]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'drm-next-ast-fixes' of ssh://people.freedesktop.org/~/linux into drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107         if (!connector->mst_port)
108                 return connector->encoder;
109         else
110                 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4860000, .max = 6700000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403         clock->m = clock->m1 * clock->m2;
404         clock->p = clock->p1 * clock->p2;
405         if (WARN_ON(clock->n == 0 || clock->p == 0))
406                 return;
407         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412  * Returns whether any output on the specified pipe is of the specified type
413  */
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415 {
416         struct drm_device *dev = crtc->dev;
417         struct intel_encoder *encoder;
418
419         for_each_encoder_on_crtc(dev, crtc, encoder)
420                 if (encoder->type == type)
421                         return true;
422
423         return false;
424 }
425
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427                                                 int refclk)
428 {
429         struct drm_device *dev = crtc->dev;
430         const intel_limit_t *limit;
431
432         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433                 if (intel_is_dual_link_lvds(dev)) {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_dual_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_dual_lvds;
438                 } else {
439                         if (refclk == 100000)
440                                 limit = &intel_limits_ironlake_single_lvds_100m;
441                         else
442                                 limit = &intel_limits_ironlake_single_lvds;
443                 }
444         } else
445                 limit = &intel_limits_ironlake_dac;
446
447         return limit;
448 }
449
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451 {
452         struct drm_device *dev = crtc->dev;
453         const intel_limit_t *limit;
454
455         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456                 if (intel_is_dual_link_lvds(dev))
457                         limit = &intel_limits_g4x_dual_channel_lvds;
458                 else
459                         limit = &intel_limits_g4x_single_channel_lvds;
460         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462                 limit = &intel_limits_g4x_hdmi;
463         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464                 limit = &intel_limits_g4x_sdvo;
465         } else /* The option is for other outputs */
466                 limit = &intel_limits_i9xx_sdvo;
467
468         return limit;
469 }
470
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
472 {
473         struct drm_device *dev = crtc->dev;
474         const intel_limit_t *limit;
475
476         if (HAS_PCH_SPLIT(dev))
477                 limit = intel_ironlake_limit(crtc, refclk);
478         else if (IS_G4X(dev)) {
479                 limit = intel_g4x_limit(crtc);
480         } else if (IS_PINEVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482                         limit = &intel_limits_pineview_lvds;
483                 else
484                         limit = &intel_limits_pineview_sdvo;
485         } else if (IS_CHERRYVIEW(dev)) {
486                 limit = &intel_limits_chv;
487         } else if (IS_VALLEYVIEW(dev)) {
488                 limit = &intel_limits_vlv;
489         } else if (!IS_GEN2(dev)) {
490                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491                         limit = &intel_limits_i9xx_lvds;
492                 else
493                         limit = &intel_limits_i9xx_sdvo;
494         } else {
495                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496                         limit = &intel_limits_i8xx_lvds;
497                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498                         limit = &intel_limits_i8xx_dvo;
499                 else
500                         limit = &intel_limits_i8xx_dac;
501         }
502         return limit;
503 }
504
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
507 {
508         clock->m = clock->m2 + 2;
509         clock->p = clock->p1 * clock->p2;
510         if (WARN_ON(clock->n == 0 || clock->p == 0))
511                 return;
512         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
514 }
515
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517 {
518         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519 }
520
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = i9xx_dpll_compute_m(clock);
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static void chv_clock(int refclk, intel_clock_t *clock)
532 {
533         clock->m = clock->m1 * clock->m2;
534         clock->p = clock->p1 * clock->p2;
535         if (WARN_ON(clock->n == 0 || clock->p == 0))
536                 return;
537         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538                         clock->n << 22);
539         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
553                 INTELPllInvalid("n out of range\n");
554         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
555                 INTELPllInvalid("p1 out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560
561         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562                 if (clock->m1 <= clock->m2)
563                         INTELPllInvalid("m1 <= m2\n");
564
565         if (!IS_VALLEYVIEW(dev)) {
566                 if (clock->p < limit->p.min || limit->p.max < clock->p)
567                         INTELPllInvalid("p out of range\n");
568                 if (clock->m < limit->m.min || limit->m.max < clock->m)
569                         INTELPllInvalid("m out of range\n");
570         }
571
572         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573                 INTELPllInvalid("vco out of range\n");
574         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575          * connector, etc., rather than just a single range.
576          */
577         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578                 INTELPllInvalid("dot out of range\n");
579
580         return true;
581 }
582
583 static bool
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585                     int target, int refclk, intel_clock_t *match_clock,
586                     intel_clock_t *best_clock)
587 {
588         struct drm_device *dev = crtc->dev;
589         intel_clock_t clock;
590         int err = target;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 /*
594                  * For LVDS just rely on its current settings for dual-channel.
595                  * We haven't figured out how to reliably set up different
596                  * single/dual channel state, if we even can.
597                  */
598                 if (intel_is_dual_link_lvds(dev))
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610
611         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612              clock.m1++) {
613                 for (clock.m2 = limit->m2.min;
614                      clock.m2 <= limit->m2.max; clock.m2++) {
615                         if (clock.m2 >= clock.m1)
616                                 break;
617                         for (clock.n = limit->n.min;
618                              clock.n <= limit->n.max; clock.n++) {
619                                 for (clock.p1 = limit->p1.min;
620                                         clock.p1 <= limit->p1.max; clock.p1++) {
621                                         int this_err;
622
623                                         i9xx_clock(refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627                                         if (match_clock &&
628                                             clock.p != match_clock->p)
629                                                 continue;
630
631                                         this_err = abs(clock.dot - target);
632                                         if (this_err < err) {
633                                                 *best_clock = clock;
634                                                 err = this_err;
635                                         }
636                                 }
637                         }
638                 }
639         }
640
641         return (err != target);
642 }
643
644 static bool
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646                    int target, int refclk, intel_clock_t *match_clock,
647                    intel_clock_t *best_clock)
648 {
649         struct drm_device *dev = crtc->dev;
650         intel_clock_t clock;
651         int err = target;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 /*
655                  * For LVDS just rely on its current settings for dual-channel.
656                  * We haven't figured out how to reliably set up different
657                  * single/dual channel state, if we even can.
658                  */
659                 if (intel_is_dual_link_lvds(dev))
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset(best_clock, 0, sizeof(*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673              clock.m1++) {
674                 for (clock.m2 = limit->m2.min;
675                      clock.m2 <= limit->m2.max; clock.m2++) {
676                         for (clock.n = limit->n.min;
677                              clock.n <= limit->n.max; clock.n++) {
678                                 for (clock.p1 = limit->p1.min;
679                                         clock.p1 <= limit->p1.max; clock.p1++) {
680                                         int this_err;
681
682                                         pineview_clock(refclk, &clock);
683                                         if (!intel_PLL_is_valid(dev, limit,
684                                                                 &clock))
685                                                 continue;
686                                         if (match_clock &&
687                                             clock.p != match_clock->p)
688                                                 continue;
689
690                                         this_err = abs(clock.dot - target);
691                                         if (this_err < err) {
692                                                 *best_clock = clock;
693                                                 err = this_err;
694                                         }
695                                 }
696                         }
697                 }
698         }
699
700         return (err != target);
701 }
702
703 static bool
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                    int target, int refclk, intel_clock_t *match_clock,
706                    intel_clock_t *best_clock)
707 {
708         struct drm_device *dev = crtc->dev;
709         intel_clock_t clock;
710         int max_n;
711         bool found;
712         /* approximately equals target * 0.00585 */
713         int err_most = (target >> 8) + (target >> 9);
714         found = false;
715
716         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717                 if (intel_is_dual_link_lvds(dev))
718                         clock.p2 = limit->p2.p2_fast;
719                 else
720                         clock.p2 = limit->p2.p2_slow;
721         } else {
722                 if (target < limit->p2.dot_limit)
723                         clock.p2 = limit->p2.p2_slow;
724                 else
725                         clock.p2 = limit->p2.p2_fast;
726         }
727
728         memset(best_clock, 0, sizeof(*best_clock));
729         max_n = limit->n.max;
730         /* based on hardware requirement, prefer smaller n to precision */
731         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732                 /* based on hardware requirement, prefere larger m1,m2 */
733                 for (clock.m1 = limit->m1.max;
734                      clock.m1 >= limit->m1.min; clock.m1--) {
735                         for (clock.m2 = limit->m2.max;
736                              clock.m2 >= limit->m2.min; clock.m2--) {
737                                 for (clock.p1 = limit->p1.max;
738                                      clock.p1 >= limit->p1.min; clock.p1--) {
739                                         int this_err;
740
741                                         i9xx_clock(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745
746                                         this_err = abs(clock.dot - target);
747                                         if (this_err < err_most) {
748                                                 *best_clock = clock;
749                                                 err_most = this_err;
750                                                 max_n = clock.n;
751                                                 found = true;
752                                         }
753                                 }
754                         }
755                 }
756         }
757         return found;
758 }
759
760 static bool
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762                    int target, int refclk, intel_clock_t *match_clock,
763                    intel_clock_t *best_clock)
764 {
765         struct drm_device *dev = crtc->dev;
766         intel_clock_t clock;
767         unsigned int bestppm = 1000000;
768         /* min update 19.2 MHz */
769         int max_n = min(limit->n.max, refclk / 19200);
770         bool found = false;
771
772         target *= 5; /* fast clock */
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         /* based on hardware requirement, prefer smaller n to precision */
777         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781                                 clock.p = clock.p1 * clock.p2;
782                                 /* based on hardware requirement, prefer bigger m1,m2 values */
783                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784                                         unsigned int ppm, diff;
785
786                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787                                                                      refclk * clock.m1);
788
789                                         vlv_clock(refclk, &clock);
790
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794
795                                         diff = abs(clock.dot - target);
796                                         ppm = div_u64(1000000ULL * diff, target);
797
798                                         if (ppm < 100 && clock.p > best_clock->p) {
799                                                 bestppm = 0;
800                                                 *best_clock = clock;
801                                                 found = true;
802                                         }
803
804                                         if (bestppm >= 10 && ppm < bestppm - 10) {
805                                                 bestppm = ppm;
806                                                 *best_clock = clock;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return found;
815 }
816
817 static bool
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819                    int target, int refclk, intel_clock_t *match_clock,
820                    intel_clock_t *best_clock)
821 {
822         struct drm_device *dev = crtc->dev;
823         intel_clock_t clock;
824         uint64_t m2;
825         int found = false;
826
827         memset(best_clock, 0, sizeof(*best_clock));
828
829         /*
830          * Based on hardware doc, the n always set to 1, and m1 always
831          * set to 2.  If requires to support 200Mhz refclk, we need to
832          * revisit this because n may not 1 anymore.
833          */
834         clock.n = 1, clock.m1 = 2;
835         target *= 5;    /* fast clock */
836
837         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838                 for (clock.p2 = limit->p2.p2_fast;
839                                 clock.p2 >= limit->p2.p2_slow;
840                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842                         clock.p = clock.p1 * clock.p2;
843
844                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845                                         clock.n) << 22, refclk * clock.m1);
846
847                         if (m2 > INT_MAX/clock.m1)
848                                 continue;
849
850                         clock.m2 = m2;
851
852                         chv_clock(refclk, &clock);
853
854                         if (!intel_PLL_is_valid(dev, limit, &clock))
855                                 continue;
856
857                         /* based on hardware requirement, prefer bigger p
858                          */
859                         if (clock.p > best_clock->p) {
860                                 *best_clock = clock;
861                                 found = true;
862                         }
863                 }
864         }
865
866         return found;
867 }
868
869 bool intel_crtc_active(struct drm_crtc *crtc)
870 {
871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873         /* Be paranoid as we can arrive here with only partial
874          * state retrieved from the hardware during setup.
875          *
876          * We can ditch the adjusted_mode.crtc_clock check as soon
877          * as Haswell has gained clock readout/fastboot support.
878          *
879          * We can ditch the crtc->primary->fb check as soon as we can
880          * properly reconstruct framebuffers.
881          */
882         return intel_crtc->active && crtc->primary->fb &&
883                 intel_crtc->config.adjusted_mode.crtc_clock;
884 }
885
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887                                              enum pipe pipe)
888 {
889         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892         return intel_crtc->config.cpu_transcoder;
893 }
894
895 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
896 {
897         struct drm_i915_private *dev_priv = dev->dev_private;
898         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
899
900         frame = I915_READ(frame_reg);
901
902         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
903                 WARN(1, "vblank wait timed out\n");
904 }
905
906 /**
907  * intel_wait_for_vblank - wait for vblank on a given pipe
908  * @dev: drm device
909  * @pipe: pipe to wait for
910  *
911  * Wait for vblank to occur on a given pipe.  Needed for various bits of
912  * mode setting code.
913  */
914 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
915 {
916         struct drm_i915_private *dev_priv = dev->dev_private;
917         int pipestat_reg = PIPESTAT(pipe);
918
919         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
920                 g4x_wait_for_vblank(dev, pipe);
921                 return;
922         }
923
924         /* Clear existing vblank status. Note this will clear any other
925          * sticky status fields as well.
926          *
927          * This races with i915_driver_irq_handler() with the result
928          * that either function could miss a vblank event.  Here it is not
929          * fatal, as we will either wait upon the next vblank interrupt or
930          * timeout.  Generally speaking intel_wait_for_vblank() is only
931          * called during modeset at which time the GPU should be idle and
932          * should *not* be performing page flips and thus not waiting on
933          * vblanks...
934          * Currently, the result of us stealing a vblank from the irq
935          * handler is that a single frame will be skipped during swapbuffers.
936          */
937         I915_WRITE(pipestat_reg,
938                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
939
940         /* Wait for vblank interrupt bit to set */
941         if (wait_for(I915_READ(pipestat_reg) &
942                      PIPE_VBLANK_INTERRUPT_STATUS,
943                      50))
944                 DRM_DEBUG_KMS("vblank wait timed out\n");
945 }
946
947 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 reg = PIPEDSL(pipe);
951         u32 line1, line2;
952         u32 line_mask;
953
954         if (IS_GEN2(dev))
955                 line_mask = DSL_LINEMASK_GEN2;
956         else
957                 line_mask = DSL_LINEMASK_GEN3;
958
959         line1 = I915_READ(reg) & line_mask;
960         mdelay(5);
961         line2 = I915_READ(reg) & line_mask;
962
963         return line1 == line2;
964 }
965
966 /*
967  * intel_wait_for_pipe_off - wait for pipe to turn off
968  * @dev: drm device
969  * @pipe: pipe to wait for
970  *
971  * After disabling a pipe, we can't wait for vblank in the usual way,
972  * spinning on the vblank interrupt status bit, since we won't actually
973  * see an interrupt when the pipe is disabled.
974  *
975  * On Gen4 and above:
976  *   wait for the pipe register state bit to turn off
977  *
978  * Otherwise:
979  *   wait for the display line value to settle (it usually
980  *   ends up stopping at the start of the next frame).
981  *
982  */
983 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
984 {
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
987                                                                       pipe);
988
989         if (INTEL_INFO(dev)->gen >= 4) {
990                 int reg = PIPECONF(cpu_transcoder);
991
992                 /* Wait for the Pipe State to go off */
993                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
994                              100))
995                         WARN(1, "pipe_off wait timed out\n");
996         } else {
997                 /* Wait for the display line to settle */
998                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
999                         WARN(1, "pipe_off wait timed out\n");
1000         }
1001 }
1002
1003 /*
1004  * ibx_digital_port_connected - is the specified port connected?
1005  * @dev_priv: i915 private structure
1006  * @port: the port to test
1007  *
1008  * Returns true if @port is connected, false otherwise.
1009  */
1010 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1011                                 struct intel_digital_port *port)
1012 {
1013         u32 bit;
1014
1015         if (HAS_PCH_IBX(dev_priv->dev)) {
1016                 switch (port->port) {
1017                 case PORT_B:
1018                         bit = SDE_PORTB_HOTPLUG;
1019                         break;
1020                 case PORT_C:
1021                         bit = SDE_PORTC_HOTPLUG;
1022                         break;
1023                 case PORT_D:
1024                         bit = SDE_PORTD_HOTPLUG;
1025                         break;
1026                 default:
1027                         return true;
1028                 }
1029         } else {
1030                 switch (port->port) {
1031                 case PORT_B:
1032                         bit = SDE_PORTB_HOTPLUG_CPT;
1033                         break;
1034                 case PORT_C:
1035                         bit = SDE_PORTC_HOTPLUG_CPT;
1036                         break;
1037                 case PORT_D:
1038                         bit = SDE_PORTD_HOTPLUG_CPT;
1039                         break;
1040                 default:
1041                         return true;
1042                 }
1043         }
1044
1045         return I915_READ(SDEISR) & bit;
1046 }
1047
1048 static const char *state_string(bool enabled)
1049 {
1050         return enabled ? "on" : "off";
1051 }
1052
1053 /* Only for pre-ILK configs */
1054 void assert_pll(struct drm_i915_private *dev_priv,
1055                 enum pipe pipe, bool state)
1056 {
1057         int reg;
1058         u32 val;
1059         bool cur_state;
1060
1061         reg = DPLL(pipe);
1062         val = I915_READ(reg);
1063         cur_state = !!(val & DPLL_VCO_ENABLE);
1064         WARN(cur_state != state,
1065              "PLL state assertion failure (expected %s, current %s)\n",
1066              state_string(state), state_string(cur_state));
1067 }
1068
1069 /* XXX: the dsi pll is shared between MIPI DSI ports */
1070 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1071 {
1072         u32 val;
1073         bool cur_state;
1074
1075         mutex_lock(&dev_priv->dpio_lock);
1076         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1077         mutex_unlock(&dev_priv->dpio_lock);
1078
1079         cur_state = val & DSI_PLL_VCO_EN;
1080         WARN(cur_state != state,
1081              "DSI PLL state assertion failure (expected %s, current %s)\n",
1082              state_string(state), state_string(cur_state));
1083 }
1084 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1085 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1086
1087 struct intel_shared_dpll *
1088 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1089 {
1090         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1091
1092         if (crtc->config.shared_dpll < 0)
1093                 return NULL;
1094
1095         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1096 }
1097
1098 /* For ILK+ */
1099 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1100                         struct intel_shared_dpll *pll,
1101                         bool state)
1102 {
1103         bool cur_state;
1104         struct intel_dpll_hw_state hw_state;
1105
1106         if (WARN (!pll,
1107                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1108                 return;
1109
1110         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1111         WARN(cur_state != state,
1112              "%s assertion failure (expected %s, current %s)\n",
1113              pll->name, state_string(state), state_string(cur_state));
1114 }
1115
1116 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1117                           enum pipe pipe, bool state)
1118 {
1119         int reg;
1120         u32 val;
1121         bool cur_state;
1122         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1123                                                                       pipe);
1124
1125         if (HAS_DDI(dev_priv->dev)) {
1126                 /* DDI does not have a specific FDI_TX register */
1127                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1128                 val = I915_READ(reg);
1129                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1130         } else {
1131                 reg = FDI_TX_CTL(pipe);
1132                 val = I915_READ(reg);
1133                 cur_state = !!(val & FDI_TX_ENABLE);
1134         }
1135         WARN(cur_state != state,
1136              "FDI TX state assertion failure (expected %s, current %s)\n",
1137              state_string(state), state_string(cur_state));
1138 }
1139 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1140 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1141
1142 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1143                           enum pipe pipe, bool state)
1144 {
1145         int reg;
1146         u32 val;
1147         bool cur_state;
1148
1149         reg = FDI_RX_CTL(pipe);
1150         val = I915_READ(reg);
1151         cur_state = !!(val & FDI_RX_ENABLE);
1152         WARN(cur_state != state,
1153              "FDI RX state assertion failure (expected %s, current %s)\n",
1154              state_string(state), state_string(cur_state));
1155 }
1156 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160                                       enum pipe pipe)
1161 {
1162         int reg;
1163         u32 val;
1164
1165         /* ILK FDI PLL is always enabled */
1166         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1167                 return;
1168
1169         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170         if (HAS_DDI(dev_priv->dev))
1171                 return;
1172
1173         reg = FDI_TX_CTL(pipe);
1174         val = I915_READ(reg);
1175         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1176 }
1177
1178 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1179                        enum pipe pipe, bool state)
1180 {
1181         int reg;
1182         u32 val;
1183         bool cur_state;
1184
1185         reg = FDI_RX_CTL(pipe);
1186         val = I915_READ(reg);
1187         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1188         WARN(cur_state != state,
1189              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1190              state_string(state), state_string(cur_state));
1191 }
1192
1193 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1194                                   enum pipe pipe)
1195 {
1196         int pp_reg, lvds_reg;
1197         u32 val;
1198         enum pipe panel_pipe = PIPE_A;
1199         bool locked = true;
1200
1201         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1202                 pp_reg = PCH_PP_CONTROL;
1203                 lvds_reg = PCH_LVDS;
1204         } else {
1205                 pp_reg = PP_CONTROL;
1206                 lvds_reg = LVDS;
1207         }
1208
1209         val = I915_READ(pp_reg);
1210         if (!(val & PANEL_POWER_ON) ||
1211             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1212                 locked = false;
1213
1214         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1215                 panel_pipe = PIPE_B;
1216
1217         WARN(panel_pipe == pipe && locked,
1218              "panel assertion failure, pipe %c regs locked\n",
1219              pipe_name(pipe));
1220 }
1221
1222 static void assert_cursor(struct drm_i915_private *dev_priv,
1223                           enum pipe pipe, bool state)
1224 {
1225         struct drm_device *dev = dev_priv->dev;
1226         bool cur_state;
1227
1228         if (IS_845G(dev) || IS_I865G(dev))
1229                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1230         else
1231                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1232
1233         WARN(cur_state != state,
1234              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1235              pipe_name(pipe), state_string(state), state_string(cur_state));
1236 }
1237 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1238 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1239
1240 void assert_pipe(struct drm_i915_private *dev_priv,
1241                  enum pipe pipe, bool state)
1242 {
1243         int reg;
1244         u32 val;
1245         bool cur_state;
1246         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1247                                                                       pipe);
1248
1249         /* if we need the pipe A quirk it must be always on */
1250         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1251                 state = true;
1252
1253         if (!intel_display_power_enabled(dev_priv,
1254                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1255                 cur_state = false;
1256         } else {
1257                 reg = PIPECONF(cpu_transcoder);
1258                 val = I915_READ(reg);
1259                 cur_state = !!(val & PIPECONF_ENABLE);
1260         }
1261
1262         WARN(cur_state != state,
1263              "pipe %c assertion failure (expected %s, current %s)\n",
1264              pipe_name(pipe), state_string(state), state_string(cur_state));
1265 }
1266
1267 static void assert_plane(struct drm_i915_private *dev_priv,
1268                          enum plane plane, bool state)
1269 {
1270         int reg;
1271         u32 val;
1272         bool cur_state;
1273
1274         reg = DSPCNTR(plane);
1275         val = I915_READ(reg);
1276         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1277         WARN(cur_state != state,
1278              "plane %c assertion failure (expected %s, current %s)\n",
1279              plane_name(plane), state_string(state), state_string(cur_state));
1280 }
1281
1282 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1283 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1284
1285 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1286                                    enum pipe pipe)
1287 {
1288         struct drm_device *dev = dev_priv->dev;
1289         int reg, i;
1290         u32 val;
1291         int cur_pipe;
1292
1293         /* Primary planes are fixed to pipes on gen4+ */
1294         if (INTEL_INFO(dev)->gen >= 4) {
1295                 reg = DSPCNTR(pipe);
1296                 val = I915_READ(reg);
1297                 WARN(val & DISPLAY_PLANE_ENABLE,
1298                      "plane %c assertion failure, should be disabled but not\n",
1299                      plane_name(pipe));
1300                 return;
1301         }
1302
1303         /* Need to check both planes against the pipe */
1304         for_each_pipe(i) {
1305                 reg = DSPCNTR(i);
1306                 val = I915_READ(reg);
1307                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1308                         DISPPLANE_SEL_PIPE_SHIFT;
1309                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1310                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1311                      plane_name(i), pipe_name(pipe));
1312         }
1313 }
1314
1315 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1316                                     enum pipe pipe)
1317 {
1318         struct drm_device *dev = dev_priv->dev;
1319         int reg, sprite;
1320         u32 val;
1321
1322         if (IS_VALLEYVIEW(dev)) {
1323                 for_each_sprite(pipe, sprite) {
1324                         reg = SPCNTR(pipe, sprite);
1325                         val = I915_READ(reg);
1326                         WARN(val & SP_ENABLE,
1327                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1328                              sprite_name(pipe, sprite), pipe_name(pipe));
1329                 }
1330         } else if (INTEL_INFO(dev)->gen >= 7) {
1331                 reg = SPRCTL(pipe);
1332                 val = I915_READ(reg);
1333                 WARN(val & SPRITE_ENABLE,
1334                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1335                      plane_name(pipe), pipe_name(pipe));
1336         } else if (INTEL_INFO(dev)->gen >= 5) {
1337                 reg = DVSCNTR(pipe);
1338                 val = I915_READ(reg);
1339                 WARN(val & DVS_ENABLE,
1340                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1341                      plane_name(pipe), pipe_name(pipe));
1342         }
1343 }
1344
1345 static void assert_vblank_disabled(struct drm_crtc *crtc)
1346 {
1347         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1348                 drm_crtc_vblank_put(crtc);
1349 }
1350
1351 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1352 {
1353         u32 val;
1354         bool enabled;
1355
1356         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1357
1358         val = I915_READ(PCH_DREF_CONTROL);
1359         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1360                             DREF_SUPERSPREAD_SOURCE_MASK));
1361         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1362 }
1363
1364 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1365                                            enum pipe pipe)
1366 {
1367         int reg;
1368         u32 val;
1369         bool enabled;
1370
1371         reg = PCH_TRANSCONF(pipe);
1372         val = I915_READ(reg);
1373         enabled = !!(val & TRANS_ENABLE);
1374         WARN(enabled,
1375              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1376              pipe_name(pipe));
1377 }
1378
1379 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1380                             enum pipe pipe, u32 port_sel, u32 val)
1381 {
1382         if ((val & DP_PORT_EN) == 0)
1383                 return false;
1384
1385         if (HAS_PCH_CPT(dev_priv->dev)) {
1386                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1387                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1388                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1389                         return false;
1390         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1391                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1392                         return false;
1393         } else {
1394                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1395                         return false;
1396         }
1397         return true;
1398 }
1399
1400 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1401                               enum pipe pipe, u32 val)
1402 {
1403         if ((val & SDVO_ENABLE) == 0)
1404                 return false;
1405
1406         if (HAS_PCH_CPT(dev_priv->dev)) {
1407                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1408                         return false;
1409         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1410                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1411                         return false;
1412         } else {
1413                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1414                         return false;
1415         }
1416         return true;
1417 }
1418
1419 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1420                               enum pipe pipe, u32 val)
1421 {
1422         if ((val & LVDS_PORT_EN) == 0)
1423                 return false;
1424
1425         if (HAS_PCH_CPT(dev_priv->dev)) {
1426                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1427                         return false;
1428         } else {
1429                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1430                         return false;
1431         }
1432         return true;
1433 }
1434
1435 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1436                               enum pipe pipe, u32 val)
1437 {
1438         if ((val & ADPA_DAC_ENABLE) == 0)
1439                 return false;
1440         if (HAS_PCH_CPT(dev_priv->dev)) {
1441                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1442                         return false;
1443         } else {
1444                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1445                         return false;
1446         }
1447         return true;
1448 }
1449
1450 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1451                                    enum pipe pipe, int reg, u32 port_sel)
1452 {
1453         u32 val = I915_READ(reg);
1454         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1455              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1456              reg, pipe_name(pipe));
1457
1458         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1459              && (val & DP_PIPEB_SELECT),
1460              "IBX PCH dp port still using transcoder B\n");
1461 }
1462
1463 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1464                                      enum pipe pipe, int reg)
1465 {
1466         u32 val = I915_READ(reg);
1467         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1468              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1469              reg, pipe_name(pipe));
1470
1471         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1472              && (val & SDVO_PIPE_B_SELECT),
1473              "IBX PCH hdmi port still using transcoder B\n");
1474 }
1475
1476 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1477                                       enum pipe pipe)
1478 {
1479         int reg;
1480         u32 val;
1481
1482         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1483         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1484         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1485
1486         reg = PCH_ADPA;
1487         val = I915_READ(reg);
1488         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1489              "PCH VGA enabled on transcoder %c, should be disabled\n",
1490              pipe_name(pipe));
1491
1492         reg = PCH_LVDS;
1493         val = I915_READ(reg);
1494         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1495              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1496              pipe_name(pipe));
1497
1498         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1499         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1500         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1501 }
1502
1503 static void intel_init_dpio(struct drm_device *dev)
1504 {
1505         struct drm_i915_private *dev_priv = dev->dev_private;
1506
1507         if (!IS_VALLEYVIEW(dev))
1508                 return;
1509
1510         /*
1511          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1512          * CHV x1 PHY (DP/HDMI D)
1513          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1514          */
1515         if (IS_CHERRYVIEW(dev)) {
1516                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1517                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1518         } else {
1519                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1520         }
1521 }
1522
1523 static void vlv_enable_pll(struct intel_crtc *crtc)
1524 {
1525         struct drm_device *dev = crtc->base.dev;
1526         struct drm_i915_private *dev_priv = dev->dev_private;
1527         int reg = DPLL(crtc->pipe);
1528         u32 dpll = crtc->config.dpll_hw_state.dpll;
1529
1530         assert_pipe_disabled(dev_priv, crtc->pipe);
1531
1532         /* No really, not for ILK+ */
1533         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1534
1535         /* PLL is protected by panel, make sure we can write it */
1536         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1537                 assert_panel_unlocked(dev_priv, crtc->pipe);
1538
1539         I915_WRITE(reg, dpll);
1540         POSTING_READ(reg);
1541         udelay(150);
1542
1543         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1544                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1545
1546         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1547         POSTING_READ(DPLL_MD(crtc->pipe));
1548
1549         /* We do this three times for luck */
1550         I915_WRITE(reg, dpll);
1551         POSTING_READ(reg);
1552         udelay(150); /* wait for warmup */
1553         I915_WRITE(reg, dpll);
1554         POSTING_READ(reg);
1555         udelay(150); /* wait for warmup */
1556         I915_WRITE(reg, dpll);
1557         POSTING_READ(reg);
1558         udelay(150); /* wait for warmup */
1559 }
1560
1561 static void chv_enable_pll(struct intel_crtc *crtc)
1562 {
1563         struct drm_device *dev = crtc->base.dev;
1564         struct drm_i915_private *dev_priv = dev->dev_private;
1565         int pipe = crtc->pipe;
1566         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1567         u32 tmp;
1568
1569         assert_pipe_disabled(dev_priv, crtc->pipe);
1570
1571         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1572
1573         mutex_lock(&dev_priv->dpio_lock);
1574
1575         /* Enable back the 10bit clock to display controller */
1576         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1577         tmp |= DPIO_DCLKP_EN;
1578         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1579
1580         /*
1581          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1582          */
1583         udelay(1);
1584
1585         /* Enable PLL */
1586         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1587
1588         /* Check PLL is locked */
1589         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1590                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1591
1592         /* not sure when this should be written */
1593         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1594         POSTING_READ(DPLL_MD(pipe));
1595
1596         mutex_unlock(&dev_priv->dpio_lock);
1597 }
1598
1599 static void i9xx_enable_pll(struct intel_crtc *crtc)
1600 {
1601         struct drm_device *dev = crtc->base.dev;
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         int reg = DPLL(crtc->pipe);
1604         u32 dpll = crtc->config.dpll_hw_state.dpll;
1605
1606         assert_pipe_disabled(dev_priv, crtc->pipe);
1607
1608         /* No really, not for ILK+ */
1609         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1610
1611         /* PLL is protected by panel, make sure we can write it */
1612         if (IS_MOBILE(dev) && !IS_I830(dev))
1613                 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615         I915_WRITE(reg, dpll);
1616
1617         /* Wait for the clocks to stabilize. */
1618         POSTING_READ(reg);
1619         udelay(150);
1620
1621         if (INTEL_INFO(dev)->gen >= 4) {
1622                 I915_WRITE(DPLL_MD(crtc->pipe),
1623                            crtc->config.dpll_hw_state.dpll_md);
1624         } else {
1625                 /* The pixel multiplier can only be updated once the
1626                  * DPLL is enabled and the clocks are stable.
1627                  *
1628                  * So write it again.
1629                  */
1630                 I915_WRITE(reg, dpll);
1631         }
1632
1633         /* We do this three times for luck */
1634         I915_WRITE(reg, dpll);
1635         POSTING_READ(reg);
1636         udelay(150); /* wait for warmup */
1637         I915_WRITE(reg, dpll);
1638         POSTING_READ(reg);
1639         udelay(150); /* wait for warmup */
1640         I915_WRITE(reg, dpll);
1641         POSTING_READ(reg);
1642         udelay(150); /* wait for warmup */
1643 }
1644
1645 /**
1646  * i9xx_disable_pll - disable a PLL
1647  * @dev_priv: i915 private structure
1648  * @pipe: pipe PLL to disable
1649  *
1650  * Disable the PLL for @pipe, making sure the pipe is off first.
1651  *
1652  * Note!  This is for pre-ILK only.
1653  */
1654 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1655 {
1656         /* Don't disable pipe A or pipe A PLLs if needed */
1657         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1658                 return;
1659
1660         /* Make sure the pipe isn't still relying on us */
1661         assert_pipe_disabled(dev_priv, pipe);
1662
1663         I915_WRITE(DPLL(pipe), 0);
1664         POSTING_READ(DPLL(pipe));
1665 }
1666
1667 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1668 {
1669         u32 val = 0;
1670
1671         /* Make sure the pipe isn't still relying on us */
1672         assert_pipe_disabled(dev_priv, pipe);
1673
1674         /*
1675          * Leave integrated clock source and reference clock enabled for pipe B.
1676          * The latter is needed for VGA hotplug / manual detection.
1677          */
1678         if (pipe == PIPE_B)
1679                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1680         I915_WRITE(DPLL(pipe), val);
1681         POSTING_READ(DPLL(pipe));
1682
1683 }
1684
1685 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686 {
1687         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1688         u32 val;
1689
1690         /* Make sure the pipe isn't still relying on us */
1691         assert_pipe_disabled(dev_priv, pipe);
1692
1693         /* Set PLL en = 0 */
1694         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1695         if (pipe != PIPE_A)
1696                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1697         I915_WRITE(DPLL(pipe), val);
1698         POSTING_READ(DPLL(pipe));
1699
1700         mutex_lock(&dev_priv->dpio_lock);
1701
1702         /* Disable 10bit clock to display controller */
1703         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1704         val &= ~DPIO_DCLKP_EN;
1705         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1706
1707         /* disable left/right clock distribution */
1708         if (pipe != PIPE_B) {
1709                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1710                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1711                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1712         } else {
1713                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1714                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1715                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1716         }
1717
1718         mutex_unlock(&dev_priv->dpio_lock);
1719 }
1720
1721 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1722                 struct intel_digital_port *dport)
1723 {
1724         u32 port_mask;
1725         int dpll_reg;
1726
1727         switch (dport->port) {
1728         case PORT_B:
1729                 port_mask = DPLL_PORTB_READY_MASK;
1730                 dpll_reg = DPLL(0);
1731                 break;
1732         case PORT_C:
1733                 port_mask = DPLL_PORTC_READY_MASK;
1734                 dpll_reg = DPLL(0);
1735                 break;
1736         case PORT_D:
1737                 port_mask = DPLL_PORTD_READY_MASK;
1738                 dpll_reg = DPIO_PHY_STATUS;
1739                 break;
1740         default:
1741                 BUG();
1742         }
1743
1744         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1745                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1746                      port_name(dport->port), I915_READ(dpll_reg));
1747 }
1748
1749 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1750 {
1751         struct drm_device *dev = crtc->base.dev;
1752         struct drm_i915_private *dev_priv = dev->dev_private;
1753         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1754
1755         if (WARN_ON(pll == NULL))
1756                 return;
1757
1758         WARN_ON(!pll->refcount);
1759         if (pll->active == 0) {
1760                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1761                 WARN_ON(pll->on);
1762                 assert_shared_dpll_disabled(dev_priv, pll);
1763
1764                 pll->mode_set(dev_priv, pll);
1765         }
1766 }
1767
1768 /**
1769  * intel_enable_shared_dpll - enable PCH PLL
1770  * @dev_priv: i915 private structure
1771  * @pipe: pipe PLL to enable
1772  *
1773  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1774  * drives the transcoder clock.
1775  */
1776 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1777 {
1778         struct drm_device *dev = crtc->base.dev;
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
1782         if (WARN_ON(pll == NULL))
1783                 return;
1784
1785         if (WARN_ON(pll->refcount == 0))
1786                 return;
1787
1788         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1789                       pll->name, pll->active, pll->on,
1790                       crtc->base.base.id);
1791
1792         if (pll->active++) {
1793                 WARN_ON(!pll->on);
1794                 assert_shared_dpll_enabled(dev_priv, pll);
1795                 return;
1796         }
1797         WARN_ON(pll->on);
1798
1799         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1800
1801         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1802         pll->enable(dev_priv, pll);
1803         pll->on = true;
1804 }
1805
1806 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1807 {
1808         struct drm_device *dev = crtc->base.dev;
1809         struct drm_i915_private *dev_priv = dev->dev_private;
1810         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1811
1812         /* PCH only available on ILK+ */
1813         BUG_ON(INTEL_INFO(dev)->gen < 5);
1814         if (WARN_ON(pll == NULL))
1815                return;
1816
1817         if (WARN_ON(pll->refcount == 0))
1818                 return;
1819
1820         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1821                       pll->name, pll->active, pll->on,
1822                       crtc->base.base.id);
1823
1824         if (WARN_ON(pll->active == 0)) {
1825                 assert_shared_dpll_disabled(dev_priv, pll);
1826                 return;
1827         }
1828
1829         assert_shared_dpll_enabled(dev_priv, pll);
1830         WARN_ON(!pll->on);
1831         if (--pll->active)
1832                 return;
1833
1834         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1835         pll->disable(dev_priv, pll);
1836         pll->on = false;
1837
1838         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1839 }
1840
1841 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1842                                            enum pipe pipe)
1843 {
1844         struct drm_device *dev = dev_priv->dev;
1845         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847         uint32_t reg, val, pipeconf_val;
1848
1849         /* PCH only available on ILK+ */
1850         BUG_ON(INTEL_INFO(dev)->gen < 5);
1851
1852         /* Make sure PCH DPLL is enabled */
1853         assert_shared_dpll_enabled(dev_priv,
1854                                    intel_crtc_to_shared_dpll(intel_crtc));
1855
1856         /* FDI must be feeding us bits for PCH ports */
1857         assert_fdi_tx_enabled(dev_priv, pipe);
1858         assert_fdi_rx_enabled(dev_priv, pipe);
1859
1860         if (HAS_PCH_CPT(dev)) {
1861                 /* Workaround: Set the timing override bit before enabling the
1862                  * pch transcoder. */
1863                 reg = TRANS_CHICKEN2(pipe);
1864                 val = I915_READ(reg);
1865                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1866                 I915_WRITE(reg, val);
1867         }
1868
1869         reg = PCH_TRANSCONF(pipe);
1870         val = I915_READ(reg);
1871         pipeconf_val = I915_READ(PIPECONF(pipe));
1872
1873         if (HAS_PCH_IBX(dev_priv->dev)) {
1874                 /*
1875                  * make the BPC in transcoder be consistent with
1876                  * that in pipeconf reg.
1877                  */
1878                 val &= ~PIPECONF_BPC_MASK;
1879                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1880         }
1881
1882         val &= ~TRANS_INTERLACE_MASK;
1883         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1884                 if (HAS_PCH_IBX(dev_priv->dev) &&
1885                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1886                         val |= TRANS_LEGACY_INTERLACED_ILK;
1887                 else
1888                         val |= TRANS_INTERLACED;
1889         else
1890                 val |= TRANS_PROGRESSIVE;
1891
1892         I915_WRITE(reg, val | TRANS_ENABLE);
1893         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1894                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1895 }
1896
1897 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1898                                       enum transcoder cpu_transcoder)
1899 {
1900         u32 val, pipeconf_val;
1901
1902         /* PCH only available on ILK+ */
1903         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1904
1905         /* FDI must be feeding us bits for PCH ports */
1906         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1907         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1908
1909         /* Workaround: set timing override bit. */
1910         val = I915_READ(_TRANSA_CHICKEN2);
1911         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1912         I915_WRITE(_TRANSA_CHICKEN2, val);
1913
1914         val = TRANS_ENABLE;
1915         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1916
1917         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1918             PIPECONF_INTERLACED_ILK)
1919                 val |= TRANS_INTERLACED;
1920         else
1921                 val |= TRANS_PROGRESSIVE;
1922
1923         I915_WRITE(LPT_TRANSCONF, val);
1924         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1925                 DRM_ERROR("Failed to enable PCH transcoder\n");
1926 }
1927
1928 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1929                                             enum pipe pipe)
1930 {
1931         struct drm_device *dev = dev_priv->dev;
1932         uint32_t reg, val;
1933
1934         /* FDI relies on the transcoder */
1935         assert_fdi_tx_disabled(dev_priv, pipe);
1936         assert_fdi_rx_disabled(dev_priv, pipe);
1937
1938         /* Ports must be off as well */
1939         assert_pch_ports_disabled(dev_priv, pipe);
1940
1941         reg = PCH_TRANSCONF(pipe);
1942         val = I915_READ(reg);
1943         val &= ~TRANS_ENABLE;
1944         I915_WRITE(reg, val);
1945         /* wait for PCH transcoder off, transcoder state */
1946         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1947                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1948
1949         if (!HAS_PCH_IBX(dev)) {
1950                 /* Workaround: Clear the timing override chicken bit again. */
1951                 reg = TRANS_CHICKEN2(pipe);
1952                 val = I915_READ(reg);
1953                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1954                 I915_WRITE(reg, val);
1955         }
1956 }
1957
1958 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1959 {
1960         u32 val;
1961
1962         val = I915_READ(LPT_TRANSCONF);
1963         val &= ~TRANS_ENABLE;
1964         I915_WRITE(LPT_TRANSCONF, val);
1965         /* wait for PCH transcoder off, transcoder state */
1966         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1967                 DRM_ERROR("Failed to disable PCH transcoder\n");
1968
1969         /* Workaround: clear timing override bit. */
1970         val = I915_READ(_TRANSA_CHICKEN2);
1971         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1972         I915_WRITE(_TRANSA_CHICKEN2, val);
1973 }
1974
1975 /**
1976  * intel_enable_pipe - enable a pipe, asserting requirements
1977  * @crtc: crtc responsible for the pipe
1978  *
1979  * Enable @crtc's pipe, making sure that various hardware specific requirements
1980  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1981  */
1982 static void intel_enable_pipe(struct intel_crtc *crtc)
1983 {
1984         struct drm_device *dev = crtc->base.dev;
1985         struct drm_i915_private *dev_priv = dev->dev_private;
1986         enum pipe pipe = crtc->pipe;
1987         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1988                                                                       pipe);
1989         enum pipe pch_transcoder;
1990         int reg;
1991         u32 val;
1992
1993         assert_planes_disabled(dev_priv, pipe);
1994         assert_cursor_disabled(dev_priv, pipe);
1995         assert_sprites_disabled(dev_priv, pipe);
1996
1997         if (HAS_PCH_LPT(dev_priv->dev))
1998                 pch_transcoder = TRANSCODER_A;
1999         else
2000                 pch_transcoder = pipe;
2001
2002         /*
2003          * A pipe without a PLL won't actually be able to drive bits from
2004          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2005          * need the check.
2006          */
2007         if (!HAS_PCH_SPLIT(dev_priv->dev))
2008                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2009                         assert_dsi_pll_enabled(dev_priv);
2010                 else
2011                         assert_pll_enabled(dev_priv, pipe);
2012         else {
2013                 if (crtc->config.has_pch_encoder) {
2014                         /* if driving the PCH, we need FDI enabled */
2015                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2016                         assert_fdi_tx_pll_enabled(dev_priv,
2017                                                   (enum pipe) cpu_transcoder);
2018                 }
2019                 /* FIXME: assert CPU port conditions for SNB+ */
2020         }
2021
2022         reg = PIPECONF(cpu_transcoder);
2023         val = I915_READ(reg);
2024         if (val & PIPECONF_ENABLE) {
2025                 WARN_ON(!(pipe == PIPE_A &&
2026                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2027                 return;
2028         }
2029
2030         I915_WRITE(reg, val | PIPECONF_ENABLE);
2031         POSTING_READ(reg);
2032 }
2033
2034 /**
2035  * intel_disable_pipe - disable a pipe, asserting requirements
2036  * @dev_priv: i915 private structure
2037  * @pipe: pipe to disable
2038  *
2039  * Disable @pipe, making sure that various hardware specific requirements
2040  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2041  *
2042  * @pipe should be %PIPE_A or %PIPE_B.
2043  *
2044  * Will wait until the pipe has shut down before returning.
2045  */
2046 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2047                                enum pipe pipe)
2048 {
2049         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2050                                                                       pipe);
2051         int reg;
2052         u32 val;
2053
2054         /*
2055          * Make sure planes won't keep trying to pump pixels to us,
2056          * or we might hang the display.
2057          */
2058         assert_planes_disabled(dev_priv, pipe);
2059         assert_cursor_disabled(dev_priv, pipe);
2060         assert_sprites_disabled(dev_priv, pipe);
2061
2062         /* Don't disable pipe A or pipe A PLLs if needed */
2063         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2064                 return;
2065
2066         reg = PIPECONF(cpu_transcoder);
2067         val = I915_READ(reg);
2068         if ((val & PIPECONF_ENABLE) == 0)
2069                 return;
2070
2071         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2072         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2073 }
2074
2075 /*
2076  * Plane regs are double buffered, going from enabled->disabled needs a
2077  * trigger in order to latch.  The display address reg provides this.
2078  */
2079 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2080                                enum plane plane)
2081 {
2082         struct drm_device *dev = dev_priv->dev;
2083         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2084
2085         I915_WRITE(reg, I915_READ(reg));
2086         POSTING_READ(reg);
2087 }
2088
2089 /**
2090  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2091  * @plane:  plane to be enabled
2092  * @crtc: crtc for the plane
2093  *
2094  * Enable @plane on @crtc, making sure that the pipe is running first.
2095  */
2096 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2097                                           struct drm_crtc *crtc)
2098 {
2099         struct drm_device *dev = plane->dev;
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2102
2103         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2104         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2105
2106         if (intel_crtc->primary_enabled)
2107                 return;
2108
2109         intel_crtc->primary_enabled = true;
2110
2111         dev_priv->display.update_primary_plane(crtc, plane->fb,
2112                                                crtc->x, crtc->y);
2113
2114         /*
2115          * BDW signals flip done immediately if the plane
2116          * is disabled, even if the plane enable is already
2117          * armed to occur at the next vblank :(
2118          */
2119         if (IS_BROADWELL(dev))
2120                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2121 }
2122
2123 /**
2124  * intel_disable_primary_hw_plane - disable the primary hardware plane
2125  * @plane: plane to be disabled
2126  * @crtc: crtc for the plane
2127  *
2128  * Disable @plane on @crtc, making sure that the pipe is running first.
2129  */
2130 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2131                                            struct drm_crtc *crtc)
2132 {
2133         struct drm_device *dev = plane->dev;
2134         struct drm_i915_private *dev_priv = dev->dev_private;
2135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136
2137         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2138
2139         if (!intel_crtc->primary_enabled)
2140                 return;
2141
2142         intel_crtc->primary_enabled = false;
2143
2144         dev_priv->display.update_primary_plane(crtc, plane->fb,
2145                                                crtc->x, crtc->y);
2146 }
2147
2148 static bool need_vtd_wa(struct drm_device *dev)
2149 {
2150 #ifdef CONFIG_INTEL_IOMMU
2151         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2152                 return true;
2153 #endif
2154         return false;
2155 }
2156
2157 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2158 {
2159         int tile_height;
2160
2161         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2162         return ALIGN(height, tile_height);
2163 }
2164
2165 int
2166 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2167                            struct drm_i915_gem_object *obj,
2168                            struct intel_engine_cs *pipelined)
2169 {
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         u32 alignment;
2172         int ret;
2173
2174         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2175
2176         switch (obj->tiling_mode) {
2177         case I915_TILING_NONE:
2178                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2179                         alignment = 128 * 1024;
2180                 else if (INTEL_INFO(dev)->gen >= 4)
2181                         alignment = 4 * 1024;
2182                 else
2183                         alignment = 64 * 1024;
2184                 break;
2185         case I915_TILING_X:
2186                 /* pin() will align the object as required by fence */
2187                 alignment = 0;
2188                 break;
2189         case I915_TILING_Y:
2190                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2191                 return -EINVAL;
2192         default:
2193                 BUG();
2194         }
2195
2196         /* Note that the w/a also requires 64 PTE of padding following the
2197          * bo. We currently fill all unused PTE with the shadow page and so
2198          * we should always have valid PTE following the scanout preventing
2199          * the VT-d warning.
2200          */
2201         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2202                 alignment = 256 * 1024;
2203
2204         /*
2205          * Global gtt pte registers are special registers which actually forward
2206          * writes to a chunk of system memory. Which means that there is no risk
2207          * that the register values disappear as soon as we call
2208          * intel_runtime_pm_put(), so it is correct to wrap only the
2209          * pin/unpin/fence and not more.
2210          */
2211         intel_runtime_pm_get(dev_priv);
2212
2213         dev_priv->mm.interruptible = false;
2214         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2215         if (ret)
2216                 goto err_interruptible;
2217
2218         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219          * fence, whereas 965+ only requires a fence if using
2220          * framebuffer compression.  For simplicity, we always install
2221          * a fence as the cost is not that onerous.
2222          */
2223         ret = i915_gem_object_get_fence(obj);
2224         if (ret)
2225                 goto err_unpin;
2226
2227         i915_gem_object_pin_fence(obj);
2228
2229         dev_priv->mm.interruptible = true;
2230         intel_runtime_pm_put(dev_priv);
2231         return 0;
2232
2233 err_unpin:
2234         i915_gem_object_unpin_from_display_plane(obj);
2235 err_interruptible:
2236         dev_priv->mm.interruptible = true;
2237         intel_runtime_pm_put(dev_priv);
2238         return ret;
2239 }
2240
2241 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2242 {
2243         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2244
2245         i915_gem_object_unpin_fence(obj);
2246         i915_gem_object_unpin_from_display_plane(obj);
2247 }
2248
2249 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2250  * is assumed to be a power-of-two. */
2251 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2252                                              unsigned int tiling_mode,
2253                                              unsigned int cpp,
2254                                              unsigned int pitch)
2255 {
2256         if (tiling_mode != I915_TILING_NONE) {
2257                 unsigned int tile_rows, tiles;
2258
2259                 tile_rows = *y / 8;
2260                 *y %= 8;
2261
2262                 tiles = *x / (512/cpp);
2263                 *x %= 512/cpp;
2264
2265                 return tile_rows * pitch * 8 + tiles * 4096;
2266         } else {
2267                 unsigned int offset;
2268
2269                 offset = *y * pitch + *x * cpp;
2270                 *y = 0;
2271                 *x = (offset & 4095) / cpp;
2272                 return offset & -4096;
2273         }
2274 }
2275
2276 int intel_format_to_fourcc(int format)
2277 {
2278         switch (format) {
2279         case DISPPLANE_8BPP:
2280                 return DRM_FORMAT_C8;
2281         case DISPPLANE_BGRX555:
2282                 return DRM_FORMAT_XRGB1555;
2283         case DISPPLANE_BGRX565:
2284                 return DRM_FORMAT_RGB565;
2285         default:
2286         case DISPPLANE_BGRX888:
2287                 return DRM_FORMAT_XRGB8888;
2288         case DISPPLANE_RGBX888:
2289                 return DRM_FORMAT_XBGR8888;
2290         case DISPPLANE_BGRX101010:
2291                 return DRM_FORMAT_XRGB2101010;
2292         case DISPPLANE_RGBX101010:
2293                 return DRM_FORMAT_XBGR2101010;
2294         }
2295 }
2296
2297 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2298                                   struct intel_plane_config *plane_config)
2299 {
2300         struct drm_device *dev = crtc->base.dev;
2301         struct drm_i915_gem_object *obj = NULL;
2302         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2303         u32 base = plane_config->base;
2304
2305         if (plane_config->size == 0)
2306                 return false;
2307
2308         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2309                                                              plane_config->size);
2310         if (!obj)
2311                 return false;
2312
2313         if (plane_config->tiled) {
2314                 obj->tiling_mode = I915_TILING_X;
2315                 obj->stride = crtc->base.primary->fb->pitches[0];
2316         }
2317
2318         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2319         mode_cmd.width = crtc->base.primary->fb->width;
2320         mode_cmd.height = crtc->base.primary->fb->height;
2321         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2322
2323         mutex_lock(&dev->struct_mutex);
2324
2325         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2326                                    &mode_cmd, obj)) {
2327                 DRM_DEBUG_KMS("intel fb init failed\n");
2328                 goto out_unref_obj;
2329         }
2330
2331         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2332         mutex_unlock(&dev->struct_mutex);
2333
2334         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2335         return true;
2336
2337 out_unref_obj:
2338         drm_gem_object_unreference(&obj->base);
2339         mutex_unlock(&dev->struct_mutex);
2340         return false;
2341 }
2342
2343 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2344                                  struct intel_plane_config *plane_config)
2345 {
2346         struct drm_device *dev = intel_crtc->base.dev;
2347         struct drm_crtc *c;
2348         struct intel_crtc *i;
2349         struct drm_i915_gem_object *obj;
2350
2351         if (!intel_crtc->base.primary->fb)
2352                 return;
2353
2354         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2355                 return;
2356
2357         kfree(intel_crtc->base.primary->fb);
2358         intel_crtc->base.primary->fb = NULL;
2359
2360         /*
2361          * Failed to alloc the obj, check to see if we should share
2362          * an fb with another CRTC instead
2363          */
2364         for_each_crtc(dev, c) {
2365                 i = to_intel_crtc(c);
2366
2367                 if (c == &intel_crtc->base)
2368                         continue;
2369
2370                 if (!i->active)
2371                         continue;
2372
2373                 obj = intel_fb_obj(c->primary->fb);
2374                 if (obj == NULL)
2375                         continue;
2376
2377                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2378                         drm_framebuffer_reference(c->primary->fb);
2379                         intel_crtc->base.primary->fb = c->primary->fb;
2380                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2381                         break;
2382                 }
2383         }
2384 }
2385
2386 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2387                                       struct drm_framebuffer *fb,
2388                                       int x, int y)
2389 {
2390         struct drm_device *dev = crtc->dev;
2391         struct drm_i915_private *dev_priv = dev->dev_private;
2392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2393         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2394         int plane = intel_crtc->plane;
2395         unsigned long linear_offset;
2396         u32 dspcntr;
2397         u32 reg = DSPCNTR(plane);
2398
2399         if (!intel_crtc->primary_enabled) {
2400                 I915_WRITE(reg, 0);
2401                 if (INTEL_INFO(dev)->gen >= 4)
2402                         I915_WRITE(DSPSURF(plane), 0);
2403                 else
2404                         I915_WRITE(DSPADDR(plane), 0);
2405                 POSTING_READ(reg);
2406                 return;
2407         }
2408
2409         dspcntr = DISPPLANE_GAMMA_ENABLE;
2410
2411         dspcntr |= DISPLAY_PLANE_ENABLE;
2412
2413         if (INTEL_INFO(dev)->gen < 4) {
2414                 if (intel_crtc->pipe == PIPE_B)
2415                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2416
2417                 /* pipesrc and dspsize control the size that is scaled from,
2418                  * which should always be the user's requested size.
2419                  */
2420                 I915_WRITE(DSPSIZE(plane),
2421                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2422                            (intel_crtc->config.pipe_src_w - 1));
2423                 I915_WRITE(DSPPOS(plane), 0);
2424         }
2425
2426         switch (fb->pixel_format) {
2427         case DRM_FORMAT_C8:
2428                 dspcntr |= DISPPLANE_8BPP;
2429                 break;
2430         case DRM_FORMAT_XRGB1555:
2431         case DRM_FORMAT_ARGB1555:
2432                 dspcntr |= DISPPLANE_BGRX555;
2433                 break;
2434         case DRM_FORMAT_RGB565:
2435                 dspcntr |= DISPPLANE_BGRX565;
2436                 break;
2437         case DRM_FORMAT_XRGB8888:
2438         case DRM_FORMAT_ARGB8888:
2439                 dspcntr |= DISPPLANE_BGRX888;
2440                 break;
2441         case DRM_FORMAT_XBGR8888:
2442         case DRM_FORMAT_ABGR8888:
2443                 dspcntr |= DISPPLANE_RGBX888;
2444                 break;
2445         case DRM_FORMAT_XRGB2101010:
2446         case DRM_FORMAT_ARGB2101010:
2447                 dspcntr |= DISPPLANE_BGRX101010;
2448                 break;
2449         case DRM_FORMAT_XBGR2101010:
2450         case DRM_FORMAT_ABGR2101010:
2451                 dspcntr |= DISPPLANE_RGBX101010;
2452                 break;
2453         default:
2454                 BUG();
2455         }
2456
2457         if (INTEL_INFO(dev)->gen >= 4 &&
2458             obj->tiling_mode != I915_TILING_NONE)
2459                 dspcntr |= DISPPLANE_TILED;
2460
2461         if (IS_G4X(dev))
2462                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2463
2464         I915_WRITE(reg, dspcntr);
2465
2466         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2467
2468         if (INTEL_INFO(dev)->gen >= 4) {
2469                 intel_crtc->dspaddr_offset =
2470                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2471                                                        fb->bits_per_pixel / 8,
2472                                                        fb->pitches[0]);
2473                 linear_offset -= intel_crtc->dspaddr_offset;
2474         } else {
2475                 intel_crtc->dspaddr_offset = linear_offset;
2476         }
2477
2478         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2479                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2480                       fb->pitches[0]);
2481         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2482         if (INTEL_INFO(dev)->gen >= 4) {
2483                 I915_WRITE(DSPSURF(plane),
2484                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2485                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2486                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2487         } else
2488                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2489         POSTING_READ(reg);
2490 }
2491
2492 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2493                                           struct drm_framebuffer *fb,
2494                                           int x, int y)
2495 {
2496         struct drm_device *dev = crtc->dev;
2497         struct drm_i915_private *dev_priv = dev->dev_private;
2498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2499         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2500         int plane = intel_crtc->plane;
2501         unsigned long linear_offset;
2502         u32 dspcntr;
2503         u32 reg = DSPCNTR(plane);
2504
2505         if (!intel_crtc->primary_enabled) {
2506                 I915_WRITE(reg, 0);
2507                 I915_WRITE(DSPSURF(plane), 0);
2508                 POSTING_READ(reg);
2509                 return;
2510         }
2511
2512         dspcntr = DISPPLANE_GAMMA_ENABLE;
2513
2514         dspcntr |= DISPLAY_PLANE_ENABLE;
2515
2516         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2517                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2518
2519         switch (fb->pixel_format) {
2520         case DRM_FORMAT_C8:
2521                 dspcntr |= DISPPLANE_8BPP;
2522                 break;
2523         case DRM_FORMAT_RGB565:
2524                 dspcntr |= DISPPLANE_BGRX565;
2525                 break;
2526         case DRM_FORMAT_XRGB8888:
2527         case DRM_FORMAT_ARGB8888:
2528                 dspcntr |= DISPPLANE_BGRX888;
2529                 break;
2530         case DRM_FORMAT_XBGR8888:
2531         case DRM_FORMAT_ABGR8888:
2532                 dspcntr |= DISPPLANE_RGBX888;
2533                 break;
2534         case DRM_FORMAT_XRGB2101010:
2535         case DRM_FORMAT_ARGB2101010:
2536                 dspcntr |= DISPPLANE_BGRX101010;
2537                 break;
2538         case DRM_FORMAT_XBGR2101010:
2539         case DRM_FORMAT_ABGR2101010:
2540                 dspcntr |= DISPPLANE_RGBX101010;
2541                 break;
2542         default:
2543                 BUG();
2544         }
2545
2546         if (obj->tiling_mode != I915_TILING_NONE)
2547                 dspcntr |= DISPPLANE_TILED;
2548
2549         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2550                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2551
2552         I915_WRITE(reg, dspcntr);
2553
2554         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2555         intel_crtc->dspaddr_offset =
2556                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2557                                                fb->bits_per_pixel / 8,
2558                                                fb->pitches[0]);
2559         linear_offset -= intel_crtc->dspaddr_offset;
2560
2561         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2562                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2563                       fb->pitches[0]);
2564         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2565         I915_WRITE(DSPSURF(plane),
2566                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2567         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2568                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2569         } else {
2570                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2571                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2572         }
2573         POSTING_READ(reg);
2574 }
2575
2576 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2577 static int
2578 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2579                            int x, int y, enum mode_set_atomic state)
2580 {
2581         struct drm_device *dev = crtc->dev;
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583
2584         if (dev_priv->display.disable_fbc)
2585                 dev_priv->display.disable_fbc(dev);
2586         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2587
2588         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2589
2590         return 0;
2591 }
2592
2593 void intel_display_handle_reset(struct drm_device *dev)
2594 {
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct drm_crtc *crtc;
2597
2598         /*
2599          * Flips in the rings have been nuked by the reset,
2600          * so complete all pending flips so that user space
2601          * will get its events and not get stuck.
2602          *
2603          * Also update the base address of all primary
2604          * planes to the the last fb to make sure we're
2605          * showing the correct fb after a reset.
2606          *
2607          * Need to make two loops over the crtcs so that we
2608          * don't try to grab a crtc mutex before the
2609          * pending_flip_queue really got woken up.
2610          */
2611
2612         for_each_crtc(dev, crtc) {
2613                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2614                 enum plane plane = intel_crtc->plane;
2615
2616                 intel_prepare_page_flip(dev, plane);
2617                 intel_finish_page_flip_plane(dev, plane);
2618         }
2619
2620         for_each_crtc(dev, crtc) {
2621                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2622
2623                 drm_modeset_lock(&crtc->mutex, NULL);
2624                 /*
2625                  * FIXME: Once we have proper support for primary planes (and
2626                  * disabling them without disabling the entire crtc) allow again
2627                  * a NULL crtc->primary->fb.
2628                  */
2629                 if (intel_crtc->active && crtc->primary->fb)
2630                         dev_priv->display.update_primary_plane(crtc,
2631                                                                crtc->primary->fb,
2632                                                                crtc->x,
2633                                                                crtc->y);
2634                 drm_modeset_unlock(&crtc->mutex);
2635         }
2636 }
2637
2638 static int
2639 intel_finish_fb(struct drm_framebuffer *old_fb)
2640 {
2641         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2642         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2643         bool was_interruptible = dev_priv->mm.interruptible;
2644         int ret;
2645
2646         /* Big Hammer, we also need to ensure that any pending
2647          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2648          * current scanout is retired before unpinning the old
2649          * framebuffer.
2650          *
2651          * This should only fail upon a hung GPU, in which case we
2652          * can safely continue.
2653          */
2654         dev_priv->mm.interruptible = false;
2655         ret = i915_gem_object_finish_gpu(obj);
2656         dev_priv->mm.interruptible = was_interruptible;
2657
2658         return ret;
2659 }
2660
2661 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2662 {
2663         struct drm_device *dev = crtc->dev;
2664         struct drm_i915_private *dev_priv = dev->dev_private;
2665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2666         unsigned long flags;
2667         bool pending;
2668
2669         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2670             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2671                 return false;
2672
2673         spin_lock_irqsave(&dev->event_lock, flags);
2674         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2675         spin_unlock_irqrestore(&dev->event_lock, flags);
2676
2677         return pending;
2678 }
2679
2680 static int
2681 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2682                     struct drm_framebuffer *fb)
2683 {
2684         struct drm_device *dev = crtc->dev;
2685         struct drm_i915_private *dev_priv = dev->dev_private;
2686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2687         enum pipe pipe = intel_crtc->pipe;
2688         struct drm_framebuffer *old_fb = crtc->primary->fb;
2689         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2690         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2691         int ret;
2692
2693         if (intel_crtc_has_pending_flip(crtc)) {
2694                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2695                 return -EBUSY;
2696         }
2697
2698         /* no fb bound */
2699         if (!fb) {
2700                 DRM_ERROR("No FB bound\n");
2701                 return 0;
2702         }
2703
2704         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2705                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2706                           plane_name(intel_crtc->plane),
2707                           INTEL_INFO(dev)->num_pipes);
2708                 return -EINVAL;
2709         }
2710
2711         mutex_lock(&dev->struct_mutex);
2712         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2713         if (ret == 0)
2714                 i915_gem_track_fb(old_obj, obj,
2715                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2716         mutex_unlock(&dev->struct_mutex);
2717         if (ret != 0) {
2718                 DRM_ERROR("pin & fence failed\n");
2719                 return ret;
2720         }
2721
2722         /*
2723          * Update pipe size and adjust fitter if needed: the reason for this is
2724          * that in compute_mode_changes we check the native mode (not the pfit
2725          * mode) to see if we can flip rather than do a full mode set. In the
2726          * fastboot case, we'll flip, but if we don't update the pipesrc and
2727          * pfit state, we'll end up with a big fb scanned out into the wrong
2728          * sized surface.
2729          *
2730          * To fix this properly, we need to hoist the checks up into
2731          * compute_mode_changes (or above), check the actual pfit state and
2732          * whether the platform allows pfit disable with pipe active, and only
2733          * then update the pipesrc and pfit state, even on the flip path.
2734          */
2735         if (i915.fastboot) {
2736                 const struct drm_display_mode *adjusted_mode =
2737                         &intel_crtc->config.adjusted_mode;
2738
2739                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2740                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2741                            (adjusted_mode->crtc_vdisplay - 1));
2742                 if (!intel_crtc->config.pch_pfit.enabled &&
2743                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2744                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2745                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2746                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2747                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2748                 }
2749                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2750                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2751         }
2752
2753         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2754
2755         if (intel_crtc->active)
2756                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2757
2758         crtc->primary->fb = fb;
2759         crtc->x = x;
2760         crtc->y = y;
2761
2762         if (old_fb) {
2763                 if (intel_crtc->active && old_fb != fb)
2764                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2765                 mutex_lock(&dev->struct_mutex);
2766                 intel_unpin_fb_obj(old_obj);
2767                 mutex_unlock(&dev->struct_mutex);
2768         }
2769
2770         mutex_lock(&dev->struct_mutex);
2771         intel_update_fbc(dev);
2772         mutex_unlock(&dev->struct_mutex);
2773
2774         return 0;
2775 }
2776
2777 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2778 {
2779         struct drm_device *dev = crtc->dev;
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782         int pipe = intel_crtc->pipe;
2783         u32 reg, temp;
2784
2785         /* enable normal train */
2786         reg = FDI_TX_CTL(pipe);
2787         temp = I915_READ(reg);
2788         if (IS_IVYBRIDGE(dev)) {
2789                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2790                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2791         } else {
2792                 temp &= ~FDI_LINK_TRAIN_NONE;
2793                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2794         }
2795         I915_WRITE(reg, temp);
2796
2797         reg = FDI_RX_CTL(pipe);
2798         temp = I915_READ(reg);
2799         if (HAS_PCH_CPT(dev)) {
2800                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2801                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2802         } else {
2803                 temp &= ~FDI_LINK_TRAIN_NONE;
2804                 temp |= FDI_LINK_TRAIN_NONE;
2805         }
2806         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2807
2808         /* wait one idle pattern time */
2809         POSTING_READ(reg);
2810         udelay(1000);
2811
2812         /* IVB wants error correction enabled */
2813         if (IS_IVYBRIDGE(dev))
2814                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2815                            FDI_FE_ERRC_ENABLE);
2816 }
2817
2818 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2819 {
2820         return crtc->base.enabled && crtc->active &&
2821                 crtc->config.has_pch_encoder;
2822 }
2823
2824 static void ivb_modeset_global_resources(struct drm_device *dev)
2825 {
2826         struct drm_i915_private *dev_priv = dev->dev_private;
2827         struct intel_crtc *pipe_B_crtc =
2828                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2829         struct intel_crtc *pipe_C_crtc =
2830                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2831         uint32_t temp;
2832
2833         /*
2834          * When everything is off disable fdi C so that we could enable fdi B
2835          * with all lanes. Note that we don't care about enabled pipes without
2836          * an enabled pch encoder.
2837          */
2838         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2839             !pipe_has_enabled_pch(pipe_C_crtc)) {
2840                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2841                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2842
2843                 temp = I915_READ(SOUTH_CHICKEN1);
2844                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2845                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2846                 I915_WRITE(SOUTH_CHICKEN1, temp);
2847         }
2848 }
2849
2850 /* The FDI link training functions for ILK/Ibexpeak. */
2851 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2852 {
2853         struct drm_device *dev = crtc->dev;
2854         struct drm_i915_private *dev_priv = dev->dev_private;
2855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2856         int pipe = intel_crtc->pipe;
2857         u32 reg, temp, tries;
2858
2859         /* FDI needs bits from pipe first */
2860         assert_pipe_enabled(dev_priv, pipe);
2861
2862         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2863            for train result */
2864         reg = FDI_RX_IMR(pipe);
2865         temp = I915_READ(reg);
2866         temp &= ~FDI_RX_SYMBOL_LOCK;
2867         temp &= ~FDI_RX_BIT_LOCK;
2868         I915_WRITE(reg, temp);
2869         I915_READ(reg);
2870         udelay(150);
2871
2872         /* enable CPU FDI TX and PCH FDI RX */
2873         reg = FDI_TX_CTL(pipe);
2874         temp = I915_READ(reg);
2875         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2876         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2877         temp &= ~FDI_LINK_TRAIN_NONE;
2878         temp |= FDI_LINK_TRAIN_PATTERN_1;
2879         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2880
2881         reg = FDI_RX_CTL(pipe);
2882         temp = I915_READ(reg);
2883         temp &= ~FDI_LINK_TRAIN_NONE;
2884         temp |= FDI_LINK_TRAIN_PATTERN_1;
2885         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2886
2887         POSTING_READ(reg);
2888         udelay(150);
2889
2890         /* Ironlake workaround, enable clock pointer after FDI enable*/
2891         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2892         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2893                    FDI_RX_PHASE_SYNC_POINTER_EN);
2894
2895         reg = FDI_RX_IIR(pipe);
2896         for (tries = 0; tries < 5; tries++) {
2897                 temp = I915_READ(reg);
2898                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2899
2900                 if ((temp & FDI_RX_BIT_LOCK)) {
2901                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2902                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2903                         break;
2904                 }
2905         }
2906         if (tries == 5)
2907                 DRM_ERROR("FDI train 1 fail!\n");
2908
2909         /* Train 2 */
2910         reg = FDI_TX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         temp &= ~FDI_LINK_TRAIN_NONE;
2913         temp |= FDI_LINK_TRAIN_PATTERN_2;
2914         I915_WRITE(reg, temp);
2915
2916         reg = FDI_RX_CTL(pipe);
2917         temp = I915_READ(reg);
2918         temp &= ~FDI_LINK_TRAIN_NONE;
2919         temp |= FDI_LINK_TRAIN_PATTERN_2;
2920         I915_WRITE(reg, temp);
2921
2922         POSTING_READ(reg);
2923         udelay(150);
2924
2925         reg = FDI_RX_IIR(pipe);
2926         for (tries = 0; tries < 5; tries++) {
2927                 temp = I915_READ(reg);
2928                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2929
2930                 if (temp & FDI_RX_SYMBOL_LOCK) {
2931                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2932                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2933                         break;
2934                 }
2935         }
2936         if (tries == 5)
2937                 DRM_ERROR("FDI train 2 fail!\n");
2938
2939         DRM_DEBUG_KMS("FDI train done\n");
2940
2941 }
2942
2943 static const int snb_b_fdi_train_param[] = {
2944         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2945         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2946         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2947         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2948 };
2949
2950 /* The FDI link training functions for SNB/Cougarpoint. */
2951 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2952 {
2953         struct drm_device *dev = crtc->dev;
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2956         int pipe = intel_crtc->pipe;
2957         u32 reg, temp, i, retry;
2958
2959         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2960            for train result */
2961         reg = FDI_RX_IMR(pipe);
2962         temp = I915_READ(reg);
2963         temp &= ~FDI_RX_SYMBOL_LOCK;
2964         temp &= ~FDI_RX_BIT_LOCK;
2965         I915_WRITE(reg, temp);
2966
2967         POSTING_READ(reg);
2968         udelay(150);
2969
2970         /* enable CPU FDI TX and PCH FDI RX */
2971         reg = FDI_TX_CTL(pipe);
2972         temp = I915_READ(reg);
2973         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2974         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2975         temp &= ~FDI_LINK_TRAIN_NONE;
2976         temp |= FDI_LINK_TRAIN_PATTERN_1;
2977         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2978         /* SNB-B */
2979         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2980         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2981
2982         I915_WRITE(FDI_RX_MISC(pipe),
2983                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2984
2985         reg = FDI_RX_CTL(pipe);
2986         temp = I915_READ(reg);
2987         if (HAS_PCH_CPT(dev)) {
2988                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2989                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2990         } else {
2991                 temp &= ~FDI_LINK_TRAIN_NONE;
2992                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2993         }
2994         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2995
2996         POSTING_READ(reg);
2997         udelay(150);
2998
2999         for (i = 0; i < 4; i++) {
3000                 reg = FDI_TX_CTL(pipe);
3001                 temp = I915_READ(reg);
3002                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3003                 temp |= snb_b_fdi_train_param[i];
3004                 I915_WRITE(reg, temp);
3005
3006                 POSTING_READ(reg);
3007                 udelay(500);
3008
3009                 for (retry = 0; retry < 5; retry++) {
3010                         reg = FDI_RX_IIR(pipe);
3011                         temp = I915_READ(reg);
3012                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3013                         if (temp & FDI_RX_BIT_LOCK) {
3014                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3015                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3016                                 break;
3017                         }
3018                         udelay(50);
3019                 }
3020                 if (retry < 5)
3021                         break;
3022         }
3023         if (i == 4)
3024                 DRM_ERROR("FDI train 1 fail!\n");
3025
3026         /* Train 2 */
3027         reg = FDI_TX_CTL(pipe);
3028         temp = I915_READ(reg);
3029         temp &= ~FDI_LINK_TRAIN_NONE;
3030         temp |= FDI_LINK_TRAIN_PATTERN_2;
3031         if (IS_GEN6(dev)) {
3032                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3033                 /* SNB-B */
3034                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3035         }
3036         I915_WRITE(reg, temp);
3037
3038         reg = FDI_RX_CTL(pipe);
3039         temp = I915_READ(reg);
3040         if (HAS_PCH_CPT(dev)) {
3041                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3042                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3043         } else {
3044                 temp &= ~FDI_LINK_TRAIN_NONE;
3045                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3046         }
3047         I915_WRITE(reg, temp);
3048
3049         POSTING_READ(reg);
3050         udelay(150);
3051
3052         for (i = 0; i < 4; i++) {
3053                 reg = FDI_TX_CTL(pipe);
3054                 temp = I915_READ(reg);
3055                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3056                 temp |= snb_b_fdi_train_param[i];
3057                 I915_WRITE(reg, temp);
3058
3059                 POSTING_READ(reg);
3060                 udelay(500);
3061
3062                 for (retry = 0; retry < 5; retry++) {
3063                         reg = FDI_RX_IIR(pipe);
3064                         temp = I915_READ(reg);
3065                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3066                         if (temp & FDI_RX_SYMBOL_LOCK) {
3067                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3068                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3069                                 break;
3070                         }
3071                         udelay(50);
3072                 }
3073                 if (retry < 5)
3074                         break;
3075         }
3076         if (i == 4)
3077                 DRM_ERROR("FDI train 2 fail!\n");
3078
3079         DRM_DEBUG_KMS("FDI train done.\n");
3080 }
3081
3082 /* Manual link training for Ivy Bridge A0 parts */
3083 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3084 {
3085         struct drm_device *dev = crtc->dev;
3086         struct drm_i915_private *dev_priv = dev->dev_private;
3087         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3088         int pipe = intel_crtc->pipe;
3089         u32 reg, temp, i, j;
3090
3091         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3092            for train result */
3093         reg = FDI_RX_IMR(pipe);
3094         temp = I915_READ(reg);
3095         temp &= ~FDI_RX_SYMBOL_LOCK;
3096         temp &= ~FDI_RX_BIT_LOCK;
3097         I915_WRITE(reg, temp);
3098
3099         POSTING_READ(reg);
3100         udelay(150);
3101
3102         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3103                       I915_READ(FDI_RX_IIR(pipe)));
3104
3105         /* Try each vswing and preemphasis setting twice before moving on */
3106         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3107                 /* disable first in case we need to retry */
3108                 reg = FDI_TX_CTL(pipe);
3109                 temp = I915_READ(reg);
3110                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3111                 temp &= ~FDI_TX_ENABLE;
3112                 I915_WRITE(reg, temp);
3113
3114                 reg = FDI_RX_CTL(pipe);
3115                 temp = I915_READ(reg);
3116                 temp &= ~FDI_LINK_TRAIN_AUTO;
3117                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3118                 temp &= ~FDI_RX_ENABLE;
3119                 I915_WRITE(reg, temp);
3120
3121                 /* enable CPU FDI TX and PCH FDI RX */
3122                 reg = FDI_TX_CTL(pipe);
3123                 temp = I915_READ(reg);
3124                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3125                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3126                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3127                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3128                 temp |= snb_b_fdi_train_param[j/2];
3129                 temp |= FDI_COMPOSITE_SYNC;
3130                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3131
3132                 I915_WRITE(FDI_RX_MISC(pipe),
3133                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3134
3135                 reg = FDI_RX_CTL(pipe);
3136                 temp = I915_READ(reg);
3137                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3138                 temp |= FDI_COMPOSITE_SYNC;
3139                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3140
3141                 POSTING_READ(reg);
3142                 udelay(1); /* should be 0.5us */
3143
3144                 for (i = 0; i < 4; i++) {
3145                         reg = FDI_RX_IIR(pipe);
3146                         temp = I915_READ(reg);
3147                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3148
3149                         if (temp & FDI_RX_BIT_LOCK ||
3150                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3151                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3152                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3153                                               i);
3154                                 break;
3155                         }
3156                         udelay(1); /* should be 0.5us */
3157                 }
3158                 if (i == 4) {
3159                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3160                         continue;
3161                 }
3162
3163                 /* Train 2 */
3164                 reg = FDI_TX_CTL(pipe);
3165                 temp = I915_READ(reg);
3166                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3167                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3168                 I915_WRITE(reg, temp);
3169
3170                 reg = FDI_RX_CTL(pipe);
3171                 temp = I915_READ(reg);
3172                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3173                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3174                 I915_WRITE(reg, temp);
3175
3176                 POSTING_READ(reg);
3177                 udelay(2); /* should be 1.5us */
3178
3179                 for (i = 0; i < 4; i++) {
3180                         reg = FDI_RX_IIR(pipe);
3181                         temp = I915_READ(reg);
3182                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3183
3184                         if (temp & FDI_RX_SYMBOL_LOCK ||
3185                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3186                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3187                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3188                                               i);
3189                                 goto train_done;
3190                         }
3191                         udelay(2); /* should be 1.5us */
3192                 }
3193                 if (i == 4)
3194                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3195         }
3196
3197 train_done:
3198         DRM_DEBUG_KMS("FDI train done.\n");
3199 }
3200
3201 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3202 {
3203         struct drm_device *dev = intel_crtc->base.dev;
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         int pipe = intel_crtc->pipe;
3206         u32 reg, temp;
3207
3208
3209         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3210         reg = FDI_RX_CTL(pipe);
3211         temp = I915_READ(reg);
3212         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3213         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3214         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3215         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3216
3217         POSTING_READ(reg);
3218         udelay(200);
3219
3220         /* Switch from Rawclk to PCDclk */
3221         temp = I915_READ(reg);
3222         I915_WRITE(reg, temp | FDI_PCDCLK);
3223
3224         POSTING_READ(reg);
3225         udelay(200);
3226
3227         /* Enable CPU FDI TX PLL, always on for Ironlake */
3228         reg = FDI_TX_CTL(pipe);
3229         temp = I915_READ(reg);
3230         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3231                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3232
3233                 POSTING_READ(reg);
3234                 udelay(100);
3235         }
3236 }
3237
3238 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3239 {
3240         struct drm_device *dev = intel_crtc->base.dev;
3241         struct drm_i915_private *dev_priv = dev->dev_private;
3242         int pipe = intel_crtc->pipe;
3243         u32 reg, temp;
3244
3245         /* Switch from PCDclk to Rawclk */
3246         reg = FDI_RX_CTL(pipe);
3247         temp = I915_READ(reg);
3248         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3249
3250         /* Disable CPU FDI TX PLL */
3251         reg = FDI_TX_CTL(pipe);
3252         temp = I915_READ(reg);
3253         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3254
3255         POSTING_READ(reg);
3256         udelay(100);
3257
3258         reg = FDI_RX_CTL(pipe);
3259         temp = I915_READ(reg);
3260         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3261
3262         /* Wait for the clocks to turn off. */
3263         POSTING_READ(reg);
3264         udelay(100);
3265 }
3266
3267 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3268 {
3269         struct drm_device *dev = crtc->dev;
3270         struct drm_i915_private *dev_priv = dev->dev_private;
3271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3272         int pipe = intel_crtc->pipe;
3273         u32 reg, temp;
3274
3275         /* disable CPU FDI tx and PCH FDI rx */
3276         reg = FDI_TX_CTL(pipe);
3277         temp = I915_READ(reg);
3278         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3279         POSTING_READ(reg);
3280
3281         reg = FDI_RX_CTL(pipe);
3282         temp = I915_READ(reg);
3283         temp &= ~(0x7 << 16);
3284         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3285         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3286
3287         POSTING_READ(reg);
3288         udelay(100);
3289
3290         /* Ironlake workaround, disable clock pointer after downing FDI */
3291         if (HAS_PCH_IBX(dev))
3292                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3293
3294         /* still set train pattern 1 */
3295         reg = FDI_TX_CTL(pipe);
3296         temp = I915_READ(reg);
3297         temp &= ~FDI_LINK_TRAIN_NONE;
3298         temp |= FDI_LINK_TRAIN_PATTERN_1;
3299         I915_WRITE(reg, temp);
3300
3301         reg = FDI_RX_CTL(pipe);
3302         temp = I915_READ(reg);
3303         if (HAS_PCH_CPT(dev)) {
3304                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3305                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3306         } else {
3307                 temp &= ~FDI_LINK_TRAIN_NONE;
3308                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3309         }
3310         /* BPC in FDI rx is consistent with that in PIPECONF */
3311         temp &= ~(0x07 << 16);
3312         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3313         I915_WRITE(reg, temp);
3314
3315         POSTING_READ(reg);
3316         udelay(100);
3317 }
3318
3319 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3320 {
3321         struct intel_crtc *crtc;
3322
3323         /* Note that we don't need to be called with mode_config.lock here
3324          * as our list of CRTC objects is static for the lifetime of the
3325          * device and so cannot disappear as we iterate. Similarly, we can
3326          * happily treat the predicates as racy, atomic checks as userspace
3327          * cannot claim and pin a new fb without at least acquring the
3328          * struct_mutex and so serialising with us.
3329          */
3330         for_each_intel_crtc(dev, crtc) {
3331                 if (atomic_read(&crtc->unpin_work_count) == 0)
3332                         continue;
3333
3334                 if (crtc->unpin_work)
3335                         intel_wait_for_vblank(dev, crtc->pipe);
3336
3337                 return true;
3338         }
3339
3340         return false;
3341 }
3342
3343 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3344 {
3345         struct drm_device *dev = crtc->dev;
3346         struct drm_i915_private *dev_priv = dev->dev_private;
3347
3348         if (crtc->primary->fb == NULL)
3349                 return;
3350
3351         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3352
3353         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3354                                    !intel_crtc_has_pending_flip(crtc),
3355                                    60*HZ) == 0);
3356
3357         mutex_lock(&dev->struct_mutex);
3358         intel_finish_fb(crtc->primary->fb);
3359         mutex_unlock(&dev->struct_mutex);
3360 }
3361
3362 /* Program iCLKIP clock to the desired frequency */
3363 static void lpt_program_iclkip(struct drm_crtc *crtc)
3364 {
3365         struct drm_device *dev = crtc->dev;
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3368         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3369         u32 temp;
3370
3371         mutex_lock(&dev_priv->dpio_lock);
3372
3373         /* It is necessary to ungate the pixclk gate prior to programming
3374          * the divisors, and gate it back when it is done.
3375          */
3376         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3377
3378         /* Disable SSCCTL */
3379         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3380                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3381                                 SBI_SSCCTL_DISABLE,
3382                         SBI_ICLK);
3383
3384         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3385         if (clock == 20000) {
3386                 auxdiv = 1;
3387                 divsel = 0x41;
3388                 phaseinc = 0x20;
3389         } else {
3390                 /* The iCLK virtual clock root frequency is in MHz,
3391                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3392                  * divisors, it is necessary to divide one by another, so we
3393                  * convert the virtual clock precision to KHz here for higher
3394                  * precision.
3395                  */
3396                 u32 iclk_virtual_root_freq = 172800 * 1000;
3397                 u32 iclk_pi_range = 64;
3398                 u32 desired_divisor, msb_divisor_value, pi_value;
3399
3400                 desired_divisor = (iclk_virtual_root_freq / clock);
3401                 msb_divisor_value = desired_divisor / iclk_pi_range;
3402                 pi_value = desired_divisor % iclk_pi_range;
3403
3404                 auxdiv = 0;
3405                 divsel = msb_divisor_value - 2;
3406                 phaseinc = pi_value;
3407         }
3408
3409         /* This should not happen with any sane values */
3410         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3411                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3412         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3413                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3414
3415         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3416                         clock,
3417                         auxdiv,
3418                         divsel,
3419                         phasedir,
3420                         phaseinc);
3421
3422         /* Program SSCDIVINTPHASE6 */
3423         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3424         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3425         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3426         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3427         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3428         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3429         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3430         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3431
3432         /* Program SSCAUXDIV */
3433         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3434         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3435         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3436         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3437
3438         /* Enable modulator and associated divider */
3439         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3440         temp &= ~SBI_SSCCTL_DISABLE;
3441         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3442
3443         /* Wait for initialization time */
3444         udelay(24);
3445
3446         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3447
3448         mutex_unlock(&dev_priv->dpio_lock);
3449 }
3450
3451 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3452                                                 enum pipe pch_transcoder)
3453 {
3454         struct drm_device *dev = crtc->base.dev;
3455         struct drm_i915_private *dev_priv = dev->dev_private;
3456         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3457
3458         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3459                    I915_READ(HTOTAL(cpu_transcoder)));
3460         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3461                    I915_READ(HBLANK(cpu_transcoder)));
3462         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3463                    I915_READ(HSYNC(cpu_transcoder)));
3464
3465         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3466                    I915_READ(VTOTAL(cpu_transcoder)));
3467         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3468                    I915_READ(VBLANK(cpu_transcoder)));
3469         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3470                    I915_READ(VSYNC(cpu_transcoder)));
3471         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3472                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3473 }
3474
3475 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3476 {
3477         struct drm_i915_private *dev_priv = dev->dev_private;
3478         uint32_t temp;
3479
3480         temp = I915_READ(SOUTH_CHICKEN1);
3481         if (temp & FDI_BC_BIFURCATION_SELECT)
3482                 return;
3483
3484         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3485         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3486
3487         temp |= FDI_BC_BIFURCATION_SELECT;
3488         DRM_DEBUG_KMS("enabling fdi C rx\n");
3489         I915_WRITE(SOUTH_CHICKEN1, temp);
3490         POSTING_READ(SOUTH_CHICKEN1);
3491 }
3492
3493 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3494 {
3495         struct drm_device *dev = intel_crtc->base.dev;
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497
3498         switch (intel_crtc->pipe) {
3499         case PIPE_A:
3500                 break;
3501         case PIPE_B:
3502                 if (intel_crtc->config.fdi_lanes > 2)
3503                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3504                 else
3505                         cpt_enable_fdi_bc_bifurcation(dev);
3506
3507                 break;
3508         case PIPE_C:
3509                 cpt_enable_fdi_bc_bifurcation(dev);
3510
3511                 break;
3512         default:
3513                 BUG();
3514         }
3515 }
3516
3517 /*
3518  * Enable PCH resources required for PCH ports:
3519  *   - PCH PLLs
3520  *   - FDI training & RX/TX
3521  *   - update transcoder timings
3522  *   - DP transcoding bits
3523  *   - transcoder
3524  */
3525 static void ironlake_pch_enable(struct drm_crtc *crtc)
3526 {
3527         struct drm_device *dev = crtc->dev;
3528         struct drm_i915_private *dev_priv = dev->dev_private;
3529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3530         int pipe = intel_crtc->pipe;
3531         u32 reg, temp;
3532
3533         assert_pch_transcoder_disabled(dev_priv, pipe);
3534
3535         if (IS_IVYBRIDGE(dev))
3536                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3537
3538         /* Write the TU size bits before fdi link training, so that error
3539          * detection works. */
3540         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3541                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3542
3543         /* For PCH output, training FDI link */
3544         dev_priv->display.fdi_link_train(crtc);
3545
3546         /* We need to program the right clock selection before writing the pixel
3547          * mutliplier into the DPLL. */
3548         if (HAS_PCH_CPT(dev)) {
3549                 u32 sel;
3550
3551                 temp = I915_READ(PCH_DPLL_SEL);
3552                 temp |= TRANS_DPLL_ENABLE(pipe);
3553                 sel = TRANS_DPLLB_SEL(pipe);
3554                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3555                         temp |= sel;
3556                 else
3557                         temp &= ~sel;
3558                 I915_WRITE(PCH_DPLL_SEL, temp);
3559         }
3560
3561         /* XXX: pch pll's can be enabled any time before we enable the PCH
3562          * transcoder, and we actually should do this to not upset any PCH
3563          * transcoder that already use the clock when we share it.
3564          *
3565          * Note that enable_shared_dpll tries to do the right thing, but
3566          * get_shared_dpll unconditionally resets the pll - we need that to have
3567          * the right LVDS enable sequence. */
3568         intel_enable_shared_dpll(intel_crtc);
3569
3570         /* set transcoder timing, panel must allow it */
3571         assert_panel_unlocked(dev_priv, pipe);
3572         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3573
3574         intel_fdi_normal_train(crtc);
3575
3576         /* For PCH DP, enable TRANS_DP_CTL */
3577         if (HAS_PCH_CPT(dev) &&
3578             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3579              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3580                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3581                 reg = TRANS_DP_CTL(pipe);
3582                 temp = I915_READ(reg);
3583                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3584                           TRANS_DP_SYNC_MASK |
3585                           TRANS_DP_BPC_MASK);
3586                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3587                          TRANS_DP_ENH_FRAMING);
3588                 temp |= bpc << 9; /* same format but at 11:9 */
3589
3590                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3591                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3592                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3593                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3594
3595                 switch (intel_trans_dp_port_sel(crtc)) {
3596                 case PCH_DP_B:
3597                         temp |= TRANS_DP_PORT_SEL_B;
3598                         break;
3599                 case PCH_DP_C:
3600                         temp |= TRANS_DP_PORT_SEL_C;
3601                         break;
3602                 case PCH_DP_D:
3603                         temp |= TRANS_DP_PORT_SEL_D;
3604                         break;
3605                 default:
3606                         BUG();
3607                 }
3608
3609                 I915_WRITE(reg, temp);
3610         }
3611
3612         ironlake_enable_pch_transcoder(dev_priv, pipe);
3613 }
3614
3615 static void lpt_pch_enable(struct drm_crtc *crtc)
3616 {
3617         struct drm_device *dev = crtc->dev;
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3620         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3621
3622         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3623
3624         lpt_program_iclkip(crtc);
3625
3626         /* Set transcoder timing. */
3627         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3628
3629         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3630 }
3631
3632 void intel_put_shared_dpll(struct intel_crtc *crtc)
3633 {
3634         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3635
3636         if (pll == NULL)
3637                 return;
3638
3639         if (pll->refcount == 0) {
3640                 WARN(1, "bad %s refcount\n", pll->name);
3641                 return;
3642         }
3643
3644         if (--pll->refcount == 0) {
3645                 WARN_ON(pll->on);
3646                 WARN_ON(pll->active);
3647         }
3648
3649         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3650 }
3651
3652 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3653 {
3654         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3655         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3656         enum intel_dpll_id i;
3657
3658         if (pll) {
3659                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3660                               crtc->base.base.id, pll->name);
3661                 intel_put_shared_dpll(crtc);
3662         }
3663
3664         if (HAS_PCH_IBX(dev_priv->dev)) {
3665                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3666                 i = (enum intel_dpll_id) crtc->pipe;
3667                 pll = &dev_priv->shared_dplls[i];
3668
3669                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3670                               crtc->base.base.id, pll->name);
3671
3672                 WARN_ON(pll->refcount);
3673
3674                 goto found;
3675         }
3676
3677         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3678                 pll = &dev_priv->shared_dplls[i];
3679
3680                 /* Only want to check enabled timings first */
3681                 if (pll->refcount == 0)
3682                         continue;
3683
3684                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3685                            sizeof(pll->hw_state)) == 0) {
3686                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3687                                       crtc->base.base.id,
3688                                       pll->name, pll->refcount, pll->active);
3689
3690                         goto found;
3691                 }
3692         }
3693
3694         /* Ok no matching timings, maybe there's a free one? */
3695         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3696                 pll = &dev_priv->shared_dplls[i];
3697                 if (pll->refcount == 0) {
3698                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3699                                       crtc->base.base.id, pll->name);
3700                         goto found;
3701                 }
3702         }
3703
3704         return NULL;
3705
3706 found:
3707         if (pll->refcount == 0)
3708                 pll->hw_state = crtc->config.dpll_hw_state;
3709
3710         crtc->config.shared_dpll = i;
3711         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3712                          pipe_name(crtc->pipe));
3713
3714         pll->refcount++;
3715
3716         return pll;
3717 }
3718
3719 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3720 {
3721         struct drm_i915_private *dev_priv = dev->dev_private;
3722         int dslreg = PIPEDSL(pipe);
3723         u32 temp;
3724
3725         temp = I915_READ(dslreg);
3726         udelay(500);
3727         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3728                 if (wait_for(I915_READ(dslreg) != temp, 5))
3729                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3730         }
3731 }
3732
3733 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3734 {
3735         struct drm_device *dev = crtc->base.dev;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         int pipe = crtc->pipe;
3738
3739         if (crtc->config.pch_pfit.enabled) {
3740                 /* Force use of hard-coded filter coefficients
3741                  * as some pre-programmed values are broken,
3742                  * e.g. x201.
3743                  */
3744                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3745                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3746                                                  PF_PIPE_SEL_IVB(pipe));
3747                 else
3748                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3749                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3750                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3751         }
3752 }
3753
3754 static void intel_enable_planes(struct drm_crtc *crtc)
3755 {
3756         struct drm_device *dev = crtc->dev;
3757         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3758         struct drm_plane *plane;
3759         struct intel_plane *intel_plane;
3760
3761         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3762                 intel_plane = to_intel_plane(plane);
3763                 if (intel_plane->pipe == pipe)
3764                         intel_plane_restore(&intel_plane->base);
3765         }
3766 }
3767
3768 static void intel_disable_planes(struct drm_crtc *crtc)
3769 {
3770         struct drm_device *dev = crtc->dev;
3771         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3772         struct drm_plane *plane;
3773         struct intel_plane *intel_plane;
3774
3775         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3776                 intel_plane = to_intel_plane(plane);
3777                 if (intel_plane->pipe == pipe)
3778                         intel_plane_disable(&intel_plane->base);
3779         }
3780 }
3781
3782 void hsw_enable_ips(struct intel_crtc *crtc)
3783 {
3784         struct drm_device *dev = crtc->base.dev;
3785         struct drm_i915_private *dev_priv = dev->dev_private;
3786
3787         if (!crtc->config.ips_enabled)
3788                 return;
3789
3790         /* We can only enable IPS after we enable a plane and wait for a vblank */
3791         intel_wait_for_vblank(dev, crtc->pipe);
3792
3793         assert_plane_enabled(dev_priv, crtc->plane);
3794         if (IS_BROADWELL(dev)) {
3795                 mutex_lock(&dev_priv->rps.hw_lock);
3796                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3797                 mutex_unlock(&dev_priv->rps.hw_lock);
3798                 /* Quoting Art Runyan: "its not safe to expect any particular
3799                  * value in IPS_CTL bit 31 after enabling IPS through the
3800                  * mailbox." Moreover, the mailbox may return a bogus state,
3801                  * so we need to just enable it and continue on.
3802                  */
3803         } else {
3804                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3805                 /* The bit only becomes 1 in the next vblank, so this wait here
3806                  * is essentially intel_wait_for_vblank. If we don't have this
3807                  * and don't wait for vblanks until the end of crtc_enable, then
3808                  * the HW state readout code will complain that the expected
3809                  * IPS_CTL value is not the one we read. */
3810                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3811                         DRM_ERROR("Timed out waiting for IPS enable\n");
3812         }
3813 }
3814
3815 void hsw_disable_ips(struct intel_crtc *crtc)
3816 {
3817         struct drm_device *dev = crtc->base.dev;
3818         struct drm_i915_private *dev_priv = dev->dev_private;
3819
3820         if (!crtc->config.ips_enabled)
3821                 return;
3822
3823         assert_plane_enabled(dev_priv, crtc->plane);
3824         if (IS_BROADWELL(dev)) {
3825                 mutex_lock(&dev_priv->rps.hw_lock);
3826                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3827                 mutex_unlock(&dev_priv->rps.hw_lock);
3828                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3829                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3830                         DRM_ERROR("Timed out waiting for IPS disable\n");
3831         } else {
3832                 I915_WRITE(IPS_CTL, 0);
3833                 POSTING_READ(IPS_CTL);
3834         }
3835
3836         /* We need to wait for a vblank before we can disable the plane. */
3837         intel_wait_for_vblank(dev, crtc->pipe);
3838 }
3839
3840 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3841 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3842 {
3843         struct drm_device *dev = crtc->dev;
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846         enum pipe pipe = intel_crtc->pipe;
3847         int palreg = PALETTE(pipe);
3848         int i;
3849         bool reenable_ips = false;
3850
3851         /* The clocks have to be on to load the palette. */
3852         if (!crtc->enabled || !intel_crtc->active)
3853                 return;
3854
3855         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3856                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3857                         assert_dsi_pll_enabled(dev_priv);
3858                 else
3859                         assert_pll_enabled(dev_priv, pipe);
3860         }
3861
3862         /* use legacy palette for Ironlake */
3863         if (!HAS_GMCH_DISPLAY(dev))
3864                 palreg = LGC_PALETTE(pipe);
3865
3866         /* Workaround : Do not read or write the pipe palette/gamma data while
3867          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3868          */
3869         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3870             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3871              GAMMA_MODE_MODE_SPLIT)) {
3872                 hsw_disable_ips(intel_crtc);
3873                 reenable_ips = true;
3874         }
3875
3876         for (i = 0; i < 256; i++) {
3877                 I915_WRITE(palreg + 4 * i,
3878                            (intel_crtc->lut_r[i] << 16) |
3879                            (intel_crtc->lut_g[i] << 8) |
3880                            intel_crtc->lut_b[i]);
3881         }
3882
3883         if (reenable_ips)
3884                 hsw_enable_ips(intel_crtc);
3885 }
3886
3887 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3888 {
3889         if (!enable && intel_crtc->overlay) {
3890                 struct drm_device *dev = intel_crtc->base.dev;
3891                 struct drm_i915_private *dev_priv = dev->dev_private;
3892
3893                 mutex_lock(&dev->struct_mutex);
3894                 dev_priv->mm.interruptible = false;
3895                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3896                 dev_priv->mm.interruptible = true;
3897                 mutex_unlock(&dev->struct_mutex);
3898         }
3899
3900         /* Let userspace switch the overlay on again. In most cases userspace
3901          * has to recompute where to put it anyway.
3902          */
3903 }
3904
3905 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3906 {
3907         struct drm_device *dev = crtc->dev;
3908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3909         int pipe = intel_crtc->pipe;
3910
3911         assert_vblank_disabled(crtc);
3912
3913         drm_vblank_on(dev, pipe);
3914
3915         intel_enable_primary_hw_plane(crtc->primary, crtc);
3916         intel_enable_planes(crtc);
3917         intel_crtc_update_cursor(crtc, true);
3918         intel_crtc_dpms_overlay(intel_crtc, true);
3919
3920         hsw_enable_ips(intel_crtc);
3921
3922         mutex_lock(&dev->struct_mutex);
3923         intel_update_fbc(dev);
3924         mutex_unlock(&dev->struct_mutex);
3925
3926         /*
3927          * FIXME: Once we grow proper nuclear flip support out of this we need
3928          * to compute the mask of flip planes precisely. For the time being
3929          * consider this a flip from a NULL plane.
3930          */
3931         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3932 }
3933
3934 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3935 {
3936         struct drm_device *dev = crtc->dev;
3937         struct drm_i915_private *dev_priv = dev->dev_private;
3938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3939         int pipe = intel_crtc->pipe;
3940         int plane = intel_crtc->plane;
3941
3942         intel_crtc_wait_for_pending_flips(crtc);
3943
3944         if (dev_priv->fbc.plane == plane)
3945                 intel_disable_fbc(dev);
3946
3947         hsw_disable_ips(intel_crtc);
3948
3949         intel_crtc_dpms_overlay(intel_crtc, false);
3950         intel_crtc_update_cursor(crtc, false);
3951         intel_disable_planes(crtc);
3952         intel_disable_primary_hw_plane(crtc->primary, crtc);
3953
3954         /*
3955          * FIXME: Once we grow proper nuclear flip support out of this we need
3956          * to compute the mask of flip planes precisely. For the time being
3957          * consider this a flip to a NULL plane.
3958          */
3959         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3960
3961         drm_vblank_off(dev, pipe);
3962
3963         assert_vblank_disabled(crtc);
3964 }
3965
3966 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3967 {
3968         struct drm_device *dev = crtc->dev;
3969         struct drm_i915_private *dev_priv = dev->dev_private;
3970         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3971         struct intel_encoder *encoder;
3972         int pipe = intel_crtc->pipe;
3973
3974         WARN_ON(!crtc->enabled);
3975
3976         if (intel_crtc->active)
3977                 return;
3978
3979         if (intel_crtc->config.has_pch_encoder)
3980                 intel_prepare_shared_dpll(intel_crtc);
3981
3982         if (intel_crtc->config.has_dp_encoder)
3983                 intel_dp_set_m_n(intel_crtc);
3984
3985         intel_set_pipe_timings(intel_crtc);
3986
3987         if (intel_crtc->config.has_pch_encoder) {
3988                 intel_cpu_transcoder_set_m_n(intel_crtc,
3989                                      &intel_crtc->config.fdi_m_n, NULL);
3990         }
3991
3992         ironlake_set_pipeconf(crtc);
3993
3994         intel_crtc->active = true;
3995
3996         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3997         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3998
3999         for_each_encoder_on_crtc(dev, crtc, encoder)
4000                 if (encoder->pre_enable)
4001                         encoder->pre_enable(encoder);
4002
4003         if (intel_crtc->config.has_pch_encoder) {
4004                 /* Note: FDI PLL enabling _must_ be done before we enable the
4005                  * cpu pipes, hence this is separate from all the other fdi/pch
4006                  * enabling. */
4007                 ironlake_fdi_pll_enable(intel_crtc);
4008         } else {
4009                 assert_fdi_tx_disabled(dev_priv, pipe);
4010                 assert_fdi_rx_disabled(dev_priv, pipe);
4011         }
4012
4013         ironlake_pfit_enable(intel_crtc);
4014
4015         /*
4016          * On ILK+ LUT must be loaded before the pipe is running but with
4017          * clocks enabled
4018          */
4019         intel_crtc_load_lut(crtc);
4020
4021         intel_update_watermarks(crtc);
4022         intel_enable_pipe(intel_crtc);
4023
4024         if (intel_crtc->config.has_pch_encoder)
4025                 ironlake_pch_enable(crtc);
4026
4027         for_each_encoder_on_crtc(dev, crtc, encoder)
4028                 encoder->enable(encoder);
4029
4030         if (HAS_PCH_CPT(dev))
4031                 cpt_verify_modeset(dev, intel_crtc->pipe);
4032
4033         intel_crtc_enable_planes(crtc);
4034 }
4035
4036 /* IPS only exists on ULT machines and is tied to pipe A. */
4037 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4038 {
4039         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4040 }
4041
4042 /*
4043  * This implements the workaround described in the "notes" section of the mode
4044  * set sequence documentation. When going from no pipes or single pipe to
4045  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4046  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4047  */
4048 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4049 {
4050         struct drm_device *dev = crtc->base.dev;
4051         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4052
4053         /* We want to get the other_active_crtc only if there's only 1 other
4054          * active crtc. */
4055         for_each_intel_crtc(dev, crtc_it) {
4056                 if (!crtc_it->active || crtc_it == crtc)
4057                         continue;
4058
4059                 if (other_active_crtc)
4060                         return;
4061
4062                 other_active_crtc = crtc_it;
4063         }
4064         if (!other_active_crtc)
4065                 return;
4066
4067         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4068         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4069 }
4070
4071 static void haswell_crtc_enable(struct drm_crtc *crtc)
4072 {
4073         struct drm_device *dev = crtc->dev;
4074         struct drm_i915_private *dev_priv = dev->dev_private;
4075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4076         struct intel_encoder *encoder;
4077         int pipe = intel_crtc->pipe;
4078
4079         WARN_ON(!crtc->enabled);
4080
4081         if (intel_crtc->active)
4082                 return;
4083
4084         if (intel_crtc_to_shared_dpll(intel_crtc))
4085                 intel_enable_shared_dpll(intel_crtc);
4086
4087         if (intel_crtc->config.has_dp_encoder)
4088                 intel_dp_set_m_n(intel_crtc);
4089
4090         intel_set_pipe_timings(intel_crtc);
4091
4092         if (intel_crtc->config.has_pch_encoder) {
4093                 intel_cpu_transcoder_set_m_n(intel_crtc,
4094                                      &intel_crtc->config.fdi_m_n, NULL);
4095         }
4096
4097         haswell_set_pipeconf(crtc);
4098
4099         intel_set_pipe_csc(crtc);
4100
4101         intel_crtc->active = true;
4102
4103         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4104         for_each_encoder_on_crtc(dev, crtc, encoder)
4105                 if (encoder->pre_enable)
4106                         encoder->pre_enable(encoder);
4107
4108         if (intel_crtc->config.has_pch_encoder) {
4109                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4110                 dev_priv->display.fdi_link_train(crtc);
4111         }
4112
4113         intel_ddi_enable_pipe_clock(intel_crtc);
4114
4115         ironlake_pfit_enable(intel_crtc);
4116
4117         /*
4118          * On ILK+ LUT must be loaded before the pipe is running but with
4119          * clocks enabled
4120          */
4121         intel_crtc_load_lut(crtc);
4122
4123         intel_ddi_set_pipe_settings(crtc);
4124         intel_ddi_enable_transcoder_func(crtc);
4125
4126         intel_update_watermarks(crtc);
4127         intel_enable_pipe(intel_crtc);
4128
4129         if (intel_crtc->config.has_pch_encoder)
4130                 lpt_pch_enable(crtc);
4131
4132         if (intel_crtc->config.dp_encoder_is_mst)
4133                 intel_ddi_set_vc_payload_alloc(crtc, true);
4134
4135         for_each_encoder_on_crtc(dev, crtc, encoder) {
4136                 encoder->enable(encoder);
4137                 intel_opregion_notify_encoder(encoder, true);
4138         }
4139
4140         /* If we change the relative order between pipe/planes enabling, we need
4141          * to change the workaround. */
4142         haswell_mode_set_planes_workaround(intel_crtc);
4143         intel_crtc_enable_planes(crtc);
4144 }
4145
4146 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4147 {
4148         struct drm_device *dev = crtc->base.dev;
4149         struct drm_i915_private *dev_priv = dev->dev_private;
4150         int pipe = crtc->pipe;
4151
4152         /* To avoid upsetting the power well on haswell only disable the pfit if
4153          * it's in use. The hw state code will make sure we get this right. */
4154         if (crtc->config.pch_pfit.enabled) {
4155                 I915_WRITE(PF_CTL(pipe), 0);
4156                 I915_WRITE(PF_WIN_POS(pipe), 0);
4157                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4158         }
4159 }
4160
4161 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4162 {
4163         struct drm_device *dev = crtc->dev;
4164         struct drm_i915_private *dev_priv = dev->dev_private;
4165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4166         struct intel_encoder *encoder;
4167         int pipe = intel_crtc->pipe;
4168         u32 reg, temp;
4169
4170         if (!intel_crtc->active)
4171                 return;
4172
4173         intel_crtc_disable_planes(crtc);
4174
4175         for_each_encoder_on_crtc(dev, crtc, encoder)
4176                 encoder->disable(encoder);
4177
4178         if (intel_crtc->config.has_pch_encoder)
4179                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4180
4181         intel_disable_pipe(dev_priv, pipe);
4182         ironlake_pfit_disable(intel_crtc);
4183
4184         for_each_encoder_on_crtc(dev, crtc, encoder)
4185                 if (encoder->post_disable)
4186                         encoder->post_disable(encoder);
4187
4188         if (intel_crtc->config.has_pch_encoder) {
4189                 ironlake_fdi_disable(crtc);
4190
4191                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4192                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4193
4194                 if (HAS_PCH_CPT(dev)) {
4195                         /* disable TRANS_DP_CTL */
4196                         reg = TRANS_DP_CTL(pipe);
4197                         temp = I915_READ(reg);
4198                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4199                                   TRANS_DP_PORT_SEL_MASK);
4200                         temp |= TRANS_DP_PORT_SEL_NONE;
4201                         I915_WRITE(reg, temp);
4202
4203                         /* disable DPLL_SEL */
4204                         temp = I915_READ(PCH_DPLL_SEL);
4205                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4206                         I915_WRITE(PCH_DPLL_SEL, temp);
4207                 }
4208
4209                 /* disable PCH DPLL */
4210                 intel_disable_shared_dpll(intel_crtc);
4211
4212                 ironlake_fdi_pll_disable(intel_crtc);
4213         }
4214
4215         intel_crtc->active = false;
4216         intel_update_watermarks(crtc);
4217
4218         mutex_lock(&dev->struct_mutex);
4219         intel_update_fbc(dev);
4220         mutex_unlock(&dev->struct_mutex);
4221 }
4222
4223 static void haswell_crtc_disable(struct drm_crtc *crtc)
4224 {
4225         struct drm_device *dev = crtc->dev;
4226         struct drm_i915_private *dev_priv = dev->dev_private;
4227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4228         struct intel_encoder *encoder;
4229         int pipe = intel_crtc->pipe;
4230         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4231
4232         if (!intel_crtc->active)
4233                 return;
4234
4235         intel_crtc_disable_planes(crtc);
4236
4237         for_each_encoder_on_crtc(dev, crtc, encoder) {
4238                 intel_opregion_notify_encoder(encoder, false);
4239                 encoder->disable(encoder);
4240         }
4241
4242         if (intel_crtc->config.has_pch_encoder)
4243                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4244         intel_disable_pipe(dev_priv, pipe);
4245
4246         if (intel_crtc->config.dp_encoder_is_mst)
4247                 intel_ddi_set_vc_payload_alloc(crtc, false);
4248
4249         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4250
4251         ironlake_pfit_disable(intel_crtc);
4252
4253         intel_ddi_disable_pipe_clock(intel_crtc);
4254
4255         if (intel_crtc->config.has_pch_encoder) {
4256                 lpt_disable_pch_transcoder(dev_priv);
4257                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4258                 intel_ddi_fdi_disable(crtc);
4259         }
4260
4261         for_each_encoder_on_crtc(dev, crtc, encoder)
4262                 if (encoder->post_disable)
4263                         encoder->post_disable(encoder);
4264
4265         intel_crtc->active = false;
4266         intel_update_watermarks(crtc);
4267
4268         mutex_lock(&dev->struct_mutex);
4269         intel_update_fbc(dev);
4270         mutex_unlock(&dev->struct_mutex);
4271
4272         if (intel_crtc_to_shared_dpll(intel_crtc))
4273                 intel_disable_shared_dpll(intel_crtc);
4274 }
4275
4276 static void ironlake_crtc_off(struct drm_crtc *crtc)
4277 {
4278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4279         intel_put_shared_dpll(intel_crtc);
4280 }
4281
4282
4283 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4284 {
4285         struct drm_device *dev = crtc->base.dev;
4286         struct drm_i915_private *dev_priv = dev->dev_private;
4287         struct intel_crtc_config *pipe_config = &crtc->config;
4288
4289         if (!crtc->config.gmch_pfit.control)
4290                 return;
4291
4292         /*
4293          * The panel fitter should only be adjusted whilst the pipe is disabled,
4294          * according to register description and PRM.
4295          */
4296         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4297         assert_pipe_disabled(dev_priv, crtc->pipe);
4298
4299         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4300         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4301
4302         /* Border color in case we don't scale up to the full screen. Black by
4303          * default, change to something else for debugging. */
4304         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4305 }
4306
4307 static enum intel_display_power_domain port_to_power_domain(enum port port)
4308 {
4309         switch (port) {
4310         case PORT_A:
4311                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4312         case PORT_B:
4313                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4314         case PORT_C:
4315                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4316         case PORT_D:
4317                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4318         default:
4319                 WARN_ON_ONCE(1);
4320                 return POWER_DOMAIN_PORT_OTHER;
4321         }
4322 }
4323
4324 #define for_each_power_domain(domain, mask)                             \
4325         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4326                 if ((1 << (domain)) & (mask))
4327
4328 enum intel_display_power_domain
4329 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4330 {
4331         struct drm_device *dev = intel_encoder->base.dev;
4332         struct intel_digital_port *intel_dig_port;
4333
4334         switch (intel_encoder->type) {
4335         case INTEL_OUTPUT_UNKNOWN:
4336                 /* Only DDI platforms should ever use this output type */
4337                 WARN_ON_ONCE(!HAS_DDI(dev));
4338         case INTEL_OUTPUT_DISPLAYPORT:
4339         case INTEL_OUTPUT_HDMI:
4340         case INTEL_OUTPUT_EDP:
4341                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4342                 return port_to_power_domain(intel_dig_port->port);
4343         case INTEL_OUTPUT_DP_MST:
4344                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4345                 return port_to_power_domain(intel_dig_port->port);
4346         case INTEL_OUTPUT_ANALOG:
4347                 return POWER_DOMAIN_PORT_CRT;
4348         case INTEL_OUTPUT_DSI:
4349                 return POWER_DOMAIN_PORT_DSI;
4350         default:
4351                 return POWER_DOMAIN_PORT_OTHER;
4352         }
4353 }
4354
4355 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4356 {
4357         struct drm_device *dev = crtc->dev;
4358         struct intel_encoder *intel_encoder;
4359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4360         enum pipe pipe = intel_crtc->pipe;
4361         unsigned long mask;
4362         enum transcoder transcoder;
4363
4364         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4365
4366         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4367         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4368         if (intel_crtc->config.pch_pfit.enabled ||
4369             intel_crtc->config.pch_pfit.force_thru)
4370                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4371
4372         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4373                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4374
4375         return mask;
4376 }
4377
4378 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4379                                   bool enable)
4380 {
4381         if (dev_priv->power_domains.init_power_on == enable)
4382                 return;
4383
4384         if (enable)
4385                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4386         else
4387                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4388
4389         dev_priv->power_domains.init_power_on = enable;
4390 }
4391
4392 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4393 {
4394         struct drm_i915_private *dev_priv = dev->dev_private;
4395         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4396         struct intel_crtc *crtc;
4397
4398         /*
4399          * First get all needed power domains, then put all unneeded, to avoid
4400          * any unnecessary toggling of the power wells.
4401          */
4402         for_each_intel_crtc(dev, crtc) {
4403                 enum intel_display_power_domain domain;
4404
4405                 if (!crtc->base.enabled)
4406                         continue;
4407
4408                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4409
4410                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4411                         intel_display_power_get(dev_priv, domain);
4412         }
4413
4414         for_each_intel_crtc(dev, crtc) {
4415                 enum intel_display_power_domain domain;
4416
4417                 for_each_power_domain(domain, crtc->enabled_power_domains)
4418                         intel_display_power_put(dev_priv, domain);
4419
4420                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4421         }
4422
4423         intel_display_set_init_power(dev_priv, false);
4424 }
4425
4426 /* returns HPLL frequency in kHz */
4427 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4428 {
4429         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4430
4431         /* Obtain SKU information */
4432         mutex_lock(&dev_priv->dpio_lock);
4433         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4434                 CCK_FUSE_HPLL_FREQ_MASK;
4435         mutex_unlock(&dev_priv->dpio_lock);
4436
4437         return vco_freq[hpll_freq] * 1000;
4438 }
4439
4440 static void vlv_update_cdclk(struct drm_device *dev)
4441 {
4442         struct drm_i915_private *dev_priv = dev->dev_private;
4443
4444         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4445         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4446                          dev_priv->vlv_cdclk_freq);
4447
4448         /*
4449          * Program the gmbus_freq based on the cdclk frequency.
4450          * BSpec erroneously claims we should aim for 4MHz, but
4451          * in fact 1MHz is the correct frequency.
4452          */
4453         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4454 }
4455
4456 /* Adjust CDclk dividers to allow high res or save power if possible */
4457 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4458 {
4459         struct drm_i915_private *dev_priv = dev->dev_private;
4460         u32 val, cmd;
4461
4462         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4463
4464         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4465                 cmd = 2;
4466         else if (cdclk == 266667)
4467                 cmd = 1;
4468         else
4469                 cmd = 0;
4470
4471         mutex_lock(&dev_priv->rps.hw_lock);
4472         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4473         val &= ~DSPFREQGUAR_MASK;
4474         val |= (cmd << DSPFREQGUAR_SHIFT);
4475         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4476         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4477                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4478                      50)) {
4479                 DRM_ERROR("timed out waiting for CDclk change\n");
4480         }
4481         mutex_unlock(&dev_priv->rps.hw_lock);
4482
4483         if (cdclk == 400000) {
4484                 u32 divider, vco;
4485
4486                 vco = valleyview_get_vco(dev_priv);
4487                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4488
4489                 mutex_lock(&dev_priv->dpio_lock);
4490                 /* adjust cdclk divider */
4491                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4492                 val &= ~DISPLAY_FREQUENCY_VALUES;
4493                 val |= divider;
4494                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4495
4496                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4497                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4498                              50))
4499                         DRM_ERROR("timed out waiting for CDclk change\n");
4500                 mutex_unlock(&dev_priv->dpio_lock);
4501         }
4502
4503         mutex_lock(&dev_priv->dpio_lock);
4504         /* adjust self-refresh exit latency value */
4505         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4506         val &= ~0x7f;
4507
4508         /*
4509          * For high bandwidth configs, we set a higher latency in the bunit
4510          * so that the core display fetch happens in time to avoid underruns.
4511          */
4512         if (cdclk == 400000)
4513                 val |= 4500 / 250; /* 4.5 usec */
4514         else
4515                 val |= 3000 / 250; /* 3.0 usec */
4516         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4517         mutex_unlock(&dev_priv->dpio_lock);
4518
4519         vlv_update_cdclk(dev);
4520 }
4521
4522 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4523 {
4524         struct drm_i915_private *dev_priv = dev->dev_private;
4525         u32 val, cmd;
4526
4527         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4528
4529         switch (cdclk) {
4530         case 400000:
4531                 cmd = 3;
4532                 break;
4533         case 333333:
4534         case 320000:
4535                 cmd = 2;
4536                 break;
4537         case 266667:
4538                 cmd = 1;
4539                 break;
4540         case 200000:
4541                 cmd = 0;
4542                 break;
4543         default:
4544                 WARN_ON(1);
4545                 return;
4546         }
4547
4548         mutex_lock(&dev_priv->rps.hw_lock);
4549         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4550         val &= ~DSPFREQGUAR_MASK_CHV;
4551         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4552         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4553         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4554                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4555                      50)) {
4556                 DRM_ERROR("timed out waiting for CDclk change\n");
4557         }
4558         mutex_unlock(&dev_priv->rps.hw_lock);
4559
4560         vlv_update_cdclk(dev);
4561 }
4562
4563 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4564                                  int max_pixclk)
4565 {
4566         int vco = valleyview_get_vco(dev_priv);
4567         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4568
4569         /* FIXME: Punit isn't quite ready yet */
4570         if (IS_CHERRYVIEW(dev_priv->dev))
4571                 return 400000;
4572
4573         /*
4574          * Really only a few cases to deal with, as only 4 CDclks are supported:
4575          *   200MHz
4576          *   267MHz
4577          *   320/333MHz (depends on HPLL freq)
4578          *   400MHz
4579          * So we check to see whether we're above 90% of the lower bin and
4580          * adjust if needed.
4581          *
4582          * We seem to get an unstable or solid color picture at 200MHz.
4583          * Not sure what's wrong. For now use 200MHz only when all pipes
4584          * are off.
4585          */
4586         if (max_pixclk > freq_320*9/10)
4587                 return 400000;
4588         else if (max_pixclk > 266667*9/10)
4589                 return freq_320;
4590         else if (max_pixclk > 0)
4591                 return 266667;
4592         else
4593                 return 200000;
4594 }
4595
4596 /* compute the max pixel clock for new configuration */
4597 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4598 {
4599         struct drm_device *dev = dev_priv->dev;
4600         struct intel_crtc *intel_crtc;
4601         int max_pixclk = 0;
4602
4603         for_each_intel_crtc(dev, intel_crtc) {
4604                 if (intel_crtc->new_enabled)
4605                         max_pixclk = max(max_pixclk,
4606                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4607         }
4608
4609         return max_pixclk;
4610 }
4611
4612 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4613                                             unsigned *prepare_pipes)
4614 {
4615         struct drm_i915_private *dev_priv = dev->dev_private;
4616         struct intel_crtc *intel_crtc;
4617         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4618
4619         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4620             dev_priv->vlv_cdclk_freq)
4621                 return;
4622
4623         /* disable/enable all currently active pipes while we change cdclk */
4624         for_each_intel_crtc(dev, intel_crtc)
4625                 if (intel_crtc->base.enabled)
4626                         *prepare_pipes |= (1 << intel_crtc->pipe);
4627 }
4628
4629 static void valleyview_modeset_global_resources(struct drm_device *dev)
4630 {
4631         struct drm_i915_private *dev_priv = dev->dev_private;
4632         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4633         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4634
4635         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4636                 if (IS_CHERRYVIEW(dev))
4637                         cherryview_set_cdclk(dev, req_cdclk);
4638                 else
4639                         valleyview_set_cdclk(dev, req_cdclk);
4640         }
4641
4642         modeset_update_crtc_power_domains(dev);
4643 }
4644
4645 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4646 {
4647         struct drm_device *dev = crtc->dev;
4648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4649         struct intel_encoder *encoder;
4650         int pipe = intel_crtc->pipe;
4651         bool is_dsi;
4652
4653         WARN_ON(!crtc->enabled);
4654
4655         if (intel_crtc->active)
4656                 return;
4657
4658         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4659
4660         if (!is_dsi) {
4661                 if (IS_CHERRYVIEW(dev))
4662                         chv_prepare_pll(intel_crtc);
4663                 else
4664                         vlv_prepare_pll(intel_crtc);
4665         }
4666
4667         if (intel_crtc->config.has_dp_encoder)
4668                 intel_dp_set_m_n(intel_crtc);
4669
4670         intel_set_pipe_timings(intel_crtc);
4671
4672         i9xx_set_pipeconf(intel_crtc);
4673
4674         intel_crtc->active = true;
4675
4676         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4677
4678         for_each_encoder_on_crtc(dev, crtc, encoder)
4679                 if (encoder->pre_pll_enable)
4680                         encoder->pre_pll_enable(encoder);
4681
4682         if (!is_dsi) {
4683                 if (IS_CHERRYVIEW(dev))
4684                         chv_enable_pll(intel_crtc);
4685                 else
4686                         vlv_enable_pll(intel_crtc);
4687         }
4688
4689         for_each_encoder_on_crtc(dev, crtc, encoder)
4690                 if (encoder->pre_enable)
4691                         encoder->pre_enable(encoder);
4692
4693         i9xx_pfit_enable(intel_crtc);
4694
4695         intel_crtc_load_lut(crtc);
4696
4697         intel_update_watermarks(crtc);
4698         intel_enable_pipe(intel_crtc);
4699
4700         for_each_encoder_on_crtc(dev, crtc, encoder)
4701                 encoder->enable(encoder);
4702
4703         intel_crtc_enable_planes(crtc);
4704
4705         /* Underruns don't raise interrupts, so check manually. */
4706         i9xx_check_fifo_underruns(dev);
4707 }
4708
4709 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4710 {
4711         struct drm_device *dev = crtc->base.dev;
4712         struct drm_i915_private *dev_priv = dev->dev_private;
4713
4714         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4715         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4716 }
4717
4718 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4719 {
4720         struct drm_device *dev = crtc->dev;
4721         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4722         struct intel_encoder *encoder;
4723         int pipe = intel_crtc->pipe;
4724
4725         WARN_ON(!crtc->enabled);
4726
4727         if (intel_crtc->active)
4728                 return;
4729
4730         i9xx_set_pll_dividers(intel_crtc);
4731
4732         if (intel_crtc->config.has_dp_encoder)
4733                 intel_dp_set_m_n(intel_crtc);
4734
4735         intel_set_pipe_timings(intel_crtc);
4736
4737         i9xx_set_pipeconf(intel_crtc);
4738
4739         intel_crtc->active = true;
4740
4741         if (!IS_GEN2(dev))
4742                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4743
4744         for_each_encoder_on_crtc(dev, crtc, encoder)
4745                 if (encoder->pre_enable)
4746                         encoder->pre_enable(encoder);
4747
4748         i9xx_enable_pll(intel_crtc);
4749
4750         i9xx_pfit_enable(intel_crtc);
4751
4752         intel_crtc_load_lut(crtc);
4753
4754         intel_update_watermarks(crtc);
4755         intel_enable_pipe(intel_crtc);
4756
4757         for_each_encoder_on_crtc(dev, crtc, encoder)
4758                 encoder->enable(encoder);
4759
4760         intel_crtc_enable_planes(crtc);
4761
4762         /*
4763          * Gen2 reports pipe underruns whenever all planes are disabled.
4764          * So don't enable underrun reporting before at least some planes
4765          * are enabled.
4766          * FIXME: Need to fix the logic to work when we turn off all planes
4767          * but leave the pipe running.
4768          */
4769         if (IS_GEN2(dev))
4770                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4771
4772         /* Underruns don't raise interrupts, so check manually. */
4773         i9xx_check_fifo_underruns(dev);
4774 }
4775
4776 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4777 {
4778         struct drm_device *dev = crtc->base.dev;
4779         struct drm_i915_private *dev_priv = dev->dev_private;
4780
4781         if (!crtc->config.gmch_pfit.control)
4782                 return;
4783
4784         assert_pipe_disabled(dev_priv, crtc->pipe);
4785
4786         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4787                          I915_READ(PFIT_CONTROL));
4788         I915_WRITE(PFIT_CONTROL, 0);
4789 }
4790
4791 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4792 {
4793         struct drm_device *dev = crtc->dev;
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4796         struct intel_encoder *encoder;
4797         int pipe = intel_crtc->pipe;
4798
4799         if (!intel_crtc->active)
4800                 return;
4801
4802         /*
4803          * Gen2 reports pipe underruns whenever all planes are disabled.
4804          * So diasble underrun reporting before all the planes get disabled.
4805          * FIXME: Need to fix the logic to work when we turn off all planes
4806          * but leave the pipe running.
4807          */
4808         if (IS_GEN2(dev))
4809                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4810
4811         /*
4812          * Vblank time updates from the shadow to live plane control register
4813          * are blocked if the memory self-refresh mode is active at that
4814          * moment. So to make sure the plane gets truly disabled, disable
4815          * first the self-refresh mode. The self-refresh enable bit in turn
4816          * will be checked/applied by the HW only at the next frame start
4817          * event which is after the vblank start event, so we need to have a
4818          * wait-for-vblank between disabling the plane and the pipe.
4819          */
4820         intel_set_memory_cxsr(dev_priv, false);
4821         intel_crtc_disable_planes(crtc);
4822
4823         for_each_encoder_on_crtc(dev, crtc, encoder)
4824                 encoder->disable(encoder);
4825
4826         /*
4827          * On gen2 planes are double buffered but the pipe isn't, so we must
4828          * wait for planes to fully turn off before disabling the pipe.
4829          * We also need to wait on all gmch platforms because of the
4830          * self-refresh mode constraint explained above.
4831          */
4832         intel_wait_for_vblank(dev, pipe);
4833
4834         intel_disable_pipe(dev_priv, pipe);
4835
4836         i9xx_pfit_disable(intel_crtc);
4837
4838         for_each_encoder_on_crtc(dev, crtc, encoder)
4839                 if (encoder->post_disable)
4840                         encoder->post_disable(encoder);
4841
4842         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4843                 if (IS_CHERRYVIEW(dev))
4844                         chv_disable_pll(dev_priv, pipe);
4845                 else if (IS_VALLEYVIEW(dev))
4846                         vlv_disable_pll(dev_priv, pipe);
4847                 else
4848                         i9xx_disable_pll(dev_priv, pipe);
4849         }
4850
4851         if (!IS_GEN2(dev))
4852                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4853
4854         intel_crtc->active = false;
4855         intel_update_watermarks(crtc);
4856
4857         mutex_lock(&dev->struct_mutex);
4858         intel_update_fbc(dev);
4859         mutex_unlock(&dev->struct_mutex);
4860 }
4861
4862 static void i9xx_crtc_off(struct drm_crtc *crtc)
4863 {
4864 }
4865
4866 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4867                                     bool enabled)
4868 {
4869         struct drm_device *dev = crtc->dev;
4870         struct drm_i915_master_private *master_priv;
4871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4872         int pipe = intel_crtc->pipe;
4873
4874         if (!dev->primary->master)
4875                 return;
4876
4877         master_priv = dev->primary->master->driver_priv;
4878         if (!master_priv->sarea_priv)
4879                 return;
4880
4881         switch (pipe) {
4882         case 0:
4883                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4884                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4885                 break;
4886         case 1:
4887                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4888                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4889                 break;
4890         default:
4891                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4892                 break;
4893         }
4894 }
4895
4896 /* Master function to enable/disable CRTC and corresponding power wells */
4897 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4898 {
4899         struct drm_device *dev = crtc->dev;
4900         struct drm_i915_private *dev_priv = dev->dev_private;
4901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4902         enum intel_display_power_domain domain;
4903         unsigned long domains;
4904
4905         if (enable) {
4906                 if (!intel_crtc->active) {
4907                         domains = get_crtc_power_domains(crtc);
4908                         for_each_power_domain(domain, domains)
4909                                 intel_display_power_get(dev_priv, domain);
4910                         intel_crtc->enabled_power_domains = domains;
4911
4912                         dev_priv->display.crtc_enable(crtc);
4913                 }
4914         } else {
4915                 if (intel_crtc->active) {
4916                         dev_priv->display.crtc_disable(crtc);
4917
4918                         domains = intel_crtc->enabled_power_domains;
4919                         for_each_power_domain(domain, domains)
4920                                 intel_display_power_put(dev_priv, domain);
4921                         intel_crtc->enabled_power_domains = 0;
4922                 }
4923         }
4924 }
4925
4926 /**
4927  * Sets the power management mode of the pipe and plane.
4928  */
4929 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4930 {
4931         struct drm_device *dev = crtc->dev;
4932         struct intel_encoder *intel_encoder;
4933         bool enable = false;
4934
4935         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4936                 enable |= intel_encoder->connectors_active;
4937
4938         intel_crtc_control(crtc, enable);
4939
4940         intel_crtc_update_sarea(crtc, enable);
4941 }
4942
4943 static void intel_crtc_disable(struct drm_crtc *crtc)
4944 {
4945         struct drm_device *dev = crtc->dev;
4946         struct drm_connector *connector;
4947         struct drm_i915_private *dev_priv = dev->dev_private;
4948         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4949         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4950
4951         /* crtc should still be enabled when we disable it. */
4952         WARN_ON(!crtc->enabled);
4953
4954         dev_priv->display.crtc_disable(crtc);
4955         intel_crtc_update_sarea(crtc, false);
4956         dev_priv->display.off(crtc);
4957
4958         if (crtc->primary->fb) {
4959                 mutex_lock(&dev->struct_mutex);
4960                 intel_unpin_fb_obj(old_obj);
4961                 i915_gem_track_fb(old_obj, NULL,
4962                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
4963                 mutex_unlock(&dev->struct_mutex);
4964                 crtc->primary->fb = NULL;
4965         }
4966
4967         /* Update computed state. */
4968         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4969                 if (!connector->encoder || !connector->encoder->crtc)
4970                         continue;
4971
4972                 if (connector->encoder->crtc != crtc)
4973                         continue;
4974
4975                 connector->dpms = DRM_MODE_DPMS_OFF;
4976                 to_intel_encoder(connector->encoder)->connectors_active = false;
4977         }
4978 }
4979
4980 void intel_encoder_destroy(struct drm_encoder *encoder)
4981 {
4982         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4983
4984         drm_encoder_cleanup(encoder);
4985         kfree(intel_encoder);
4986 }
4987
4988 /* Simple dpms helper for encoders with just one connector, no cloning and only
4989  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4990  * state of the entire output pipe. */
4991 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4992 {
4993         if (mode == DRM_MODE_DPMS_ON) {
4994                 encoder->connectors_active = true;
4995
4996                 intel_crtc_update_dpms(encoder->base.crtc);
4997         } else {
4998                 encoder->connectors_active = false;
4999
5000                 intel_crtc_update_dpms(encoder->base.crtc);
5001         }
5002 }
5003
5004 /* Cross check the actual hw state with our own modeset state tracking (and it's
5005  * internal consistency). */
5006 static void intel_connector_check_state(struct intel_connector *connector)
5007 {
5008         if (connector->get_hw_state(connector)) {
5009                 struct intel_encoder *encoder = connector->encoder;
5010                 struct drm_crtc *crtc;
5011                 bool encoder_enabled;
5012                 enum pipe pipe;
5013
5014                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5015                               connector->base.base.id,
5016                               connector->base.name);
5017
5018                 /* there is no real hw state for MST connectors */
5019                 if (connector->mst_port)
5020                         return;
5021
5022                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5023                      "wrong connector dpms state\n");
5024                 WARN(connector->base.encoder != &encoder->base,
5025                      "active connector not linked to encoder\n");
5026
5027                 if (encoder) {
5028                         WARN(!encoder->connectors_active,
5029                              "encoder->connectors_active not set\n");
5030
5031                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5032                         WARN(!encoder_enabled, "encoder not enabled\n");
5033                         if (WARN_ON(!encoder->base.crtc))
5034                                 return;
5035
5036                         crtc = encoder->base.crtc;
5037
5038                         WARN(!crtc->enabled, "crtc not enabled\n");
5039                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5040                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5041                              "encoder active on the wrong pipe\n");
5042                 }
5043         }
5044 }
5045
5046 /* Even simpler default implementation, if there's really no special case to
5047  * consider. */
5048 void intel_connector_dpms(struct drm_connector *connector, int mode)
5049 {
5050         /* All the simple cases only support two dpms states. */
5051         if (mode != DRM_MODE_DPMS_ON)
5052                 mode = DRM_MODE_DPMS_OFF;
5053
5054         if (mode == connector->dpms)
5055                 return;
5056
5057         connector->dpms = mode;
5058
5059         /* Only need to change hw state when actually enabled */
5060         if (connector->encoder)
5061                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5062
5063         intel_modeset_check_state(connector->dev);
5064 }
5065
5066 /* Simple connector->get_hw_state implementation for encoders that support only
5067  * one connector and no cloning and hence the encoder state determines the state
5068  * of the connector. */
5069 bool intel_connector_get_hw_state(struct intel_connector *connector)
5070 {
5071         enum pipe pipe = 0;
5072         struct intel_encoder *encoder = connector->encoder;
5073
5074         return encoder->get_hw_state(encoder, &pipe);
5075 }
5076
5077 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5078                                      struct intel_crtc_config *pipe_config)
5079 {
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_crtc *pipe_B_crtc =
5082                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5083
5084         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5085                       pipe_name(pipe), pipe_config->fdi_lanes);
5086         if (pipe_config->fdi_lanes > 4) {
5087                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5088                               pipe_name(pipe), pipe_config->fdi_lanes);
5089                 return false;
5090         }
5091
5092         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5093                 if (pipe_config->fdi_lanes > 2) {
5094                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5095                                       pipe_config->fdi_lanes);
5096                         return false;
5097                 } else {
5098                         return true;
5099                 }
5100         }
5101
5102         if (INTEL_INFO(dev)->num_pipes == 2)
5103                 return true;
5104
5105         /* Ivybridge 3 pipe is really complicated */
5106         switch (pipe) {
5107         case PIPE_A:
5108                 return true;
5109         case PIPE_B:
5110                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5111                     pipe_config->fdi_lanes > 2) {
5112                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5113                                       pipe_name(pipe), pipe_config->fdi_lanes);
5114                         return false;
5115                 }
5116                 return true;
5117         case PIPE_C:
5118                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5119                     pipe_B_crtc->config.fdi_lanes <= 2) {
5120                         if (pipe_config->fdi_lanes > 2) {
5121                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5122                                               pipe_name(pipe), pipe_config->fdi_lanes);
5123                                 return false;
5124                         }
5125                 } else {
5126                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5127                         return false;
5128                 }
5129                 return true;
5130         default:
5131                 BUG();
5132         }
5133 }
5134
5135 #define RETRY 1
5136 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5137                                        struct intel_crtc_config *pipe_config)
5138 {
5139         struct drm_device *dev = intel_crtc->base.dev;
5140         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5141         int lane, link_bw, fdi_dotclock;
5142         bool setup_ok, needs_recompute = false;
5143
5144 retry:
5145         /* FDI is a binary signal running at ~2.7GHz, encoding
5146          * each output octet as 10 bits. The actual frequency
5147          * is stored as a divider into a 100MHz clock, and the
5148          * mode pixel clock is stored in units of 1KHz.
5149          * Hence the bw of each lane in terms of the mode signal
5150          * is:
5151          */
5152         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5153
5154         fdi_dotclock = adjusted_mode->crtc_clock;
5155
5156         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5157                                            pipe_config->pipe_bpp);
5158
5159         pipe_config->fdi_lanes = lane;
5160
5161         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5162                                link_bw, &pipe_config->fdi_m_n);
5163
5164         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5165                                             intel_crtc->pipe, pipe_config);
5166         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5167                 pipe_config->pipe_bpp -= 2*3;
5168                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5169                               pipe_config->pipe_bpp);
5170                 needs_recompute = true;
5171                 pipe_config->bw_constrained = true;
5172
5173                 goto retry;
5174         }
5175
5176         if (needs_recompute)
5177                 return RETRY;
5178
5179         return setup_ok ? 0 : -EINVAL;
5180 }
5181
5182 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5183                                    struct intel_crtc_config *pipe_config)
5184 {
5185         pipe_config->ips_enabled = i915.enable_ips &&
5186                                    hsw_crtc_supports_ips(crtc) &&
5187                                    pipe_config->pipe_bpp <= 24;
5188 }
5189
5190 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5191                                      struct intel_crtc_config *pipe_config)
5192 {
5193         struct drm_device *dev = crtc->base.dev;
5194         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5195
5196         /* FIXME should check pixel clock limits on all platforms */
5197         if (INTEL_INFO(dev)->gen < 4) {
5198                 struct drm_i915_private *dev_priv = dev->dev_private;
5199                 int clock_limit =
5200                         dev_priv->display.get_display_clock_speed(dev);
5201
5202                 /*
5203                  * Enable pixel doubling when the dot clock
5204                  * is > 90% of the (display) core speed.
5205                  *
5206                  * GDG double wide on either pipe,
5207                  * otherwise pipe A only.
5208                  */
5209                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5210                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5211                         clock_limit *= 2;
5212                         pipe_config->double_wide = true;
5213                 }
5214
5215                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5216                         return -EINVAL;
5217         }
5218
5219         /*
5220          * Pipe horizontal size must be even in:
5221          * - DVO ganged mode
5222          * - LVDS dual channel mode
5223          * - Double wide pipe
5224          */
5225         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5226              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5227                 pipe_config->pipe_src_w &= ~1;
5228
5229         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5230          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5231          */
5232         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5233                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5234                 return -EINVAL;
5235
5236         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5237                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5238         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5239                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5240                  * for lvds. */
5241                 pipe_config->pipe_bpp = 8*3;
5242         }
5243
5244         if (HAS_IPS(dev))
5245                 hsw_compute_ips_config(crtc, pipe_config);
5246
5247         /*
5248          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5249          * old clock survives for now.
5250          */
5251         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5252                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5253
5254         if (pipe_config->has_pch_encoder)
5255                 return ironlake_fdi_compute_config(crtc, pipe_config);
5256
5257         return 0;
5258 }
5259
5260 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5261 {
5262         struct drm_i915_private *dev_priv = dev->dev_private;
5263         int vco = valleyview_get_vco(dev_priv);
5264         u32 val;
5265         int divider;
5266
5267         /* FIXME: Punit isn't quite ready yet */
5268         if (IS_CHERRYVIEW(dev))
5269                 return 400000;
5270
5271         mutex_lock(&dev_priv->dpio_lock);
5272         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5273         mutex_unlock(&dev_priv->dpio_lock);
5274
5275         divider = val & DISPLAY_FREQUENCY_VALUES;
5276
5277         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5278              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5279              "cdclk change in progress\n");
5280
5281         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5282 }
5283
5284 static int i945_get_display_clock_speed(struct drm_device *dev)
5285 {
5286         return 400000;
5287 }
5288
5289 static int i915_get_display_clock_speed(struct drm_device *dev)
5290 {
5291         return 333000;
5292 }
5293
5294 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5295 {
5296         return 200000;
5297 }
5298
5299 static int pnv_get_display_clock_speed(struct drm_device *dev)
5300 {
5301         u16 gcfgc = 0;
5302
5303         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5304
5305         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5306         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5307                 return 267000;
5308         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5309                 return 333000;
5310         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5311                 return 444000;
5312         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5313                 return 200000;
5314         default:
5315                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5316         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5317                 return 133000;
5318         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5319                 return 167000;
5320         }
5321 }
5322
5323 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5324 {
5325         u16 gcfgc = 0;
5326
5327         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5328
5329         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5330                 return 133000;
5331         else {
5332                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5333                 case GC_DISPLAY_CLOCK_333_MHZ:
5334                         return 333000;
5335                 default:
5336                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5337                         return 190000;
5338                 }
5339         }
5340 }
5341
5342 static int i865_get_display_clock_speed(struct drm_device *dev)
5343 {
5344         return 266000;
5345 }
5346
5347 static int i855_get_display_clock_speed(struct drm_device *dev)
5348 {
5349         u16 hpllcc = 0;
5350         /* Assume that the hardware is in the high speed state.  This
5351          * should be the default.
5352          */
5353         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5354         case GC_CLOCK_133_200:
5355         case GC_CLOCK_100_200:
5356                 return 200000;
5357         case GC_CLOCK_166_250:
5358                 return 250000;
5359         case GC_CLOCK_100_133:
5360                 return 133000;
5361         }
5362
5363         /* Shouldn't happen */
5364         return 0;
5365 }
5366
5367 static int i830_get_display_clock_speed(struct drm_device *dev)
5368 {
5369         return 133000;
5370 }
5371
5372 static void
5373 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5374 {
5375         while (*num > DATA_LINK_M_N_MASK ||
5376                *den > DATA_LINK_M_N_MASK) {
5377                 *num >>= 1;
5378                 *den >>= 1;
5379         }
5380 }
5381
5382 static void compute_m_n(unsigned int m, unsigned int n,
5383                         uint32_t *ret_m, uint32_t *ret_n)
5384 {
5385         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5386         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5387         intel_reduce_m_n_ratio(ret_m, ret_n);
5388 }
5389
5390 void
5391 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5392                        int pixel_clock, int link_clock,
5393                        struct intel_link_m_n *m_n)
5394 {
5395         m_n->tu = 64;
5396
5397         compute_m_n(bits_per_pixel * pixel_clock,
5398                     link_clock * nlanes * 8,
5399                     &m_n->gmch_m, &m_n->gmch_n);
5400
5401         compute_m_n(pixel_clock, link_clock,
5402                     &m_n->link_m, &m_n->link_n);
5403 }
5404
5405 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5406 {
5407         if (i915.panel_use_ssc >= 0)
5408                 return i915.panel_use_ssc != 0;
5409         return dev_priv->vbt.lvds_use_ssc
5410                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5411 }
5412
5413 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5414 {
5415         struct drm_device *dev = crtc->dev;
5416         struct drm_i915_private *dev_priv = dev->dev_private;
5417         int refclk;
5418
5419         if (IS_VALLEYVIEW(dev)) {
5420                 refclk = 100000;
5421         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5422             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5423                 refclk = dev_priv->vbt.lvds_ssc_freq;
5424                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5425         } else if (!IS_GEN2(dev)) {
5426                 refclk = 96000;
5427         } else {
5428                 refclk = 48000;
5429         }
5430
5431         return refclk;
5432 }
5433
5434 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5435 {
5436         return (1 << dpll->n) << 16 | dpll->m2;
5437 }
5438
5439 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5440 {
5441         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5442 }
5443
5444 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5445                                      intel_clock_t *reduced_clock)
5446 {
5447         struct drm_device *dev = crtc->base.dev;
5448         u32 fp, fp2 = 0;
5449
5450         if (IS_PINEVIEW(dev)) {
5451                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5452                 if (reduced_clock)
5453                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5454         } else {
5455                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5456                 if (reduced_clock)
5457                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5458         }
5459
5460         crtc->config.dpll_hw_state.fp0 = fp;
5461
5462         crtc->lowfreq_avail = false;
5463         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5464             reduced_clock && i915.powersave) {
5465                 crtc->config.dpll_hw_state.fp1 = fp2;
5466                 crtc->lowfreq_avail = true;
5467         } else {
5468                 crtc->config.dpll_hw_state.fp1 = fp;
5469         }
5470 }
5471
5472 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5473                 pipe)
5474 {
5475         u32 reg_val;
5476
5477         /*
5478          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5479          * and set it to a reasonable value instead.
5480          */
5481         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5482         reg_val &= 0xffffff00;
5483         reg_val |= 0x00000030;
5484         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5485
5486         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5487         reg_val &= 0x8cffffff;
5488         reg_val = 0x8c000000;
5489         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5490
5491         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5492         reg_val &= 0xffffff00;
5493         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5494
5495         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5496         reg_val &= 0x00ffffff;
5497         reg_val |= 0xb0000000;
5498         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5499 }
5500
5501 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5502                                          struct intel_link_m_n *m_n)
5503 {
5504         struct drm_device *dev = crtc->base.dev;
5505         struct drm_i915_private *dev_priv = dev->dev_private;
5506         int pipe = crtc->pipe;
5507
5508         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5509         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5510         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5511         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5512 }
5513
5514 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5515                                          struct intel_link_m_n *m_n,
5516                                          struct intel_link_m_n *m2_n2)
5517 {
5518         struct drm_device *dev = crtc->base.dev;
5519         struct drm_i915_private *dev_priv = dev->dev_private;
5520         int pipe = crtc->pipe;
5521         enum transcoder transcoder = crtc->config.cpu_transcoder;
5522
5523         if (INTEL_INFO(dev)->gen >= 5) {
5524                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5525                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5526                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5527                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5528                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5529                  * for gen < 8) and if DRRS is supported (to make sure the
5530                  * registers are not unnecessarily accessed).
5531                  */
5532                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5533                         crtc->config.has_drrs) {
5534                         I915_WRITE(PIPE_DATA_M2(transcoder),
5535                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5536                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5537                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5538                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5539                 }
5540         } else {
5541                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5542                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5543                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5544                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5545         }
5546 }
5547
5548 void intel_dp_set_m_n(struct intel_crtc *crtc)
5549 {
5550         if (crtc->config.has_pch_encoder)
5551                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5552         else
5553                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5554                                                    &crtc->config.dp_m2_n2);
5555 }
5556
5557 static void vlv_update_pll(struct intel_crtc *crtc)
5558 {
5559         u32 dpll, dpll_md;
5560
5561         /*
5562          * Enable DPIO clock input. We should never disable the reference
5563          * clock for pipe B, since VGA hotplug / manual detection depends
5564          * on it.
5565          */
5566         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5567                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5568         /* We should never disable this, set it here for state tracking */
5569         if (crtc->pipe == PIPE_B)
5570                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5571         dpll |= DPLL_VCO_ENABLE;
5572         crtc->config.dpll_hw_state.dpll = dpll;
5573
5574         dpll_md = (crtc->config.pixel_multiplier - 1)
5575                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5576         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5577 }
5578
5579 static void vlv_prepare_pll(struct intel_crtc *crtc)
5580 {
5581         struct drm_device *dev = crtc->base.dev;
5582         struct drm_i915_private *dev_priv = dev->dev_private;
5583         int pipe = crtc->pipe;
5584         u32 mdiv;
5585         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5586         u32 coreclk, reg_val;
5587
5588         mutex_lock(&dev_priv->dpio_lock);
5589
5590         bestn = crtc->config.dpll.n;
5591         bestm1 = crtc->config.dpll.m1;
5592         bestm2 = crtc->config.dpll.m2;
5593         bestp1 = crtc->config.dpll.p1;
5594         bestp2 = crtc->config.dpll.p2;
5595
5596         /* See eDP HDMI DPIO driver vbios notes doc */
5597
5598         /* PLL B needs special handling */
5599         if (pipe == PIPE_B)
5600                 vlv_pllb_recal_opamp(dev_priv, pipe);
5601
5602         /* Set up Tx target for periodic Rcomp update */
5603         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5604
5605         /* Disable target IRef on PLL */
5606         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5607         reg_val &= 0x00ffffff;
5608         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5609
5610         /* Disable fast lock */
5611         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5612
5613         /* Set idtafcrecal before PLL is enabled */
5614         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5615         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5616         mdiv |= ((bestn << DPIO_N_SHIFT));
5617         mdiv |= (1 << DPIO_K_SHIFT);
5618
5619         /*
5620          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5621          * but we don't support that).
5622          * Note: don't use the DAC post divider as it seems unstable.
5623          */
5624         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5625         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5626
5627         mdiv |= DPIO_ENABLE_CALIBRATION;
5628         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5629
5630         /* Set HBR and RBR LPF coefficients */
5631         if (crtc->config.port_clock == 162000 ||
5632             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5633             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5634                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5635                                  0x009f0003);
5636         else
5637                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5638                                  0x00d0000f);
5639
5640         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5641             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5642                 /* Use SSC source */
5643                 if (pipe == PIPE_A)
5644                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5645                                          0x0df40000);
5646                 else
5647                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5648                                          0x0df70000);
5649         } else { /* HDMI or VGA */
5650                 /* Use bend source */
5651                 if (pipe == PIPE_A)
5652                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5653                                          0x0df70000);
5654                 else
5655                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5656                                          0x0df40000);
5657         }
5658
5659         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5660         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5661         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5662             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5663                 coreclk |= 0x01000000;
5664         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5665
5666         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5667         mutex_unlock(&dev_priv->dpio_lock);
5668 }
5669
5670 static void chv_update_pll(struct intel_crtc *crtc)
5671 {
5672         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5673                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5674                 DPLL_VCO_ENABLE;
5675         if (crtc->pipe != PIPE_A)
5676                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5677
5678         crtc->config.dpll_hw_state.dpll_md =
5679                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5680 }
5681
5682 static void chv_prepare_pll(struct intel_crtc *crtc)
5683 {
5684         struct drm_device *dev = crtc->base.dev;
5685         struct drm_i915_private *dev_priv = dev->dev_private;
5686         int pipe = crtc->pipe;
5687         int dpll_reg = DPLL(crtc->pipe);
5688         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5689         u32 loopfilter, intcoeff;
5690         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5691         int refclk;
5692
5693         bestn = crtc->config.dpll.n;
5694         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5695         bestm1 = crtc->config.dpll.m1;
5696         bestm2 = crtc->config.dpll.m2 >> 22;
5697         bestp1 = crtc->config.dpll.p1;
5698         bestp2 = crtc->config.dpll.p2;
5699
5700         /*
5701          * Enable Refclk and SSC
5702          */
5703         I915_WRITE(dpll_reg,
5704                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5705
5706         mutex_lock(&dev_priv->dpio_lock);
5707
5708         /* p1 and p2 divider */
5709         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5710                         5 << DPIO_CHV_S1_DIV_SHIFT |
5711                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5712                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5713                         1 << DPIO_CHV_K_DIV_SHIFT);
5714
5715         /* Feedback post-divider - m2 */
5716         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5717
5718         /* Feedback refclk divider - n and m1 */
5719         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5720                         DPIO_CHV_M1_DIV_BY_2 |
5721                         1 << DPIO_CHV_N_DIV_SHIFT);
5722
5723         /* M2 fraction division */
5724         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5725
5726         /* M2 fraction division enable */
5727         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5728                        DPIO_CHV_FRAC_DIV_EN |
5729                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5730
5731         /* Loop filter */
5732         refclk = i9xx_get_refclk(&crtc->base, 0);
5733         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5734                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5735         if (refclk == 100000)
5736                 intcoeff = 11;
5737         else if (refclk == 38400)
5738                 intcoeff = 10;
5739         else
5740                 intcoeff = 9;
5741         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5742         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5743
5744         /* AFC Recal */
5745         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5746                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5747                         DPIO_AFC_RECAL);
5748
5749         mutex_unlock(&dev_priv->dpio_lock);
5750 }
5751
5752 static void i9xx_update_pll(struct intel_crtc *crtc,
5753                             intel_clock_t *reduced_clock,
5754                             int num_connectors)
5755 {
5756         struct drm_device *dev = crtc->base.dev;
5757         struct drm_i915_private *dev_priv = dev->dev_private;
5758         u32 dpll;
5759         bool is_sdvo;
5760         struct dpll *clock = &crtc->config.dpll;
5761
5762         i9xx_update_pll_dividers(crtc, reduced_clock);
5763
5764         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5765                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5766
5767         dpll = DPLL_VGA_MODE_DIS;
5768
5769         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5770                 dpll |= DPLLB_MODE_LVDS;
5771         else
5772                 dpll |= DPLLB_MODE_DAC_SERIAL;
5773
5774         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5775                 dpll |= (crtc->config.pixel_multiplier - 1)
5776                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5777         }
5778
5779         if (is_sdvo)
5780                 dpll |= DPLL_SDVO_HIGH_SPEED;
5781
5782         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5783                 dpll |= DPLL_SDVO_HIGH_SPEED;
5784
5785         /* compute bitmask from p1 value */
5786         if (IS_PINEVIEW(dev))
5787                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5788         else {
5789                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5790                 if (IS_G4X(dev) && reduced_clock)
5791                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5792         }
5793         switch (clock->p2) {
5794         case 5:
5795                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5796                 break;
5797         case 7:
5798                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5799                 break;
5800         case 10:
5801                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5802                 break;
5803         case 14:
5804                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5805                 break;
5806         }
5807         if (INTEL_INFO(dev)->gen >= 4)
5808                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5809
5810         if (crtc->config.sdvo_tv_clock)
5811                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5812         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5813                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5814                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5815         else
5816                 dpll |= PLL_REF_INPUT_DREFCLK;
5817
5818         dpll |= DPLL_VCO_ENABLE;
5819         crtc->config.dpll_hw_state.dpll = dpll;
5820
5821         if (INTEL_INFO(dev)->gen >= 4) {
5822                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5823                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5824                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5825         }
5826 }
5827
5828 static void i8xx_update_pll(struct intel_crtc *crtc,
5829                             intel_clock_t *reduced_clock,
5830                             int num_connectors)
5831 {
5832         struct drm_device *dev = crtc->base.dev;
5833         struct drm_i915_private *dev_priv = dev->dev_private;
5834         u32 dpll;
5835         struct dpll *clock = &crtc->config.dpll;
5836
5837         i9xx_update_pll_dividers(crtc, reduced_clock);
5838
5839         dpll = DPLL_VGA_MODE_DIS;
5840
5841         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5842                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5843         } else {
5844                 if (clock->p1 == 2)
5845                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5846                 else
5847                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5848                 if (clock->p2 == 4)
5849                         dpll |= PLL_P2_DIVIDE_BY_4;
5850         }
5851
5852         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5853                 dpll |= DPLL_DVO_2X_MODE;
5854
5855         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5856                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5857                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5858         else
5859                 dpll |= PLL_REF_INPUT_DREFCLK;
5860
5861         dpll |= DPLL_VCO_ENABLE;
5862         crtc->config.dpll_hw_state.dpll = dpll;
5863 }
5864
5865 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5866 {
5867         struct drm_device *dev = intel_crtc->base.dev;
5868         struct drm_i915_private *dev_priv = dev->dev_private;
5869         enum pipe pipe = intel_crtc->pipe;
5870         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5871         struct drm_display_mode *adjusted_mode =
5872                 &intel_crtc->config.adjusted_mode;
5873         uint32_t crtc_vtotal, crtc_vblank_end;
5874         int vsyncshift = 0;
5875
5876         /* We need to be careful not to changed the adjusted mode, for otherwise
5877          * the hw state checker will get angry at the mismatch. */
5878         crtc_vtotal = adjusted_mode->crtc_vtotal;
5879         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5880
5881         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5882                 /* the chip adds 2 halflines automatically */
5883                 crtc_vtotal -= 1;
5884                 crtc_vblank_end -= 1;
5885
5886                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5887                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5888                 else
5889                         vsyncshift = adjusted_mode->crtc_hsync_start -
5890                                 adjusted_mode->crtc_htotal / 2;
5891                 if (vsyncshift < 0)
5892                         vsyncshift += adjusted_mode->crtc_htotal;
5893         }
5894
5895         if (INTEL_INFO(dev)->gen > 3)
5896                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5897
5898         I915_WRITE(HTOTAL(cpu_transcoder),
5899                    (adjusted_mode->crtc_hdisplay - 1) |
5900                    ((adjusted_mode->crtc_htotal - 1) << 16));
5901         I915_WRITE(HBLANK(cpu_transcoder),
5902                    (adjusted_mode->crtc_hblank_start - 1) |
5903                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5904         I915_WRITE(HSYNC(cpu_transcoder),
5905                    (adjusted_mode->crtc_hsync_start - 1) |
5906                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5907
5908         I915_WRITE(VTOTAL(cpu_transcoder),
5909                    (adjusted_mode->crtc_vdisplay - 1) |
5910                    ((crtc_vtotal - 1) << 16));
5911         I915_WRITE(VBLANK(cpu_transcoder),
5912                    (adjusted_mode->crtc_vblank_start - 1) |
5913                    ((crtc_vblank_end - 1) << 16));
5914         I915_WRITE(VSYNC(cpu_transcoder),
5915                    (adjusted_mode->crtc_vsync_start - 1) |
5916                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5917
5918         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5919          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5920          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5921          * bits. */
5922         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5923             (pipe == PIPE_B || pipe == PIPE_C))
5924                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5925
5926         /* pipesrc controls the size that is scaled from, which should
5927          * always be the user's requested size.
5928          */
5929         I915_WRITE(PIPESRC(pipe),
5930                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5931                    (intel_crtc->config.pipe_src_h - 1));
5932 }
5933
5934 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5935                                    struct intel_crtc_config *pipe_config)
5936 {
5937         struct drm_device *dev = crtc->base.dev;
5938         struct drm_i915_private *dev_priv = dev->dev_private;
5939         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5940         uint32_t tmp;
5941
5942         tmp = I915_READ(HTOTAL(cpu_transcoder));
5943         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5944         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5945         tmp = I915_READ(HBLANK(cpu_transcoder));
5946         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5947         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5948         tmp = I915_READ(HSYNC(cpu_transcoder));
5949         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5950         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5951
5952         tmp = I915_READ(VTOTAL(cpu_transcoder));
5953         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5954         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5955         tmp = I915_READ(VBLANK(cpu_transcoder));
5956         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5957         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5958         tmp = I915_READ(VSYNC(cpu_transcoder));
5959         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5960         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5961
5962         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5963                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5964                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5965                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5966         }
5967
5968         tmp = I915_READ(PIPESRC(crtc->pipe));
5969         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5970         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5971
5972         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5973         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5974 }
5975
5976 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5977                                  struct intel_crtc_config *pipe_config)
5978 {
5979         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5980         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5981         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5982         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5983
5984         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5985         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5986         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5987         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5988
5989         mode->flags = pipe_config->adjusted_mode.flags;
5990
5991         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5992         mode->flags |= pipe_config->adjusted_mode.flags;
5993 }
5994
5995 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5996 {
5997         struct drm_device *dev = intel_crtc->base.dev;
5998         struct drm_i915_private *dev_priv = dev->dev_private;
5999         uint32_t pipeconf;
6000
6001         pipeconf = 0;
6002
6003         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6004             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6005                 pipeconf |= PIPECONF_ENABLE;
6006
6007         if (intel_crtc->config.double_wide)
6008                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6009
6010         /* only g4x and later have fancy bpc/dither controls */
6011         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6012                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6013                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6014                         pipeconf |= PIPECONF_DITHER_EN |
6015                                     PIPECONF_DITHER_TYPE_SP;
6016
6017                 switch (intel_crtc->config.pipe_bpp) {
6018                 case 18:
6019                         pipeconf |= PIPECONF_6BPC;
6020                         break;
6021                 case 24:
6022                         pipeconf |= PIPECONF_8BPC;
6023                         break;
6024                 case 30:
6025                         pipeconf |= PIPECONF_10BPC;
6026                         break;
6027                 default:
6028                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6029                         BUG();
6030                 }
6031         }
6032
6033         if (HAS_PIPE_CXSR(dev)) {
6034                 if (intel_crtc->lowfreq_avail) {
6035                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6036                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6037                 } else {
6038                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6039                 }
6040         }
6041
6042         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6043                 if (INTEL_INFO(dev)->gen < 4 ||
6044                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6045                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6046                 else
6047                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6048         } else
6049                 pipeconf |= PIPECONF_PROGRESSIVE;
6050
6051         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6052                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6053
6054         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6055         POSTING_READ(PIPECONF(intel_crtc->pipe));
6056 }
6057
6058 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6059                               int x, int y,
6060                               struct drm_framebuffer *fb)
6061 {
6062         struct drm_device *dev = crtc->dev;
6063         struct drm_i915_private *dev_priv = dev->dev_private;
6064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6065         int refclk, num_connectors = 0;
6066         intel_clock_t clock, reduced_clock;
6067         bool ok, has_reduced_clock = false;
6068         bool is_lvds = false, is_dsi = false;
6069         struct intel_encoder *encoder;
6070         const intel_limit_t *limit;
6071
6072         for_each_encoder_on_crtc(dev, crtc, encoder) {
6073                 switch (encoder->type) {
6074                 case INTEL_OUTPUT_LVDS:
6075                         is_lvds = true;
6076                         break;
6077                 case INTEL_OUTPUT_DSI:
6078                         is_dsi = true;
6079                         break;
6080                 }
6081
6082                 num_connectors++;
6083         }
6084
6085         if (is_dsi)
6086                 return 0;
6087
6088         if (!intel_crtc->config.clock_set) {
6089                 refclk = i9xx_get_refclk(crtc, num_connectors);
6090
6091                 /*
6092                  * Returns a set of divisors for the desired target clock with
6093                  * the given refclk, or FALSE.  The returned values represent
6094                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6095                  * 2) / p1 / p2.
6096                  */
6097                 limit = intel_limit(crtc, refclk);
6098                 ok = dev_priv->display.find_dpll(limit, crtc,
6099                                                  intel_crtc->config.port_clock,
6100                                                  refclk, NULL, &clock);
6101                 if (!ok) {
6102                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6103                         return -EINVAL;
6104                 }
6105
6106                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6107                         /*
6108                          * Ensure we match the reduced clock's P to the target
6109                          * clock.  If the clocks don't match, we can't switch
6110                          * the display clock by using the FP0/FP1. In such case
6111                          * we will disable the LVDS downclock feature.
6112                          */
6113                         has_reduced_clock =
6114                                 dev_priv->display.find_dpll(limit, crtc,
6115                                                             dev_priv->lvds_downclock,
6116                                                             refclk, &clock,
6117                                                             &reduced_clock);
6118                 }
6119                 /* Compat-code for transition, will disappear. */
6120                 intel_crtc->config.dpll.n = clock.n;
6121                 intel_crtc->config.dpll.m1 = clock.m1;
6122                 intel_crtc->config.dpll.m2 = clock.m2;
6123                 intel_crtc->config.dpll.p1 = clock.p1;
6124                 intel_crtc->config.dpll.p2 = clock.p2;
6125         }
6126
6127         if (IS_GEN2(dev)) {
6128                 i8xx_update_pll(intel_crtc,
6129                                 has_reduced_clock ? &reduced_clock : NULL,
6130                                 num_connectors);
6131         } else if (IS_CHERRYVIEW(dev)) {
6132                 chv_update_pll(intel_crtc);
6133         } else if (IS_VALLEYVIEW(dev)) {
6134                 vlv_update_pll(intel_crtc);
6135         } else {
6136                 i9xx_update_pll(intel_crtc,
6137                                 has_reduced_clock ? &reduced_clock : NULL,
6138                                 num_connectors);
6139         }
6140
6141         return 0;
6142 }
6143
6144 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6145                                  struct intel_crtc_config *pipe_config)
6146 {
6147         struct drm_device *dev = crtc->base.dev;
6148         struct drm_i915_private *dev_priv = dev->dev_private;
6149         uint32_t tmp;
6150
6151         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6152                 return;
6153
6154         tmp = I915_READ(PFIT_CONTROL);
6155         if (!(tmp & PFIT_ENABLE))
6156                 return;
6157
6158         /* Check whether the pfit is attached to our pipe. */
6159         if (INTEL_INFO(dev)->gen < 4) {
6160                 if (crtc->pipe != PIPE_B)
6161                         return;
6162         } else {
6163                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6164                         return;
6165         }
6166
6167         pipe_config->gmch_pfit.control = tmp;
6168         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6169         if (INTEL_INFO(dev)->gen < 5)
6170                 pipe_config->gmch_pfit.lvds_border_bits =
6171                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6172 }
6173
6174 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6175                                struct intel_crtc_config *pipe_config)
6176 {
6177         struct drm_device *dev = crtc->base.dev;
6178         struct drm_i915_private *dev_priv = dev->dev_private;
6179         int pipe = pipe_config->cpu_transcoder;
6180         intel_clock_t clock;
6181         u32 mdiv;
6182         int refclk = 100000;
6183
6184         /* In case of MIPI DPLL will not even be used */
6185         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6186                 return;
6187
6188         mutex_lock(&dev_priv->dpio_lock);
6189         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6190         mutex_unlock(&dev_priv->dpio_lock);
6191
6192         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6193         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6194         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6195         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6196         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6197
6198         vlv_clock(refclk, &clock);
6199
6200         /* clock.dot is the fast clock */
6201         pipe_config->port_clock = clock.dot / 5;
6202 }
6203
6204 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6205                                   struct intel_plane_config *plane_config)
6206 {
6207         struct drm_device *dev = crtc->base.dev;
6208         struct drm_i915_private *dev_priv = dev->dev_private;
6209         u32 val, base, offset;
6210         int pipe = crtc->pipe, plane = crtc->plane;
6211         int fourcc, pixel_format;
6212         int aligned_height;
6213
6214         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6215         if (!crtc->base.primary->fb) {
6216                 DRM_DEBUG_KMS("failed to alloc fb\n");
6217                 return;
6218         }
6219
6220         val = I915_READ(DSPCNTR(plane));
6221
6222         if (INTEL_INFO(dev)->gen >= 4)
6223                 if (val & DISPPLANE_TILED)
6224                         plane_config->tiled = true;
6225
6226         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6227         fourcc = intel_format_to_fourcc(pixel_format);
6228         crtc->base.primary->fb->pixel_format = fourcc;
6229         crtc->base.primary->fb->bits_per_pixel =
6230                 drm_format_plane_cpp(fourcc, 0) * 8;
6231
6232         if (INTEL_INFO(dev)->gen >= 4) {
6233                 if (plane_config->tiled)
6234                         offset = I915_READ(DSPTILEOFF(plane));
6235                 else
6236                         offset = I915_READ(DSPLINOFF(plane));
6237                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6238         } else {
6239                 base = I915_READ(DSPADDR(plane));
6240         }
6241         plane_config->base = base;
6242
6243         val = I915_READ(PIPESRC(pipe));
6244         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6245         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6246
6247         val = I915_READ(DSPSTRIDE(pipe));
6248         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6249
6250         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6251                                             plane_config->tiled);
6252
6253         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6254                                         aligned_height);
6255
6256         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6257                       pipe, plane, crtc->base.primary->fb->width,
6258                       crtc->base.primary->fb->height,
6259                       crtc->base.primary->fb->bits_per_pixel, base,
6260                       crtc->base.primary->fb->pitches[0],
6261                       plane_config->size);
6262
6263 }
6264
6265 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6266                                struct intel_crtc_config *pipe_config)
6267 {
6268         struct drm_device *dev = crtc->base.dev;
6269         struct drm_i915_private *dev_priv = dev->dev_private;
6270         int pipe = pipe_config->cpu_transcoder;
6271         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6272         intel_clock_t clock;
6273         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6274         int refclk = 100000;
6275
6276         mutex_lock(&dev_priv->dpio_lock);
6277         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6278         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6279         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6280         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6281         mutex_unlock(&dev_priv->dpio_lock);
6282
6283         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6284         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6285         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6286         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6287         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6288
6289         chv_clock(refclk, &clock);
6290
6291         /* clock.dot is the fast clock */
6292         pipe_config->port_clock = clock.dot / 5;
6293 }
6294
6295 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6296                                  struct intel_crtc_config *pipe_config)
6297 {
6298         struct drm_device *dev = crtc->base.dev;
6299         struct drm_i915_private *dev_priv = dev->dev_private;
6300         uint32_t tmp;
6301
6302         if (!intel_display_power_enabled(dev_priv,
6303                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6304                 return false;
6305
6306         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6307         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6308
6309         tmp = I915_READ(PIPECONF(crtc->pipe));
6310         if (!(tmp & PIPECONF_ENABLE))
6311                 return false;
6312
6313         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6314                 switch (tmp & PIPECONF_BPC_MASK) {
6315                 case PIPECONF_6BPC:
6316                         pipe_config->pipe_bpp = 18;
6317                         break;
6318                 case PIPECONF_8BPC:
6319                         pipe_config->pipe_bpp = 24;
6320                         break;
6321                 case PIPECONF_10BPC:
6322                         pipe_config->pipe_bpp = 30;
6323                         break;
6324                 default:
6325                         break;
6326                 }
6327         }
6328
6329         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6330                 pipe_config->limited_color_range = true;
6331
6332         if (INTEL_INFO(dev)->gen < 4)
6333                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6334
6335         intel_get_pipe_timings(crtc, pipe_config);
6336
6337         i9xx_get_pfit_config(crtc, pipe_config);
6338
6339         if (INTEL_INFO(dev)->gen >= 4) {
6340                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6341                 pipe_config->pixel_multiplier =
6342                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6343                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6344                 pipe_config->dpll_hw_state.dpll_md = tmp;
6345         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6346                 tmp = I915_READ(DPLL(crtc->pipe));
6347                 pipe_config->pixel_multiplier =
6348                         ((tmp & SDVO_MULTIPLIER_MASK)
6349                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6350         } else {
6351                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6352                  * port and will be fixed up in the encoder->get_config
6353                  * function. */
6354                 pipe_config->pixel_multiplier = 1;
6355         }
6356         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6357         if (!IS_VALLEYVIEW(dev)) {
6358                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6359                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6360         } else {
6361                 /* Mask out read-only status bits. */
6362                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6363                                                      DPLL_PORTC_READY_MASK |
6364                                                      DPLL_PORTB_READY_MASK);
6365         }
6366
6367         if (IS_CHERRYVIEW(dev))
6368                 chv_crtc_clock_get(crtc, pipe_config);
6369         else if (IS_VALLEYVIEW(dev))
6370                 vlv_crtc_clock_get(crtc, pipe_config);
6371         else
6372                 i9xx_crtc_clock_get(crtc, pipe_config);
6373
6374         return true;
6375 }
6376
6377 static void ironlake_init_pch_refclk(struct drm_device *dev)
6378 {
6379         struct drm_i915_private *dev_priv = dev->dev_private;
6380         struct intel_encoder *encoder;
6381         u32 val, final;
6382         bool has_lvds = false;
6383         bool has_cpu_edp = false;
6384         bool has_panel = false;
6385         bool has_ck505 = false;
6386         bool can_ssc = false;
6387
6388         /* We need to take the global config into account */
6389         for_each_intel_encoder(dev, encoder) {
6390                 switch (encoder->type) {
6391                 case INTEL_OUTPUT_LVDS:
6392                         has_panel = true;
6393                         has_lvds = true;
6394                         break;
6395                 case INTEL_OUTPUT_EDP:
6396                         has_panel = true;
6397                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6398                                 has_cpu_edp = true;
6399                         break;
6400                 }
6401         }
6402
6403         if (HAS_PCH_IBX(dev)) {
6404                 has_ck505 = dev_priv->vbt.display_clock_mode;
6405                 can_ssc = has_ck505;
6406         } else {
6407                 has_ck505 = false;
6408                 can_ssc = true;
6409         }
6410
6411         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6412                       has_panel, has_lvds, has_ck505);
6413
6414         /* Ironlake: try to setup display ref clock before DPLL
6415          * enabling. This is only under driver's control after
6416          * PCH B stepping, previous chipset stepping should be
6417          * ignoring this setting.
6418          */
6419         val = I915_READ(PCH_DREF_CONTROL);
6420
6421         /* As we must carefully and slowly disable/enable each source in turn,
6422          * compute the final state we want first and check if we need to
6423          * make any changes at all.
6424          */
6425         final = val;
6426         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6427         if (has_ck505)
6428                 final |= DREF_NONSPREAD_CK505_ENABLE;
6429         else
6430                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6431
6432         final &= ~DREF_SSC_SOURCE_MASK;
6433         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6434         final &= ~DREF_SSC1_ENABLE;
6435
6436         if (has_panel) {
6437                 final |= DREF_SSC_SOURCE_ENABLE;
6438
6439                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6440                         final |= DREF_SSC1_ENABLE;
6441
6442                 if (has_cpu_edp) {
6443                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6444                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6445                         else
6446                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6447                 } else
6448                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6449         } else {
6450                 final |= DREF_SSC_SOURCE_DISABLE;
6451                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6452         }
6453
6454         if (final == val)
6455                 return;
6456
6457         /* Always enable nonspread source */
6458         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6459
6460         if (has_ck505)
6461                 val |= DREF_NONSPREAD_CK505_ENABLE;
6462         else
6463                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6464
6465         if (has_panel) {
6466                 val &= ~DREF_SSC_SOURCE_MASK;
6467                 val |= DREF_SSC_SOURCE_ENABLE;
6468
6469                 /* SSC must be turned on before enabling the CPU output  */
6470                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6471                         DRM_DEBUG_KMS("Using SSC on panel\n");
6472                         val |= DREF_SSC1_ENABLE;
6473                 } else
6474                         val &= ~DREF_SSC1_ENABLE;
6475
6476                 /* Get SSC going before enabling the outputs */
6477                 I915_WRITE(PCH_DREF_CONTROL, val);
6478                 POSTING_READ(PCH_DREF_CONTROL);
6479                 udelay(200);
6480
6481                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6482
6483                 /* Enable CPU source on CPU attached eDP */
6484                 if (has_cpu_edp) {
6485                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6486                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6487                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6488                         } else
6489                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6490                 } else
6491                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6492
6493                 I915_WRITE(PCH_DREF_CONTROL, val);
6494                 POSTING_READ(PCH_DREF_CONTROL);
6495                 udelay(200);
6496         } else {
6497                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6498
6499                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6500
6501                 /* Turn off CPU output */
6502                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6503
6504                 I915_WRITE(PCH_DREF_CONTROL, val);
6505                 POSTING_READ(PCH_DREF_CONTROL);
6506                 udelay(200);
6507
6508                 /* Turn off the SSC source */
6509                 val &= ~DREF_SSC_SOURCE_MASK;
6510                 val |= DREF_SSC_SOURCE_DISABLE;
6511
6512                 /* Turn off SSC1 */
6513                 val &= ~DREF_SSC1_ENABLE;
6514
6515                 I915_WRITE(PCH_DREF_CONTROL, val);
6516                 POSTING_READ(PCH_DREF_CONTROL);
6517                 udelay(200);
6518         }
6519
6520         BUG_ON(val != final);
6521 }
6522
6523 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6524 {
6525         uint32_t tmp;
6526
6527         tmp = I915_READ(SOUTH_CHICKEN2);
6528         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6529         I915_WRITE(SOUTH_CHICKEN2, tmp);
6530
6531         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6532                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6533                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6534
6535         tmp = I915_READ(SOUTH_CHICKEN2);
6536         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6537         I915_WRITE(SOUTH_CHICKEN2, tmp);
6538
6539         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6540                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6541                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6542 }
6543
6544 /* WaMPhyProgramming:hsw */
6545 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6546 {
6547         uint32_t tmp;
6548
6549         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6550         tmp &= ~(0xFF << 24);
6551         tmp |= (0x12 << 24);
6552         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6553
6554         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6555         tmp |= (1 << 11);
6556         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6557
6558         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6559         tmp |= (1 << 11);
6560         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6561
6562         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6563         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6564         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6565
6566         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6567         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6568         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6569
6570         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6571         tmp &= ~(7 << 13);
6572         tmp |= (5 << 13);
6573         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6574
6575         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6576         tmp &= ~(7 << 13);
6577         tmp |= (5 << 13);
6578         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6579
6580         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6581         tmp &= ~0xFF;
6582         tmp |= 0x1C;
6583         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6584
6585         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6586         tmp &= ~0xFF;
6587         tmp |= 0x1C;
6588         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6589
6590         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6591         tmp &= ~(0xFF << 16);
6592         tmp |= (0x1C << 16);
6593         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6594
6595         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6596         tmp &= ~(0xFF << 16);
6597         tmp |= (0x1C << 16);
6598         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6599
6600         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6601         tmp |= (1 << 27);
6602         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6603
6604         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6605         tmp |= (1 << 27);
6606         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6607
6608         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6609         tmp &= ~(0xF << 28);
6610         tmp |= (4 << 28);
6611         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6612
6613         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6614         tmp &= ~(0xF << 28);
6615         tmp |= (4 << 28);
6616         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6617 }
6618
6619 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6620  * Programming" based on the parameters passed:
6621  * - Sequence to enable CLKOUT_DP
6622  * - Sequence to enable CLKOUT_DP without spread
6623  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6624  */
6625 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6626                                  bool with_fdi)
6627 {
6628         struct drm_i915_private *dev_priv = dev->dev_private;
6629         uint32_t reg, tmp;
6630
6631         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6632                 with_spread = true;
6633         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6634                  with_fdi, "LP PCH doesn't have FDI\n"))
6635                 with_fdi = false;
6636
6637         mutex_lock(&dev_priv->dpio_lock);
6638
6639         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6640         tmp &= ~SBI_SSCCTL_DISABLE;
6641         tmp |= SBI_SSCCTL_PATHALT;
6642         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6643
6644         udelay(24);
6645
6646         if (with_spread) {
6647                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6648                 tmp &= ~SBI_SSCCTL_PATHALT;
6649                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6650
6651                 if (with_fdi) {
6652                         lpt_reset_fdi_mphy(dev_priv);
6653                         lpt_program_fdi_mphy(dev_priv);
6654                 }
6655         }
6656
6657         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6658                SBI_GEN0 : SBI_DBUFF0;
6659         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6660         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6661         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6662
6663         mutex_unlock(&dev_priv->dpio_lock);
6664 }
6665
6666 /* Sequence to disable CLKOUT_DP */
6667 static void lpt_disable_clkout_dp(struct drm_device *dev)
6668 {
6669         struct drm_i915_private *dev_priv = dev->dev_private;
6670         uint32_t reg, tmp;
6671
6672         mutex_lock(&dev_priv->dpio_lock);
6673
6674         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6675                SBI_GEN0 : SBI_DBUFF0;
6676         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6677         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6678         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6679
6680         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6681         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6682                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6683                         tmp |= SBI_SSCCTL_PATHALT;
6684                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6685                         udelay(32);
6686                 }
6687                 tmp |= SBI_SSCCTL_DISABLE;
6688                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6689         }
6690
6691         mutex_unlock(&dev_priv->dpio_lock);
6692 }
6693
6694 static void lpt_init_pch_refclk(struct drm_device *dev)
6695 {
6696         struct intel_encoder *encoder;
6697         bool has_vga = false;
6698
6699         for_each_intel_encoder(dev, encoder) {
6700                 switch (encoder->type) {
6701                 case INTEL_OUTPUT_ANALOG:
6702                         has_vga = true;
6703                         break;
6704                 }
6705         }
6706
6707         if (has_vga)
6708                 lpt_enable_clkout_dp(dev, true, true);
6709         else
6710                 lpt_disable_clkout_dp(dev);
6711 }
6712
6713 /*
6714  * Initialize reference clocks when the driver loads
6715  */
6716 void intel_init_pch_refclk(struct drm_device *dev)
6717 {
6718         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6719                 ironlake_init_pch_refclk(dev);
6720         else if (HAS_PCH_LPT(dev))
6721                 lpt_init_pch_refclk(dev);
6722 }
6723
6724 static int ironlake_get_refclk(struct drm_crtc *crtc)
6725 {
6726         struct drm_device *dev = crtc->dev;
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728         struct intel_encoder *encoder;
6729         int num_connectors = 0;
6730         bool is_lvds = false;
6731
6732         for_each_encoder_on_crtc(dev, crtc, encoder) {
6733                 switch (encoder->type) {
6734                 case INTEL_OUTPUT_LVDS:
6735                         is_lvds = true;
6736                         break;
6737                 }
6738                 num_connectors++;
6739         }
6740
6741         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6742                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6743                               dev_priv->vbt.lvds_ssc_freq);
6744                 return dev_priv->vbt.lvds_ssc_freq;
6745         }
6746
6747         return 120000;
6748 }
6749
6750 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6751 {
6752         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6754         int pipe = intel_crtc->pipe;
6755         uint32_t val;
6756
6757         val = 0;
6758
6759         switch (intel_crtc->config.pipe_bpp) {
6760         case 18:
6761                 val |= PIPECONF_6BPC;
6762                 break;
6763         case 24:
6764                 val |= PIPECONF_8BPC;
6765                 break;
6766         case 30:
6767                 val |= PIPECONF_10BPC;
6768                 break;
6769         case 36:
6770                 val |= PIPECONF_12BPC;
6771                 break;
6772         default:
6773                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6774                 BUG();
6775         }
6776
6777         if (intel_crtc->config.dither)
6778                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6779
6780         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6781                 val |= PIPECONF_INTERLACED_ILK;
6782         else
6783                 val |= PIPECONF_PROGRESSIVE;
6784
6785         if (intel_crtc->config.limited_color_range)
6786                 val |= PIPECONF_COLOR_RANGE_SELECT;
6787
6788         I915_WRITE(PIPECONF(pipe), val);
6789         POSTING_READ(PIPECONF(pipe));
6790 }
6791
6792 /*
6793  * Set up the pipe CSC unit.
6794  *
6795  * Currently only full range RGB to limited range RGB conversion
6796  * is supported, but eventually this should handle various
6797  * RGB<->YCbCr scenarios as well.
6798  */
6799 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6800 {
6801         struct drm_device *dev = crtc->dev;
6802         struct drm_i915_private *dev_priv = dev->dev_private;
6803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6804         int pipe = intel_crtc->pipe;
6805         uint16_t coeff = 0x7800; /* 1.0 */
6806
6807         /*
6808          * TODO: Check what kind of values actually come out of the pipe
6809          * with these coeff/postoff values and adjust to get the best
6810          * accuracy. Perhaps we even need to take the bpc value into
6811          * consideration.
6812          */
6813
6814         if (intel_crtc->config.limited_color_range)
6815                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6816
6817         /*
6818          * GY/GU and RY/RU should be the other way around according
6819          * to BSpec, but reality doesn't agree. Just set them up in
6820          * a way that results in the correct picture.
6821          */
6822         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6823         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6824
6825         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6826         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6827
6828         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6829         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6830
6831         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6832         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6833         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6834
6835         if (INTEL_INFO(dev)->gen > 6) {
6836                 uint16_t postoff = 0;
6837
6838                 if (intel_crtc->config.limited_color_range)
6839                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6840
6841                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6842                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6843                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6844
6845                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6846         } else {
6847                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6848
6849                 if (intel_crtc->config.limited_color_range)
6850                         mode |= CSC_BLACK_SCREEN_OFFSET;
6851
6852                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6853         }
6854 }
6855
6856 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6857 {
6858         struct drm_device *dev = crtc->dev;
6859         struct drm_i915_private *dev_priv = dev->dev_private;
6860         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6861         enum pipe pipe = intel_crtc->pipe;
6862         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6863         uint32_t val;
6864
6865         val = 0;
6866
6867         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6868                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6869
6870         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6871                 val |= PIPECONF_INTERLACED_ILK;
6872         else
6873                 val |= PIPECONF_PROGRESSIVE;
6874
6875         I915_WRITE(PIPECONF(cpu_transcoder), val);
6876         POSTING_READ(PIPECONF(cpu_transcoder));
6877
6878         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6879         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6880
6881         if (IS_BROADWELL(dev)) {
6882                 val = 0;
6883
6884                 switch (intel_crtc->config.pipe_bpp) {
6885                 case 18:
6886                         val |= PIPEMISC_DITHER_6_BPC;
6887                         break;
6888                 case 24:
6889                         val |= PIPEMISC_DITHER_8_BPC;
6890                         break;
6891                 case 30:
6892                         val |= PIPEMISC_DITHER_10_BPC;
6893                         break;
6894                 case 36:
6895                         val |= PIPEMISC_DITHER_12_BPC;
6896                         break;
6897                 default:
6898                         /* Case prevented by pipe_config_set_bpp. */
6899                         BUG();
6900                 }
6901
6902                 if (intel_crtc->config.dither)
6903                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6904
6905                 I915_WRITE(PIPEMISC(pipe), val);
6906         }
6907 }
6908
6909 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6910                                     intel_clock_t *clock,
6911                                     bool *has_reduced_clock,
6912                                     intel_clock_t *reduced_clock)
6913 {
6914         struct drm_device *dev = crtc->dev;
6915         struct drm_i915_private *dev_priv = dev->dev_private;
6916         struct intel_encoder *intel_encoder;
6917         int refclk;
6918         const intel_limit_t *limit;
6919         bool ret, is_lvds = false;
6920
6921         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6922                 switch (intel_encoder->type) {
6923                 case INTEL_OUTPUT_LVDS:
6924                         is_lvds = true;
6925                         break;
6926                 }
6927         }
6928
6929         refclk = ironlake_get_refclk(crtc);
6930
6931         /*
6932          * Returns a set of divisors for the desired target clock with the given
6933          * refclk, or FALSE.  The returned values represent the clock equation:
6934          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6935          */
6936         limit = intel_limit(crtc, refclk);
6937         ret = dev_priv->display.find_dpll(limit, crtc,
6938                                           to_intel_crtc(crtc)->config.port_clock,
6939                                           refclk, NULL, clock);
6940         if (!ret)
6941                 return false;
6942
6943         if (is_lvds && dev_priv->lvds_downclock_avail) {
6944                 /*
6945                  * Ensure we match the reduced clock's P to the target clock.
6946                  * If the clocks don't match, we can't switch the display clock
6947                  * by using the FP0/FP1. In such case we will disable the LVDS
6948                  * downclock feature.
6949                 */
6950                 *has_reduced_clock =
6951                         dev_priv->display.find_dpll(limit, crtc,
6952                                                     dev_priv->lvds_downclock,
6953                                                     refclk, clock,
6954                                                     reduced_clock);
6955         }
6956
6957         return true;
6958 }
6959
6960 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6961 {
6962         /*
6963          * Account for spread spectrum to avoid
6964          * oversubscribing the link. Max center spread
6965          * is 2.5%; use 5% for safety's sake.
6966          */
6967         u32 bps = target_clock * bpp * 21 / 20;
6968         return DIV_ROUND_UP(bps, link_bw * 8);
6969 }
6970
6971 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6972 {
6973         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6974 }
6975
6976 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6977                                       u32 *fp,
6978                                       intel_clock_t *reduced_clock, u32 *fp2)
6979 {
6980         struct drm_crtc *crtc = &intel_crtc->base;
6981         struct drm_device *dev = crtc->dev;
6982         struct drm_i915_private *dev_priv = dev->dev_private;
6983         struct intel_encoder *intel_encoder;
6984         uint32_t dpll;
6985         int factor, num_connectors = 0;
6986         bool is_lvds = false, is_sdvo = false;
6987
6988         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6989                 switch (intel_encoder->type) {
6990                 case INTEL_OUTPUT_LVDS:
6991                         is_lvds = true;
6992                         break;
6993                 case INTEL_OUTPUT_SDVO:
6994                 case INTEL_OUTPUT_HDMI:
6995                         is_sdvo = true;
6996                         break;
6997                 }
6998
6999                 num_connectors++;
7000         }
7001
7002         /* Enable autotuning of the PLL clock (if permissible) */
7003         factor = 21;
7004         if (is_lvds) {
7005                 if ((intel_panel_use_ssc(dev_priv) &&
7006                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7007                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7008                         factor = 25;
7009         } else if (intel_crtc->config.sdvo_tv_clock)
7010                 factor = 20;
7011
7012         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7013                 *fp |= FP_CB_TUNE;
7014
7015         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7016                 *fp2 |= FP_CB_TUNE;
7017
7018         dpll = 0;
7019
7020         if (is_lvds)
7021                 dpll |= DPLLB_MODE_LVDS;
7022         else
7023                 dpll |= DPLLB_MODE_DAC_SERIAL;
7024
7025         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7026                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7027
7028         if (is_sdvo)
7029                 dpll |= DPLL_SDVO_HIGH_SPEED;
7030         if (intel_crtc->config.has_dp_encoder)
7031                 dpll |= DPLL_SDVO_HIGH_SPEED;
7032
7033         /* compute bitmask from p1 value */
7034         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7035         /* also FPA1 */
7036         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7037
7038         switch (intel_crtc->config.dpll.p2) {
7039         case 5:
7040                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7041                 break;
7042         case 7:
7043                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7044                 break;
7045         case 10:
7046                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7047                 break;
7048         case 14:
7049                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7050                 break;
7051         }
7052
7053         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7054                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7055         else
7056                 dpll |= PLL_REF_INPUT_DREFCLK;
7057
7058         return dpll | DPLL_VCO_ENABLE;
7059 }
7060
7061 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7062                                   int x, int y,
7063                                   struct drm_framebuffer *fb)
7064 {
7065         struct drm_device *dev = crtc->dev;
7066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7067         int num_connectors = 0;
7068         intel_clock_t clock, reduced_clock;
7069         u32 dpll = 0, fp = 0, fp2 = 0;
7070         bool ok, has_reduced_clock = false;
7071         bool is_lvds = false;
7072         struct intel_encoder *encoder;
7073         struct intel_shared_dpll *pll;
7074
7075         for_each_encoder_on_crtc(dev, crtc, encoder) {
7076                 switch (encoder->type) {
7077                 case INTEL_OUTPUT_LVDS:
7078                         is_lvds = true;
7079                         break;
7080                 }
7081
7082                 num_connectors++;
7083         }
7084
7085         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7086              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7087
7088         ok = ironlake_compute_clocks(crtc, &clock,
7089                                      &has_reduced_clock, &reduced_clock);
7090         if (!ok && !intel_crtc->config.clock_set) {
7091                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7092                 return -EINVAL;
7093         }
7094         /* Compat-code for transition, will disappear. */
7095         if (!intel_crtc->config.clock_set) {
7096                 intel_crtc->config.dpll.n = clock.n;
7097                 intel_crtc->config.dpll.m1 = clock.m1;
7098                 intel_crtc->config.dpll.m2 = clock.m2;
7099                 intel_crtc->config.dpll.p1 = clock.p1;
7100                 intel_crtc->config.dpll.p2 = clock.p2;
7101         }
7102
7103         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7104         if (intel_crtc->config.has_pch_encoder) {
7105                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7106                 if (has_reduced_clock)
7107                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7108
7109                 dpll = ironlake_compute_dpll(intel_crtc,
7110                                              &fp, &reduced_clock,
7111                                              has_reduced_clock ? &fp2 : NULL);
7112
7113                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7114                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7115                 if (has_reduced_clock)
7116                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7117                 else
7118                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7119
7120                 pll = intel_get_shared_dpll(intel_crtc);
7121                 if (pll == NULL) {
7122                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7123                                          pipe_name(intel_crtc->pipe));
7124                         return -EINVAL;
7125                 }
7126         } else
7127                 intel_put_shared_dpll(intel_crtc);
7128
7129         if (is_lvds && has_reduced_clock && i915.powersave)
7130                 intel_crtc->lowfreq_avail = true;
7131         else
7132                 intel_crtc->lowfreq_avail = false;
7133
7134         return 0;
7135 }
7136
7137 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7138                                          struct intel_link_m_n *m_n)
7139 {
7140         struct drm_device *dev = crtc->base.dev;
7141         struct drm_i915_private *dev_priv = dev->dev_private;
7142         enum pipe pipe = crtc->pipe;
7143
7144         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7145         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7146         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7147                 & ~TU_SIZE_MASK;
7148         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7149         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7150                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7151 }
7152
7153 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7154                                          enum transcoder transcoder,
7155                                          struct intel_link_m_n *m_n,
7156                                          struct intel_link_m_n *m2_n2)
7157 {
7158         struct drm_device *dev = crtc->base.dev;
7159         struct drm_i915_private *dev_priv = dev->dev_private;
7160         enum pipe pipe = crtc->pipe;
7161
7162         if (INTEL_INFO(dev)->gen >= 5) {
7163                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7164                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7165                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7166                         & ~TU_SIZE_MASK;
7167                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7168                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7169                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7170                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7171                  * gen < 8) and if DRRS is supported (to make sure the
7172                  * registers are not unnecessarily read).
7173                  */
7174                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7175                         crtc->config.has_drrs) {
7176                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7177                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7178                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7179                                         & ~TU_SIZE_MASK;
7180                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7181                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7182                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7183                 }
7184         } else {
7185                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7186                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7187                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7188                         & ~TU_SIZE_MASK;
7189                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7190                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7191                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7192         }
7193 }
7194
7195 void intel_dp_get_m_n(struct intel_crtc *crtc,
7196                       struct intel_crtc_config *pipe_config)
7197 {
7198         if (crtc->config.has_pch_encoder)
7199                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7200         else
7201                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7202                                              &pipe_config->dp_m_n,
7203                                              &pipe_config->dp_m2_n2);
7204 }
7205
7206 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7207                                         struct intel_crtc_config *pipe_config)
7208 {
7209         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7210                                      &pipe_config->fdi_m_n, NULL);
7211 }
7212
7213 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7214                                      struct intel_crtc_config *pipe_config)
7215 {
7216         struct drm_device *dev = crtc->base.dev;
7217         struct drm_i915_private *dev_priv = dev->dev_private;
7218         uint32_t tmp;
7219
7220         tmp = I915_READ(PF_CTL(crtc->pipe));
7221
7222         if (tmp & PF_ENABLE) {
7223                 pipe_config->pch_pfit.enabled = true;
7224                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7225                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7226
7227                 /* We currently do not free assignements of panel fitters on
7228                  * ivb/hsw (since we don't use the higher upscaling modes which
7229                  * differentiates them) so just WARN about this case for now. */
7230                 if (IS_GEN7(dev)) {
7231                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7232                                 PF_PIPE_SEL_IVB(crtc->pipe));
7233                 }
7234         }
7235 }
7236
7237 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7238                                       struct intel_plane_config *plane_config)
7239 {
7240         struct drm_device *dev = crtc->base.dev;
7241         struct drm_i915_private *dev_priv = dev->dev_private;
7242         u32 val, base, offset;
7243         int pipe = crtc->pipe, plane = crtc->plane;
7244         int fourcc, pixel_format;
7245         int aligned_height;
7246
7247         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7248         if (!crtc->base.primary->fb) {
7249                 DRM_DEBUG_KMS("failed to alloc fb\n");
7250                 return;
7251         }
7252
7253         val = I915_READ(DSPCNTR(plane));
7254
7255         if (INTEL_INFO(dev)->gen >= 4)
7256                 if (val & DISPPLANE_TILED)
7257                         plane_config->tiled = true;
7258
7259         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7260         fourcc = intel_format_to_fourcc(pixel_format);
7261         crtc->base.primary->fb->pixel_format = fourcc;
7262         crtc->base.primary->fb->bits_per_pixel =
7263                 drm_format_plane_cpp(fourcc, 0) * 8;
7264
7265         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7266         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7267                 offset = I915_READ(DSPOFFSET(plane));
7268         } else {
7269                 if (plane_config->tiled)
7270                         offset = I915_READ(DSPTILEOFF(plane));
7271                 else
7272                         offset = I915_READ(DSPLINOFF(plane));
7273         }
7274         plane_config->base = base;
7275
7276         val = I915_READ(PIPESRC(pipe));
7277         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7278         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7279
7280         val = I915_READ(DSPSTRIDE(pipe));
7281         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7282
7283         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7284                                             plane_config->tiled);
7285
7286         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7287                                         aligned_height);
7288
7289         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7290                       pipe, plane, crtc->base.primary->fb->width,
7291                       crtc->base.primary->fb->height,
7292                       crtc->base.primary->fb->bits_per_pixel, base,
7293                       crtc->base.primary->fb->pitches[0],
7294                       plane_config->size);
7295 }
7296
7297 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7298                                      struct intel_crtc_config *pipe_config)
7299 {
7300         struct drm_device *dev = crtc->base.dev;
7301         struct drm_i915_private *dev_priv = dev->dev_private;
7302         uint32_t tmp;
7303
7304         if (!intel_display_power_enabled(dev_priv,
7305                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7306                 return false;
7307
7308         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7309         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7310
7311         tmp = I915_READ(PIPECONF(crtc->pipe));
7312         if (!(tmp & PIPECONF_ENABLE))
7313                 return false;
7314
7315         switch (tmp & PIPECONF_BPC_MASK) {
7316         case PIPECONF_6BPC:
7317                 pipe_config->pipe_bpp = 18;
7318                 break;
7319         case PIPECONF_8BPC:
7320                 pipe_config->pipe_bpp = 24;
7321                 break;
7322         case PIPECONF_10BPC:
7323                 pipe_config->pipe_bpp = 30;
7324                 break;
7325         case PIPECONF_12BPC:
7326                 pipe_config->pipe_bpp = 36;
7327                 break;
7328         default:
7329                 break;
7330         }
7331
7332         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7333                 pipe_config->limited_color_range = true;
7334
7335         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7336                 struct intel_shared_dpll *pll;
7337
7338                 pipe_config->has_pch_encoder = true;
7339
7340                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7341                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7342                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7343
7344                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7345
7346                 if (HAS_PCH_IBX(dev_priv->dev)) {
7347                         pipe_config->shared_dpll =
7348                                 (enum intel_dpll_id) crtc->pipe;
7349                 } else {
7350                         tmp = I915_READ(PCH_DPLL_SEL);
7351                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7352                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7353                         else
7354                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7355                 }
7356
7357                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7358
7359                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7360                                            &pipe_config->dpll_hw_state));
7361
7362                 tmp = pipe_config->dpll_hw_state.dpll;
7363                 pipe_config->pixel_multiplier =
7364                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7365                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7366
7367                 ironlake_pch_clock_get(crtc, pipe_config);
7368         } else {
7369                 pipe_config->pixel_multiplier = 1;
7370         }
7371
7372         intel_get_pipe_timings(crtc, pipe_config);
7373
7374         ironlake_get_pfit_config(crtc, pipe_config);
7375
7376         return true;
7377 }
7378
7379 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7380 {
7381         struct drm_device *dev = dev_priv->dev;
7382         struct intel_crtc *crtc;
7383
7384         for_each_intel_crtc(dev, crtc)
7385                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7386                      pipe_name(crtc->pipe));
7387
7388         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7389         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7390         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7391         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7392         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7393         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7394              "CPU PWM1 enabled\n");
7395         if (IS_HASWELL(dev))
7396                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7397                      "CPU PWM2 enabled\n");
7398         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7399              "PCH PWM1 enabled\n");
7400         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7401              "Utility pin enabled\n");
7402         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7403
7404         /*
7405          * In theory we can still leave IRQs enabled, as long as only the HPD
7406          * interrupts remain enabled. We used to check for that, but since it's
7407          * gen-specific and since we only disable LCPLL after we fully disable
7408          * the interrupts, the check below should be enough.
7409          */
7410         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7411 }
7412
7413 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7414 {
7415         struct drm_device *dev = dev_priv->dev;
7416
7417         if (IS_HASWELL(dev))
7418                 return I915_READ(D_COMP_HSW);
7419         else
7420                 return I915_READ(D_COMP_BDW);
7421 }
7422
7423 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7424 {
7425         struct drm_device *dev = dev_priv->dev;
7426
7427         if (IS_HASWELL(dev)) {
7428                 mutex_lock(&dev_priv->rps.hw_lock);
7429                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7430                                             val))
7431                         DRM_ERROR("Failed to write to D_COMP\n");
7432                 mutex_unlock(&dev_priv->rps.hw_lock);
7433         } else {
7434                 I915_WRITE(D_COMP_BDW, val);
7435                 POSTING_READ(D_COMP_BDW);
7436         }
7437 }
7438
7439 /*
7440  * This function implements pieces of two sequences from BSpec:
7441  * - Sequence for display software to disable LCPLL
7442  * - Sequence for display software to allow package C8+
7443  * The steps implemented here are just the steps that actually touch the LCPLL
7444  * register. Callers should take care of disabling all the display engine
7445  * functions, doing the mode unset, fixing interrupts, etc.
7446  */
7447 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7448                               bool switch_to_fclk, bool allow_power_down)
7449 {
7450         uint32_t val;
7451
7452         assert_can_disable_lcpll(dev_priv);
7453
7454         val = I915_READ(LCPLL_CTL);
7455
7456         if (switch_to_fclk) {
7457                 val |= LCPLL_CD_SOURCE_FCLK;
7458                 I915_WRITE(LCPLL_CTL, val);
7459
7460                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7461                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7462                         DRM_ERROR("Switching to FCLK failed\n");
7463
7464                 val = I915_READ(LCPLL_CTL);
7465         }
7466
7467         val |= LCPLL_PLL_DISABLE;
7468         I915_WRITE(LCPLL_CTL, val);
7469         POSTING_READ(LCPLL_CTL);
7470
7471         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7472                 DRM_ERROR("LCPLL still locked\n");
7473
7474         val = hsw_read_dcomp(dev_priv);
7475         val |= D_COMP_COMP_DISABLE;
7476         hsw_write_dcomp(dev_priv, val);
7477         ndelay(100);
7478
7479         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7480                      1))
7481                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7482
7483         if (allow_power_down) {
7484                 val = I915_READ(LCPLL_CTL);
7485                 val |= LCPLL_POWER_DOWN_ALLOW;
7486                 I915_WRITE(LCPLL_CTL, val);
7487                 POSTING_READ(LCPLL_CTL);
7488         }
7489 }
7490
7491 /*
7492  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7493  * source.
7494  */
7495 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7496 {
7497         uint32_t val;
7498         unsigned long irqflags;
7499
7500         val = I915_READ(LCPLL_CTL);
7501
7502         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7503                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7504                 return;
7505
7506         /*
7507          * Make sure we're not on PC8 state before disabling PC8, otherwise
7508          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7509          *
7510          * The other problem is that hsw_restore_lcpll() is called as part of
7511          * the runtime PM resume sequence, so we can't just call
7512          * gen6_gt_force_wake_get() because that function calls
7513          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7514          * while we are on the resume sequence. So to solve this problem we have
7515          * to call special forcewake code that doesn't touch runtime PM and
7516          * doesn't enable the forcewake delayed work.
7517          */
7518         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7519         if (dev_priv->uncore.forcewake_count++ == 0)
7520                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7521         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7522
7523         if (val & LCPLL_POWER_DOWN_ALLOW) {
7524                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7525                 I915_WRITE(LCPLL_CTL, val);
7526                 POSTING_READ(LCPLL_CTL);
7527         }
7528
7529         val = hsw_read_dcomp(dev_priv);
7530         val |= D_COMP_COMP_FORCE;
7531         val &= ~D_COMP_COMP_DISABLE;
7532         hsw_write_dcomp(dev_priv, val);
7533
7534         val = I915_READ(LCPLL_CTL);
7535         val &= ~LCPLL_PLL_DISABLE;
7536         I915_WRITE(LCPLL_CTL, val);
7537
7538         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7539                 DRM_ERROR("LCPLL not locked yet\n");
7540
7541         if (val & LCPLL_CD_SOURCE_FCLK) {
7542                 val = I915_READ(LCPLL_CTL);
7543                 val &= ~LCPLL_CD_SOURCE_FCLK;
7544                 I915_WRITE(LCPLL_CTL, val);
7545
7546                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7547                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7548                         DRM_ERROR("Switching back to LCPLL failed\n");
7549         }
7550
7551         /* See the big comment above. */
7552         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7553         if (--dev_priv->uncore.forcewake_count == 0)
7554                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7555         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7556 }
7557
7558 /*
7559  * Package states C8 and deeper are really deep PC states that can only be
7560  * reached when all the devices on the system allow it, so even if the graphics
7561  * device allows PC8+, it doesn't mean the system will actually get to these
7562  * states. Our driver only allows PC8+ when going into runtime PM.
7563  *
7564  * The requirements for PC8+ are that all the outputs are disabled, the power
7565  * well is disabled and most interrupts are disabled, and these are also
7566  * requirements for runtime PM. When these conditions are met, we manually do
7567  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7568  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7569  * hang the machine.
7570  *
7571  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7572  * the state of some registers, so when we come back from PC8+ we need to
7573  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7574  * need to take care of the registers kept by RC6. Notice that this happens even
7575  * if we don't put the device in PCI D3 state (which is what currently happens
7576  * because of the runtime PM support).
7577  *
7578  * For more, read "Display Sequences for Package C8" on the hardware
7579  * documentation.
7580  */
7581 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7582 {
7583         struct drm_device *dev = dev_priv->dev;
7584         uint32_t val;
7585
7586         DRM_DEBUG_KMS("Enabling package C8+\n");
7587
7588         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7589                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7590                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7591                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7592         }
7593
7594         lpt_disable_clkout_dp(dev);
7595         hsw_disable_lcpll(dev_priv, true, true);
7596 }
7597
7598 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7599 {
7600         struct drm_device *dev = dev_priv->dev;
7601         uint32_t val;
7602
7603         DRM_DEBUG_KMS("Disabling package C8+\n");
7604
7605         hsw_restore_lcpll(dev_priv);
7606         lpt_init_pch_refclk(dev);
7607
7608         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7609                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7610                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7611                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7612         }
7613
7614         intel_prepare_ddi(dev);
7615 }
7616
7617 static void snb_modeset_global_resources(struct drm_device *dev)
7618 {
7619         modeset_update_crtc_power_domains(dev);
7620 }
7621
7622 static void haswell_modeset_global_resources(struct drm_device *dev)
7623 {
7624         modeset_update_crtc_power_domains(dev);
7625 }
7626
7627 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7628                                  int x, int y,
7629                                  struct drm_framebuffer *fb)
7630 {
7631         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7632
7633         if (!intel_ddi_pll_select(intel_crtc))
7634                 return -EINVAL;
7635
7636         intel_crtc->lowfreq_avail = false;
7637
7638         return 0;
7639 }
7640
7641 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7642                                 enum port port,
7643                                 struct intel_crtc_config *pipe_config)
7644 {
7645         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7646
7647         switch (pipe_config->ddi_pll_sel) {
7648         case PORT_CLK_SEL_WRPLL1:
7649                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7650                 break;
7651         case PORT_CLK_SEL_WRPLL2:
7652                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7653                 break;
7654         }
7655 }
7656
7657 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7658                                        struct intel_crtc_config *pipe_config)
7659 {
7660         struct drm_device *dev = crtc->base.dev;
7661         struct drm_i915_private *dev_priv = dev->dev_private;
7662         struct intel_shared_dpll *pll;
7663         enum port port;
7664         uint32_t tmp;
7665
7666         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7667
7668         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7669
7670         haswell_get_ddi_pll(dev_priv, port, pipe_config);
7671
7672         if (pipe_config->shared_dpll >= 0) {
7673                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7674
7675                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7676                                            &pipe_config->dpll_hw_state));
7677         }
7678
7679         /*
7680          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7681          * DDI E. So just check whether this pipe is wired to DDI E and whether
7682          * the PCH transcoder is on.
7683          */
7684         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7685                 pipe_config->has_pch_encoder = true;
7686
7687                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7688                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7689                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7690
7691                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7692         }
7693 }
7694
7695 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7696                                     struct intel_crtc_config *pipe_config)
7697 {
7698         struct drm_device *dev = crtc->base.dev;
7699         struct drm_i915_private *dev_priv = dev->dev_private;
7700         enum intel_display_power_domain pfit_domain;
7701         uint32_t tmp;
7702
7703         if (!intel_display_power_enabled(dev_priv,
7704                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7705                 return false;
7706
7707         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7708         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7709
7710         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7711         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7712                 enum pipe trans_edp_pipe;
7713                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7714                 default:
7715                         WARN(1, "unknown pipe linked to edp transcoder\n");
7716                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7717                 case TRANS_DDI_EDP_INPUT_A_ON:
7718                         trans_edp_pipe = PIPE_A;
7719                         break;
7720                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7721                         trans_edp_pipe = PIPE_B;
7722                         break;
7723                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7724                         trans_edp_pipe = PIPE_C;
7725                         break;
7726                 }
7727
7728                 if (trans_edp_pipe == crtc->pipe)
7729                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7730         }
7731
7732         if (!intel_display_power_enabled(dev_priv,
7733                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7734                 return false;
7735
7736         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7737         if (!(tmp & PIPECONF_ENABLE))
7738                 return false;
7739
7740         haswell_get_ddi_port_state(crtc, pipe_config);
7741
7742         intel_get_pipe_timings(crtc, pipe_config);
7743
7744         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7745         if (intel_display_power_enabled(dev_priv, pfit_domain))
7746                 ironlake_get_pfit_config(crtc, pipe_config);
7747
7748         if (IS_HASWELL(dev))
7749                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7750                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7751
7752         pipe_config->pixel_multiplier = 1;
7753
7754         return true;
7755 }
7756
7757 static struct {
7758         int clock;
7759         u32 config;
7760 } hdmi_audio_clock[] = {
7761         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7762         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7763         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7764         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7765         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7766         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7767         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7768         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7769         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7770         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7771 };
7772
7773 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7774 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7775 {
7776         int i;
7777
7778         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7779                 if (mode->clock == hdmi_audio_clock[i].clock)
7780                         break;
7781         }
7782
7783         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7784                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7785                 i = 1;
7786         }
7787
7788         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7789                       hdmi_audio_clock[i].clock,
7790                       hdmi_audio_clock[i].config);
7791
7792         return hdmi_audio_clock[i].config;
7793 }
7794
7795 static bool intel_eld_uptodate(struct drm_connector *connector,
7796                                int reg_eldv, uint32_t bits_eldv,
7797                                int reg_elda, uint32_t bits_elda,
7798                                int reg_edid)
7799 {
7800         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7801         uint8_t *eld = connector->eld;
7802         uint32_t i;
7803
7804         i = I915_READ(reg_eldv);
7805         i &= bits_eldv;
7806
7807         if (!eld[0])
7808                 return !i;
7809
7810         if (!i)
7811                 return false;
7812
7813         i = I915_READ(reg_elda);
7814         i &= ~bits_elda;
7815         I915_WRITE(reg_elda, i);
7816
7817         for (i = 0; i < eld[2]; i++)
7818                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7819                         return false;
7820
7821         return true;
7822 }
7823
7824 static void g4x_write_eld(struct drm_connector *connector,
7825                           struct drm_crtc *crtc,
7826                           struct drm_display_mode *mode)
7827 {
7828         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7829         uint8_t *eld = connector->eld;
7830         uint32_t eldv;
7831         uint32_t len;
7832         uint32_t i;
7833
7834         i = I915_READ(G4X_AUD_VID_DID);
7835
7836         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7837                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7838         else
7839                 eldv = G4X_ELDV_DEVCTG;
7840
7841         if (intel_eld_uptodate(connector,
7842                                G4X_AUD_CNTL_ST, eldv,
7843                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7844                                G4X_HDMIW_HDMIEDID))
7845                 return;
7846
7847         i = I915_READ(G4X_AUD_CNTL_ST);
7848         i &= ~(eldv | G4X_ELD_ADDR);
7849         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7850         I915_WRITE(G4X_AUD_CNTL_ST, i);
7851
7852         if (!eld[0])
7853                 return;
7854
7855         len = min_t(uint8_t, eld[2], len);
7856         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7857         for (i = 0; i < len; i++)
7858                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7859
7860         i = I915_READ(G4X_AUD_CNTL_ST);
7861         i |= eldv;
7862         I915_WRITE(G4X_AUD_CNTL_ST, i);
7863 }
7864
7865 static void haswell_write_eld(struct drm_connector *connector,
7866                               struct drm_crtc *crtc,
7867                               struct drm_display_mode *mode)
7868 {
7869         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7870         uint8_t *eld = connector->eld;
7871         uint32_t eldv;
7872         uint32_t i;
7873         int len;
7874         int pipe = to_intel_crtc(crtc)->pipe;
7875         int tmp;
7876
7877         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7878         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7879         int aud_config = HSW_AUD_CFG(pipe);
7880         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7881
7882         /* Audio output enable */
7883         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7884         tmp = I915_READ(aud_cntrl_st2);
7885         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7886         I915_WRITE(aud_cntrl_st2, tmp);
7887         POSTING_READ(aud_cntrl_st2);
7888
7889         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7890
7891         /* Set ELD valid state */
7892         tmp = I915_READ(aud_cntrl_st2);
7893         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7894         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7895         I915_WRITE(aud_cntrl_st2, tmp);
7896         tmp = I915_READ(aud_cntrl_st2);
7897         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7898
7899         /* Enable HDMI mode */
7900         tmp = I915_READ(aud_config);
7901         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7902         /* clear N_programing_enable and N_value_index */
7903         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7904         I915_WRITE(aud_config, tmp);
7905
7906         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7907
7908         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7909
7910         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7911                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7912                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7913                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7914         } else {
7915                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7916         }
7917
7918         if (intel_eld_uptodate(connector,
7919                                aud_cntrl_st2, eldv,
7920                                aud_cntl_st, IBX_ELD_ADDRESS,
7921                                hdmiw_hdmiedid))
7922                 return;
7923
7924         i = I915_READ(aud_cntrl_st2);
7925         i &= ~eldv;
7926         I915_WRITE(aud_cntrl_st2, i);
7927
7928         if (!eld[0])
7929                 return;
7930
7931         i = I915_READ(aud_cntl_st);
7932         i &= ~IBX_ELD_ADDRESS;
7933         I915_WRITE(aud_cntl_st, i);
7934         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7935         DRM_DEBUG_DRIVER("port num:%d\n", i);
7936
7937         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7938         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7939         for (i = 0; i < len; i++)
7940                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7941
7942         i = I915_READ(aud_cntrl_st2);
7943         i |= eldv;
7944         I915_WRITE(aud_cntrl_st2, i);
7945
7946 }
7947
7948 static void ironlake_write_eld(struct drm_connector *connector,
7949                                struct drm_crtc *crtc,
7950                                struct drm_display_mode *mode)
7951 {
7952         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7953         uint8_t *eld = connector->eld;
7954         uint32_t eldv;
7955         uint32_t i;
7956         int len;
7957         int hdmiw_hdmiedid;
7958         int aud_config;
7959         int aud_cntl_st;
7960         int aud_cntrl_st2;
7961         int pipe = to_intel_crtc(crtc)->pipe;
7962
7963         if (HAS_PCH_IBX(connector->dev)) {
7964                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7965                 aud_config = IBX_AUD_CFG(pipe);
7966                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7967                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7968         } else if (IS_VALLEYVIEW(connector->dev)) {
7969                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7970                 aud_config = VLV_AUD_CFG(pipe);
7971                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7972                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7973         } else {
7974                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7975                 aud_config = CPT_AUD_CFG(pipe);
7976                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7977                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7978         }
7979
7980         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7981
7982         if (IS_VALLEYVIEW(connector->dev))  {
7983                 struct intel_encoder *intel_encoder;
7984                 struct intel_digital_port *intel_dig_port;
7985
7986                 intel_encoder = intel_attached_encoder(connector);
7987                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7988                 i = intel_dig_port->port;
7989         } else {
7990                 i = I915_READ(aud_cntl_st);
7991                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7992                 /* DIP_Port_Select, 0x1 = PortB */
7993         }
7994
7995         if (!i) {
7996                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7997                 /* operate blindly on all ports */
7998                 eldv = IBX_ELD_VALIDB;
7999                 eldv |= IBX_ELD_VALIDB << 4;
8000                 eldv |= IBX_ELD_VALIDB << 8;
8001         } else {
8002                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8003                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8004         }
8005
8006         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8007                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8008                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8009                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8010         } else {
8011                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8012         }
8013
8014         if (intel_eld_uptodate(connector,
8015                                aud_cntrl_st2, eldv,
8016                                aud_cntl_st, IBX_ELD_ADDRESS,
8017                                hdmiw_hdmiedid))
8018                 return;
8019
8020         i = I915_READ(aud_cntrl_st2);
8021         i &= ~eldv;
8022         I915_WRITE(aud_cntrl_st2, i);
8023
8024         if (!eld[0])
8025                 return;
8026
8027         i = I915_READ(aud_cntl_st);
8028         i &= ~IBX_ELD_ADDRESS;
8029         I915_WRITE(aud_cntl_st, i);
8030
8031         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8032         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8033         for (i = 0; i < len; i++)
8034                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8035
8036         i = I915_READ(aud_cntrl_st2);
8037         i |= eldv;
8038         I915_WRITE(aud_cntrl_st2, i);
8039 }
8040
8041 void intel_write_eld(struct drm_encoder *encoder,
8042                      struct drm_display_mode *mode)
8043 {
8044         struct drm_crtc *crtc = encoder->crtc;
8045         struct drm_connector *connector;
8046         struct drm_device *dev = encoder->dev;
8047         struct drm_i915_private *dev_priv = dev->dev_private;
8048
8049         connector = drm_select_eld(encoder, mode);
8050         if (!connector)
8051                 return;
8052
8053         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8054                          connector->base.id,
8055                          connector->name,
8056                          connector->encoder->base.id,
8057                          connector->encoder->name);
8058
8059         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8060
8061         if (dev_priv->display.write_eld)
8062                 dev_priv->display.write_eld(connector, crtc, mode);
8063 }
8064
8065 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8066 {
8067         struct drm_device *dev = crtc->dev;
8068         struct drm_i915_private *dev_priv = dev->dev_private;
8069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8070         uint32_t cntl = 0, size = 0;
8071
8072         if (base) {
8073                 unsigned int width = intel_crtc->cursor_width;
8074                 unsigned int height = intel_crtc->cursor_height;
8075                 unsigned int stride = roundup_pow_of_two(width) * 4;
8076
8077                 switch (stride) {
8078                 default:
8079                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8080                                   width, stride);
8081                         stride = 256;
8082                         /* fallthrough */
8083                 case 256:
8084                 case 512:
8085                 case 1024:
8086                 case 2048:
8087                         break;
8088                 }
8089
8090                 cntl |= CURSOR_ENABLE |
8091                         CURSOR_GAMMA_ENABLE |
8092                         CURSOR_FORMAT_ARGB |
8093                         CURSOR_STRIDE(stride);
8094
8095                 size = (height << 12) | width;
8096         }
8097
8098         if (intel_crtc->cursor_cntl != 0 &&
8099             (intel_crtc->cursor_base != base ||
8100              intel_crtc->cursor_size != size ||
8101              intel_crtc->cursor_cntl != cntl)) {
8102                 /* On these chipsets we can only modify the base/size/stride
8103                  * whilst the cursor is disabled.
8104                  */
8105                 I915_WRITE(_CURACNTR, 0);
8106                 POSTING_READ(_CURACNTR);
8107                 intel_crtc->cursor_cntl = 0;
8108         }
8109
8110         if (intel_crtc->cursor_base != base)
8111                 I915_WRITE(_CURABASE, base);
8112
8113         if (intel_crtc->cursor_size != size) {
8114                 I915_WRITE(CURSIZE, size);
8115                 intel_crtc->cursor_size = size;
8116         }
8117
8118         if (intel_crtc->cursor_cntl != cntl) {
8119                 I915_WRITE(_CURACNTR, cntl);
8120                 POSTING_READ(_CURACNTR);
8121                 intel_crtc->cursor_cntl = cntl;
8122         }
8123 }
8124
8125 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8126 {
8127         struct drm_device *dev = crtc->dev;
8128         struct drm_i915_private *dev_priv = dev->dev_private;
8129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8130         int pipe = intel_crtc->pipe;
8131         uint32_t cntl;
8132
8133         cntl = 0;
8134         if (base) {
8135                 cntl = MCURSOR_GAMMA_ENABLE;
8136                 switch (intel_crtc->cursor_width) {
8137                         case 64:
8138                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8139                                 break;
8140                         case 128:
8141                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8142                                 break;
8143                         case 256:
8144                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8145                                 break;
8146                         default:
8147                                 WARN_ON(1);
8148                                 return;
8149                 }
8150                 cntl |= pipe << 28; /* Connect to correct pipe */
8151         }
8152         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8153                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8154
8155         if (intel_crtc->cursor_cntl != cntl) {
8156                 I915_WRITE(CURCNTR(pipe), cntl);
8157                 POSTING_READ(CURCNTR(pipe));
8158                 intel_crtc->cursor_cntl = cntl;
8159         }
8160
8161         /* and commit changes on next vblank */
8162         I915_WRITE(CURBASE(pipe), base);
8163         POSTING_READ(CURBASE(pipe));
8164 }
8165
8166 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8167 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8168                                      bool on)
8169 {
8170         struct drm_device *dev = crtc->dev;
8171         struct drm_i915_private *dev_priv = dev->dev_private;
8172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8173         int pipe = intel_crtc->pipe;
8174         int x = crtc->cursor_x;
8175         int y = crtc->cursor_y;
8176         u32 base = 0, pos = 0;
8177
8178         if (on)
8179                 base = intel_crtc->cursor_addr;
8180
8181         if (x >= intel_crtc->config.pipe_src_w)
8182                 base = 0;
8183
8184         if (y >= intel_crtc->config.pipe_src_h)
8185                 base = 0;
8186
8187         if (x < 0) {
8188                 if (x + intel_crtc->cursor_width <= 0)
8189                         base = 0;
8190
8191                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8192                 x = -x;
8193         }
8194         pos |= x << CURSOR_X_SHIFT;
8195
8196         if (y < 0) {
8197                 if (y + intel_crtc->cursor_height <= 0)
8198                         base = 0;
8199
8200                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8201                 y = -y;
8202         }
8203         pos |= y << CURSOR_Y_SHIFT;
8204
8205         if (base == 0 && intel_crtc->cursor_base == 0)
8206                 return;
8207
8208         I915_WRITE(CURPOS(pipe), pos);
8209
8210         if (IS_845G(dev) || IS_I865G(dev))
8211                 i845_update_cursor(crtc, base);
8212         else
8213                 i9xx_update_cursor(crtc, base);
8214         intel_crtc->cursor_base = base;
8215 }
8216
8217 static bool cursor_size_ok(struct drm_device *dev,
8218                            uint32_t width, uint32_t height)
8219 {
8220         if (width == 0 || height == 0)
8221                 return false;
8222
8223         /*
8224          * 845g/865g are special in that they are only limited by
8225          * the width of their cursors, the height is arbitrary up to
8226          * the precision of the register. Everything else requires
8227          * square cursors, limited to a few power-of-two sizes.
8228          */
8229         if (IS_845G(dev) || IS_I865G(dev)) {
8230                 if ((width & 63) != 0)
8231                         return false;
8232
8233                 if (width > (IS_845G(dev) ? 64 : 512))
8234                         return false;
8235
8236                 if (height > 1023)
8237                         return false;
8238         } else {
8239                 switch (width | height) {
8240                 case 256:
8241                 case 128:
8242                         if (IS_GEN2(dev))
8243                                 return false;
8244                 case 64:
8245                         break;
8246                 default:
8247                         return false;
8248                 }
8249         }
8250
8251         return true;
8252 }
8253
8254 /*
8255  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8256  *
8257  * Note that the object's reference will be consumed if the update fails.  If
8258  * the update succeeds, the reference of the old object (if any) will be
8259  * consumed.
8260  */
8261 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8262                                      struct drm_i915_gem_object *obj,
8263                                      uint32_t width, uint32_t height)
8264 {
8265         struct drm_device *dev = crtc->dev;
8266         struct drm_i915_private *dev_priv = dev->dev_private;
8267         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8268         enum pipe pipe = intel_crtc->pipe;
8269         unsigned old_width, stride;
8270         uint32_t addr;
8271         int ret;
8272
8273         /* if we want to turn off the cursor ignore width and height */
8274         if (!obj) {
8275                 DRM_DEBUG_KMS("cursor off\n");
8276                 addr = 0;
8277                 obj = NULL;
8278                 mutex_lock(&dev->struct_mutex);
8279                 goto finish;
8280         }
8281
8282         /* Check for which cursor types we support */
8283         if (!cursor_size_ok(dev, width, height)) {
8284                 DRM_DEBUG("Cursor dimension not supported\n");
8285                 return -EINVAL;
8286         }
8287
8288         stride = roundup_pow_of_two(width) * 4;
8289         if (obj->base.size < stride * height) {
8290                 DRM_DEBUG_KMS("buffer is too small\n");
8291                 ret = -ENOMEM;
8292                 goto fail;
8293         }
8294
8295         /* we only need to pin inside GTT if cursor is non-phy */
8296         mutex_lock(&dev->struct_mutex);
8297         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8298                 unsigned alignment;
8299
8300                 if (obj->tiling_mode) {
8301                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8302                         ret = -EINVAL;
8303                         goto fail_locked;
8304                 }
8305
8306                 /*
8307                  * Global gtt pte registers are special registers which actually
8308                  * forward writes to a chunk of system memory. Which means that
8309                  * there is no risk that the register values disappear as soon
8310                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8311                  * only the pin/unpin/fence and not more.
8312                  */
8313                 intel_runtime_pm_get(dev_priv);
8314
8315                 /* Note that the w/a also requires 2 PTE of padding following
8316                  * the bo. We currently fill all unused PTE with the shadow
8317                  * page and so we should always have valid PTE following the
8318                  * cursor preventing the VT-d warning.
8319                  */
8320                 alignment = 0;
8321                 if (need_vtd_wa(dev))
8322                         alignment = 64*1024;
8323
8324                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8325                 if (ret) {
8326                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8327                         intel_runtime_pm_put(dev_priv);
8328                         goto fail_locked;
8329                 }
8330
8331                 ret = i915_gem_object_put_fence(obj);
8332                 if (ret) {
8333                         DRM_DEBUG_KMS("failed to release fence for cursor");
8334                         intel_runtime_pm_put(dev_priv);
8335                         goto fail_unpin;
8336                 }
8337
8338                 addr = i915_gem_obj_ggtt_offset(obj);
8339
8340                 intel_runtime_pm_put(dev_priv);
8341         } else {
8342                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8343                 ret = i915_gem_object_attach_phys(obj, align);
8344                 if (ret) {
8345                         DRM_DEBUG_KMS("failed to attach phys object\n");
8346                         goto fail_locked;
8347                 }
8348                 addr = obj->phys_handle->busaddr;
8349         }
8350
8351  finish:
8352         if (intel_crtc->cursor_bo) {
8353                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8354                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8355         }
8356
8357         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8358                           INTEL_FRONTBUFFER_CURSOR(pipe));
8359         mutex_unlock(&dev->struct_mutex);
8360
8361         old_width = intel_crtc->cursor_width;
8362
8363         intel_crtc->cursor_addr = addr;
8364         intel_crtc->cursor_bo = obj;
8365         intel_crtc->cursor_width = width;
8366         intel_crtc->cursor_height = height;
8367
8368         if (intel_crtc->active) {
8369                 if (old_width != width)
8370                         intel_update_watermarks(crtc);
8371                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8372         }
8373
8374         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8375
8376         return 0;
8377 fail_unpin:
8378         i915_gem_object_unpin_from_display_plane(obj);
8379 fail_locked:
8380         mutex_unlock(&dev->struct_mutex);
8381 fail:
8382         drm_gem_object_unreference_unlocked(&obj->base);
8383         return ret;
8384 }
8385
8386 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8387                                  u16 *blue, uint32_t start, uint32_t size)
8388 {
8389         int end = (start + size > 256) ? 256 : start + size, i;
8390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8391
8392         for (i = start; i < end; i++) {
8393                 intel_crtc->lut_r[i] = red[i] >> 8;
8394                 intel_crtc->lut_g[i] = green[i] >> 8;
8395                 intel_crtc->lut_b[i] = blue[i] >> 8;
8396         }
8397
8398         intel_crtc_load_lut(crtc);
8399 }
8400
8401 /* VESA 640x480x72Hz mode to set on the pipe */
8402 static struct drm_display_mode load_detect_mode = {
8403         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8404                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8405 };
8406
8407 struct drm_framebuffer *
8408 __intel_framebuffer_create(struct drm_device *dev,
8409                            struct drm_mode_fb_cmd2 *mode_cmd,
8410                            struct drm_i915_gem_object *obj)
8411 {
8412         struct intel_framebuffer *intel_fb;
8413         int ret;
8414
8415         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8416         if (!intel_fb) {
8417                 drm_gem_object_unreference_unlocked(&obj->base);
8418                 return ERR_PTR(-ENOMEM);
8419         }
8420
8421         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8422         if (ret)
8423                 goto err;
8424
8425         return &intel_fb->base;
8426 err:
8427         drm_gem_object_unreference_unlocked(&obj->base);
8428         kfree(intel_fb);
8429
8430         return ERR_PTR(ret);
8431 }
8432
8433 static struct drm_framebuffer *
8434 intel_framebuffer_create(struct drm_device *dev,
8435                          struct drm_mode_fb_cmd2 *mode_cmd,
8436                          struct drm_i915_gem_object *obj)
8437 {
8438         struct drm_framebuffer *fb;
8439         int ret;
8440
8441         ret = i915_mutex_lock_interruptible(dev);
8442         if (ret)
8443                 return ERR_PTR(ret);
8444         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8445         mutex_unlock(&dev->struct_mutex);
8446
8447         return fb;
8448 }
8449
8450 static u32
8451 intel_framebuffer_pitch_for_width(int width, int bpp)
8452 {
8453         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8454         return ALIGN(pitch, 64);
8455 }
8456
8457 static u32
8458 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8459 {
8460         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8461         return PAGE_ALIGN(pitch * mode->vdisplay);
8462 }
8463
8464 static struct drm_framebuffer *
8465 intel_framebuffer_create_for_mode(struct drm_device *dev,
8466                                   struct drm_display_mode *mode,
8467                                   int depth, int bpp)
8468 {
8469         struct drm_i915_gem_object *obj;
8470         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8471
8472         obj = i915_gem_alloc_object(dev,
8473                                     intel_framebuffer_size_for_mode(mode, bpp));
8474         if (obj == NULL)
8475                 return ERR_PTR(-ENOMEM);
8476
8477         mode_cmd.width = mode->hdisplay;
8478         mode_cmd.height = mode->vdisplay;
8479         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8480                                                                 bpp);
8481         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8482
8483         return intel_framebuffer_create(dev, &mode_cmd, obj);
8484 }
8485
8486 static struct drm_framebuffer *
8487 mode_fits_in_fbdev(struct drm_device *dev,
8488                    struct drm_display_mode *mode)
8489 {
8490 #ifdef CONFIG_DRM_I915_FBDEV
8491         struct drm_i915_private *dev_priv = dev->dev_private;
8492         struct drm_i915_gem_object *obj;
8493         struct drm_framebuffer *fb;
8494
8495         if (!dev_priv->fbdev)
8496                 return NULL;
8497
8498         if (!dev_priv->fbdev->fb)
8499                 return NULL;
8500
8501         obj = dev_priv->fbdev->fb->obj;
8502         BUG_ON(!obj);
8503
8504         fb = &dev_priv->fbdev->fb->base;
8505         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8506                                                                fb->bits_per_pixel))
8507                 return NULL;
8508
8509         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8510                 return NULL;
8511
8512         return fb;
8513 #else
8514         return NULL;
8515 #endif
8516 }
8517
8518 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8519                                 struct drm_display_mode *mode,
8520                                 struct intel_load_detect_pipe *old,
8521                                 struct drm_modeset_acquire_ctx *ctx)
8522 {
8523         struct intel_crtc *intel_crtc;
8524         struct intel_encoder *intel_encoder =
8525                 intel_attached_encoder(connector);
8526         struct drm_crtc *possible_crtc;
8527         struct drm_encoder *encoder = &intel_encoder->base;
8528         struct drm_crtc *crtc = NULL;
8529         struct drm_device *dev = encoder->dev;
8530         struct drm_framebuffer *fb;
8531         struct drm_mode_config *config = &dev->mode_config;
8532         int ret, i = -1;
8533
8534         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8535                       connector->base.id, connector->name,
8536                       encoder->base.id, encoder->name);
8537
8538 retry:
8539         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8540         if (ret)
8541                 goto fail_unlock;
8542
8543         /*
8544          * Algorithm gets a little messy:
8545          *
8546          *   - if the connector already has an assigned crtc, use it (but make
8547          *     sure it's on first)
8548          *
8549          *   - try to find the first unused crtc that can drive this connector,
8550          *     and use that if we find one
8551          */
8552
8553         /* See if we already have a CRTC for this connector */
8554         if (encoder->crtc) {
8555                 crtc = encoder->crtc;
8556
8557                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8558                 if (ret)
8559                         goto fail_unlock;
8560
8561                 old->dpms_mode = connector->dpms;
8562                 old->load_detect_temp = false;
8563
8564                 /* Make sure the crtc and connector are running */
8565                 if (connector->dpms != DRM_MODE_DPMS_ON)
8566                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8567
8568                 return true;
8569         }
8570
8571         /* Find an unused one (if possible) */
8572         for_each_crtc(dev, possible_crtc) {
8573                 i++;
8574                 if (!(encoder->possible_crtcs & (1 << i)))
8575                         continue;
8576                 if (possible_crtc->enabled)
8577                         continue;
8578                 /* This can occur when applying the pipe A quirk on resume. */
8579                 if (to_intel_crtc(possible_crtc)->new_enabled)
8580                         continue;
8581
8582                 crtc = possible_crtc;
8583                 break;
8584         }
8585
8586         /*
8587          * If we didn't find an unused CRTC, don't use any.
8588          */
8589         if (!crtc) {
8590                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8591                 goto fail_unlock;
8592         }
8593
8594         ret = drm_modeset_lock(&crtc->mutex, ctx);
8595         if (ret)
8596                 goto fail_unlock;
8597         intel_encoder->new_crtc = to_intel_crtc(crtc);
8598         to_intel_connector(connector)->new_encoder = intel_encoder;
8599
8600         intel_crtc = to_intel_crtc(crtc);
8601         intel_crtc->new_enabled = true;
8602         intel_crtc->new_config = &intel_crtc->config;
8603         old->dpms_mode = connector->dpms;
8604         old->load_detect_temp = true;
8605         old->release_fb = NULL;
8606
8607         if (!mode)
8608                 mode = &load_detect_mode;
8609
8610         /* We need a framebuffer large enough to accommodate all accesses
8611          * that the plane may generate whilst we perform load detection.
8612          * We can not rely on the fbcon either being present (we get called
8613          * during its initialisation to detect all boot displays, or it may
8614          * not even exist) or that it is large enough to satisfy the
8615          * requested mode.
8616          */
8617         fb = mode_fits_in_fbdev(dev, mode);
8618         if (fb == NULL) {
8619                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8620                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8621                 old->release_fb = fb;
8622         } else
8623                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8624         if (IS_ERR(fb)) {
8625                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8626                 goto fail;
8627         }
8628
8629         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8630                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8631                 if (old->release_fb)
8632                         old->release_fb->funcs->destroy(old->release_fb);
8633                 goto fail;
8634         }
8635
8636         /* let the connector get through one full cycle before testing */
8637         intel_wait_for_vblank(dev, intel_crtc->pipe);
8638         return true;
8639
8640  fail:
8641         intel_crtc->new_enabled = crtc->enabled;
8642         if (intel_crtc->new_enabled)
8643                 intel_crtc->new_config = &intel_crtc->config;
8644         else
8645                 intel_crtc->new_config = NULL;
8646 fail_unlock:
8647         if (ret == -EDEADLK) {
8648                 drm_modeset_backoff(ctx);
8649                 goto retry;
8650         }
8651
8652         return false;
8653 }
8654
8655 void intel_release_load_detect_pipe(struct drm_connector *connector,
8656                                     struct intel_load_detect_pipe *old)
8657 {
8658         struct intel_encoder *intel_encoder =
8659                 intel_attached_encoder(connector);
8660         struct drm_encoder *encoder = &intel_encoder->base;
8661         struct drm_crtc *crtc = encoder->crtc;
8662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8663
8664         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8665                       connector->base.id, connector->name,
8666                       encoder->base.id, encoder->name);
8667
8668         if (old->load_detect_temp) {
8669                 to_intel_connector(connector)->new_encoder = NULL;
8670                 intel_encoder->new_crtc = NULL;
8671                 intel_crtc->new_enabled = false;
8672                 intel_crtc->new_config = NULL;
8673                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8674
8675                 if (old->release_fb) {
8676                         drm_framebuffer_unregister_private(old->release_fb);
8677                         drm_framebuffer_unreference(old->release_fb);
8678                 }
8679
8680                 return;
8681         }
8682
8683         /* Switch crtc and encoder back off if necessary */
8684         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8685                 connector->funcs->dpms(connector, old->dpms_mode);
8686 }
8687
8688 static int i9xx_pll_refclk(struct drm_device *dev,
8689                            const struct intel_crtc_config *pipe_config)
8690 {
8691         struct drm_i915_private *dev_priv = dev->dev_private;
8692         u32 dpll = pipe_config->dpll_hw_state.dpll;
8693
8694         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8695                 return dev_priv->vbt.lvds_ssc_freq;
8696         else if (HAS_PCH_SPLIT(dev))
8697                 return 120000;
8698         else if (!IS_GEN2(dev))
8699                 return 96000;
8700         else
8701                 return 48000;
8702 }
8703
8704 /* Returns the clock of the currently programmed mode of the given pipe. */
8705 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8706                                 struct intel_crtc_config *pipe_config)
8707 {
8708         struct drm_device *dev = crtc->base.dev;
8709         struct drm_i915_private *dev_priv = dev->dev_private;
8710         int pipe = pipe_config->cpu_transcoder;
8711         u32 dpll = pipe_config->dpll_hw_state.dpll;
8712         u32 fp;
8713         intel_clock_t clock;
8714         int refclk = i9xx_pll_refclk(dev, pipe_config);
8715
8716         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8717                 fp = pipe_config->dpll_hw_state.fp0;
8718         else
8719                 fp = pipe_config->dpll_hw_state.fp1;
8720
8721         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8722         if (IS_PINEVIEW(dev)) {
8723                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8724                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8725         } else {
8726                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8727                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8728         }
8729
8730         if (!IS_GEN2(dev)) {
8731                 if (IS_PINEVIEW(dev))
8732                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8733                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8734                 else
8735                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8736                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8737
8738                 switch (dpll & DPLL_MODE_MASK) {
8739                 case DPLLB_MODE_DAC_SERIAL:
8740                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8741                                 5 : 10;
8742                         break;
8743                 case DPLLB_MODE_LVDS:
8744                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8745                                 7 : 14;
8746                         break;
8747                 default:
8748                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8749                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8750                         return;
8751                 }
8752
8753                 if (IS_PINEVIEW(dev))
8754                         pineview_clock(refclk, &clock);
8755                 else
8756                         i9xx_clock(refclk, &clock);
8757         } else {
8758                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8759                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8760
8761                 if (is_lvds) {
8762                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8763                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8764
8765                         if (lvds & LVDS_CLKB_POWER_UP)
8766                                 clock.p2 = 7;
8767                         else
8768                                 clock.p2 = 14;
8769                 } else {
8770                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8771                                 clock.p1 = 2;
8772                         else {
8773                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8774                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8775                         }
8776                         if (dpll & PLL_P2_DIVIDE_BY_4)
8777                                 clock.p2 = 4;
8778                         else
8779                                 clock.p2 = 2;
8780                 }
8781
8782                 i9xx_clock(refclk, &clock);
8783         }
8784
8785         /*
8786          * This value includes pixel_multiplier. We will use
8787          * port_clock to compute adjusted_mode.crtc_clock in the
8788          * encoder's get_config() function.
8789          */
8790         pipe_config->port_clock = clock.dot;
8791 }
8792
8793 int intel_dotclock_calculate(int link_freq,
8794                              const struct intel_link_m_n *m_n)
8795 {
8796         /*
8797          * The calculation for the data clock is:
8798          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8799          * But we want to avoid losing precison if possible, so:
8800          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8801          *
8802          * and the link clock is simpler:
8803          * link_clock = (m * link_clock) / n
8804          */
8805
8806         if (!m_n->link_n)
8807                 return 0;
8808
8809         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8810 }
8811
8812 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8813                                    struct intel_crtc_config *pipe_config)
8814 {
8815         struct drm_device *dev = crtc->base.dev;
8816
8817         /* read out port_clock from the DPLL */
8818         i9xx_crtc_clock_get(crtc, pipe_config);
8819
8820         /*
8821          * This value does not include pixel_multiplier.
8822          * We will check that port_clock and adjusted_mode.crtc_clock
8823          * agree once we know their relationship in the encoder's
8824          * get_config() function.
8825          */
8826         pipe_config->adjusted_mode.crtc_clock =
8827                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8828                                          &pipe_config->fdi_m_n);
8829 }
8830
8831 /** Returns the currently programmed mode of the given pipe. */
8832 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8833                                              struct drm_crtc *crtc)
8834 {
8835         struct drm_i915_private *dev_priv = dev->dev_private;
8836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8837         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8838         struct drm_display_mode *mode;
8839         struct intel_crtc_config pipe_config;
8840         int htot = I915_READ(HTOTAL(cpu_transcoder));
8841         int hsync = I915_READ(HSYNC(cpu_transcoder));
8842         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8843         int vsync = I915_READ(VSYNC(cpu_transcoder));
8844         enum pipe pipe = intel_crtc->pipe;
8845
8846         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8847         if (!mode)
8848                 return NULL;
8849
8850         /*
8851          * Construct a pipe_config sufficient for getting the clock info
8852          * back out of crtc_clock_get.
8853          *
8854          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8855          * to use a real value here instead.
8856          */
8857         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8858         pipe_config.pixel_multiplier = 1;
8859         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8860         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8861         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8862         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8863
8864         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8865         mode->hdisplay = (htot & 0xffff) + 1;
8866         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8867         mode->hsync_start = (hsync & 0xffff) + 1;
8868         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8869         mode->vdisplay = (vtot & 0xffff) + 1;
8870         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8871         mode->vsync_start = (vsync & 0xffff) + 1;
8872         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8873
8874         drm_mode_set_name(mode);
8875
8876         return mode;
8877 }
8878
8879 static void intel_increase_pllclock(struct drm_device *dev,
8880                                     enum pipe pipe)
8881 {
8882         struct drm_i915_private *dev_priv = dev->dev_private;
8883         int dpll_reg = DPLL(pipe);
8884         int dpll;
8885
8886         if (!HAS_GMCH_DISPLAY(dev))
8887                 return;
8888
8889         if (!dev_priv->lvds_downclock_avail)
8890                 return;
8891
8892         dpll = I915_READ(dpll_reg);
8893         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8894                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8895
8896                 assert_panel_unlocked(dev_priv, pipe);
8897
8898                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8899                 I915_WRITE(dpll_reg, dpll);
8900                 intel_wait_for_vblank(dev, pipe);
8901
8902                 dpll = I915_READ(dpll_reg);
8903                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8904                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8905         }
8906 }
8907
8908 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8909 {
8910         struct drm_device *dev = crtc->dev;
8911         struct drm_i915_private *dev_priv = dev->dev_private;
8912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8913
8914         if (!HAS_GMCH_DISPLAY(dev))
8915                 return;
8916
8917         if (!dev_priv->lvds_downclock_avail)
8918                 return;
8919
8920         /*
8921          * Since this is called by a timer, we should never get here in
8922          * the manual case.
8923          */
8924         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8925                 int pipe = intel_crtc->pipe;
8926                 int dpll_reg = DPLL(pipe);
8927                 int dpll;
8928
8929                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8930
8931                 assert_panel_unlocked(dev_priv, pipe);
8932
8933                 dpll = I915_READ(dpll_reg);
8934                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8935                 I915_WRITE(dpll_reg, dpll);
8936                 intel_wait_for_vblank(dev, pipe);
8937                 dpll = I915_READ(dpll_reg);
8938                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8939                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8940         }
8941
8942 }
8943
8944 void intel_mark_busy(struct drm_device *dev)
8945 {
8946         struct drm_i915_private *dev_priv = dev->dev_private;
8947
8948         if (dev_priv->mm.busy)
8949                 return;
8950
8951         intel_runtime_pm_get(dev_priv);
8952         i915_update_gfx_val(dev_priv);
8953         dev_priv->mm.busy = true;
8954 }
8955
8956 void intel_mark_idle(struct drm_device *dev)
8957 {
8958         struct drm_i915_private *dev_priv = dev->dev_private;
8959         struct drm_crtc *crtc;
8960
8961         if (!dev_priv->mm.busy)
8962                 return;
8963
8964         dev_priv->mm.busy = false;
8965
8966         if (!i915.powersave)
8967                 goto out;
8968
8969         for_each_crtc(dev, crtc) {
8970                 if (!crtc->primary->fb)
8971                         continue;
8972
8973                 intel_decrease_pllclock(crtc);
8974         }
8975
8976         if (INTEL_INFO(dev)->gen >= 6)
8977                 gen6_rps_idle(dev->dev_private);
8978
8979 out:
8980         intel_runtime_pm_put(dev_priv);
8981 }
8982
8983
8984 /**
8985  * intel_mark_fb_busy - mark given planes as busy
8986  * @dev: DRM device
8987  * @frontbuffer_bits: bits for the affected planes
8988  * @ring: optional ring for asynchronous commands
8989  *
8990  * This function gets called every time the screen contents change. It can be
8991  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8992  */
8993 static void intel_mark_fb_busy(struct drm_device *dev,
8994                                unsigned frontbuffer_bits,
8995                                struct intel_engine_cs *ring)
8996 {
8997         enum pipe pipe;
8998
8999         if (!i915.powersave)
9000                 return;
9001
9002         for_each_pipe(pipe) {
9003                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9004                         continue;
9005
9006                 intel_increase_pllclock(dev, pipe);
9007                 if (ring && intel_fbc_enabled(dev))
9008                         ring->fbc_dirty = true;
9009         }
9010 }
9011
9012 /**
9013  * intel_fb_obj_invalidate - invalidate frontbuffer object
9014  * @obj: GEM object to invalidate
9015  * @ring: set for asynchronous rendering
9016  *
9017  * This function gets called every time rendering on the given object starts and
9018  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9019  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9020  * until the rendering completes or a flip on this frontbuffer plane is
9021  * scheduled.
9022  */
9023 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9024                              struct intel_engine_cs *ring)
9025 {
9026         struct drm_device *dev = obj->base.dev;
9027         struct drm_i915_private *dev_priv = dev->dev_private;
9028
9029         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9030
9031         if (!obj->frontbuffer_bits)
9032                 return;
9033
9034         if (ring) {
9035                 mutex_lock(&dev_priv->fb_tracking.lock);
9036                 dev_priv->fb_tracking.busy_bits
9037                         |= obj->frontbuffer_bits;
9038                 dev_priv->fb_tracking.flip_bits
9039                         &= ~obj->frontbuffer_bits;
9040                 mutex_unlock(&dev_priv->fb_tracking.lock);
9041         }
9042
9043         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9044
9045         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9046 }
9047
9048 /**
9049  * intel_frontbuffer_flush - flush frontbuffer
9050  * @dev: DRM device
9051  * @frontbuffer_bits: frontbuffer plane tracking bits
9052  *
9053  * This function gets called every time rendering on the given planes has
9054  * completed and frontbuffer caching can be started again. Flushes will get
9055  * delayed if they're blocked by some oustanding asynchronous rendering.
9056  *
9057  * Can be called without any locks held.
9058  */
9059 void intel_frontbuffer_flush(struct drm_device *dev,
9060                              unsigned frontbuffer_bits)
9061 {
9062         struct drm_i915_private *dev_priv = dev->dev_private;
9063
9064         /* Delay flushing when rings are still busy.*/
9065         mutex_lock(&dev_priv->fb_tracking.lock);
9066         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9067         mutex_unlock(&dev_priv->fb_tracking.lock);
9068
9069         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9070
9071         intel_edp_psr_flush(dev, frontbuffer_bits);
9072 }
9073
9074 /**
9075  * intel_fb_obj_flush - flush frontbuffer object
9076  * @obj: GEM object to flush
9077  * @retire: set when retiring asynchronous rendering
9078  *
9079  * This function gets called every time rendering on the given object has
9080  * completed and frontbuffer caching can be started again. If @retire is true
9081  * then any delayed flushes will be unblocked.
9082  */
9083 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9084                         bool retire)
9085 {
9086         struct drm_device *dev = obj->base.dev;
9087         struct drm_i915_private *dev_priv = dev->dev_private;
9088         unsigned frontbuffer_bits;
9089
9090         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9091
9092         if (!obj->frontbuffer_bits)
9093                 return;
9094
9095         frontbuffer_bits = obj->frontbuffer_bits;
9096
9097         if (retire) {
9098                 mutex_lock(&dev_priv->fb_tracking.lock);
9099                 /* Filter out new bits since rendering started. */
9100                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9101
9102                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9103                 mutex_unlock(&dev_priv->fb_tracking.lock);
9104         }
9105
9106         intel_frontbuffer_flush(dev, frontbuffer_bits);
9107 }
9108
9109 /**
9110  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9111  * @dev: DRM device
9112  * @frontbuffer_bits: frontbuffer plane tracking bits
9113  *
9114  * This function gets called after scheduling a flip on @obj. The actual
9115  * frontbuffer flushing will be delayed until completion is signalled with
9116  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9117  * flush will be cancelled.
9118  *
9119  * Can be called without any locks held.
9120  */
9121 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9122                                     unsigned frontbuffer_bits)
9123 {
9124         struct drm_i915_private *dev_priv = dev->dev_private;
9125
9126         mutex_lock(&dev_priv->fb_tracking.lock);
9127         dev_priv->fb_tracking.flip_bits
9128                 |= frontbuffer_bits;
9129         mutex_unlock(&dev_priv->fb_tracking.lock);
9130 }
9131
9132 /**
9133  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9134  * @dev: DRM device
9135  * @frontbuffer_bits: frontbuffer plane tracking bits
9136  *
9137  * This function gets called after the flip has been latched and will complete
9138  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9139  *
9140  * Can be called without any locks held.
9141  */
9142 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9143                                      unsigned frontbuffer_bits)
9144 {
9145         struct drm_i915_private *dev_priv = dev->dev_private;
9146
9147         mutex_lock(&dev_priv->fb_tracking.lock);
9148         /* Mask any cancelled flips. */
9149         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9150         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9151         mutex_unlock(&dev_priv->fb_tracking.lock);
9152
9153         intel_frontbuffer_flush(dev, frontbuffer_bits);
9154 }
9155
9156 static void intel_crtc_destroy(struct drm_crtc *crtc)
9157 {
9158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9159         struct drm_device *dev = crtc->dev;
9160         struct intel_unpin_work *work;
9161         unsigned long flags;
9162
9163         spin_lock_irqsave(&dev->event_lock, flags);
9164         work = intel_crtc->unpin_work;
9165         intel_crtc->unpin_work = NULL;
9166         spin_unlock_irqrestore(&dev->event_lock, flags);
9167
9168         if (work) {
9169                 cancel_work_sync(&work->work);
9170                 kfree(work);
9171         }
9172
9173         drm_crtc_cleanup(crtc);
9174
9175         kfree(intel_crtc);
9176 }
9177
9178 static void intel_unpin_work_fn(struct work_struct *__work)
9179 {
9180         struct intel_unpin_work *work =
9181                 container_of(__work, struct intel_unpin_work, work);
9182         struct drm_device *dev = work->crtc->dev;
9183         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9184
9185         mutex_lock(&dev->struct_mutex);
9186         intel_unpin_fb_obj(work->old_fb_obj);
9187         drm_gem_object_unreference(&work->pending_flip_obj->base);
9188         drm_gem_object_unreference(&work->old_fb_obj->base);
9189
9190         intel_update_fbc(dev);
9191         mutex_unlock(&dev->struct_mutex);
9192
9193         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9194
9195         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9196         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9197
9198         kfree(work);
9199 }
9200
9201 static void do_intel_finish_page_flip(struct drm_device *dev,
9202                                       struct drm_crtc *crtc)
9203 {
9204         struct drm_i915_private *dev_priv = dev->dev_private;
9205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9206         struct intel_unpin_work *work;
9207         unsigned long flags;
9208
9209         /* Ignore early vblank irqs */
9210         if (intel_crtc == NULL)
9211                 return;
9212
9213         spin_lock_irqsave(&dev->event_lock, flags);
9214         work = intel_crtc->unpin_work;
9215
9216         /* Ensure we don't miss a work->pending update ... */
9217         smp_rmb();
9218
9219         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9220                 spin_unlock_irqrestore(&dev->event_lock, flags);
9221                 return;
9222         }
9223
9224         /* and that the unpin work is consistent wrt ->pending. */
9225         smp_rmb();
9226
9227         intel_crtc->unpin_work = NULL;
9228
9229         if (work->event)
9230                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9231
9232         drm_crtc_vblank_put(crtc);
9233
9234         spin_unlock_irqrestore(&dev->event_lock, flags);
9235
9236         wake_up_all(&dev_priv->pending_flip_queue);
9237
9238         queue_work(dev_priv->wq, &work->work);
9239
9240         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9241 }
9242
9243 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9244 {
9245         struct drm_i915_private *dev_priv = dev->dev_private;
9246         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9247
9248         do_intel_finish_page_flip(dev, crtc);
9249 }
9250
9251 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9252 {
9253         struct drm_i915_private *dev_priv = dev->dev_private;
9254         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9255
9256         do_intel_finish_page_flip(dev, crtc);
9257 }
9258
9259 /* Is 'a' after or equal to 'b'? */
9260 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9261 {
9262         return !((a - b) & 0x80000000);
9263 }
9264
9265 static bool page_flip_finished(struct intel_crtc *crtc)
9266 {
9267         struct drm_device *dev = crtc->base.dev;
9268         struct drm_i915_private *dev_priv = dev->dev_private;
9269
9270         /*
9271          * The relevant registers doen't exist on pre-ctg.
9272          * As the flip done interrupt doesn't trigger for mmio
9273          * flips on gmch platforms, a flip count check isn't
9274          * really needed there. But since ctg has the registers,
9275          * include it in the check anyway.
9276          */
9277         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9278                 return true;
9279
9280         /*
9281          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9282          * used the same base address. In that case the mmio flip might
9283          * have completed, but the CS hasn't even executed the flip yet.
9284          *
9285          * A flip count check isn't enough as the CS might have updated
9286          * the base address just after start of vblank, but before we
9287          * managed to process the interrupt. This means we'd complete the
9288          * CS flip too soon.
9289          *
9290          * Combining both checks should get us a good enough result. It may
9291          * still happen that the CS flip has been executed, but has not
9292          * yet actually completed. But in case the base address is the same
9293          * anyway, we don't really care.
9294          */
9295         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9296                 crtc->unpin_work->gtt_offset &&
9297                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9298                                     crtc->unpin_work->flip_count);
9299 }
9300
9301 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9302 {
9303         struct drm_i915_private *dev_priv = dev->dev_private;
9304         struct intel_crtc *intel_crtc =
9305                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9306         unsigned long flags;
9307
9308         /* NB: An MMIO update of the plane base pointer will also
9309          * generate a page-flip completion irq, i.e. every modeset
9310          * is also accompanied by a spurious intel_prepare_page_flip().
9311          */
9312         spin_lock_irqsave(&dev->event_lock, flags);
9313         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9314                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9315         spin_unlock_irqrestore(&dev->event_lock, flags);
9316 }
9317
9318 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9319 {
9320         /* Ensure that the work item is consistent when activating it ... */
9321         smp_wmb();
9322         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9323         /* and that it is marked active as soon as the irq could fire. */
9324         smp_wmb();
9325 }
9326
9327 static int intel_gen2_queue_flip(struct drm_device *dev,
9328                                  struct drm_crtc *crtc,
9329                                  struct drm_framebuffer *fb,
9330                                  struct drm_i915_gem_object *obj,
9331                                  struct intel_engine_cs *ring,
9332                                  uint32_t flags)
9333 {
9334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9335         u32 flip_mask;
9336         int ret;
9337
9338         ret = intel_ring_begin(ring, 6);
9339         if (ret)
9340                 return ret;
9341
9342         /* Can't queue multiple flips, so wait for the previous
9343          * one to finish before executing the next.
9344          */
9345         if (intel_crtc->plane)
9346                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9347         else
9348                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9349         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9350         intel_ring_emit(ring, MI_NOOP);
9351         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9352                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9353         intel_ring_emit(ring, fb->pitches[0]);
9354         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9355         intel_ring_emit(ring, 0); /* aux display base address, unused */
9356
9357         intel_mark_page_flip_active(intel_crtc);
9358         __intel_ring_advance(ring);
9359         return 0;
9360 }
9361
9362 static int intel_gen3_queue_flip(struct drm_device *dev,
9363                                  struct drm_crtc *crtc,
9364                                  struct drm_framebuffer *fb,
9365                                  struct drm_i915_gem_object *obj,
9366                                  struct intel_engine_cs *ring,
9367                                  uint32_t flags)
9368 {
9369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9370         u32 flip_mask;
9371         int ret;
9372
9373         ret = intel_ring_begin(ring, 6);
9374         if (ret)
9375                 return ret;
9376
9377         if (intel_crtc->plane)
9378                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9379         else
9380                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9381         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9382         intel_ring_emit(ring, MI_NOOP);
9383         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9384                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9385         intel_ring_emit(ring, fb->pitches[0]);
9386         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9387         intel_ring_emit(ring, MI_NOOP);
9388
9389         intel_mark_page_flip_active(intel_crtc);
9390         __intel_ring_advance(ring);
9391         return 0;
9392 }
9393
9394 static int intel_gen4_queue_flip(struct drm_device *dev,
9395                                  struct drm_crtc *crtc,
9396                                  struct drm_framebuffer *fb,
9397                                  struct drm_i915_gem_object *obj,
9398                                  struct intel_engine_cs *ring,
9399                                  uint32_t flags)
9400 {
9401         struct drm_i915_private *dev_priv = dev->dev_private;
9402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9403         uint32_t pf, pipesrc;
9404         int ret;
9405
9406         ret = intel_ring_begin(ring, 4);
9407         if (ret)
9408                 return ret;
9409
9410         /* i965+ uses the linear or tiled offsets from the
9411          * Display Registers (which do not change across a page-flip)
9412          * so we need only reprogram the base address.
9413          */
9414         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9415                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9416         intel_ring_emit(ring, fb->pitches[0]);
9417         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9418                         obj->tiling_mode);
9419
9420         /* XXX Enabling the panel-fitter across page-flip is so far
9421          * untested on non-native modes, so ignore it for now.
9422          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9423          */
9424         pf = 0;
9425         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9426         intel_ring_emit(ring, pf | pipesrc);
9427
9428         intel_mark_page_flip_active(intel_crtc);
9429         __intel_ring_advance(ring);
9430         return 0;
9431 }
9432
9433 static int intel_gen6_queue_flip(struct drm_device *dev,
9434                                  struct drm_crtc *crtc,
9435                                  struct drm_framebuffer *fb,
9436                                  struct drm_i915_gem_object *obj,
9437                                  struct intel_engine_cs *ring,
9438                                  uint32_t flags)
9439 {
9440         struct drm_i915_private *dev_priv = dev->dev_private;
9441         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9442         uint32_t pf, pipesrc;
9443         int ret;
9444
9445         ret = intel_ring_begin(ring, 4);
9446         if (ret)
9447                 return ret;
9448
9449         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9450                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9451         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9452         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9453
9454         /* Contrary to the suggestions in the documentation,
9455          * "Enable Panel Fitter" does not seem to be required when page
9456          * flipping with a non-native mode, and worse causes a normal
9457          * modeset to fail.
9458          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9459          */
9460         pf = 0;
9461         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9462         intel_ring_emit(ring, pf | pipesrc);
9463
9464         intel_mark_page_flip_active(intel_crtc);
9465         __intel_ring_advance(ring);
9466         return 0;
9467 }
9468
9469 static int intel_gen7_queue_flip(struct drm_device *dev,
9470                                  struct drm_crtc *crtc,
9471                                  struct drm_framebuffer *fb,
9472                                  struct drm_i915_gem_object *obj,
9473                                  struct intel_engine_cs *ring,
9474                                  uint32_t flags)
9475 {
9476         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9477         uint32_t plane_bit = 0;
9478         int len, ret;
9479
9480         switch (intel_crtc->plane) {
9481         case PLANE_A:
9482                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9483                 break;
9484         case PLANE_B:
9485                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9486                 break;
9487         case PLANE_C:
9488                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9489                 break;
9490         default:
9491                 WARN_ONCE(1, "unknown plane in flip command\n");
9492                 return -ENODEV;
9493         }
9494
9495         len = 4;
9496         if (ring->id == RCS) {
9497                 len += 6;
9498                 /*
9499                  * On Gen 8, SRM is now taking an extra dword to accommodate
9500                  * 48bits addresses, and we need a NOOP for the batch size to
9501                  * stay even.
9502                  */
9503                 if (IS_GEN8(dev))
9504                         len += 2;
9505         }
9506
9507         /*
9508          * BSpec MI_DISPLAY_FLIP for IVB:
9509          * "The full packet must be contained within the same cache line."
9510          *
9511          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9512          * cacheline, if we ever start emitting more commands before
9513          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9514          * then do the cacheline alignment, and finally emit the
9515          * MI_DISPLAY_FLIP.
9516          */
9517         ret = intel_ring_cacheline_align(ring);
9518         if (ret)
9519                 return ret;
9520
9521         ret = intel_ring_begin(ring, len);
9522         if (ret)
9523                 return ret;
9524
9525         /* Unmask the flip-done completion message. Note that the bspec says that
9526          * we should do this for both the BCS and RCS, and that we must not unmask
9527          * more than one flip event at any time (or ensure that one flip message
9528          * can be sent by waiting for flip-done prior to queueing new flips).
9529          * Experimentation says that BCS works despite DERRMR masking all
9530          * flip-done completion events and that unmasking all planes at once
9531          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9532          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9533          */
9534         if (ring->id == RCS) {
9535                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9536                 intel_ring_emit(ring, DERRMR);
9537                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9538                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9539                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9540                 if (IS_GEN8(dev))
9541                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9542                                               MI_SRM_LRM_GLOBAL_GTT);
9543                 else
9544                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9545                                               MI_SRM_LRM_GLOBAL_GTT);
9546                 intel_ring_emit(ring, DERRMR);
9547                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9548                 if (IS_GEN8(dev)) {
9549                         intel_ring_emit(ring, 0);
9550                         intel_ring_emit(ring, MI_NOOP);
9551                 }
9552         }
9553
9554         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9555         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9556         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9557         intel_ring_emit(ring, (MI_NOOP));
9558
9559         intel_mark_page_flip_active(intel_crtc);
9560         __intel_ring_advance(ring);
9561         return 0;
9562 }
9563
9564 static bool use_mmio_flip(struct intel_engine_cs *ring,
9565                           struct drm_i915_gem_object *obj)
9566 {
9567         /*
9568          * This is not being used for older platforms, because
9569          * non-availability of flip done interrupt forces us to use
9570          * CS flips. Older platforms derive flip done using some clever
9571          * tricks involving the flip_pending status bits and vblank irqs.
9572          * So using MMIO flips there would disrupt this mechanism.
9573          */
9574
9575         if (ring == NULL)
9576                 return true;
9577
9578         if (INTEL_INFO(ring->dev)->gen < 5)
9579                 return false;
9580
9581         if (i915.use_mmio_flip < 0)
9582                 return false;
9583         else if (i915.use_mmio_flip > 0)
9584                 return true;
9585         else if (i915.enable_execlists)
9586                 return true;
9587         else
9588                 return ring != obj->ring;
9589 }
9590
9591 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9592 {
9593         struct drm_device *dev = intel_crtc->base.dev;
9594         struct drm_i915_private *dev_priv = dev->dev_private;
9595         struct intel_framebuffer *intel_fb =
9596                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9597         struct drm_i915_gem_object *obj = intel_fb->obj;
9598         u32 dspcntr;
9599         u32 reg;
9600
9601         intel_mark_page_flip_active(intel_crtc);
9602
9603         reg = DSPCNTR(intel_crtc->plane);
9604         dspcntr = I915_READ(reg);
9605
9606         if (INTEL_INFO(dev)->gen >= 4) {
9607                 if (obj->tiling_mode != I915_TILING_NONE)
9608                         dspcntr |= DISPPLANE_TILED;
9609                 else
9610                         dspcntr &= ~DISPPLANE_TILED;
9611         }
9612         I915_WRITE(reg, dspcntr);
9613
9614         I915_WRITE(DSPSURF(intel_crtc->plane),
9615                    intel_crtc->unpin_work->gtt_offset);
9616         POSTING_READ(DSPSURF(intel_crtc->plane));
9617 }
9618
9619 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9620 {
9621         struct intel_engine_cs *ring;
9622         int ret;
9623
9624         lockdep_assert_held(&obj->base.dev->struct_mutex);
9625
9626         if (!obj->last_write_seqno)
9627                 return 0;
9628
9629         ring = obj->ring;
9630
9631         if (i915_seqno_passed(ring->get_seqno(ring, true),
9632                               obj->last_write_seqno))
9633                 return 0;
9634
9635         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9636         if (ret)
9637                 return ret;
9638
9639         if (WARN_ON(!ring->irq_get(ring)))
9640                 return 0;
9641
9642         return 1;
9643 }
9644
9645 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9646 {
9647         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9648         struct intel_crtc *intel_crtc;
9649         unsigned long irq_flags;
9650         u32 seqno;
9651
9652         seqno = ring->get_seqno(ring, false);
9653
9654         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9655         for_each_intel_crtc(ring->dev, intel_crtc) {
9656                 struct intel_mmio_flip *mmio_flip;
9657
9658                 mmio_flip = &intel_crtc->mmio_flip;
9659                 if (mmio_flip->seqno == 0)
9660                         continue;
9661
9662                 if (ring->id != mmio_flip->ring_id)
9663                         continue;
9664
9665                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9666                         intel_do_mmio_flip(intel_crtc);
9667                         mmio_flip->seqno = 0;
9668                         ring->irq_put(ring);
9669                 }
9670         }
9671         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9672 }
9673
9674 static int intel_queue_mmio_flip(struct drm_device *dev,
9675                                  struct drm_crtc *crtc,
9676                                  struct drm_framebuffer *fb,
9677                                  struct drm_i915_gem_object *obj,
9678                                  struct intel_engine_cs *ring,
9679                                  uint32_t flags)
9680 {
9681         struct drm_i915_private *dev_priv = dev->dev_private;
9682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9683         unsigned long irq_flags;
9684         int ret;
9685
9686         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9687                 return -EBUSY;
9688
9689         ret = intel_postpone_flip(obj);
9690         if (ret < 0)
9691                 return ret;
9692         if (ret == 0) {
9693                 intel_do_mmio_flip(intel_crtc);
9694                 return 0;
9695         }
9696
9697         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9698         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9699         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9700         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9701
9702         /*
9703          * Double check to catch cases where irq fired before
9704          * mmio flip data was ready
9705          */
9706         intel_notify_mmio_flip(obj->ring);
9707         return 0;
9708 }
9709
9710 static int intel_default_queue_flip(struct drm_device *dev,
9711                                     struct drm_crtc *crtc,
9712                                     struct drm_framebuffer *fb,
9713                                     struct drm_i915_gem_object *obj,
9714                                     struct intel_engine_cs *ring,
9715                                     uint32_t flags)
9716 {
9717         return -ENODEV;
9718 }
9719
9720 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9721                                 struct drm_framebuffer *fb,
9722                                 struct drm_pending_vblank_event *event,
9723                                 uint32_t page_flip_flags)
9724 {
9725         struct drm_device *dev = crtc->dev;
9726         struct drm_i915_private *dev_priv = dev->dev_private;
9727         struct drm_framebuffer *old_fb = crtc->primary->fb;
9728         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9729         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9730         enum pipe pipe = intel_crtc->pipe;
9731         struct intel_unpin_work *work;
9732         struct intel_engine_cs *ring;
9733         unsigned long flags;
9734         int ret;
9735
9736         /*
9737          * drm_mode_page_flip_ioctl() should already catch this, but double
9738          * check to be safe.  In the future we may enable pageflipping from
9739          * a disabled primary plane.
9740          */
9741         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9742                 return -EBUSY;
9743
9744         /* Can't change pixel format via MI display flips. */
9745         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9746                 return -EINVAL;
9747
9748         /*
9749          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9750          * Note that pitch changes could also affect these register.
9751          */
9752         if (INTEL_INFO(dev)->gen > 3 &&
9753             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9754              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9755                 return -EINVAL;
9756
9757         if (i915_terminally_wedged(&dev_priv->gpu_error))
9758                 goto out_hang;
9759
9760         work = kzalloc(sizeof(*work), GFP_KERNEL);
9761         if (work == NULL)
9762                 return -ENOMEM;
9763
9764         work->event = event;
9765         work->crtc = crtc;
9766         work->old_fb_obj = intel_fb_obj(old_fb);
9767         INIT_WORK(&work->work, intel_unpin_work_fn);
9768
9769         ret = drm_crtc_vblank_get(crtc);
9770         if (ret)
9771                 goto free_work;
9772
9773         /* We borrow the event spin lock for protecting unpin_work */
9774         spin_lock_irqsave(&dev->event_lock, flags);
9775         if (intel_crtc->unpin_work) {
9776                 spin_unlock_irqrestore(&dev->event_lock, flags);
9777                 kfree(work);
9778                 drm_crtc_vblank_put(crtc);
9779
9780                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9781                 return -EBUSY;
9782         }
9783         intel_crtc->unpin_work = work;
9784         spin_unlock_irqrestore(&dev->event_lock, flags);
9785
9786         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9787                 flush_workqueue(dev_priv->wq);
9788
9789         ret = i915_mutex_lock_interruptible(dev);
9790         if (ret)
9791                 goto cleanup;
9792
9793         /* Reference the objects for the scheduled work. */
9794         drm_gem_object_reference(&work->old_fb_obj->base);
9795         drm_gem_object_reference(&obj->base);
9796
9797         crtc->primary->fb = fb;
9798
9799         work->pending_flip_obj = obj;
9800
9801         work->enable_stall_check = true;
9802
9803         atomic_inc(&intel_crtc->unpin_work_count);
9804         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9805
9806         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9807                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9808
9809         if (IS_VALLEYVIEW(dev)) {
9810                 ring = &dev_priv->ring[BCS];
9811                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9812                         /* vlv: DISPLAY_FLIP fails to change tiling */
9813                         ring = NULL;
9814         } else if (IS_IVYBRIDGE(dev)) {
9815                 ring = &dev_priv->ring[BCS];
9816         } else if (INTEL_INFO(dev)->gen >= 7) {
9817                 ring = obj->ring;
9818                 if (ring == NULL || ring->id != RCS)
9819                         ring = &dev_priv->ring[BCS];
9820         } else {
9821                 ring = &dev_priv->ring[RCS];
9822         }
9823
9824         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9825         if (ret)
9826                 goto cleanup_pending;
9827
9828         work->gtt_offset =
9829                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9830
9831         if (use_mmio_flip(ring, obj))
9832                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9833                                             page_flip_flags);
9834         else
9835                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9836                                 page_flip_flags);
9837         if (ret)
9838                 goto cleanup_unpin;
9839
9840         i915_gem_track_fb(work->old_fb_obj, obj,
9841                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9842
9843         intel_disable_fbc(dev);
9844         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9845         mutex_unlock(&dev->struct_mutex);
9846
9847         trace_i915_flip_request(intel_crtc->plane, obj);
9848
9849         return 0;
9850
9851 cleanup_unpin:
9852         intel_unpin_fb_obj(obj);
9853 cleanup_pending:
9854         atomic_dec(&intel_crtc->unpin_work_count);
9855         crtc->primary->fb = old_fb;
9856         drm_gem_object_unreference(&work->old_fb_obj->base);
9857         drm_gem_object_unreference(&obj->base);
9858         mutex_unlock(&dev->struct_mutex);
9859
9860 cleanup:
9861         spin_lock_irqsave(&dev->event_lock, flags);
9862         intel_crtc->unpin_work = NULL;
9863         spin_unlock_irqrestore(&dev->event_lock, flags);
9864
9865         drm_crtc_vblank_put(crtc);
9866 free_work:
9867         kfree(work);
9868
9869         if (ret == -EIO) {
9870 out_hang:
9871                 intel_crtc_wait_for_pending_flips(crtc);
9872                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9873                 if (ret == 0 && event)
9874                         drm_send_vblank_event(dev, pipe, event);
9875         }
9876         return ret;
9877 }
9878
9879 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9880         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9881         .load_lut = intel_crtc_load_lut,
9882 };
9883
9884 /**
9885  * intel_modeset_update_staged_output_state
9886  *
9887  * Updates the staged output configuration state, e.g. after we've read out the
9888  * current hw state.
9889  */
9890 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9891 {
9892         struct intel_crtc *crtc;
9893         struct intel_encoder *encoder;
9894         struct intel_connector *connector;
9895
9896         list_for_each_entry(connector, &dev->mode_config.connector_list,
9897                             base.head) {
9898                 connector->new_encoder =
9899                         to_intel_encoder(connector->base.encoder);
9900         }
9901
9902         for_each_intel_encoder(dev, encoder) {
9903                 encoder->new_crtc =
9904                         to_intel_crtc(encoder->base.crtc);
9905         }
9906
9907         for_each_intel_crtc(dev, crtc) {
9908                 crtc->new_enabled = crtc->base.enabled;
9909
9910                 if (crtc->new_enabled)
9911                         crtc->new_config = &crtc->config;
9912                 else
9913                         crtc->new_config = NULL;
9914         }
9915 }
9916
9917 /**
9918  * intel_modeset_commit_output_state
9919  *
9920  * This function copies the stage display pipe configuration to the real one.
9921  */
9922 static void intel_modeset_commit_output_state(struct drm_device *dev)
9923 {
9924         struct intel_crtc *crtc;
9925         struct intel_encoder *encoder;
9926         struct intel_connector *connector;
9927
9928         list_for_each_entry(connector, &dev->mode_config.connector_list,
9929                             base.head) {
9930                 connector->base.encoder = &connector->new_encoder->base;
9931         }
9932
9933         for_each_intel_encoder(dev, encoder) {
9934                 encoder->base.crtc = &encoder->new_crtc->base;
9935         }
9936
9937         for_each_intel_crtc(dev, crtc) {
9938                 crtc->base.enabled = crtc->new_enabled;
9939         }
9940 }
9941
9942 static void
9943 connected_sink_compute_bpp(struct intel_connector *connector,
9944                            struct intel_crtc_config *pipe_config)
9945 {
9946         int bpp = pipe_config->pipe_bpp;
9947
9948         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9949                 connector->base.base.id,
9950                 connector->base.name);
9951
9952         /* Don't use an invalid EDID bpc value */
9953         if (connector->base.display_info.bpc &&
9954             connector->base.display_info.bpc * 3 < bpp) {
9955                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9956                               bpp, connector->base.display_info.bpc*3);
9957                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9958         }
9959
9960         /* Clamp bpp to 8 on screens without EDID 1.4 */
9961         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9962                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9963                               bpp);
9964                 pipe_config->pipe_bpp = 24;
9965         }
9966 }
9967
9968 static int
9969 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9970                           struct drm_framebuffer *fb,
9971                           struct intel_crtc_config *pipe_config)
9972 {
9973         struct drm_device *dev = crtc->base.dev;
9974         struct intel_connector *connector;
9975         int bpp;
9976
9977         switch (fb->pixel_format) {
9978         case DRM_FORMAT_C8:
9979                 bpp = 8*3; /* since we go through a colormap */
9980                 break;
9981         case DRM_FORMAT_XRGB1555:
9982         case DRM_FORMAT_ARGB1555:
9983                 /* checked in intel_framebuffer_init already */
9984                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9985                         return -EINVAL;
9986         case DRM_FORMAT_RGB565:
9987                 bpp = 6*3; /* min is 18bpp */
9988                 break;
9989         case DRM_FORMAT_XBGR8888:
9990         case DRM_FORMAT_ABGR8888:
9991                 /* checked in intel_framebuffer_init already */
9992                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9993                         return -EINVAL;
9994         case DRM_FORMAT_XRGB8888:
9995         case DRM_FORMAT_ARGB8888:
9996                 bpp = 8*3;
9997                 break;
9998         case DRM_FORMAT_XRGB2101010:
9999         case DRM_FORMAT_ARGB2101010:
10000         case DRM_FORMAT_XBGR2101010:
10001         case DRM_FORMAT_ABGR2101010:
10002                 /* checked in intel_framebuffer_init already */
10003                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10004                         return -EINVAL;
10005                 bpp = 10*3;
10006                 break;
10007         /* TODO: gen4+ supports 16 bpc floating point, too. */
10008         default:
10009                 DRM_DEBUG_KMS("unsupported depth\n");
10010                 return -EINVAL;
10011         }
10012
10013         pipe_config->pipe_bpp = bpp;
10014
10015         /* Clamp display bpp to EDID value */
10016         list_for_each_entry(connector, &dev->mode_config.connector_list,
10017                             base.head) {
10018                 if (!connector->new_encoder ||
10019                     connector->new_encoder->new_crtc != crtc)
10020                         continue;
10021
10022                 connected_sink_compute_bpp(connector, pipe_config);
10023         }
10024
10025         return bpp;
10026 }
10027
10028 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10029 {
10030         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10031                         "type: 0x%x flags: 0x%x\n",
10032                 mode->crtc_clock,
10033                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10034                 mode->crtc_hsync_end, mode->crtc_htotal,
10035                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10036                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10037 }
10038
10039 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10040                                    struct intel_crtc_config *pipe_config,
10041                                    const char *context)
10042 {
10043         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10044                       context, pipe_name(crtc->pipe));
10045
10046         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10047         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10048                       pipe_config->pipe_bpp, pipe_config->dither);
10049         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10050                       pipe_config->has_pch_encoder,
10051                       pipe_config->fdi_lanes,
10052                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10053                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10054                       pipe_config->fdi_m_n.tu);
10055         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10056                       pipe_config->has_dp_encoder,
10057                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10058                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10059                       pipe_config->dp_m_n.tu);
10060
10061         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10062                       pipe_config->has_dp_encoder,
10063                       pipe_config->dp_m2_n2.gmch_m,
10064                       pipe_config->dp_m2_n2.gmch_n,
10065                       pipe_config->dp_m2_n2.link_m,
10066                       pipe_config->dp_m2_n2.link_n,
10067                       pipe_config->dp_m2_n2.tu);
10068
10069         DRM_DEBUG_KMS("requested mode:\n");
10070         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10071         DRM_DEBUG_KMS("adjusted mode:\n");
10072         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10073         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10074         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10075         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10076                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10077         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10078                       pipe_config->gmch_pfit.control,
10079                       pipe_config->gmch_pfit.pgm_ratios,
10080                       pipe_config->gmch_pfit.lvds_border_bits);
10081         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10082                       pipe_config->pch_pfit.pos,
10083                       pipe_config->pch_pfit.size,
10084                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10085         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10086         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10087 }
10088
10089 static bool encoders_cloneable(const struct intel_encoder *a,
10090                                const struct intel_encoder *b)
10091 {
10092         /* masks could be asymmetric, so check both ways */
10093         return a == b || (a->cloneable & (1 << b->type) &&
10094                           b->cloneable & (1 << a->type));
10095 }
10096
10097 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10098                                          struct intel_encoder *encoder)
10099 {
10100         struct drm_device *dev = crtc->base.dev;
10101         struct intel_encoder *source_encoder;
10102
10103         for_each_intel_encoder(dev, source_encoder) {
10104                 if (source_encoder->new_crtc != crtc)
10105                         continue;
10106
10107                 if (!encoders_cloneable(encoder, source_encoder))
10108                         return false;
10109         }
10110
10111         return true;
10112 }
10113
10114 static bool check_encoder_cloning(struct intel_crtc *crtc)
10115 {
10116         struct drm_device *dev = crtc->base.dev;
10117         struct intel_encoder *encoder;
10118
10119         for_each_intel_encoder(dev, encoder) {
10120                 if (encoder->new_crtc != crtc)
10121                         continue;
10122
10123                 if (!check_single_encoder_cloning(crtc, encoder))
10124                         return false;
10125         }
10126
10127         return true;
10128 }
10129
10130 static struct intel_crtc_config *
10131 intel_modeset_pipe_config(struct drm_crtc *crtc,
10132                           struct drm_framebuffer *fb,
10133                           struct drm_display_mode *mode)
10134 {
10135         struct drm_device *dev = crtc->dev;
10136         struct intel_encoder *encoder;
10137         struct intel_crtc_config *pipe_config;
10138         int plane_bpp, ret = -EINVAL;
10139         bool retry = true;
10140
10141         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10142                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10143                 return ERR_PTR(-EINVAL);
10144         }
10145
10146         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10147         if (!pipe_config)
10148                 return ERR_PTR(-ENOMEM);
10149
10150         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10151         drm_mode_copy(&pipe_config->requested_mode, mode);
10152
10153         pipe_config->cpu_transcoder =
10154                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10155         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10156
10157         /*
10158          * Sanitize sync polarity flags based on requested ones. If neither
10159          * positive or negative polarity is requested, treat this as meaning
10160          * negative polarity.
10161          */
10162         if (!(pipe_config->adjusted_mode.flags &
10163               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10164                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10165
10166         if (!(pipe_config->adjusted_mode.flags &
10167               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10168                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10169
10170         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10171          * plane pixel format and any sink constraints into account. Returns the
10172          * source plane bpp so that dithering can be selected on mismatches
10173          * after encoders and crtc also have had their say. */
10174         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10175                                               fb, pipe_config);
10176         if (plane_bpp < 0)
10177                 goto fail;
10178
10179         /*
10180          * Determine the real pipe dimensions. Note that stereo modes can
10181          * increase the actual pipe size due to the frame doubling and
10182          * insertion of additional space for blanks between the frame. This
10183          * is stored in the crtc timings. We use the requested mode to do this
10184          * computation to clearly distinguish it from the adjusted mode, which
10185          * can be changed by the connectors in the below retry loop.
10186          */
10187         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10188         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10189         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10190
10191 encoder_retry:
10192         /* Ensure the port clock defaults are reset when retrying. */
10193         pipe_config->port_clock = 0;
10194         pipe_config->pixel_multiplier = 1;
10195
10196         /* Fill in default crtc timings, allow encoders to overwrite them. */
10197         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10198
10199         /* Pass our mode to the connectors and the CRTC to give them a chance to
10200          * adjust it according to limitations or connector properties, and also
10201          * a chance to reject the mode entirely.
10202          */
10203         for_each_intel_encoder(dev, encoder) {
10204
10205                 if (&encoder->new_crtc->base != crtc)
10206                         continue;
10207
10208                 if (!(encoder->compute_config(encoder, pipe_config))) {
10209                         DRM_DEBUG_KMS("Encoder config failure\n");
10210                         goto fail;
10211                 }
10212         }
10213
10214         /* Set default port clock if not overwritten by the encoder. Needs to be
10215          * done afterwards in case the encoder adjusts the mode. */
10216         if (!pipe_config->port_clock)
10217                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10218                         * pipe_config->pixel_multiplier;
10219
10220         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10221         if (ret < 0) {
10222                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10223                 goto fail;
10224         }
10225
10226         if (ret == RETRY) {
10227                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10228                         ret = -EINVAL;
10229                         goto fail;
10230                 }
10231
10232                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10233                 retry = false;
10234                 goto encoder_retry;
10235         }
10236
10237         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10238         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10239                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10240
10241         return pipe_config;
10242 fail:
10243         kfree(pipe_config);
10244         return ERR_PTR(ret);
10245 }
10246
10247 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10248  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10249 static void
10250 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10251                              unsigned *prepare_pipes, unsigned *disable_pipes)
10252 {
10253         struct intel_crtc *intel_crtc;
10254         struct drm_device *dev = crtc->dev;
10255         struct intel_encoder *encoder;
10256         struct intel_connector *connector;
10257         struct drm_crtc *tmp_crtc;
10258
10259         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10260
10261         /* Check which crtcs have changed outputs connected to them, these need
10262          * to be part of the prepare_pipes mask. We don't (yet) support global
10263          * modeset across multiple crtcs, so modeset_pipes will only have one
10264          * bit set at most. */
10265         list_for_each_entry(connector, &dev->mode_config.connector_list,
10266                             base.head) {
10267                 if (connector->base.encoder == &connector->new_encoder->base)
10268                         continue;
10269
10270                 if (connector->base.encoder) {
10271                         tmp_crtc = connector->base.encoder->crtc;
10272
10273                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10274                 }
10275
10276                 if (connector->new_encoder)
10277                         *prepare_pipes |=
10278                                 1 << connector->new_encoder->new_crtc->pipe;
10279         }
10280
10281         for_each_intel_encoder(dev, encoder) {
10282                 if (encoder->base.crtc == &encoder->new_crtc->base)
10283                         continue;
10284
10285                 if (encoder->base.crtc) {
10286                         tmp_crtc = encoder->base.crtc;
10287
10288                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10289                 }
10290
10291                 if (encoder->new_crtc)
10292                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10293         }
10294
10295         /* Check for pipes that will be enabled/disabled ... */
10296         for_each_intel_crtc(dev, intel_crtc) {
10297                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10298                         continue;
10299
10300                 if (!intel_crtc->new_enabled)
10301                         *disable_pipes |= 1 << intel_crtc->pipe;
10302                 else
10303                         *prepare_pipes |= 1 << intel_crtc->pipe;
10304         }
10305
10306
10307         /* set_mode is also used to update properties on life display pipes. */
10308         intel_crtc = to_intel_crtc(crtc);
10309         if (intel_crtc->new_enabled)
10310                 *prepare_pipes |= 1 << intel_crtc->pipe;
10311
10312         /*
10313          * For simplicity do a full modeset on any pipe where the output routing
10314          * changed. We could be more clever, but that would require us to be
10315          * more careful with calling the relevant encoder->mode_set functions.
10316          */
10317         if (*prepare_pipes)
10318                 *modeset_pipes = *prepare_pipes;
10319
10320         /* ... and mask these out. */
10321         *modeset_pipes &= ~(*disable_pipes);
10322         *prepare_pipes &= ~(*disable_pipes);
10323
10324         /*
10325          * HACK: We don't (yet) fully support global modesets. intel_set_config
10326          * obies this rule, but the modeset restore mode of
10327          * intel_modeset_setup_hw_state does not.
10328          */
10329         *modeset_pipes &= 1 << intel_crtc->pipe;
10330         *prepare_pipes &= 1 << intel_crtc->pipe;
10331
10332         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10333                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10334 }
10335
10336 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10337 {
10338         struct drm_encoder *encoder;
10339         struct drm_device *dev = crtc->dev;
10340
10341         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10342                 if (encoder->crtc == crtc)
10343                         return true;
10344
10345         return false;
10346 }
10347
10348 static void
10349 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10350 {
10351         struct intel_encoder *intel_encoder;
10352         struct intel_crtc *intel_crtc;
10353         struct drm_connector *connector;
10354
10355         for_each_intel_encoder(dev, intel_encoder) {
10356                 if (!intel_encoder->base.crtc)
10357                         continue;
10358
10359                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10360
10361                 if (prepare_pipes & (1 << intel_crtc->pipe))
10362                         intel_encoder->connectors_active = false;
10363         }
10364
10365         intel_modeset_commit_output_state(dev);
10366
10367         /* Double check state. */
10368         for_each_intel_crtc(dev, intel_crtc) {
10369                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10370                 WARN_ON(intel_crtc->new_config &&
10371                         intel_crtc->new_config != &intel_crtc->config);
10372                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10373         }
10374
10375         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10376                 if (!connector->encoder || !connector->encoder->crtc)
10377                         continue;
10378
10379                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10380
10381                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10382                         struct drm_property *dpms_property =
10383                                 dev->mode_config.dpms_property;
10384
10385                         connector->dpms = DRM_MODE_DPMS_ON;
10386                         drm_object_property_set_value(&connector->base,
10387                                                          dpms_property,
10388                                                          DRM_MODE_DPMS_ON);
10389
10390                         intel_encoder = to_intel_encoder(connector->encoder);
10391                         intel_encoder->connectors_active = true;
10392                 }
10393         }
10394
10395 }
10396
10397 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10398 {
10399         int diff;
10400
10401         if (clock1 == clock2)
10402                 return true;
10403
10404         if (!clock1 || !clock2)
10405                 return false;
10406
10407         diff = abs(clock1 - clock2);
10408
10409         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10410                 return true;
10411
10412         return false;
10413 }
10414
10415 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10416         list_for_each_entry((intel_crtc), \
10417                             &(dev)->mode_config.crtc_list, \
10418                             base.head) \
10419                 if (mask & (1 <<(intel_crtc)->pipe))
10420
10421 static bool
10422 intel_pipe_config_compare(struct drm_device *dev,
10423                           struct intel_crtc_config *current_config,
10424                           struct intel_crtc_config *pipe_config)
10425 {
10426 #define PIPE_CONF_CHECK_X(name) \
10427         if (current_config->name != pipe_config->name) { \
10428                 DRM_ERROR("mismatch in " #name " " \
10429                           "(expected 0x%08x, found 0x%08x)\n", \
10430                           current_config->name, \
10431                           pipe_config->name); \
10432                 return false; \
10433         }
10434
10435 #define PIPE_CONF_CHECK_I(name) \
10436         if (current_config->name != pipe_config->name) { \
10437                 DRM_ERROR("mismatch in " #name " " \
10438                           "(expected %i, found %i)\n", \
10439                           current_config->name, \
10440                           pipe_config->name); \
10441                 return false; \
10442         }
10443
10444 /* This is required for BDW+ where there is only one set of registers for
10445  * switching between high and low RR.
10446  * This macro can be used whenever a comparison has to be made between one
10447  * hw state and multiple sw state variables.
10448  */
10449 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10450         if ((current_config->name != pipe_config->name) && \
10451                 (current_config->alt_name != pipe_config->name)) { \
10452                         DRM_ERROR("mismatch in " #name " " \
10453                                   "(expected %i or %i, found %i)\n", \
10454                                   current_config->name, \
10455                                   current_config->alt_name, \
10456                                   pipe_config->name); \
10457                         return false; \
10458         }
10459
10460 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10461         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10462                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10463                           "(expected %i, found %i)\n", \
10464                           current_config->name & (mask), \
10465                           pipe_config->name & (mask)); \
10466                 return false; \
10467         }
10468
10469 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10470         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10471                 DRM_ERROR("mismatch in " #name " " \
10472                           "(expected %i, found %i)\n", \
10473                           current_config->name, \
10474                           pipe_config->name); \
10475                 return false; \
10476         }
10477
10478 #define PIPE_CONF_QUIRK(quirk)  \
10479         ((current_config->quirks | pipe_config->quirks) & (quirk))
10480
10481         PIPE_CONF_CHECK_I(cpu_transcoder);
10482
10483         PIPE_CONF_CHECK_I(has_pch_encoder);
10484         PIPE_CONF_CHECK_I(fdi_lanes);
10485         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10486         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10487         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10488         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10489         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10490
10491         PIPE_CONF_CHECK_I(has_dp_encoder);
10492
10493         if (INTEL_INFO(dev)->gen < 8) {
10494                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10495                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10496                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10497                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10498                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10499
10500                 if (current_config->has_drrs) {
10501                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10502                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10503                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10504                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10505                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10506                 }
10507         } else {
10508                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10509                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10510                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10511                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10512                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10513         }
10514
10515         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10516         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10517         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10518         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10519         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10520         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10521
10522         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10523         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10524         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10525         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10526         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10527         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10528
10529         PIPE_CONF_CHECK_I(pixel_multiplier);
10530         PIPE_CONF_CHECK_I(has_hdmi_sink);
10531         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10532             IS_VALLEYVIEW(dev))
10533                 PIPE_CONF_CHECK_I(limited_color_range);
10534
10535         PIPE_CONF_CHECK_I(has_audio);
10536
10537         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10538                               DRM_MODE_FLAG_INTERLACE);
10539
10540         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10541                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10542                                       DRM_MODE_FLAG_PHSYNC);
10543                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10544                                       DRM_MODE_FLAG_NHSYNC);
10545                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10546                                       DRM_MODE_FLAG_PVSYNC);
10547                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10548                                       DRM_MODE_FLAG_NVSYNC);
10549         }
10550
10551         PIPE_CONF_CHECK_I(pipe_src_w);
10552         PIPE_CONF_CHECK_I(pipe_src_h);
10553
10554         /*
10555          * FIXME: BIOS likes to set up a cloned config with lvds+external
10556          * screen. Since we don't yet re-compute the pipe config when moving
10557          * just the lvds port away to another pipe the sw tracking won't match.
10558          *
10559          * Proper atomic modesets with recomputed global state will fix this.
10560          * Until then just don't check gmch state for inherited modes.
10561          */
10562         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10563                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10564                 /* pfit ratios are autocomputed by the hw on gen4+ */
10565                 if (INTEL_INFO(dev)->gen < 4)
10566                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10567                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10568         }
10569
10570         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10571         if (current_config->pch_pfit.enabled) {
10572                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10573                 PIPE_CONF_CHECK_I(pch_pfit.size);
10574         }
10575
10576         /* BDW+ don't expose a synchronous way to read the state */
10577         if (IS_HASWELL(dev))
10578                 PIPE_CONF_CHECK_I(ips_enabled);
10579
10580         PIPE_CONF_CHECK_I(double_wide);
10581
10582         PIPE_CONF_CHECK_X(ddi_pll_sel);
10583
10584         PIPE_CONF_CHECK_I(shared_dpll);
10585         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10586         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10587         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10588         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10589         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10590
10591         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10592                 PIPE_CONF_CHECK_I(pipe_bpp);
10593
10594         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10595         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10596
10597 #undef PIPE_CONF_CHECK_X
10598 #undef PIPE_CONF_CHECK_I
10599 #undef PIPE_CONF_CHECK_I_ALT
10600 #undef PIPE_CONF_CHECK_FLAGS
10601 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10602 #undef PIPE_CONF_QUIRK
10603
10604         return true;
10605 }
10606
10607 static void
10608 check_connector_state(struct drm_device *dev)
10609 {
10610         struct intel_connector *connector;
10611
10612         list_for_each_entry(connector, &dev->mode_config.connector_list,
10613                             base.head) {
10614                 /* This also checks the encoder/connector hw state with the
10615                  * ->get_hw_state callbacks. */
10616                 intel_connector_check_state(connector);
10617
10618                 WARN(&connector->new_encoder->base != connector->base.encoder,
10619                      "connector's staged encoder doesn't match current encoder\n");
10620         }
10621 }
10622
10623 static void
10624 check_encoder_state(struct drm_device *dev)
10625 {
10626         struct intel_encoder *encoder;
10627         struct intel_connector *connector;
10628
10629         for_each_intel_encoder(dev, encoder) {
10630                 bool enabled = false;
10631                 bool active = false;
10632                 enum pipe pipe, tracked_pipe;
10633
10634                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10635                               encoder->base.base.id,
10636                               encoder->base.name);
10637
10638                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10639                      "encoder's stage crtc doesn't match current crtc\n");
10640                 WARN(encoder->connectors_active && !encoder->base.crtc,
10641                      "encoder's active_connectors set, but no crtc\n");
10642
10643                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10644                                     base.head) {
10645                         if (connector->base.encoder != &encoder->base)
10646                                 continue;
10647                         enabled = true;
10648                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10649                                 active = true;
10650                 }
10651                 /*
10652                  * for MST connectors if we unplug the connector is gone
10653                  * away but the encoder is still connected to a crtc
10654                  * until a modeset happens in response to the hotplug.
10655                  */
10656                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10657                         continue;
10658
10659                 WARN(!!encoder->base.crtc != enabled,
10660                      "encoder's enabled state mismatch "
10661                      "(expected %i, found %i)\n",
10662                      !!encoder->base.crtc, enabled);
10663                 WARN(active && !encoder->base.crtc,
10664                      "active encoder with no crtc\n");
10665
10666                 WARN(encoder->connectors_active != active,
10667                      "encoder's computed active state doesn't match tracked active state "
10668                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10669
10670                 active = encoder->get_hw_state(encoder, &pipe);
10671                 WARN(active != encoder->connectors_active,
10672                      "encoder's hw state doesn't match sw tracking "
10673                      "(expected %i, found %i)\n",
10674                      encoder->connectors_active, active);
10675
10676                 if (!encoder->base.crtc)
10677                         continue;
10678
10679                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10680                 WARN(active && pipe != tracked_pipe,
10681                      "active encoder's pipe doesn't match"
10682                      "(expected %i, found %i)\n",
10683                      tracked_pipe, pipe);
10684
10685         }
10686 }
10687
10688 static void
10689 check_crtc_state(struct drm_device *dev)
10690 {
10691         struct drm_i915_private *dev_priv = dev->dev_private;
10692         struct intel_crtc *crtc;
10693         struct intel_encoder *encoder;
10694         struct intel_crtc_config pipe_config;
10695
10696         for_each_intel_crtc(dev, crtc) {
10697                 bool enabled = false;
10698                 bool active = false;
10699
10700                 memset(&pipe_config, 0, sizeof(pipe_config));
10701
10702                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10703                               crtc->base.base.id);
10704
10705                 WARN(crtc->active && !crtc->base.enabled,
10706                      "active crtc, but not enabled in sw tracking\n");
10707
10708                 for_each_intel_encoder(dev, encoder) {
10709                         if (encoder->base.crtc != &crtc->base)
10710                                 continue;
10711                         enabled = true;
10712                         if (encoder->connectors_active)
10713                                 active = true;
10714                 }
10715
10716                 WARN(active != crtc->active,
10717                      "crtc's computed active state doesn't match tracked active state "
10718                      "(expected %i, found %i)\n", active, crtc->active);
10719                 WARN(enabled != crtc->base.enabled,
10720                      "crtc's computed enabled state doesn't match tracked enabled state "
10721                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10722
10723                 active = dev_priv->display.get_pipe_config(crtc,
10724                                                            &pipe_config);
10725
10726                 /* hw state is inconsistent with the pipe A quirk */
10727                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10728                         active = crtc->active;
10729
10730                 for_each_intel_encoder(dev, encoder) {
10731                         enum pipe pipe;
10732                         if (encoder->base.crtc != &crtc->base)
10733                                 continue;
10734                         if (encoder->get_hw_state(encoder, &pipe))
10735                                 encoder->get_config(encoder, &pipe_config);
10736                 }
10737
10738                 WARN(crtc->active != active,
10739                      "crtc active state doesn't match with hw state "
10740                      "(expected %i, found %i)\n", crtc->active, active);
10741
10742                 if (active &&
10743                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10744                         WARN(1, "pipe state doesn't match!\n");
10745                         intel_dump_pipe_config(crtc, &pipe_config,
10746                                                "[hw state]");
10747                         intel_dump_pipe_config(crtc, &crtc->config,
10748                                                "[sw state]");
10749                 }
10750         }
10751 }
10752
10753 static void
10754 check_shared_dpll_state(struct drm_device *dev)
10755 {
10756         struct drm_i915_private *dev_priv = dev->dev_private;
10757         struct intel_crtc *crtc;
10758         struct intel_dpll_hw_state dpll_hw_state;
10759         int i;
10760
10761         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10762                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10763                 int enabled_crtcs = 0, active_crtcs = 0;
10764                 bool active;
10765
10766                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10767
10768                 DRM_DEBUG_KMS("%s\n", pll->name);
10769
10770                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10771
10772                 WARN(pll->active > pll->refcount,
10773                      "more active pll users than references: %i vs %i\n",
10774                      pll->active, pll->refcount);
10775                 WARN(pll->active && !pll->on,
10776                      "pll in active use but not on in sw tracking\n");
10777                 WARN(pll->on && !pll->active,
10778                      "pll in on but not on in use in sw tracking\n");
10779                 WARN(pll->on != active,
10780                      "pll on state mismatch (expected %i, found %i)\n",
10781                      pll->on, active);
10782
10783                 for_each_intel_crtc(dev, crtc) {
10784                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10785                                 enabled_crtcs++;
10786                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10787                                 active_crtcs++;
10788                 }
10789                 WARN(pll->active != active_crtcs,
10790                      "pll active crtcs mismatch (expected %i, found %i)\n",
10791                      pll->active, active_crtcs);
10792                 WARN(pll->refcount != enabled_crtcs,
10793                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10794                      pll->refcount, enabled_crtcs);
10795
10796                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10797                                        sizeof(dpll_hw_state)),
10798                      "pll hw state mismatch\n");
10799         }
10800 }
10801
10802 void
10803 intel_modeset_check_state(struct drm_device *dev)
10804 {
10805         check_connector_state(dev);
10806         check_encoder_state(dev);
10807         check_crtc_state(dev);
10808         check_shared_dpll_state(dev);
10809 }
10810
10811 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10812                                      int dotclock)
10813 {
10814         /*
10815          * FDI already provided one idea for the dotclock.
10816          * Yell if the encoder disagrees.
10817          */
10818         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10819              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10820              pipe_config->adjusted_mode.crtc_clock, dotclock);
10821 }
10822
10823 static void update_scanline_offset(struct intel_crtc *crtc)
10824 {
10825         struct drm_device *dev = crtc->base.dev;
10826
10827         /*
10828          * The scanline counter increments at the leading edge of hsync.
10829          *
10830          * On most platforms it starts counting from vtotal-1 on the
10831          * first active line. That means the scanline counter value is
10832          * always one less than what we would expect. Ie. just after
10833          * start of vblank, which also occurs at start of hsync (on the
10834          * last active line), the scanline counter will read vblank_start-1.
10835          *
10836          * On gen2 the scanline counter starts counting from 1 instead
10837          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10838          * to keep the value positive), instead of adding one.
10839          *
10840          * On HSW+ the behaviour of the scanline counter depends on the output
10841          * type. For DP ports it behaves like most other platforms, but on HDMI
10842          * there's an extra 1 line difference. So we need to add two instead of
10843          * one to the value.
10844          */
10845         if (IS_GEN2(dev)) {
10846                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10847                 int vtotal;
10848
10849                 vtotal = mode->crtc_vtotal;
10850                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10851                         vtotal /= 2;
10852
10853                 crtc->scanline_offset = vtotal - 1;
10854         } else if (HAS_DDI(dev) &&
10855                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10856                 crtc->scanline_offset = 2;
10857         } else
10858                 crtc->scanline_offset = 1;
10859 }
10860
10861 static int __intel_set_mode(struct drm_crtc *crtc,
10862                             struct drm_display_mode *mode,
10863                             int x, int y, struct drm_framebuffer *fb)
10864 {
10865         struct drm_device *dev = crtc->dev;
10866         struct drm_i915_private *dev_priv = dev->dev_private;
10867         struct drm_display_mode *saved_mode;
10868         struct intel_crtc_config *pipe_config = NULL;
10869         struct intel_crtc *intel_crtc;
10870         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10871         int ret = 0;
10872
10873         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10874         if (!saved_mode)
10875                 return -ENOMEM;
10876
10877         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10878                                      &prepare_pipes, &disable_pipes);
10879
10880         *saved_mode = crtc->mode;
10881
10882         /* Hack: Because we don't (yet) support global modeset on multiple
10883          * crtcs, we don't keep track of the new mode for more than one crtc.
10884          * Hence simply check whether any bit is set in modeset_pipes in all the
10885          * pieces of code that are not yet converted to deal with mutliple crtcs
10886          * changing their mode at the same time. */
10887         if (modeset_pipes) {
10888                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10889                 if (IS_ERR(pipe_config)) {
10890                         ret = PTR_ERR(pipe_config);
10891                         pipe_config = NULL;
10892
10893                         goto out;
10894                 }
10895                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10896                                        "[modeset]");
10897                 to_intel_crtc(crtc)->new_config = pipe_config;
10898         }
10899
10900         /*
10901          * See if the config requires any additional preparation, e.g.
10902          * to adjust global state with pipes off.  We need to do this
10903          * here so we can get the modeset_pipe updated config for the new
10904          * mode set on this crtc.  For other crtcs we need to use the
10905          * adjusted_mode bits in the crtc directly.
10906          */
10907         if (IS_VALLEYVIEW(dev)) {
10908                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10909
10910                 /* may have added more to prepare_pipes than we should */
10911                 prepare_pipes &= ~disable_pipes;
10912         }
10913
10914         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10915                 intel_crtc_disable(&intel_crtc->base);
10916
10917         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10918                 if (intel_crtc->base.enabled)
10919                         dev_priv->display.crtc_disable(&intel_crtc->base);
10920         }
10921
10922         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10923          * to set it here already despite that we pass it down the callchain.
10924          */
10925         if (modeset_pipes) {
10926                 crtc->mode = *mode;
10927                 /* mode_set/enable/disable functions rely on a correct pipe
10928                  * config. */
10929                 to_intel_crtc(crtc)->config = *pipe_config;
10930                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10931
10932                 /*
10933                  * Calculate and store various constants which
10934                  * are later needed by vblank and swap-completion
10935                  * timestamping. They are derived from true hwmode.
10936                  */
10937                 drm_calc_timestamping_constants(crtc,
10938                                                 &pipe_config->adjusted_mode);
10939         }
10940
10941         /* Only after disabling all output pipelines that will be changed can we
10942          * update the the output configuration. */
10943         intel_modeset_update_state(dev, prepare_pipes);
10944
10945         if (dev_priv->display.modeset_global_resources)
10946                 dev_priv->display.modeset_global_resources(dev);
10947
10948         /* Set up the DPLL and any encoders state that needs to adjust or depend
10949          * on the DPLL.
10950          */
10951         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10952                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10953                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10954                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10955
10956                 mutex_lock(&dev->struct_mutex);
10957                 ret = intel_pin_and_fence_fb_obj(dev,
10958                                                  obj,
10959                                                  NULL);
10960                 if (ret != 0) {
10961                         DRM_ERROR("pin & fence failed\n");
10962                         mutex_unlock(&dev->struct_mutex);
10963                         goto done;
10964                 }
10965                 if (old_fb)
10966                         intel_unpin_fb_obj(old_obj);
10967                 i915_gem_track_fb(old_obj, obj,
10968                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10969                 mutex_unlock(&dev->struct_mutex);
10970
10971                 crtc->primary->fb = fb;
10972                 crtc->x = x;
10973                 crtc->y = y;
10974
10975                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10976                                                       x, y, fb);
10977                 if (ret)
10978                         goto done;
10979         }
10980
10981         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10982         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10983                 update_scanline_offset(intel_crtc);
10984
10985                 dev_priv->display.crtc_enable(&intel_crtc->base);
10986         }
10987
10988         /* FIXME: add subpixel order */
10989 done:
10990         if (ret && crtc->enabled)
10991                 crtc->mode = *saved_mode;
10992
10993 out:
10994         kfree(pipe_config);
10995         kfree(saved_mode);
10996         return ret;
10997 }
10998
10999 static int intel_set_mode(struct drm_crtc *crtc,
11000                           struct drm_display_mode *mode,
11001                           int x, int y, struct drm_framebuffer *fb)
11002 {
11003         int ret;
11004
11005         ret = __intel_set_mode(crtc, mode, x, y, fb);
11006
11007         if (ret == 0)
11008                 intel_modeset_check_state(crtc->dev);
11009
11010         return ret;
11011 }
11012
11013 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11014 {
11015         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11016 }
11017
11018 #undef for_each_intel_crtc_masked
11019
11020 static void intel_set_config_free(struct intel_set_config *config)
11021 {
11022         if (!config)
11023                 return;
11024
11025         kfree(config->save_connector_encoders);
11026         kfree(config->save_encoder_crtcs);
11027         kfree(config->save_crtc_enabled);
11028         kfree(config);
11029 }
11030
11031 static int intel_set_config_save_state(struct drm_device *dev,
11032                                        struct intel_set_config *config)
11033 {
11034         struct drm_crtc *crtc;
11035         struct drm_encoder *encoder;
11036         struct drm_connector *connector;
11037         int count;
11038
11039         config->save_crtc_enabled =
11040                 kcalloc(dev->mode_config.num_crtc,
11041                         sizeof(bool), GFP_KERNEL);
11042         if (!config->save_crtc_enabled)
11043                 return -ENOMEM;
11044
11045         config->save_encoder_crtcs =
11046                 kcalloc(dev->mode_config.num_encoder,
11047                         sizeof(struct drm_crtc *), GFP_KERNEL);
11048         if (!config->save_encoder_crtcs)
11049                 return -ENOMEM;
11050
11051         config->save_connector_encoders =
11052                 kcalloc(dev->mode_config.num_connector,
11053                         sizeof(struct drm_encoder *), GFP_KERNEL);
11054         if (!config->save_connector_encoders)
11055                 return -ENOMEM;
11056
11057         /* Copy data. Note that driver private data is not affected.
11058          * Should anything bad happen only the expected state is
11059          * restored, not the drivers personal bookkeeping.
11060          */
11061         count = 0;
11062         for_each_crtc(dev, crtc) {
11063                 config->save_crtc_enabled[count++] = crtc->enabled;
11064         }
11065
11066         count = 0;
11067         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11068                 config->save_encoder_crtcs[count++] = encoder->crtc;
11069         }
11070
11071         count = 0;
11072         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11073                 config->save_connector_encoders[count++] = connector->encoder;
11074         }
11075
11076         return 0;
11077 }
11078
11079 static void intel_set_config_restore_state(struct drm_device *dev,
11080                                            struct intel_set_config *config)
11081 {
11082         struct intel_crtc *crtc;
11083         struct intel_encoder *encoder;
11084         struct intel_connector *connector;
11085         int count;
11086
11087         count = 0;
11088         for_each_intel_crtc(dev, crtc) {
11089                 crtc->new_enabled = config->save_crtc_enabled[count++];
11090
11091                 if (crtc->new_enabled)
11092                         crtc->new_config = &crtc->config;
11093                 else
11094                         crtc->new_config = NULL;
11095         }
11096
11097         count = 0;
11098         for_each_intel_encoder(dev, encoder) {
11099                 encoder->new_crtc =
11100                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11101         }
11102
11103         count = 0;
11104         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11105                 connector->new_encoder =
11106                         to_intel_encoder(config->save_connector_encoders[count++]);
11107         }
11108 }
11109
11110 static bool
11111 is_crtc_connector_off(struct drm_mode_set *set)
11112 {
11113         int i;
11114
11115         if (set->num_connectors == 0)
11116                 return false;
11117
11118         if (WARN_ON(set->connectors == NULL))
11119                 return false;
11120
11121         for (i = 0; i < set->num_connectors; i++)
11122                 if (set->connectors[i]->encoder &&
11123                     set->connectors[i]->encoder->crtc == set->crtc &&
11124                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11125                         return true;
11126
11127         return false;
11128 }
11129
11130 static void
11131 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11132                                       struct intel_set_config *config)
11133 {
11134
11135         /* We should be able to check here if the fb has the same properties
11136          * and then just flip_or_move it */
11137         if (is_crtc_connector_off(set)) {
11138                 config->mode_changed = true;
11139         } else if (set->crtc->primary->fb != set->fb) {
11140                 /*
11141                  * If we have no fb, we can only flip as long as the crtc is
11142                  * active, otherwise we need a full mode set.  The crtc may
11143                  * be active if we've only disabled the primary plane, or
11144                  * in fastboot situations.
11145                  */
11146                 if (set->crtc->primary->fb == NULL) {
11147                         struct intel_crtc *intel_crtc =
11148                                 to_intel_crtc(set->crtc);
11149
11150                         if (intel_crtc->active) {
11151                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11152                                 config->fb_changed = true;
11153                         } else {
11154                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11155                                 config->mode_changed = true;
11156                         }
11157                 } else if (set->fb == NULL) {
11158                         config->mode_changed = true;
11159                 } else if (set->fb->pixel_format !=
11160                            set->crtc->primary->fb->pixel_format) {
11161                         config->mode_changed = true;
11162                 } else {
11163                         config->fb_changed = true;
11164                 }
11165         }
11166
11167         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11168                 config->fb_changed = true;
11169
11170         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11171                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11172                 drm_mode_debug_printmodeline(&set->crtc->mode);
11173                 drm_mode_debug_printmodeline(set->mode);
11174                 config->mode_changed = true;
11175         }
11176
11177         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11178                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11179 }
11180
11181 static int
11182 intel_modeset_stage_output_state(struct drm_device *dev,
11183                                  struct drm_mode_set *set,
11184                                  struct intel_set_config *config)
11185 {
11186         struct intel_connector *connector;
11187         struct intel_encoder *encoder;
11188         struct intel_crtc *crtc;
11189         int ro;
11190
11191         /* The upper layers ensure that we either disable a crtc or have a list
11192          * of connectors. For paranoia, double-check this. */
11193         WARN_ON(!set->fb && (set->num_connectors != 0));
11194         WARN_ON(set->fb && (set->num_connectors == 0));
11195
11196         list_for_each_entry(connector, &dev->mode_config.connector_list,
11197                             base.head) {
11198                 /* Otherwise traverse passed in connector list and get encoders
11199                  * for them. */
11200                 for (ro = 0; ro < set->num_connectors; ro++) {
11201                         if (set->connectors[ro] == &connector->base) {
11202                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11203                                 break;
11204                         }
11205                 }
11206
11207                 /* If we disable the crtc, disable all its connectors. Also, if
11208                  * the connector is on the changing crtc but not on the new
11209                  * connector list, disable it. */
11210                 if ((!set->fb || ro == set->num_connectors) &&
11211                     connector->base.encoder &&
11212                     connector->base.encoder->crtc == set->crtc) {
11213                         connector->new_encoder = NULL;
11214
11215                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11216                                 connector->base.base.id,
11217                                 connector->base.name);
11218                 }
11219
11220
11221                 if (&connector->new_encoder->base != connector->base.encoder) {
11222                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11223                         config->mode_changed = true;
11224                 }
11225         }
11226         /* connector->new_encoder is now updated for all connectors. */
11227
11228         /* Update crtc of enabled connectors. */
11229         list_for_each_entry(connector, &dev->mode_config.connector_list,
11230                             base.head) {
11231                 struct drm_crtc *new_crtc;
11232
11233                 if (!connector->new_encoder)
11234                         continue;
11235
11236                 new_crtc = connector->new_encoder->base.crtc;
11237
11238                 for (ro = 0; ro < set->num_connectors; ro++) {
11239                         if (set->connectors[ro] == &connector->base)
11240                                 new_crtc = set->crtc;
11241                 }
11242
11243                 /* Make sure the new CRTC will work with the encoder */
11244                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11245                                          new_crtc)) {
11246                         return -EINVAL;
11247                 }
11248                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11249
11250                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11251                         connector->base.base.id,
11252                         connector->base.name,
11253                         new_crtc->base.id);
11254         }
11255
11256         /* Check for any encoders that needs to be disabled. */
11257         for_each_intel_encoder(dev, encoder) {
11258                 int num_connectors = 0;
11259                 list_for_each_entry(connector,
11260                                     &dev->mode_config.connector_list,
11261                                     base.head) {
11262                         if (connector->new_encoder == encoder) {
11263                                 WARN_ON(!connector->new_encoder->new_crtc);
11264                                 num_connectors++;
11265                         }
11266                 }
11267
11268                 if (num_connectors == 0)
11269                         encoder->new_crtc = NULL;
11270                 else if (num_connectors > 1)
11271                         return -EINVAL;
11272
11273                 /* Only now check for crtc changes so we don't miss encoders
11274                  * that will be disabled. */
11275                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11276                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11277                         config->mode_changed = true;
11278                 }
11279         }
11280         /* Now we've also updated encoder->new_crtc for all encoders. */
11281         list_for_each_entry(connector, &dev->mode_config.connector_list,
11282                             base.head) {
11283                 if (connector->new_encoder)
11284                         if (connector->new_encoder != connector->encoder)
11285                                 connector->encoder = connector->new_encoder;
11286         }
11287         for_each_intel_crtc(dev, crtc) {
11288                 crtc->new_enabled = false;
11289
11290                 for_each_intel_encoder(dev, encoder) {
11291                         if (encoder->new_crtc == crtc) {
11292                                 crtc->new_enabled = true;
11293                                 break;
11294                         }
11295                 }
11296
11297                 if (crtc->new_enabled != crtc->base.enabled) {
11298                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11299                                       crtc->new_enabled ? "en" : "dis");
11300                         config->mode_changed = true;
11301                 }
11302
11303                 if (crtc->new_enabled)
11304                         crtc->new_config = &crtc->config;
11305                 else
11306                         crtc->new_config = NULL;
11307         }
11308
11309         return 0;
11310 }
11311
11312 static void disable_crtc_nofb(struct intel_crtc *crtc)
11313 {
11314         struct drm_device *dev = crtc->base.dev;
11315         struct intel_encoder *encoder;
11316         struct intel_connector *connector;
11317
11318         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11319                       pipe_name(crtc->pipe));
11320
11321         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11322                 if (connector->new_encoder &&
11323                     connector->new_encoder->new_crtc == crtc)
11324                         connector->new_encoder = NULL;
11325         }
11326
11327         for_each_intel_encoder(dev, encoder) {
11328                 if (encoder->new_crtc == crtc)
11329                         encoder->new_crtc = NULL;
11330         }
11331
11332         crtc->new_enabled = false;
11333         crtc->new_config = NULL;
11334 }
11335
11336 static int intel_crtc_set_config(struct drm_mode_set *set)
11337 {
11338         struct drm_device *dev;
11339         struct drm_mode_set save_set;
11340         struct intel_set_config *config;
11341         int ret;
11342
11343         BUG_ON(!set);
11344         BUG_ON(!set->crtc);
11345         BUG_ON(!set->crtc->helper_private);
11346
11347         /* Enforce sane interface api - has been abused by the fb helper. */
11348         BUG_ON(!set->mode && set->fb);
11349         BUG_ON(set->fb && set->num_connectors == 0);
11350
11351         if (set->fb) {
11352                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11353                                 set->crtc->base.id, set->fb->base.id,
11354                                 (int)set->num_connectors, set->x, set->y);
11355         } else {
11356                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11357         }
11358
11359         dev = set->crtc->dev;
11360
11361         ret = -ENOMEM;
11362         config = kzalloc(sizeof(*config), GFP_KERNEL);
11363         if (!config)
11364                 goto out_config;
11365
11366         ret = intel_set_config_save_state(dev, config);
11367         if (ret)
11368                 goto out_config;
11369
11370         save_set.crtc = set->crtc;
11371         save_set.mode = &set->crtc->mode;
11372         save_set.x = set->crtc->x;
11373         save_set.y = set->crtc->y;
11374         save_set.fb = set->crtc->primary->fb;
11375
11376         /* Compute whether we need a full modeset, only an fb base update or no
11377          * change at all. In the future we might also check whether only the
11378          * mode changed, e.g. for LVDS where we only change the panel fitter in
11379          * such cases. */
11380         intel_set_config_compute_mode_changes(set, config);
11381
11382         ret = intel_modeset_stage_output_state(dev, set, config);
11383         if (ret)
11384                 goto fail;
11385
11386         if (config->mode_changed) {
11387                 ret = intel_set_mode(set->crtc, set->mode,
11388                                      set->x, set->y, set->fb);
11389         } else if (config->fb_changed) {
11390                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11391
11392                 intel_crtc_wait_for_pending_flips(set->crtc);
11393
11394                 ret = intel_pipe_set_base(set->crtc,
11395                                           set->x, set->y, set->fb);
11396
11397                 /*
11398                  * We need to make sure the primary plane is re-enabled if it
11399                  * has previously been turned off.
11400                  */
11401                 if (!intel_crtc->primary_enabled && ret == 0) {
11402                         WARN_ON(!intel_crtc->active);
11403                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11404                 }
11405
11406                 /*
11407                  * In the fastboot case this may be our only check of the
11408                  * state after boot.  It would be better to only do it on
11409                  * the first update, but we don't have a nice way of doing that
11410                  * (and really, set_config isn't used much for high freq page
11411                  * flipping, so increasing its cost here shouldn't be a big
11412                  * deal).
11413                  */
11414                 if (i915.fastboot && ret == 0)
11415                         intel_modeset_check_state(set->crtc->dev);
11416         }
11417
11418         if (ret) {
11419                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11420                               set->crtc->base.id, ret);
11421 fail:
11422                 intel_set_config_restore_state(dev, config);
11423
11424                 /*
11425                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11426                  * force the pipe off to avoid oopsing in the modeset code
11427                  * due to fb==NULL. This should only happen during boot since
11428                  * we don't yet reconstruct the FB from the hardware state.
11429                  */
11430                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11431                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11432
11433                 /* Try to restore the config */
11434                 if (config->mode_changed &&
11435                     intel_set_mode(save_set.crtc, save_set.mode,
11436                                    save_set.x, save_set.y, save_set.fb))
11437                         DRM_ERROR("failed to restore config after modeset failure\n");
11438         }
11439
11440 out_config:
11441         intel_set_config_free(config);
11442         return ret;
11443 }
11444
11445 static const struct drm_crtc_funcs intel_crtc_funcs = {
11446         .gamma_set = intel_crtc_gamma_set,
11447         .set_config = intel_crtc_set_config,
11448         .destroy = intel_crtc_destroy,
11449         .page_flip = intel_crtc_page_flip,
11450 };
11451
11452 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11453                                       struct intel_shared_dpll *pll,
11454                                       struct intel_dpll_hw_state *hw_state)
11455 {
11456         uint32_t val;
11457
11458         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11459                 return false;
11460
11461         val = I915_READ(PCH_DPLL(pll->id));
11462         hw_state->dpll = val;
11463         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11464         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11465
11466         return val & DPLL_VCO_ENABLE;
11467 }
11468
11469 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11470                                   struct intel_shared_dpll *pll)
11471 {
11472         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11473         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11474 }
11475
11476 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11477                                 struct intel_shared_dpll *pll)
11478 {
11479         /* PCH refclock must be enabled first */
11480         ibx_assert_pch_refclk_enabled(dev_priv);
11481
11482         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11483
11484         /* Wait for the clocks to stabilize. */
11485         POSTING_READ(PCH_DPLL(pll->id));
11486         udelay(150);
11487
11488         /* The pixel multiplier can only be updated once the
11489          * DPLL is enabled and the clocks are stable.
11490          *
11491          * So write it again.
11492          */
11493         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11494         POSTING_READ(PCH_DPLL(pll->id));
11495         udelay(200);
11496 }
11497
11498 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11499                                  struct intel_shared_dpll *pll)
11500 {
11501         struct drm_device *dev = dev_priv->dev;
11502         struct intel_crtc *crtc;
11503
11504         /* Make sure no transcoder isn't still depending on us. */
11505         for_each_intel_crtc(dev, crtc) {
11506                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11507                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11508         }
11509
11510         I915_WRITE(PCH_DPLL(pll->id), 0);
11511         POSTING_READ(PCH_DPLL(pll->id));
11512         udelay(200);
11513 }
11514
11515 static char *ibx_pch_dpll_names[] = {
11516         "PCH DPLL A",
11517         "PCH DPLL B",
11518 };
11519
11520 static void ibx_pch_dpll_init(struct drm_device *dev)
11521 {
11522         struct drm_i915_private *dev_priv = dev->dev_private;
11523         int i;
11524
11525         dev_priv->num_shared_dpll = 2;
11526
11527         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11528                 dev_priv->shared_dplls[i].id = i;
11529                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11530                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11531                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11532                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11533                 dev_priv->shared_dplls[i].get_hw_state =
11534                         ibx_pch_dpll_get_hw_state;
11535         }
11536 }
11537
11538 static void intel_shared_dpll_init(struct drm_device *dev)
11539 {
11540         struct drm_i915_private *dev_priv = dev->dev_private;
11541
11542         if (HAS_DDI(dev))
11543                 intel_ddi_pll_init(dev);
11544         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11545                 ibx_pch_dpll_init(dev);
11546         else
11547                 dev_priv->num_shared_dpll = 0;
11548
11549         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11550 }
11551
11552 static int
11553 intel_primary_plane_disable(struct drm_plane *plane)
11554 {
11555         struct drm_device *dev = plane->dev;
11556         struct intel_crtc *intel_crtc;
11557
11558         if (!plane->fb)
11559                 return 0;
11560
11561         BUG_ON(!plane->crtc);
11562
11563         intel_crtc = to_intel_crtc(plane->crtc);
11564
11565         /*
11566          * Even though we checked plane->fb above, it's still possible that
11567          * the primary plane has been implicitly disabled because the crtc
11568          * coordinates given weren't visible, or because we detected
11569          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11570          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11571          * In either case, we need to unpin the FB and let the fb pointer get
11572          * updated, but otherwise we don't need to touch the hardware.
11573          */
11574         if (!intel_crtc->primary_enabled)
11575                 goto disable_unpin;
11576
11577         intel_crtc_wait_for_pending_flips(plane->crtc);
11578         intel_disable_primary_hw_plane(plane, plane->crtc);
11579
11580 disable_unpin:
11581         mutex_lock(&dev->struct_mutex);
11582         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11583                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11584         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11585         mutex_unlock(&dev->struct_mutex);
11586         plane->fb = NULL;
11587
11588         return 0;
11589 }
11590
11591 static int
11592 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11593                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11594                              unsigned int crtc_w, unsigned int crtc_h,
11595                              uint32_t src_x, uint32_t src_y,
11596                              uint32_t src_w, uint32_t src_h)
11597 {
11598         struct drm_device *dev = crtc->dev;
11599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11600         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11601         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11602         struct drm_rect dest = {
11603                 /* integer pixels */
11604                 .x1 = crtc_x,
11605                 .y1 = crtc_y,
11606                 .x2 = crtc_x + crtc_w,
11607                 .y2 = crtc_y + crtc_h,
11608         };
11609         struct drm_rect src = {
11610                 /* 16.16 fixed point */
11611                 .x1 = src_x,
11612                 .y1 = src_y,
11613                 .x2 = src_x + src_w,
11614                 .y2 = src_y + src_h,
11615         };
11616         const struct drm_rect clip = {
11617                 /* integer pixels */
11618                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11619                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11620         };
11621         bool visible;
11622         int ret;
11623
11624         ret = drm_plane_helper_check_update(plane, crtc, fb,
11625                                             &src, &dest, &clip,
11626                                             DRM_PLANE_HELPER_NO_SCALING,
11627                                             DRM_PLANE_HELPER_NO_SCALING,
11628                                             false, true, &visible);
11629
11630         if (ret)
11631                 return ret;
11632
11633         /*
11634          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11635          * updating the fb pointer, and returning without touching the
11636          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11637          * turn on the display with all planes setup as desired.
11638          */
11639         if (!crtc->enabled) {
11640                 mutex_lock(&dev->struct_mutex);
11641
11642                 /*
11643                  * If we already called setplane while the crtc was disabled,
11644                  * we may have an fb pinned; unpin it.
11645                  */
11646                 if (plane->fb)
11647                         intel_unpin_fb_obj(old_obj);
11648
11649                 i915_gem_track_fb(old_obj, obj,
11650                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11651
11652                 /* Pin and return without programming hardware */
11653                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11654                 mutex_unlock(&dev->struct_mutex);
11655
11656                 return ret;
11657         }
11658
11659         intel_crtc_wait_for_pending_flips(crtc);
11660
11661         /*
11662          * If clipping results in a non-visible primary plane, we'll disable
11663          * the primary plane.  Note that this is a bit different than what
11664          * happens if userspace explicitly disables the plane by passing fb=0
11665          * because plane->fb still gets set and pinned.
11666          */
11667         if (!visible) {
11668                 mutex_lock(&dev->struct_mutex);
11669
11670                 /*
11671                  * Try to pin the new fb first so that we can bail out if we
11672                  * fail.
11673                  */
11674                 if (plane->fb != fb) {
11675                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11676                         if (ret) {
11677                                 mutex_unlock(&dev->struct_mutex);
11678                                 return ret;
11679                         }
11680                 }
11681
11682                 i915_gem_track_fb(old_obj, obj,
11683                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11684
11685                 if (intel_crtc->primary_enabled)
11686                         intel_disable_primary_hw_plane(plane, crtc);
11687
11688
11689                 if (plane->fb != fb)
11690                         if (plane->fb)
11691                                 intel_unpin_fb_obj(old_obj);
11692
11693                 mutex_unlock(&dev->struct_mutex);
11694
11695                 return 0;
11696         }
11697
11698         ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11699         if (ret)
11700                 return ret;
11701
11702         if (!intel_crtc->primary_enabled)
11703                 intel_enable_primary_hw_plane(plane, crtc);
11704
11705         return 0;
11706 }
11707
11708 /* Common destruction function for both primary and cursor planes */
11709 static void intel_plane_destroy(struct drm_plane *plane)
11710 {
11711         struct intel_plane *intel_plane = to_intel_plane(plane);
11712         drm_plane_cleanup(plane);
11713         kfree(intel_plane);
11714 }
11715
11716 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11717         .update_plane = intel_primary_plane_setplane,
11718         .disable_plane = intel_primary_plane_disable,
11719         .destroy = intel_plane_destroy,
11720 };
11721
11722 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11723                                                     int pipe)
11724 {
11725         struct intel_plane *primary;
11726         const uint32_t *intel_primary_formats;
11727         int num_formats;
11728
11729         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11730         if (primary == NULL)
11731                 return NULL;
11732
11733         primary->can_scale = false;
11734         primary->max_downscale = 1;
11735         primary->pipe = pipe;
11736         primary->plane = pipe;
11737         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11738                 primary->plane = !pipe;
11739
11740         if (INTEL_INFO(dev)->gen <= 3) {
11741                 intel_primary_formats = intel_primary_formats_gen2;
11742                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11743         } else {
11744                 intel_primary_formats = intel_primary_formats_gen4;
11745                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11746         }
11747
11748         drm_universal_plane_init(dev, &primary->base, 0,
11749                                  &intel_primary_plane_funcs,
11750                                  intel_primary_formats, num_formats,
11751                                  DRM_PLANE_TYPE_PRIMARY);
11752         return &primary->base;
11753 }
11754
11755 static int
11756 intel_cursor_plane_disable(struct drm_plane *plane)
11757 {
11758         if (!plane->fb)
11759                 return 0;
11760
11761         BUG_ON(!plane->crtc);
11762
11763         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11764 }
11765
11766 static int
11767 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11768                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11769                           unsigned int crtc_w, unsigned int crtc_h,
11770                           uint32_t src_x, uint32_t src_y,
11771                           uint32_t src_w, uint32_t src_h)
11772 {
11773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11774         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11775         struct drm_i915_gem_object *obj = intel_fb->obj;
11776         struct drm_rect dest = {
11777                 /* integer pixels */
11778                 .x1 = crtc_x,
11779                 .y1 = crtc_y,
11780                 .x2 = crtc_x + crtc_w,
11781                 .y2 = crtc_y + crtc_h,
11782         };
11783         struct drm_rect src = {
11784                 /* 16.16 fixed point */
11785                 .x1 = src_x,
11786                 .y1 = src_y,
11787                 .x2 = src_x + src_w,
11788                 .y2 = src_y + src_h,
11789         };
11790         const struct drm_rect clip = {
11791                 /* integer pixels */
11792                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11793                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11794         };
11795         bool visible;
11796         int ret;
11797
11798         ret = drm_plane_helper_check_update(plane, crtc, fb,
11799                                             &src, &dest, &clip,
11800                                             DRM_PLANE_HELPER_NO_SCALING,
11801                                             DRM_PLANE_HELPER_NO_SCALING,
11802                                             true, true, &visible);
11803         if (ret)
11804                 return ret;
11805
11806         crtc->cursor_x = crtc_x;
11807         crtc->cursor_y = crtc_y;
11808         if (fb != crtc->cursor->fb) {
11809                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11810         } else {
11811                 intel_crtc_update_cursor(crtc, visible);
11812
11813                 intel_frontbuffer_flip(crtc->dev,
11814                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11815
11816                 return 0;
11817         }
11818 }
11819 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11820         .update_plane = intel_cursor_plane_update,
11821         .disable_plane = intel_cursor_plane_disable,
11822         .destroy = intel_plane_destroy,
11823 };
11824
11825 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11826                                                    int pipe)
11827 {
11828         struct intel_plane *cursor;
11829
11830         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11831         if (cursor == NULL)
11832                 return NULL;
11833
11834         cursor->can_scale = false;
11835         cursor->max_downscale = 1;
11836         cursor->pipe = pipe;
11837         cursor->plane = pipe;
11838
11839         drm_universal_plane_init(dev, &cursor->base, 0,
11840                                  &intel_cursor_plane_funcs,
11841                                  intel_cursor_formats,
11842                                  ARRAY_SIZE(intel_cursor_formats),
11843                                  DRM_PLANE_TYPE_CURSOR);
11844         return &cursor->base;
11845 }
11846
11847 static void intel_crtc_init(struct drm_device *dev, int pipe)
11848 {
11849         struct drm_i915_private *dev_priv = dev->dev_private;
11850         struct intel_crtc *intel_crtc;
11851         struct drm_plane *primary = NULL;
11852         struct drm_plane *cursor = NULL;
11853         int i, ret;
11854
11855         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11856         if (intel_crtc == NULL)
11857                 return;
11858
11859         primary = intel_primary_plane_create(dev, pipe);
11860         if (!primary)
11861                 goto fail;
11862
11863         cursor = intel_cursor_plane_create(dev, pipe);
11864         if (!cursor)
11865                 goto fail;
11866
11867         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11868                                         cursor, &intel_crtc_funcs);
11869         if (ret)
11870                 goto fail;
11871
11872         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11873         for (i = 0; i < 256; i++) {
11874                 intel_crtc->lut_r[i] = i;
11875                 intel_crtc->lut_g[i] = i;
11876                 intel_crtc->lut_b[i] = i;
11877         }
11878
11879         /*
11880          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11881          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11882          */
11883         intel_crtc->pipe = pipe;
11884         intel_crtc->plane = pipe;
11885         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11886                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11887                 intel_crtc->plane = !pipe;
11888         }
11889
11890         intel_crtc->cursor_base = ~0;
11891         intel_crtc->cursor_cntl = ~0;
11892         intel_crtc->cursor_size = ~0;
11893
11894         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11895                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11896         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11897         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11898
11899         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11900
11901         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11902         return;
11903
11904 fail:
11905         if (primary)
11906                 drm_plane_cleanup(primary);
11907         if (cursor)
11908                 drm_plane_cleanup(cursor);
11909         kfree(intel_crtc);
11910 }
11911
11912 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11913 {
11914         struct drm_encoder *encoder = connector->base.encoder;
11915         struct drm_device *dev = connector->base.dev;
11916
11917         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11918
11919         if (!encoder)
11920                 return INVALID_PIPE;
11921
11922         return to_intel_crtc(encoder->crtc)->pipe;
11923 }
11924
11925 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11926                                 struct drm_file *file)
11927 {
11928         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11929         struct drm_crtc *drmmode_crtc;
11930         struct intel_crtc *crtc;
11931
11932         if (!drm_core_check_feature(dev, DRIVER_MODESET))
11933                 return -ENODEV;
11934
11935         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
11936
11937         if (!drmmode_crtc) {
11938                 DRM_ERROR("no such CRTC id\n");
11939                 return -ENOENT;
11940         }
11941
11942         crtc = to_intel_crtc(drmmode_crtc);
11943         pipe_from_crtc_id->pipe = crtc->pipe;
11944
11945         return 0;
11946 }
11947
11948 static int intel_encoder_clones(struct intel_encoder *encoder)
11949 {
11950         struct drm_device *dev = encoder->base.dev;
11951         struct intel_encoder *source_encoder;
11952         int index_mask = 0;
11953         int entry = 0;
11954
11955         for_each_intel_encoder(dev, source_encoder) {
11956                 if (encoders_cloneable(encoder, source_encoder))
11957                         index_mask |= (1 << entry);
11958
11959                 entry++;
11960         }
11961
11962         return index_mask;
11963 }
11964
11965 static bool has_edp_a(struct drm_device *dev)
11966 {
11967         struct drm_i915_private *dev_priv = dev->dev_private;
11968
11969         if (!IS_MOBILE(dev))
11970                 return false;
11971
11972         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11973                 return false;
11974
11975         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11976                 return false;
11977
11978         return true;
11979 }
11980
11981 const char *intel_output_name(int output)
11982 {
11983         static const char *names[] = {
11984                 [INTEL_OUTPUT_UNUSED] = "Unused",
11985                 [INTEL_OUTPUT_ANALOG] = "Analog",
11986                 [INTEL_OUTPUT_DVO] = "DVO",
11987                 [INTEL_OUTPUT_SDVO] = "SDVO",
11988                 [INTEL_OUTPUT_LVDS] = "LVDS",
11989                 [INTEL_OUTPUT_TVOUT] = "TV",
11990                 [INTEL_OUTPUT_HDMI] = "HDMI",
11991                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11992                 [INTEL_OUTPUT_EDP] = "eDP",
11993                 [INTEL_OUTPUT_DSI] = "DSI",
11994                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11995         };
11996
11997         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11998                 return "Invalid";
11999
12000         return names[output];
12001 }
12002
12003 static bool intel_crt_present(struct drm_device *dev)
12004 {
12005         struct drm_i915_private *dev_priv = dev->dev_private;
12006
12007         if (IS_ULT(dev))
12008                 return false;
12009
12010         if (IS_CHERRYVIEW(dev))
12011                 return false;
12012
12013         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12014                 return false;
12015
12016         return true;
12017 }
12018
12019 static void intel_setup_outputs(struct drm_device *dev)
12020 {
12021         struct drm_i915_private *dev_priv = dev->dev_private;
12022         struct intel_encoder *encoder;
12023         bool dpd_is_edp = false;
12024
12025         intel_lvds_init(dev);
12026
12027         if (intel_crt_present(dev))
12028                 intel_crt_init(dev);
12029
12030         if (HAS_DDI(dev)) {
12031                 int found;
12032
12033                 /* Haswell uses DDI functions to detect digital outputs */
12034                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12035                 /* DDI A only supports eDP */
12036                 if (found)
12037                         intel_ddi_init(dev, PORT_A);
12038
12039                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12040                  * register */
12041                 found = I915_READ(SFUSE_STRAP);
12042
12043                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12044                         intel_ddi_init(dev, PORT_B);
12045                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12046                         intel_ddi_init(dev, PORT_C);
12047                 if (found & SFUSE_STRAP_DDID_DETECTED)
12048                         intel_ddi_init(dev, PORT_D);
12049         } else if (HAS_PCH_SPLIT(dev)) {
12050                 int found;
12051                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12052
12053                 if (has_edp_a(dev))
12054                         intel_dp_init(dev, DP_A, PORT_A);
12055
12056                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12057                         /* PCH SDVOB multiplex with HDMIB */
12058                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12059                         if (!found)
12060                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12061                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12062                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12063                 }
12064
12065                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12066                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12067
12068                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12069                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12070
12071                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12072                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12073
12074                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12075                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12076         } else if (IS_VALLEYVIEW(dev)) {
12077                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12078                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12079                                         PORT_B);
12080                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12081                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12082                 }
12083
12084                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12085                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12086                                         PORT_C);
12087                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12088                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12089                 }
12090
12091                 if (IS_CHERRYVIEW(dev)) {
12092                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12093                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12094                                                 PORT_D);
12095                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12096                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12097                         }
12098                 }
12099
12100                 intel_dsi_init(dev);
12101         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12102                 bool found = false;
12103
12104                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12105                         DRM_DEBUG_KMS("probing SDVOB\n");
12106                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12107                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12108                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12109                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12110                         }
12111
12112                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12113                                 intel_dp_init(dev, DP_B, PORT_B);
12114                 }
12115
12116                 /* Before G4X SDVOC doesn't have its own detect register */
12117
12118                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12119                         DRM_DEBUG_KMS("probing SDVOC\n");
12120                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12121                 }
12122
12123                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12124
12125                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12126                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12127                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12128                         }
12129                         if (SUPPORTS_INTEGRATED_DP(dev))
12130                                 intel_dp_init(dev, DP_C, PORT_C);
12131                 }
12132
12133                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12134                     (I915_READ(DP_D) & DP_DETECTED))
12135                         intel_dp_init(dev, DP_D, PORT_D);
12136         } else if (IS_GEN2(dev))
12137                 intel_dvo_init(dev);
12138
12139         if (SUPPORTS_TV(dev))
12140                 intel_tv_init(dev);
12141
12142         intel_edp_psr_init(dev);
12143
12144         for_each_intel_encoder(dev, encoder) {
12145                 encoder->base.possible_crtcs = encoder->crtc_mask;
12146                 encoder->base.possible_clones =
12147                         intel_encoder_clones(encoder);
12148         }
12149
12150         intel_init_pch_refclk(dev);
12151
12152         drm_helper_move_panel_connectors_to_head(dev);
12153 }
12154
12155 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12156 {
12157         struct drm_device *dev = fb->dev;
12158         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12159
12160         drm_framebuffer_cleanup(fb);
12161         mutex_lock(&dev->struct_mutex);
12162         WARN_ON(!intel_fb->obj->framebuffer_references--);
12163         drm_gem_object_unreference(&intel_fb->obj->base);
12164         mutex_unlock(&dev->struct_mutex);
12165         kfree(intel_fb);
12166 }
12167
12168 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12169                                                 struct drm_file *file,
12170                                                 unsigned int *handle)
12171 {
12172         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12173         struct drm_i915_gem_object *obj = intel_fb->obj;
12174
12175         return drm_gem_handle_create(file, &obj->base, handle);
12176 }
12177
12178 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12179         .destroy = intel_user_framebuffer_destroy,
12180         .create_handle = intel_user_framebuffer_create_handle,
12181 };
12182
12183 static int intel_framebuffer_init(struct drm_device *dev,
12184                                   struct intel_framebuffer *intel_fb,
12185                                   struct drm_mode_fb_cmd2 *mode_cmd,
12186                                   struct drm_i915_gem_object *obj)
12187 {
12188         int aligned_height;
12189         int pitch_limit;
12190         int ret;
12191
12192         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12193
12194         if (obj->tiling_mode == I915_TILING_Y) {
12195                 DRM_DEBUG("hardware does not support tiling Y\n");
12196                 return -EINVAL;
12197         }
12198
12199         if (mode_cmd->pitches[0] & 63) {
12200                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12201                           mode_cmd->pitches[0]);
12202                 return -EINVAL;
12203         }
12204
12205         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12206                 pitch_limit = 32*1024;
12207         } else if (INTEL_INFO(dev)->gen >= 4) {
12208                 if (obj->tiling_mode)
12209                         pitch_limit = 16*1024;
12210                 else
12211                         pitch_limit = 32*1024;
12212         } else if (INTEL_INFO(dev)->gen >= 3) {
12213                 if (obj->tiling_mode)
12214                         pitch_limit = 8*1024;
12215                 else
12216                         pitch_limit = 16*1024;
12217         } else
12218                 /* XXX DSPC is limited to 4k tiled */
12219                 pitch_limit = 8*1024;
12220
12221         if (mode_cmd->pitches[0] > pitch_limit) {
12222                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12223                           obj->tiling_mode ? "tiled" : "linear",
12224                           mode_cmd->pitches[0], pitch_limit);
12225                 return -EINVAL;
12226         }
12227
12228         if (obj->tiling_mode != I915_TILING_NONE &&
12229             mode_cmd->pitches[0] != obj->stride) {
12230                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12231                           mode_cmd->pitches[0], obj->stride);
12232                 return -EINVAL;
12233         }
12234
12235         /* Reject formats not supported by any plane early. */
12236         switch (mode_cmd->pixel_format) {
12237         case DRM_FORMAT_C8:
12238         case DRM_FORMAT_RGB565:
12239         case DRM_FORMAT_XRGB8888:
12240         case DRM_FORMAT_ARGB8888:
12241                 break;
12242         case DRM_FORMAT_XRGB1555:
12243         case DRM_FORMAT_ARGB1555:
12244                 if (INTEL_INFO(dev)->gen > 3) {
12245                         DRM_DEBUG("unsupported pixel format: %s\n",
12246                                   drm_get_format_name(mode_cmd->pixel_format));
12247                         return -EINVAL;
12248                 }
12249                 break;
12250         case DRM_FORMAT_XBGR8888:
12251         case DRM_FORMAT_ABGR8888:
12252         case DRM_FORMAT_XRGB2101010:
12253         case DRM_FORMAT_ARGB2101010:
12254         case DRM_FORMAT_XBGR2101010:
12255         case DRM_FORMAT_ABGR2101010:
12256                 if (INTEL_INFO(dev)->gen < 4) {
12257                         DRM_DEBUG("unsupported pixel format: %s\n",
12258                                   drm_get_format_name(mode_cmd->pixel_format));
12259                         return -EINVAL;
12260                 }
12261                 break;
12262         case DRM_FORMAT_YUYV:
12263         case DRM_FORMAT_UYVY:
12264         case DRM_FORMAT_YVYU:
12265         case DRM_FORMAT_VYUY:
12266                 if (INTEL_INFO(dev)->gen < 5) {
12267                         DRM_DEBUG("unsupported pixel format: %s\n",
12268                                   drm_get_format_name(mode_cmd->pixel_format));
12269                         return -EINVAL;
12270                 }
12271                 break;
12272         default:
12273                 DRM_DEBUG("unsupported pixel format: %s\n",
12274                           drm_get_format_name(mode_cmd->pixel_format));
12275                 return -EINVAL;
12276         }
12277
12278         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12279         if (mode_cmd->offsets[0] != 0)
12280                 return -EINVAL;
12281
12282         aligned_height = intel_align_height(dev, mode_cmd->height,
12283                                             obj->tiling_mode);
12284         /* FIXME drm helper for size checks (especially planar formats)? */
12285         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12286                 return -EINVAL;
12287
12288         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12289         intel_fb->obj = obj;
12290         intel_fb->obj->framebuffer_references++;
12291
12292         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12293         if (ret) {
12294                 DRM_ERROR("framebuffer init failed %d\n", ret);
12295                 return ret;
12296         }
12297
12298         return 0;
12299 }
12300
12301 static struct drm_framebuffer *
12302 intel_user_framebuffer_create(struct drm_device *dev,
12303                               struct drm_file *filp,
12304                               struct drm_mode_fb_cmd2 *mode_cmd)
12305 {
12306         struct drm_i915_gem_object *obj;
12307
12308         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12309                                                 mode_cmd->handles[0]));
12310         if (&obj->base == NULL)
12311                 return ERR_PTR(-ENOENT);
12312
12313         return intel_framebuffer_create(dev, mode_cmd, obj);
12314 }
12315
12316 #ifndef CONFIG_DRM_I915_FBDEV
12317 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12318 {
12319 }
12320 #endif
12321
12322 static const struct drm_mode_config_funcs intel_mode_funcs = {
12323         .fb_create = intel_user_framebuffer_create,
12324         .output_poll_changed = intel_fbdev_output_poll_changed,
12325 };
12326
12327 /* Set up chip specific display functions */
12328 static void intel_init_display(struct drm_device *dev)
12329 {
12330         struct drm_i915_private *dev_priv = dev->dev_private;
12331
12332         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12333                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12334         else if (IS_CHERRYVIEW(dev))
12335                 dev_priv->display.find_dpll = chv_find_best_dpll;
12336         else if (IS_VALLEYVIEW(dev))
12337                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12338         else if (IS_PINEVIEW(dev))
12339                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12340         else
12341                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12342
12343         if (HAS_DDI(dev)) {
12344                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12345                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12346                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12347                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12348                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12349                 dev_priv->display.off = ironlake_crtc_off;
12350                 dev_priv->display.update_primary_plane =
12351                         ironlake_update_primary_plane;
12352         } else if (HAS_PCH_SPLIT(dev)) {
12353                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12354                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12355                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12356                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12357                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12358                 dev_priv->display.off = ironlake_crtc_off;
12359                 dev_priv->display.update_primary_plane =
12360                         ironlake_update_primary_plane;
12361         } else if (IS_VALLEYVIEW(dev)) {
12362                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12363                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12364                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12365                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12366                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12367                 dev_priv->display.off = i9xx_crtc_off;
12368                 dev_priv->display.update_primary_plane =
12369                         i9xx_update_primary_plane;
12370         } else {
12371                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12372                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12373                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12374                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12375                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12376                 dev_priv->display.off = i9xx_crtc_off;
12377                 dev_priv->display.update_primary_plane =
12378                         i9xx_update_primary_plane;
12379         }
12380
12381         /* Returns the core display clock speed */
12382         if (IS_VALLEYVIEW(dev))
12383                 dev_priv->display.get_display_clock_speed =
12384                         valleyview_get_display_clock_speed;
12385         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12386                 dev_priv->display.get_display_clock_speed =
12387                         i945_get_display_clock_speed;
12388         else if (IS_I915G(dev))
12389                 dev_priv->display.get_display_clock_speed =
12390                         i915_get_display_clock_speed;
12391         else if (IS_I945GM(dev) || IS_845G(dev))
12392                 dev_priv->display.get_display_clock_speed =
12393                         i9xx_misc_get_display_clock_speed;
12394         else if (IS_PINEVIEW(dev))
12395                 dev_priv->display.get_display_clock_speed =
12396                         pnv_get_display_clock_speed;
12397         else if (IS_I915GM(dev))
12398                 dev_priv->display.get_display_clock_speed =
12399                         i915gm_get_display_clock_speed;
12400         else if (IS_I865G(dev))
12401                 dev_priv->display.get_display_clock_speed =
12402                         i865_get_display_clock_speed;
12403         else if (IS_I85X(dev))
12404                 dev_priv->display.get_display_clock_speed =
12405                         i855_get_display_clock_speed;
12406         else /* 852, 830 */
12407                 dev_priv->display.get_display_clock_speed =
12408                         i830_get_display_clock_speed;
12409
12410         if (IS_G4X(dev)) {
12411                 dev_priv->display.write_eld = g4x_write_eld;
12412         } else if (IS_GEN5(dev)) {
12413                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12414                 dev_priv->display.write_eld = ironlake_write_eld;
12415         } else if (IS_GEN6(dev)) {
12416                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12417                 dev_priv->display.write_eld = ironlake_write_eld;
12418                 dev_priv->display.modeset_global_resources =
12419                         snb_modeset_global_resources;
12420         } else if (IS_IVYBRIDGE(dev)) {
12421                 /* FIXME: detect B0+ stepping and use auto training */
12422                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12423                 dev_priv->display.write_eld = ironlake_write_eld;
12424                 dev_priv->display.modeset_global_resources =
12425                         ivb_modeset_global_resources;
12426         } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12427                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12428                 dev_priv->display.write_eld = haswell_write_eld;
12429                 dev_priv->display.modeset_global_resources =
12430                         haswell_modeset_global_resources;
12431         } else if (IS_VALLEYVIEW(dev)) {
12432                 dev_priv->display.modeset_global_resources =
12433                         valleyview_modeset_global_resources;
12434                 dev_priv->display.write_eld = ironlake_write_eld;
12435         }
12436
12437         /* Default just returns -ENODEV to indicate unsupported */
12438         dev_priv->display.queue_flip = intel_default_queue_flip;
12439
12440         switch (INTEL_INFO(dev)->gen) {
12441         case 2:
12442                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12443                 break;
12444
12445         case 3:
12446                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12447                 break;
12448
12449         case 4:
12450         case 5:
12451                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12452                 break;
12453
12454         case 6:
12455                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12456                 break;
12457         case 7:
12458         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12459                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12460                 break;
12461         }
12462
12463         intel_panel_init_backlight_funcs(dev);
12464 }
12465
12466 /*
12467  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12468  * resume, or other times.  This quirk makes sure that's the case for
12469  * affected systems.
12470  */
12471 static void quirk_pipea_force(struct drm_device *dev)
12472 {
12473         struct drm_i915_private *dev_priv = dev->dev_private;
12474
12475         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12476         DRM_INFO("applying pipe a force quirk\n");
12477 }
12478
12479 /*
12480  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12481  */
12482 static void quirk_ssc_force_disable(struct drm_device *dev)
12483 {
12484         struct drm_i915_private *dev_priv = dev->dev_private;
12485         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12486         DRM_INFO("applying lvds SSC disable quirk\n");
12487 }
12488
12489 /*
12490  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12491  * brightness value
12492  */
12493 static void quirk_invert_brightness(struct drm_device *dev)
12494 {
12495         struct drm_i915_private *dev_priv = dev->dev_private;
12496         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12497         DRM_INFO("applying inverted panel brightness quirk\n");
12498 }
12499
12500 /* Some VBT's incorrectly indicate no backlight is present */
12501 static void quirk_backlight_present(struct drm_device *dev)
12502 {
12503         struct drm_i915_private *dev_priv = dev->dev_private;
12504         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12505         DRM_INFO("applying backlight present quirk\n");
12506 }
12507
12508 struct intel_quirk {
12509         int device;
12510         int subsystem_vendor;
12511         int subsystem_device;
12512         void (*hook)(struct drm_device *dev);
12513 };
12514
12515 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12516 struct intel_dmi_quirk {
12517         void (*hook)(struct drm_device *dev);
12518         const struct dmi_system_id (*dmi_id_list)[];
12519 };
12520
12521 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12522 {
12523         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12524         return 1;
12525 }
12526
12527 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12528         {
12529                 .dmi_id_list = &(const struct dmi_system_id[]) {
12530                         {
12531                                 .callback = intel_dmi_reverse_brightness,
12532                                 .ident = "NCR Corporation",
12533                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12534                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12535                                 },
12536                         },
12537                         { }  /* terminating entry */
12538                 },
12539                 .hook = quirk_invert_brightness,
12540         },
12541 };
12542
12543 static struct intel_quirk intel_quirks[] = {
12544         /* HP Mini needs pipe A force quirk (LP: #322104) */
12545         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12546
12547         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12548         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12549
12550         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12551         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12552
12553         /* Lenovo U160 cannot use SSC on LVDS */
12554         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12555
12556         /* Sony Vaio Y cannot use SSC on LVDS */
12557         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12558
12559         /* Acer Aspire 5734Z must invert backlight brightness */
12560         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12561
12562         /* Acer/eMachines G725 */
12563         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12564
12565         /* Acer/eMachines e725 */
12566         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12567
12568         /* Acer/Packard Bell NCL20 */
12569         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12570
12571         /* Acer Aspire 4736Z */
12572         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12573
12574         /* Acer Aspire 5336 */
12575         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12576
12577         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12578         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12579
12580         /* Acer C720 Chromebook (Core i3 4005U) */
12581         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12582
12583         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12584         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12585
12586         /* HP Chromebook 14 (Celeron 2955U) */
12587         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12588 };
12589
12590 static void intel_init_quirks(struct drm_device *dev)
12591 {
12592         struct pci_dev *d = dev->pdev;
12593         int i;
12594
12595         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12596                 struct intel_quirk *q = &intel_quirks[i];
12597
12598                 if (d->device == q->device &&
12599                     (d->subsystem_vendor == q->subsystem_vendor ||
12600                      q->subsystem_vendor == PCI_ANY_ID) &&
12601                     (d->subsystem_device == q->subsystem_device ||
12602                      q->subsystem_device == PCI_ANY_ID))
12603                         q->hook(dev);
12604         }
12605         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12606                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12607                         intel_dmi_quirks[i].hook(dev);
12608         }
12609 }
12610
12611 /* Disable the VGA plane that we never use */
12612 static void i915_disable_vga(struct drm_device *dev)
12613 {
12614         struct drm_i915_private *dev_priv = dev->dev_private;
12615         u8 sr1;
12616         u32 vga_reg = i915_vgacntrl_reg(dev);
12617
12618         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12619         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12620         outb(SR01, VGA_SR_INDEX);
12621         sr1 = inb(VGA_SR_DATA);
12622         outb(sr1 | 1<<5, VGA_SR_DATA);
12623         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12624         udelay(300);
12625
12626         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12627         POSTING_READ(vga_reg);
12628 }
12629
12630 void intel_modeset_init_hw(struct drm_device *dev)
12631 {
12632         intel_prepare_ddi(dev);
12633
12634         if (IS_VALLEYVIEW(dev))
12635                 vlv_update_cdclk(dev);
12636
12637         intel_init_clock_gating(dev);
12638
12639         intel_enable_gt_powersave(dev);
12640 }
12641
12642 void intel_modeset_suspend_hw(struct drm_device *dev)
12643 {
12644         intel_suspend_hw(dev);
12645 }
12646
12647 void intel_modeset_init(struct drm_device *dev)
12648 {
12649         struct drm_i915_private *dev_priv = dev->dev_private;
12650         int sprite, ret;
12651         enum pipe pipe;
12652         struct intel_crtc *crtc;
12653
12654         drm_mode_config_init(dev);
12655
12656         dev->mode_config.min_width = 0;
12657         dev->mode_config.min_height = 0;
12658
12659         dev->mode_config.preferred_depth = 24;
12660         dev->mode_config.prefer_shadow = 1;
12661
12662         dev->mode_config.funcs = &intel_mode_funcs;
12663
12664         intel_init_quirks(dev);
12665
12666         intel_init_pm(dev);
12667
12668         if (INTEL_INFO(dev)->num_pipes == 0)
12669                 return;
12670
12671         intel_init_display(dev);
12672
12673         if (IS_GEN2(dev)) {
12674                 dev->mode_config.max_width = 2048;
12675                 dev->mode_config.max_height = 2048;
12676         } else if (IS_GEN3(dev)) {
12677                 dev->mode_config.max_width = 4096;
12678                 dev->mode_config.max_height = 4096;
12679         } else {
12680                 dev->mode_config.max_width = 8192;
12681                 dev->mode_config.max_height = 8192;
12682         }
12683
12684         if (IS_845G(dev) || IS_I865G(dev)) {
12685                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12686                 dev->mode_config.cursor_height = 1023;
12687         } else if (IS_GEN2(dev)) {
12688                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12689                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12690         } else {
12691                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12692                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12693         }
12694
12695         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12696
12697         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12698                       INTEL_INFO(dev)->num_pipes,
12699                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12700
12701         for_each_pipe(pipe) {
12702                 intel_crtc_init(dev, pipe);
12703                 for_each_sprite(pipe, sprite) {
12704                         ret = intel_plane_init(dev, pipe, sprite);
12705                         if (ret)
12706                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12707                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12708                 }
12709         }
12710
12711         intel_init_dpio(dev);
12712
12713         intel_shared_dpll_init(dev);
12714
12715         /* Just disable it once at startup */
12716         i915_disable_vga(dev);
12717         intel_setup_outputs(dev);
12718
12719         /* Just in case the BIOS is doing something questionable. */
12720         intel_disable_fbc(dev);
12721
12722         drm_modeset_lock_all(dev);
12723         intel_modeset_setup_hw_state(dev, false);
12724         drm_modeset_unlock_all(dev);
12725
12726         for_each_intel_crtc(dev, crtc) {
12727                 if (!crtc->active)
12728                         continue;
12729
12730                 /*
12731                  * Note that reserving the BIOS fb up front prevents us
12732                  * from stuffing other stolen allocations like the ring
12733                  * on top.  This prevents some ugliness at boot time, and
12734                  * can even allow for smooth boot transitions if the BIOS
12735                  * fb is large enough for the active pipe configuration.
12736                  */
12737                 if (dev_priv->display.get_plane_config) {
12738                         dev_priv->display.get_plane_config(crtc,
12739                                                            &crtc->plane_config);
12740                         /*
12741                          * If the fb is shared between multiple heads, we'll
12742                          * just get the first one.
12743                          */
12744                         intel_find_plane_obj(crtc, &crtc->plane_config);
12745                 }
12746         }
12747 }
12748
12749 static void intel_enable_pipe_a(struct drm_device *dev)
12750 {
12751         struct intel_connector *connector;
12752         struct drm_connector *crt = NULL;
12753         struct intel_load_detect_pipe load_detect_temp;
12754         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12755
12756         /* We can't just switch on the pipe A, we need to set things up with a
12757          * proper mode and output configuration. As a gross hack, enable pipe A
12758          * by enabling the load detect pipe once. */
12759         list_for_each_entry(connector,
12760                             &dev->mode_config.connector_list,
12761                             base.head) {
12762                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12763                         crt = &connector->base;
12764                         break;
12765                 }
12766         }
12767
12768         if (!crt)
12769                 return;
12770
12771         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12772                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12773 }
12774
12775 static bool
12776 intel_check_plane_mapping(struct intel_crtc *crtc)
12777 {
12778         struct drm_device *dev = crtc->base.dev;
12779         struct drm_i915_private *dev_priv = dev->dev_private;
12780         u32 reg, val;
12781
12782         if (INTEL_INFO(dev)->num_pipes == 1)
12783                 return true;
12784
12785         reg = DSPCNTR(!crtc->plane);
12786         val = I915_READ(reg);
12787
12788         if ((val & DISPLAY_PLANE_ENABLE) &&
12789             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12790                 return false;
12791
12792         return true;
12793 }
12794
12795 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12796 {
12797         struct drm_device *dev = crtc->base.dev;
12798         struct drm_i915_private *dev_priv = dev->dev_private;
12799         u32 reg;
12800
12801         /* Clear any frame start delays used for debugging left by the BIOS */
12802         reg = PIPECONF(crtc->config.cpu_transcoder);
12803         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12804
12805         /* restore vblank interrupts to correct state */
12806         if (crtc->active) {
12807                 update_scanline_offset(crtc);
12808                 drm_vblank_on(dev, crtc->pipe);
12809         } else
12810                 drm_vblank_off(dev, crtc->pipe);
12811
12812         /* We need to sanitize the plane -> pipe mapping first because this will
12813          * disable the crtc (and hence change the state) if it is wrong. Note
12814          * that gen4+ has a fixed plane -> pipe mapping.  */
12815         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12816                 struct intel_connector *connector;
12817                 bool plane;
12818
12819                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12820                               crtc->base.base.id);
12821
12822                 /* Pipe has the wrong plane attached and the plane is active.
12823                  * Temporarily change the plane mapping and disable everything
12824                  * ...  */
12825                 plane = crtc->plane;
12826                 crtc->plane = !plane;
12827                 crtc->primary_enabled = true;
12828                 dev_priv->display.crtc_disable(&crtc->base);
12829                 crtc->plane = plane;
12830
12831                 /* ... and break all links. */
12832                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12833                                     base.head) {
12834                         if (connector->encoder->base.crtc != &crtc->base)
12835                                 continue;
12836
12837                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12838                         connector->base.encoder = NULL;
12839                 }
12840                 /* multiple connectors may have the same encoder:
12841                  *  handle them and break crtc link separately */
12842                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12843                                     base.head)
12844                         if (connector->encoder->base.crtc == &crtc->base) {
12845                                 connector->encoder->base.crtc = NULL;
12846                                 connector->encoder->connectors_active = false;
12847                         }
12848
12849                 WARN_ON(crtc->active);
12850                 crtc->base.enabled = false;
12851         }
12852
12853         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12854             crtc->pipe == PIPE_A && !crtc->active) {
12855                 /* BIOS forgot to enable pipe A, this mostly happens after
12856                  * resume. Force-enable the pipe to fix this, the update_dpms
12857                  * call below we restore the pipe to the right state, but leave
12858                  * the required bits on. */
12859                 intel_enable_pipe_a(dev);
12860         }
12861
12862         /* Adjust the state of the output pipe according to whether we
12863          * have active connectors/encoders. */
12864         intel_crtc_update_dpms(&crtc->base);
12865
12866         if (crtc->active != crtc->base.enabled) {
12867                 struct intel_encoder *encoder;
12868
12869                 /* This can happen either due to bugs in the get_hw_state
12870                  * functions or because the pipe is force-enabled due to the
12871                  * pipe A quirk. */
12872                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12873                               crtc->base.base.id,
12874                               crtc->base.enabled ? "enabled" : "disabled",
12875                               crtc->active ? "enabled" : "disabled");
12876
12877                 crtc->base.enabled = crtc->active;
12878
12879                 /* Because we only establish the connector -> encoder ->
12880                  * crtc links if something is active, this means the
12881                  * crtc is now deactivated. Break the links. connector
12882                  * -> encoder links are only establish when things are
12883                  *  actually up, hence no need to break them. */
12884                 WARN_ON(crtc->active);
12885
12886                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12887                         WARN_ON(encoder->connectors_active);
12888                         encoder->base.crtc = NULL;
12889                 }
12890         }
12891
12892         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12893                 /*
12894                  * We start out with underrun reporting disabled to avoid races.
12895                  * For correct bookkeeping mark this on active crtcs.
12896                  *
12897                  * Also on gmch platforms we dont have any hardware bits to
12898                  * disable the underrun reporting. Which means we need to start
12899                  * out with underrun reporting disabled also on inactive pipes,
12900                  * since otherwise we'll complain about the garbage we read when
12901                  * e.g. coming up after runtime pm.
12902                  *
12903                  * No protection against concurrent access is required - at
12904                  * worst a fifo underrun happens which also sets this to false.
12905                  */
12906                 crtc->cpu_fifo_underrun_disabled = true;
12907                 crtc->pch_fifo_underrun_disabled = true;
12908         }
12909 }
12910
12911 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12912 {
12913         struct intel_connector *connector;
12914         struct drm_device *dev = encoder->base.dev;
12915
12916         /* We need to check both for a crtc link (meaning that the
12917          * encoder is active and trying to read from a pipe) and the
12918          * pipe itself being active. */
12919         bool has_active_crtc = encoder->base.crtc &&
12920                 to_intel_crtc(encoder->base.crtc)->active;
12921
12922         if (encoder->connectors_active && !has_active_crtc) {
12923                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12924                               encoder->base.base.id,
12925                               encoder->base.name);
12926
12927                 /* Connector is active, but has no active pipe. This is
12928                  * fallout from our resume register restoring. Disable
12929                  * the encoder manually again. */
12930                 if (encoder->base.crtc) {
12931                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12932                                       encoder->base.base.id,
12933                                       encoder->base.name);
12934                         encoder->disable(encoder);
12935                         if (encoder->post_disable)
12936                                 encoder->post_disable(encoder);
12937                 }
12938                 encoder->base.crtc = NULL;
12939                 encoder->connectors_active = false;
12940
12941                 /* Inconsistent output/port/pipe state happens presumably due to
12942                  * a bug in one of the get_hw_state functions. Or someplace else
12943                  * in our code, like the register restore mess on resume. Clamp
12944                  * things to off as a safer default. */
12945                 list_for_each_entry(connector,
12946                                     &dev->mode_config.connector_list,
12947                                     base.head) {
12948                         if (connector->encoder != encoder)
12949                                 continue;
12950                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12951                         connector->base.encoder = NULL;
12952                 }
12953         }
12954         /* Enabled encoders without active connectors will be fixed in
12955          * the crtc fixup. */
12956 }
12957
12958 void i915_redisable_vga_power_on(struct drm_device *dev)
12959 {
12960         struct drm_i915_private *dev_priv = dev->dev_private;
12961         u32 vga_reg = i915_vgacntrl_reg(dev);
12962
12963         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12964                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12965                 i915_disable_vga(dev);
12966         }
12967 }
12968
12969 void i915_redisable_vga(struct drm_device *dev)
12970 {
12971         struct drm_i915_private *dev_priv = dev->dev_private;
12972
12973         /* This function can be called both from intel_modeset_setup_hw_state or
12974          * at a very early point in our resume sequence, where the power well
12975          * structures are not yet restored. Since this function is at a very
12976          * paranoid "someone might have enabled VGA while we were not looking"
12977          * level, just check if the power well is enabled instead of trying to
12978          * follow the "don't touch the power well if we don't need it" policy
12979          * the rest of the driver uses. */
12980         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12981                 return;
12982
12983         i915_redisable_vga_power_on(dev);
12984 }
12985
12986 static bool primary_get_hw_state(struct intel_crtc *crtc)
12987 {
12988         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12989
12990         if (!crtc->active)
12991                 return false;
12992
12993         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12994 }
12995
12996 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12997 {
12998         struct drm_i915_private *dev_priv = dev->dev_private;
12999         enum pipe pipe;
13000         struct intel_crtc *crtc;
13001         struct intel_encoder *encoder;
13002         struct intel_connector *connector;
13003         int i;
13004
13005         for_each_intel_crtc(dev, crtc) {
13006                 memset(&crtc->config, 0, sizeof(crtc->config));
13007
13008                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13009
13010                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13011                                                                  &crtc->config);
13012
13013                 crtc->base.enabled = crtc->active;
13014                 crtc->primary_enabled = primary_get_hw_state(crtc);
13015
13016                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13017                               crtc->base.base.id,
13018                               crtc->active ? "enabled" : "disabled");
13019         }
13020
13021         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13022                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13023
13024                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13025                 pll->active = 0;
13026                 for_each_intel_crtc(dev, crtc) {
13027                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13028                                 pll->active++;
13029                 }
13030                 pll->refcount = pll->active;
13031
13032                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13033                               pll->name, pll->refcount, pll->on);
13034
13035                 if (pll->refcount)
13036                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13037         }
13038
13039         for_each_intel_encoder(dev, encoder) {
13040                 pipe = 0;
13041
13042                 if (encoder->get_hw_state(encoder, &pipe)) {
13043                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13044                         encoder->base.crtc = &crtc->base;
13045                         encoder->get_config(encoder, &crtc->config);
13046                 } else {
13047                         encoder->base.crtc = NULL;
13048                 }
13049
13050                 encoder->connectors_active = false;
13051                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13052                               encoder->base.base.id,
13053                               encoder->base.name,
13054                               encoder->base.crtc ? "enabled" : "disabled",
13055                               pipe_name(pipe));
13056         }
13057
13058         list_for_each_entry(connector, &dev->mode_config.connector_list,
13059                             base.head) {
13060                 if (connector->get_hw_state(connector)) {
13061                         connector->base.dpms = DRM_MODE_DPMS_ON;
13062                         connector->encoder->connectors_active = true;
13063                         connector->base.encoder = &connector->encoder->base;
13064                 } else {
13065                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13066                         connector->base.encoder = NULL;
13067                 }
13068                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13069                               connector->base.base.id,
13070                               connector->base.name,
13071                               connector->base.encoder ? "enabled" : "disabled");
13072         }
13073 }
13074
13075 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13076  * and i915 state tracking structures. */
13077 void intel_modeset_setup_hw_state(struct drm_device *dev,
13078                                   bool force_restore)
13079 {
13080         struct drm_i915_private *dev_priv = dev->dev_private;
13081         enum pipe pipe;
13082         struct intel_crtc *crtc;
13083         struct intel_encoder *encoder;
13084         int i;
13085
13086         intel_modeset_readout_hw_state(dev);
13087
13088         /*
13089          * Now that we have the config, copy it to each CRTC struct
13090          * Note that this could go away if we move to using crtc_config
13091          * checking everywhere.
13092          */
13093         for_each_intel_crtc(dev, crtc) {
13094                 if (crtc->active && i915.fastboot) {
13095                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13096                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13097                                       crtc->base.base.id);
13098                         drm_mode_debug_printmodeline(&crtc->base.mode);
13099                 }
13100         }
13101
13102         /* HW state is read out, now we need to sanitize this mess. */
13103         for_each_intel_encoder(dev, encoder) {
13104                 intel_sanitize_encoder(encoder);
13105         }
13106
13107         for_each_pipe(pipe) {
13108                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13109                 intel_sanitize_crtc(crtc);
13110                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13111         }
13112
13113         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13114                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13115
13116                 if (!pll->on || pll->active)
13117                         continue;
13118
13119                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13120
13121                 pll->disable(dev_priv, pll);
13122                 pll->on = false;
13123         }
13124
13125         if (HAS_PCH_SPLIT(dev))
13126                 ilk_wm_get_hw_state(dev);
13127
13128         if (force_restore) {
13129                 i915_redisable_vga(dev);
13130
13131                 /*
13132                  * We need to use raw interfaces for restoring state to avoid
13133                  * checking (bogus) intermediate states.
13134                  */
13135                 for_each_pipe(pipe) {
13136                         struct drm_crtc *crtc =
13137                                 dev_priv->pipe_to_crtc_mapping[pipe];
13138
13139                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13140                                          crtc->primary->fb);
13141                 }
13142         } else {
13143                 intel_modeset_update_staged_output_state(dev);
13144         }
13145
13146         intel_modeset_check_state(dev);
13147 }
13148
13149 void intel_modeset_gem_init(struct drm_device *dev)
13150 {
13151         struct drm_crtc *c;
13152         struct drm_i915_gem_object *obj;
13153
13154         mutex_lock(&dev->struct_mutex);
13155         intel_init_gt_powersave(dev);
13156         mutex_unlock(&dev->struct_mutex);
13157
13158         intel_modeset_init_hw(dev);
13159
13160         intel_setup_overlay(dev);
13161
13162         /*
13163          * Make sure any fbs we allocated at startup are properly
13164          * pinned & fenced.  When we do the allocation it's too early
13165          * for this.
13166          */
13167         mutex_lock(&dev->struct_mutex);
13168         for_each_crtc(dev, c) {
13169                 obj = intel_fb_obj(c->primary->fb);
13170                 if (obj == NULL)
13171                         continue;
13172
13173                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13174                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13175                                   to_intel_crtc(c)->pipe);
13176                         drm_framebuffer_unreference(c->primary->fb);
13177                         c->primary->fb = NULL;
13178                 }
13179         }
13180         mutex_unlock(&dev->struct_mutex);
13181 }
13182
13183 void intel_connector_unregister(struct intel_connector *intel_connector)
13184 {
13185         struct drm_connector *connector = &intel_connector->base;
13186
13187         intel_panel_destroy_backlight(connector);
13188         drm_connector_unregister(connector);
13189 }
13190
13191 void intel_modeset_cleanup(struct drm_device *dev)
13192 {
13193         struct drm_i915_private *dev_priv = dev->dev_private;
13194         struct drm_connector *connector;
13195
13196         /*
13197          * Interrupts and polling as the first thing to avoid creating havoc.
13198          * Too much stuff here (turning of rps, connectors, ...) would
13199          * experience fancy races otherwise.
13200          */
13201         drm_irq_uninstall(dev);
13202         intel_hpd_cancel_work(dev_priv);
13203         dev_priv->pm._irqs_disabled = true;
13204
13205         /*
13206          * Due to the hpd irq storm handling the hotplug work can re-arm the
13207          * poll handlers. Hence disable polling after hpd handling is shut down.
13208          */
13209         drm_kms_helper_poll_fini(dev);
13210
13211         mutex_lock(&dev->struct_mutex);
13212
13213         intel_unregister_dsm_handler();
13214
13215         intel_disable_fbc(dev);
13216
13217         intel_disable_gt_powersave(dev);
13218
13219         ironlake_teardown_rc6(dev);
13220
13221         mutex_unlock(&dev->struct_mutex);
13222
13223         /* flush any delayed tasks or pending work */
13224         flush_scheduled_work();
13225
13226         /* destroy the backlight and sysfs files before encoders/connectors */
13227         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13228                 struct intel_connector *intel_connector;
13229
13230                 intel_connector = to_intel_connector(connector);
13231                 intel_connector->unregister(intel_connector);
13232         }
13233
13234         drm_mode_config_cleanup(dev);
13235
13236         intel_cleanup_overlay(dev);
13237
13238         mutex_lock(&dev->struct_mutex);
13239         intel_cleanup_gt_powersave(dev);
13240         mutex_unlock(&dev->struct_mutex);
13241 }
13242
13243 /*
13244  * Return which encoder is currently attached for connector.
13245  */
13246 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13247 {
13248         return &intel_attached_encoder(connector)->base;
13249 }
13250
13251 void intel_connector_attach_encoder(struct intel_connector *connector,
13252                                     struct intel_encoder *encoder)
13253 {
13254         connector->encoder = encoder;
13255         drm_mode_connector_attach_encoder(&connector->base,
13256                                           &encoder->base);
13257 }
13258
13259 /*
13260  * set vga decode state - true == enable VGA decode
13261  */
13262 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13263 {
13264         struct drm_i915_private *dev_priv = dev->dev_private;
13265         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13266         u16 gmch_ctrl;
13267
13268         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13269                 DRM_ERROR("failed to read control word\n");
13270                 return -EIO;
13271         }
13272
13273         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13274                 return 0;
13275
13276         if (state)
13277                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13278         else
13279                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13280
13281         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13282                 DRM_ERROR("failed to write control word\n");
13283                 return -EIO;
13284         }
13285
13286         return 0;
13287 }
13288
13289 struct intel_display_error_state {
13290
13291         u32 power_well_driver;
13292
13293         int num_transcoders;
13294
13295         struct intel_cursor_error_state {
13296                 u32 control;
13297                 u32 position;
13298                 u32 base;
13299                 u32 size;
13300         } cursor[I915_MAX_PIPES];
13301
13302         struct intel_pipe_error_state {
13303                 bool power_domain_on;
13304                 u32 source;
13305                 u32 stat;
13306         } pipe[I915_MAX_PIPES];
13307
13308         struct intel_plane_error_state {
13309                 u32 control;
13310                 u32 stride;
13311                 u32 size;
13312                 u32 pos;
13313                 u32 addr;
13314                 u32 surface;
13315                 u32 tile_offset;
13316         } plane[I915_MAX_PIPES];
13317
13318         struct intel_transcoder_error_state {
13319                 bool power_domain_on;
13320                 enum transcoder cpu_transcoder;
13321
13322                 u32 conf;
13323
13324                 u32 htotal;
13325                 u32 hblank;
13326                 u32 hsync;
13327                 u32 vtotal;
13328                 u32 vblank;
13329                 u32 vsync;
13330         } transcoder[4];
13331 };
13332
13333 struct intel_display_error_state *
13334 intel_display_capture_error_state(struct drm_device *dev)
13335 {
13336         struct drm_i915_private *dev_priv = dev->dev_private;
13337         struct intel_display_error_state *error;
13338         int transcoders[] = {
13339                 TRANSCODER_A,
13340                 TRANSCODER_B,
13341                 TRANSCODER_C,
13342                 TRANSCODER_EDP,
13343         };
13344         int i;
13345
13346         if (INTEL_INFO(dev)->num_pipes == 0)
13347                 return NULL;
13348
13349         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13350         if (error == NULL)
13351                 return NULL;
13352
13353         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13354                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13355
13356         for_each_pipe(i) {
13357                 error->pipe[i].power_domain_on =
13358                         intel_display_power_enabled_unlocked(dev_priv,
13359                                                            POWER_DOMAIN_PIPE(i));
13360                 if (!error->pipe[i].power_domain_on)
13361                         continue;
13362
13363                 error->cursor[i].control = I915_READ(CURCNTR(i));
13364                 error->cursor[i].position = I915_READ(CURPOS(i));
13365                 error->cursor[i].base = I915_READ(CURBASE(i));
13366
13367                 error->plane[i].control = I915_READ(DSPCNTR(i));
13368                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13369                 if (INTEL_INFO(dev)->gen <= 3) {
13370                         error->plane[i].size = I915_READ(DSPSIZE(i));
13371                         error->plane[i].pos = I915_READ(DSPPOS(i));
13372                 }
13373                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13374                         error->plane[i].addr = I915_READ(DSPADDR(i));
13375                 if (INTEL_INFO(dev)->gen >= 4) {
13376                         error->plane[i].surface = I915_READ(DSPSURF(i));
13377                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13378                 }
13379
13380                 error->pipe[i].source = I915_READ(PIPESRC(i));
13381
13382                 if (HAS_GMCH_DISPLAY(dev))
13383                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13384         }
13385
13386         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13387         if (HAS_DDI(dev_priv->dev))
13388                 error->num_transcoders++; /* Account for eDP. */
13389
13390         for (i = 0; i < error->num_transcoders; i++) {
13391                 enum transcoder cpu_transcoder = transcoders[i];
13392
13393                 error->transcoder[i].power_domain_on =
13394                         intel_display_power_enabled_unlocked(dev_priv,
13395                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13396                 if (!error->transcoder[i].power_domain_on)
13397                         continue;
13398
13399                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13400
13401                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13402                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13403                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13404                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13405                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13406                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13407                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13408         }
13409
13410         return error;
13411 }
13412
13413 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13414
13415 void
13416 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13417                                 struct drm_device *dev,
13418                                 struct intel_display_error_state *error)
13419 {
13420         int i;
13421
13422         if (!error)
13423                 return;
13424
13425         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13426         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13427                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13428                            error->power_well_driver);
13429         for_each_pipe(i) {
13430                 err_printf(m, "Pipe [%d]:\n", i);
13431                 err_printf(m, "  Power: %s\n",
13432                            error->pipe[i].power_domain_on ? "on" : "off");
13433                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13434                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13435
13436                 err_printf(m, "Plane [%d]:\n", i);
13437                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13438                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13439                 if (INTEL_INFO(dev)->gen <= 3) {
13440                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13441                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13442                 }
13443                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13444                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13445                 if (INTEL_INFO(dev)->gen >= 4) {
13446                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13447                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13448                 }
13449
13450                 err_printf(m, "Cursor [%d]:\n", i);
13451                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13452                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13453                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13454         }
13455
13456         for (i = 0; i < error->num_transcoders; i++) {
13457                 err_printf(m, "CPU transcoder: %c\n",
13458                            transcoder_name(error->transcoder[i].cpu_transcoder));
13459                 err_printf(m, "  Power: %s\n",
13460                            error->transcoder[i].power_domain_on ? "on" : "off");
13461                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13462                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13463                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13464                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13465                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13466                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13467                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13468         }
13469 }
13470
13471 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13472 {
13473         struct intel_crtc *crtc;
13474
13475         for_each_intel_crtc(dev, crtc) {
13476                 struct intel_unpin_work *work;
13477                 unsigned long irqflags;
13478
13479                 spin_lock_irqsave(&dev->event_lock, irqflags);
13480
13481                 work = crtc->unpin_work;
13482
13483                 if (work && work->event &&
13484                     work->event->base.file_priv == file) {
13485                         kfree(work->event);
13486                         work->event = NULL;
13487                 }
13488
13489                 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13490         }
13491 }