]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Silence the change of LVDS sync polarity
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static inline u32 /* units of 100MHz */
102 intel_fdi_link_freq(struct drm_device *dev)
103 {
104         if (IS_GEN5(dev)) {
105                 struct drm_i915_private *dev_priv = dev->dev_private;
106                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
107         } else
108                 return 27;
109 }
110
111 static const intel_limit_t intel_limits_i8xx_dvo = {
112         .dot = { .min = 25000, .max = 350000 },
113         .vco = { .min = 930000, .max = 1400000 },
114         .n = { .min = 3, .max = 16 },
115         .m = { .min = 96, .max = 140 },
116         .m1 = { .min = 18, .max = 26 },
117         .m2 = { .min = 6, .max = 16 },
118         .p = { .min = 4, .max = 128 },
119         .p1 = { .min = 2, .max = 33 },
120         .p2 = { .dot_limit = 165000,
121                 .p2_slow = 4, .p2_fast = 2 },
122         .find_pll = intel_find_best_PLL,
123 };
124
125 static const intel_limit_t intel_limits_i8xx_lvds = {
126         .dot = { .min = 25000, .max = 350000 },
127         .vco = { .min = 930000, .max = 1400000 },
128         .n = { .min = 3, .max = 16 },
129         .m = { .min = 96, .max = 140 },
130         .m1 = { .min = 18, .max = 26 },
131         .m2 = { .min = 6, .max = 16 },
132         .p = { .min = 4, .max = 128 },
133         .p1 = { .min = 1, .max = 6 },
134         .p2 = { .dot_limit = 165000,
135                 .p2_slow = 14, .p2_fast = 7 },
136         .find_pll = intel_find_best_PLL,
137 };
138
139 static const intel_limit_t intel_limits_i9xx_sdvo = {
140         .dot = { .min = 20000, .max = 400000 },
141         .vco = { .min = 1400000, .max = 2800000 },
142         .n = { .min = 1, .max = 6 },
143         .m = { .min = 70, .max = 120 },
144         .m1 = { .min = 10, .max = 22 },
145         .m2 = { .min = 5, .max = 9 },
146         .p = { .min = 5, .max = 80 },
147         .p1 = { .min = 1, .max = 8 },
148         .p2 = { .dot_limit = 200000,
149                 .p2_slow = 10, .p2_fast = 5 },
150         .find_pll = intel_find_best_PLL,
151 };
152
153 static const intel_limit_t intel_limits_i9xx_lvds = {
154         .dot = { .min = 20000, .max = 400000 },
155         .vco = { .min = 1400000, .max = 2800000 },
156         .n = { .min = 1, .max = 6 },
157         .m = { .min = 70, .max = 120 },
158         .m1 = { .min = 10, .max = 22 },
159         .m2 = { .min = 5, .max = 9 },
160         .p = { .min = 7, .max = 98 },
161         .p1 = { .min = 1, .max = 8 },
162         .p2 = { .dot_limit = 112000,
163                 .p2_slow = 14, .p2_fast = 7 },
164         .find_pll = intel_find_best_PLL,
165 };
166
167
168 static const intel_limit_t intel_limits_g4x_sdvo = {
169         .dot = { .min = 25000, .max = 270000 },
170         .vco = { .min = 1750000, .max = 3500000},
171         .n = { .min = 1, .max = 4 },
172         .m = { .min = 104, .max = 138 },
173         .m1 = { .min = 17, .max = 23 },
174         .m2 = { .min = 5, .max = 11 },
175         .p = { .min = 10, .max = 30 },
176         .p1 = { .min = 1, .max = 3},
177         .p2 = { .dot_limit = 270000,
178                 .p2_slow = 10,
179                 .p2_fast = 10
180         },
181         .find_pll = intel_g4x_find_best_PLL,
182 };
183
184 static const intel_limit_t intel_limits_g4x_hdmi = {
185         .dot = { .min = 22000, .max = 400000 },
186         .vco = { .min = 1750000, .max = 3500000},
187         .n = { .min = 1, .max = 4 },
188         .m = { .min = 104, .max = 138 },
189         .m1 = { .min = 16, .max = 23 },
190         .m2 = { .min = 5, .max = 11 },
191         .p = { .min = 5, .max = 80 },
192         .p1 = { .min = 1, .max = 8},
193         .p2 = { .dot_limit = 165000,
194                 .p2_slow = 10, .p2_fast = 5 },
195         .find_pll = intel_g4x_find_best_PLL,
196 };
197
198 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
199         .dot = { .min = 20000, .max = 115000 },
200         .vco = { .min = 1750000, .max = 3500000 },
201         .n = { .min = 1, .max = 3 },
202         .m = { .min = 104, .max = 138 },
203         .m1 = { .min = 17, .max = 23 },
204         .m2 = { .min = 5, .max = 11 },
205         .p = { .min = 28, .max = 112 },
206         .p1 = { .min = 2, .max = 8 },
207         .p2 = { .dot_limit = 0,
208                 .p2_slow = 14, .p2_fast = 14
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
214         .dot = { .min = 80000, .max = 224000 },
215         .vco = { .min = 1750000, .max = 3500000 },
216         .n = { .min = 1, .max = 3 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 14, .max = 42 },
221         .p1 = { .min = 2, .max = 6 },
222         .p2 = { .dot_limit = 0,
223                 .p2_slow = 7, .p2_fast = 7
224         },
225         .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_display_port = {
229         .dot = { .min = 161670, .max = 227000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 2 },
232         .m = { .min = 97, .max = 108 },
233         .m1 = { .min = 0x10, .max = 0x12 },
234         .m2 = { .min = 0x05, .max = 0x06 },
235         .p = { .min = 10, .max = 20 },
236         .p1 = { .min = 1, .max = 2},
237         .p2 = { .dot_limit = 0,
238                 .p2_slow = 10, .p2_fast = 10 },
239         .find_pll = intel_find_pll_g4x_dp,
240 };
241
242 static const intel_limit_t intel_limits_pineview_sdvo = {
243         .dot = { .min = 20000, .max = 400000},
244         .vco = { .min = 1700000, .max = 3500000 },
245         /* Pineview's Ncounter is a ring counter */
246         .n = { .min = 3, .max = 6 },
247         .m = { .min = 2, .max = 256 },
248         /* Pineview only has one combined m divider, which we treat as m2. */
249         .m1 = { .min = 0, .max = 0 },
250         .m2 = { .min = 0, .max = 254 },
251         .p = { .min = 5, .max = 80 },
252         .p1 = { .min = 1, .max = 8 },
253         .p2 = { .dot_limit = 200000,
254                 .p2_slow = 10, .p2_fast = 5 },
255         .find_pll = intel_find_best_PLL,
256 };
257
258 static const intel_limit_t intel_limits_pineview_lvds = {
259         .dot = { .min = 20000, .max = 400000 },
260         .vco = { .min = 1700000, .max = 3500000 },
261         .n = { .min = 3, .max = 6 },
262         .m = { .min = 2, .max = 256 },
263         .m1 = { .min = 0, .max = 0 },
264         .m2 = { .min = 0, .max = 254 },
265         .p = { .min = 7, .max = 112 },
266         .p1 = { .min = 1, .max = 8 },
267         .p2 = { .dot_limit = 112000,
268                 .p2_slow = 14, .p2_fast = 14 },
269         .find_pll = intel_find_best_PLL,
270 };
271
272 /* Ironlake / Sandybridge
273  *
274  * We calculate clock using (register_value + 2) for N/M1/M2, so here
275  * the range value for them is (actual_value - 2).
276  */
277 static const intel_limit_t intel_limits_ironlake_dac = {
278         .dot = { .min = 25000, .max = 350000 },
279         .vco = { .min = 1760000, .max = 3510000 },
280         .n = { .min = 1, .max = 5 },
281         .m = { .min = 79, .max = 127 },
282         .m1 = { .min = 12, .max = 22 },
283         .m2 = { .min = 5, .max = 9 },
284         .p = { .min = 5, .max = 80 },
285         .p1 = { .min = 1, .max = 8 },
286         .p2 = { .dot_limit = 225000,
287                 .p2_slow = 10, .p2_fast = 5 },
288         .find_pll = intel_g4x_find_best_PLL,
289 };
290
291 static const intel_limit_t intel_limits_ironlake_single_lvds = {
292         .dot = { .min = 25000, .max = 350000 },
293         .vco = { .min = 1760000, .max = 3510000 },
294         .n = { .min = 1, .max = 3 },
295         .m = { .min = 79, .max = 118 },
296         .m1 = { .min = 12, .max = 22 },
297         .m2 = { .min = 5, .max = 9 },
298         .p = { .min = 28, .max = 112 },
299         .p1 = { .min = 2, .max = 8 },
300         .p2 = { .dot_limit = 225000,
301                 .p2_slow = 14, .p2_fast = 14 },
302         .find_pll = intel_g4x_find_best_PLL,
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 3 },
309         .m = { .min = 79, .max = 127 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 14, .max = 56 },
313         .p1 = { .min = 2, .max = 8 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 7, .p2_fast = 7 },
316         .find_pll = intel_g4x_find_best_PLL,
317 };
318
319 /* LVDS 100mhz refclk limits. */
320 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 2 },
324         .m = { .min = 79, .max = 126 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 126 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 42 },
342         .p1 = { .min = 2, .max = 6 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_ironlake_display_port = {
349         .dot = { .min = 25000, .max = 350000 },
350         .vco = { .min = 1760000, .max = 3510000},
351         .n = { .min = 1, .max = 2 },
352         .m = { .min = 81, .max = 90 },
353         .m1 = { .min = 12, .max = 22 },
354         .m2 = { .min = 5, .max = 9 },
355         .p = { .min = 10, .max = 20 },
356         .p1 = { .min = 1, .max = 2},
357         .p2 = { .dot_limit = 0,
358                 .p2_slow = 10, .p2_fast = 10 },
359         .find_pll = intel_find_pll_ironlake_dp,
360 };
361
362 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
363 {
364         unsigned long flags;
365         u32 val = 0;
366
367         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
368         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
369                 DRM_ERROR("DPIO idle wait timed out\n");
370                 goto out_unlock;
371         }
372
373         I915_WRITE(DPIO_REG, reg);
374         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
375                    DPIO_BYTE);
376         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
377                 DRM_ERROR("DPIO read wait timed out\n");
378                 goto out_unlock;
379         }
380         val = I915_READ(DPIO_DATA);
381
382 out_unlock:
383         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
384         return val;
385 }
386
387 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
388                              u32 val)
389 {
390         unsigned long flags;
391
392         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
393         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
394                 DRM_ERROR("DPIO idle wait timed out\n");
395                 goto out_unlock;
396         }
397
398         I915_WRITE(DPIO_DATA, val);
399         I915_WRITE(DPIO_REG, reg);
400         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
401                    DPIO_BYTE);
402         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
403                 DRM_ERROR("DPIO write wait timed out\n");
404
405 out_unlock:
406         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
407 }
408
409 static void vlv_init_dpio(struct drm_device *dev)
410 {
411         struct drm_i915_private *dev_priv = dev->dev_private;
412
413         /* Reset the DPIO config */
414         I915_WRITE(DPIO_CTL, 0);
415         POSTING_READ(DPIO_CTL);
416         I915_WRITE(DPIO_CTL, 1);
417         POSTING_READ(DPIO_CTL);
418 }
419
420 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
421 {
422         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
423         return 1;
424 }
425
426 static const struct dmi_system_id intel_dual_link_lvds[] = {
427         {
428                 .callback = intel_dual_link_lvds_callback,
429                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
430                 .matches = {
431                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
432                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
433                 },
434         },
435         { }     /* terminating entry */
436 };
437
438 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
439                               unsigned int reg)
440 {
441         unsigned int val;
442
443         /* use the module option value if specified */
444         if (i915_lvds_channel_mode > 0)
445                 return i915_lvds_channel_mode == 2;
446
447         if (dmi_check_system(intel_dual_link_lvds))
448                 return true;
449
450         if (dev_priv->lvds_val)
451                 val = dev_priv->lvds_val;
452         else {
453                 /* BIOS should set the proper LVDS register value at boot, but
454                  * in reality, it doesn't set the value when the lid is closed;
455                  * we need to check "the value to be set" in VBT when LVDS
456                  * register is uninitialized.
457                  */
458                 val = I915_READ(reg);
459                 if (!(val & ~LVDS_DETECTED))
460                         val = dev_priv->bios_lvds_val;
461                 dev_priv->lvds_val = val;
462         }
463         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
464 }
465
466 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
467                                                 int refclk)
468 {
469         struct drm_device *dev = crtc->dev;
470         struct drm_i915_private *dev_priv = dev->dev_private;
471         const intel_limit_t *limit;
472
473         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
474                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
475                         /* LVDS dual channel */
476                         if (refclk == 100000)
477                                 limit = &intel_limits_ironlake_dual_lvds_100m;
478                         else
479                                 limit = &intel_limits_ironlake_dual_lvds;
480                 } else {
481                         if (refclk == 100000)
482                                 limit = &intel_limits_ironlake_single_lvds_100m;
483                         else
484                                 limit = &intel_limits_ironlake_single_lvds;
485                 }
486         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
487                         HAS_eDP)
488                 limit = &intel_limits_ironlake_display_port;
489         else
490                 limit = &intel_limits_ironlake_dac;
491
492         return limit;
493 }
494
495 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
496 {
497         struct drm_device *dev = crtc->dev;
498         struct drm_i915_private *dev_priv = dev->dev_private;
499         const intel_limit_t *limit;
500
501         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
502                 if (is_dual_link_lvds(dev_priv, LVDS))
503                         /* LVDS with dual channel */
504                         limit = &intel_limits_g4x_dual_channel_lvds;
505                 else
506                         /* LVDS with dual channel */
507                         limit = &intel_limits_g4x_single_channel_lvds;
508         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
509                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
510                 limit = &intel_limits_g4x_hdmi;
511         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
512                 limit = &intel_limits_g4x_sdvo;
513         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
514                 limit = &intel_limits_g4x_display_port;
515         } else /* The option is for other outputs */
516                 limit = &intel_limits_i9xx_sdvo;
517
518         return limit;
519 }
520
521 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
522 {
523         struct drm_device *dev = crtc->dev;
524         const intel_limit_t *limit;
525
526         if (HAS_PCH_SPLIT(dev))
527                 limit = intel_ironlake_limit(crtc, refclk);
528         else if (IS_G4X(dev)) {
529                 limit = intel_g4x_limit(crtc);
530         } else if (IS_PINEVIEW(dev)) {
531                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
532                         limit = &intel_limits_pineview_lvds;
533                 else
534                         limit = &intel_limits_pineview_sdvo;
535         } else if (!IS_GEN2(dev)) {
536                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
537                         limit = &intel_limits_i9xx_lvds;
538                 else
539                         limit = &intel_limits_i9xx_sdvo;
540         } else {
541                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
542                         limit = &intel_limits_i8xx_lvds;
543                 else
544                         limit = &intel_limits_i8xx_dvo;
545         }
546         return limit;
547 }
548
549 /* m1 is reserved as 0 in Pineview, n is a ring counter */
550 static void pineview_clock(int refclk, intel_clock_t *clock)
551 {
552         clock->m = clock->m2 + 2;
553         clock->p = clock->p1 * clock->p2;
554         clock->vco = refclk * clock->m / clock->n;
555         clock->dot = clock->vco / clock->p;
556 }
557
558 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
559 {
560         if (IS_PINEVIEW(dev)) {
561                 pineview_clock(refclk, clock);
562                 return;
563         }
564         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
565         clock->p = clock->p1 * clock->p2;
566         clock->vco = refclk * clock->m / (clock->n + 2);
567         clock->dot = clock->vco / clock->p;
568 }
569
570 /**
571  * Returns whether any output on the specified pipe is of the specified type
572  */
573 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
574 {
575         struct drm_device *dev = crtc->dev;
576         struct drm_mode_config *mode_config = &dev->mode_config;
577         struct intel_encoder *encoder;
578
579         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
580                 if (encoder->base.crtc == crtc && encoder->type == type)
581                         return true;
582
583         return false;
584 }
585
586 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
587 /**
588  * Returns whether the given set of divisors are valid for a given refclk with
589  * the given connectors.
590  */
591
592 static bool intel_PLL_is_valid(struct drm_device *dev,
593                                const intel_limit_t *limit,
594                                const intel_clock_t *clock)
595 {
596         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
597                 INTELPllInvalid("p1 out of range\n");
598         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
599                 INTELPllInvalid("p out of range\n");
600         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
601                 INTELPllInvalid("m2 out of range\n");
602         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
603                 INTELPllInvalid("m1 out of range\n");
604         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
605                 INTELPllInvalid("m1 <= m2\n");
606         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
607                 INTELPllInvalid("m out of range\n");
608         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
609                 INTELPllInvalid("n out of range\n");
610         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611                 INTELPllInvalid("vco out of range\n");
612         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613          * connector, etc., rather than just a single range.
614          */
615         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616                 INTELPllInvalid("dot out of range\n");
617
618         return true;
619 }
620
621 static bool
622 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
623                     int target, int refclk, intel_clock_t *match_clock,
624                     intel_clock_t *best_clock)
625
626 {
627         struct drm_device *dev = crtc->dev;
628         struct drm_i915_private *dev_priv = dev->dev_private;
629         intel_clock_t clock;
630         int err = target;
631
632         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
633             (I915_READ(LVDS)) != 0) {
634                 /*
635                  * For LVDS, if the panel is on, just rely on its current
636                  * settings for dual-channel.  We haven't figured out how to
637                  * reliably set up different single/dual channel state, if we
638                  * even can.
639                  */
640                 if (is_dual_link_lvds(dev_priv, LVDS))
641                         clock.p2 = limit->p2.p2_fast;
642                 else
643                         clock.p2 = limit->p2.p2_slow;
644         } else {
645                 if (target < limit->p2.dot_limit)
646                         clock.p2 = limit->p2.p2_slow;
647                 else
648                         clock.p2 = limit->p2.p2_fast;
649         }
650
651         memset(best_clock, 0, sizeof(*best_clock));
652
653         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
654              clock.m1++) {
655                 for (clock.m2 = limit->m2.min;
656                      clock.m2 <= limit->m2.max; clock.m2++) {
657                         /* m1 is always 0 in Pineview */
658                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
659                                 break;
660                         for (clock.n = limit->n.min;
661                              clock.n <= limit->n.max; clock.n++) {
662                                 for (clock.p1 = limit->p1.min;
663                                         clock.p1 <= limit->p1.max; clock.p1++) {
664                                         int this_err;
665
666                                         intel_clock(dev, refclk, &clock);
667                                         if (!intel_PLL_is_valid(dev, limit,
668                                                                 &clock))
669                                                 continue;
670                                         if (match_clock &&
671                                             clock.p != match_clock->p)
672                                                 continue;
673
674                                         this_err = abs(clock.dot - target);
675                                         if (this_err < err) {
676                                                 *best_clock = clock;
677                                                 err = this_err;
678                                         }
679                                 }
680                         }
681                 }
682         }
683
684         return (err != target);
685 }
686
687 static bool
688 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
689                         int target, int refclk, intel_clock_t *match_clock,
690                         intel_clock_t *best_clock)
691 {
692         struct drm_device *dev = crtc->dev;
693         struct drm_i915_private *dev_priv = dev->dev_private;
694         intel_clock_t clock;
695         int max_n;
696         bool found;
697         /* approximately equals target * 0.00585 */
698         int err_most = (target >> 8) + (target >> 9);
699         found = false;
700
701         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
702                 int lvds_reg;
703
704                 if (HAS_PCH_SPLIT(dev))
705                         lvds_reg = PCH_LVDS;
706                 else
707                         lvds_reg = LVDS;
708                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
709                     LVDS_CLKB_POWER_UP)
710                         clock.p2 = limit->p2.p2_fast;
711                 else
712                         clock.p2 = limit->p2.p2_slow;
713         } else {
714                 if (target < limit->p2.dot_limit)
715                         clock.p2 = limit->p2.p2_slow;
716                 else
717                         clock.p2 = limit->p2.p2_fast;
718         }
719
720         memset(best_clock, 0, sizeof(*best_clock));
721         max_n = limit->n.max;
722         /* based on hardware requirement, prefer smaller n to precision */
723         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
724                 /* based on hardware requirement, prefere larger m1,m2 */
725                 for (clock.m1 = limit->m1.max;
726                      clock.m1 >= limit->m1.min; clock.m1--) {
727                         for (clock.m2 = limit->m2.max;
728                              clock.m2 >= limit->m2.min; clock.m2--) {
729                                 for (clock.p1 = limit->p1.max;
730                                      clock.p1 >= limit->p1.min; clock.p1--) {
731                                         int this_err;
732
733                                         intel_clock(dev, refclk, &clock);
734                                         if (!intel_PLL_is_valid(dev, limit,
735                                                                 &clock))
736                                                 continue;
737                                         if (match_clock &&
738                                             clock.p != match_clock->p)
739                                                 continue;
740
741                                         this_err = abs(clock.dot - target);
742                                         if (this_err < err_most) {
743                                                 *best_clock = clock;
744                                                 err_most = this_err;
745                                                 max_n = clock.n;
746                                                 found = true;
747                                         }
748                                 }
749                         }
750                 }
751         }
752         return found;
753 }
754
755 static bool
756 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
757                            int target, int refclk, intel_clock_t *match_clock,
758                            intel_clock_t *best_clock)
759 {
760         struct drm_device *dev = crtc->dev;
761         intel_clock_t clock;
762
763         if (target < 200000) {
764                 clock.n = 1;
765                 clock.p1 = 2;
766                 clock.p2 = 10;
767                 clock.m1 = 12;
768                 clock.m2 = 9;
769         } else {
770                 clock.n = 2;
771                 clock.p1 = 1;
772                 clock.p2 = 10;
773                 clock.m1 = 14;
774                 clock.m2 = 8;
775         }
776         intel_clock(dev, refclk, &clock);
777         memcpy(best_clock, &clock, sizeof(intel_clock_t));
778         return true;
779 }
780
781 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
782 static bool
783 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
784                       int target, int refclk, intel_clock_t *match_clock,
785                       intel_clock_t *best_clock)
786 {
787         intel_clock_t clock;
788         if (target < 200000) {
789                 clock.p1 = 2;
790                 clock.p2 = 10;
791                 clock.n = 2;
792                 clock.m1 = 23;
793                 clock.m2 = 8;
794         } else {
795                 clock.p1 = 1;
796                 clock.p2 = 10;
797                 clock.n = 1;
798                 clock.m1 = 14;
799                 clock.m2 = 2;
800         }
801         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
802         clock.p = (clock.p1 * clock.p2);
803         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
804         clock.vco = 0;
805         memcpy(best_clock, &clock, sizeof(intel_clock_t));
806         return true;
807 }
808
809 /**
810  * intel_wait_for_vblank - wait for vblank on a given pipe
811  * @dev: drm device
812  * @pipe: pipe to wait for
813  *
814  * Wait for vblank to occur on a given pipe.  Needed for various bits of
815  * mode setting code.
816  */
817 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         int pipestat_reg = PIPESTAT(pipe);
821
822         /* Clear existing vblank status. Note this will clear any other
823          * sticky status fields as well.
824          *
825          * This races with i915_driver_irq_handler() with the result
826          * that either function could miss a vblank event.  Here it is not
827          * fatal, as we will either wait upon the next vblank interrupt or
828          * timeout.  Generally speaking intel_wait_for_vblank() is only
829          * called during modeset at which time the GPU should be idle and
830          * should *not* be performing page flips and thus not waiting on
831          * vblanks...
832          * Currently, the result of us stealing a vblank from the irq
833          * handler is that a single frame will be skipped during swapbuffers.
834          */
835         I915_WRITE(pipestat_reg,
836                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
837
838         /* Wait for vblank interrupt bit to set */
839         if (wait_for(I915_READ(pipestat_reg) &
840                      PIPE_VBLANK_INTERRUPT_STATUS,
841                      50))
842                 DRM_DEBUG_KMS("vblank wait timed out\n");
843 }
844
845 /*
846  * intel_wait_for_pipe_off - wait for pipe to turn off
847  * @dev: drm device
848  * @pipe: pipe to wait for
849  *
850  * After disabling a pipe, we can't wait for vblank in the usual way,
851  * spinning on the vblank interrupt status bit, since we won't actually
852  * see an interrupt when the pipe is disabled.
853  *
854  * On Gen4 and above:
855  *   wait for the pipe register state bit to turn off
856  *
857  * Otherwise:
858  *   wait for the display line value to settle (it usually
859  *   ends up stopping at the start of the next frame).
860  *
861  */
862 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
863 {
864         struct drm_i915_private *dev_priv = dev->dev_private;
865
866         if (INTEL_INFO(dev)->gen >= 4) {
867                 int reg = PIPECONF(pipe);
868
869                 /* Wait for the Pipe State to go off */
870                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
871                              100))
872                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
873         } else {
874                 u32 last_line;
875                 int reg = PIPEDSL(pipe);
876                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
877
878                 /* Wait for the display line to settle */
879                 do {
880                         last_line = I915_READ(reg) & DSL_LINEMASK;
881                         mdelay(5);
882                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
883                          time_after(timeout, jiffies));
884                 if (time_after(jiffies, timeout))
885                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
886         }
887 }
888
889 static const char *state_string(bool enabled)
890 {
891         return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 static void assert_pll(struct drm_i915_private *dev_priv,
896                        enum pipe pipe, bool state)
897 {
898         int reg;
899         u32 val;
900         bool cur_state;
901
902         reg = DPLL(pipe);
903         val = I915_READ(reg);
904         cur_state = !!(val & DPLL_VCO_ENABLE);
905         WARN(cur_state != state,
906              "PLL state assertion failure (expected %s, current %s)\n",
907              state_string(state), state_string(cur_state));
908 }
909 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
910 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
911
912 /* For ILK+ */
913 static void assert_pch_pll(struct drm_i915_private *dev_priv,
914                            enum pipe pipe, bool state)
915 {
916         int reg;
917         u32 val;
918         bool cur_state;
919
920         if (HAS_PCH_CPT(dev_priv->dev)) {
921                 u32 pch_dpll;
922
923                 pch_dpll = I915_READ(PCH_DPLL_SEL);
924
925                 /* Make sure the selected PLL is enabled to the transcoder */
926                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
927                      "transcoder %d PLL not enabled\n", pipe);
928
929                 /* Convert the transcoder pipe number to a pll pipe number */
930                 pipe = (pch_dpll >> (4 * pipe)) & 1;
931         }
932
933         reg = PCH_DPLL(pipe);
934         val = I915_READ(reg);
935         cur_state = !!(val & DPLL_VCO_ENABLE);
936         WARN(cur_state != state,
937              "PCH PLL state assertion failure (expected %s, current %s)\n",
938              state_string(state), state_string(cur_state));
939 }
940 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
941 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
942
943 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
944                           enum pipe pipe, bool state)
945 {
946         int reg;
947         u32 val;
948         bool cur_state;
949
950         reg = FDI_TX_CTL(pipe);
951         val = I915_READ(reg);
952         cur_state = !!(val & FDI_TX_ENABLE);
953         WARN(cur_state != state,
954              "FDI TX state assertion failure (expected %s, current %s)\n",
955              state_string(state), state_string(cur_state));
956 }
957 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
958 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
959
960 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
961                           enum pipe pipe, bool state)
962 {
963         int reg;
964         u32 val;
965         bool cur_state;
966
967         reg = FDI_RX_CTL(pipe);
968         val = I915_READ(reg);
969         cur_state = !!(val & FDI_RX_ENABLE);
970         WARN(cur_state != state,
971              "FDI RX state assertion failure (expected %s, current %s)\n",
972              state_string(state), state_string(cur_state));
973 }
974 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
975 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
976
977 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
978                                       enum pipe pipe)
979 {
980         int reg;
981         u32 val;
982
983         /* ILK FDI PLL is always enabled */
984         if (dev_priv->info->gen == 5)
985                 return;
986
987         reg = FDI_TX_CTL(pipe);
988         val = I915_READ(reg);
989         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
990 }
991
992 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
993                                       enum pipe pipe)
994 {
995         int reg;
996         u32 val;
997
998         reg = FDI_RX_CTL(pipe);
999         val = I915_READ(reg);
1000         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1001 }
1002
1003 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1004                                   enum pipe pipe)
1005 {
1006         int pp_reg, lvds_reg;
1007         u32 val;
1008         enum pipe panel_pipe = PIPE_A;
1009         bool locked = true;
1010
1011         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1012                 pp_reg = PCH_PP_CONTROL;
1013                 lvds_reg = PCH_LVDS;
1014         } else {
1015                 pp_reg = PP_CONTROL;
1016                 lvds_reg = LVDS;
1017         }
1018
1019         val = I915_READ(pp_reg);
1020         if (!(val & PANEL_POWER_ON) ||
1021             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1022                 locked = false;
1023
1024         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1025                 panel_pipe = PIPE_B;
1026
1027         WARN(panel_pipe == pipe && locked,
1028              "panel assertion failure, pipe %c regs locked\n",
1029              pipe_name(pipe));
1030 }
1031
1032 void assert_pipe(struct drm_i915_private *dev_priv,
1033                  enum pipe pipe, bool state)
1034 {
1035         int reg;
1036         u32 val;
1037         bool cur_state;
1038
1039         /* if we need the pipe A quirk it must be always on */
1040         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1041                 state = true;
1042
1043         reg = PIPECONF(pipe);
1044         val = I915_READ(reg);
1045         cur_state = !!(val & PIPECONF_ENABLE);
1046         WARN(cur_state != state,
1047              "pipe %c assertion failure (expected %s, current %s)\n",
1048              pipe_name(pipe), state_string(state), state_string(cur_state));
1049 }
1050
1051 static void assert_plane(struct drm_i915_private *dev_priv,
1052                          enum plane plane, bool state)
1053 {
1054         int reg;
1055         u32 val;
1056         bool cur_state;
1057
1058         reg = DSPCNTR(plane);
1059         val = I915_READ(reg);
1060         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1061         WARN(cur_state != state,
1062              "plane %c assertion failure (expected %s, current %s)\n",
1063              plane_name(plane), state_string(state), state_string(cur_state));
1064 }
1065
1066 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1067 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1068
1069 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1070                                    enum pipe pipe)
1071 {
1072         int reg, i;
1073         u32 val;
1074         int cur_pipe;
1075
1076         /* Planes are fixed to pipes on ILK+ */
1077         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1078                 reg = DSPCNTR(pipe);
1079                 val = I915_READ(reg);
1080                 WARN((val & DISPLAY_PLANE_ENABLE),
1081                      "plane %c assertion failure, should be disabled but not\n",
1082                      plane_name(pipe));
1083                 return;
1084         }
1085
1086         /* Need to check both planes against the pipe */
1087         for (i = 0; i < 2; i++) {
1088                 reg = DSPCNTR(i);
1089                 val = I915_READ(reg);
1090                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1091                         DISPPLANE_SEL_PIPE_SHIFT;
1092                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1093                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1094                      plane_name(i), pipe_name(pipe));
1095         }
1096 }
1097
1098 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1099 {
1100         u32 val;
1101         bool enabled;
1102
1103         val = I915_READ(PCH_DREF_CONTROL);
1104         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1105                             DREF_SUPERSPREAD_SOURCE_MASK));
1106         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1107 }
1108
1109 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1110                                        enum pipe pipe)
1111 {
1112         int reg;
1113         u32 val;
1114         bool enabled;
1115
1116         reg = TRANSCONF(pipe);
1117         val = I915_READ(reg);
1118         enabled = !!(val & TRANS_ENABLE);
1119         WARN(enabled,
1120              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1121              pipe_name(pipe));
1122 }
1123
1124 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1125                             enum pipe pipe, u32 port_sel, u32 val)
1126 {
1127         if ((val & DP_PORT_EN) == 0)
1128                 return false;
1129
1130         if (HAS_PCH_CPT(dev_priv->dev)) {
1131                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1132                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1133                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1134                         return false;
1135         } else {
1136                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1137                         return false;
1138         }
1139         return true;
1140 }
1141
1142 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1143                               enum pipe pipe, u32 val)
1144 {
1145         if ((val & PORT_ENABLE) == 0)
1146                 return false;
1147
1148         if (HAS_PCH_CPT(dev_priv->dev)) {
1149                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1150                         return false;
1151         } else {
1152                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1153                         return false;
1154         }
1155         return true;
1156 }
1157
1158 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1159                               enum pipe pipe, u32 val)
1160 {
1161         if ((val & LVDS_PORT_EN) == 0)
1162                 return false;
1163
1164         if (HAS_PCH_CPT(dev_priv->dev)) {
1165                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1166                         return false;
1167         } else {
1168                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1169                         return false;
1170         }
1171         return true;
1172 }
1173
1174 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1175                               enum pipe pipe, u32 val)
1176 {
1177         if ((val & ADPA_DAC_ENABLE) == 0)
1178                 return false;
1179         if (HAS_PCH_CPT(dev_priv->dev)) {
1180                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1181                         return false;
1182         } else {
1183                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1184                         return false;
1185         }
1186         return true;
1187 }
1188
1189 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1190                                    enum pipe pipe, int reg, u32 port_sel)
1191 {
1192         u32 val = I915_READ(reg);
1193         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1194              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1195              reg, pipe_name(pipe));
1196 }
1197
1198 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1199                                      enum pipe pipe, int reg)
1200 {
1201         u32 val = I915_READ(reg);
1202         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1203              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1204              reg, pipe_name(pipe));
1205 }
1206
1207 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1208                                       enum pipe pipe)
1209 {
1210         int reg;
1211         u32 val;
1212
1213         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1214         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1215         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1216
1217         reg = PCH_ADPA;
1218         val = I915_READ(reg);
1219         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1220              "PCH VGA enabled on transcoder %c, should be disabled\n",
1221              pipe_name(pipe));
1222
1223         reg = PCH_LVDS;
1224         val = I915_READ(reg);
1225         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1226              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1227              pipe_name(pipe));
1228
1229         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1230         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1231         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1232 }
1233
1234 /**
1235  * intel_enable_pll - enable a PLL
1236  * @dev_priv: i915 private structure
1237  * @pipe: pipe PLL to enable
1238  *
1239  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1240  * make sure the PLL reg is writable first though, since the panel write
1241  * protect mechanism may be enabled.
1242  *
1243  * Note!  This is for pre-ILK only.
1244  */
1245 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1246 {
1247         int reg;
1248         u32 val;
1249
1250         /* No really, not for ILK+ */
1251         BUG_ON(dev_priv->info->gen >= 5);
1252
1253         /* PLL is protected by panel, make sure we can write it */
1254         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1255                 assert_panel_unlocked(dev_priv, pipe);
1256
1257         reg = DPLL(pipe);
1258         val = I915_READ(reg);
1259         val |= DPLL_VCO_ENABLE;
1260
1261         /* We do this three times for luck */
1262         I915_WRITE(reg, val);
1263         POSTING_READ(reg);
1264         udelay(150); /* wait for warmup */
1265         I915_WRITE(reg, val);
1266         POSTING_READ(reg);
1267         udelay(150); /* wait for warmup */
1268         I915_WRITE(reg, val);
1269         POSTING_READ(reg);
1270         udelay(150); /* wait for warmup */
1271 }
1272
1273 /**
1274  * intel_disable_pll - disable a PLL
1275  * @dev_priv: i915 private structure
1276  * @pipe: pipe PLL to disable
1277  *
1278  * Disable the PLL for @pipe, making sure the pipe is off first.
1279  *
1280  * Note!  This is for pre-ILK only.
1281  */
1282 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1283 {
1284         int reg;
1285         u32 val;
1286
1287         /* Don't disable pipe A or pipe A PLLs if needed */
1288         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1289                 return;
1290
1291         /* Make sure the pipe isn't still relying on us */
1292         assert_pipe_disabled(dev_priv, pipe);
1293
1294         reg = DPLL(pipe);
1295         val = I915_READ(reg);
1296         val &= ~DPLL_VCO_ENABLE;
1297         I915_WRITE(reg, val);
1298         POSTING_READ(reg);
1299 }
1300
1301 /**
1302  * intel_enable_pch_pll - enable PCH PLL
1303  * @dev_priv: i915 private structure
1304  * @pipe: pipe PLL to enable
1305  *
1306  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1307  * drives the transcoder clock.
1308  */
1309 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1310                                  enum pipe pipe)
1311 {
1312         int reg;
1313         u32 val;
1314
1315         if (pipe > 1)
1316                 return;
1317
1318         /* PCH only available on ILK+ */
1319         BUG_ON(dev_priv->info->gen < 5);
1320
1321         /* PCH refclock must be enabled first */
1322         assert_pch_refclk_enabled(dev_priv);
1323
1324         reg = PCH_DPLL(pipe);
1325         val = I915_READ(reg);
1326         val |= DPLL_VCO_ENABLE;
1327         I915_WRITE(reg, val);
1328         POSTING_READ(reg);
1329         udelay(200);
1330 }
1331
1332 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1333                                   enum pipe pipe)
1334 {
1335         int reg;
1336         u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1337                 pll_sel = TRANSC_DPLL_ENABLE;
1338
1339         if (pipe > 1)
1340                 return;
1341
1342         /* PCH only available on ILK+ */
1343         BUG_ON(dev_priv->info->gen < 5);
1344
1345         /* Make sure transcoder isn't still depending on us */
1346         assert_transcoder_disabled(dev_priv, pipe);
1347
1348         if (pipe == 0)
1349                 pll_sel |= TRANSC_DPLLA_SEL;
1350         else if (pipe == 1)
1351                 pll_sel |= TRANSC_DPLLB_SEL;
1352
1353
1354         if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1355                 return;
1356
1357         reg = PCH_DPLL(pipe);
1358         val = I915_READ(reg);
1359         val &= ~DPLL_VCO_ENABLE;
1360         I915_WRITE(reg, val);
1361         POSTING_READ(reg);
1362         udelay(200);
1363 }
1364
1365 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1366                                     enum pipe pipe)
1367 {
1368         int reg;
1369         u32 val, pipeconf_val;
1370         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1371
1372         /* PCH only available on ILK+ */
1373         BUG_ON(dev_priv->info->gen < 5);
1374
1375         /* Make sure PCH DPLL is enabled */
1376         assert_pch_pll_enabled(dev_priv, pipe);
1377
1378         /* FDI must be feeding us bits for PCH ports */
1379         assert_fdi_tx_enabled(dev_priv, pipe);
1380         assert_fdi_rx_enabled(dev_priv, pipe);
1381
1382         reg = TRANSCONF(pipe);
1383         val = I915_READ(reg);
1384         pipeconf_val = I915_READ(PIPECONF(pipe));
1385
1386         if (HAS_PCH_IBX(dev_priv->dev)) {
1387                 /*
1388                  * make the BPC in transcoder be consistent with
1389                  * that in pipeconf reg.
1390                  */
1391                 val &= ~PIPE_BPC_MASK;
1392                 val |= pipeconf_val & PIPE_BPC_MASK;
1393         }
1394
1395         val &= ~TRANS_INTERLACE_MASK;
1396         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1397                 if (HAS_PCH_IBX(dev_priv->dev) &&
1398                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1399                         val |= TRANS_LEGACY_INTERLACED_ILK;
1400                 else
1401                         val |= TRANS_INTERLACED;
1402         else
1403                 val |= TRANS_PROGRESSIVE;
1404
1405         I915_WRITE(reg, val | TRANS_ENABLE);
1406         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1407                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1408 }
1409
1410 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1411                                      enum pipe pipe)
1412 {
1413         int reg;
1414         u32 val;
1415
1416         /* FDI relies on the transcoder */
1417         assert_fdi_tx_disabled(dev_priv, pipe);
1418         assert_fdi_rx_disabled(dev_priv, pipe);
1419
1420         /* Ports must be off as well */
1421         assert_pch_ports_disabled(dev_priv, pipe);
1422
1423         reg = TRANSCONF(pipe);
1424         val = I915_READ(reg);
1425         val &= ~TRANS_ENABLE;
1426         I915_WRITE(reg, val);
1427         /* wait for PCH transcoder off, transcoder state */
1428         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1429                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1430 }
1431
1432 /**
1433  * intel_enable_pipe - enable a pipe, asserting requirements
1434  * @dev_priv: i915 private structure
1435  * @pipe: pipe to enable
1436  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1437  *
1438  * Enable @pipe, making sure that various hardware specific requirements
1439  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1440  *
1441  * @pipe should be %PIPE_A or %PIPE_B.
1442  *
1443  * Will wait until the pipe is actually running (i.e. first vblank) before
1444  * returning.
1445  */
1446 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1447                               bool pch_port)
1448 {
1449         int reg;
1450         u32 val;
1451
1452         /*
1453          * A pipe without a PLL won't actually be able to drive bits from
1454          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1455          * need the check.
1456          */
1457         if (!HAS_PCH_SPLIT(dev_priv->dev))
1458                 assert_pll_enabled(dev_priv, pipe);
1459         else {
1460                 if (pch_port) {
1461                         /* if driving the PCH, we need FDI enabled */
1462                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1463                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1464                 }
1465                 /* FIXME: assert CPU port conditions for SNB+ */
1466         }
1467
1468         reg = PIPECONF(pipe);
1469         val = I915_READ(reg);
1470         if (val & PIPECONF_ENABLE)
1471                 return;
1472
1473         I915_WRITE(reg, val | PIPECONF_ENABLE);
1474         intel_wait_for_vblank(dev_priv->dev, pipe);
1475 }
1476
1477 /**
1478  * intel_disable_pipe - disable a pipe, asserting requirements
1479  * @dev_priv: i915 private structure
1480  * @pipe: pipe to disable
1481  *
1482  * Disable @pipe, making sure that various hardware specific requirements
1483  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1484  *
1485  * @pipe should be %PIPE_A or %PIPE_B.
1486  *
1487  * Will wait until the pipe has shut down before returning.
1488  */
1489 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1490                                enum pipe pipe)
1491 {
1492         int reg;
1493         u32 val;
1494
1495         /*
1496          * Make sure planes won't keep trying to pump pixels to us,
1497          * or we might hang the display.
1498          */
1499         assert_planes_disabled(dev_priv, pipe);
1500
1501         /* Don't disable pipe A or pipe A PLLs if needed */
1502         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1503                 return;
1504
1505         reg = PIPECONF(pipe);
1506         val = I915_READ(reg);
1507         if ((val & PIPECONF_ENABLE) == 0)
1508                 return;
1509
1510         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1511         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1512 }
1513
1514 /*
1515  * Plane regs are double buffered, going from enabled->disabled needs a
1516  * trigger in order to latch.  The display address reg provides this.
1517  */
1518 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1519                                       enum plane plane)
1520 {
1521         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1522         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1523 }
1524
1525 /**
1526  * intel_enable_plane - enable a display plane on a given pipe
1527  * @dev_priv: i915 private structure
1528  * @plane: plane to enable
1529  * @pipe: pipe being fed
1530  *
1531  * Enable @plane on @pipe, making sure that @pipe is running first.
1532  */
1533 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1534                                enum plane plane, enum pipe pipe)
1535 {
1536         int reg;
1537         u32 val;
1538
1539         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1540         assert_pipe_enabled(dev_priv, pipe);
1541
1542         reg = DSPCNTR(plane);
1543         val = I915_READ(reg);
1544         if (val & DISPLAY_PLANE_ENABLE)
1545                 return;
1546
1547         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1548         intel_flush_display_plane(dev_priv, plane);
1549         intel_wait_for_vblank(dev_priv->dev, pipe);
1550 }
1551
1552 /**
1553  * intel_disable_plane - disable a display plane
1554  * @dev_priv: i915 private structure
1555  * @plane: plane to disable
1556  * @pipe: pipe consuming the data
1557  *
1558  * Disable @plane; should be an independent operation.
1559  */
1560 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1561                                 enum plane plane, enum pipe pipe)
1562 {
1563         int reg;
1564         u32 val;
1565
1566         reg = DSPCNTR(plane);
1567         val = I915_READ(reg);
1568         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1569                 return;
1570
1571         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1572         intel_flush_display_plane(dev_priv, plane);
1573         intel_wait_for_vblank(dev_priv->dev, pipe);
1574 }
1575
1576 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1577                            enum pipe pipe, int reg, u32 port_sel)
1578 {
1579         u32 val = I915_READ(reg);
1580         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1581                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1582                 I915_WRITE(reg, val & ~DP_PORT_EN);
1583         }
1584 }
1585
1586 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1587                              enum pipe pipe, int reg)
1588 {
1589         u32 val = I915_READ(reg);
1590         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1591                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1592                               reg, pipe);
1593                 I915_WRITE(reg, val & ~PORT_ENABLE);
1594         }
1595 }
1596
1597 /* Disable any ports connected to this transcoder */
1598 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1599                                     enum pipe pipe)
1600 {
1601         u32 reg, val;
1602
1603         val = I915_READ(PCH_PP_CONTROL);
1604         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1605
1606         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1607         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1608         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1609
1610         reg = PCH_ADPA;
1611         val = I915_READ(reg);
1612         if (adpa_pipe_enabled(dev_priv, val, pipe))
1613                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1614
1615         reg = PCH_LVDS;
1616         val = I915_READ(reg);
1617         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1618                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1619                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1620                 POSTING_READ(reg);
1621                 udelay(100);
1622         }
1623
1624         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1625         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1626         disable_pch_hdmi(dev_priv, pipe, HDMID);
1627 }
1628
1629 int
1630 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1631                            struct drm_i915_gem_object *obj,
1632                            struct intel_ring_buffer *pipelined)
1633 {
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635         u32 alignment;
1636         int ret;
1637
1638         switch (obj->tiling_mode) {
1639         case I915_TILING_NONE:
1640                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1641                         alignment = 128 * 1024;
1642                 else if (INTEL_INFO(dev)->gen >= 4)
1643                         alignment = 4 * 1024;
1644                 else
1645                         alignment = 64 * 1024;
1646                 break;
1647         case I915_TILING_X:
1648                 /* pin() will align the object as required by fence */
1649                 alignment = 0;
1650                 break;
1651         case I915_TILING_Y:
1652                 /* FIXME: Is this true? */
1653                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1654                 return -EINVAL;
1655         default:
1656                 BUG();
1657         }
1658
1659         dev_priv->mm.interruptible = false;
1660         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1661         if (ret)
1662                 goto err_interruptible;
1663
1664         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1665          * fence, whereas 965+ only requires a fence if using
1666          * framebuffer compression.  For simplicity, we always install
1667          * a fence as the cost is not that onerous.
1668          */
1669         ret = i915_gem_object_get_fence(obj);
1670         if (ret)
1671                 goto err_unpin;
1672
1673         i915_gem_object_pin_fence(obj);
1674
1675         dev_priv->mm.interruptible = true;
1676         return 0;
1677
1678 err_unpin:
1679         i915_gem_object_unpin(obj);
1680 err_interruptible:
1681         dev_priv->mm.interruptible = true;
1682         return ret;
1683 }
1684
1685 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1686 {
1687         i915_gem_object_unpin_fence(obj);
1688         i915_gem_object_unpin(obj);
1689 }
1690
1691 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1692                              int x, int y)
1693 {
1694         struct drm_device *dev = crtc->dev;
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1697         struct intel_framebuffer *intel_fb;
1698         struct drm_i915_gem_object *obj;
1699         int plane = intel_crtc->plane;
1700         unsigned long Start, Offset;
1701         u32 dspcntr;
1702         u32 reg;
1703
1704         switch (plane) {
1705         case 0:
1706         case 1:
1707                 break;
1708         default:
1709                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1710                 return -EINVAL;
1711         }
1712
1713         intel_fb = to_intel_framebuffer(fb);
1714         obj = intel_fb->obj;
1715
1716         reg = DSPCNTR(plane);
1717         dspcntr = I915_READ(reg);
1718         /* Mask out pixel format bits in case we change it */
1719         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1720         switch (fb->bits_per_pixel) {
1721         case 8:
1722                 dspcntr |= DISPPLANE_8BPP;
1723                 break;
1724         case 16:
1725                 if (fb->depth == 15)
1726                         dspcntr |= DISPPLANE_15_16BPP;
1727                 else
1728                         dspcntr |= DISPPLANE_16BPP;
1729                 break;
1730         case 24:
1731         case 32:
1732                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1733                 break;
1734         default:
1735                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1736                 return -EINVAL;
1737         }
1738         if (INTEL_INFO(dev)->gen >= 4) {
1739                 if (obj->tiling_mode != I915_TILING_NONE)
1740                         dspcntr |= DISPPLANE_TILED;
1741                 else
1742                         dspcntr &= ~DISPPLANE_TILED;
1743         }
1744
1745         I915_WRITE(reg, dspcntr);
1746
1747         Start = obj->gtt_offset;
1748         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1749
1750         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1751                       Start, Offset, x, y, fb->pitches[0]);
1752         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1753         if (INTEL_INFO(dev)->gen >= 4) {
1754                 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1755                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1756                 I915_WRITE(DSPADDR(plane), Offset);
1757         } else
1758                 I915_WRITE(DSPADDR(plane), Start + Offset);
1759         POSTING_READ(reg);
1760
1761         return 0;
1762 }
1763
1764 static int ironlake_update_plane(struct drm_crtc *crtc,
1765                                  struct drm_framebuffer *fb, int x, int y)
1766 {
1767         struct drm_device *dev = crtc->dev;
1768         struct drm_i915_private *dev_priv = dev->dev_private;
1769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1770         struct intel_framebuffer *intel_fb;
1771         struct drm_i915_gem_object *obj;
1772         int plane = intel_crtc->plane;
1773         unsigned long Start, Offset;
1774         u32 dspcntr;
1775         u32 reg;
1776
1777         switch (plane) {
1778         case 0:
1779         case 1:
1780         case 2:
1781                 break;
1782         default:
1783                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1784                 return -EINVAL;
1785         }
1786
1787         intel_fb = to_intel_framebuffer(fb);
1788         obj = intel_fb->obj;
1789
1790         reg = DSPCNTR(plane);
1791         dspcntr = I915_READ(reg);
1792         /* Mask out pixel format bits in case we change it */
1793         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1794         switch (fb->bits_per_pixel) {
1795         case 8:
1796                 dspcntr |= DISPPLANE_8BPP;
1797                 break;
1798         case 16:
1799                 if (fb->depth != 16)
1800                         return -EINVAL;
1801
1802                 dspcntr |= DISPPLANE_16BPP;
1803                 break;
1804         case 24:
1805         case 32:
1806                 if (fb->depth == 24)
1807                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1808                 else if (fb->depth == 30)
1809                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1810                 else
1811                         return -EINVAL;
1812                 break;
1813         default:
1814                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1815                 return -EINVAL;
1816         }
1817
1818         if (obj->tiling_mode != I915_TILING_NONE)
1819                 dspcntr |= DISPPLANE_TILED;
1820         else
1821                 dspcntr &= ~DISPPLANE_TILED;
1822
1823         /* must disable */
1824         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1825
1826         I915_WRITE(reg, dspcntr);
1827
1828         Start = obj->gtt_offset;
1829         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1830
1831         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1832                       Start, Offset, x, y, fb->pitches[0]);
1833         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1834         I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1835         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1836         I915_WRITE(DSPADDR(plane), Offset);
1837         POSTING_READ(reg);
1838
1839         return 0;
1840 }
1841
1842 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1843 static int
1844 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1845                            int x, int y, enum mode_set_atomic state)
1846 {
1847         struct drm_device *dev = crtc->dev;
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849
1850         if (dev_priv->display.disable_fbc)
1851                 dev_priv->display.disable_fbc(dev);
1852         intel_increase_pllclock(crtc);
1853
1854         return dev_priv->display.update_plane(crtc, fb, x, y);
1855 }
1856
1857 static int
1858 intel_finish_fb(struct drm_framebuffer *old_fb)
1859 {
1860         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1861         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1862         bool was_interruptible = dev_priv->mm.interruptible;
1863         int ret;
1864
1865         wait_event(dev_priv->pending_flip_queue,
1866                    atomic_read(&dev_priv->mm.wedged) ||
1867                    atomic_read(&obj->pending_flip) == 0);
1868
1869         /* Big Hammer, we also need to ensure that any pending
1870          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1871          * current scanout is retired before unpinning the old
1872          * framebuffer.
1873          *
1874          * This should only fail upon a hung GPU, in which case we
1875          * can safely continue.
1876          */
1877         dev_priv->mm.interruptible = false;
1878         ret = i915_gem_object_finish_gpu(obj);
1879         dev_priv->mm.interruptible = was_interruptible;
1880
1881         return ret;
1882 }
1883
1884 static int
1885 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1886                     struct drm_framebuffer *old_fb)
1887 {
1888         struct drm_device *dev = crtc->dev;
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         struct drm_i915_master_private *master_priv;
1891         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1892         int ret;
1893
1894         /* no fb bound */
1895         if (!crtc->fb) {
1896                 DRM_ERROR("No FB bound\n");
1897                 return 0;
1898         }
1899
1900         switch (intel_crtc->plane) {
1901         case 0:
1902         case 1:
1903                 break;
1904         case 2:
1905                 if (IS_IVYBRIDGE(dev))
1906                         break;
1907                 /* fall through otherwise */
1908         default:
1909                 DRM_ERROR("no plane for crtc\n");
1910                 return -EINVAL;
1911         }
1912
1913         mutex_lock(&dev->struct_mutex);
1914         ret = intel_pin_and_fence_fb_obj(dev,
1915                                          to_intel_framebuffer(crtc->fb)->obj,
1916                                          NULL);
1917         if (ret != 0) {
1918                 mutex_unlock(&dev->struct_mutex);
1919                 DRM_ERROR("pin & fence failed\n");
1920                 return ret;
1921         }
1922
1923         if (old_fb)
1924                 intel_finish_fb(old_fb);
1925
1926         ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
1927         if (ret) {
1928                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
1929                 mutex_unlock(&dev->struct_mutex);
1930                 DRM_ERROR("failed to update base address\n");
1931                 return ret;
1932         }
1933
1934         if (old_fb) {
1935                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1936                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
1937         }
1938
1939         intel_update_fbc(dev);
1940         mutex_unlock(&dev->struct_mutex);
1941
1942         if (!dev->primary->master)
1943                 return 0;
1944
1945         master_priv = dev->primary->master->driver_priv;
1946         if (!master_priv->sarea_priv)
1947                 return 0;
1948
1949         if (intel_crtc->pipe) {
1950                 master_priv->sarea_priv->pipeB_x = x;
1951                 master_priv->sarea_priv->pipeB_y = y;
1952         } else {
1953                 master_priv->sarea_priv->pipeA_x = x;
1954                 master_priv->sarea_priv->pipeA_y = y;
1955         }
1956
1957         return 0;
1958 }
1959
1960 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1961 {
1962         struct drm_device *dev = crtc->dev;
1963         struct drm_i915_private *dev_priv = dev->dev_private;
1964         u32 dpa_ctl;
1965
1966         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1967         dpa_ctl = I915_READ(DP_A);
1968         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1969
1970         if (clock < 200000) {
1971                 u32 temp;
1972                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1973                 /* workaround for 160Mhz:
1974                    1) program 0x4600c bits 15:0 = 0x8124
1975                    2) program 0x46010 bit 0 = 1
1976                    3) program 0x46034 bit 24 = 1
1977                    4) program 0x64000 bit 14 = 1
1978                    */
1979                 temp = I915_READ(0x4600c);
1980                 temp &= 0xffff0000;
1981                 I915_WRITE(0x4600c, temp | 0x8124);
1982
1983                 temp = I915_READ(0x46010);
1984                 I915_WRITE(0x46010, temp | 1);
1985
1986                 temp = I915_READ(0x46034);
1987                 I915_WRITE(0x46034, temp | (1 << 24));
1988         } else {
1989                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1990         }
1991         I915_WRITE(DP_A, dpa_ctl);
1992
1993         POSTING_READ(DP_A);
1994         udelay(500);
1995 }
1996
1997 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1998 {
1999         struct drm_device *dev = crtc->dev;
2000         struct drm_i915_private *dev_priv = dev->dev_private;
2001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2002         int pipe = intel_crtc->pipe;
2003         u32 reg, temp;
2004
2005         /* enable normal train */
2006         reg = FDI_TX_CTL(pipe);
2007         temp = I915_READ(reg);
2008         if (IS_IVYBRIDGE(dev)) {
2009                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2010                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2011         } else {
2012                 temp &= ~FDI_LINK_TRAIN_NONE;
2013                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2014         }
2015         I915_WRITE(reg, temp);
2016
2017         reg = FDI_RX_CTL(pipe);
2018         temp = I915_READ(reg);
2019         if (HAS_PCH_CPT(dev)) {
2020                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2021                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2022         } else {
2023                 temp &= ~FDI_LINK_TRAIN_NONE;
2024                 temp |= FDI_LINK_TRAIN_NONE;
2025         }
2026         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2027
2028         /* wait one idle pattern time */
2029         POSTING_READ(reg);
2030         udelay(1000);
2031
2032         /* IVB wants error correction enabled */
2033         if (IS_IVYBRIDGE(dev))
2034                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2035                            FDI_FE_ERRC_ENABLE);
2036 }
2037
2038 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2039 {
2040         struct drm_i915_private *dev_priv = dev->dev_private;
2041         u32 flags = I915_READ(SOUTH_CHICKEN1);
2042
2043         flags |= FDI_PHASE_SYNC_OVR(pipe);
2044         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2045         flags |= FDI_PHASE_SYNC_EN(pipe);
2046         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2047         POSTING_READ(SOUTH_CHICKEN1);
2048 }
2049
2050 /* The FDI link training functions for ILK/Ibexpeak. */
2051 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2052 {
2053         struct drm_device *dev = crtc->dev;
2054         struct drm_i915_private *dev_priv = dev->dev_private;
2055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2056         int pipe = intel_crtc->pipe;
2057         int plane = intel_crtc->plane;
2058         u32 reg, temp, tries;
2059
2060         /* FDI needs bits from pipe & plane first */
2061         assert_pipe_enabled(dev_priv, pipe);
2062         assert_plane_enabled(dev_priv, plane);
2063
2064         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2065            for train result */
2066         reg = FDI_RX_IMR(pipe);
2067         temp = I915_READ(reg);
2068         temp &= ~FDI_RX_SYMBOL_LOCK;
2069         temp &= ~FDI_RX_BIT_LOCK;
2070         I915_WRITE(reg, temp);
2071         I915_READ(reg);
2072         udelay(150);
2073
2074         /* enable CPU FDI TX and PCH FDI RX */
2075         reg = FDI_TX_CTL(pipe);
2076         temp = I915_READ(reg);
2077         temp &= ~(7 << 19);
2078         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2079         temp &= ~FDI_LINK_TRAIN_NONE;
2080         temp |= FDI_LINK_TRAIN_PATTERN_1;
2081         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2082
2083         reg = FDI_RX_CTL(pipe);
2084         temp = I915_READ(reg);
2085         temp &= ~FDI_LINK_TRAIN_NONE;
2086         temp |= FDI_LINK_TRAIN_PATTERN_1;
2087         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2088
2089         POSTING_READ(reg);
2090         udelay(150);
2091
2092         /* Ironlake workaround, enable clock pointer after FDI enable*/
2093         if (HAS_PCH_IBX(dev)) {
2094                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2095                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2096                            FDI_RX_PHASE_SYNC_POINTER_EN);
2097         }
2098
2099         reg = FDI_RX_IIR(pipe);
2100         for (tries = 0; tries < 5; tries++) {
2101                 temp = I915_READ(reg);
2102                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2103
2104                 if ((temp & FDI_RX_BIT_LOCK)) {
2105                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2106                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2107                         break;
2108                 }
2109         }
2110         if (tries == 5)
2111                 DRM_ERROR("FDI train 1 fail!\n");
2112
2113         /* Train 2 */
2114         reg = FDI_TX_CTL(pipe);
2115         temp = I915_READ(reg);
2116         temp &= ~FDI_LINK_TRAIN_NONE;
2117         temp |= FDI_LINK_TRAIN_PATTERN_2;
2118         I915_WRITE(reg, temp);
2119
2120         reg = FDI_RX_CTL(pipe);
2121         temp = I915_READ(reg);
2122         temp &= ~FDI_LINK_TRAIN_NONE;
2123         temp |= FDI_LINK_TRAIN_PATTERN_2;
2124         I915_WRITE(reg, temp);
2125
2126         POSTING_READ(reg);
2127         udelay(150);
2128
2129         reg = FDI_RX_IIR(pipe);
2130         for (tries = 0; tries < 5; tries++) {
2131                 temp = I915_READ(reg);
2132                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2133
2134                 if (temp & FDI_RX_SYMBOL_LOCK) {
2135                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2136                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2137                         break;
2138                 }
2139         }
2140         if (tries == 5)
2141                 DRM_ERROR("FDI train 2 fail!\n");
2142
2143         DRM_DEBUG_KMS("FDI train done\n");
2144
2145 }
2146
2147 static const int snb_b_fdi_train_param[] = {
2148         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2149         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2150         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2151         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2152 };
2153
2154 /* The FDI link training functions for SNB/Cougarpoint. */
2155 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2156 {
2157         struct drm_device *dev = crtc->dev;
2158         struct drm_i915_private *dev_priv = dev->dev_private;
2159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2160         int pipe = intel_crtc->pipe;
2161         u32 reg, temp, i, retry;
2162
2163         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2164            for train result */
2165         reg = FDI_RX_IMR(pipe);
2166         temp = I915_READ(reg);
2167         temp &= ~FDI_RX_SYMBOL_LOCK;
2168         temp &= ~FDI_RX_BIT_LOCK;
2169         I915_WRITE(reg, temp);
2170
2171         POSTING_READ(reg);
2172         udelay(150);
2173
2174         /* enable CPU FDI TX and PCH FDI RX */
2175         reg = FDI_TX_CTL(pipe);
2176         temp = I915_READ(reg);
2177         temp &= ~(7 << 19);
2178         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2179         temp &= ~FDI_LINK_TRAIN_NONE;
2180         temp |= FDI_LINK_TRAIN_PATTERN_1;
2181         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2182         /* SNB-B */
2183         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2184         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2185
2186         reg = FDI_RX_CTL(pipe);
2187         temp = I915_READ(reg);
2188         if (HAS_PCH_CPT(dev)) {
2189                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2190                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2191         } else {
2192                 temp &= ~FDI_LINK_TRAIN_NONE;
2193                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2194         }
2195         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2196
2197         POSTING_READ(reg);
2198         udelay(150);
2199
2200         if (HAS_PCH_CPT(dev))
2201                 cpt_phase_pointer_enable(dev, pipe);
2202
2203         for (i = 0; i < 4; i++) {
2204                 reg = FDI_TX_CTL(pipe);
2205                 temp = I915_READ(reg);
2206                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2207                 temp |= snb_b_fdi_train_param[i];
2208                 I915_WRITE(reg, temp);
2209
2210                 POSTING_READ(reg);
2211                 udelay(500);
2212
2213                 for (retry = 0; retry < 5; retry++) {
2214                         reg = FDI_RX_IIR(pipe);
2215                         temp = I915_READ(reg);
2216                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2217                         if (temp & FDI_RX_BIT_LOCK) {
2218                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2219                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2220                                 break;
2221                         }
2222                         udelay(50);
2223                 }
2224                 if (retry < 5)
2225                         break;
2226         }
2227         if (i == 4)
2228                 DRM_ERROR("FDI train 1 fail!\n");
2229
2230         /* Train 2 */
2231         reg = FDI_TX_CTL(pipe);
2232         temp = I915_READ(reg);
2233         temp &= ~FDI_LINK_TRAIN_NONE;
2234         temp |= FDI_LINK_TRAIN_PATTERN_2;
2235         if (IS_GEN6(dev)) {
2236                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2237                 /* SNB-B */
2238                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2239         }
2240         I915_WRITE(reg, temp);
2241
2242         reg = FDI_RX_CTL(pipe);
2243         temp = I915_READ(reg);
2244         if (HAS_PCH_CPT(dev)) {
2245                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2246                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2247         } else {
2248                 temp &= ~FDI_LINK_TRAIN_NONE;
2249                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2250         }
2251         I915_WRITE(reg, temp);
2252
2253         POSTING_READ(reg);
2254         udelay(150);
2255
2256         for (i = 0; i < 4; i++) {
2257                 reg = FDI_TX_CTL(pipe);
2258                 temp = I915_READ(reg);
2259                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2260                 temp |= snb_b_fdi_train_param[i];
2261                 I915_WRITE(reg, temp);
2262
2263                 POSTING_READ(reg);
2264                 udelay(500);
2265
2266                 for (retry = 0; retry < 5; retry++) {
2267                         reg = FDI_RX_IIR(pipe);
2268                         temp = I915_READ(reg);
2269                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2270                         if (temp & FDI_RX_SYMBOL_LOCK) {
2271                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2272                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2273                                 break;
2274                         }
2275                         udelay(50);
2276                 }
2277                 if (retry < 5)
2278                         break;
2279         }
2280         if (i == 4)
2281                 DRM_ERROR("FDI train 2 fail!\n");
2282
2283         DRM_DEBUG_KMS("FDI train done.\n");
2284 }
2285
2286 /* Manual link training for Ivy Bridge A0 parts */
2287 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2288 {
2289         struct drm_device *dev = crtc->dev;
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2292         int pipe = intel_crtc->pipe;
2293         u32 reg, temp, i;
2294
2295         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2296            for train result */
2297         reg = FDI_RX_IMR(pipe);
2298         temp = I915_READ(reg);
2299         temp &= ~FDI_RX_SYMBOL_LOCK;
2300         temp &= ~FDI_RX_BIT_LOCK;
2301         I915_WRITE(reg, temp);
2302
2303         POSTING_READ(reg);
2304         udelay(150);
2305
2306         /* enable CPU FDI TX and PCH FDI RX */
2307         reg = FDI_TX_CTL(pipe);
2308         temp = I915_READ(reg);
2309         temp &= ~(7 << 19);
2310         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2311         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2312         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2313         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2314         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2315         temp |= FDI_COMPOSITE_SYNC;
2316         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2317
2318         reg = FDI_RX_CTL(pipe);
2319         temp = I915_READ(reg);
2320         temp &= ~FDI_LINK_TRAIN_AUTO;
2321         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2322         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2323         temp |= FDI_COMPOSITE_SYNC;
2324         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2325
2326         POSTING_READ(reg);
2327         udelay(150);
2328
2329         if (HAS_PCH_CPT(dev))
2330                 cpt_phase_pointer_enable(dev, pipe);
2331
2332         for (i = 0; i < 4; i++) {
2333                 reg = FDI_TX_CTL(pipe);
2334                 temp = I915_READ(reg);
2335                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2336                 temp |= snb_b_fdi_train_param[i];
2337                 I915_WRITE(reg, temp);
2338
2339                 POSTING_READ(reg);
2340                 udelay(500);
2341
2342                 reg = FDI_RX_IIR(pipe);
2343                 temp = I915_READ(reg);
2344                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2345
2346                 if (temp & FDI_RX_BIT_LOCK ||
2347                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2348                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2349                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2350                         break;
2351                 }
2352         }
2353         if (i == 4)
2354                 DRM_ERROR("FDI train 1 fail!\n");
2355
2356         /* Train 2 */
2357         reg = FDI_TX_CTL(pipe);
2358         temp = I915_READ(reg);
2359         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2360         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2361         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2362         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2363         I915_WRITE(reg, temp);
2364
2365         reg = FDI_RX_CTL(pipe);
2366         temp = I915_READ(reg);
2367         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2368         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2369         I915_WRITE(reg, temp);
2370
2371         POSTING_READ(reg);
2372         udelay(150);
2373
2374         for (i = 0; i < 4; i++) {
2375                 reg = FDI_TX_CTL(pipe);
2376                 temp = I915_READ(reg);
2377                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2378                 temp |= snb_b_fdi_train_param[i];
2379                 I915_WRITE(reg, temp);
2380
2381                 POSTING_READ(reg);
2382                 udelay(500);
2383
2384                 reg = FDI_RX_IIR(pipe);
2385                 temp = I915_READ(reg);
2386                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2387
2388                 if (temp & FDI_RX_SYMBOL_LOCK) {
2389                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2390                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2391                         break;
2392                 }
2393         }
2394         if (i == 4)
2395                 DRM_ERROR("FDI train 2 fail!\n");
2396
2397         DRM_DEBUG_KMS("FDI train done.\n");
2398 }
2399
2400 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2401 {
2402         struct drm_device *dev = crtc->dev;
2403         struct drm_i915_private *dev_priv = dev->dev_private;
2404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2405         int pipe = intel_crtc->pipe;
2406         u32 reg, temp;
2407
2408         /* Write the TU size bits so error detection works */
2409         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2410                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2411
2412         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2413         reg = FDI_RX_CTL(pipe);
2414         temp = I915_READ(reg);
2415         temp &= ~((0x7 << 19) | (0x7 << 16));
2416         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2417         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2418         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2419
2420         POSTING_READ(reg);
2421         udelay(200);
2422
2423         /* Switch from Rawclk to PCDclk */
2424         temp = I915_READ(reg);
2425         I915_WRITE(reg, temp | FDI_PCDCLK);
2426
2427         POSTING_READ(reg);
2428         udelay(200);
2429
2430         /* Enable CPU FDI TX PLL, always on for Ironlake */
2431         reg = FDI_TX_CTL(pipe);
2432         temp = I915_READ(reg);
2433         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2434                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2435
2436                 POSTING_READ(reg);
2437                 udelay(100);
2438         }
2439 }
2440
2441 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2442 {
2443         struct drm_i915_private *dev_priv = dev->dev_private;
2444         u32 flags = I915_READ(SOUTH_CHICKEN1);
2445
2446         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2447         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2448         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2449         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2450         POSTING_READ(SOUTH_CHICKEN1);
2451 }
2452 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2453 {
2454         struct drm_device *dev = crtc->dev;
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2457         int pipe = intel_crtc->pipe;
2458         u32 reg, temp;
2459
2460         /* disable CPU FDI tx and PCH FDI rx */
2461         reg = FDI_TX_CTL(pipe);
2462         temp = I915_READ(reg);
2463         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2464         POSTING_READ(reg);
2465
2466         reg = FDI_RX_CTL(pipe);
2467         temp = I915_READ(reg);
2468         temp &= ~(0x7 << 16);
2469         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2470         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2471
2472         POSTING_READ(reg);
2473         udelay(100);
2474
2475         /* Ironlake workaround, disable clock pointer after downing FDI */
2476         if (HAS_PCH_IBX(dev)) {
2477                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2478                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2479                            I915_READ(FDI_RX_CHICKEN(pipe) &
2480                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2481         } else if (HAS_PCH_CPT(dev)) {
2482                 cpt_phase_pointer_disable(dev, pipe);
2483         }
2484
2485         /* still set train pattern 1 */
2486         reg = FDI_TX_CTL(pipe);
2487         temp = I915_READ(reg);
2488         temp &= ~FDI_LINK_TRAIN_NONE;
2489         temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         I915_WRITE(reg, temp);
2491
2492         reg = FDI_RX_CTL(pipe);
2493         temp = I915_READ(reg);
2494         if (HAS_PCH_CPT(dev)) {
2495                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2496                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2497         } else {
2498                 temp &= ~FDI_LINK_TRAIN_NONE;
2499                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2500         }
2501         /* BPC in FDI rx is consistent with that in PIPECONF */
2502         temp &= ~(0x07 << 16);
2503         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2504         I915_WRITE(reg, temp);
2505
2506         POSTING_READ(reg);
2507         udelay(100);
2508 }
2509
2510 /*
2511  * When we disable a pipe, we need to clear any pending scanline wait events
2512  * to avoid hanging the ring, which we assume we are waiting on.
2513  */
2514 static void intel_clear_scanline_wait(struct drm_device *dev)
2515 {
2516         struct drm_i915_private *dev_priv = dev->dev_private;
2517         struct intel_ring_buffer *ring;
2518         u32 tmp;
2519
2520         if (IS_GEN2(dev))
2521                 /* Can't break the hang on i8xx */
2522                 return;
2523
2524         ring = LP_RING(dev_priv);
2525         tmp = I915_READ_CTL(ring);
2526         if (tmp & RING_WAIT)
2527                 I915_WRITE_CTL(ring, tmp);
2528 }
2529
2530 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2531 {
2532         struct drm_device *dev = crtc->dev;
2533
2534         if (crtc->fb == NULL)
2535                 return;
2536
2537         mutex_lock(&dev->struct_mutex);
2538         intel_finish_fb(crtc->fb);
2539         mutex_unlock(&dev->struct_mutex);
2540 }
2541
2542 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2543 {
2544         struct drm_device *dev = crtc->dev;
2545         struct drm_mode_config *mode_config = &dev->mode_config;
2546         struct intel_encoder *encoder;
2547
2548         /*
2549          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2550          * must be driven by its own crtc; no sharing is possible.
2551          */
2552         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2553                 if (encoder->base.crtc != crtc)
2554                         continue;
2555
2556                 switch (encoder->type) {
2557                 case INTEL_OUTPUT_EDP:
2558                         if (!intel_encoder_is_pch_edp(&encoder->base))
2559                                 return false;
2560                         continue;
2561                 }
2562         }
2563
2564         return true;
2565 }
2566
2567 /*
2568  * Enable PCH resources required for PCH ports:
2569  *   - PCH PLLs
2570  *   - FDI training & RX/TX
2571  *   - update transcoder timings
2572  *   - DP transcoding bits
2573  *   - transcoder
2574  */
2575 static void ironlake_pch_enable(struct drm_crtc *crtc)
2576 {
2577         struct drm_device *dev = crtc->dev;
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         int pipe = intel_crtc->pipe;
2581         u32 reg, temp, transc_sel;
2582
2583         /* For PCH output, training FDI link */
2584         dev_priv->display.fdi_link_train(crtc);
2585
2586         intel_enable_pch_pll(dev_priv, pipe);
2587
2588         if (HAS_PCH_CPT(dev)) {
2589                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2590                         TRANSC_DPLLB_SEL;
2591
2592                 /* Be sure PCH DPLL SEL is set */
2593                 temp = I915_READ(PCH_DPLL_SEL);
2594                 if (pipe == 0) {
2595                         temp &= ~(TRANSA_DPLLB_SEL);
2596                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2597                 } else if (pipe == 1) {
2598                         temp &= ~(TRANSB_DPLLB_SEL);
2599                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2600                 } else if (pipe == 2) {
2601                         temp &= ~(TRANSC_DPLLB_SEL);
2602                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2603                 }
2604                 I915_WRITE(PCH_DPLL_SEL, temp);
2605         }
2606
2607         /* set transcoder timing, panel must allow it */
2608         assert_panel_unlocked(dev_priv, pipe);
2609         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2610         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2611         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2612
2613         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2614         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2615         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2616         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
2617
2618         intel_fdi_normal_train(crtc);
2619
2620         /* For PCH DP, enable TRANS_DP_CTL */
2621         if (HAS_PCH_CPT(dev) &&
2622             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2623              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2624                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2625                 reg = TRANS_DP_CTL(pipe);
2626                 temp = I915_READ(reg);
2627                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2628                           TRANS_DP_SYNC_MASK |
2629                           TRANS_DP_BPC_MASK);
2630                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2631                          TRANS_DP_ENH_FRAMING);
2632                 temp |= bpc << 9; /* same format but at 11:9 */
2633
2634                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2635                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2636                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2637                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2638
2639                 switch (intel_trans_dp_port_sel(crtc)) {
2640                 case PCH_DP_B:
2641                         temp |= TRANS_DP_PORT_SEL_B;
2642                         break;
2643                 case PCH_DP_C:
2644                         temp |= TRANS_DP_PORT_SEL_C;
2645                         break;
2646                 case PCH_DP_D:
2647                         temp |= TRANS_DP_PORT_SEL_D;
2648                         break;
2649                 default:
2650                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2651                         temp |= TRANS_DP_PORT_SEL_B;
2652                         break;
2653                 }
2654
2655                 I915_WRITE(reg, temp);
2656         }
2657
2658         intel_enable_transcoder(dev_priv, pipe);
2659 }
2660
2661 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2662 {
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2665         u32 temp;
2666
2667         temp = I915_READ(dslreg);
2668         udelay(500);
2669         if (wait_for(I915_READ(dslreg) != temp, 5)) {
2670                 /* Without this, mode sets may fail silently on FDI */
2671                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2672                 udelay(250);
2673                 I915_WRITE(tc2reg, 0);
2674                 if (wait_for(I915_READ(dslreg) != temp, 5))
2675                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2676         }
2677 }
2678
2679 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2680 {
2681         struct drm_device *dev = crtc->dev;
2682         struct drm_i915_private *dev_priv = dev->dev_private;
2683         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2684         int pipe = intel_crtc->pipe;
2685         int plane = intel_crtc->plane;
2686         u32 temp;
2687         bool is_pch_port;
2688
2689         if (intel_crtc->active)
2690                 return;
2691
2692         intel_crtc->active = true;
2693         intel_update_watermarks(dev);
2694
2695         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2696                 temp = I915_READ(PCH_LVDS);
2697                 if ((temp & LVDS_PORT_EN) == 0)
2698                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2699         }
2700
2701         is_pch_port = intel_crtc_driving_pch(crtc);
2702
2703         if (is_pch_port)
2704                 ironlake_fdi_pll_enable(crtc);
2705         else
2706                 ironlake_fdi_disable(crtc);
2707
2708         /* Enable panel fitting for LVDS */
2709         if (dev_priv->pch_pf_size &&
2710             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2711                 /* Force use of hard-coded filter coefficients
2712                  * as some pre-programmed values are broken,
2713                  * e.g. x201.
2714                  */
2715                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2716                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2717                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2718         }
2719
2720         /*
2721          * On ILK+ LUT must be loaded before the pipe is running but with
2722          * clocks enabled
2723          */
2724         intel_crtc_load_lut(crtc);
2725
2726         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2727         intel_enable_plane(dev_priv, plane, pipe);
2728
2729         if (is_pch_port)
2730                 ironlake_pch_enable(crtc);
2731
2732         mutex_lock(&dev->struct_mutex);
2733         intel_update_fbc(dev);
2734         mutex_unlock(&dev->struct_mutex);
2735
2736         intel_crtc_update_cursor(crtc, true);
2737 }
2738
2739 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2740 {
2741         struct drm_device *dev = crtc->dev;
2742         struct drm_i915_private *dev_priv = dev->dev_private;
2743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2744         int pipe = intel_crtc->pipe;
2745         int plane = intel_crtc->plane;
2746         u32 reg, temp;
2747
2748         if (!intel_crtc->active)
2749                 return;
2750
2751         intel_crtc_wait_for_pending_flips(crtc);
2752         drm_vblank_off(dev, pipe);
2753         intel_crtc_update_cursor(crtc, false);
2754
2755         intel_disable_plane(dev_priv, plane, pipe);
2756
2757         if (dev_priv->cfb_plane == plane)
2758                 intel_disable_fbc(dev);
2759
2760         intel_disable_pipe(dev_priv, pipe);
2761
2762         /* Disable PF */
2763         I915_WRITE(PF_CTL(pipe), 0);
2764         I915_WRITE(PF_WIN_SZ(pipe), 0);
2765
2766         ironlake_fdi_disable(crtc);
2767
2768         /* This is a horrible layering violation; we should be doing this in
2769          * the connector/encoder ->prepare instead, but we don't always have
2770          * enough information there about the config to know whether it will
2771          * actually be necessary or just cause undesired flicker.
2772          */
2773         intel_disable_pch_ports(dev_priv, pipe);
2774
2775         intel_disable_transcoder(dev_priv, pipe);
2776
2777         if (HAS_PCH_CPT(dev)) {
2778                 /* disable TRANS_DP_CTL */
2779                 reg = TRANS_DP_CTL(pipe);
2780                 temp = I915_READ(reg);
2781                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2782                 temp |= TRANS_DP_PORT_SEL_NONE;
2783                 I915_WRITE(reg, temp);
2784
2785                 /* disable DPLL_SEL */
2786                 temp = I915_READ(PCH_DPLL_SEL);
2787                 switch (pipe) {
2788                 case 0:
2789                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2790                         break;
2791                 case 1:
2792                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2793                         break;
2794                 case 2:
2795                         /* C shares PLL A or B */
2796                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2797                         break;
2798                 default:
2799                         BUG(); /* wtf */
2800                 }
2801                 I915_WRITE(PCH_DPLL_SEL, temp);
2802         }
2803
2804         /* disable PCH DPLL */
2805         if (!intel_crtc->no_pll)
2806                 intel_disable_pch_pll(dev_priv, pipe);
2807
2808         /* Switch from PCDclk to Rawclk */
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2812
2813         /* Disable CPU FDI TX PLL */
2814         reg = FDI_TX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2817
2818         POSTING_READ(reg);
2819         udelay(100);
2820
2821         reg = FDI_RX_CTL(pipe);
2822         temp = I915_READ(reg);
2823         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2824
2825         /* Wait for the clocks to turn off. */
2826         POSTING_READ(reg);
2827         udelay(100);
2828
2829         intel_crtc->active = false;
2830         intel_update_watermarks(dev);
2831
2832         mutex_lock(&dev->struct_mutex);
2833         intel_update_fbc(dev);
2834         intel_clear_scanline_wait(dev);
2835         mutex_unlock(&dev->struct_mutex);
2836 }
2837
2838 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2839 {
2840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2841         int pipe = intel_crtc->pipe;
2842         int plane = intel_crtc->plane;
2843
2844         /* XXX: When our outputs are all unaware of DPMS modes other than off
2845          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2846          */
2847         switch (mode) {
2848         case DRM_MODE_DPMS_ON:
2849         case DRM_MODE_DPMS_STANDBY:
2850         case DRM_MODE_DPMS_SUSPEND:
2851                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2852                 ironlake_crtc_enable(crtc);
2853                 break;
2854
2855         case DRM_MODE_DPMS_OFF:
2856                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2857                 ironlake_crtc_disable(crtc);
2858                 break;
2859         }
2860 }
2861
2862 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2863 {
2864         if (!enable && intel_crtc->overlay) {
2865                 struct drm_device *dev = intel_crtc->base.dev;
2866                 struct drm_i915_private *dev_priv = dev->dev_private;
2867
2868                 mutex_lock(&dev->struct_mutex);
2869                 dev_priv->mm.interruptible = false;
2870                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2871                 dev_priv->mm.interruptible = true;
2872                 mutex_unlock(&dev->struct_mutex);
2873         }
2874
2875         /* Let userspace switch the overlay on again. In most cases userspace
2876          * has to recompute where to put it anyway.
2877          */
2878 }
2879
2880 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2881 {
2882         struct drm_device *dev = crtc->dev;
2883         struct drm_i915_private *dev_priv = dev->dev_private;
2884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2885         int pipe = intel_crtc->pipe;
2886         int plane = intel_crtc->plane;
2887
2888         if (intel_crtc->active)
2889                 return;
2890
2891         intel_crtc->active = true;
2892         intel_update_watermarks(dev);
2893
2894         intel_enable_pll(dev_priv, pipe);
2895         intel_enable_pipe(dev_priv, pipe, false);
2896         intel_enable_plane(dev_priv, plane, pipe);
2897
2898         intel_crtc_load_lut(crtc);
2899         intel_update_fbc(dev);
2900
2901         /* Give the overlay scaler a chance to enable if it's on this pipe */
2902         intel_crtc_dpms_overlay(intel_crtc, true);
2903         intel_crtc_update_cursor(crtc, true);
2904 }
2905
2906 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2907 {
2908         struct drm_device *dev = crtc->dev;
2909         struct drm_i915_private *dev_priv = dev->dev_private;
2910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2911         int pipe = intel_crtc->pipe;
2912         int plane = intel_crtc->plane;
2913
2914         if (!intel_crtc->active)
2915                 return;
2916
2917         /* Give the overlay scaler a chance to disable if it's on this pipe */
2918         intel_crtc_wait_for_pending_flips(crtc);
2919         drm_vblank_off(dev, pipe);
2920         intel_crtc_dpms_overlay(intel_crtc, false);
2921         intel_crtc_update_cursor(crtc, false);
2922
2923         if (dev_priv->cfb_plane == plane)
2924                 intel_disable_fbc(dev);
2925
2926         intel_disable_plane(dev_priv, plane, pipe);
2927         intel_disable_pipe(dev_priv, pipe);
2928         intel_disable_pll(dev_priv, pipe);
2929
2930         intel_crtc->active = false;
2931         intel_update_fbc(dev);
2932         intel_update_watermarks(dev);
2933         intel_clear_scanline_wait(dev);
2934 }
2935
2936 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2937 {
2938         /* XXX: When our outputs are all unaware of DPMS modes other than off
2939          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2940          */
2941         switch (mode) {
2942         case DRM_MODE_DPMS_ON:
2943         case DRM_MODE_DPMS_STANDBY:
2944         case DRM_MODE_DPMS_SUSPEND:
2945                 i9xx_crtc_enable(crtc);
2946                 break;
2947         case DRM_MODE_DPMS_OFF:
2948                 i9xx_crtc_disable(crtc);
2949                 break;
2950         }
2951 }
2952
2953 /**
2954  * Sets the power management mode of the pipe and plane.
2955  */
2956 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2957 {
2958         struct drm_device *dev = crtc->dev;
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960         struct drm_i915_master_private *master_priv;
2961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962         int pipe = intel_crtc->pipe;
2963         bool enabled;
2964
2965         if (intel_crtc->dpms_mode == mode)
2966                 return;
2967
2968         intel_crtc->dpms_mode = mode;
2969
2970         dev_priv->display.dpms(crtc, mode);
2971
2972         if (!dev->primary->master)
2973                 return;
2974
2975         master_priv = dev->primary->master->driver_priv;
2976         if (!master_priv->sarea_priv)
2977                 return;
2978
2979         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2980
2981         switch (pipe) {
2982         case 0:
2983                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2984                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2985                 break;
2986         case 1:
2987                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2988                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2989                 break;
2990         default:
2991                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2992                 break;
2993         }
2994 }
2995
2996 static void intel_crtc_disable(struct drm_crtc *crtc)
2997 {
2998         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2999         struct drm_device *dev = crtc->dev;
3000
3001         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3002         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3003         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3004
3005         if (crtc->fb) {
3006                 mutex_lock(&dev->struct_mutex);
3007                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3008                 mutex_unlock(&dev->struct_mutex);
3009         }
3010 }
3011
3012 /* Prepare for a mode set.
3013  *
3014  * Note we could be a lot smarter here.  We need to figure out which outputs
3015  * will be enabled, which disabled (in short, how the config will changes)
3016  * and perform the minimum necessary steps to accomplish that, e.g. updating
3017  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3018  * panel fitting is in the proper state, etc.
3019  */
3020 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3021 {
3022         i9xx_crtc_disable(crtc);
3023 }
3024
3025 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3026 {
3027         i9xx_crtc_enable(crtc);
3028 }
3029
3030 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3031 {
3032         ironlake_crtc_disable(crtc);
3033 }
3034
3035 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3036 {
3037         ironlake_crtc_enable(crtc);
3038 }
3039
3040 void intel_encoder_prepare(struct drm_encoder *encoder)
3041 {
3042         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3043         /* lvds has its own version of prepare see intel_lvds_prepare */
3044         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3045 }
3046
3047 void intel_encoder_commit(struct drm_encoder *encoder)
3048 {
3049         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3050         struct drm_device *dev = encoder->dev;
3051         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3052         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3053
3054         /* lvds has its own version of commit see intel_lvds_commit */
3055         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3056
3057         if (HAS_PCH_CPT(dev))
3058                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3059 }
3060
3061 void intel_encoder_destroy(struct drm_encoder *encoder)
3062 {
3063         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3064
3065         drm_encoder_cleanup(encoder);
3066         kfree(intel_encoder);
3067 }
3068
3069 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3070                                   struct drm_display_mode *mode,
3071                                   struct drm_display_mode *adjusted_mode)
3072 {
3073         struct drm_device *dev = crtc->dev;
3074
3075         if (HAS_PCH_SPLIT(dev)) {
3076                 /* FDI link clock is fixed at 2.7G */
3077                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3078                         return false;
3079         }
3080
3081         /* All interlaced capable intel hw wants timings in frames. */
3082         drm_mode_set_crtcinfo(adjusted_mode, 0);
3083
3084         return true;
3085 }
3086
3087 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3088 {
3089         return 400000; /* FIXME */
3090 }
3091
3092 static int i945_get_display_clock_speed(struct drm_device *dev)
3093 {
3094         return 400000;
3095 }
3096
3097 static int i915_get_display_clock_speed(struct drm_device *dev)
3098 {
3099         return 333000;
3100 }
3101
3102 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3103 {
3104         return 200000;
3105 }
3106
3107 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3108 {
3109         u16 gcfgc = 0;
3110
3111         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3112
3113         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3114                 return 133000;
3115         else {
3116                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3117                 case GC_DISPLAY_CLOCK_333_MHZ:
3118                         return 333000;
3119                 default:
3120                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3121                         return 190000;
3122                 }
3123         }
3124 }
3125
3126 static int i865_get_display_clock_speed(struct drm_device *dev)
3127 {
3128         return 266000;
3129 }
3130
3131 static int i855_get_display_clock_speed(struct drm_device *dev)
3132 {
3133         u16 hpllcc = 0;
3134         /* Assume that the hardware is in the high speed state.  This
3135          * should be the default.
3136          */
3137         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3138         case GC_CLOCK_133_200:
3139         case GC_CLOCK_100_200:
3140                 return 200000;
3141         case GC_CLOCK_166_250:
3142                 return 250000;
3143         case GC_CLOCK_100_133:
3144                 return 133000;
3145         }
3146
3147         /* Shouldn't happen */
3148         return 0;
3149 }
3150
3151 static int i830_get_display_clock_speed(struct drm_device *dev)
3152 {
3153         return 133000;
3154 }
3155
3156 struct fdi_m_n {
3157         u32        tu;
3158         u32        gmch_m;
3159         u32        gmch_n;
3160         u32        link_m;
3161         u32        link_n;
3162 };
3163
3164 static void
3165 fdi_reduce_ratio(u32 *num, u32 *den)
3166 {
3167         while (*num > 0xffffff || *den > 0xffffff) {
3168                 *num >>= 1;
3169                 *den >>= 1;
3170         }
3171 }
3172
3173 static void
3174 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3175                      int link_clock, struct fdi_m_n *m_n)
3176 {
3177         m_n->tu = 64; /* default size */
3178
3179         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3180         m_n->gmch_m = bits_per_pixel * pixel_clock;
3181         m_n->gmch_n = link_clock * nlanes * 8;
3182         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3183
3184         m_n->link_m = pixel_clock;
3185         m_n->link_n = link_clock;
3186         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3187 }
3188
3189 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3190 {
3191         if (i915_panel_use_ssc >= 0)
3192                 return i915_panel_use_ssc != 0;
3193         return dev_priv->lvds_use_ssc
3194                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3195 }
3196
3197 /**
3198  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3199  * @crtc: CRTC structure
3200  * @mode: requested mode
3201  *
3202  * A pipe may be connected to one or more outputs.  Based on the depth of the
3203  * attached framebuffer, choose a good color depth to use on the pipe.
3204  *
3205  * If possible, match the pipe depth to the fb depth.  In some cases, this
3206  * isn't ideal, because the connected output supports a lesser or restricted
3207  * set of depths.  Resolve that here:
3208  *    LVDS typically supports only 6bpc, so clamp down in that case
3209  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3210  *    Displays may support a restricted set as well, check EDID and clamp as
3211  *      appropriate.
3212  *    DP may want to dither down to 6bpc to fit larger modes
3213  *
3214  * RETURNS:
3215  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3216  * true if they don't match).
3217  */
3218 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3219                                          unsigned int *pipe_bpp,
3220                                          struct drm_display_mode *mode)
3221 {
3222         struct drm_device *dev = crtc->dev;
3223         struct drm_i915_private *dev_priv = dev->dev_private;
3224         struct drm_encoder *encoder;
3225         struct drm_connector *connector;
3226         unsigned int display_bpc = UINT_MAX, bpc;
3227
3228         /* Walk the encoders & connectors on this crtc, get min bpc */
3229         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3230                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3231
3232                 if (encoder->crtc != crtc)
3233                         continue;
3234
3235                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3236                         unsigned int lvds_bpc;
3237
3238                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3239                             LVDS_A3_POWER_UP)
3240                                 lvds_bpc = 8;
3241                         else
3242                                 lvds_bpc = 6;
3243
3244                         if (lvds_bpc < display_bpc) {
3245                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3246                                 display_bpc = lvds_bpc;
3247                         }
3248                         continue;
3249                 }
3250
3251                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3252                         /* Use VBT settings if we have an eDP panel */
3253                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3254
3255                         if (edp_bpc < display_bpc) {
3256                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3257                                 display_bpc = edp_bpc;
3258                         }
3259                         continue;
3260                 }
3261
3262                 /* Not one of the known troublemakers, check the EDID */
3263                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3264                                     head) {
3265                         if (connector->encoder != encoder)
3266                                 continue;
3267
3268                         /* Don't use an invalid EDID bpc value */
3269                         if (connector->display_info.bpc &&
3270                             connector->display_info.bpc < display_bpc) {
3271                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3272                                 display_bpc = connector->display_info.bpc;
3273                         }
3274                 }
3275
3276                 /*
3277                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3278                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3279                  */
3280                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3281                         if (display_bpc > 8 && display_bpc < 12) {
3282                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3283                                 display_bpc = 12;
3284                         } else {
3285                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3286                                 display_bpc = 8;
3287                         }
3288                 }
3289         }
3290
3291         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3292                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3293                 display_bpc = 6;
3294         }
3295
3296         /*
3297          * We could just drive the pipe at the highest bpc all the time and
3298          * enable dithering as needed, but that costs bandwidth.  So choose
3299          * the minimum value that expresses the full color range of the fb but
3300          * also stays within the max display bpc discovered above.
3301          */
3302
3303         switch (crtc->fb->depth) {
3304         case 8:
3305                 bpc = 8; /* since we go through a colormap */
3306                 break;
3307         case 15:
3308         case 16:
3309                 bpc = 6; /* min is 18bpp */
3310                 break;
3311         case 24:
3312                 bpc = 8;
3313                 break;
3314         case 30:
3315                 bpc = 10;
3316                 break;
3317         case 48:
3318                 bpc = 12;
3319                 break;
3320         default:
3321                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3322                 bpc = min((unsigned int)8, display_bpc);
3323                 break;
3324         }
3325
3326         display_bpc = min(display_bpc, bpc);
3327
3328         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3329                       bpc, display_bpc);
3330
3331         *pipe_bpp = display_bpc * 3;
3332
3333         return display_bpc != bpc;
3334 }
3335
3336 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3337 {
3338         struct drm_device *dev = crtc->dev;
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340         int refclk;
3341
3342         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3343             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3344                 refclk = dev_priv->lvds_ssc_freq * 1000;
3345                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3346                               refclk / 1000);
3347         } else if (!IS_GEN2(dev)) {
3348                 refclk = 96000;
3349         } else {
3350                 refclk = 48000;
3351         }
3352
3353         return refclk;
3354 }
3355
3356 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3357                                       intel_clock_t *clock)
3358 {
3359         /* SDVO TV has fixed PLL values depend on its clock range,
3360            this mirrors vbios setting. */
3361         if (adjusted_mode->clock >= 100000
3362             && adjusted_mode->clock < 140500) {
3363                 clock->p1 = 2;
3364                 clock->p2 = 10;
3365                 clock->n = 3;
3366                 clock->m1 = 16;
3367                 clock->m2 = 8;
3368         } else if (adjusted_mode->clock >= 140500
3369                    && adjusted_mode->clock <= 200000) {
3370                 clock->p1 = 1;
3371                 clock->p2 = 10;
3372                 clock->n = 6;
3373                 clock->m1 = 12;
3374                 clock->m2 = 8;
3375         }
3376 }
3377
3378 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3379                                      intel_clock_t *clock,
3380                                      intel_clock_t *reduced_clock)
3381 {
3382         struct drm_device *dev = crtc->dev;
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385         int pipe = intel_crtc->pipe;
3386         u32 fp, fp2 = 0;
3387
3388         if (IS_PINEVIEW(dev)) {
3389                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3390                 if (reduced_clock)
3391                         fp2 = (1 << reduced_clock->n) << 16 |
3392                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3393         } else {
3394                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3395                 if (reduced_clock)
3396                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3397                                 reduced_clock->m2;
3398         }
3399
3400         I915_WRITE(FP0(pipe), fp);
3401
3402         intel_crtc->lowfreq_avail = false;
3403         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3404             reduced_clock && i915_powersave) {
3405                 I915_WRITE(FP1(pipe), fp2);
3406                 intel_crtc->lowfreq_avail = true;
3407         } else {
3408                 I915_WRITE(FP1(pipe), fp);
3409         }
3410 }
3411
3412 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3413                               struct drm_display_mode *adjusted_mode)
3414 {
3415         struct drm_device *dev = crtc->dev;
3416         struct drm_i915_private *dev_priv = dev->dev_private;
3417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3418         int pipe = intel_crtc->pipe;
3419         u32 temp;
3420
3421         temp = I915_READ(LVDS);
3422         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3423         if (pipe == 1) {
3424                 temp |= LVDS_PIPEB_SELECT;
3425         } else {
3426                 temp &= ~LVDS_PIPEB_SELECT;
3427         }
3428         /* set the corresponsding LVDS_BORDER bit */
3429         temp |= dev_priv->lvds_border_bits;
3430         /* Set the B0-B3 data pairs corresponding to whether we're going to
3431          * set the DPLLs for dual-channel mode or not.
3432          */
3433         if (clock->p2 == 7)
3434                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3435         else
3436                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3437
3438         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3439          * appropriately here, but we need to look more thoroughly into how
3440          * panels behave in the two modes.
3441          */
3442         /* set the dithering flag on LVDS as needed */
3443         if (INTEL_INFO(dev)->gen >= 4) {
3444                 if (dev_priv->lvds_dither)
3445                         temp |= LVDS_ENABLE_DITHER;
3446                 else
3447                         temp &= ~LVDS_ENABLE_DITHER;
3448         }
3449         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3450         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3451                 temp |= LVDS_HSYNC_POLARITY;
3452         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3453                 temp |= LVDS_VSYNC_POLARITY;
3454         I915_WRITE(LVDS, temp);
3455 }
3456
3457 static void i9xx_update_pll(struct drm_crtc *crtc,
3458                             struct drm_display_mode *mode,
3459                             struct drm_display_mode *adjusted_mode,
3460                             intel_clock_t *clock, intel_clock_t *reduced_clock,
3461                             int num_connectors)
3462 {
3463         struct drm_device *dev = crtc->dev;
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3466         int pipe = intel_crtc->pipe;
3467         u32 dpll;
3468         bool is_sdvo;
3469
3470         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
3471                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3472
3473         dpll = DPLL_VGA_MODE_DIS;
3474
3475         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3476                 dpll |= DPLLB_MODE_LVDS;
3477         else
3478                 dpll |= DPLLB_MODE_DAC_SERIAL;
3479         if (is_sdvo) {
3480                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3481                 if (pixel_multiplier > 1) {
3482                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3483                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3484                 }
3485                 dpll |= DPLL_DVO_HIGH_SPEED;
3486         }
3487         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3488                 dpll |= DPLL_DVO_HIGH_SPEED;
3489
3490         /* compute bitmask from p1 value */
3491         if (IS_PINEVIEW(dev))
3492                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3493         else {
3494                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3495                 if (IS_G4X(dev) && reduced_clock)
3496                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3497         }
3498         switch (clock->p2) {
3499         case 5:
3500                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3501                 break;
3502         case 7:
3503                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3504                 break;
3505         case 10:
3506                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3507                 break;
3508         case 14:
3509                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3510                 break;
3511         }
3512         if (INTEL_INFO(dev)->gen >= 4)
3513                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3514
3515         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3516                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3517         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3518                 /* XXX: just matching BIOS for now */
3519                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3520                 dpll |= 3;
3521         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3522                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3523                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3524         else
3525                 dpll |= PLL_REF_INPUT_DREFCLK;
3526
3527         dpll |= DPLL_VCO_ENABLE;
3528         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3529         POSTING_READ(DPLL(pipe));
3530         udelay(150);
3531
3532         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3533          * This is an exception to the general rule that mode_set doesn't turn
3534          * things on.
3535          */
3536         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3537                 intel_update_lvds(crtc, clock, adjusted_mode);
3538
3539         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3540                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3541
3542         I915_WRITE(DPLL(pipe), dpll);
3543
3544         /* Wait for the clocks to stabilize. */
3545         POSTING_READ(DPLL(pipe));
3546         udelay(150);
3547
3548         if (INTEL_INFO(dev)->gen >= 4) {
3549                 u32 temp = 0;
3550                 if (is_sdvo) {
3551                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3552                         if (temp > 1)
3553                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3554                         else
3555                                 temp = 0;
3556                 }
3557                 I915_WRITE(DPLL_MD(pipe), temp);
3558         } else {
3559                 /* The pixel multiplier can only be updated once the
3560                  * DPLL is enabled and the clocks are stable.
3561                  *
3562                  * So write it again.
3563                  */
3564                 I915_WRITE(DPLL(pipe), dpll);
3565         }
3566 }
3567
3568 static void i8xx_update_pll(struct drm_crtc *crtc,
3569                             struct drm_display_mode *adjusted_mode,
3570                             intel_clock_t *clock,
3571                             int num_connectors)
3572 {
3573         struct drm_device *dev = crtc->dev;
3574         struct drm_i915_private *dev_priv = dev->dev_private;
3575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3576         int pipe = intel_crtc->pipe;
3577         u32 dpll;
3578
3579         dpll = DPLL_VGA_MODE_DIS;
3580
3581         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3582                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3583         } else {
3584                 if (clock->p1 == 2)
3585                         dpll |= PLL_P1_DIVIDE_BY_TWO;
3586                 else
3587                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3588                 if (clock->p2 == 4)
3589                         dpll |= PLL_P2_DIVIDE_BY_4;
3590         }
3591
3592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3593                 /* XXX: just matching BIOS for now */
3594                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3595                 dpll |= 3;
3596         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3597                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3598                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3599         else
3600                 dpll |= PLL_REF_INPUT_DREFCLK;
3601
3602         dpll |= DPLL_VCO_ENABLE;
3603         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3604         POSTING_READ(DPLL(pipe));
3605         udelay(150);
3606
3607         I915_WRITE(DPLL(pipe), dpll);
3608
3609         /* Wait for the clocks to stabilize. */
3610         POSTING_READ(DPLL(pipe));
3611         udelay(150);
3612
3613         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3614          * This is an exception to the general rule that mode_set doesn't turn
3615          * things on.
3616          */
3617         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3618                 intel_update_lvds(crtc, clock, adjusted_mode);
3619
3620         /* The pixel multiplier can only be updated once the
3621          * DPLL is enabled and the clocks are stable.
3622          *
3623          * So write it again.
3624          */
3625         I915_WRITE(DPLL(pipe), dpll);
3626 }
3627
3628 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3629                               struct drm_display_mode *mode,
3630                               struct drm_display_mode *adjusted_mode,
3631                               int x, int y,
3632                               struct drm_framebuffer *old_fb)
3633 {
3634         struct drm_device *dev = crtc->dev;
3635         struct drm_i915_private *dev_priv = dev->dev_private;
3636         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3637         int pipe = intel_crtc->pipe;
3638         int plane = intel_crtc->plane;
3639         int refclk, num_connectors = 0;
3640         intel_clock_t clock, reduced_clock;
3641         u32 dspcntr, pipeconf, vsyncshift;
3642         bool ok, has_reduced_clock = false, is_sdvo = false;
3643         bool is_lvds = false, is_tv = false, is_dp = false;
3644         struct drm_mode_config *mode_config = &dev->mode_config;
3645         struct intel_encoder *encoder;
3646         const intel_limit_t *limit;
3647         int ret;
3648
3649         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3650                 if (encoder->base.crtc != crtc)
3651                         continue;
3652
3653                 switch (encoder->type) {
3654                 case INTEL_OUTPUT_LVDS:
3655                         is_lvds = true;
3656                         break;
3657                 case INTEL_OUTPUT_SDVO:
3658                 case INTEL_OUTPUT_HDMI:
3659                         is_sdvo = true;
3660                         if (encoder->needs_tv_clock)
3661                                 is_tv = true;
3662                         break;
3663                 case INTEL_OUTPUT_TVOUT:
3664                         is_tv = true;
3665                         break;
3666                 case INTEL_OUTPUT_DISPLAYPORT:
3667                         is_dp = true;
3668                         break;
3669                 }
3670
3671                 num_connectors++;
3672         }
3673
3674         refclk = i9xx_get_refclk(crtc, num_connectors);
3675
3676         /*
3677          * Returns a set of divisors for the desired target clock with the given
3678          * refclk, or FALSE.  The returned values represent the clock equation:
3679          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3680          */
3681         limit = intel_limit(crtc, refclk);
3682         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3683                              &clock);
3684         if (!ok) {
3685                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3686                 return -EINVAL;
3687         }
3688
3689         /* Ensure that the cursor is valid for the new mode before changing... */
3690         intel_crtc_update_cursor(crtc, true);
3691
3692         if (is_lvds && dev_priv->lvds_downclock_avail) {
3693                 /*
3694                  * Ensure we match the reduced clock's P to the target clock.
3695                  * If the clocks don't match, we can't switch the display clock
3696                  * by using the FP0/FP1. In such case we will disable the LVDS
3697                  * downclock feature.
3698                 */
3699                 has_reduced_clock = limit->find_pll(limit, crtc,
3700                                                     dev_priv->lvds_downclock,
3701                                                     refclk,
3702                                                     &clock,
3703                                                     &reduced_clock);
3704         }
3705
3706         if (is_sdvo && is_tv)
3707                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
3708
3709         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
3710                                  &reduced_clock : NULL);
3711
3712         if (IS_GEN2(dev))
3713                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
3714         else
3715                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
3716                                 has_reduced_clock ? &reduced_clock : NULL,
3717                                 num_connectors);
3718
3719         /* setup pipeconf */
3720         pipeconf = I915_READ(PIPECONF(pipe));
3721
3722         /* Set up the display plane register */
3723         dspcntr = DISPPLANE_GAMMA_ENABLE;
3724
3725         if (pipe == 0)
3726                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3727         else
3728                 dspcntr |= DISPPLANE_SEL_PIPE_B;
3729
3730         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3731                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3732                  * core speed.
3733                  *
3734                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3735                  * pipe == 0 check?
3736                  */
3737                 if (mode->clock >
3738                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3739                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3740                 else
3741                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3742         }
3743
3744         /* default to 8bpc */
3745         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
3746         if (is_dp) {
3747                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3748                         pipeconf |= PIPECONF_BPP_6 |
3749                                     PIPECONF_DITHER_EN |
3750                                     PIPECONF_DITHER_TYPE_SP;
3751                 }
3752         }
3753
3754         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3755         drm_mode_debug_printmodeline(mode);
3756
3757         if (HAS_PIPE_CXSR(dev)) {
3758                 if (intel_crtc->lowfreq_avail) {
3759                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3760                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3761                 } else {
3762                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3763                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3764                 }
3765         }
3766
3767         pipeconf &= ~PIPECONF_INTERLACE_MASK;
3768         if (!IS_GEN2(dev) &&
3769             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3770                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3771                 /* the chip adds 2 halflines automatically */
3772                 adjusted_mode->crtc_vtotal -= 1;
3773                 adjusted_mode->crtc_vblank_end -= 1;
3774                 vsyncshift = adjusted_mode->crtc_hsync_start
3775                              - adjusted_mode->crtc_htotal/2;
3776         } else {
3777                 pipeconf |= PIPECONF_PROGRESSIVE;
3778                 vsyncshift = 0;
3779         }
3780
3781         if (!IS_GEN3(dev))
3782                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
3783
3784         I915_WRITE(HTOTAL(pipe),
3785                    (adjusted_mode->crtc_hdisplay - 1) |
3786                    ((adjusted_mode->crtc_htotal - 1) << 16));
3787         I915_WRITE(HBLANK(pipe),
3788                    (adjusted_mode->crtc_hblank_start - 1) |
3789                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3790         I915_WRITE(HSYNC(pipe),
3791                    (adjusted_mode->crtc_hsync_start - 1) |
3792                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3793
3794         I915_WRITE(VTOTAL(pipe),
3795                    (adjusted_mode->crtc_vdisplay - 1) |
3796                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3797         I915_WRITE(VBLANK(pipe),
3798                    (adjusted_mode->crtc_vblank_start - 1) |
3799                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3800         I915_WRITE(VSYNC(pipe),
3801                    (adjusted_mode->crtc_vsync_start - 1) |
3802                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3803
3804         /* pipesrc and dspsize control the size that is scaled from,
3805          * which should always be the user's requested size.
3806          */
3807         I915_WRITE(DSPSIZE(plane),
3808                    ((mode->vdisplay - 1) << 16) |
3809                    (mode->hdisplay - 1));
3810         I915_WRITE(DSPPOS(plane), 0);
3811         I915_WRITE(PIPESRC(pipe),
3812                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3813
3814         I915_WRITE(PIPECONF(pipe), pipeconf);
3815         POSTING_READ(PIPECONF(pipe));
3816         intel_enable_pipe(dev_priv, pipe, false);
3817
3818         intel_wait_for_vblank(dev, pipe);
3819
3820         I915_WRITE(DSPCNTR(plane), dspcntr);
3821         POSTING_READ(DSPCNTR(plane));
3822         intel_enable_plane(dev_priv, plane, pipe);
3823
3824         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3825
3826         intel_update_watermarks(dev);
3827
3828         return ret;
3829 }
3830
3831 /*
3832  * Initialize reference clocks when the driver loads
3833  */
3834 void ironlake_init_pch_refclk(struct drm_device *dev)
3835 {
3836         struct drm_i915_private *dev_priv = dev->dev_private;
3837         struct drm_mode_config *mode_config = &dev->mode_config;
3838         struct intel_encoder *encoder;
3839         u32 temp;
3840         bool has_lvds = false;
3841         bool has_cpu_edp = false;
3842         bool has_pch_edp = false;
3843         bool has_panel = false;
3844         bool has_ck505 = false;
3845         bool can_ssc = false;
3846
3847         /* We need to take the global config into account */
3848         list_for_each_entry(encoder, &mode_config->encoder_list,
3849                             base.head) {
3850                 switch (encoder->type) {
3851                 case INTEL_OUTPUT_LVDS:
3852                         has_panel = true;
3853                         has_lvds = true;
3854                         break;
3855                 case INTEL_OUTPUT_EDP:
3856                         has_panel = true;
3857                         if (intel_encoder_is_pch_edp(&encoder->base))
3858                                 has_pch_edp = true;
3859                         else
3860                                 has_cpu_edp = true;
3861                         break;
3862                 }
3863         }
3864
3865         if (HAS_PCH_IBX(dev)) {
3866                 has_ck505 = dev_priv->display_clock_mode;
3867                 can_ssc = has_ck505;
3868         } else {
3869                 has_ck505 = false;
3870                 can_ssc = true;
3871         }
3872
3873         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
3874                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
3875                       has_ck505);
3876
3877         /* Ironlake: try to setup display ref clock before DPLL
3878          * enabling. This is only under driver's control after
3879          * PCH B stepping, previous chipset stepping should be
3880          * ignoring this setting.
3881          */
3882         temp = I915_READ(PCH_DREF_CONTROL);
3883         /* Always enable nonspread source */
3884         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3885
3886         if (has_ck505)
3887                 temp |= DREF_NONSPREAD_CK505_ENABLE;
3888         else
3889                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3890
3891         if (has_panel) {
3892                 temp &= ~DREF_SSC_SOURCE_MASK;
3893                 temp |= DREF_SSC_SOURCE_ENABLE;
3894
3895                 /* SSC must be turned on before enabling the CPU output  */
3896                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3897                         DRM_DEBUG_KMS("Using SSC on panel\n");
3898                         temp |= DREF_SSC1_ENABLE;
3899                 } else
3900                         temp &= ~DREF_SSC1_ENABLE;
3901
3902                 /* Get SSC going before enabling the outputs */
3903                 I915_WRITE(PCH_DREF_CONTROL, temp);
3904                 POSTING_READ(PCH_DREF_CONTROL);
3905                 udelay(200);
3906
3907                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3908
3909                 /* Enable CPU source on CPU attached eDP */
3910                 if (has_cpu_edp) {
3911                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
3912                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
3913                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3914                         }
3915                         else
3916                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3917                 } else
3918                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3919
3920                 I915_WRITE(PCH_DREF_CONTROL, temp);
3921                 POSTING_READ(PCH_DREF_CONTROL);
3922                 udelay(200);
3923         } else {
3924                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
3925
3926                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3927
3928                 /* Turn off CPU output */
3929                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
3930
3931                 I915_WRITE(PCH_DREF_CONTROL, temp);
3932                 POSTING_READ(PCH_DREF_CONTROL);
3933                 udelay(200);
3934
3935                 /* Turn off the SSC source */
3936                 temp &= ~DREF_SSC_SOURCE_MASK;
3937                 temp |= DREF_SSC_SOURCE_DISABLE;
3938
3939                 /* Turn off SSC1 */
3940                 temp &= ~ DREF_SSC1_ENABLE;
3941
3942                 I915_WRITE(PCH_DREF_CONTROL, temp);
3943                 POSTING_READ(PCH_DREF_CONTROL);
3944                 udelay(200);
3945         }
3946 }
3947
3948 static int ironlake_get_refclk(struct drm_crtc *crtc)
3949 {
3950         struct drm_device *dev = crtc->dev;
3951         struct drm_i915_private *dev_priv = dev->dev_private;
3952         struct intel_encoder *encoder;
3953         struct drm_mode_config *mode_config = &dev->mode_config;
3954         struct intel_encoder *edp_encoder = NULL;
3955         int num_connectors = 0;
3956         bool is_lvds = false;
3957
3958         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3959                 if (encoder->base.crtc != crtc)
3960                         continue;
3961
3962                 switch (encoder->type) {
3963                 case INTEL_OUTPUT_LVDS:
3964                         is_lvds = true;
3965                         break;
3966                 case INTEL_OUTPUT_EDP:
3967                         edp_encoder = encoder;
3968                         break;
3969                 }
3970                 num_connectors++;
3971         }
3972
3973         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3974                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3975                               dev_priv->lvds_ssc_freq);
3976                 return dev_priv->lvds_ssc_freq * 1000;
3977         }
3978
3979         return 120000;
3980 }
3981
3982 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
3983                                   struct drm_display_mode *mode,
3984                                   struct drm_display_mode *adjusted_mode,
3985                                   int x, int y,
3986                                   struct drm_framebuffer *old_fb)
3987 {
3988         struct drm_device *dev = crtc->dev;
3989         struct drm_i915_private *dev_priv = dev->dev_private;
3990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3991         int pipe = intel_crtc->pipe;
3992         int plane = intel_crtc->plane;
3993         int refclk, num_connectors = 0;
3994         intel_clock_t clock, reduced_clock;
3995         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3996         bool ok, has_reduced_clock = false, is_sdvo = false;
3997         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3998         struct drm_mode_config *mode_config = &dev->mode_config;
3999         struct intel_encoder *encoder, *edp_encoder = NULL;
4000         const intel_limit_t *limit;
4001         int ret;
4002         struct fdi_m_n m_n = {0};
4003         u32 temp;
4004         int target_clock, pixel_multiplier, lane, link_bw, factor;
4005         unsigned int pipe_bpp;
4006         bool dither;
4007         bool is_cpu_edp = false, is_pch_edp = false;
4008
4009         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4010                 if (encoder->base.crtc != crtc)
4011                         continue;
4012
4013                 switch (encoder->type) {
4014                 case INTEL_OUTPUT_LVDS:
4015                         is_lvds = true;
4016                         break;
4017                 case INTEL_OUTPUT_SDVO:
4018                 case INTEL_OUTPUT_HDMI:
4019                         is_sdvo = true;
4020                         if (encoder->needs_tv_clock)
4021                                 is_tv = true;
4022                         break;
4023                 case INTEL_OUTPUT_TVOUT:
4024                         is_tv = true;
4025                         break;
4026                 case INTEL_OUTPUT_ANALOG:
4027                         is_crt = true;
4028                         break;
4029                 case INTEL_OUTPUT_DISPLAYPORT:
4030                         is_dp = true;
4031                         break;
4032                 case INTEL_OUTPUT_EDP:
4033                         is_dp = true;
4034                         if (intel_encoder_is_pch_edp(&encoder->base))
4035                                 is_pch_edp = true;
4036                         else
4037                                 is_cpu_edp = true;
4038                         edp_encoder = encoder;
4039                         break;
4040                 }
4041
4042                 num_connectors++;
4043         }
4044
4045         refclk = ironlake_get_refclk(crtc);
4046
4047         /*
4048          * Returns a set of divisors for the desired target clock with the given
4049          * refclk, or FALSE.  The returned values represent the clock equation:
4050          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4051          */
4052         limit = intel_limit(crtc, refclk);
4053         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4054                              &clock);
4055         if (!ok) {
4056                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4057                 return -EINVAL;
4058         }
4059
4060         /* Ensure that the cursor is valid for the new mode before changing... */
4061         intel_crtc_update_cursor(crtc, true);
4062
4063         if (is_lvds && dev_priv->lvds_downclock_avail) {
4064                 /*
4065                  * Ensure we match the reduced clock's P to the target clock.
4066                  * If the clocks don't match, we can't switch the display clock
4067                  * by using the FP0/FP1. In such case we will disable the LVDS
4068                  * downclock feature.
4069                 */
4070                 has_reduced_clock = limit->find_pll(limit, crtc,
4071                                                     dev_priv->lvds_downclock,
4072                                                     refclk,
4073                                                     &clock,
4074                                                     &reduced_clock);
4075         }
4076         /* SDVO TV has fixed PLL values depend on its clock range,
4077            this mirrors vbios setting. */
4078         if (is_sdvo && is_tv) {
4079                 if (adjusted_mode->clock >= 100000
4080                     && adjusted_mode->clock < 140500) {
4081                         clock.p1 = 2;
4082                         clock.p2 = 10;
4083                         clock.n = 3;
4084                         clock.m1 = 16;
4085                         clock.m2 = 8;
4086                 } else if (adjusted_mode->clock >= 140500
4087                            && adjusted_mode->clock <= 200000) {
4088                         clock.p1 = 1;
4089                         clock.p2 = 10;
4090                         clock.n = 6;
4091                         clock.m1 = 12;
4092                         clock.m2 = 8;
4093                 }
4094         }
4095
4096         /* FDI link */
4097         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4098         lane = 0;
4099         /* CPU eDP doesn't require FDI link, so just set DP M/N
4100            according to current link config */
4101         if (is_cpu_edp) {
4102                 target_clock = mode->clock;
4103                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4104         } else {
4105                 /* [e]DP over FDI requires target mode clock
4106                    instead of link clock */
4107                 if (is_dp)
4108                         target_clock = mode->clock;
4109                 else
4110                         target_clock = adjusted_mode->clock;
4111
4112                 /* FDI is a binary signal running at ~2.7GHz, encoding
4113                  * each output octet as 10 bits. The actual frequency
4114                  * is stored as a divider into a 100MHz clock, and the
4115                  * mode pixel clock is stored in units of 1KHz.
4116                  * Hence the bw of each lane in terms of the mode signal
4117                  * is:
4118                  */
4119                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4120         }
4121
4122         /* determine panel color depth */
4123         temp = I915_READ(PIPECONF(pipe));
4124         temp &= ~PIPE_BPC_MASK;
4125         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4126         switch (pipe_bpp) {
4127         case 18:
4128                 temp |= PIPE_6BPC;
4129                 break;
4130         case 24:
4131                 temp |= PIPE_8BPC;
4132                 break;
4133         case 30:
4134                 temp |= PIPE_10BPC;
4135                 break;
4136         case 36:
4137                 temp |= PIPE_12BPC;
4138                 break;
4139         default:
4140                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4141                         pipe_bpp);
4142                 temp |= PIPE_8BPC;
4143                 pipe_bpp = 24;
4144                 break;
4145         }
4146
4147         intel_crtc->bpp = pipe_bpp;
4148         I915_WRITE(PIPECONF(pipe), temp);
4149
4150         if (!lane) {
4151                 /*
4152                  * Account for spread spectrum to avoid
4153                  * oversubscribing the link. Max center spread
4154                  * is 2.5%; use 5% for safety's sake.
4155                  */
4156                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4157                 lane = bps / (link_bw * 8) + 1;
4158         }
4159
4160         intel_crtc->fdi_lanes = lane;
4161
4162         if (pixel_multiplier > 1)
4163                 link_bw *= pixel_multiplier;
4164         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4165                              &m_n);
4166
4167         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4168         if (has_reduced_clock)
4169                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4170                         reduced_clock.m2;
4171
4172         /* Enable autotuning of the PLL clock (if permissible) */
4173         factor = 21;
4174         if (is_lvds) {
4175                 if ((intel_panel_use_ssc(dev_priv) &&
4176                      dev_priv->lvds_ssc_freq == 100) ||
4177                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4178                         factor = 25;
4179         } else if (is_sdvo && is_tv)
4180                 factor = 20;
4181
4182         if (clock.m < factor * clock.n)
4183                 fp |= FP_CB_TUNE;
4184
4185         dpll = 0;
4186
4187         if (is_lvds)
4188                 dpll |= DPLLB_MODE_LVDS;
4189         else
4190                 dpll |= DPLLB_MODE_DAC_SERIAL;
4191         if (is_sdvo) {
4192                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4193                 if (pixel_multiplier > 1) {
4194                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4195                 }
4196                 dpll |= DPLL_DVO_HIGH_SPEED;
4197         }
4198         if (is_dp && !is_cpu_edp)
4199                 dpll |= DPLL_DVO_HIGH_SPEED;
4200
4201         /* compute bitmask from p1 value */
4202         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4203         /* also FPA1 */
4204         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4205
4206         switch (clock.p2) {
4207         case 5:
4208                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4209                 break;
4210         case 7:
4211                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4212                 break;
4213         case 10:
4214                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4215                 break;
4216         case 14:
4217                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4218                 break;
4219         }
4220
4221         if (is_sdvo && is_tv)
4222                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4223         else if (is_tv)
4224                 /* XXX: just matching BIOS for now */
4225                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4226                 dpll |= 3;
4227         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4228                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4229         else
4230                 dpll |= PLL_REF_INPUT_DREFCLK;
4231
4232         /* setup pipeconf */
4233         pipeconf = I915_READ(PIPECONF(pipe));
4234
4235         /* Set up the display plane register */
4236         dspcntr = DISPPLANE_GAMMA_ENABLE;
4237
4238         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4239         drm_mode_debug_printmodeline(mode);
4240
4241         /* PCH eDP needs FDI, but CPU eDP does not */
4242         if (!intel_crtc->no_pll) {
4243                 if (!is_cpu_edp) {
4244                         I915_WRITE(PCH_FP0(pipe), fp);
4245                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4246
4247                         POSTING_READ(PCH_DPLL(pipe));
4248                         udelay(150);
4249                 }
4250         } else {
4251                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
4252                     fp == I915_READ(PCH_FP0(0))) {
4253                         intel_crtc->use_pll_a = true;
4254                         DRM_DEBUG_KMS("using pipe a dpll\n");
4255                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
4256                            fp == I915_READ(PCH_FP0(1))) {
4257                         intel_crtc->use_pll_a = false;
4258                         DRM_DEBUG_KMS("using pipe b dpll\n");
4259                 } else {
4260                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
4261                         return -EINVAL;
4262                 }
4263         }
4264
4265         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4266          * This is an exception to the general rule that mode_set doesn't turn
4267          * things on.
4268          */
4269         if (is_lvds) {
4270                 temp = I915_READ(PCH_LVDS);
4271                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4272                 if (HAS_PCH_CPT(dev)) {
4273                         temp &= ~PORT_TRANS_SEL_MASK;
4274                         temp |= PORT_TRANS_SEL_CPT(pipe);
4275                 } else {
4276                         if (pipe == 1)
4277                                 temp |= LVDS_PIPEB_SELECT;
4278                         else
4279                                 temp &= ~LVDS_PIPEB_SELECT;
4280                 }
4281
4282                 /* set the corresponsding LVDS_BORDER bit */
4283                 temp |= dev_priv->lvds_border_bits;
4284                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4285                  * set the DPLLs for dual-channel mode or not.
4286                  */
4287                 if (clock.p2 == 7)
4288                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4289                 else
4290                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4291
4292                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4293                  * appropriately here, but we need to look more thoroughly into how
4294                  * panels behave in the two modes.
4295                  */
4296                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4297                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4298                         temp |= LVDS_HSYNC_POLARITY;
4299                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4300                         temp |= LVDS_VSYNC_POLARITY;
4301                 I915_WRITE(PCH_LVDS, temp);
4302         }
4303
4304         pipeconf &= ~PIPECONF_DITHER_EN;
4305         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4306         if ((is_lvds && dev_priv->lvds_dither) || dither) {
4307                 pipeconf |= PIPECONF_DITHER_EN;
4308                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4309         }
4310         if (is_dp && !is_cpu_edp) {
4311                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4312         } else {
4313                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4314                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4315                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4316                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4317                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4318         }
4319
4320         if (!intel_crtc->no_pll && (!edp_encoder || is_pch_edp)) {
4321                 I915_WRITE(PCH_DPLL(pipe), dpll);
4322
4323                 /* Wait for the clocks to stabilize. */
4324                 POSTING_READ(PCH_DPLL(pipe));
4325                 udelay(150);
4326
4327                 /* The pixel multiplier can only be updated once the
4328                  * DPLL is enabled and the clocks are stable.
4329                  *
4330                  * So write it again.
4331                  */
4332                 I915_WRITE(PCH_DPLL(pipe), dpll);
4333         }
4334
4335         intel_crtc->lowfreq_avail = false;
4336         if (!intel_crtc->no_pll) {
4337                 if (is_lvds && has_reduced_clock && i915_powersave) {
4338                         I915_WRITE(PCH_FP1(pipe), fp2);
4339                         intel_crtc->lowfreq_avail = true;
4340                         if (HAS_PIPE_CXSR(dev)) {
4341                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4342                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4343                         }
4344                 } else {
4345                         I915_WRITE(PCH_FP1(pipe), fp);
4346                         if (HAS_PIPE_CXSR(dev)) {
4347                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4348                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4349                         }
4350                 }
4351         }
4352
4353         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4354         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4355                 pipeconf |= PIPECONF_INTERLACED_ILK;
4356                 /* the chip adds 2 halflines automatically */
4357                 adjusted_mode->crtc_vtotal -= 1;
4358                 adjusted_mode->crtc_vblank_end -= 1;
4359                 I915_WRITE(VSYNCSHIFT(pipe),
4360                            adjusted_mode->crtc_hsync_start
4361                            - adjusted_mode->crtc_htotal/2);
4362         } else {
4363                 pipeconf |= PIPECONF_PROGRESSIVE;
4364                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4365         }
4366
4367         I915_WRITE(HTOTAL(pipe),
4368                    (adjusted_mode->crtc_hdisplay - 1) |
4369                    ((adjusted_mode->crtc_htotal - 1) << 16));
4370         I915_WRITE(HBLANK(pipe),
4371                    (adjusted_mode->crtc_hblank_start - 1) |
4372                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4373         I915_WRITE(HSYNC(pipe),
4374                    (adjusted_mode->crtc_hsync_start - 1) |
4375                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4376
4377         I915_WRITE(VTOTAL(pipe),
4378                    (adjusted_mode->crtc_vdisplay - 1) |
4379                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4380         I915_WRITE(VBLANK(pipe),
4381                    (adjusted_mode->crtc_vblank_start - 1) |
4382                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4383         I915_WRITE(VSYNC(pipe),
4384                    (adjusted_mode->crtc_vsync_start - 1) |
4385                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4386
4387         /* pipesrc controls the size that is scaled from, which should
4388          * always be the user's requested size.
4389          */
4390         I915_WRITE(PIPESRC(pipe),
4391                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4392
4393         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4394         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4395         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4396         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4397
4398         if (is_cpu_edp)
4399                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4400
4401         I915_WRITE(PIPECONF(pipe), pipeconf);
4402         POSTING_READ(PIPECONF(pipe));
4403
4404         intel_wait_for_vblank(dev, pipe);
4405
4406         I915_WRITE(DSPCNTR(plane), dspcntr);
4407         POSTING_READ(DSPCNTR(plane));
4408
4409         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4410
4411         intel_update_watermarks(dev);
4412
4413         return ret;
4414 }
4415
4416 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4417                                struct drm_display_mode *mode,
4418                                struct drm_display_mode *adjusted_mode,
4419                                int x, int y,
4420                                struct drm_framebuffer *old_fb)
4421 {
4422         struct drm_device *dev = crtc->dev;
4423         struct drm_i915_private *dev_priv = dev->dev_private;
4424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4425         int pipe = intel_crtc->pipe;
4426         int ret;
4427
4428         drm_vblank_pre_modeset(dev, pipe);
4429
4430         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4431                                               x, y, old_fb);
4432         drm_vblank_post_modeset(dev, pipe);
4433
4434         if (ret)
4435                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4436         else
4437                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4438
4439         return ret;
4440 }
4441
4442 static bool intel_eld_uptodate(struct drm_connector *connector,
4443                                int reg_eldv, uint32_t bits_eldv,
4444                                int reg_elda, uint32_t bits_elda,
4445                                int reg_edid)
4446 {
4447         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4448         uint8_t *eld = connector->eld;
4449         uint32_t i;
4450
4451         i = I915_READ(reg_eldv);
4452         i &= bits_eldv;
4453
4454         if (!eld[0])
4455                 return !i;
4456
4457         if (!i)
4458                 return false;
4459
4460         i = I915_READ(reg_elda);
4461         i &= ~bits_elda;
4462         I915_WRITE(reg_elda, i);
4463
4464         for (i = 0; i < eld[2]; i++)
4465                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4466                         return false;
4467
4468         return true;
4469 }
4470
4471 static void g4x_write_eld(struct drm_connector *connector,
4472                           struct drm_crtc *crtc)
4473 {
4474         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4475         uint8_t *eld = connector->eld;
4476         uint32_t eldv;
4477         uint32_t len;
4478         uint32_t i;
4479
4480         i = I915_READ(G4X_AUD_VID_DID);
4481
4482         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4483                 eldv = G4X_ELDV_DEVCL_DEVBLC;
4484         else
4485                 eldv = G4X_ELDV_DEVCTG;
4486
4487         if (intel_eld_uptodate(connector,
4488                                G4X_AUD_CNTL_ST, eldv,
4489                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4490                                G4X_HDMIW_HDMIEDID))
4491                 return;
4492
4493         i = I915_READ(G4X_AUD_CNTL_ST);
4494         i &= ~(eldv | G4X_ELD_ADDR);
4495         len = (i >> 9) & 0x1f;          /* ELD buffer size */
4496         I915_WRITE(G4X_AUD_CNTL_ST, i);
4497
4498         if (!eld[0])
4499                 return;
4500
4501         len = min_t(uint8_t, eld[2], len);
4502         DRM_DEBUG_DRIVER("ELD size %d\n", len);
4503         for (i = 0; i < len; i++)
4504                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4505
4506         i = I915_READ(G4X_AUD_CNTL_ST);
4507         i |= eldv;
4508         I915_WRITE(G4X_AUD_CNTL_ST, i);
4509 }
4510
4511 static void ironlake_write_eld(struct drm_connector *connector,
4512                                      struct drm_crtc *crtc)
4513 {
4514         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4515         uint8_t *eld = connector->eld;
4516         uint32_t eldv;
4517         uint32_t i;
4518         int len;
4519         int hdmiw_hdmiedid;
4520         int aud_config;
4521         int aud_cntl_st;
4522         int aud_cntrl_st2;
4523
4524         if (HAS_PCH_IBX(connector->dev)) {
4525                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4526                 aud_config = IBX_AUD_CONFIG_A;
4527                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
4528                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4529         } else {
4530                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4531                 aud_config = CPT_AUD_CONFIG_A;
4532                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
4533                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4534         }
4535
4536         i = to_intel_crtc(crtc)->pipe;
4537         hdmiw_hdmiedid += i * 0x100;
4538         aud_cntl_st += i * 0x100;
4539         aud_config += i * 0x100;
4540
4541         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
4542
4543         i = I915_READ(aud_cntl_st);
4544         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
4545         if (!i) {
4546                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
4547                 /* operate blindly on all ports */
4548                 eldv = IBX_ELD_VALIDB;
4549                 eldv |= IBX_ELD_VALIDB << 4;
4550                 eldv |= IBX_ELD_VALIDB << 8;
4551         } else {
4552                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
4553                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4554         }
4555
4556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4557                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4558                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
4559                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4560         } else
4561                 I915_WRITE(aud_config, 0);
4562
4563         if (intel_eld_uptodate(connector,
4564                                aud_cntrl_st2, eldv,
4565                                aud_cntl_st, IBX_ELD_ADDRESS,
4566                                hdmiw_hdmiedid))
4567                 return;
4568
4569         i = I915_READ(aud_cntrl_st2);
4570         i &= ~eldv;
4571         I915_WRITE(aud_cntrl_st2, i);
4572
4573         if (!eld[0])
4574                 return;
4575
4576         i = I915_READ(aud_cntl_st);
4577         i &= ~IBX_ELD_ADDRESS;
4578         I915_WRITE(aud_cntl_st, i);
4579
4580         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
4581         DRM_DEBUG_DRIVER("ELD size %d\n", len);
4582         for (i = 0; i < len; i++)
4583                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4584
4585         i = I915_READ(aud_cntrl_st2);
4586         i |= eldv;
4587         I915_WRITE(aud_cntrl_st2, i);
4588 }
4589
4590 void intel_write_eld(struct drm_encoder *encoder,
4591                      struct drm_display_mode *mode)
4592 {
4593         struct drm_crtc *crtc = encoder->crtc;
4594         struct drm_connector *connector;
4595         struct drm_device *dev = encoder->dev;
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597
4598         connector = drm_select_eld(encoder, mode);
4599         if (!connector)
4600                 return;
4601
4602         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4603                          connector->base.id,
4604                          drm_get_connector_name(connector),
4605                          connector->encoder->base.id,
4606                          drm_get_encoder_name(connector->encoder));
4607
4608         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4609
4610         if (dev_priv->display.write_eld)
4611                 dev_priv->display.write_eld(connector, crtc);
4612 }
4613
4614 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4615 void intel_crtc_load_lut(struct drm_crtc *crtc)
4616 {
4617         struct drm_device *dev = crtc->dev;
4618         struct drm_i915_private *dev_priv = dev->dev_private;
4619         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4620         int palreg = PALETTE(intel_crtc->pipe);
4621         int i;
4622
4623         /* The clocks have to be on to load the palette. */
4624         if (!crtc->enabled || !intel_crtc->active)
4625                 return;
4626
4627         /* use legacy palette for Ironlake */
4628         if (HAS_PCH_SPLIT(dev))
4629                 palreg = LGC_PALETTE(intel_crtc->pipe);
4630
4631         for (i = 0; i < 256; i++) {
4632                 I915_WRITE(palreg + 4 * i,
4633                            (intel_crtc->lut_r[i] << 16) |
4634                            (intel_crtc->lut_g[i] << 8) |
4635                            intel_crtc->lut_b[i]);
4636         }
4637 }
4638
4639 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4640 {
4641         struct drm_device *dev = crtc->dev;
4642         struct drm_i915_private *dev_priv = dev->dev_private;
4643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4644         bool visible = base != 0;
4645         u32 cntl;
4646
4647         if (intel_crtc->cursor_visible == visible)
4648                 return;
4649
4650         cntl = I915_READ(_CURACNTR);
4651         if (visible) {
4652                 /* On these chipsets we can only modify the base whilst
4653                  * the cursor is disabled.
4654                  */
4655                 I915_WRITE(_CURABASE, base);
4656
4657                 cntl &= ~(CURSOR_FORMAT_MASK);
4658                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4659                 cntl |= CURSOR_ENABLE |
4660                         CURSOR_GAMMA_ENABLE |
4661                         CURSOR_FORMAT_ARGB;
4662         } else
4663                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4664         I915_WRITE(_CURACNTR, cntl);
4665
4666         intel_crtc->cursor_visible = visible;
4667 }
4668
4669 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4670 {
4671         struct drm_device *dev = crtc->dev;
4672         struct drm_i915_private *dev_priv = dev->dev_private;
4673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4674         int pipe = intel_crtc->pipe;
4675         bool visible = base != 0;
4676
4677         if (intel_crtc->cursor_visible != visible) {
4678                 uint32_t cntl = I915_READ(CURCNTR(pipe));
4679                 if (base) {
4680                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4681                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4682                         cntl |= pipe << 28; /* Connect to correct pipe */
4683                 } else {
4684                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4685                         cntl |= CURSOR_MODE_DISABLE;
4686                 }
4687                 I915_WRITE(CURCNTR(pipe), cntl);
4688
4689                 intel_crtc->cursor_visible = visible;
4690         }
4691         /* and commit changes on next vblank */
4692         I915_WRITE(CURBASE(pipe), base);
4693 }
4694
4695 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
4696 {
4697         struct drm_device *dev = crtc->dev;
4698         struct drm_i915_private *dev_priv = dev->dev_private;
4699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4700         int pipe = intel_crtc->pipe;
4701         bool visible = base != 0;
4702
4703         if (intel_crtc->cursor_visible != visible) {
4704                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
4705                 if (base) {
4706                         cntl &= ~CURSOR_MODE;
4707                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4708                 } else {
4709                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4710                         cntl |= CURSOR_MODE_DISABLE;
4711                 }
4712                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
4713
4714                 intel_crtc->cursor_visible = visible;
4715         }
4716         /* and commit changes on next vblank */
4717         I915_WRITE(CURBASE_IVB(pipe), base);
4718 }
4719
4720 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4721 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4722                                      bool on)
4723 {
4724         struct drm_device *dev = crtc->dev;
4725         struct drm_i915_private *dev_priv = dev->dev_private;
4726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4727         int pipe = intel_crtc->pipe;
4728         int x = intel_crtc->cursor_x;
4729         int y = intel_crtc->cursor_y;
4730         u32 base, pos;
4731         bool visible;
4732
4733         pos = 0;
4734
4735         if (on && crtc->enabled && crtc->fb) {
4736                 base = intel_crtc->cursor_addr;
4737                 if (x > (int) crtc->fb->width)
4738                         base = 0;
4739
4740                 if (y > (int) crtc->fb->height)
4741                         base = 0;
4742         } else
4743                 base = 0;
4744
4745         if (x < 0) {
4746                 if (x + intel_crtc->cursor_width < 0)
4747                         base = 0;
4748
4749                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4750                 x = -x;
4751         }
4752         pos |= x << CURSOR_X_SHIFT;
4753
4754         if (y < 0) {
4755                 if (y + intel_crtc->cursor_height < 0)
4756                         base = 0;
4757
4758                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4759                 y = -y;
4760         }
4761         pos |= y << CURSOR_Y_SHIFT;
4762
4763         visible = base != 0;
4764         if (!visible && !intel_crtc->cursor_visible)
4765                 return;
4766
4767         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4768                 I915_WRITE(CURPOS_IVB(pipe), pos);
4769                 ivb_update_cursor(crtc, base);
4770         } else {
4771                 I915_WRITE(CURPOS(pipe), pos);
4772                 if (IS_845G(dev) || IS_I865G(dev))
4773                         i845_update_cursor(crtc, base);
4774                 else
4775                         i9xx_update_cursor(crtc, base);
4776         }
4777
4778         if (visible)
4779                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4780 }
4781
4782 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4783                                  struct drm_file *file,
4784                                  uint32_t handle,
4785                                  uint32_t width, uint32_t height)
4786 {
4787         struct drm_device *dev = crtc->dev;
4788         struct drm_i915_private *dev_priv = dev->dev_private;
4789         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4790         struct drm_i915_gem_object *obj;
4791         uint32_t addr;
4792         int ret;
4793
4794         DRM_DEBUG_KMS("\n");
4795
4796         /* if we want to turn off the cursor ignore width and height */
4797         if (!handle) {
4798                 DRM_DEBUG_KMS("cursor off\n");
4799                 addr = 0;
4800                 obj = NULL;
4801                 mutex_lock(&dev->struct_mutex);
4802                 goto finish;
4803         }
4804
4805         /* Currently we only support 64x64 cursors */
4806         if (width != 64 || height != 64) {
4807                 DRM_ERROR("we currently only support 64x64 cursors\n");
4808                 return -EINVAL;
4809         }
4810
4811         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4812         if (&obj->base == NULL)
4813                 return -ENOENT;
4814
4815         if (obj->base.size < width * height * 4) {
4816                 DRM_ERROR("buffer is to small\n");
4817                 ret = -ENOMEM;
4818                 goto fail;
4819         }
4820
4821         /* we only need to pin inside GTT if cursor is non-phy */
4822         mutex_lock(&dev->struct_mutex);
4823         if (!dev_priv->info->cursor_needs_physical) {
4824                 if (obj->tiling_mode) {
4825                         DRM_ERROR("cursor cannot be tiled\n");
4826                         ret = -EINVAL;
4827                         goto fail_locked;
4828                 }
4829
4830                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
4831                 if (ret) {
4832                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4833                         goto fail_locked;
4834                 }
4835
4836                 ret = i915_gem_object_put_fence(obj);
4837                 if (ret) {
4838                         DRM_ERROR("failed to release fence for cursor");
4839                         goto fail_unpin;
4840                 }
4841
4842                 addr = obj->gtt_offset;
4843         } else {
4844                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4845                 ret = i915_gem_attach_phys_object(dev, obj,
4846                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4847                                                   align);
4848                 if (ret) {
4849                         DRM_ERROR("failed to attach phys object\n");
4850                         goto fail_locked;
4851                 }
4852                 addr = obj->phys_obj->handle->busaddr;
4853         }
4854
4855         if (IS_GEN2(dev))
4856                 I915_WRITE(CURSIZE, (height << 12) | width);
4857
4858  finish:
4859         if (intel_crtc->cursor_bo) {
4860                 if (dev_priv->info->cursor_needs_physical) {
4861                         if (intel_crtc->cursor_bo != obj)
4862                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4863                 } else
4864                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4865                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4866         }
4867
4868         mutex_unlock(&dev->struct_mutex);
4869
4870         intel_crtc->cursor_addr = addr;
4871         intel_crtc->cursor_bo = obj;
4872         intel_crtc->cursor_width = width;
4873         intel_crtc->cursor_height = height;
4874
4875         intel_crtc_update_cursor(crtc, true);
4876
4877         return 0;
4878 fail_unpin:
4879         i915_gem_object_unpin(obj);
4880 fail_locked:
4881         mutex_unlock(&dev->struct_mutex);
4882 fail:
4883         drm_gem_object_unreference_unlocked(&obj->base);
4884         return ret;
4885 }
4886
4887 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4888 {
4889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4890
4891         intel_crtc->cursor_x = x;
4892         intel_crtc->cursor_y = y;
4893
4894         intel_crtc_update_cursor(crtc, true);
4895
4896         return 0;
4897 }
4898
4899 /** Sets the color ramps on behalf of RandR */
4900 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4901                                  u16 blue, int regno)
4902 {
4903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4904
4905         intel_crtc->lut_r[regno] = red >> 8;
4906         intel_crtc->lut_g[regno] = green >> 8;
4907         intel_crtc->lut_b[regno] = blue >> 8;
4908 }
4909
4910 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4911                              u16 *blue, int regno)
4912 {
4913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4914
4915         *red = intel_crtc->lut_r[regno] << 8;
4916         *green = intel_crtc->lut_g[regno] << 8;
4917         *blue = intel_crtc->lut_b[regno] << 8;
4918 }
4919
4920 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4921                                  u16 *blue, uint32_t start, uint32_t size)
4922 {
4923         int end = (start + size > 256) ? 256 : start + size, i;
4924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4925
4926         for (i = start; i < end; i++) {
4927                 intel_crtc->lut_r[i] = red[i] >> 8;
4928                 intel_crtc->lut_g[i] = green[i] >> 8;
4929                 intel_crtc->lut_b[i] = blue[i] >> 8;
4930         }
4931
4932         intel_crtc_load_lut(crtc);
4933 }
4934
4935 /**
4936  * Get a pipe with a simple mode set on it for doing load-based monitor
4937  * detection.
4938  *
4939  * It will be up to the load-detect code to adjust the pipe as appropriate for
4940  * its requirements.  The pipe will be connected to no other encoders.
4941  *
4942  * Currently this code will only succeed if there is a pipe with no encoders
4943  * configured for it.  In the future, it could choose to temporarily disable
4944  * some outputs to free up a pipe for its use.
4945  *
4946  * \return crtc, or NULL if no pipes are available.
4947  */
4948
4949 /* VESA 640x480x72Hz mode to set on the pipe */
4950 static struct drm_display_mode load_detect_mode = {
4951         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4952                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4953 };
4954
4955 static struct drm_framebuffer *
4956 intel_framebuffer_create(struct drm_device *dev,
4957                          struct drm_mode_fb_cmd2 *mode_cmd,
4958                          struct drm_i915_gem_object *obj)
4959 {
4960         struct intel_framebuffer *intel_fb;
4961         int ret;
4962
4963         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4964         if (!intel_fb) {
4965                 drm_gem_object_unreference_unlocked(&obj->base);
4966                 return ERR_PTR(-ENOMEM);
4967         }
4968
4969         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
4970         if (ret) {
4971                 drm_gem_object_unreference_unlocked(&obj->base);
4972                 kfree(intel_fb);
4973                 return ERR_PTR(ret);
4974         }
4975
4976         return &intel_fb->base;
4977 }
4978
4979 static u32
4980 intel_framebuffer_pitch_for_width(int width, int bpp)
4981 {
4982         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
4983         return ALIGN(pitch, 64);
4984 }
4985
4986 static u32
4987 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
4988 {
4989         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
4990         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
4991 }
4992
4993 static struct drm_framebuffer *
4994 intel_framebuffer_create_for_mode(struct drm_device *dev,
4995                                   struct drm_display_mode *mode,
4996                                   int depth, int bpp)
4997 {
4998         struct drm_i915_gem_object *obj;
4999         struct drm_mode_fb_cmd2 mode_cmd;
5000
5001         obj = i915_gem_alloc_object(dev,
5002                                     intel_framebuffer_size_for_mode(mode, bpp));
5003         if (obj == NULL)
5004                 return ERR_PTR(-ENOMEM);
5005
5006         mode_cmd.width = mode->hdisplay;
5007         mode_cmd.height = mode->vdisplay;
5008         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5009                                                                 bpp);
5010         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5011
5012         return intel_framebuffer_create(dev, &mode_cmd, obj);
5013 }
5014
5015 static struct drm_framebuffer *
5016 mode_fits_in_fbdev(struct drm_device *dev,
5017                    struct drm_display_mode *mode)
5018 {
5019         struct drm_i915_private *dev_priv = dev->dev_private;
5020         struct drm_i915_gem_object *obj;
5021         struct drm_framebuffer *fb;
5022
5023         if (dev_priv->fbdev == NULL)
5024                 return NULL;
5025
5026         obj = dev_priv->fbdev->ifb.obj;
5027         if (obj == NULL)
5028                 return NULL;
5029
5030         fb = &dev_priv->fbdev->ifb.base;
5031         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5032                                                                fb->bits_per_pixel))
5033                 return NULL;
5034
5035         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5036                 return NULL;
5037
5038         return fb;
5039 }
5040
5041 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5042                                 struct drm_connector *connector,
5043                                 struct drm_display_mode *mode,
5044                                 struct intel_load_detect_pipe *old)
5045 {
5046         struct intel_crtc *intel_crtc;
5047         struct drm_crtc *possible_crtc;
5048         struct drm_encoder *encoder = &intel_encoder->base;
5049         struct drm_crtc *crtc = NULL;
5050         struct drm_device *dev = encoder->dev;
5051         struct drm_framebuffer *old_fb;
5052         int i = -1;
5053
5054         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5055                       connector->base.id, drm_get_connector_name(connector),
5056                       encoder->base.id, drm_get_encoder_name(encoder));
5057
5058         /*
5059          * Algorithm gets a little messy:
5060          *
5061          *   - if the connector already has an assigned crtc, use it (but make
5062          *     sure it's on first)
5063          *
5064          *   - try to find the first unused crtc that can drive this connector,
5065          *     and use that if we find one
5066          */
5067
5068         /* See if we already have a CRTC for this connector */
5069         if (encoder->crtc) {
5070                 crtc = encoder->crtc;
5071
5072                 intel_crtc = to_intel_crtc(crtc);
5073                 old->dpms_mode = intel_crtc->dpms_mode;
5074                 old->load_detect_temp = false;
5075
5076                 /* Make sure the crtc and connector are running */
5077                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5078                         struct drm_encoder_helper_funcs *encoder_funcs;
5079                         struct drm_crtc_helper_funcs *crtc_funcs;
5080
5081                         crtc_funcs = crtc->helper_private;
5082                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5083
5084                         encoder_funcs = encoder->helper_private;
5085                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5086                 }
5087
5088                 return true;
5089         }
5090
5091         /* Find an unused one (if possible) */
5092         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5093                 i++;
5094                 if (!(encoder->possible_crtcs & (1 << i)))
5095                         continue;
5096                 if (!possible_crtc->enabled) {
5097                         crtc = possible_crtc;
5098                         break;
5099                 }
5100         }
5101
5102         /*
5103          * If we didn't find an unused CRTC, don't use any.
5104          */
5105         if (!crtc) {
5106                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5107                 return false;
5108         }
5109
5110         encoder->crtc = crtc;
5111         connector->encoder = encoder;
5112
5113         intel_crtc = to_intel_crtc(crtc);
5114         old->dpms_mode = intel_crtc->dpms_mode;
5115         old->load_detect_temp = true;
5116         old->release_fb = NULL;
5117
5118         if (!mode)
5119                 mode = &load_detect_mode;
5120
5121         old_fb = crtc->fb;
5122
5123         /* We need a framebuffer large enough to accommodate all accesses
5124          * that the plane may generate whilst we perform load detection.
5125          * We can not rely on the fbcon either being present (we get called
5126          * during its initialisation to detect all boot displays, or it may
5127          * not even exist) or that it is large enough to satisfy the
5128          * requested mode.
5129          */
5130         crtc->fb = mode_fits_in_fbdev(dev, mode);
5131         if (crtc->fb == NULL) {
5132                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5133                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5134                 old->release_fb = crtc->fb;
5135         } else
5136                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5137         if (IS_ERR(crtc->fb)) {
5138                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5139                 crtc->fb = old_fb;
5140                 return false;
5141         }
5142
5143         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5144                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5145                 if (old->release_fb)
5146                         old->release_fb->funcs->destroy(old->release_fb);
5147                 crtc->fb = old_fb;
5148                 return false;
5149         }
5150
5151         /* let the connector get through one full cycle before testing */
5152         intel_wait_for_vblank(dev, intel_crtc->pipe);
5153
5154         return true;
5155 }
5156
5157 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5158                                     struct drm_connector *connector,
5159                                     struct intel_load_detect_pipe *old)
5160 {
5161         struct drm_encoder *encoder = &intel_encoder->base;
5162         struct drm_device *dev = encoder->dev;
5163         struct drm_crtc *crtc = encoder->crtc;
5164         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5165         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5166
5167         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5168                       connector->base.id, drm_get_connector_name(connector),
5169                       encoder->base.id, drm_get_encoder_name(encoder));
5170
5171         if (old->load_detect_temp) {
5172                 connector->encoder = NULL;
5173                 drm_helper_disable_unused_functions(dev);
5174
5175                 if (old->release_fb)
5176                         old->release_fb->funcs->destroy(old->release_fb);
5177
5178                 return;
5179         }
5180
5181         /* Switch crtc and encoder back off if necessary */
5182         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5183                 encoder_funcs->dpms(encoder, old->dpms_mode);
5184                 crtc_funcs->dpms(crtc, old->dpms_mode);
5185         }
5186 }
5187
5188 /* Returns the clock of the currently programmed mode of the given pipe. */
5189 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5190 {
5191         struct drm_i915_private *dev_priv = dev->dev_private;
5192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5193         int pipe = intel_crtc->pipe;
5194         u32 dpll = I915_READ(DPLL(pipe));
5195         u32 fp;
5196         intel_clock_t clock;
5197
5198         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5199                 fp = I915_READ(FP0(pipe));
5200         else
5201                 fp = I915_READ(FP1(pipe));
5202
5203         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5204         if (IS_PINEVIEW(dev)) {
5205                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5206                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5207         } else {
5208                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5209                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5210         }
5211
5212         if (!IS_GEN2(dev)) {
5213                 if (IS_PINEVIEW(dev))
5214                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5215                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5216                 else
5217                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5218                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5219
5220                 switch (dpll & DPLL_MODE_MASK) {
5221                 case DPLLB_MODE_DAC_SERIAL:
5222                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5223                                 5 : 10;
5224                         break;
5225                 case DPLLB_MODE_LVDS:
5226                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5227                                 7 : 14;
5228                         break;
5229                 default:
5230                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5231                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5232                         return 0;
5233                 }
5234
5235                 /* XXX: Handle the 100Mhz refclk */
5236                 intel_clock(dev, 96000, &clock);
5237         } else {
5238                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5239
5240                 if (is_lvds) {
5241                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5242                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5243                         clock.p2 = 14;
5244
5245                         if ((dpll & PLL_REF_INPUT_MASK) ==
5246                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5247                                 /* XXX: might not be 66MHz */
5248                                 intel_clock(dev, 66000, &clock);
5249                         } else
5250                                 intel_clock(dev, 48000, &clock);
5251                 } else {
5252                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5253                                 clock.p1 = 2;
5254                         else {
5255                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5256                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5257                         }
5258                         if (dpll & PLL_P2_DIVIDE_BY_4)
5259                                 clock.p2 = 4;
5260                         else
5261                                 clock.p2 = 2;
5262
5263                         intel_clock(dev, 48000, &clock);
5264                 }
5265         }
5266
5267         /* XXX: It would be nice to validate the clocks, but we can't reuse
5268          * i830PllIsValid() because it relies on the xf86_config connector
5269          * configuration being accurate, which it isn't necessarily.
5270          */
5271
5272         return clock.dot;
5273 }
5274
5275 /** Returns the currently programmed mode of the given pipe. */
5276 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5277                                              struct drm_crtc *crtc)
5278 {
5279         struct drm_i915_private *dev_priv = dev->dev_private;
5280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5281         int pipe = intel_crtc->pipe;
5282         struct drm_display_mode *mode;
5283         int htot = I915_READ(HTOTAL(pipe));
5284         int hsync = I915_READ(HSYNC(pipe));
5285         int vtot = I915_READ(VTOTAL(pipe));
5286         int vsync = I915_READ(VSYNC(pipe));
5287
5288         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5289         if (!mode)
5290                 return NULL;
5291
5292         mode->clock = intel_crtc_clock_get(dev, crtc);
5293         mode->hdisplay = (htot & 0xffff) + 1;
5294         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5295         mode->hsync_start = (hsync & 0xffff) + 1;
5296         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5297         mode->vdisplay = (vtot & 0xffff) + 1;
5298         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5299         mode->vsync_start = (vsync & 0xffff) + 1;
5300         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5301
5302         drm_mode_set_name(mode);
5303         drm_mode_set_crtcinfo(mode, 0);
5304
5305         return mode;
5306 }
5307
5308 #define GPU_IDLE_TIMEOUT 500 /* ms */
5309
5310 /* When this timer fires, we've been idle for awhile */
5311 static void intel_gpu_idle_timer(unsigned long arg)
5312 {
5313         struct drm_device *dev = (struct drm_device *)arg;
5314         drm_i915_private_t *dev_priv = dev->dev_private;
5315
5316         if (!list_empty(&dev_priv->mm.active_list)) {
5317                 /* Still processing requests, so just re-arm the timer. */
5318                 mod_timer(&dev_priv->idle_timer, jiffies +
5319                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5320                 return;
5321         }
5322
5323         dev_priv->busy = false;
5324         queue_work(dev_priv->wq, &dev_priv->idle_work);
5325 }
5326
5327 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5328
5329 static void intel_crtc_idle_timer(unsigned long arg)
5330 {
5331         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5332         struct drm_crtc *crtc = &intel_crtc->base;
5333         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5334         struct intel_framebuffer *intel_fb;
5335
5336         intel_fb = to_intel_framebuffer(crtc->fb);
5337         if (intel_fb && intel_fb->obj->active) {
5338                 /* The framebuffer is still being accessed by the GPU. */
5339                 mod_timer(&intel_crtc->idle_timer, jiffies +
5340                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5341                 return;
5342         }
5343
5344         intel_crtc->busy = false;
5345         queue_work(dev_priv->wq, &dev_priv->idle_work);
5346 }
5347
5348 static void intel_increase_pllclock(struct drm_crtc *crtc)
5349 {
5350         struct drm_device *dev = crtc->dev;
5351         drm_i915_private_t *dev_priv = dev->dev_private;
5352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5353         int pipe = intel_crtc->pipe;
5354         int dpll_reg = DPLL(pipe);
5355         int dpll;
5356
5357         if (HAS_PCH_SPLIT(dev))
5358                 return;
5359
5360         if (!dev_priv->lvds_downclock_avail)
5361                 return;
5362
5363         dpll = I915_READ(dpll_reg);
5364         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5365                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5366
5367                 assert_panel_unlocked(dev_priv, pipe);
5368
5369                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5370                 I915_WRITE(dpll_reg, dpll);
5371                 intel_wait_for_vblank(dev, pipe);
5372
5373                 dpll = I915_READ(dpll_reg);
5374                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5375                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5376         }
5377
5378         /* Schedule downclock */
5379         mod_timer(&intel_crtc->idle_timer, jiffies +
5380                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5381 }
5382
5383 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5384 {
5385         struct drm_device *dev = crtc->dev;
5386         drm_i915_private_t *dev_priv = dev->dev_private;
5387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5388         int pipe = intel_crtc->pipe;
5389         int dpll_reg = DPLL(pipe);
5390         int dpll = I915_READ(dpll_reg);
5391
5392         if (HAS_PCH_SPLIT(dev))
5393                 return;
5394
5395         if (!dev_priv->lvds_downclock_avail)
5396                 return;
5397
5398         /*
5399          * Since this is called by a timer, we should never get here in
5400          * the manual case.
5401          */
5402         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5403                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5404
5405                 assert_panel_unlocked(dev_priv, pipe);
5406
5407                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5408                 I915_WRITE(dpll_reg, dpll);
5409                 intel_wait_for_vblank(dev, pipe);
5410                 dpll = I915_READ(dpll_reg);
5411                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5412                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5413         }
5414
5415 }
5416
5417 /**
5418  * intel_idle_update - adjust clocks for idleness
5419  * @work: work struct
5420  *
5421  * Either the GPU or display (or both) went idle.  Check the busy status
5422  * here and adjust the CRTC and GPU clocks as necessary.
5423  */
5424 static void intel_idle_update(struct work_struct *work)
5425 {
5426         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5427                                                     idle_work);
5428         struct drm_device *dev = dev_priv->dev;
5429         struct drm_crtc *crtc;
5430         struct intel_crtc *intel_crtc;
5431
5432         if (!i915_powersave)
5433                 return;
5434
5435         mutex_lock(&dev->struct_mutex);
5436
5437         i915_update_gfx_val(dev_priv);
5438
5439         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5440                 /* Skip inactive CRTCs */
5441                 if (!crtc->fb)
5442                         continue;
5443
5444                 intel_crtc = to_intel_crtc(crtc);
5445                 if (!intel_crtc->busy)
5446                         intel_decrease_pllclock(crtc);
5447         }
5448
5449
5450         mutex_unlock(&dev->struct_mutex);
5451 }
5452
5453 /**
5454  * intel_mark_busy - mark the GPU and possibly the display busy
5455  * @dev: drm device
5456  * @obj: object we're operating on
5457  *
5458  * Callers can use this function to indicate that the GPU is busy processing
5459  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
5460  * buffer), we'll also mark the display as busy, so we know to increase its
5461  * clock frequency.
5462  */
5463 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5464 {
5465         drm_i915_private_t *dev_priv = dev->dev_private;
5466         struct drm_crtc *crtc = NULL;
5467         struct intel_framebuffer *intel_fb;
5468         struct intel_crtc *intel_crtc;
5469
5470         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5471                 return;
5472
5473         if (!dev_priv->busy)
5474                 dev_priv->busy = true;
5475         else
5476                 mod_timer(&dev_priv->idle_timer, jiffies +
5477                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5478
5479         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5480                 if (!crtc->fb)
5481                         continue;
5482
5483                 intel_crtc = to_intel_crtc(crtc);
5484                 intel_fb = to_intel_framebuffer(crtc->fb);
5485                 if (intel_fb->obj == obj) {
5486                         if (!intel_crtc->busy) {
5487                                 /* Non-busy -> busy, upclock */
5488                                 intel_increase_pllclock(crtc);
5489                                 intel_crtc->busy = true;
5490                         } else {
5491                                 /* Busy -> busy, put off timer */
5492                                 mod_timer(&intel_crtc->idle_timer, jiffies +
5493                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5494                         }
5495                 }
5496         }
5497 }
5498
5499 static void intel_crtc_destroy(struct drm_crtc *crtc)
5500 {
5501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5502         struct drm_device *dev = crtc->dev;
5503         struct intel_unpin_work *work;
5504         unsigned long flags;
5505
5506         spin_lock_irqsave(&dev->event_lock, flags);
5507         work = intel_crtc->unpin_work;
5508         intel_crtc->unpin_work = NULL;
5509         spin_unlock_irqrestore(&dev->event_lock, flags);
5510
5511         if (work) {
5512                 cancel_work_sync(&work->work);
5513                 kfree(work);
5514         }
5515
5516         drm_crtc_cleanup(crtc);
5517
5518         kfree(intel_crtc);
5519 }
5520
5521 static void intel_unpin_work_fn(struct work_struct *__work)
5522 {
5523         struct intel_unpin_work *work =
5524                 container_of(__work, struct intel_unpin_work, work);
5525
5526         mutex_lock(&work->dev->struct_mutex);
5527         intel_unpin_fb_obj(work->old_fb_obj);
5528         drm_gem_object_unreference(&work->pending_flip_obj->base);
5529         drm_gem_object_unreference(&work->old_fb_obj->base);
5530
5531         intel_update_fbc(work->dev);
5532         mutex_unlock(&work->dev->struct_mutex);
5533         kfree(work);
5534 }
5535
5536 static void do_intel_finish_page_flip(struct drm_device *dev,
5537                                       struct drm_crtc *crtc)
5538 {
5539         drm_i915_private_t *dev_priv = dev->dev_private;
5540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5541         struct intel_unpin_work *work;
5542         struct drm_i915_gem_object *obj;
5543         struct drm_pending_vblank_event *e;
5544         struct timeval tnow, tvbl;
5545         unsigned long flags;
5546
5547         /* Ignore early vblank irqs */
5548         if (intel_crtc == NULL)
5549                 return;
5550
5551         do_gettimeofday(&tnow);
5552
5553         spin_lock_irqsave(&dev->event_lock, flags);
5554         work = intel_crtc->unpin_work;
5555         if (work == NULL || !work->pending) {
5556                 spin_unlock_irqrestore(&dev->event_lock, flags);
5557                 return;
5558         }
5559
5560         intel_crtc->unpin_work = NULL;
5561
5562         if (work->event) {
5563                 e = work->event;
5564                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5565
5566                 /* Called before vblank count and timestamps have
5567                  * been updated for the vblank interval of flip
5568                  * completion? Need to increment vblank count and
5569                  * add one videorefresh duration to returned timestamp
5570                  * to account for this. We assume this happened if we
5571                  * get called over 0.9 frame durations after the last
5572                  * timestamped vblank.
5573                  *
5574                  * This calculation can not be used with vrefresh rates
5575                  * below 5Hz (10Hz to be on the safe side) without
5576                  * promoting to 64 integers.
5577                  */
5578                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5579                     9 * crtc->framedur_ns) {
5580                         e->event.sequence++;
5581                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5582                                              crtc->framedur_ns);
5583                 }
5584
5585                 e->event.tv_sec = tvbl.tv_sec;
5586                 e->event.tv_usec = tvbl.tv_usec;
5587
5588                 list_add_tail(&e->base.link,
5589                               &e->base.file_priv->event_list);
5590                 wake_up_interruptible(&e->base.file_priv->event_wait);
5591         }
5592
5593         drm_vblank_put(dev, intel_crtc->pipe);
5594
5595         spin_unlock_irqrestore(&dev->event_lock, flags);
5596
5597         obj = work->old_fb_obj;
5598
5599         atomic_clear_mask(1 << intel_crtc->plane,
5600                           &obj->pending_flip.counter);
5601         if (atomic_read(&obj->pending_flip) == 0)
5602                 wake_up(&dev_priv->pending_flip_queue);
5603
5604         schedule_work(&work->work);
5605
5606         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5607 }
5608
5609 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5610 {
5611         drm_i915_private_t *dev_priv = dev->dev_private;
5612         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5613
5614         do_intel_finish_page_flip(dev, crtc);
5615 }
5616
5617 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5618 {
5619         drm_i915_private_t *dev_priv = dev->dev_private;
5620         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5621
5622         do_intel_finish_page_flip(dev, crtc);
5623 }
5624
5625 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5626 {
5627         drm_i915_private_t *dev_priv = dev->dev_private;
5628         struct intel_crtc *intel_crtc =
5629                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5630         unsigned long flags;
5631
5632         spin_lock_irqsave(&dev->event_lock, flags);
5633         if (intel_crtc->unpin_work) {
5634                 if ((++intel_crtc->unpin_work->pending) > 1)
5635                         DRM_ERROR("Prepared flip multiple times\n");
5636         } else {
5637                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5638         }
5639         spin_unlock_irqrestore(&dev->event_lock, flags);
5640 }
5641
5642 static int intel_gen2_queue_flip(struct drm_device *dev,
5643                                  struct drm_crtc *crtc,
5644                                  struct drm_framebuffer *fb,
5645                                  struct drm_i915_gem_object *obj)
5646 {
5647         struct drm_i915_private *dev_priv = dev->dev_private;
5648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5649         unsigned long offset;
5650         u32 flip_mask;
5651         int ret;
5652
5653         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5654         if (ret)
5655                 goto err;
5656
5657         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5658         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5659
5660         ret = BEGIN_LP_RING(6);
5661         if (ret)
5662                 goto err_unpin;
5663
5664         /* Can't queue multiple flips, so wait for the previous
5665          * one to finish before executing the next.
5666          */
5667         if (intel_crtc->plane)
5668                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5669         else
5670                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5671         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5672         OUT_RING(MI_NOOP);
5673         OUT_RING(MI_DISPLAY_FLIP |
5674                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5675         OUT_RING(fb->pitches[0]);
5676         OUT_RING(obj->gtt_offset + offset);
5677         OUT_RING(0); /* aux display base address, unused */
5678         ADVANCE_LP_RING();
5679         return 0;
5680
5681 err_unpin:
5682         intel_unpin_fb_obj(obj);
5683 err:
5684         return ret;
5685 }
5686
5687 static int intel_gen3_queue_flip(struct drm_device *dev,
5688                                  struct drm_crtc *crtc,
5689                                  struct drm_framebuffer *fb,
5690                                  struct drm_i915_gem_object *obj)
5691 {
5692         struct drm_i915_private *dev_priv = dev->dev_private;
5693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5694         unsigned long offset;
5695         u32 flip_mask;
5696         int ret;
5697
5698         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5699         if (ret)
5700                 goto err;
5701
5702         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5703         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5704
5705         ret = BEGIN_LP_RING(6);
5706         if (ret)
5707                 goto err_unpin;
5708
5709         if (intel_crtc->plane)
5710                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5711         else
5712                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5713         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5714         OUT_RING(MI_NOOP);
5715         OUT_RING(MI_DISPLAY_FLIP_I915 |
5716                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5717         OUT_RING(fb->pitches[0]);
5718         OUT_RING(obj->gtt_offset + offset);
5719         OUT_RING(MI_NOOP);
5720
5721         ADVANCE_LP_RING();
5722         return 0;
5723
5724 err_unpin:
5725         intel_unpin_fb_obj(obj);
5726 err:
5727         return ret;
5728 }
5729
5730 static int intel_gen4_queue_flip(struct drm_device *dev,
5731                                  struct drm_crtc *crtc,
5732                                  struct drm_framebuffer *fb,
5733                                  struct drm_i915_gem_object *obj)
5734 {
5735         struct drm_i915_private *dev_priv = dev->dev_private;
5736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5737         uint32_t pf, pipesrc;
5738         int ret;
5739
5740         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5741         if (ret)
5742                 goto err;
5743
5744         ret = BEGIN_LP_RING(4);
5745         if (ret)
5746                 goto err_unpin;
5747
5748         /* i965+ uses the linear or tiled offsets from the
5749          * Display Registers (which do not change across a page-flip)
5750          * so we need only reprogram the base address.
5751          */
5752         OUT_RING(MI_DISPLAY_FLIP |
5753                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5754         OUT_RING(fb->pitches[0]);
5755         OUT_RING(obj->gtt_offset | obj->tiling_mode);
5756
5757         /* XXX Enabling the panel-fitter across page-flip is so far
5758          * untested on non-native modes, so ignore it for now.
5759          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5760          */
5761         pf = 0;
5762         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5763         OUT_RING(pf | pipesrc);
5764         ADVANCE_LP_RING();
5765         return 0;
5766
5767 err_unpin:
5768         intel_unpin_fb_obj(obj);
5769 err:
5770         return ret;
5771 }
5772
5773 static int intel_gen6_queue_flip(struct drm_device *dev,
5774                                  struct drm_crtc *crtc,
5775                                  struct drm_framebuffer *fb,
5776                                  struct drm_i915_gem_object *obj)
5777 {
5778         struct drm_i915_private *dev_priv = dev->dev_private;
5779         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5780         uint32_t pf, pipesrc;
5781         int ret;
5782
5783         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5784         if (ret)
5785                 goto err;
5786
5787         ret = BEGIN_LP_RING(4);
5788         if (ret)
5789                 goto err_unpin;
5790
5791         OUT_RING(MI_DISPLAY_FLIP |
5792                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5793         OUT_RING(fb->pitches[0] | obj->tiling_mode);
5794         OUT_RING(obj->gtt_offset);
5795
5796         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
5797         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5798         OUT_RING(pf | pipesrc);
5799         ADVANCE_LP_RING();
5800         return 0;
5801
5802 err_unpin:
5803         intel_unpin_fb_obj(obj);
5804 err:
5805         return ret;
5806 }
5807
5808 /*
5809  * On gen7 we currently use the blit ring because (in early silicon at least)
5810  * the render ring doesn't give us interrpts for page flip completion, which
5811  * means clients will hang after the first flip is queued.  Fortunately the
5812  * blit ring generates interrupts properly, so use it instead.
5813  */
5814 static int intel_gen7_queue_flip(struct drm_device *dev,
5815                                  struct drm_crtc *crtc,
5816                                  struct drm_framebuffer *fb,
5817                                  struct drm_i915_gem_object *obj)
5818 {
5819         struct drm_i915_private *dev_priv = dev->dev_private;
5820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5821         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
5822         int ret;
5823
5824         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5825         if (ret)
5826                 goto err;
5827
5828         ret = intel_ring_begin(ring, 4);
5829         if (ret)
5830                 goto err_unpin;
5831
5832         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
5833         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5834         intel_ring_emit(ring, (obj->gtt_offset));
5835         intel_ring_emit(ring, (MI_NOOP));
5836         intel_ring_advance(ring);
5837         return 0;
5838
5839 err_unpin:
5840         intel_unpin_fb_obj(obj);
5841 err:
5842         return ret;
5843 }
5844
5845 static int intel_default_queue_flip(struct drm_device *dev,
5846                                     struct drm_crtc *crtc,
5847                                     struct drm_framebuffer *fb,
5848                                     struct drm_i915_gem_object *obj)
5849 {
5850         return -ENODEV;
5851 }
5852
5853 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5854                                 struct drm_framebuffer *fb,
5855                                 struct drm_pending_vblank_event *event)
5856 {
5857         struct drm_device *dev = crtc->dev;
5858         struct drm_i915_private *dev_priv = dev->dev_private;
5859         struct intel_framebuffer *intel_fb;
5860         struct drm_i915_gem_object *obj;
5861         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5862         struct intel_unpin_work *work;
5863         unsigned long flags;
5864         int ret;
5865
5866         work = kzalloc(sizeof *work, GFP_KERNEL);
5867         if (work == NULL)
5868                 return -ENOMEM;
5869
5870         work->event = event;
5871         work->dev = crtc->dev;
5872         intel_fb = to_intel_framebuffer(crtc->fb);
5873         work->old_fb_obj = intel_fb->obj;
5874         INIT_WORK(&work->work, intel_unpin_work_fn);
5875
5876         ret = drm_vblank_get(dev, intel_crtc->pipe);
5877         if (ret)
5878                 goto free_work;
5879
5880         /* We borrow the event spin lock for protecting unpin_work */
5881         spin_lock_irqsave(&dev->event_lock, flags);
5882         if (intel_crtc->unpin_work) {
5883                 spin_unlock_irqrestore(&dev->event_lock, flags);
5884                 kfree(work);
5885                 drm_vblank_put(dev, intel_crtc->pipe);
5886
5887                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5888                 return -EBUSY;
5889         }
5890         intel_crtc->unpin_work = work;
5891         spin_unlock_irqrestore(&dev->event_lock, flags);
5892
5893         intel_fb = to_intel_framebuffer(fb);
5894         obj = intel_fb->obj;
5895
5896         mutex_lock(&dev->struct_mutex);
5897
5898         /* Reference the objects for the scheduled work. */
5899         drm_gem_object_reference(&work->old_fb_obj->base);
5900         drm_gem_object_reference(&obj->base);
5901
5902         crtc->fb = fb;
5903
5904         work->pending_flip_obj = obj;
5905
5906         work->enable_stall_check = true;
5907
5908         /* Block clients from rendering to the new back buffer until
5909          * the flip occurs and the object is no longer visible.
5910          */
5911         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5912
5913         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
5914         if (ret)
5915                 goto cleanup_pending;
5916
5917         intel_disable_fbc(dev);
5918         mutex_unlock(&dev->struct_mutex);
5919
5920         trace_i915_flip_request(intel_crtc->plane, obj);
5921
5922         return 0;
5923
5924 cleanup_pending:
5925         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5926         drm_gem_object_unreference(&work->old_fb_obj->base);
5927         drm_gem_object_unreference(&obj->base);
5928         mutex_unlock(&dev->struct_mutex);
5929
5930         spin_lock_irqsave(&dev->event_lock, flags);
5931         intel_crtc->unpin_work = NULL;
5932         spin_unlock_irqrestore(&dev->event_lock, flags);
5933
5934         drm_vblank_put(dev, intel_crtc->pipe);
5935 free_work:
5936         kfree(work);
5937
5938         return ret;
5939 }
5940
5941 static void intel_sanitize_modesetting(struct drm_device *dev,
5942                                        int pipe, int plane)
5943 {
5944         struct drm_i915_private *dev_priv = dev->dev_private;
5945         u32 reg, val;
5946
5947         /* Clear any frame start delays used for debugging left by the BIOS */
5948         for_each_pipe(pipe) {
5949                 reg = PIPECONF(pipe);
5950                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
5951         }
5952
5953         if (HAS_PCH_SPLIT(dev))
5954                 return;
5955
5956         /* Who knows what state these registers were left in by the BIOS or
5957          * grub?
5958          *
5959          * If we leave the registers in a conflicting state (e.g. with the
5960          * display plane reading from the other pipe than the one we intend
5961          * to use) then when we attempt to teardown the active mode, we will
5962          * not disable the pipes and planes in the correct order -- leaving
5963          * a plane reading from a disabled pipe and possibly leading to
5964          * undefined behaviour.
5965          */
5966
5967         reg = DSPCNTR(plane);
5968         val = I915_READ(reg);
5969
5970         if ((val & DISPLAY_PLANE_ENABLE) == 0)
5971                 return;
5972         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5973                 return;
5974
5975         /* This display plane is active and attached to the other CPU pipe. */
5976         pipe = !pipe;
5977
5978         /* Disable the plane and wait for it to stop reading from the pipe. */
5979         intel_disable_plane(dev_priv, plane, pipe);
5980         intel_disable_pipe(dev_priv, pipe);
5981 }
5982
5983 static void intel_crtc_reset(struct drm_crtc *crtc)
5984 {
5985         struct drm_device *dev = crtc->dev;
5986         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5987
5988         /* Reset flags back to the 'unknown' status so that they
5989          * will be correctly set on the initial modeset.
5990          */
5991         intel_crtc->dpms_mode = -1;
5992
5993         /* We need to fix up any BIOS configuration that conflicts with
5994          * our expectations.
5995          */
5996         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5997 }
5998
5999 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6000         .dpms = intel_crtc_dpms,
6001         .mode_fixup = intel_crtc_mode_fixup,
6002         .mode_set = intel_crtc_mode_set,
6003         .mode_set_base = intel_pipe_set_base,
6004         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6005         .load_lut = intel_crtc_load_lut,
6006         .disable = intel_crtc_disable,
6007 };
6008
6009 static const struct drm_crtc_funcs intel_crtc_funcs = {
6010         .reset = intel_crtc_reset,
6011         .cursor_set = intel_crtc_cursor_set,
6012         .cursor_move = intel_crtc_cursor_move,
6013         .gamma_set = intel_crtc_gamma_set,
6014         .set_config = drm_crtc_helper_set_config,
6015         .destroy = intel_crtc_destroy,
6016         .page_flip = intel_crtc_page_flip,
6017 };
6018
6019 static void intel_crtc_init(struct drm_device *dev, int pipe)
6020 {
6021         drm_i915_private_t *dev_priv = dev->dev_private;
6022         struct intel_crtc *intel_crtc;
6023         int i;
6024
6025         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6026         if (intel_crtc == NULL)
6027                 return;
6028
6029         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6030
6031         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6032         for (i = 0; i < 256; i++) {
6033                 intel_crtc->lut_r[i] = i;
6034                 intel_crtc->lut_g[i] = i;
6035                 intel_crtc->lut_b[i] = i;
6036         }
6037
6038         /* Swap pipes & planes for FBC on pre-965 */
6039         intel_crtc->pipe = pipe;
6040         intel_crtc->plane = pipe;
6041         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6042                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6043                 intel_crtc->plane = !pipe;
6044         }
6045
6046         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6047                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6048         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6049         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6050
6051         intel_crtc_reset(&intel_crtc->base);
6052         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6053         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6054
6055         if (HAS_PCH_SPLIT(dev)) {
6056                 if (pipe == 2 && IS_IVYBRIDGE(dev))
6057                         intel_crtc->no_pll = true;
6058                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6059                 intel_helper_funcs.commit = ironlake_crtc_commit;
6060         } else {
6061                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6062                 intel_helper_funcs.commit = i9xx_crtc_commit;
6063         }
6064
6065         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6066
6067         intel_crtc->busy = false;
6068
6069         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6070                     (unsigned long)intel_crtc);
6071 }
6072
6073 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6074                                 struct drm_file *file)
6075 {
6076         drm_i915_private_t *dev_priv = dev->dev_private;
6077         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6078         struct drm_mode_object *drmmode_obj;
6079         struct intel_crtc *crtc;
6080
6081         if (!dev_priv) {
6082                 DRM_ERROR("called with no initialization\n");
6083                 return -EINVAL;
6084         }
6085
6086         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6087                         DRM_MODE_OBJECT_CRTC);
6088
6089         if (!drmmode_obj) {
6090                 DRM_ERROR("no such CRTC id\n");
6091                 return -EINVAL;
6092         }
6093
6094         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6095         pipe_from_crtc_id->pipe = crtc->pipe;
6096
6097         return 0;
6098 }
6099
6100 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6101 {
6102         struct intel_encoder *encoder;
6103         int index_mask = 0;
6104         int entry = 0;
6105
6106         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6107                 if (type_mask & encoder->clone_mask)
6108                         index_mask |= (1 << entry);
6109                 entry++;
6110         }
6111
6112         return index_mask;
6113 }
6114
6115 static bool has_edp_a(struct drm_device *dev)
6116 {
6117         struct drm_i915_private *dev_priv = dev->dev_private;
6118
6119         if (!IS_MOBILE(dev))
6120                 return false;
6121
6122         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6123                 return false;
6124
6125         if (IS_GEN5(dev) &&
6126             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6127                 return false;
6128
6129         return true;
6130 }
6131
6132 static void intel_setup_outputs(struct drm_device *dev)
6133 {
6134         struct drm_i915_private *dev_priv = dev->dev_private;
6135         struct intel_encoder *encoder;
6136         bool dpd_is_edp = false;
6137         bool has_lvds;
6138
6139         has_lvds = intel_lvds_init(dev);
6140         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6141                 /* disable the panel fitter on everything but LVDS */
6142                 I915_WRITE(PFIT_CONTROL, 0);
6143         }
6144
6145         if (HAS_PCH_SPLIT(dev)) {
6146                 dpd_is_edp = intel_dpd_is_edp(dev);
6147
6148                 if (has_edp_a(dev))
6149                         intel_dp_init(dev, DP_A);
6150
6151                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6152                         intel_dp_init(dev, PCH_DP_D);
6153         }
6154
6155         intel_crt_init(dev);
6156
6157         if (HAS_PCH_SPLIT(dev)) {
6158                 int found;
6159
6160                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6161                         /* PCH SDVOB multiplex with HDMIB */
6162                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
6163                         if (!found)
6164                                 intel_hdmi_init(dev, HDMIB);
6165                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6166                                 intel_dp_init(dev, PCH_DP_B);
6167                 }
6168
6169                 if (I915_READ(HDMIC) & PORT_DETECTED)
6170                         intel_hdmi_init(dev, HDMIC);
6171
6172                 if (I915_READ(HDMID) & PORT_DETECTED)
6173                         intel_hdmi_init(dev, HDMID);
6174
6175                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6176                         intel_dp_init(dev, PCH_DP_C);
6177
6178                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6179                         intel_dp_init(dev, PCH_DP_D);
6180
6181         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6182                 bool found = false;
6183
6184                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6185                         DRM_DEBUG_KMS("probing SDVOB\n");
6186                         found = intel_sdvo_init(dev, SDVOB, true);
6187                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6188                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6189                                 intel_hdmi_init(dev, SDVOB);
6190                         }
6191
6192                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6193                                 DRM_DEBUG_KMS("probing DP_B\n");
6194                                 intel_dp_init(dev, DP_B);
6195                         }
6196                 }
6197
6198                 /* Before G4X SDVOC doesn't have its own detect register */
6199
6200                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6201                         DRM_DEBUG_KMS("probing SDVOC\n");
6202                         found = intel_sdvo_init(dev, SDVOC, false);
6203                 }
6204
6205                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6206
6207                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6208                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6209                                 intel_hdmi_init(dev, SDVOC);
6210                         }
6211                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6212                                 DRM_DEBUG_KMS("probing DP_C\n");
6213                                 intel_dp_init(dev, DP_C);
6214                         }
6215                 }
6216
6217                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6218                     (I915_READ(DP_D) & DP_DETECTED)) {
6219                         DRM_DEBUG_KMS("probing DP_D\n");
6220                         intel_dp_init(dev, DP_D);
6221                 }
6222         } else if (IS_GEN2(dev))
6223                 intel_dvo_init(dev);
6224
6225         if (SUPPORTS_TV(dev))
6226                 intel_tv_init(dev);
6227
6228         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6229                 encoder->base.possible_crtcs = encoder->crtc_mask;
6230                 encoder->base.possible_clones =
6231                         intel_encoder_clones(dev, encoder->clone_mask);
6232         }
6233
6234         /* disable all the possible outputs/crtcs before entering KMS mode */
6235         drm_helper_disable_unused_functions(dev);
6236
6237         if (HAS_PCH_SPLIT(dev))
6238                 ironlake_init_pch_refclk(dev);
6239 }
6240
6241 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6242 {
6243         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6244
6245         drm_framebuffer_cleanup(fb);
6246         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6247
6248         kfree(intel_fb);
6249 }
6250
6251 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6252                                                 struct drm_file *file,
6253                                                 unsigned int *handle)
6254 {
6255         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6256         struct drm_i915_gem_object *obj = intel_fb->obj;
6257
6258         return drm_gem_handle_create(file, &obj->base, handle);
6259 }
6260
6261 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6262         .destroy = intel_user_framebuffer_destroy,
6263         .create_handle = intel_user_framebuffer_create_handle,
6264 };
6265
6266 int intel_framebuffer_init(struct drm_device *dev,
6267                            struct intel_framebuffer *intel_fb,
6268                            struct drm_mode_fb_cmd2 *mode_cmd,
6269                            struct drm_i915_gem_object *obj)
6270 {
6271         int ret;
6272
6273         if (obj->tiling_mode == I915_TILING_Y)
6274                 return -EINVAL;
6275
6276         if (mode_cmd->pitches[0] & 63)
6277                 return -EINVAL;
6278
6279         switch (mode_cmd->pixel_format) {
6280         case DRM_FORMAT_RGB332:
6281         case DRM_FORMAT_RGB565:
6282         case DRM_FORMAT_XRGB8888:
6283         case DRM_FORMAT_XBGR8888:
6284         case DRM_FORMAT_ARGB8888:
6285         case DRM_FORMAT_XRGB2101010:
6286         case DRM_FORMAT_ARGB2101010:
6287                 /* RGB formats are common across chipsets */
6288                 break;
6289         case DRM_FORMAT_YUYV:
6290         case DRM_FORMAT_UYVY:
6291         case DRM_FORMAT_YVYU:
6292         case DRM_FORMAT_VYUY:
6293                 break;
6294         default:
6295                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6296                                 mode_cmd->pixel_format);
6297                 return -EINVAL;
6298         }
6299
6300         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6301         if (ret) {
6302                 DRM_ERROR("framebuffer init failed %d\n", ret);
6303                 return ret;
6304         }
6305
6306         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6307         intel_fb->obj = obj;
6308         return 0;
6309 }
6310
6311 static struct drm_framebuffer *
6312 intel_user_framebuffer_create(struct drm_device *dev,
6313                               struct drm_file *filp,
6314                               struct drm_mode_fb_cmd2 *mode_cmd)
6315 {
6316         struct drm_i915_gem_object *obj;
6317
6318         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6319                                                 mode_cmd->handles[0]));
6320         if (&obj->base == NULL)
6321                 return ERR_PTR(-ENOENT);
6322
6323         return intel_framebuffer_create(dev, mode_cmd, obj);
6324 }
6325
6326 static const struct drm_mode_config_funcs intel_mode_funcs = {
6327         .fb_create = intel_user_framebuffer_create,
6328         .output_poll_changed = intel_fb_output_poll_changed,
6329 };
6330
6331 /* Set up chip specific display functions */
6332 static void intel_init_display(struct drm_device *dev)
6333 {
6334         struct drm_i915_private *dev_priv = dev->dev_private;
6335
6336         /* We always want a DPMS function */
6337         if (HAS_PCH_SPLIT(dev)) {
6338                 dev_priv->display.dpms = ironlake_crtc_dpms;
6339                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6340                 dev_priv->display.update_plane = ironlake_update_plane;
6341         } else {
6342                 dev_priv->display.dpms = i9xx_crtc_dpms;
6343                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6344                 dev_priv->display.update_plane = i9xx_update_plane;
6345         }
6346
6347         /* Returns the core display clock speed */
6348         if (IS_VALLEYVIEW(dev))
6349                 dev_priv->display.get_display_clock_speed =
6350                         valleyview_get_display_clock_speed;
6351         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6352                 dev_priv->display.get_display_clock_speed =
6353                         i945_get_display_clock_speed;
6354         else if (IS_I915G(dev))
6355                 dev_priv->display.get_display_clock_speed =
6356                         i915_get_display_clock_speed;
6357         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6358                 dev_priv->display.get_display_clock_speed =
6359                         i9xx_misc_get_display_clock_speed;
6360         else if (IS_I915GM(dev))
6361                 dev_priv->display.get_display_clock_speed =
6362                         i915gm_get_display_clock_speed;
6363         else if (IS_I865G(dev))
6364                 dev_priv->display.get_display_clock_speed =
6365                         i865_get_display_clock_speed;
6366         else if (IS_I85X(dev))
6367                 dev_priv->display.get_display_clock_speed =
6368                         i855_get_display_clock_speed;
6369         else /* 852, 830 */
6370                 dev_priv->display.get_display_clock_speed =
6371                         i830_get_display_clock_speed;
6372
6373         if (HAS_PCH_SPLIT(dev)) {
6374                 if (IS_GEN5(dev)) {
6375                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6376                         dev_priv->display.write_eld = ironlake_write_eld;
6377                 } else if (IS_GEN6(dev)) {
6378                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6379                         dev_priv->display.write_eld = ironlake_write_eld;
6380                 } else if (IS_IVYBRIDGE(dev)) {
6381                         /* FIXME: detect B0+ stepping and use auto training */
6382                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6383                         dev_priv->display.write_eld = ironlake_write_eld;
6384                 } else
6385                         dev_priv->display.update_wm = NULL;
6386         } else if (IS_VALLEYVIEW(dev)) {
6387                 dev_priv->display.force_wake_get = vlv_force_wake_get;
6388                 dev_priv->display.force_wake_put = vlv_force_wake_put;
6389         } else if (IS_G4X(dev)) {
6390                 dev_priv->display.write_eld = g4x_write_eld;
6391         }
6392
6393         /* Default just returns -ENODEV to indicate unsupported */
6394         dev_priv->display.queue_flip = intel_default_queue_flip;
6395
6396         switch (INTEL_INFO(dev)->gen) {
6397         case 2:
6398                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
6399                 break;
6400
6401         case 3:
6402                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
6403                 break;
6404
6405         case 4:
6406         case 5:
6407                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
6408                 break;
6409
6410         case 6:
6411                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
6412                 break;
6413         case 7:
6414                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
6415                 break;
6416         }
6417 }
6418
6419 /*
6420  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6421  * resume, or other times.  This quirk makes sure that's the case for
6422  * affected systems.
6423  */
6424 static void quirk_pipea_force(struct drm_device *dev)
6425 {
6426         struct drm_i915_private *dev_priv = dev->dev_private;
6427
6428         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6429         DRM_INFO("applying pipe a force quirk\n");
6430 }
6431
6432 /*
6433  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6434  */
6435 static void quirk_ssc_force_disable(struct drm_device *dev)
6436 {
6437         struct drm_i915_private *dev_priv = dev->dev_private;
6438         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6439         DRM_INFO("applying lvds SSC disable quirk\n");
6440 }
6441
6442 /*
6443  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
6444  * brightness value
6445  */
6446 static void quirk_invert_brightness(struct drm_device *dev)
6447 {
6448         struct drm_i915_private *dev_priv = dev->dev_private;
6449         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
6450         DRM_INFO("applying inverted panel brightness quirk\n");
6451 }
6452
6453 struct intel_quirk {
6454         int device;
6455         int subsystem_vendor;
6456         int subsystem_device;
6457         void (*hook)(struct drm_device *dev);
6458 };
6459
6460 static struct intel_quirk intel_quirks[] = {
6461         /* HP Mini needs pipe A force quirk (LP: #322104) */
6462         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6463
6464         /* Thinkpad R31 needs pipe A force quirk */
6465         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6466         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6467         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6468
6469         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6470         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6471         /* ThinkPad X40 needs pipe A force quirk */
6472
6473         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6474         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6475
6476         /* 855 & before need to leave pipe A & dpll A up */
6477         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6478         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6479
6480         /* Lenovo U160 cannot use SSC on LVDS */
6481         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6482
6483         /* Sony Vaio Y cannot use SSC on LVDS */
6484         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6485
6486         /* Acer Aspire 5734Z must invert backlight brightness */
6487         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
6488 };
6489
6490 static void intel_init_quirks(struct drm_device *dev)
6491 {
6492         struct pci_dev *d = dev->pdev;
6493         int i;
6494
6495         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6496                 struct intel_quirk *q = &intel_quirks[i];
6497
6498                 if (d->device == q->device &&
6499                     (d->subsystem_vendor == q->subsystem_vendor ||
6500                      q->subsystem_vendor == PCI_ANY_ID) &&
6501                     (d->subsystem_device == q->subsystem_device ||
6502                      q->subsystem_device == PCI_ANY_ID))
6503                         q->hook(dev);
6504         }
6505 }
6506
6507 /* Disable the VGA plane that we never use */
6508 static void i915_disable_vga(struct drm_device *dev)
6509 {
6510         struct drm_i915_private *dev_priv = dev->dev_private;
6511         u8 sr1;
6512         u32 vga_reg;
6513
6514         if (HAS_PCH_SPLIT(dev))
6515                 vga_reg = CPU_VGACNTRL;
6516         else
6517                 vga_reg = VGACNTRL;
6518
6519         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6520         outb(SR01, VGA_SR_INDEX);
6521         sr1 = inb(VGA_SR_DATA);
6522         outb(sr1 | 1<<5, VGA_SR_DATA);
6523         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6524         udelay(300);
6525
6526         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6527         POSTING_READ(vga_reg);
6528 }
6529
6530 static void ivb_pch_pwm_override(struct drm_device *dev)
6531 {
6532         struct drm_i915_private *dev_priv = dev->dev_private;
6533
6534         /*
6535          * IVB has CPU eDP backlight regs too, set things up to let the
6536          * PCH regs control the backlight
6537          */
6538         I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
6539         I915_WRITE(BLC_PWM_CPU_CTL, 0);
6540         I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
6541 }
6542
6543 void intel_modeset_init_hw(struct drm_device *dev)
6544 {
6545         struct drm_i915_private *dev_priv = dev->dev_private;
6546
6547         intel_init_clock_gating(dev);
6548
6549         if (IS_IRONLAKE_M(dev)) {
6550                 ironlake_enable_drps(dev);
6551                 intel_init_emon(dev);
6552         }
6553
6554         if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
6555                 gen6_enable_rps(dev_priv);
6556                 gen6_update_ring_freq(dev_priv);
6557         }
6558
6559         if (IS_IVYBRIDGE(dev))
6560                 ivb_pch_pwm_override(dev);
6561 }
6562
6563 void intel_modeset_init(struct drm_device *dev)
6564 {
6565         struct drm_i915_private *dev_priv = dev->dev_private;
6566         int i, ret;
6567
6568         drm_mode_config_init(dev);
6569
6570         dev->mode_config.min_width = 0;
6571         dev->mode_config.min_height = 0;
6572
6573         dev->mode_config.preferred_depth = 24;
6574         dev->mode_config.prefer_shadow = 1;
6575
6576         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6577
6578         intel_init_quirks(dev);
6579
6580         intel_init_pm(dev);
6581
6582         intel_init_display(dev);
6583
6584         if (IS_GEN2(dev)) {
6585                 dev->mode_config.max_width = 2048;
6586                 dev->mode_config.max_height = 2048;
6587         } else if (IS_GEN3(dev)) {
6588                 dev->mode_config.max_width = 4096;
6589                 dev->mode_config.max_height = 4096;
6590         } else {
6591                 dev->mode_config.max_width = 8192;
6592                 dev->mode_config.max_height = 8192;
6593         }
6594         dev->mode_config.fb_base = dev->agp->base;
6595
6596         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6597                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6598
6599         for (i = 0; i < dev_priv->num_pipe; i++) {
6600                 intel_crtc_init(dev, i);
6601                 ret = intel_plane_init(dev, i);
6602                 if (ret)
6603                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6604         }
6605
6606         /* Just disable it once at startup */
6607         i915_disable_vga(dev);
6608         intel_setup_outputs(dev);
6609
6610         intel_modeset_init_hw(dev);
6611
6612         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6613         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6614                     (unsigned long)dev);
6615 }
6616
6617 void intel_modeset_gem_init(struct drm_device *dev)
6618 {
6619         if (IS_IRONLAKE_M(dev))
6620                 ironlake_enable_rc6(dev);
6621
6622         intel_setup_overlay(dev);
6623 }
6624
6625 void intel_modeset_cleanup(struct drm_device *dev)
6626 {
6627         struct drm_i915_private *dev_priv = dev->dev_private;
6628         struct drm_crtc *crtc;
6629         struct intel_crtc *intel_crtc;
6630
6631         drm_kms_helper_poll_fini(dev);
6632         mutex_lock(&dev->struct_mutex);
6633
6634         intel_unregister_dsm_handler();
6635
6636
6637         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6638                 /* Skip inactive CRTCs */
6639                 if (!crtc->fb)
6640                         continue;
6641
6642                 intel_crtc = to_intel_crtc(crtc);
6643                 intel_increase_pllclock(crtc);
6644         }
6645
6646         intel_disable_fbc(dev);
6647
6648         if (IS_IRONLAKE_M(dev))
6649                 ironlake_disable_drps(dev);
6650         if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
6651                 gen6_disable_rps(dev);
6652
6653         if (IS_IRONLAKE_M(dev))
6654                 ironlake_disable_rc6(dev);
6655
6656         if (IS_VALLEYVIEW(dev))
6657                 vlv_init_dpio(dev);
6658
6659         mutex_unlock(&dev->struct_mutex);
6660
6661         /* Disable the irq before mode object teardown, for the irq might
6662          * enqueue unpin/hotplug work. */
6663         drm_irq_uninstall(dev);
6664         cancel_work_sync(&dev_priv->hotplug_work);
6665         cancel_work_sync(&dev_priv->rps_work);
6666
6667         /* flush any delayed tasks or pending work */
6668         flush_scheduled_work();
6669
6670         /* Shut off idle work before the crtcs get freed. */
6671         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6672                 intel_crtc = to_intel_crtc(crtc);
6673                 del_timer_sync(&intel_crtc->idle_timer);
6674         }
6675         del_timer_sync(&dev_priv->idle_timer);
6676         cancel_work_sync(&dev_priv->idle_work);
6677
6678         drm_mode_config_cleanup(dev);
6679 }
6680
6681 /*
6682  * Return which encoder is currently attached for connector.
6683  */
6684 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6685 {
6686         return &intel_attached_encoder(connector)->base;
6687 }
6688
6689 void intel_connector_attach_encoder(struct intel_connector *connector,
6690                                     struct intel_encoder *encoder)
6691 {
6692         connector->encoder = encoder;
6693         drm_mode_connector_attach_encoder(&connector->base,
6694                                           &encoder->base);
6695 }
6696
6697 /*
6698  * set vga decode state - true == enable VGA decode
6699  */
6700 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6701 {
6702         struct drm_i915_private *dev_priv = dev->dev_private;
6703         u16 gmch_ctrl;
6704
6705         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6706         if (state)
6707                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6708         else
6709                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6710         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6711         return 0;
6712 }
6713
6714 #ifdef CONFIG_DEBUG_FS
6715 #include <linux/seq_file.h>
6716
6717 struct intel_display_error_state {
6718         struct intel_cursor_error_state {
6719                 u32 control;
6720                 u32 position;
6721                 u32 base;
6722                 u32 size;
6723         } cursor[2];
6724
6725         struct intel_pipe_error_state {
6726                 u32 conf;
6727                 u32 source;
6728
6729                 u32 htotal;
6730                 u32 hblank;
6731                 u32 hsync;
6732                 u32 vtotal;
6733                 u32 vblank;
6734                 u32 vsync;
6735         } pipe[2];
6736
6737         struct intel_plane_error_state {
6738                 u32 control;
6739                 u32 stride;
6740                 u32 size;
6741                 u32 pos;
6742                 u32 addr;
6743                 u32 surface;
6744                 u32 tile_offset;
6745         } plane[2];
6746 };
6747
6748 struct intel_display_error_state *
6749 intel_display_capture_error_state(struct drm_device *dev)
6750 {
6751         drm_i915_private_t *dev_priv = dev->dev_private;
6752         struct intel_display_error_state *error;
6753         int i;
6754
6755         error = kmalloc(sizeof(*error), GFP_ATOMIC);
6756         if (error == NULL)
6757                 return NULL;
6758
6759         for (i = 0; i < 2; i++) {
6760                 error->cursor[i].control = I915_READ(CURCNTR(i));
6761                 error->cursor[i].position = I915_READ(CURPOS(i));
6762                 error->cursor[i].base = I915_READ(CURBASE(i));
6763
6764                 error->plane[i].control = I915_READ(DSPCNTR(i));
6765                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6766                 error->plane[i].size = I915_READ(DSPSIZE(i));
6767                 error->plane[i].pos = I915_READ(DSPPOS(i));
6768                 error->plane[i].addr = I915_READ(DSPADDR(i));
6769                 if (INTEL_INFO(dev)->gen >= 4) {
6770                         error->plane[i].surface = I915_READ(DSPSURF(i));
6771                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6772                 }
6773
6774                 error->pipe[i].conf = I915_READ(PIPECONF(i));
6775                 error->pipe[i].source = I915_READ(PIPESRC(i));
6776                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6777                 error->pipe[i].hblank = I915_READ(HBLANK(i));
6778                 error->pipe[i].hsync = I915_READ(HSYNC(i));
6779                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6780                 error->pipe[i].vblank = I915_READ(VBLANK(i));
6781                 error->pipe[i].vsync = I915_READ(VSYNC(i));
6782         }
6783
6784         return error;
6785 }
6786
6787 void
6788 intel_display_print_error_state(struct seq_file *m,
6789                                 struct drm_device *dev,
6790                                 struct intel_display_error_state *error)
6791 {
6792         int i;
6793
6794         for (i = 0; i < 2; i++) {
6795                 seq_printf(m, "Pipe [%d]:\n", i);
6796                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6797                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6798                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6799                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6800                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6801                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6802                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6803                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6804
6805                 seq_printf(m, "Plane [%d]:\n", i);
6806                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6807                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6808                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6809                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
6810                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6811                 if (INTEL_INFO(dev)->gen >= 4) {
6812                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6813                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6814                 }
6815
6816                 seq_printf(m, "Cursor [%d]:\n", i);
6817                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6818                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
6819                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6820         }
6821 }
6822 #endif