         /*
3901          * Returns a set of divisors for the desired target clock with the given
3902          * refclk, or FALSE.  The returned values represent the clock equation:
3903          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3904          */
3905         limit = intel_limit(crtc, refclk);
3906         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3907         if (!ok) {
3908                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3909                 drm_vblank_post_modeset(dev, pipe);
3910                 return -EINVAL;
3911         }
3912
3913         /* Ensure that the cursor is valid for the new mode before changing... */
3914         intel_crtc_update_cursor(crtc, true);
3915
3916         if (is_lvds && dev_priv->lvds_downclock_avail) {
3917                 has_reduced_clock = limit->find_pll(limit, crtc,
3918                                                     dev_priv->lvds_downclock,
3919                                                     refclk,
3920                                                     &reduced_clock);
3921                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3922                         /*
3923                          * If the different P is found, it means that we can't
3924                          * switch the display clock by using the FP0/FP1.
3925                          * In such case we will disable the LVDS downclock
3926                          * feature.
3927                          */
3928                         DRM_DEBUG_KMS("Different P is found for "
3929                                       "LVDS clock/downclock\n");
3930                         has_reduced_clock = 0;
3931                 }
3932         }
3933         /* SDVO TV has fixed PLL values depend on its clock range,
3934            this mirrors vbios setting. */
3935         if (is_sdvo && is_tv) {
3936                 if (adjusted_mode->clock >= 100000
3937                     && adjusted_mode->clock < 140500) {
3938                         clock.p1 = 2;
3939                         clock.p2 = 10;
3940                         clock.n = 3;
3941                         clock.m1 = 16;
3942                         clock.m2 = 8;
3943                 } else if (adjusted_mode->clock >= 140500
3944                            && adjusted_mode->clock <= 200000) {
3945                         clock.p1 = 1;
3946                         clock.p2 = 10;
3947                         clock.n = 6;
3948                         clock.m1 = 12;
3949                         clock.m2 = 8;
3950                 }
3951         }
3952
3953         /* FDI link */
3954         if (HAS_PCH_SPLIT(dev)) {
3955                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3956                 int lane = 0, link_bw, bpp;
3957                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3958                    according to current link config */
3959                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3960                         target_clock = mode->clock;
3961                         intel_edp_link_config(has_edp_encoder,
3962                                               &lane, &link_bw);
3963                 } else {
3964                         /* [e]DP over FDI requires target mode clock
3965                            instead of link clock */
3966                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3967                                 target_clock = mode->clock;
3968                         else
3969                                 target_clock = adjusted_mode->clock;
3970
3971                         /* FDI is a binary signal running at ~2.7GHz, encoding
3972                          * each output octet as 10 bits. The actual frequency
3973                          * is stored as a divider into a 100MHz clock, and the
3974                          * mode pixel clock is stored in units of 1KHz.
3975                          * Hence the bw of each lane in terms of the mode signal
3976                          * is:
3977                          */
3978                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3979                 }
3980
3981                 /* determine panel color depth */
3982                 temp = I915_READ(PIPECONF(pipe));
3983                 temp &= ~PIPE_BPC_MASK;
3984                 if (is_lvds) {
3985                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3986                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3987                                 temp |= PIPE_8BPC;
3988                         else
3989                                 temp |= PIPE_6BPC;
3990                 } else if (has_edp_encoder) {
3991                         switch (dev_priv->edp.bpp/3) {
3992                         case 8:
3993                                 temp |= PIPE_8BPC;
3994                                 break;
3995                         case 10:
3996                                 temp |= PIPE_10BPC;
3997                                 break;
3998                         case 6:
3999                                 temp |= PIPE_6BPC;
4000                                 break;
4001                         case 12:
4002                                 temp |= PIPE_12BPC;
4003                                 break;
4004                         }
4005                 } else
4006                         temp |= PIPE_8BPC;
4007                 I915_WRITE(PIPECONF(pipe), temp);
4008
4009                 switch (temp & PIPE_BPC_MASK) {
4010                 case PIPE_8BPC:
4011                         bpp = 24;
4012                         break;
4013                 case PIPE_10BPC:
4014                         bpp = 30;
4015                         break;
4016                 case PIPE_6BPC:
4017                         bpp = 18;
4018                         break;
4019                 case PIPE_12BPC:
4020                         bpp = 36;
4021                         break;
4022                 default:
4023                         DRM_ERROR("unknown pipe bpc value\n");
4024                         bpp = 24;
4025                 }
4026
4027                 if (!lane) {
4028                         /* 
4029                          * Account for spread spectrum to avoid
4030                          * oversubscribing the link. Max center spread
4031                          * is 2.5%; use 5% for safety's sake.
4032                          */
4033                         u32 bps = target_clock * bpp * 21 / 20;
4034                         lane = bps / (link_bw * 8) + 1;
4035                 }
4036
4037                 intel_crtc->fdi_lanes = lane;
4038
4039                 if (pixel_multiplier > 1)
4040                         link_bw *= pixel_multiplier;
4041                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4042         }
4043
4044         /* Ironlake: try to setup display ref clock before DPLL
4045          * enabling. This is only under driver's control after
4046          * PCH B stepping, previous chipset stepping should be
4047          * ignoring this setting.
4048          */
4049         if (HAS_PCH_SPLIT(dev)) {
4050                 temp = I915_READ(PCH_DREF_CONTROL);
4051                 /* Always enable nonspread source */
4052                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4053                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4054                 temp &= ~DREF_SSC_SOURCE_MASK;
4055                 temp |= DREF_SSC_SOURCE_ENABLE;
4056                 I915_WRITE(PCH_DREF_CONTROL, temp);
4057
4058                 POSTING_READ(PCH_DREF_CONTROL);
4059                 udelay(200);
4060
4061                 if (has_edp_encoder) {
4062                         if (dev_priv->lvds_use_ssc) {
4063                                 temp |= DREF_SSC1_ENABLE;
4064                                 I915_WRITE(PCH_DREF_CONTROL, temp);
4065
4066                                 POSTING_READ(PCH_DREF_CONTROL);
4067                                 udelay(200);
4068                         }
4069                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4070
4071                         /* Enable CPU source on CPU attached eDP */
4072                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4073                                 if (dev_priv->lvds_use_ssc)
4074                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4075                                 else
4076                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4077                         } else {
4078                                 /* Enable SSC on PCH eDP if needed */
4079                                 if (dev_priv->lvds_use_ssc) {
4080                                         DRM_ERROR("enabling SSC on PCH\n");
4081                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4082                                 }
4083                         }
4084                         I915_WRITE(PCH_DREF_CONTROL, temp);
4085                         POSTING_READ(PCH_DREF_CONTROL);
4086                         udelay(200);
4087                 }
4088         }
4089
4090         if (IS_PINEVIEW(dev)) {
4091                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4092                 if (has_reduced_clock)
4093                         fp2 = (1 << reduced_clock.n) << 16 |
4094                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4095         } else {
4096                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4097                 if (has_reduced_clock)
4098                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4099                                 reduced_clock.m2;
4100         }
4101
4102         /* Enable autotuning of the PLL clock (if permissible) */
4103         if (HAS_PCH_SPLIT(dev)) {
4104                 int factor = 21;
4105
4106                 if (is_lvds) {
4107                         if ((dev_priv->lvds_use_ssc &&
4108                              dev_priv->lvds_ssc_freq == 100) ||
4109                             (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4110                                 factor = 25;
4111                 } else if (is_sdvo && is_tv)
4112                         factor = 20;
4113
4114                 if (clock.m1 < factor * clock.n)
4115                         fp |= FP_CB_TUNE;
4116         }
4117
4118         dpll = 0;
4119         if (!HAS_PCH_SPLIT(dev))
4120                 dpll = DPLL_VGA_MODE_DIS;
4121
4122         if (!IS_GEN2(dev)) {
4123                 if (is_lvds)
4124                         dpll |= DPLLB_MODE_LVDS;
4125                 else
4126                         dpll |= DPLLB_MODE_DAC_SERIAL;
4127                 if (is_sdvo) {
4128                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4129                         if (pixel_multiplier > 1) {
4130                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4131                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4132                                 else if (HAS_PCH_SPLIT(dev))
4133                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4134                         }
4135                         dpll |= DPLL_DVO_HIGH_SPEED;
4136                 }
4137                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4138                         dpll |= DPLL_DVO_HIGH_SPEED;
4139
4140                 /* compute bitmask from p1 value */
4141                 if (IS_PINEVIEW(dev))
4142                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4143                 else {
4144                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4145                         /* also FPA1 */
4146                         if (HAS_PCH_SPLIT(dev))
4147                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4148                         if (IS_G4X(dev) && has_reduced_clock)
4149                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4150                 }
4151                 switch (clock.p2) {
4152                 case 5:
4153                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4154                         break;
4155                 case 7:
4156                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4157                         break;
4158                 case 10:
4159                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4160                         break;
4161                 case 14:
4162                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4163                         break;
4164                 }
4165                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
4166                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4167         } else {
4168                 if (is_lvds) {
4169                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4170                 } else {
4171                         if (clock.p1 == 2)
4172                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4173                         else
4174                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4175                         if (clock.p2 == 4)
4176                                 dpll |= PLL_P2_DIVIDE_BY_4;
4177                 }
4178         }
4179
4180         if (is_sdvo && is_tv)
4181                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4182         else if (is_tv)
4183                 /* XXX: just matching BIOS for now */
4184                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4185                 dpll |= 3;
4186         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
4187                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4188         else
4189                 dpll |= PLL_REF_INPUT_DREFCLK;
4190
4191         /* setup pipeconf */
4192         pipeconf = I915_READ(PIPECONF(pipe));
4193
4194         /* Set up the display plane register */
4195         dspcntr = DISPPLANE_GAMMA_ENABLE;
4196
4197         /* Ironlake's plane is forced to pipe, bit 24 is to
4198            enable color space conversion */
4199         if (!HAS_PCH_SPLIT(dev)) {
4200                 if (pipe == 0)
4201                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4202                 else
4203                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4204         }
4205
4206         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4207                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4208                  * core speed.
4209                  *
4210                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4211                  * pipe == 0 check?
4212                  */
4213                 if (mode->clock >
4214                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4215                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4216                 else
4217                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4218         }
4219
4220         dspcntr |= DISPLAY_PLANE_ENABLE;
4221         pipeconf |= PIPECONF_ENABLE;
4222         dpll |= DPLL_VCO_ENABLE;
4223
4224         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4225         drm_mode_debug_printmodeline(mode);
4226
4227         /* assign to Ironlake registers */
4228         if (HAS_PCH_SPLIT(dev)) {
4229                 fp_reg = PCH_FP0(pipe);
4230                 dpll_reg = PCH_DPLL(pipe);
4231         } else {
4232                 fp_reg = FP0(pipe);
4233                 dpll_reg = DPLL(pipe);
4234         }
4235
4236         /* PCH eDP needs FDI, but CPU eDP does not */
4237         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4238                 I915_WRITE(fp_reg, fp);
4239                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
4240
4241                 POSTING_READ(dpll_reg);
4242                 udelay(150);
4243         }
4244
4245         /* enable transcoder DPLL */
4246         if (HAS_PCH_CPT(dev)) {
4247                 temp = I915_READ(PCH_DPLL_SEL);
4248                 if (pipe == 0)
4249                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4250                 else
4251                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4252                 I915_WRITE(PCH_DPLL_SEL, temp);
4253
4254                 POSTING_READ(PCH_DPLL_SEL);
4255                 udelay(150);
4256         }
4257
4258         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4259          * This is an exception to the general rule that mode_set doesn't turn
4260          * things on.
4261          */
4262         if (is_lvds) {
4263                 reg = LVDS;
4264                 if (HAS_PCH_SPLIT(dev))
4265                         reg = PCH_LVDS;
4266
4267                 temp = I915_READ(reg);
4268                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4269                 if (pipe == 1) {
4270                         if (HAS_PCH_CPT(dev))
4271                                 temp |= PORT_TRANS_B_SEL_CPT;
4272                         else
4273                                 temp |= LVDS_PIPEB_SELECT;
4274                 } else {
4275                         if (HAS_PCH_CPT(dev))
4276                                 temp &= ~PORT_TRANS_SEL_MASK;
4277                         else
4278                                 temp &= ~LVDS_PIPEB_SELECT;
4279                 }
4280                 /* set the corresponsding LVDS_BORDER bit */
4281                 temp |= dev_priv->lvds_border_bits;
4282                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4283                  * set the DPLLs for dual-channel mode or not.
4284                  */
4285                 if (clock.p2 == 7)
4286                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4287                 else
4288                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4289
4290                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4291                  * appropriately here, but we need to look more thoroughly into how
4292                  * panels behave in the two modes.
4293                  */
4294                 /* set the dithering flag on non-PCH LVDS as needed */
4295                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4296                         if (dev_priv->lvds_dither)
4297                                 temp |= LVDS_ENABLE_DITHER;
4298                         else
4299                                 temp &= ~LVDS_ENABLE_DITHER;
4300                 }
4301                 I915_WRITE(reg, temp);
4302         }
4303
4304         /* set the dithering flag and clear for anything other than a panel. */
4305         if (HAS_PCH_SPLIT(dev)) {
4306                 pipeconf &= ~PIPECONF_DITHER_EN;
4307                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4308                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4309                         pipeconf |= PIPECONF_DITHER_EN;
4310                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4311                 }
4312         }
4313
4314         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4315                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4316         } else if (HAS_PCH_SPLIT(dev)) {
4317                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4318                 if (pipe == 0) {
4319                         I915_WRITE(TRANSA_DATA_M1, 0);
4320                         I915_WRITE(TRANSA_DATA_N1, 0);
4321                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4322                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4323                 } else {
4324                         I915_WRITE(TRANSB_DATA_M1, 0);
4325                         I915_WRITE(TRANSB_DATA_N1, 0);
4326                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4327                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4328                 }
4329         }
4330
4331         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4332                 I915_WRITE(dpll_reg, dpll);
4333
4334                 /* Wait for the clocks to stabilize. */
4335                 POSTING_READ(dpll_reg);
4336                 udelay(150);
4337
4338                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4339                         temp = 0;
4340                         if (is_sdvo) {
4341                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4342                                 if (temp > 1)
4343                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4344                                 else
4345                                         temp = 0;
4346                         }
4347                         I915_WRITE(DPLL_MD(pipe), temp);
4348                 } else {
4349                         /* The pixel multiplier can only be updated once the
4350                          * DPLL is enabled and the clocks are stable.
4351                          *
4352                          * So write it again.
4353                          */
4354                         I915_WRITE(dpll_reg, dpll);
4355                 }
4356         }
4357
4358         intel_crtc->lowfreq_avail = false;
4359         if (is_lvds && has_reduced_clock && i915_powersave) {
4360                 I915_WRITE(fp_reg + 4, fp2);
4361                 intel_crtc->lowfreq_avail = true;
4362                 if (HAS_PIPE_CXSR(dev)) {
4363                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4364                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4365                 }
4366         } else {
4367                 I915_WRITE(fp_reg + 4, fp);
4368                 if (HAS_PIPE_CXSR(dev)) {
4369                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4370                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4371                 }
4372         }
4373
4374         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4375                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4376                 /* the chip adds 2 halflines automatically */
4377                 adjusted_mode->crtc_vdisplay -= 1;
4378                 adjusted_mode->crtc_vtotal -= 1;
4379                 adjusted_mode->crtc_vblank_start -= 1;
4380                 adjusted_mode->crtc_vblank_end -= 1;
4381                 adjusted_mode->crtc_vsync_end -= 1;
4382                 adjusted_mode->crtc_vsync_start -= 1;
4383         } else
4384                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4385
4386         I915_WRITE(HTOTAL(pipe),
4387                    (adjusted_mode->crtc_hdisplay - 1) |
4388                    ((adjusted_mode->crtc_htotal - 1) << 16));
4389         I915_WRITE(HBLANK(pipe),
4390                    (adjusted_mode->crtc_hblank_start - 1) |
4391                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4392         I915_WRITE(HSYNC(pipe),
4393                    (adjusted_mode->crtc_hsync_start - 1) |
4394                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4395
4396         I915_WRITE(VTOTAL(pipe),
4397                    (adjusted_mode->crtc_vdisplay - 1) |
4398                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4399         I915_WRITE(VBLANK(pipe),
4400                    (adjusted_mode->crtc_vblank_start - 1) |
4401                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4402         I915_WRITE(VSYNC(pipe),
4403                    (adjusted_mode->crtc_vsync_start - 1) |
4404                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4405
4406         /* pipesrc and dspsize control the size that is scaled from,
4407          * which should always be the user's requested size.
4408          */
4409         if (!HAS_PCH_SPLIT(dev)) {
4410                 I915_WRITE(DSPSIZE(plane),
4411                            ((mode->vdisplay - 1) << 16) |
4412                            (mode->hdisplay - 1));
4413                 I915_WRITE(DSPPOS(plane), 0);
4414         }
4415         I915_WRITE(PIPESRC(pipe),
4416                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4417
4418         if (HAS_PCH_SPLIT(dev)) {
4419                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4420                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4421                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4422                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4423
4424                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4425                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4426                 }
4427         }
4428
4429         I915_WRITE(PIPECONF(pipe), pipeconf);
4430         POSTING_READ(PIPECONF(pipe));
4431
4432         intel_wait_for_vblank(dev, pipe);
4433
4434         if (IS_GEN5(dev)) {
4435                 /* enable address swizzle for tiling buffer */
4436                 temp = I915_READ(DISP_ARB_CTL);
4437                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4438         }
4439
4440         I915_WRITE(DSPCNTR(plane), dspcntr);
4441
4442         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4443
4444         intel_update_watermarks(dev);
4445
4446         drm_vblank_post_modeset(dev, pipe);
4447
4448         return ret;
4449 }
4450
4451 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4452 void intel_crtc_load_lut(struct drm_crtc *crtc)
4453 {
4454         struct drm_device *dev = crtc->dev;
4455         struct drm_i915_private *dev_priv = dev->dev_private;
4456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4457         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4458         int i;
4459
4460         /* The clocks have to be on to load the palette. */
4461         if (!crtc->enabled)
4462                 return;
4463
4464         /* use legacy palette for Ironlake */
4465         if (HAS_PCH_SPLIT(dev))
4466                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4467                                                    LGC_PALETTE_B;
4468
4469         for (i = 0; i < 256; i++) {
4470                 I915_WRITE(palreg + 4 * i,
4471                            (intel_crtc->lut_r[i] << 16) |
4472                            (intel_crtc->lut_g[i] << 8) |
4473                            intel_crtc->lut_b[i]);
4474         }
4475 }
4476
4477 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4478 {
4479         struct drm_device *dev = crtc->dev;
4480         struct drm_i915_private *dev_priv = dev->dev_private;
4481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482         bool visible = base != 0;
4483         u32 cntl;
4484
4485         if (intel_crtc->cursor_visible == visible)
4486                 return;
4487
4488         cntl = I915_READ(CURACNTR);
4489         if (visible) {
4490                 /* On these chipsets we can only modify the base whilst
4491                  * the cursor is disabled.
4492                  */
4493                 I915_WRITE(CURABASE, base);
4494
4495                 cntl &= ~(CURSOR_FORMAT_MASK);
4496                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4497                 cntl |= CURSOR_ENABLE |
4498                         CURSOR_GAMMA_ENABLE |
4499                         CURSOR_FORMAT_ARGB;
4500         } else
4501                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4502         I915_WRITE(CURACNTR, cntl);
4503
4504         intel_crtc->cursor_visible = visible;
4505 }
4506
4507 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4508 {
4509         struct drm_device *dev = crtc->dev;
4510         struct drm_i915_private *dev_priv = dev->dev_private;
4511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4512         int pipe = intel_crtc->pipe;
4513         bool visible = base != 0;
4514
4515         if (intel_crtc->cursor_visible != visible) {
4516                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4517                 if (base) {
4518                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4519                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4520                         cntl |= pipe << 28; /* Connect to correct pipe */
4521                 } else {
4522                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4523                         cntl |= CURSOR_MODE_DISABLE;
4524                 }
4525                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4526
4527                 intel_crtc->cursor_visible = visible;
4528         }
4529         /* and commit changes on next vblank */
4530         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4531 }
4532
4533 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4534 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4535                                      bool on)
4536 {
4537         struct drm_device *dev = crtc->dev;
4538         struct drm_i915_private *dev_priv = dev->dev_private;
4539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4540         int pipe = intel_crtc->pipe;
4541         int x = intel_crtc->cursor_x;
4542         int y = intel_crtc->cursor_y;
4543         u32 base, pos;
4544         bool visible;
4545
4546         pos = 0;
4547
4548         if (on && crtc->enabled && crtc->fb) {
4549                 base = intel_crtc->cursor_addr;
4550                 if (x > (int) crtc->fb->width)
4551                         base = 0;
4552
4553                 if (y > (int) crtc->fb->height)
4554                         base = 0;
4555         } else
4556                 base = 0;
4557
4558         if (x < 0) {
4559                 if (x + intel_crtc->cursor_width < 0)
4560                         base = 0;
4561
4562                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4563                 x = -x;
4564         }
4565         pos |= x << CURSOR_X_SHIFT;
4566
4567         if (y < 0) {
4568                 if (y + intel_crtc->cursor_height < 0)
4569                         base = 0;
4570
4571                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4572                 y = -y;
4573         }
4574         pos |= y << CURSOR_Y_SHIFT;
4575
4576         visible = base != 0;
4577         if (!visible && !intel_crtc->cursor_visible)
4578                 return;
4579
4580         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4581         if (IS_845G(dev) || IS_I865G(dev))
4582                 i845_update_cursor(crtc, base);
4583         else
4584                 i9xx_update_cursor(crtc, base);
4585
4586         if (visible)
4587                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4588 }
4589
4590 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4591                                  struct drm_file *file,
4592                                  uint32_t handle,
4593                                  uint32_t width, uint32_t height)
4594 {
4595         struct drm_device *dev = crtc->dev;
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4598         struct drm_i915_gem_object *obj;
4599         uint32_t addr;
4600         int ret;
4601
4602         DRM_DEBUG_KMS("\n");
4603
4604         /* if we want to turn off the cursor ignore width and height */
4605         if (!handle) {
4606                 DRM_DEBUG_KMS("cursor off\n");
4607                 addr = 0;
4608                 obj = NULL;
4609                 mutex_lock(&dev->struct_mutex);
4610                 goto finish;
4611         }
4612
4613         /* Currently we only support 64x64 cursors */
4614         if (width != 64 || height != 64) {
4615                 DRM_ERROR("we currently only support 64x64 cursors\n");
4616                 return -EINVAL;
4617         }
4618
4619         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4620         if (!obj)
4621                 return -ENOENT;
4622
4623         if (obj->base.size < width * height * 4) {
4624                 DRM_ERROR("buffer is to small\n");
4625                 ret = -ENOMEM;
4626                 goto fail;
4627         }
4628
4629         /* we only need to pin inside GTT if cursor is non-phy */
4630         mutex_lock(&dev->struct_mutex);
4631         if (!dev_priv->info->cursor_needs_physical) {
4632                 if (obj->tiling_mode) {
4633                         DRM_ERROR("cursor cannot be tiled\n");
4634                         ret = -EINVAL;
4635                         goto fail_locked;
4636                 }
4637
4638                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
4639                 if (ret) {
4640                         DRM_ERROR("failed to pin cursor bo\n");
4641                         goto fail_locked;
4642                 }
4643
4644                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
4645                 if (ret) {
4646                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4647                         goto fail_unpin;
4648                 }
4649
4650                 ret = i915_gem_object_put_fence(obj);
4651                 if (ret) {
4652                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4653                         goto fail_unpin;
4654                 }
4655
4656                 addr = obj->gtt_offset;
4657         } else {
4658                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4659                 ret = i915_gem_attach_phys_object(dev, obj,
4660                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4661                                                   align);
4662                 if (ret) {
4663                         DRM_ERROR("failed to attach phys object\n");
4664                         goto fail_locked;
4665                 }
4666                 addr = obj->phys_obj->handle->busaddr;
4667         }
4668
4669         if (IS_GEN2(dev))
4670                 I915_WRITE(CURSIZE, (height << 12) | width);
4671
4672  finish:
4673         if (intel_crtc->cursor_bo) {
4674                 if (dev_priv->info->cursor_needs_physical) {
4675                         if (intel_crtc->cursor_bo != obj)
4676                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4677                 } else
4678                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4679                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4680         }
4681
4682         mutex_unlock(&dev->struct_mutex);
4683
4684         intel_crtc->cursor_addr = addr;
4685         intel_crtc->cursor_bo = obj;
4686         intel_crtc->cursor_width = width;
4687         intel_crtc->cursor_height = height;
4688
4689         intel_crtc_update_cursor(crtc, true);
4690
4691         return 0;
4692 fail_unpin:
4693         i915_gem_object_unpin(obj);
4694 fail_locked:
4695         mutex_unlock(&dev->struct_mutex);
4696 fail:
4697         drm_gem_object_unreference_unlocked(&obj->base);
4698         return ret;
4699 }
4700
4701 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4702 {
4703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704
4705         intel_crtc->cursor_x = x;
4706         intel_crtc->cursor_y = y;
4707
4708         intel_crtc_update_cursor(crtc, true);
4709
4710         return 0;
4711 }
4712
4713 /** Sets the color ramps on behalf of RandR */
4714 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4715                                  u16 blue, int regno)
4716 {
4717         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4718
4719         intel_crtc->lut_r[regno] = red >> 8;
4720         intel_crtc->lut_g[regno] = green >> 8;
4721         intel_crtc->lut_b[regno] = blue >> 8;
4722 }
4723
4724 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4725                              u16 *blue, int regno)
4726 {
4727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4728
4729         *red = intel_crtc->lut_r[regno] << 8;
4730         *green = intel_crtc->lut_g[regno] << 8;
4731         *blue = intel_crtc->lut_b[regno] << 8;
4732 }
4733
4734 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4735                                  u16 *blue, uint32_t start, uint32_t size)
4736 {
4737         int end = (start + size > 256) ? 256 : start + size, i;
4738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739
4740         for (i = start; i < end; i++) {
4741                 intel_crtc->lut_r[i] = red[i] >> 8;
4742                 intel_crtc->lut_g[i] = green[i] >> 8;
4743                 intel_crtc->lut_b[i] = blue[i] >> 8;
4744         }
4745
4746         intel_crtc_load_lut(crtc);
4747 }
4748
4749 /**
4750  * Get a pipe with a simple mode set on it for doing load-based monitor
4751  * detection.
4752  *
4753  * It will be up to the load-detect code to adjust the pipe as appropriate for
4754  * its requirements.  The pipe will be connected to no other encoders.
4755  *
4756  * Currently this code will only succeed if there is a pipe with no encoders
4757  * configured for it.  In the future, it could choose to temporarily disable
4758  * some outputs to free up a pipe for its use.
4759  *
4760  * \return crtc, or NULL if no pipes are available.
4761  */
4762
4763 /* VESA 640x480x72Hz mode to set on the pipe */
4764 static struct drm_display_mode load_detect_mode = {
4765         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4766                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4767 };
4768
4769 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4770                                             struct drm_connector *connector,
4771                                             struct drm_display_mode *mode,
4772                                             int *dpms_mode)
4773 {
4774         struct intel_crtc *intel_crtc;
4775         struct drm_crtc *possible_crtc;
4776         struct drm_crtc *supported_crtc =NULL;
4777         struct drm_encoder *encoder = &intel_encoder->base;
4778         struct drm_crtc *crtc = NULL;
4779         struct drm_device *dev = encoder->dev;
4780         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4781         struct drm_crtc_helper_funcs *crtc_funcs;
4782         int i = -1;
4783
4784         /*
4785          * Algorithm gets a little messy:
4786          *   - if the connector already has an assigned crtc, use it (but make
4787          *     sure it's on first)
4788          *   - try to find the first unused crtc that can drive this connector,
4789          *     and use that if we find one
4790          *   - if there are no unused crtcs available, try to use the first
4791          *     one we found that supports the connector
4792          */
4793
4794         /* See if we already have a CRTC for this connector */
4795         if (encoder->crtc) {
4796                 crtc = encoder->crtc;
4797                 /* Make sure the crtc and connector are running */
4798                 intel_crtc = to_intel_crtc(crtc);
4799                 *dpms_mode = intel_crtc->dpms_mode;
4800                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4801                         crtc_funcs = crtc->helper_private;
4802                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4803                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4804                 }
4805                 return crtc;
4806         }
4807
4808         /* Find an unused one (if possible) */
4809         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4810                 i++;
4811                 if (!(encoder->possible_crtcs & (1 << i)))
4812                         continue;
4813                 if (!possible_crtc->enabled) {
4814                         crtc = possible_crtc;
4815                         break;
4816                 }
4817                 if (!supported_crtc)
4818                         supported_crtc = possible_crtc;
4819         }
4820
4821         /*
4822          * If we didn't find an unused CRTC, don't use any.
4823          */
4824         if (!crtc) {
4825                 return NULL;
4826         }
4827
4828         encoder->crtc = crtc;
4829         connector->encoder = encoder;
4830         intel_encoder->load_detect_temp = true;
4831
4832         intel_crtc = to_intel_crtc(crtc);
4833         *dpms_mode = intel_crtc->dpms_mode;
4834
4835         if (!crtc->enabled) {
4836                 if (!mode)
4837                         mode = &load_detect_mode;
4838                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4839         } else {
4840                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4841                         crtc_funcs = crtc->helper_private;
4842                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4843                 }
4844
4845                 /* Add this connector to the crtc */
4846                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4847                 encoder_funcs->commit(encoder);
4848         }
4849         /* let the connector get through one full cycle before testing */
4850         intel_wait_for_vblank(dev, intel_crtc->pipe);
4851
4852         return crtc;
4853 }
4854
4855 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4856                                     struct drm_connector *connector, int dpms_mode)
4857 {
4858         struct drm_encoder *encoder = &intel_encoder->base;
4859         struct drm_device *dev = encoder->dev;
4860         struct drm_crtc *crtc = encoder->crtc;
4861         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4862         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4863
4864         if (intel_encoder->load_detect_temp) {
4865                 encoder->crtc = NULL;
4866                 connector->encoder = NULL;
4867                 intel_encoder->load_detect_temp = false;
4868                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4869                 drm_helper_disable_unused_functions(dev);
4870         }
4871
4872         /* Switch crtc and encoder back off if necessary */
4873         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4874                 if (encoder->crtc == crtc)
4875                         encoder_funcs->dpms(encoder, dpms_mode);
4876                 crtc_funcs->dpms(crtc, dpms_mode);
4877         }
4878 }
4879
4880 /* Returns the clock of the currently programmed mode of the given pipe. */
4881 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4882 {
4883         struct drm_i915_private *dev_priv = dev->dev_private;
4884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4885         int pipe = intel_crtc->pipe;
4886         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4887         u32 fp;
4888         intel_clock_t clock;
4889
4890         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4891                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4892         else
4893                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4894
4895         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4896         if (IS_PINEVIEW(dev)) {
4897                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4898                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4899         } else {
4900                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4901                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4902         }
4903
4904         if (!IS_GEN2(dev)) {
4905                 if (IS_PINEVIEW(dev))
4906                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4907                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4908                 else
4909                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4910                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4911
4912                 switch (dpll & DPLL_MODE_MASK) {
4913                 case DPLLB_MODE_DAC_SERIAL:
4914                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4915                                 5 : 10;
4916                         break;
4917                 case DPLLB_MODE_LVDS:
4918                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4919                                 7 : 14;
4920                         break;
4921                 default:
4922                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4923                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4924                         return 0;
4925                 }
4926
4927                 /* XXX: Handle the 100Mhz refclk */
4928                 intel_clock(dev, 96000, &clock);
4929         } else {
4930                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4931
4932                 if (is_lvds) {
4933                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4934                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4935                         clock.p2 = 14;
4936
4937                         if ((dpll & PLL_REF_INPUT_MASK) ==
4938                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4939                                 /* XXX: might not be 66MHz */
4940                                 intel_clock(dev, 66000, &clock);
4941                         } else
4942                                 intel_clock(dev, 48000, &clock);
4943                 } else {
4944                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4945                                 clock.p1 = 2;
4946                         else {
4947                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4948                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4949                         }
4950                         if (dpll & PLL_P2_DIVIDE_BY_4)
4951                                 clock.p2 = 4;
4952                         else
4953                                 clock.p2 = 2;
4954
4955                         intel_clock(dev, 48000, &clock);
4956                 }
4957         }
4958
4959         /* XXX: It would be nice to validate the clocks, but we can't reuse
4960          * i830PllIsValid() because it relies on the xf86_config connector
4961          * configuration being accurate, which it isn't necessarily.
4962          */
4963
4964         return clock.dot;
4965 }
4966
4967 /** Returns the currently programmed mode of the given pipe. */
4968 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4969                                              struct drm_crtc *crtc)
4970 {
4971         struct drm_i915_private *dev_priv = dev->dev_private;
4972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4973         int pipe = intel_crtc->pipe;
4974         struct drm_display_mode *mode;
4975         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4976         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4977         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4978         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4979
4980         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4981         if (!mode)
4982                 return NULL;
4983
4984         mode->clock = intel_crtc_clock_get(dev, crtc);
4985         mode->hdisplay = (htot & 0xffff) + 1;
4986         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4987         mode->hsync_start = (hsync & 0xffff) + 1;
4988         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4989         mode->vdisplay = (vtot & 0xffff) + 1;
4990         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4991         mode->vsync_start = (vsync & 0xffff) + 1;
4992         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4993
4994         drm_mode_set_name(mode);
4995         drm_mode_set_crtcinfo(mode, 0);
4996
4997         return mode;
4998 }
4999
5000 #define GPU_IDLE_TIMEOUT 500 /* ms */
5001
5002 /* When this timer fires, we've been idle for awhile */
5003 static void intel_gpu_idle_timer(unsigned long arg)
5004 {
5005         struct drm_device *dev = (struct drm_device *)arg;
5006         drm_i915_private_t *dev_priv = dev->dev_private;
5007
5008         if (!list_empty(&dev_priv->mm.active_list)) {
5009                 /* Still processing requests, so just re-arm the timer. */
5010                 mod_timer(&dev_priv->idle_timer, jiffies +
5011                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5012                 return;
5013         }
5014
5015         dev_priv->busy = false;
5016         queue_work(dev_priv->wq, &dev_priv->idle_work);
5017 }
5018
5019 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5020
5021 static void intel_crtc_idle_timer(unsigned long arg)
5022 {
5023         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5024         struct drm_crtc *crtc = &intel_crtc->base;
5025         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5026         struct intel_framebuffer *intel_fb;
5027
5028         intel_fb = to_intel_framebuffer(crtc->fb);
5029         if (intel_fb && intel_fb->obj->active) {
5030                 /* The framebuffer is still being accessed by the GPU. */
5031                 mod_timer(&intel_crtc->idle_timer, jiffies +
5032                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5033                 return;
5034         }
5035
5036         intel_crtc->busy = false;
5037         queue_work(dev_priv->wq, &dev_priv->idle_work);
5038 }
5039
5040 static void intel_increase_pllclock(struct drm_crtc *crtc)
5041 {
5042         struct drm_device *dev = crtc->dev;
5043         drm_i915_private_t *dev_priv = dev->dev_private;
5044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5045         int pipe = intel_crtc->pipe;
5046         int dpll_reg = DPLL(pipe);
5047         int dpll;
5048
5049         if (HAS_PCH_SPLIT(dev))
5050                 return;
5051
5052         if (!dev_priv->lvds_downclock_avail)
5053                 return;
5054
5055         dpll = I915_READ(dpll_reg);
5056         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5057                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5058
5059                 /* Unlock panel regs */
5060                 I915_WRITE(PP_CONTROL,
5061                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5062
5063                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5064                 I915_WRITE(dpll_reg, dpll);
5065                 POSTING_READ(dpll_reg);
5066                 intel_wait_for_vblank(dev, pipe);
5067
5068                 dpll = I915_READ(dpll_reg);
5069                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5070                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5071
5072                 /* ...and lock them again */
5073                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5074         }
5075
5076         /* Schedule downclock */
5077         mod_timer(&intel_crtc->idle_timer, jiffies +
5078                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5079 }
5080
5081 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5082 {
5083         struct drm_device *dev = crtc->dev;
5084         drm_i915_private_t *dev_priv = dev->dev_private;
5085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5086         int pipe = intel_crtc->pipe;
5087         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
5088         int dpll = I915_READ(dpll_reg);
5089
5090         if (HAS_PCH_SPLIT(dev))
5091                 return;
5092
5093         if (!dev_priv->lvds_downclock_avail)
5094                 return;
5095
5096         /*
5097          * Since this is called by a timer, we should never get here in
5098          * the manual case.
5099          */
5100         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5101                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5102
5103                 /* Unlock panel regs */
5104                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5105                            PANEL_UNLOCK_REGS);
5106
5107                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5108                 I915_WRITE(dpll_reg, dpll);
5109                 dpll = I915_READ(dpll_reg);
5110                 intel_wait_for_vblank(dev, pipe);
5111                 dpll = I915_READ(dpll_reg);
5112                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5113                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5114
5115                 /* ...and lock them again */
5116                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5117         }
5118
5119 }
5120
5121 /**
5122  * intel_idle_update - adjust clocks for idleness
5123  * @work: work struct
5124  *
5125  * Either the GPU or display (or both) went idle.  Check the busy status
5126  * here and adjust the CRTC and GPU clocks as necessary.
5127  */
5128 static void intel_idle_update(struct work_struct *work)
5129 {
5130         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5131                                                     idle_work);
5132         struct drm_device *dev = dev_priv->dev;
5133         struct drm_crtc *crtc;
5134         struct intel_crtc *intel_crtc;
5135         int enabled = 0;
5136
5137         if (!i915_powersave)
5138                 return;
5139
5140         mutex_lock(&dev->struct_mutex);
5141
5142         i915_update_gfx_val(dev_priv);
5143
5144         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5145                 /* Skip inactive CRTCs */
5146                 if (!crtc->fb)
5147                         continue;
5148
5149                 enabled++;
5150                 intel_crtc = to_intel_crtc(crtc);
5151                 if (!intel_crtc->busy)
5152                         intel_decrease_pllclock(crtc);
5153         }
5154
5155         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
5156                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
5157                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
5158         }
5159
5160         mutex_unlock(&dev->struct_mutex);
5161 }
5162
5163 /**
5164  * intel_mark_busy - mark the GPU and possibly the display busy
5165  * @dev: drm device
5166  * @obj: object we're operating on
5167  *
5168  * Callers can use this function to indicate that the GPU is busy processing
5169  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5170  * buffer), we'll also mark the display as busy, so we know to increase its
5171  * clock frequency.
5172  */
5173 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5174 {
5175         drm_i915_private_t *dev_priv = dev->dev_private;
5176         struct drm_crtc *crtc = NULL;
5177         struct intel_framebuffer *intel_fb;
5178         struct intel_crtc *intel_crtc;
5179
5180         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5181                 return;
5182
5183         if (!dev_priv->busy) {
5184                 if (IS_I945G(dev) || IS_I945GM(dev)) {
5185                         u32 fw_blc_self;
5186
5187                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
5188                         fw_blc_self = I915_READ(FW_BLC_SELF);
5189                         fw_blc_self &= ~FW_BLC_SELF_EN;
5190                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
5191                 }
5192                 dev_priv->busy = true;
5193         } else
5194                 mod_timer(&dev_priv->idle_timer, jiffies +
5195                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5196
5197         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5198                 if (!crtc->fb)
5199                         continue;
5200
5201                 intel_crtc = to_intel_crtc(crtc);
5202                 intel_fb = to_intel_framebuffer(crtc->fb);
5203                 if (intel_fb->obj == obj) {
5204                         if (!intel_crtc->busy) {
5205                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
5206                                         u32 fw_blc_self;
5207
5208                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
5209                                         fw_blc_self = I915_READ(FW_BLC_SELF);
5210                                         fw_blc_self &= ~FW_BLC_SELF_EN;
5211                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
5212                                 }
5213                                 /* Non-busy -> busy, upclock */
5214                                 intel_increase_pllclock(crtc);
5215                                 intel_crtc->busy = true;
5216                         } else {
5217                                 /* Busy -> busy, put off timer */
5218                                 mod_timer(&intel_crtc->idle_timer, jiffies +
5219                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5220                         }
5221                 }
5222         }
5223 }
5224
5225 static void intel_crtc_destroy(struct drm_crtc *crtc)
5226 {
5227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5228         struct drm_device *dev = crtc->dev;
5229         struct intel_unpin_work *work;
5230         unsigned long flags;
5231
5232         spin_lock_irqsave(&dev->event_lock, flags);
5233         work = intel_crtc->unpin_work;
5234         intel_crtc->unpin_work = NULL;
5235         spin_unlock_irqrestore(&dev->event_lock, flags);
5236
5237         if (work) {
5238                 cancel_work_sync(&work->work);
5239                 kfree(work);
5240         }
5241
5242         drm_crtc_cleanup(crtc);
5243
5244         kfree(intel_crtc);
5245 }
5246
5247 static void intel_unpin_work_fn(struct work_struct *__work)
5248 {
5249         struct intel_unpin_work *work =
5250                 container_of(__work, struct intel_unpin_work, work);
5251
5252         mutex_lock(&work->dev->struct_mutex);
5253         i915_gem_object_unpin(work->old_fb_obj);
5254         drm_gem_object_unreference(&work->pending_flip_obj->base);
5255         drm_gem_object_unreference(&work->old_fb_obj->base);
5256
5257         mutex_unlock(&work->dev->struct_mutex);
5258         kfree(work);
5259 }
5260
5261 static void do_intel_finish_page_flip(struct drm_device *dev,
5262                                       struct drm_crtc *crtc)
5263 {
5264         drm_i915_private_t *dev_priv = dev->dev_private;
5265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5266         struct intel_unpin_work *work;
5267         struct drm_i915_gem_object *obj;
5268         struct drm_pending_vblank_event *e;
5269         struct timeval tnow, tvbl;
5270         unsigned long flags;
5271
5272         /* Ignore early vblank irqs */
5273         if (intel_crtc == NULL)
5274                 return;
5275
5276         do_gettimeofday(&tnow);
5277
5278         spin_lock_irqsave(&dev->event_lock, flags);
5279         work = intel_crtc->unpin_work;
5280         if (work == NULL || !work->pending) {
5281                 spin_unlock_irqrestore(&dev->event_lock, flags);
5282                 return;
5283         }
5284
5285         intel_crtc->unpin_work = NULL;
5286
5287         if (work->event) {
5288                 e = work->event;
5289                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5290
5291                 /* Called before vblank count and timestamps have
5292                  * been updated for the vblank interval of flip
5293                  * completion? Need to increment vblank count and
5294                  * add one videorefresh duration to returned timestamp
5295                  * to account for this. We assume this happened if we
5296                  * get called over 0.9 frame durations after the last
5297                  * timestamped vblank.
5298                  *
5299                  * This calculation can not be used with vrefresh rates
5300                  * below 5Hz (10Hz to be on the safe side) without
5301                  * promoting to 64 integers.
5302                  */
5303                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5304                     9 * crtc->framedur_ns) {
5305                         e->event.sequence++;
5306                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5307                                              crtc->framedur_ns);
5308                 }
5309
5310                 e->event.tv_sec = tvbl.tv_sec;
5311                 e->event.tv_usec = tvbl.tv_usec;
5312
5313                 list_add_tail(&e->base.link,
5314                               &e->base.file_priv->event_list);
5315                 wake_up_interruptible(&e->base.file_priv->event_wait);
5316         }
5317
5318         drm_vblank_put(dev, intel_crtc->pipe);
5319
5320         spin_unlock_irqrestore(&dev->event_lock, flags);
5321
5322         obj = work->old_fb_obj;
5323
5324         atomic_clear_mask(1 << intel_crtc->plane,
5325                           &obj->pending_flip.counter);
5326         if (atomic_read(&obj->pending_flip) == 0)
5327                 wake_up(&dev_priv->pending_flip_queue);
5328
5329         schedule_work(&work->work);
5330
5331         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5332 }
5333
5334 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5335 {
5336         drm_i915_private_t *dev_priv = dev->dev_private;
5337         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5338
5339         do_intel_finish_page_flip(dev, crtc);
5340 }
5341
5342 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5343 {
5344         drm_i915_private_t *dev_priv = dev->dev_private;
5345         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5346
5347         do_intel_finish_page_flip(dev, crtc);
5348 }
5349
5350 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5351 {
5352         drm_i915_private_t *dev_priv = dev->dev_private;
5353         struct intel_crtc *intel_crtc =
5354                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5355         unsigned long flags;
5356
5357         spin_lock_irqsave(&dev->event_lock, flags);
5358         if (intel_crtc->unpin_work) {
5359                 if ((++intel_crtc->unpin_work->pending) > 1)
5360                         DRM_ERROR("Prepared flip multiple times\n");
5361         } else {
5362                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5363         }
5364         spin_unlock_irqrestore(&dev->event_lock, flags);
5365 }
5366
5367 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5368                                 struct drm_framebuffer *fb,
5369                                 struct drm_pending_vblank_event *event)
5370 {
5371         struct drm_device *dev = crtc->dev;
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_framebuffer *intel_fb;
5374         struct drm_i915_gem_object *obj;
5375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5376         struct intel_unpin_work *work;
5377         unsigned long flags, offset;
5378         int pipe = intel_crtc->pipe;
5379         u32 pf, pipesrc;
5380         int ret;
5381
5382         work = kzalloc(sizeof *work, GFP_KERNEL);
5383         if (work == NULL)
5384                 return -ENOMEM;
5385
5386         work->event = event;
5387         work->dev = crtc->dev;
5388         intel_fb = to_intel_framebuffer(crtc->fb);
5389         work->old_fb_obj = intel_fb->obj;
5390         INIT_WORK(&work->work, intel_unpin_work_fn);
5391
5392         /* We borrow the event spin lock for protecting unpin_work */
5393         spin_lock_irqsave(&dev->event_lock, flags);
5394         if (intel_crtc->unpin_work) {
5395                 spin_unlock_irqrestore(&dev->event_lock, flags);
5396                 kfree(work);
5397
5398                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5399                 return -EBUSY;
5400         }
5401         intel_crtc->unpin_work = work;
5402         spin_unlock_irqrestore(&dev->event_lock, flags);
5403
5404         intel_fb = to_intel_framebuffer(fb);
5405         obj = intel_fb->obj;
5406
5407         mutex_lock(&dev->struct_mutex);
5408         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5409         if (ret)
5410                 goto cleanup_work;
5411
5412         /* Reference the objects for the scheduled work. */
5413         drm_gem_object_reference(&work->old_fb_obj->base);
5414         drm_gem_object_reference(&obj->base);
5415
5416         crtc->fb = fb;
5417
5418         ret = drm_vblank_get(dev, intel_crtc->pipe);
5419         if (ret)
5420                 goto cleanup_objs;
5421
5422         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5423                 u32 flip_mask;
5424
5425                 /* Can't queue multiple flips, so wait for the previous
5426                  * one to finish before executing the next.
5427                  */
5428                 ret = BEGIN_LP_RING(2);
5429                 if (ret)
5430                         goto cleanup_objs;
5431
5432                 if (intel_crtc->plane)
5433                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5434                 else
5435                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5436                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5437                 OUT_RING(MI_NOOP);
5438                 ADVANCE_LP_RING();
5439         }
5440
5441         work->pending_flip_obj = obj;
5442
5443         work->enable_stall_check = true;
5444
5445         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5446         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5447
5448         ret = BEGIN_LP_RING(4);
5449         if (ret)
5450                 goto cleanup_objs;
5451
5452         /* Block clients from rendering to the new back buffer until
5453          * the flip occurs and the object is no longer visible.
5454          */
5455         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5456
5457         switch (INTEL_INFO(dev)->gen) {
5458         case 2:
5459                 OUT_RING(MI_DISPLAY_FLIP |
5460                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5461                 OUT_RING(fb->pitch);
5462                 OUT_RING(obj->gtt_offset + offset);
5463                 OUT_RING(MI_NOOP);
5464                 break;
5465
5466         case 3:
5467                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5468                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5469                 OUT_RING(fb->pitch);
5470                 OUT_RING(obj->gtt_offset + offset);
5471                 OUT_RING(MI_NOOP);
5472                 break;
5473
5474         case 4:
5475         case 5:
5476                 /* i965+ uses the linear or tiled offsets from the
5477                  * Display Registers (which do not change across a page-flip)
5478                  * so we need only reprogram the base address.
5479                  */
5480                 OUT_RING(MI_DISPLAY_FLIP |
5481                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5482                 OUT_RING(fb->pitch);
5483                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
5484
5485                 /* XXX Enabling the panel-fitter across page-flip is so far
5486                  * untested on non-native modes, so ignore it for now.
5487                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5488                  */
5489                 pf = 0;
5490                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5491                 OUT_RING(pf | pipesrc);
5492                 break;
5493
5494         case 6:
5495                 OUT_RING(MI_DISPLAY_FLIP |
5496                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5497                 OUT_RING(fb->pitch | obj->tiling_mode);
5498                 OUT_RING(obj->gtt_offset);
5499
5500                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5501                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5502                 OUT_RING(pf | pipesrc);
5503                 break;
5504         }
5505         ADVANCE_LP_RING();
5506
5507         mutex_unlock(&dev->struct_mutex);
5508
5509         trace_i915_flip_request(intel_crtc->plane, obj);
5510
5511         return 0;
5512
5513 cleanup_objs:
5514         drm_gem_object_unreference(&work->old_fb_obj->base);
5515         drm_gem_object_unreference(&obj->base);
5516 cleanup_work:
5517         mutex_unlock(&dev->struct_mutex);
5518
5519         spin_lock_irqsave(&dev->event_lock, flags);
5520         intel_crtc->unpin_work = NULL;
5521         spin_unlock_irqrestore(&dev->event_lock, flags);
5522
5523         kfree(work);
5524
5525         return ret;
5526 }
5527
5528 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5529         .dpms = intel_crtc_dpms,
5530         .mode_fixup = intel_crtc_mode_fixup,
5531         .mode_set = intel_crtc_mode_set,
5532         .mode_set_base = intel_pipe_set_base,
5533         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5534         .load_lut = intel_crtc_load_lut,
5535         .disable = intel_crtc_disable,
5536 };
5537
5538 static const struct drm_crtc_funcs intel_crtc_funcs = {
5539         .cursor_set = intel_crtc_cursor_set,
5540         .cursor_move = intel_crtc_cursor_move,
5541         .gamma_set = intel_crtc_gamma_set,
5542         .set_config = drm_crtc_helper_set_config,
5543         .destroy = intel_crtc_destroy,
5544         .page_flip = intel_crtc_page_flip,
5545 };
5546
5547 static void intel_sanitize_modesetting(struct drm_device *dev,
5548                                        int pipe, int plane)
5549 {
5550         struct drm_i915_private *dev_priv = dev->dev_private;
5551         u32 reg, val;
5552
5553         if (HAS_PCH_SPLIT(dev))
5554                 return;
5555
5556         /* Who knows what state these registers were left in by the BIOS or
5557          * grub?
5558          *
5559          * If we leave the registers in a conflicting state (e.g. with the
5560          * display plane reading from the other pipe than the one we intend
5561          * to use) then when we attempt to teardown the active mode, we will
5562          * not disable the pipes and planes in the correct order -- leaving
5563          * a plane reading from a disabled pipe and possibly leading to
5564          * undefined behaviour.
5565          */
5566
5567         reg = DSPCNTR(plane);
5568         val = I915_READ(reg);
5569
5570         if ((val & DISPLAY_PLANE_ENABLE) == 0)
5571                 return;
5572         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5573                 return;
5574
5575         /* This display plane is active and attached to the other CPU pipe. */
5576         pipe = !pipe;
5577
5578         /* Disable the plane and wait for it to stop reading from the pipe. */
5579         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
5580         intel_flush_display_plane(dev, plane);
5581
5582         if (IS_GEN2(dev))
5583                 intel_wait_for_vblank(dev, pipe);
5584
5585         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
5586                 return;
5587
5588         /* Switch off the pipe. */
5589         reg = PIPECONF(pipe);
5590         val = I915_READ(reg);
5591         if (val & PIPECONF_ENABLE) {
5592                 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
5593                 intel_wait_for_pipe_off(dev, pipe);
5594         }
5595 }
5596
5597 static void intel_crtc_init(struct drm_device *dev, int pipe)
5598 {
5599         drm_i915_private_t *dev_priv = dev->dev_private;
5600         struct intel_crtc *intel_crtc;
5601         int i;
5602
5603         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5604         if (intel_crtc == NULL)
5605                 return;
5606
5607         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5608
5609         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5610         for (i = 0; i < 256; i++) {
5611                 intel_crtc->lut_r[i] = i;
5612                 intel_crtc->lut_g[i] = i;
5613                 intel_crtc->lut_b[i] = i;
5614         }
5615
5616         /* Swap pipes & planes for FBC on pre-965 */
5617         intel_crtc->pipe = pipe;
5618         intel_crtc->plane = pipe;
5619         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5620                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5621                 intel_crtc->plane = !pipe;
5622         }
5623
5624         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5625                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5626         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5627         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5628
5629         intel_crtc->cursor_addr = 0;
5630         intel_crtc->dpms_mode = -1;
5631         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5632
5633         if (HAS_PCH_SPLIT(dev)) {
5634                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5635                 intel_helper_funcs.commit = ironlake_crtc_commit;
5636         } else {
5637                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5638                 intel_helper_funcs.commit = i9xx_crtc_commit;
5639         }
5640
5641         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5642
5643         intel_crtc->busy = false;
5644
5645         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5646                     (unsigned long)intel_crtc);
5647
5648         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5649 }
5650
5651 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5652                                 struct drm_file *file)
5653 {
5654         drm_i915_private_t *dev_priv = dev->dev_private;
5655         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5656         struct drm_mode_object *drmmode_obj;
5657         struct intel_crtc *crtc;
5658
5659         if (!dev_priv) {
5660                 DRM_ERROR("called with no initialization\n");
5661                 return -EINVAL;
5662         }
5663
5664         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5665                         DRM_MODE_OBJECT_CRTC);
5666
5667         if (!drmmode_obj) {
5668                 DRM_ERROR("no such CRTC id\n");
5669                 return -EINVAL;
5670         }
5671
5672         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5673         pipe_from_crtc_id->pipe = crtc->pipe;
5674
5675         return 0;
5676 }
5677
5678 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5679 {
5680         struct intel_encoder *encoder;
5681         int index_mask = 0;
5682         int entry = 0;
5683
5684         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5685                 if (type_mask & encoder->clone_mask)
5686                         index_mask |= (1 << entry);
5687                 entry++;
5688         }
5689
5690         return index_mask;
5691 }
5692
5693 static bool has_edp_a(struct drm_device *dev)
5694 {
5695         struct drm_i915_private *dev_priv = dev->dev_private;
5696
5697         if (!IS_MOBILE(dev))
5698                 return false;
5699
5700         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
5701                 return false;
5702
5703         if (IS_GEN5(dev) &&
5704             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
5705                 return false;
5706
5707         return true;
5708 }
5709
5710 static void intel_setup_outputs(struct drm_device *dev)
5711 {
5712         struct drm_i915_private *dev_priv = dev->dev_private;
5713         struct intel_encoder *encoder;
5714         bool dpd_is_edp = false;
5715         bool has_lvds = false;
5716
5717         if (IS_MOBILE(dev) && !IS_I830(dev))
5718                 has_lvds = intel_lvds_init(dev);
5719         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
5720                 /* disable the panel fitter on everything but LVDS */
5721                 I915_WRITE(PFIT_CONTROL, 0);
5722         }
5723
5724         if (HAS_PCH_SPLIT(dev)) {
5725                 dpd_is_edp = intel_dpd_is_edp(dev);
5726
5727                 if (has_edp_a(dev))
5728                         intel_dp_init(dev, DP_A);
5729
5730                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5731                         intel_dp_init(dev, PCH_DP_D);
5732         }
5733
5734         intel_crt_init(dev);
5735
5736         if (HAS_PCH_SPLIT(dev)) {
5737                 int found;
5738
5739                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5740                         /* PCH SDVOB multiplex with HDMIB */
5741                         found = intel_sdvo_init(dev, PCH_SDVOB);
5742                         if (!found)
5743                                 intel_hdmi_init(dev, HDMIB);
5744                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5745                                 intel_dp_init(dev, PCH_DP_B);
5746                 }
5747
5748                 if (I915_READ(HDMIC) & PORT_DETECTED)
5749                         intel_hdmi_init(dev, HDMIC);
5750
5751                 if (I915_READ(HDMID) & PORT_DETECTED)
5752                         intel_hdmi_init(dev, HDMID);
5753
5754                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5755                         intel_dp_init(dev, PCH_DP_C);
5756
5757                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5758                         intel_dp_init(dev, PCH_DP_D);
5759
5760         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5761                 bool found = false;
5762
5763                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5764                         DRM_DEBUG_KMS("probing SDVOB\n");
5765                         found = intel_sdvo_init(dev, SDVOB);
5766                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5767                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5768                                 intel_hdmi_init(dev, SDVOB);
5769                         }
5770
5771                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5772                                 DRM_DEBUG_KMS("probing DP_B\n");
5773                                 intel_dp_init(dev, DP_B);
5774                         }
5775                 }
5776
5777                 /* Before G4X SDVOC doesn't have its own detect register */
5778
5779                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5780                         DRM_DEBUG_KMS("probing SDVOC\n");
5781                         found = intel_sdvo_init(dev, SDVOC);
5782                 }
5783
5784                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5785
5786                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5787                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5788                                 intel_hdmi_init(dev, SDVOC);
5789                         }
5790                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5791                                 DRM_DEBUG_KMS("probing DP_C\n");
5792                                 intel_dp_init(dev, DP_C);
5793                         }
5794                 }
5795
5796                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5797                     (I915_READ(DP_D) & DP_DETECTED)) {
5798                         DRM_DEBUG_KMS("probing DP_D\n");
5799                         intel_dp_init(dev, DP_D);
5800                 }
5801         } else if (IS_GEN2(dev))
5802                 intel_dvo_init(dev);
5803
5804         if (SUPPORTS_TV(dev))
5805                 intel_tv_init(dev);
5806
5807         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5808                 encoder->base.possible_crtcs = encoder->crtc_mask;
5809                 encoder->base.possible_clones =
5810                         intel_encoder_clones(dev, encoder->clone_mask);
5811         }
5812
5813         intel_panel_setup_backlight(dev);
5814 }
5815
5816 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5817 {
5818         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5819
5820         drm_framebuffer_cleanup(fb);
5821         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
5822
5823         kfree(intel_fb);
5824 }
5825
5826 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5827                                                 struct drm_file *file,
5828                                                 unsigned int *handle)
5829 {
5830         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5831         struct drm_i915_gem_object *obj = intel_fb->obj;
5832
5833         return drm_gem_handle_create(file, &obj->base, handle);
5834 }
5835
5836 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5837         .destroy = intel_user_framebuffer_destroy,
5838         .create_handle = intel_user_framebuffer_create_handle,
5839 };
5840
5841 int intel_framebuffer_init(struct drm_device *dev,
5842                            struct intel_framebuffer *intel_fb,
5843                            struct drm_mode_fb_cmd *mode_cmd,
5844                            struct drm_i915_gem_object *obj)
5845 {
5846         int ret;
5847
5848         if (obj->tiling_mode == I915_TILING_Y)
5849                 return -EINVAL;
5850
5851         if (mode_cmd->pitch & 63)
5852                 return -EINVAL;
5853
5854         switch (mode_cmd->bpp) {
5855         case 8:
5856         case 16:
5857         case 24:
5858         case 32:
5859                 break;
5860         default:
5861                 return -EINVAL;
5862         }
5863
5864         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5865         if (ret) {
5866                 DRM_ERROR("framebuffer init failed %d\n", ret);
5867                 return ret;
5868         }
5869
5870         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5871         intel_fb->obj = obj;
5872         return 0;
5873 }
5874
5875 static struct drm_framebuffer *
5876 intel_user_framebuffer_create(struct drm_device *dev,
5877                               struct drm_file *filp,
5878                               struct drm_mode_fb_cmd *mode_cmd)
5879 {
5880         struct drm_i915_gem_object *obj;
5881         struct intel_framebuffer *intel_fb;
5882         int ret;
5883
5884         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
5885         if (!obj)
5886                 return ERR_PTR(-ENOENT);
5887
5888         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5889         if (!intel_fb)
5890                 return ERR_PTR(-ENOMEM);
5891
5892         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5893         if (ret) {
5894                 drm_gem_object_unreference_unlocked(&obj->base);
5895                 kfree(intel_fb);
5896                 return ERR_PTR(ret);
5897         }
5898
5899         return &intel_fb->base;
5900 }
5901
5902 static const struct drm_mode_config_funcs intel_mode_funcs = {
5903         .fb_create = intel_user_framebuffer_create,
5904         .output_poll_changed = intel_fb_output_poll_changed,
5905 };
5906
5907 static struct drm_i915_gem_object *
5908 intel_alloc_context_page(struct drm_device *dev)
5909 {
5910         struct drm_i915_gem_object *ctx;
5911         int ret;
5912
5913         ctx = i915_gem_alloc_object(dev, 4096);
5914         if (!ctx) {
5915                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5916                 return NULL;
5917         }
5918
5919         mutex_lock(&dev->struct_mutex);
5920         ret = i915_gem_object_pin(ctx, 4096, true);
5921         if (ret) {
5922                 DRM_ERROR("failed to pin power context: %d\n", ret);
5923                 goto err_unref;
5924         }
5925
5926         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5927         if (ret) {
5928                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5929                 goto err_unpin;
5930         }
5931         mutex_unlock(&dev->struct_mutex);
5932
5933         return ctx;
5934
5935 err_unpin:
5936         i915_gem_object_unpin(ctx);
5937 err_unref:
5938         drm_gem_object_unreference(&ctx->base);
5939         mutex_unlock(&dev->struct_mutex);
5940         return NULL;
5941 }
5942
5943 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5944 {
5945         struct drm_i915_private *dev_priv = dev->dev_private;
5946         u16 rgvswctl;
5947
5948         rgvswctl = I915_READ16(MEMSWCTL);
5949         if (rgvswctl & MEMCTL_CMD_STS) {
5950                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5951                 return false; /* still busy with another command */
5952         }
5953
5954         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5955                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5956         I915_WRITE16(MEMSWCTL, rgvswctl);
5957         POSTING_READ16(MEMSWCTL);
5958
5959         rgvswctl |= MEMCTL_CMD_STS;
5960         I915_WRITE16(MEMSWCTL, rgvswctl);
5961
5962         return true;
5963 }
5964
5965 void ironlake_enable_drps(struct drm_device *dev)
5966 {
5967         struct drm_i915_private *dev_priv = dev->dev_private;
5968         u32 rgvmodectl = I915_READ(MEMMODECTL);
5969         u8 fmax, fmin, fstart, vstart;
5970
5971         /* Enable temp reporting */
5972         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5973         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5974
5975         /* 100ms RC evaluation intervals */
5976         I915_WRITE(RCUPEI, 100000);
5977         I915_WRITE(RCDNEI, 100000);
5978
5979         /* Set max/min thresholds to 90ms and 80ms respectively */
5980         I915_WRITE(RCBMAXAVG, 90000);
5981         I915_WRITE(RCBMINAVG, 80000);
5982
5983         I915_WRITE(MEMIHYST, 1);
5984
5985         /* Set up min, max, and cur for interrupt handling */
5986         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5987         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5988         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5989                 MEMMODE_FSTART_SHIFT;
5990
5991         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5992                 PXVFREQ_PX_SHIFT;
5993
5994         dev_priv->fmax = fmax; /* IPS callback will increase this */
5995         dev_priv->fstart = fstart;
5996
5997         dev_priv->max_delay = fstart;
5998         dev_priv->min_delay = fmin;
5999         dev_priv->cur_delay = fstart;
6000
6001         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6002                          fmax, fmin, fstart);
6003
6004         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6005
6006         /*
6007          * Interrupts will be enabled in ironlake_irq_postinstall
6008          */
6009
6010         I915_WRITE(VIDSTART, vstart);
6011         POSTING_READ(VIDSTART);
6012
6013         rgvmodectl |= MEMMODE_SWMODE_EN;
6014         I915_WRITE(MEMMODECTL, rgvmodectl);
6015
6016         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6017                 DRM_ERROR("stuck trying to change perf mode\n");
6018         msleep(1);
6019
6020         ironlake_set_drps(dev, fstart);
6021
6022         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6023                 I915_READ(0x112e0);
6024         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6025         dev_priv->last_count2 = I915_READ(0x112f4);
6026         getrawmonotonic(&dev_priv->last_time2);
6027 }
6028
6029 void ironlake_disable_drps(struct drm_device *dev)
6030 {
6031         struct drm_i915_private *dev_priv = dev->dev_private;
6032         u16 rgvswctl = I915_READ16(MEMSWCTL);
6033
6034         /* Ack interrupts, disable EFC interrupt */
6035         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6036         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6037         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6038         I915_WRITE(DEIIR, DE_PCU_EVENT);
6039         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6040
6041         /* Go back to the starting frequency */
6042         ironlake_set_drps(dev, dev_priv->fstart);
6043         msleep(1);
6044         rgvswctl |= MEMCTL_CMD_STS;
6045         I915_WRITE(MEMSWCTL, rgvswctl);
6046         msleep(1);
6047
6048 }
6049
6050 void gen6_set_rps(struct drm_device *dev, u8 val)
6051 {
6052         struct drm_i915_private *dev_priv = dev->dev_private;
6053         u32 swreq;
6054
6055         swreq = (val & 0x3ff) << 25;
6056         I915_WRITE(GEN6_RPNSWREQ, swreq);
6057 }
6058
6059 void gen6_disable_rps(struct drm_device *dev)
6060 {
6061         struct drm_i915_private *dev_priv = dev->dev_private;
6062
6063         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6064         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6065         I915_WRITE(GEN6_PMIER, 0);
6066         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6067 }
6068
6069 static unsigned long intel_pxfreq(u32 vidfreq)
6070 {
6071         unsigned long freq;
6072         int div = (vidfreq & 0x3f0000) >> 16;
6073         int post = (vidfreq & 0x3000) >> 12;
6074         int pre = (vidfreq & 0x7);
6075
6076         if (!pre)
6077                 return 0;
6078
6079         freq = ((div * 133333) / ((1<<post) * pre));
6080
6081         return freq;
6082 }
6083
6084 void intel_init_emon(struct drm_device *dev)
6085 {
6086         struct drm_i915_private *dev_priv = dev->dev_private;
6087         u32 lcfuse;
6088         u8 pxw[16];
6089         int i;
6090
6091         /* Disable to program */
6092         I915_WRITE(ECR, 0);
6093         POSTING_READ(ECR);
6094
6095         /* Program energy weights for various events */
6096         I915_WRITE(SDEW, 0x15040d00);
6097         I915_WRITE(CSIEW0, 0x007f0000);
6098         I915_WRITE(CSIEW1, 0x1e220004);
6099         I915_WRITE(CSIEW2, 0x04000004);
6100
6101         for (i = 0; i < 5; i++)
6102                 I915_WRITE(PEW + (i * 4), 0);
6103         for (i = 0; i < 3; i++)
6104                 I915_WRITE(DEW + (i * 4), 0);
6105
6106         /* Program P-state weights to account for frequency power adjustment */
6107         for (i = 0; i < 16; i++) {
6108                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6109                 unsigned long freq = intel_pxfreq(pxvidfreq);
6110                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6111                         PXVFREQ_PX_SHIFT;
6112                 unsigned long val;
6113
6114                 val = vid * vid;
6115                 val *= (freq / 1000);
6116                 val *= 255;
6117                 val /= (127*127*900);
6118                 if (val > 0xff)
6119                         DRM_ERROR("bad pxval: %ld\n", val);
6120                 pxw[i] = val;
6121         }
6122         /* Render standby states get 0 weight */
6123         pxw[14] = 0;
6124         pxw[15] = 0;
6125
6126         for (i = 0; i < 4; i++) {
6127                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6128                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6129                 I915_WRITE(PXW + (i * 4), val);
6130         }
6131
6132         /* Adjust magic regs to magic values (more experimental results) */
6133         I915_WRITE(OGW0, 0);
6134         I915_WRITE(OGW1, 0);
6135         I915_WRITE(EG0, 0x00007f00);
6136         I915_WRITE(EG1, 0x0000000e);
6137         I915_WRITE(EG2, 0x000e0000);
6138         I915_WRITE(EG3, 0x68000300);
6139         I915_WRITE(EG4, 0x42000000);
6140         I915_WRITE(EG5, 0x00140031);
6141         I915_WRITE(EG6, 0);
6142         I915_WRITE(EG7, 0);
6143
6144         for (i = 0; i < 8; i++)
6145                 I915_WRITE(PXWL + (i * 4), 0);
6146
6147         /* Enable PMON + select events */
6148         I915_WRITE(ECR, 0x80000019);
6149
6150         lcfuse = I915_READ(LCFUSE02);
6151
6152         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6153 }
6154
6155 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6156 {
6157         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6158         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6159         u32 pcu_mbox;
6160         int cur_freq, min_freq, max_freq;
6161         int i;
6162
6163         /* Here begins a magic sequence of register writes to enable
6164          * auto-downclocking.
6165          *
6166          * Perhaps there might be some value in exposing these to
6167          * userspace...
6168          */
6169         I915_WRITE(GEN6_RC_STATE, 0);
6170         __gen6_force_wake_get(dev_priv);
6171
6172         /* disable the counters and set deterministic thresholds */
6173         I915_WRITE(GEN6_RC_CONTROL, 0);
6174
6175         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6176         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6177         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6178         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6179         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6180
6181         for (i = 0; i < I915_NUM_RINGS; i++)
6182                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6183
6184         I915_WRITE(GEN6_RC_SLEEP, 0);
6185         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6186         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6187         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
6188         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6189
6190         I915_WRITE(GEN6_RC_CONTROL,
6191                    GEN6_RC_CTL_RC6p_ENABLE |
6192                    GEN6_RC_CTL_RC6_ENABLE |
6193                    GEN6_RC_CTL_EI_MODE(1) |
6194                    GEN6_RC_CTL_HW_ENABLE);
6195
6196         I915_WRITE(GEN6_RPNSWREQ,
6197                    GEN6_FREQUENCY(10) |
6198                    GEN6_OFFSET(0) |
6199                    GEN6_AGGRESSIVE_TURBO);
6200         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6201                    GEN6_FREQUENCY(12));
6202
6203         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6204         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6205                    18 << 24 |
6206                    6 << 16);
6207         I915_WRITE(GEN6_RP_UP_THRESHOLD, 90000);
6208         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 100000);
6209         I915_WRITE(GEN6_RP_UP_EI, 100000);
6210         I915_WRITE(GEN6_RP_DOWN_EI, 300000);
6211         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6212         I915_WRITE(GEN6_RP_CONTROL,
6213                    GEN6_RP_MEDIA_TURBO |
6214                    GEN6_RP_USE_NORMAL_FREQ |
6215                    GEN6_RP_MEDIA_IS_GFX |
6216                    GEN6_RP_ENABLE |
6217                    GEN6_RP_UP_BUSY_MAX |
6218                    GEN6_RP_DOWN_BUSY_MIN);
6219
6220         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6221                      500))
6222                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6223
6224         I915_WRITE(GEN6_PCODE_DATA, 0);
6225         I915_WRITE(GEN6_PCODE_MAILBOX,
6226                    GEN6_PCODE_READY |
6227                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
6228         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6229                      500))
6230                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6231
6232         min_freq = (rp_state_cap & 0xff0000) >> 16;
6233         max_freq = rp_state_cap & 0xff;
6234         cur_freq = (gt_perf_status & 0xff00) >> 8;
6235
6236         /* Check for overclock support */
6237         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6238                      500))
6239                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6240         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
6241         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
6242         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6243                      500))
6244                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6245         if (pcu_mbox & (1<<31)) { /* OC supported */
6246                 max_freq = pcu_mbox & 0xff;
6247                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 100);
6248         }
6249
6250         /* In units of 100MHz */
6251         dev_priv->max_delay = max_freq;
6252         dev_priv->min_delay = min_freq;
6253         dev_priv->cur_delay = cur_freq;
6254
6255         /* requires MSI enabled */
6256         I915_WRITE(GEN6_PMIER,
6257                    GEN6_PM_MBOX_EVENT |
6258                    GEN6_PM_THERMAL_EVENT |
6259                    GEN6_PM_RP_DOWN_TIMEOUT |
6260                    GEN6_PM_RP_UP_THRESHOLD |
6261                    GEN6_PM_RP_DOWN_THRESHOLD |
6262                    GEN6_PM_RP_UP_EI_EXPIRED |
6263                    GEN6_PM_RP_DOWN_EI_EXPIRED);
6264         I915_WRITE(GEN6_PMIMR, 0);
6265         /* enable all PM interrupts */
6266         I915_WRITE(GEN6_PMINTRMSK, 0);
6267
6268         __gen6_force_wake_put(dev_priv);
6269 }
6270
6271 void intel_enable_clock_gating(struct drm_device *dev)
6272 {
6273         struct drm_i915_private *dev_priv = dev->dev_private;
6274
6275         /*
6276          * Disable clock gating reported to work incorrectly according to the
6277          * specs, but enable as much else as we can.
6278          */
6279         if (HAS_PCH_SPLIT(dev)) {
6280                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
6281
6282                 if (IS_GEN5(dev)) {
6283                         /* Required for FBC */
6284                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
6285                         /* Required for CxSR */
6286                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
6287
6288                         I915_WRITE(PCH_3DCGDIS0,
6289                                    MARIUNIT_CLOCK_GATE_DISABLE |
6290                                    SVSMUNIT_CLOCK_GATE_DISABLE);
6291                         I915_WRITE(PCH_3DCGDIS1,
6292                                    VFMUNIT_CLOCK_GATE_DISABLE);
6293                 }
6294
6295                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
6296
6297                 /*
6298                  * On Ibex Peak and Cougar Point, we need to disable clock
6299                  * gating for the panel power sequencer or it will fail to
6300                  * start up when no ports are active.
6301                  */
6302                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6303
6304                 /*
6305                  * According to the spec the following bits should be set in
6306                  * order to enable memory self-refresh
6307                  * The bit 22/21 of 0x42004
6308                  * The bit 5 of 0x42020
6309                  * The bit 15 of 0x45000
6310                  */
6311                 if (IS_GEN5(dev)) {
6312                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6313                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
6314                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6315                         I915_WRITE(ILK_DSPCLK_GATE,
6316                                         (I915_READ(ILK_DSPCLK_GATE) |
6317                                                 ILK_DPARB_CLK_GATE));
6318                         I915_WRITE(DISP_ARB_CTL,
6319                                         (I915_READ(DISP_ARB_CTL) |
6320                                                 DISP_FBC_WM_DIS));
6321                         I915_WRITE(WM3_LP_ILK, 0);
6322                         I915_WRITE(WM2_LP_ILK, 0);
6323                         I915_WRITE(WM1_LP_ILK, 0);
6324                 }
6325                 /*
6326                  * Based on the document from hardware guys the following bits
6327                  * should be set unconditionally in order to enable FBC.
6328                  * The bit 22 of 0x42000
6329                  * The bit 22 of 0x42004
6330                  * The bit 7,8,9 of 0x42020.
6331                  */
6332                 if (IS_IRONLAKE_M(dev)) {
6333                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6334                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6335                                    ILK_FBCQ_DIS);
6336                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6337                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6338                                    ILK_DPARB_GATE);
6339                         I915_WRITE(ILK_DSPCLK_GATE,
6340                                    I915_READ(ILK_DSPCLK_GATE) |
6341                                    ILK_DPFC_DIS1 |
6342                                    ILK_DPFC_DIS2 |
6343                                    ILK_CLK_FBC);
6344                 }
6345
6346                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6347                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6348                            ILK_ELPIN_409_SELECT);
6349
6350                 if (IS_GEN5(dev)) {
6351                         I915_WRITE(_3D_CHICKEN2,
6352                                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6353                                    _3D_CHICKEN2_WM_READ_PIPELINED);
6354                 }
6355
6356                 if (IS_GEN6(dev)) {
6357                         I915_WRITE(WM3_LP_ILK, 0);
6358                         I915_WRITE(WM2_LP_ILK, 0);
6359                         I915_WRITE(WM1_LP_ILK, 0);
6360
6361                         /*
6362                          * According to the spec the following bits should be
6363                          * set in order to enable memory self-refresh and fbc:
6364                          * The bit21 and bit22 of 0x42000
6365                          * The bit21 and bit22 of 0x42004
6366                          * The bit5 and bit7 of 0x42020
6367                          * The bit14 of 0x70180
6368                          * The bit14 of 0x71180
6369                          */
6370                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6371                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6372                                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6373                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6374                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6375                                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6376                         I915_WRITE(ILK_DSPCLK_GATE,
6377                                    I915_READ(ILK_DSPCLK_GATE) |
6378                                    ILK_DPARB_CLK_GATE  |
6379                                    ILK_DPFD_CLK_GATE);
6380
6381                         I915_WRITE(DSPACNTR,
6382                                    I915_READ(DSPACNTR) |
6383                                    DISPPLANE_TRICKLE_FEED_DISABLE);
6384                         I915_WRITE(DSPBCNTR,
6385                                    I915_READ(DSPBCNTR) |
6386                                    DISPPLANE_TRICKLE_FEED_DISABLE);
6387                 }
6388         } else if (IS_G4X(dev)) {
6389                 uint32_t dspclk_gate;
6390                 I915_WRITE(RENCLK_GATE_D1, 0);
6391                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6392                        GS_UNIT_CLOCK_GATE_DISABLE |
6393                        CL_UNIT_CLOCK_GATE_DISABLE);
6394                 I915_WRITE(RAMCLK_GATE_D, 0);
6395                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6396                         OVRUNIT_CLOCK_GATE_DISABLE |
6397                         OVCUNIT_CLOCK_GATE_DISABLE;
6398                 if (IS_GM45(dev))
6399                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6400                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6401         } else if (IS_CRESTLINE(dev)) {
6402                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6403                 I915_WRITE(RENCLK_GATE_D2, 0);
6404                 I915_WRITE(DSPCLK_GATE_D, 0);
6405                 I915_WRITE(RAMCLK_GATE_D, 0);
6406                 I915_WRITE16(DEUC, 0);
6407         } else if (IS_BROADWATER(dev)) {
6408                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6409                        I965_RCC_CLOCK_GATE_DISABLE |
6410                        I965_RCPB_CLOCK_GATE_DISABLE |
6411                        I965_ISC_CLOCK_GATE_DISABLE |
6412                        I965_FBC_CLOCK_GATE_DISABLE);
6413                 I915_WRITE(RENCLK_GATE_D2, 0);
6414         } else if (IS_GEN3(dev)) {
6415                 u32 dstate = I915_READ(D_STATE);
6416
6417                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6418                         DSTATE_DOT_CLOCK_GATING;
6419                 I915_WRITE(D_STATE, dstate);
6420         } else if (IS_I85X(dev) || IS_I865G(dev)) {
6421                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6422         } else if (IS_I830(dev)) {
6423                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6424         }
6425 }
6426
6427 void intel_disable_clock_gating(struct drm_device *dev)
6428 {
6429         struct drm_i915_private *dev_priv = dev->dev_private;
6430
6431         if (dev_priv->renderctx) {
6432                 struct drm_i915_gem_object *obj = dev_priv->renderctx;
6433
6434                 I915_WRITE(CCID, 0);
6435                 POSTING_READ(CCID);
6436
6437                 i915_gem_object_unpin(obj);
6438                 drm_gem_object_unreference(&obj->base);
6439                 dev_priv->renderctx = NULL;
6440         }
6441
6442         if (dev_priv->pwrctx) {
6443                 struct drm_i915_gem_object *obj = dev_priv->pwrctx;
6444
6445                 I915_WRITE(PWRCTXA, 0);
6446                 POSTING_READ(PWRCTXA);
6447
6448                 i915_gem_object_unpin(obj);
6449                 drm_gem_object_unreference(&obj->base);
6450                 dev_priv->pwrctx = NULL;
6451         }
6452 }
6453
6454 static void ironlake_disable_rc6(struct drm_device *dev)
6455 {
6456         struct drm_i915_private *dev_priv = dev->dev_private;
6457
6458         /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
6459         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
6460         wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
6461                  10);
6462         POSTING_READ(CCID);
6463         I915_WRITE(PWRCTXA, 0);
6464         POSTING_READ(PWRCTXA);
6465         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
6466         POSTING_READ(RSTDBYCTL);
6467         i915_gem_object_unpin(dev_priv->renderctx);
6468         drm_gem_object_unreference(&dev_priv->renderctx->base);
6469         dev_priv->renderctx = NULL;
6470         i915_gem_object_unpin(dev_priv->pwrctx);
6471         drm_gem_object_unreference(&dev_priv->pwrctx->base);
6472         dev_priv->pwrctx = NULL;
6473 }
6474
6475 void ironlake_enable_rc6(struct drm_device *dev)
6476 {
6477         struct drm_i915_private *dev_priv = dev->dev_private;
6478         int ret;
6479
6480         /*
6481          * GPU can automatically power down the render unit if given a page
6482          * to save state.
6483          */
6484         ret = BEGIN_LP_RING(6);
6485         if (ret) {
6486                 ironlake_disable_rc6(dev);
6487                 return;
6488         }
6489         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
6490         OUT_RING(MI_SET_CONTEXT);
6491         OUT_RING(dev_priv->renderctx->gtt_offset |
6492                  MI_MM_SPACE_GTT |
6493                  MI_SAVE_EXT_STATE_EN |
6494                  MI_RESTORE_EXT_STATE_EN |
6495                  MI_RESTORE_INHIBIT);
6496         OUT_RING(MI_SUSPEND_FLUSH);
6497         OUT_RING(MI_NOOP);
6498         OUT_RING(MI_FLUSH);
6499         ADVANCE_LP_RING();
6500
6501         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
6502         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
6503 }
6504
6505 /* Set up chip specific display functions */
6506 static void intel_init_display(struct drm_device *dev)
6507 {
6508         struct drm_i915_private *dev_priv = dev->dev_private;
6509
6510         /* We always want a DPMS function */
6511         if (HAS_PCH_SPLIT(dev))
6512                 dev_priv->display.dpms = ironlake_crtc_dpms;
6513         else
6514                 dev_priv->display.dpms = i9xx_crtc_dpms;
6515
6516         if (I915_HAS_FBC(dev)) {
6517                 if (HAS_PCH_SPLIT(dev)) {
6518                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6519                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6520                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6521                 } else if (IS_GM45(dev)) {
6522                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6523                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6524                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6525                 } else if (IS_CRESTLINE(dev)) {
6526                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6527                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6528                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6529                 }
6530                 /* 855GM needs testing */
6531         }
6532
6533         /* Returns the core display clock speed */
6534         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
6535                 dev_priv->display.get_display_clock_speed =
6536                         i945_get_display_clock_speed;
6537         else if (IS_I915G(dev))
6538                 dev_priv->display.get_display_clock_speed =
6539                         i915_get_display_clock_speed;
6540         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6541                 dev_priv->display.get_display_clock_speed =
6542                         i9xx_misc_get_display_clock_speed;
6543         else if (IS_I915GM(dev))
6544                 dev_priv->display.get_display_clock_speed =
6545                         i915gm_get_display_clock_speed;
6546         else if (IS_I865G(dev))
6547                 dev_priv->display.get_display_clock_speed =
6548                         i865_get_display_clock_speed;
6549         else if (IS_I85X(dev))
6550                 dev_priv->display.get_display_clock_speed =
6551                         i855_get_display_clock_speed;
6552         else /* 852, 830 */
6553                 dev_priv->display.get_display_clock_speed =
6554                         i830_get_display_clock_speed;
6555
6556         /* For FIFO watermark updates */
6557         if (HAS_PCH_SPLIT(dev)) {
6558                 if (IS_GEN5(dev)) {
6559                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
6560                                 dev_priv->display.update_wm = ironlake_update_wm;
6561                         else {
6562                                 DRM_DEBUG_KMS("Failed to get proper latency. "
6563                                               "Disable CxSR\n");
6564                                 dev_priv->display.update_wm = NULL;
6565                         }
6566                 } else if (IS_GEN6(dev)) {
6567                         if (SNB_READ_WM0_LATENCY()) {
6568                                 dev_priv->display.update_wm = sandybridge_update_wm;
6569                         } else {
6570                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
6571                                               "Disable CxSR\n");
6572                                 dev_priv->display.update_wm = NULL;
6573                         }
6574                 } else
6575                         dev_priv->display.update_wm = NULL;
6576         } else if (IS_PINEVIEW(dev)) {
6577                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6578                                             dev_priv->is_ddr3,
6579                                             dev_priv->fsb_freq,
6580                                             dev_priv->mem_freq)) {
6581                         DRM_INFO("failed to find known CxSR latency "
6582                                  "(found ddr%s fsb freq %d, mem freq %d), "
6583                                  "disabling CxSR\n",
6584                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
6585                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6586                         /* Disable CxSR and never update its watermark again */
6587                         pineview_disable_cxsr(dev);
6588                         dev_priv->display.update_wm = NULL;
6589                 } else
6590                         dev_priv->display.update_wm = pineview_update_wm;
6591         } else if (IS_G4X(dev))
6592                 dev_priv->display.update_wm = g4x_update_wm;
6593         else if (IS_GEN4(dev))
6594                 dev_priv->display.update_wm = i965_update_wm;
6595         else if (IS_GEN3(dev)) {
6596                 dev_priv->display.update_wm = i9xx_update_wm;
6597                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6598         } else if (IS_I85X(dev)) {
6599                 dev_priv->display.update_wm = i9xx_update_wm;
6600                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6601         } else {
6602                 dev_priv->display.update_wm = i830_update_wm;
6603                 if (IS_845G(dev))
6604                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6605                 else
6606                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6607         }
6608 }
6609
6610 /*
6611  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6612  * resume, or other times.  This quirk makes sure that's the case for
6613  * affected systems.
6614  */
6615 static void quirk_pipea_force (struct drm_device *dev)
6616 {
6617         struct drm_i915_private *dev_priv = dev->dev_private;
6618
6619         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6620         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6621 }
6622
6623 struct intel_quirk {
6624         int device;
6625         int subsystem_vendor;
6626         int subsystem_device;
6627         void (*hook)(struct drm_device *dev);
6628 };
6629
6630 struct intel_quirk intel_quirks[] = {
6631         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6632         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6633         /* HP Mini needs pipe A force quirk (LP: #322104) */
6634         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6635
6636         /* Thinkpad R31 needs pipe A force quirk */
6637         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6638         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6639         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6640
6641         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6642         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6643         /* ThinkPad X40 needs pipe A force quirk */
6644
6645         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6646         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6647
6648         /* 855 & before need to leave pipe A & dpll A up */
6649         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6650         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6651 };
6652
6653 static void intel_init_quirks(struct drm_device *dev)
6654 {
6655         struct pci_dev *d = dev->pdev;
6656         int i;
6657
6658         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6659                 struct intel_quirk *q = &intel_quirks[i];
6660
6661                 if (d->device == q->device &&
6662                     (d->subsystem_vendor == q->subsystem_vendor ||
6663                      q->subsystem_vendor == PCI_ANY_ID) &&
6664                     (d->subsystem_device == q->subsystem_device ||
6665                      q->subsystem_device == PCI_ANY_ID))
6666                         q->hook(dev);
6667         }
6668 }
6669
6670 /* Disable the VGA plane that we never use */
6671 static void i915_disable_vga(struct drm_device *dev)
6672 {
6673         struct drm_i915_private *dev_priv = dev->dev_private;
6674         u8 sr1;
6675         u32 vga_reg;
6676
6677         if (HAS_PCH_SPLIT(dev))
6678                 vga_reg = CPU_VGACNTRL;
6679         else
6680                 vga_reg = VGACNTRL;
6681
6682         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6683         outb(1, VGA_SR_INDEX);
6684         sr1 = inb(VGA_SR_DATA);
6685         outb(sr1 | 1<<5, VGA_SR_DATA);
6686         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6687         udelay(300);
6688
6689         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6690         POSTING_READ(vga_reg);
6691 }
6692
6693 void intel_modeset_init(struct drm_device *dev)
6694 {
6695         struct drm_i915_private *dev_priv = dev->dev_private;
6696         int i;
6697
6698         drm_mode_config_init(dev);
6699
6700         dev->mode_config.min_width = 0;
6701         dev->mode_config.min_height = 0;
6702
6703         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6704
6705         intel_init_quirks(dev);
6706
6707         intel_init_display(dev);
6708
6709         if (IS_GEN2(dev)) {
6710                 dev->mode_config.max_width = 2048;
6711                 dev->mode_config.max_height = 2048;
6712         } else if (IS_GEN3(dev)) {
6713                 dev->mode_config.max_width = 4096;
6714                 dev->mode_config.max_height = 4096;
6715         } else {
6716                 dev->mode_config.max_width = 8192;
6717                 dev->mode_config.max_height = 8192;
6718         }
6719         dev->mode_config.fb_base = dev->agp->base;
6720
6721         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6722                 dev_priv->num_pipe = 2;
6723         else
6724                 dev_priv->num_pipe = 1;
6725         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6726                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6727
6728         for (i = 0; i < dev_priv->num_pipe; i++) {
6729                 intel_crtc_init(dev, i);
6730         }
6731
6732         intel_setup_outputs(dev);
6733
6734         intel_enable_clock_gating(dev);
6735
6736         /* Just disable it once at startup */
6737         i915_disable_vga(dev);
6738
6739         if (IS_IRONLAKE_M(dev)) {
6740                 ironlake_enable_drps(dev);
6741                 intel_init_emon(dev);
6742         }
6743
6744         if (IS_GEN6(dev))
6745                 gen6_enable_rps(dev_priv);
6746
6747         if (IS_IRONLAKE_M(dev)) {
6748                 dev_priv->renderctx = intel_alloc_context_page(dev);
6749                 if (!dev_priv->renderctx)
6750                         goto skip_rc6;
6751                 dev_priv->pwrctx = intel_alloc_context_page(dev);
6752                 if (!dev_priv->pwrctx) {
6753                         i915_gem_object_unpin(dev_priv->renderctx);
6754                         drm_gem_object_unreference(&dev_priv->renderctx->base);
6755                         dev_priv->renderctx = NULL;
6756                         goto skip_rc6;
6757                 }
6758                 ironlake_enable_rc6(dev);
6759         }
6760
6761 skip_rc6:
6762         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6763         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6764                     (unsigned long)dev);
6765
6766         intel_setup_overlay(dev);
6767 }
6768
6769 void intel_modeset_cleanup(struct drm_device *dev)
6770 {
6771         struct drm_i915_private *dev_priv = dev->dev_private;
6772         struct drm_crtc *crtc;
6773         struct intel_crtc *intel_crtc;
6774
6775         drm_kms_helper_poll_fini(dev);
6776         mutex_lock(&dev->struct_mutex);
6777
6778         intel_unregister_dsm_handler();
6779
6780
6781         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6782                 /* Skip inactive CRTCs */
6783                 if (!crtc->fb)
6784                         continue;
6785
6786                 intel_crtc = to_intel_crtc(crtc);
6787                 intel_increase_pllclock(crtc);
6788         }
6789
6790         if (dev_priv->display.disable_fbc)
6791                 dev_priv->display.disable_fbc(dev);
6792
6793         if (IS_IRONLAKE_M(dev))
6794                 ironlake_disable_drps(dev);
6795         if (IS_GEN6(dev))
6796                 gen6_disable_rps(dev);
6797
6798         if (IS_IRONLAKE_M(dev))
6799                 ironlake_disable_rc6(dev);
6800
6801         mutex_unlock(&dev->struct_mutex);
6802
6803         /* Disable the irq before mode object teardown, for the irq might
6804          * enqueue unpin/hotplug work. */
6805         drm_irq_uninstall(dev);
6806         cancel_work_sync(&dev_priv->hotplug_work);
6807
6808         /* Shut off idle work before the crtcs get freed. */
6809         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6810                 intel_crtc = to_intel_crtc(crtc);
6811                 del_timer_sync(&intel_crtc->idle_timer);
6812         }
6813         del_timer_sync(&dev_priv->idle_timer);
6814         cancel_work_sync(&dev_priv->idle_work);
6815
6816         drm_mode_config_cleanup(dev);
6817 }
6818
6819 /*
6820  * Return which encoder is currently attached for connector.
6821  */
6822 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6823 {
6824         return &intel_attached_encoder(connector)->base;
6825 }
6826
6827 void intel_connector_attach_encoder(struct intel_connector *connector,
6828                                     struct intel_encoder *encoder)
6829 {
6830         connector->encoder = encoder;
6831         drm_mode_connector_attach_encoder(&connector->base,
6832                                           &encoder->base);
6833 }
6834
6835 /*
6836  * set vga decode state - true == enable VGA decode
6837  */
6838 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6839 {
6840         struct drm_i915_private *dev_priv = dev->dev_private;
6841         u16 gmch_ctrl;
6842
6843         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6844         if (state)
6845                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6846         else
6847                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6848         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6849         return 0;
6850 }
6851
6852 #ifdef CONFIG_DEBUG_FS
6853 #include <linux/seq_file.h>
6854
6855 struct intel_display_error_state {
6856         struct intel_cursor_error_state {
6857                 u32 control;
6858                 u32 position;
6859                 u32 base;
6860                 u32 size;
6861         } cursor[2];
6862
6863         struct intel_pipe_error_state {
6864                 u32 conf;
6865                 u32 source;
6866
6867                 u32 htotal;
6868                 u32 hblank;
6869                 u32 hsync;
6870                 u32 vtotal;
6871                 u32 vblank;
6872                 u32 vsync;
6873         } pipe[2];
6874
6875         struct intel_plane_error_state {
6876                 u32 control;
6877                 u32 stride;
6878                 u32 size;
6879                 u32 pos;
6880                 u32 addr;
6881                 u32 surface;
6882                 u32 tile_offset;
6883         } plane[2];
6884 };
6885
6886 struct intel_display_error_state *
6887 intel_display_capture_error_state(struct drm_device *dev)
6888 {
6889         drm_i915_private_t *dev_priv = dev->dev_private;
6890         struct intel_display_error_state *error;
6891         int i;
6892
6893         error = kmalloc(sizeof(*error), GFP_ATOMIC);
6894         if (error == NULL)
6895                 return NULL;
6896
6897         for (i = 0; i < 2; i++) {
6898                 error->cursor[i].control = I915_READ(CURCNTR(i));
6899                 error->cursor[i].position = I915_READ(CURPOS(i));
6900                 error->cursor[i].base = I915_READ(CURBASE(i));
6901
6902                 error->plane[i].control = I915_READ(DSPCNTR(i));
6903                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6904                 error->plane[i].size = I915_READ(DSPSIZE(i));
6905                 error->plane[i].pos= I915_READ(DSPPOS(i));
6906                 error->plane[i].addr = I915_READ(DSPADDR(i));
6907                 if (INTEL_INFO(dev)->gen >= 4) {
6908                         error->plane[i].surface = I915_READ(DSPSURF(i));
6909                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6910                 }
6911
6912                 error->pipe[i].conf = I915_READ(PIPECONF(i));
6913                 error->pipe[i].source = I915_READ(PIPESRC(i));
6914                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6915                 error->pipe[i].hblank = I915_READ(HBLANK(i));
6916                 error->pipe[i].hsync = I915_READ(HSYNC(i));
6917                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6918                 error->pipe[i].vblank = I915_READ(VBLANK(i));
6919                 error->pipe[i].vsync = I915_READ(VSYNC(i));
6920         }
6921
6922         return error;
6923 }
6924
6925 void
6926 intel_display_print_error_state(struct seq_file *m,
6927                                 struct drm_device *dev,
6928                                 struct intel_display_error_state *error)
6929 {
6930         int i;
6931
6932         for (i = 0; i < 2; i++) {
6933                 seq_printf(m, "Pipe [%d]:\n", i);
6934                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6935                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6936                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6937                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6938                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6939                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6940                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6941                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6942
6943                 seq_printf(m, "Plane [%d]:\n", i);
6944                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6945                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6946                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6947                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
6948                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6949                 if (INTEL_INFO(dev)->gen >= 4) {
6950                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6951                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6952                 }
6953
6954                 seq_printf(m, "Cursor [%d]:\n", i);
6955                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6956                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
6957                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6958         }
6959 }
6960 #endif