]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
91d8ada8fe6d2965f5d0875ddb94e6666b19e6a3
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79                                 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81                                    struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84                           int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86                                   struct intel_framebuffer *ifb,
87                                   struct drm_mode_fb_cmd2 *mode_cmd,
88                                   struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92                                          struct intel_link_m_n *m_n,
93                                          struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98                             const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_config *pipe_config);
101 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
102 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106         if (!connector->mst_port)
107                 return connector->encoder;
108         else
109                 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113         int     min, max;
114 } intel_range_t;
115
116 typedef struct {
117         int     dot_limit;
118         int     p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
124         intel_p2_t          p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131
132         WARN_ON(!HAS_PCH_SPLIT(dev));
133
134         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140         if (IS_GEN5(dev)) {
141                 struct drm_i915_private *dev_priv = dev->dev_private;
142                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143         } else
144                 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148         .dot = { .min = 25000, .max = 350000 },
149         .vco = { .min = 908000, .max = 1512000 },
150         .n = { .min = 2, .max = 16 },
151         .m = { .min = 96, .max = 140 },
152         .m1 = { .min = 18, .max = 26 },
153         .m2 = { .min = 6, .max = 16 },
154         .p = { .min = 4, .max = 128 },
155         .p1 = { .min = 2, .max = 33 },
156         .p2 = { .dot_limit = 165000,
157                 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161         .dot = { .min = 25000, .max = 350000 },
162         .vco = { .min = 908000, .max = 1512000 },
163         .n = { .min = 2, .max = 16 },
164         .m = { .min = 96, .max = 140 },
165         .m1 = { .min = 18, .max = 26 },
166         .m2 = { .min = 6, .max = 16 },
167         .p = { .min = 4, .max = 128 },
168         .p1 = { .min = 2, .max = 33 },
169         .p2 = { .dot_limit = 165000,
170                 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174         .dot = { .min = 25000, .max = 350000 },
175         .vco = { .min = 908000, .max = 1512000 },
176         .n = { .min = 2, .max = 16 },
177         .m = { .min = 96, .max = 140 },
178         .m1 = { .min = 18, .max = 26 },
179         .m2 = { .min = 6, .max = 16 },
180         .p = { .min = 4, .max = 128 },
181         .p1 = { .min = 1, .max = 6 },
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187         .dot = { .min = 20000, .max = 400000 },
188         .vco = { .min = 1400000, .max = 2800000 },
189         .n = { .min = 1, .max = 6 },
190         .m = { .min = 70, .max = 120 },
191         .m1 = { .min = 8, .max = 18 },
192         .m2 = { .min = 3, .max = 7 },
193         .p = { .min = 5, .max = 80 },
194         .p1 = { .min = 1, .max = 8 },
195         .p2 = { .dot_limit = 200000,
196                 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200         .dot = { .min = 20000, .max = 400000 },
201         .vco = { .min = 1400000, .max = 2800000 },
202         .n = { .min = 1, .max = 6 },
203         .m = { .min = 70, .max = 120 },
204         .m1 = { .min = 8, .max = 18 },
205         .m2 = { .min = 3, .max = 7 },
206         .p = { .min = 7, .max = 98 },
207         .p1 = { .min = 1, .max = 8 },
208         .p2 = { .dot_limit = 112000,
209                 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214         .dot = { .min = 25000, .max = 270000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 10, .max = 30 },
221         .p1 = { .min = 1, .max = 3},
222         .p2 = { .dot_limit = 270000,
223                 .p2_slow = 10,
224                 .p2_fast = 10
225         },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229         .dot = { .min = 22000, .max = 400000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 4 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 16, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 5, .max = 80 },
236         .p1 = { .min = 1, .max = 8},
237         .p2 = { .dot_limit = 165000,
238                 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242         .dot = { .min = 20000, .max = 115000 },
243         .vco = { .min = 1750000, .max = 3500000 },
244         .n = { .min = 1, .max = 3 },
245         .m = { .min = 104, .max = 138 },
246         .m1 = { .min = 17, .max = 23 },
247         .m2 = { .min = 5, .max = 11 },
248         .p = { .min = 28, .max = 112 },
249         .p1 = { .min = 2, .max = 8 },
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 14, .p2_fast = 14
252         },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256         .dot = { .min = 80000, .max = 224000 },
257         .vco = { .min = 1750000, .max = 3500000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 104, .max = 138 },
260         .m1 = { .min = 17, .max = 23 },
261         .m2 = { .min = 5, .max = 11 },
262         .p = { .min = 14, .max = 42 },
263         .p1 = { .min = 2, .max = 6 },
264         .p2 = { .dot_limit = 0,
265                 .p2_slow = 7, .p2_fast = 7
266         },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270         .dot = { .min = 20000, .max = 400000},
271         .vco = { .min = 1700000, .max = 3500000 },
272         /* Pineview's Ncounter is a ring counter */
273         .n = { .min = 3, .max = 6 },
274         .m = { .min = 2, .max = 256 },
275         /* Pineview only has one combined m divider, which we treat as m2. */
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 200000,
281                 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285         .dot = { .min = 20000, .max = 400000 },
286         .vco = { .min = 1700000, .max = 3500000 },
287         .n = { .min = 3, .max = 6 },
288         .m = { .min = 2, .max = 256 },
289         .m1 = { .min = 0, .max = 0 },
290         .m2 = { .min = 0, .max = 254 },
291         .p = { .min = 7, .max = 112 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 112000,
294                 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298  *
299  * We calculate clock using (register_value + 2) for N/M1/M2, so here
300  * the range value for them is (actual_value - 2).
301  */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 5 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 3 },
319         .m = { .min = 79, .max = 118 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2, .max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 127 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 56 },
336         .p1 = { .min = 2, .max = 8 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343         .dot = { .min = 25000, .max = 350000 },
344         .vco = { .min = 1760000, .max = 3510000 },
345         .n = { .min = 1, .max = 2 },
346         .m = { .min = 79, .max = 126 },
347         .m1 = { .min = 12, .max = 22 },
348         .m2 = { .min = 5, .max = 9 },
349         .p = { .min = 28, .max = 112 },
350         .p1 = { .min = 2, .max = 8 },
351         .p2 = { .dot_limit = 225000,
352                 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000 },
358         .n = { .min = 1, .max = 3 },
359         .m = { .min = 79, .max = 126 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 14, .max = 42 },
363         .p1 = { .min = 2, .max = 6 },
364         .p2 = { .dot_limit = 225000,
365                 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369          /*
370           * These are the data rate limits (measured in fast clocks)
371           * since those are the strictest limits we have. The fast
372           * clock and actual rate limits are more relaxed, so checking
373           * them would make no difference.
374           */
375         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376         .vco = { .min = 4000000, .max = 6000000 },
377         .n = { .min = 1, .max = 7 },
378         .m1 = { .min = 2, .max = 3 },
379         .m2 = { .min = 11, .max = 156 },
380         .p1 = { .min = 2, .max = 3 },
381         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385         /*
386          * These are the data rate limits (measured in fast clocks)
387          * since those are the strictest limits we have.  The fast
388          * clock and actual rate limits are more relaxed, so checking
389          * them would make no difference.
390          */
391         .dot = { .min = 25000 * 5, .max = 540000 * 5},
392         .vco = { .min = 4860000, .max = 6700000 },
393         .n = { .min = 1, .max = 1 },
394         .m1 = { .min = 2, .max = 2 },
395         .m2 = { .min = 24 << 22, .max = 175 << 22 },
396         .p1 = { .min = 2, .max = 4 },
397         .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402         clock->m = clock->m1 * clock->m2;
403         clock->p = clock->p1 * clock->p2;
404         if (WARN_ON(clock->n == 0 || clock->p == 0))
405                 return;
406         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411  * Returns whether any output on the specified pipe is of the specified type
412  */
413 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
414 {
415         struct drm_device *dev = crtc->base.dev;
416         struct intel_encoder *encoder;
417
418         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
419                 if (encoder->type == type)
420                         return true;
421
422         return false;
423 }
424
425 /**
426  * Returns whether any output on the specified pipe will have the specified
427  * type after a staged modeset is complete, i.e., the same as
428  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
429  * encoder->crtc.
430  */
431 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
432 {
433         struct drm_device *dev = crtc->base.dev;
434         struct intel_encoder *encoder;
435
436         for_each_intel_encoder(dev, encoder)
437                 if (encoder->new_crtc == crtc && encoder->type == type)
438                         return true;
439
440         return false;
441 }
442
443 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
444                                                 int refclk)
445 {
446         struct drm_device *dev = crtc->base.dev;
447         const intel_limit_t *limit;
448
449         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
450                 if (intel_is_dual_link_lvds(dev)) {
451                         if (refclk == 100000)
452                                 limit = &intel_limits_ironlake_dual_lvds_100m;
453                         else
454                                 limit = &intel_limits_ironlake_dual_lvds;
455                 } else {
456                         if (refclk == 100000)
457                                 limit = &intel_limits_ironlake_single_lvds_100m;
458                         else
459                                 limit = &intel_limits_ironlake_single_lvds;
460                 }
461         } else
462                 limit = &intel_limits_ironlake_dac;
463
464         return limit;
465 }
466
467 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
468 {
469         struct drm_device *dev = crtc->base.dev;
470         const intel_limit_t *limit;
471
472         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
473                 if (intel_is_dual_link_lvds(dev))
474                         limit = &intel_limits_g4x_dual_channel_lvds;
475                 else
476                         limit = &intel_limits_g4x_single_channel_lvds;
477         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
478                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
479                 limit = &intel_limits_g4x_hdmi;
480         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
481                 limit = &intel_limits_g4x_sdvo;
482         } else /* The option is for other outputs */
483                 limit = &intel_limits_i9xx_sdvo;
484
485         return limit;
486 }
487
488 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
489 {
490         struct drm_device *dev = crtc->base.dev;
491         const intel_limit_t *limit;
492
493         if (HAS_PCH_SPLIT(dev))
494                 limit = intel_ironlake_limit(crtc, refclk);
495         else if (IS_G4X(dev)) {
496                 limit = intel_g4x_limit(crtc);
497         } else if (IS_PINEVIEW(dev)) {
498                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
499                         limit = &intel_limits_pineview_lvds;
500                 else
501                         limit = &intel_limits_pineview_sdvo;
502         } else if (IS_CHERRYVIEW(dev)) {
503                 limit = &intel_limits_chv;
504         } else if (IS_VALLEYVIEW(dev)) {
505                 limit = &intel_limits_vlv;
506         } else if (!IS_GEN2(dev)) {
507                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
508                         limit = &intel_limits_i9xx_lvds;
509                 else
510                         limit = &intel_limits_i9xx_sdvo;
511         } else {
512                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
513                         limit = &intel_limits_i8xx_lvds;
514                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
515                         limit = &intel_limits_i8xx_dvo;
516                 else
517                         limit = &intel_limits_i8xx_dac;
518         }
519         return limit;
520 }
521
522 /* m1 is reserved as 0 in Pineview, n is a ring counter */
523 static void pineview_clock(int refclk, intel_clock_t *clock)
524 {
525         clock->m = clock->m2 + 2;
526         clock->p = clock->p1 * clock->p2;
527         if (WARN_ON(clock->n == 0 || clock->p == 0))
528                 return;
529         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
530         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531 }
532
533 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
534 {
535         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
536 }
537
538 static void i9xx_clock(int refclk, intel_clock_t *clock)
539 {
540         clock->m = i9xx_dpll_compute_m(clock);
541         clock->p = clock->p1 * clock->p2;
542         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
543                 return;
544         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
545         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
546 }
547
548 static void chv_clock(int refclk, intel_clock_t *clock)
549 {
550         clock->m = clock->m1 * clock->m2;
551         clock->p = clock->p1 * clock->p2;
552         if (WARN_ON(clock->n == 0 || clock->p == 0))
553                 return;
554         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
555                         clock->n << 22);
556         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
557 }
558
559 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
560 /**
561  * Returns whether the given set of divisors are valid for a given refclk with
562  * the given connectors.
563  */
564
565 static bool intel_PLL_is_valid(struct drm_device *dev,
566                                const intel_limit_t *limit,
567                                const intel_clock_t *clock)
568 {
569         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
570                 INTELPllInvalid("n out of range\n");
571         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
572                 INTELPllInvalid("p1 out of range\n");
573         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
574                 INTELPllInvalid("m2 out of range\n");
575         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
576                 INTELPllInvalid("m1 out of range\n");
577
578         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
579                 if (clock->m1 <= clock->m2)
580                         INTELPllInvalid("m1 <= m2\n");
581
582         if (!IS_VALLEYVIEW(dev)) {
583                 if (clock->p < limit->p.min || limit->p.max < clock->p)
584                         INTELPllInvalid("p out of range\n");
585                 if (clock->m < limit->m.min || limit->m.max < clock->m)
586                         INTELPllInvalid("m out of range\n");
587         }
588
589         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
590                 INTELPllInvalid("vco out of range\n");
591         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
592          * connector, etc., rather than just a single range.
593          */
594         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
595                 INTELPllInvalid("dot out of range\n");
596
597         return true;
598 }
599
600 static bool
601 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
602                     int target, int refclk, intel_clock_t *match_clock,
603                     intel_clock_t *best_clock)
604 {
605         struct drm_device *dev = crtc->base.dev;
606         intel_clock_t clock;
607         int err = target;
608
609         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
610                 /*
611                  * For LVDS just rely on its current settings for dual-channel.
612                  * We haven't figured out how to reliably set up different
613                  * single/dual channel state, if we even can.
614                  */
615                 if (intel_is_dual_link_lvds(dev))
616                         clock.p2 = limit->p2.p2_fast;
617                 else
618                         clock.p2 = limit->p2.p2_slow;
619         } else {
620                 if (target < limit->p2.dot_limit)
621                         clock.p2 = limit->p2.p2_slow;
622                 else
623                         clock.p2 = limit->p2.p2_fast;
624         }
625
626         memset(best_clock, 0, sizeof(*best_clock));
627
628         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
629              clock.m1++) {
630                 for (clock.m2 = limit->m2.min;
631                      clock.m2 <= limit->m2.max; clock.m2++) {
632                         if (clock.m2 >= clock.m1)
633                                 break;
634                         for (clock.n = limit->n.min;
635                              clock.n <= limit->n.max; clock.n++) {
636                                 for (clock.p1 = limit->p1.min;
637                                         clock.p1 <= limit->p1.max; clock.p1++) {
638                                         int this_err;
639
640                                         i9xx_clock(refclk, &clock);
641                                         if (!intel_PLL_is_valid(dev, limit,
642                                                                 &clock))
643                                                 continue;
644                                         if (match_clock &&
645                                             clock.p != match_clock->p)
646                                                 continue;
647
648                                         this_err = abs(clock.dot - target);
649                                         if (this_err < err) {
650                                                 *best_clock = clock;
651                                                 err = this_err;
652                                         }
653                                 }
654                         }
655                 }
656         }
657
658         return (err != target);
659 }
660
661 static bool
662 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
663                    int target, int refclk, intel_clock_t *match_clock,
664                    intel_clock_t *best_clock)
665 {
666         struct drm_device *dev = crtc->base.dev;
667         intel_clock_t clock;
668         int err = target;
669
670         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
671                 /*
672                  * For LVDS just rely on its current settings for dual-channel.
673                  * We haven't figured out how to reliably set up different
674                  * single/dual channel state, if we even can.
675                  */
676                 if (intel_is_dual_link_lvds(dev))
677                         clock.p2 = limit->p2.p2_fast;
678                 else
679                         clock.p2 = limit->p2.p2_slow;
680         } else {
681                 if (target < limit->p2.dot_limit)
682                         clock.p2 = limit->p2.p2_slow;
683                 else
684                         clock.p2 = limit->p2.p2_fast;
685         }
686
687         memset(best_clock, 0, sizeof(*best_clock));
688
689         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690              clock.m1++) {
691                 for (clock.m2 = limit->m2.min;
692                      clock.m2 <= limit->m2.max; clock.m2++) {
693                         for (clock.n = limit->n.min;
694                              clock.n <= limit->n.max; clock.n++) {
695                                 for (clock.p1 = limit->p1.min;
696                                         clock.p1 <= limit->p1.max; clock.p1++) {
697                                         int this_err;
698
699                                         pineview_clock(refclk, &clock);
700                                         if (!intel_PLL_is_valid(dev, limit,
701                                                                 &clock))
702                                                 continue;
703                                         if (match_clock &&
704                                             clock.p != match_clock->p)
705                                                 continue;
706
707                                         this_err = abs(clock.dot - target);
708                                         if (this_err < err) {
709                                                 *best_clock = clock;
710                                                 err = this_err;
711                                         }
712                                 }
713                         }
714                 }
715         }
716
717         return (err != target);
718 }
719
720 static bool
721 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
722                    int target, int refclk, intel_clock_t *match_clock,
723                    intel_clock_t *best_clock)
724 {
725         struct drm_device *dev = crtc->base.dev;
726         intel_clock_t clock;
727         int max_n;
728         bool found;
729         /* approximately equals target * 0.00585 */
730         int err_most = (target >> 8) + (target >> 9);
731         found = false;
732
733         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
734                 if (intel_is_dual_link_lvds(dev))
735                         clock.p2 = limit->p2.p2_fast;
736                 else
737                         clock.p2 = limit->p2.p2_slow;
738         } else {
739                 if (target < limit->p2.dot_limit)
740                         clock.p2 = limit->p2.p2_slow;
741                 else
742                         clock.p2 = limit->p2.p2_fast;
743         }
744
745         memset(best_clock, 0, sizeof(*best_clock));
746         max_n = limit->n.max;
747         /* based on hardware requirement, prefer smaller n to precision */
748         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
749                 /* based on hardware requirement, prefere larger m1,m2 */
750                 for (clock.m1 = limit->m1.max;
751                      clock.m1 >= limit->m1.min; clock.m1--) {
752                         for (clock.m2 = limit->m2.max;
753                              clock.m2 >= limit->m2.min; clock.m2--) {
754                                 for (clock.p1 = limit->p1.max;
755                                      clock.p1 >= limit->p1.min; clock.p1--) {
756                                         int this_err;
757
758                                         i9xx_clock(refclk, &clock);
759                                         if (!intel_PLL_is_valid(dev, limit,
760                                                                 &clock))
761                                                 continue;
762
763                                         this_err = abs(clock.dot - target);
764                                         if (this_err < err_most) {
765                                                 *best_clock = clock;
766                                                 err_most = this_err;
767                                                 max_n = clock.n;
768                                                 found = true;
769                                         }
770                                 }
771                         }
772                 }
773         }
774         return found;
775 }
776
777 static bool
778 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
779                    int target, int refclk, intel_clock_t *match_clock,
780                    intel_clock_t *best_clock)
781 {
782         struct drm_device *dev = crtc->base.dev;
783         intel_clock_t clock;
784         unsigned int bestppm = 1000000;
785         /* min update 19.2 MHz */
786         int max_n = min(limit->n.max, refclk / 19200);
787         bool found = false;
788
789         target *= 5; /* fast clock */
790
791         memset(best_clock, 0, sizeof(*best_clock));
792
793         /* based on hardware requirement, prefer smaller n to precision */
794         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
795                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
796                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
797                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
798                                 clock.p = clock.p1 * clock.p2;
799                                 /* based on hardware requirement, prefer bigger m1,m2 values */
800                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
801                                         unsigned int ppm, diff;
802
803                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
804                                                                      refclk * clock.m1);
805
806                                         vlv_clock(refclk, &clock);
807
808                                         if (!intel_PLL_is_valid(dev, limit,
809                                                                 &clock))
810                                                 continue;
811
812                                         diff = abs(clock.dot - target);
813                                         ppm = div_u64(1000000ULL * diff, target);
814
815                                         if (ppm < 100 && clock.p > best_clock->p) {
816                                                 bestppm = 0;
817                                                 *best_clock = clock;
818                                                 found = true;
819                                         }
820
821                                         if (bestppm >= 10 && ppm < bestppm - 10) {
822                                                 bestppm = ppm;
823                                                 *best_clock = clock;
824                                                 found = true;
825                                         }
826                                 }
827                         }
828                 }
829         }
830
831         return found;
832 }
833
834 static bool
835 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
836                    int target, int refclk, intel_clock_t *match_clock,
837                    intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->base.dev;
840         intel_clock_t clock;
841         uint64_t m2;
842         int found = false;
843
844         memset(best_clock, 0, sizeof(*best_clock));
845
846         /*
847          * Based on hardware doc, the n always set to 1, and m1 always
848          * set to 2.  If requires to support 200Mhz refclk, we need to
849          * revisit this because n may not 1 anymore.
850          */
851         clock.n = 1, clock.m1 = 2;
852         target *= 5;    /* fast clock */
853
854         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
855                 for (clock.p2 = limit->p2.p2_fast;
856                                 clock.p2 >= limit->p2.p2_slow;
857                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
858
859                         clock.p = clock.p1 * clock.p2;
860
861                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
862                                         clock.n) << 22, refclk * clock.m1);
863
864                         if (m2 > INT_MAX/clock.m1)
865                                 continue;
866
867                         clock.m2 = m2;
868
869                         chv_clock(refclk, &clock);
870
871                         if (!intel_PLL_is_valid(dev, limit, &clock))
872                                 continue;
873
874                         /* based on hardware requirement, prefer bigger p
875                          */
876                         if (clock.p > best_clock->p) {
877                                 *best_clock = clock;
878                                 found = true;
879                         }
880                 }
881         }
882
883         return found;
884 }
885
886 bool intel_crtc_active(struct drm_crtc *crtc)
887 {
888         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
889
890         /* Be paranoid as we can arrive here with only partial
891          * state retrieved from the hardware during setup.
892          *
893          * We can ditch the adjusted_mode.crtc_clock check as soon
894          * as Haswell has gained clock readout/fastboot support.
895          *
896          * We can ditch the crtc->primary->fb check as soon as we can
897          * properly reconstruct framebuffers.
898          */
899         return intel_crtc->active && crtc->primary->fb &&
900                 intel_crtc->config.adjusted_mode.crtc_clock;
901 }
902
903 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
904                                              enum pipe pipe)
905 {
906         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
908
909         return intel_crtc->config.cpu_transcoder;
910 }
911
912 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
913 {
914         struct drm_i915_private *dev_priv = dev->dev_private;
915         u32 reg = PIPEDSL(pipe);
916         u32 line1, line2;
917         u32 line_mask;
918
919         if (IS_GEN2(dev))
920                 line_mask = DSL_LINEMASK_GEN2;
921         else
922                 line_mask = DSL_LINEMASK_GEN3;
923
924         line1 = I915_READ(reg) & line_mask;
925         mdelay(5);
926         line2 = I915_READ(reg) & line_mask;
927
928         return line1 == line2;
929 }
930
931 /*
932  * intel_wait_for_pipe_off - wait for pipe to turn off
933  * @crtc: crtc whose pipe to wait for
934  *
935  * After disabling a pipe, we can't wait for vblank in the usual way,
936  * spinning on the vblank interrupt status bit, since we won't actually
937  * see an interrupt when the pipe is disabled.
938  *
939  * On Gen4 and above:
940  *   wait for the pipe register state bit to turn off
941  *
942  * Otherwise:
943  *   wait for the display line value to settle (it usually
944  *   ends up stopping at the start of the next frame).
945  *
946  */
947 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
948 {
949         struct drm_device *dev = crtc->base.dev;
950         struct drm_i915_private *dev_priv = dev->dev_private;
951         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
952         enum pipe pipe = crtc->pipe;
953
954         if (INTEL_INFO(dev)->gen >= 4) {
955                 int reg = PIPECONF(cpu_transcoder);
956
957                 /* Wait for the Pipe State to go off */
958                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
959                              100))
960                         WARN(1, "pipe_off wait timed out\n");
961         } else {
962                 /* Wait for the display line to settle */
963                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
964                         WARN(1, "pipe_off wait timed out\n");
965         }
966 }
967
968 /*
969  * ibx_digital_port_connected - is the specified port connected?
970  * @dev_priv: i915 private structure
971  * @port: the port to test
972  *
973  * Returns true if @port is connected, false otherwise.
974  */
975 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
976                                 struct intel_digital_port *port)
977 {
978         u32 bit;
979
980         if (HAS_PCH_IBX(dev_priv->dev)) {
981                 switch (port->port) {
982                 case PORT_B:
983                         bit = SDE_PORTB_HOTPLUG;
984                         break;
985                 case PORT_C:
986                         bit = SDE_PORTC_HOTPLUG;
987                         break;
988                 case PORT_D:
989                         bit = SDE_PORTD_HOTPLUG;
990                         break;
991                 default:
992                         return true;
993                 }
994         } else {
995                 switch (port->port) {
996                 case PORT_B:
997                         bit = SDE_PORTB_HOTPLUG_CPT;
998                         break;
999                 case PORT_C:
1000                         bit = SDE_PORTC_HOTPLUG_CPT;
1001                         break;
1002                 case PORT_D:
1003                         bit = SDE_PORTD_HOTPLUG_CPT;
1004                         break;
1005                 default:
1006                         return true;
1007                 }
1008         }
1009
1010         return I915_READ(SDEISR) & bit;
1011 }
1012
1013 static const char *state_string(bool enabled)
1014 {
1015         return enabled ? "on" : "off";
1016 }
1017
1018 /* Only for pre-ILK configs */
1019 void assert_pll(struct drm_i915_private *dev_priv,
1020                 enum pipe pipe, bool state)
1021 {
1022         int reg;
1023         u32 val;
1024         bool cur_state;
1025
1026         reg = DPLL(pipe);
1027         val = I915_READ(reg);
1028         cur_state = !!(val & DPLL_VCO_ENABLE);
1029         I915_STATE_WARN(cur_state != state,
1030              "PLL state assertion failure (expected %s, current %s)\n",
1031              state_string(state), state_string(cur_state));
1032 }
1033
1034 /* XXX: the dsi pll is shared between MIPI DSI ports */
1035 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1036 {
1037         u32 val;
1038         bool cur_state;
1039
1040         mutex_lock(&dev_priv->dpio_lock);
1041         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1042         mutex_unlock(&dev_priv->dpio_lock);
1043
1044         cur_state = val & DSI_PLL_VCO_EN;
1045         I915_STATE_WARN(cur_state != state,
1046              "DSI PLL state assertion failure (expected %s, current %s)\n",
1047              state_string(state), state_string(cur_state));
1048 }
1049 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1050 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1051
1052 struct intel_shared_dpll *
1053 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1054 {
1055         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1056
1057         if (crtc->config.shared_dpll < 0)
1058                 return NULL;
1059
1060         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1061 }
1062
1063 /* For ILK+ */
1064 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1065                         struct intel_shared_dpll *pll,
1066                         bool state)
1067 {
1068         bool cur_state;
1069         struct intel_dpll_hw_state hw_state;
1070
1071         if (WARN (!pll,
1072                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1073                 return;
1074
1075         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1076         I915_STATE_WARN(cur_state != state,
1077              "%s assertion failure (expected %s, current %s)\n",
1078              pll->name, state_string(state), state_string(cur_state));
1079 }
1080
1081 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1082                           enum pipe pipe, bool state)
1083 {
1084         int reg;
1085         u32 val;
1086         bool cur_state;
1087         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1088                                                                       pipe);
1089
1090         if (HAS_DDI(dev_priv->dev)) {
1091                 /* DDI does not have a specific FDI_TX register */
1092                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1093                 val = I915_READ(reg);
1094                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1095         } else {
1096                 reg = FDI_TX_CTL(pipe);
1097                 val = I915_READ(reg);
1098                 cur_state = !!(val & FDI_TX_ENABLE);
1099         }
1100         I915_STATE_WARN(cur_state != state,
1101              "FDI TX state assertion failure (expected %s, current %s)\n",
1102              state_string(state), state_string(cur_state));
1103 }
1104 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1105 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1106
1107 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1108                           enum pipe pipe, bool state)
1109 {
1110         int reg;
1111         u32 val;
1112         bool cur_state;
1113
1114         reg = FDI_RX_CTL(pipe);
1115         val = I915_READ(reg);
1116         cur_state = !!(val & FDI_RX_ENABLE);
1117         I915_STATE_WARN(cur_state != state,
1118              "FDI RX state assertion failure (expected %s, current %s)\n",
1119              state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1122 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1123
1124 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1125                                       enum pipe pipe)
1126 {
1127         int reg;
1128         u32 val;
1129
1130         /* ILK FDI PLL is always enabled */
1131         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1132                 return;
1133
1134         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1135         if (HAS_DDI(dev_priv->dev))
1136                 return;
1137
1138         reg = FDI_TX_CTL(pipe);
1139         val = I915_READ(reg);
1140         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1141 }
1142
1143 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1144                        enum pipe pipe, bool state)
1145 {
1146         int reg;
1147         u32 val;
1148         bool cur_state;
1149
1150         reg = FDI_RX_CTL(pipe);
1151         val = I915_READ(reg);
1152         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1153         I915_STATE_WARN(cur_state != state,
1154              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1155              state_string(state), state_string(cur_state));
1156 }
1157
1158 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1159                            enum pipe pipe)
1160 {
1161         struct drm_device *dev = dev_priv->dev;
1162         int pp_reg;
1163         u32 val;
1164         enum pipe panel_pipe = PIPE_A;
1165         bool locked = true;
1166
1167         if (WARN_ON(HAS_DDI(dev)))
1168                 return;
1169
1170         if (HAS_PCH_SPLIT(dev)) {
1171                 u32 port_sel;
1172
1173                 pp_reg = PCH_PP_CONTROL;
1174                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1175
1176                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1177                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1178                         panel_pipe = PIPE_B;
1179                 /* XXX: else fix for eDP */
1180         } else if (IS_VALLEYVIEW(dev)) {
1181                 /* presumably write lock depends on pipe, not port select */
1182                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1183                 panel_pipe = pipe;
1184         } else {
1185                 pp_reg = PP_CONTROL;
1186                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1187                         panel_pipe = PIPE_B;
1188         }
1189
1190         val = I915_READ(pp_reg);
1191         if (!(val & PANEL_POWER_ON) ||
1192             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1193                 locked = false;
1194
1195         I915_STATE_WARN(panel_pipe == pipe && locked,
1196              "panel assertion failure, pipe %c regs locked\n",
1197              pipe_name(pipe));
1198 }
1199
1200 static void assert_cursor(struct drm_i915_private *dev_priv,
1201                           enum pipe pipe, bool state)
1202 {
1203         struct drm_device *dev = dev_priv->dev;
1204         bool cur_state;
1205
1206         if (IS_845G(dev) || IS_I865G(dev))
1207                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1208         else
1209                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1210
1211         I915_STATE_WARN(cur_state != state,
1212              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1213              pipe_name(pipe), state_string(state), state_string(cur_state));
1214 }
1215 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1216 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1217
1218 void assert_pipe(struct drm_i915_private *dev_priv,
1219                  enum pipe pipe, bool state)
1220 {
1221         int reg;
1222         u32 val;
1223         bool cur_state;
1224         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1225                                                                       pipe);
1226
1227         /* if we need the pipe quirk it must be always on */
1228         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1229             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1230                 state = true;
1231
1232         if (!intel_display_power_is_enabled(dev_priv,
1233                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1234                 cur_state = false;
1235         } else {
1236                 reg = PIPECONF(cpu_transcoder);
1237                 val = I915_READ(reg);
1238                 cur_state = !!(val & PIPECONF_ENABLE);
1239         }
1240
1241         I915_STATE_WARN(cur_state != state,
1242              "pipe %c assertion failure (expected %s, current %s)\n",
1243              pipe_name(pipe), state_string(state), state_string(cur_state));
1244 }
1245
1246 static void assert_plane(struct drm_i915_private *dev_priv,
1247                          enum plane plane, bool state)
1248 {
1249         int reg;
1250         u32 val;
1251         bool cur_state;
1252
1253         reg = DSPCNTR(plane);
1254         val = I915_READ(reg);
1255         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1256         I915_STATE_WARN(cur_state != state,
1257              "plane %c assertion failure (expected %s, current %s)\n",
1258              plane_name(plane), state_string(state), state_string(cur_state));
1259 }
1260
1261 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1262 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1263
1264 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1265                                    enum pipe pipe)
1266 {
1267         struct drm_device *dev = dev_priv->dev;
1268         int reg, i;
1269         u32 val;
1270         int cur_pipe;
1271
1272         /* Primary planes are fixed to pipes on gen4+ */
1273         if (INTEL_INFO(dev)->gen >= 4) {
1274                 reg = DSPCNTR(pipe);
1275                 val = I915_READ(reg);
1276                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1277                      "plane %c assertion failure, should be disabled but not\n",
1278                      plane_name(pipe));
1279                 return;
1280         }
1281
1282         /* Need to check both planes against the pipe */
1283         for_each_pipe(dev_priv, i) {
1284                 reg = DSPCNTR(i);
1285                 val = I915_READ(reg);
1286                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1287                         DISPPLANE_SEL_PIPE_SHIFT;
1288                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1289                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1290                      plane_name(i), pipe_name(pipe));
1291         }
1292 }
1293
1294 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1295                                     enum pipe pipe)
1296 {
1297         struct drm_device *dev = dev_priv->dev;
1298         int reg, sprite;
1299         u32 val;
1300
1301         if (INTEL_INFO(dev)->gen >= 9) {
1302                 for_each_sprite(pipe, sprite) {
1303                         val = I915_READ(PLANE_CTL(pipe, sprite));
1304                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1305                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1306                              sprite, pipe_name(pipe));
1307                 }
1308         } else if (IS_VALLEYVIEW(dev)) {
1309                 for_each_sprite(pipe, sprite) {
1310                         reg = SPCNTR(pipe, sprite);
1311                         val = I915_READ(reg);
1312                         I915_STATE_WARN(val & SP_ENABLE,
1313                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1314                              sprite_name(pipe, sprite), pipe_name(pipe));
1315                 }
1316         } else if (INTEL_INFO(dev)->gen >= 7) {
1317                 reg = SPRCTL(pipe);
1318                 val = I915_READ(reg);
1319                 I915_STATE_WARN(val & SPRITE_ENABLE,
1320                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1321                      plane_name(pipe), pipe_name(pipe));
1322         } else if (INTEL_INFO(dev)->gen >= 5) {
1323                 reg = DVSCNTR(pipe);
1324                 val = I915_READ(reg);
1325                 I915_STATE_WARN(val & DVS_ENABLE,
1326                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327                      plane_name(pipe), pipe_name(pipe));
1328         }
1329 }
1330
1331 static void assert_vblank_disabled(struct drm_crtc *crtc)
1332 {
1333         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1334                 drm_crtc_vblank_put(crtc);
1335 }
1336
1337 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1338 {
1339         u32 val;
1340         bool enabled;
1341
1342         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1343
1344         val = I915_READ(PCH_DREF_CONTROL);
1345         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1346                             DREF_SUPERSPREAD_SOURCE_MASK));
1347         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1348 }
1349
1350 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1351                                            enum pipe pipe)
1352 {
1353         int reg;
1354         u32 val;
1355         bool enabled;
1356
1357         reg = PCH_TRANSCONF(pipe);
1358         val = I915_READ(reg);
1359         enabled = !!(val & TRANS_ENABLE);
1360         I915_STATE_WARN(enabled,
1361              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1362              pipe_name(pipe));
1363 }
1364
1365 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1366                             enum pipe pipe, u32 port_sel, u32 val)
1367 {
1368         if ((val & DP_PORT_EN) == 0)
1369                 return false;
1370
1371         if (HAS_PCH_CPT(dev_priv->dev)) {
1372                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1373                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1374                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1375                         return false;
1376         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1377                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1378                         return false;
1379         } else {
1380                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1381                         return false;
1382         }
1383         return true;
1384 }
1385
1386 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1387                               enum pipe pipe, u32 val)
1388 {
1389         if ((val & SDVO_ENABLE) == 0)
1390                 return false;
1391
1392         if (HAS_PCH_CPT(dev_priv->dev)) {
1393                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1394                         return false;
1395         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1396                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1397                         return false;
1398         } else {
1399                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1400                         return false;
1401         }
1402         return true;
1403 }
1404
1405 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1406                               enum pipe pipe, u32 val)
1407 {
1408         if ((val & LVDS_PORT_EN) == 0)
1409                 return false;
1410
1411         if (HAS_PCH_CPT(dev_priv->dev)) {
1412                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1413                         return false;
1414         } else {
1415                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1416                         return false;
1417         }
1418         return true;
1419 }
1420
1421 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1422                               enum pipe pipe, u32 val)
1423 {
1424         if ((val & ADPA_DAC_ENABLE) == 0)
1425                 return false;
1426         if (HAS_PCH_CPT(dev_priv->dev)) {
1427                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1428                         return false;
1429         } else {
1430                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1431                         return false;
1432         }
1433         return true;
1434 }
1435
1436 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1437                                    enum pipe pipe, int reg, u32 port_sel)
1438 {
1439         u32 val = I915_READ(reg);
1440         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1441              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1442              reg, pipe_name(pipe));
1443
1444         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1445              && (val & DP_PIPEB_SELECT),
1446              "IBX PCH dp port still using transcoder B\n");
1447 }
1448
1449 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1450                                      enum pipe pipe, int reg)
1451 {
1452         u32 val = I915_READ(reg);
1453         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1454              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1455              reg, pipe_name(pipe));
1456
1457         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1458              && (val & SDVO_PIPE_B_SELECT),
1459              "IBX PCH hdmi port still using transcoder B\n");
1460 }
1461
1462 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1463                                       enum pipe pipe)
1464 {
1465         int reg;
1466         u32 val;
1467
1468         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1469         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1470         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1471
1472         reg = PCH_ADPA;
1473         val = I915_READ(reg);
1474         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475              "PCH VGA enabled on transcoder %c, should be disabled\n",
1476              pipe_name(pipe));
1477
1478         reg = PCH_LVDS;
1479         val = I915_READ(reg);
1480         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1481              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1482              pipe_name(pipe));
1483
1484         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1485         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1486         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1487 }
1488
1489 static void intel_init_dpio(struct drm_device *dev)
1490 {
1491         struct drm_i915_private *dev_priv = dev->dev_private;
1492
1493         if (!IS_VALLEYVIEW(dev))
1494                 return;
1495
1496         /*
1497          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1498          * CHV x1 PHY (DP/HDMI D)
1499          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1500          */
1501         if (IS_CHERRYVIEW(dev)) {
1502                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1504         } else {
1505                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1506         }
1507 }
1508
1509 static void vlv_enable_pll(struct intel_crtc *crtc,
1510                            const struct intel_crtc_config *pipe_config)
1511 {
1512         struct drm_device *dev = crtc->base.dev;
1513         struct drm_i915_private *dev_priv = dev->dev_private;
1514         int reg = DPLL(crtc->pipe);
1515         u32 dpll = pipe_config->dpll_hw_state.dpll;
1516
1517         assert_pipe_disabled(dev_priv, crtc->pipe);
1518
1519         /* No really, not for ILK+ */
1520         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1521
1522         /* PLL is protected by panel, make sure we can write it */
1523         if (IS_MOBILE(dev_priv->dev))
1524                 assert_panel_unlocked(dev_priv, crtc->pipe);
1525
1526         I915_WRITE(reg, dpll);
1527         POSTING_READ(reg);
1528         udelay(150);
1529
1530         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1531                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1532
1533         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1534         POSTING_READ(DPLL_MD(crtc->pipe));
1535
1536         /* We do this three times for luck */
1537         I915_WRITE(reg, dpll);
1538         POSTING_READ(reg);
1539         udelay(150); /* wait for warmup */
1540         I915_WRITE(reg, dpll);
1541         POSTING_READ(reg);
1542         udelay(150); /* wait for warmup */
1543         I915_WRITE(reg, dpll);
1544         POSTING_READ(reg);
1545         udelay(150); /* wait for warmup */
1546 }
1547
1548 static void chv_enable_pll(struct intel_crtc *crtc,
1549                            const struct intel_crtc_config *pipe_config)
1550 {
1551         struct drm_device *dev = crtc->base.dev;
1552         struct drm_i915_private *dev_priv = dev->dev_private;
1553         int pipe = crtc->pipe;
1554         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1555         u32 tmp;
1556
1557         assert_pipe_disabled(dev_priv, crtc->pipe);
1558
1559         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1560
1561         mutex_lock(&dev_priv->dpio_lock);
1562
1563         /* Enable back the 10bit clock to display controller */
1564         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1565         tmp |= DPIO_DCLKP_EN;
1566         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1567
1568         /*
1569          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1570          */
1571         udelay(1);
1572
1573         /* Enable PLL */
1574         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1575
1576         /* Check PLL is locked */
1577         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1578                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1579
1580         /* not sure when this should be written */
1581         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1582         POSTING_READ(DPLL_MD(pipe));
1583
1584         mutex_unlock(&dev_priv->dpio_lock);
1585 }
1586
1587 static int intel_num_dvo_pipes(struct drm_device *dev)
1588 {
1589         struct intel_crtc *crtc;
1590         int count = 0;
1591
1592         for_each_intel_crtc(dev, crtc)
1593                 count += crtc->active &&
1594                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1595
1596         return count;
1597 }
1598
1599 static void i9xx_enable_pll(struct intel_crtc *crtc)
1600 {
1601         struct drm_device *dev = crtc->base.dev;
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         int reg = DPLL(crtc->pipe);
1604         u32 dpll = crtc->config.dpll_hw_state.dpll;
1605
1606         assert_pipe_disabled(dev_priv, crtc->pipe);
1607
1608         /* No really, not for ILK+ */
1609         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1610
1611         /* PLL is protected by panel, make sure we can write it */
1612         if (IS_MOBILE(dev) && !IS_I830(dev))
1613                 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615         /* Enable DVO 2x clock on both PLLs if necessary */
1616         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1617                 /*
1618                  * It appears to be important that we don't enable this
1619                  * for the current pipe before otherwise configuring the
1620                  * PLL. No idea how this should be handled if multiple
1621                  * DVO outputs are enabled simultaneosly.
1622                  */
1623                 dpll |= DPLL_DVO_2X_MODE;
1624                 I915_WRITE(DPLL(!crtc->pipe),
1625                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1626         }
1627
1628         /* Wait for the clocks to stabilize. */
1629         POSTING_READ(reg);
1630         udelay(150);
1631
1632         if (INTEL_INFO(dev)->gen >= 4) {
1633                 I915_WRITE(DPLL_MD(crtc->pipe),
1634                            crtc->config.dpll_hw_state.dpll_md);
1635         } else {
1636                 /* The pixel multiplier can only be updated once the
1637                  * DPLL is enabled and the clocks are stable.
1638                  *
1639                  * So write it again.
1640                  */
1641                 I915_WRITE(reg, dpll);
1642         }
1643
1644         /* We do this three times for luck */
1645         I915_WRITE(reg, dpll);
1646         POSTING_READ(reg);
1647         udelay(150); /* wait for warmup */
1648         I915_WRITE(reg, dpll);
1649         POSTING_READ(reg);
1650         udelay(150); /* wait for warmup */
1651         I915_WRITE(reg, dpll);
1652         POSTING_READ(reg);
1653         udelay(150); /* wait for warmup */
1654 }
1655
1656 /**
1657  * i9xx_disable_pll - disable a PLL
1658  * @dev_priv: i915 private structure
1659  * @pipe: pipe PLL to disable
1660  *
1661  * Disable the PLL for @pipe, making sure the pipe is off first.
1662  *
1663  * Note!  This is for pre-ILK only.
1664  */
1665 static void i9xx_disable_pll(struct intel_crtc *crtc)
1666 {
1667         struct drm_device *dev = crtc->base.dev;
1668         struct drm_i915_private *dev_priv = dev->dev_private;
1669         enum pipe pipe = crtc->pipe;
1670
1671         /* Disable DVO 2x clock on both PLLs if necessary */
1672         if (IS_I830(dev) &&
1673             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1674             intel_num_dvo_pipes(dev) == 1) {
1675                 I915_WRITE(DPLL(PIPE_B),
1676                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1677                 I915_WRITE(DPLL(PIPE_A),
1678                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1679         }
1680
1681         /* Don't disable pipe or pipe PLLs if needed */
1682         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1683             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1684                 return;
1685
1686         /* Make sure the pipe isn't still relying on us */
1687         assert_pipe_disabled(dev_priv, pipe);
1688
1689         I915_WRITE(DPLL(pipe), 0);
1690         POSTING_READ(DPLL(pipe));
1691 }
1692
1693 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695         u32 val = 0;
1696
1697         /* Make sure the pipe isn't still relying on us */
1698         assert_pipe_disabled(dev_priv, pipe);
1699
1700         /*
1701          * Leave integrated clock source and reference clock enabled for pipe B.
1702          * The latter is needed for VGA hotplug / manual detection.
1703          */
1704         if (pipe == PIPE_B)
1705                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1706         I915_WRITE(DPLL(pipe), val);
1707         POSTING_READ(DPLL(pipe));
1708
1709 }
1710
1711 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712 {
1713         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1714         u32 val;
1715
1716         /* Make sure the pipe isn't still relying on us */
1717         assert_pipe_disabled(dev_priv, pipe);
1718
1719         /* Set PLL en = 0 */
1720         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1721         if (pipe != PIPE_A)
1722                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723         I915_WRITE(DPLL(pipe), val);
1724         POSTING_READ(DPLL(pipe));
1725
1726         mutex_lock(&dev_priv->dpio_lock);
1727
1728         /* Disable 10bit clock to display controller */
1729         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1730         val &= ~DPIO_DCLKP_EN;
1731         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1732
1733         /* disable left/right clock distribution */
1734         if (pipe != PIPE_B) {
1735                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1736                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1737                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1738         } else {
1739                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1740                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1741                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1742         }
1743
1744         mutex_unlock(&dev_priv->dpio_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748                 struct intel_digital_port *dport)
1749 {
1750         u32 port_mask;
1751         int dpll_reg;
1752
1753         switch (dport->port) {
1754         case PORT_B:
1755                 port_mask = DPLL_PORTB_READY_MASK;
1756                 dpll_reg = DPLL(0);
1757                 break;
1758         case PORT_C:
1759                 port_mask = DPLL_PORTC_READY_MASK;
1760                 dpll_reg = DPLL(0);
1761                 break;
1762         case PORT_D:
1763                 port_mask = DPLL_PORTD_READY_MASK;
1764                 dpll_reg = DPIO_PHY_STATUS;
1765                 break;
1766         default:
1767                 BUG();
1768         }
1769
1770         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1771                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1772                      port_name(dport->port), I915_READ(dpll_reg));
1773 }
1774
1775 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1776 {
1777         struct drm_device *dev = crtc->base.dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1780
1781         if (WARN_ON(pll == NULL))
1782                 return;
1783
1784         WARN_ON(!pll->config.crtc_mask);
1785         if (pll->active == 0) {
1786                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1787                 WARN_ON(pll->on);
1788                 assert_shared_dpll_disabled(dev_priv, pll);
1789
1790                 pll->mode_set(dev_priv, pll);
1791         }
1792 }
1793
1794 /**
1795  * intel_enable_shared_dpll - enable PCH PLL
1796  * @dev_priv: i915 private structure
1797  * @pipe: pipe PLL to enable
1798  *
1799  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1800  * drives the transcoder clock.
1801  */
1802 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1803 {
1804         struct drm_device *dev = crtc->base.dev;
1805         struct drm_i915_private *dev_priv = dev->dev_private;
1806         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1807
1808         if (WARN_ON(pll == NULL))
1809                 return;
1810
1811         if (WARN_ON(pll->config.crtc_mask == 0))
1812                 return;
1813
1814         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1815                       pll->name, pll->active, pll->on,
1816                       crtc->base.base.id);
1817
1818         if (pll->active++) {
1819                 WARN_ON(!pll->on);
1820                 assert_shared_dpll_enabled(dev_priv, pll);
1821                 return;
1822         }
1823         WARN_ON(pll->on);
1824
1825         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1826
1827         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1828         pll->enable(dev_priv, pll);
1829         pll->on = true;
1830 }
1831
1832 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1833 {
1834         struct drm_device *dev = crtc->base.dev;
1835         struct drm_i915_private *dev_priv = dev->dev_private;
1836         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1837
1838         /* PCH only available on ILK+ */
1839         BUG_ON(INTEL_INFO(dev)->gen < 5);
1840         if (WARN_ON(pll == NULL))
1841                return;
1842
1843         if (WARN_ON(pll->config.crtc_mask == 0))
1844                 return;
1845
1846         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1847                       pll->name, pll->active, pll->on,
1848                       crtc->base.base.id);
1849
1850         if (WARN_ON(pll->active == 0)) {
1851                 assert_shared_dpll_disabled(dev_priv, pll);
1852                 return;
1853         }
1854
1855         assert_shared_dpll_enabled(dev_priv, pll);
1856         WARN_ON(!pll->on);
1857         if (--pll->active)
1858                 return;
1859
1860         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1861         pll->disable(dev_priv, pll);
1862         pll->on = false;
1863
1864         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1865 }
1866
1867 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1868                                            enum pipe pipe)
1869 {
1870         struct drm_device *dev = dev_priv->dev;
1871         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1873         uint32_t reg, val, pipeconf_val;
1874
1875         /* PCH only available on ILK+ */
1876         BUG_ON(!HAS_PCH_SPLIT(dev));
1877
1878         /* Make sure PCH DPLL is enabled */
1879         assert_shared_dpll_enabled(dev_priv,
1880                                    intel_crtc_to_shared_dpll(intel_crtc));
1881
1882         /* FDI must be feeding us bits for PCH ports */
1883         assert_fdi_tx_enabled(dev_priv, pipe);
1884         assert_fdi_rx_enabled(dev_priv, pipe);
1885
1886         if (HAS_PCH_CPT(dev)) {
1887                 /* Workaround: Set the timing override bit before enabling the
1888                  * pch transcoder. */
1889                 reg = TRANS_CHICKEN2(pipe);
1890                 val = I915_READ(reg);
1891                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1892                 I915_WRITE(reg, val);
1893         }
1894
1895         reg = PCH_TRANSCONF(pipe);
1896         val = I915_READ(reg);
1897         pipeconf_val = I915_READ(PIPECONF(pipe));
1898
1899         if (HAS_PCH_IBX(dev_priv->dev)) {
1900                 /*
1901                  * make the BPC in transcoder be consistent with
1902                  * that in pipeconf reg.
1903                  */
1904                 val &= ~PIPECONF_BPC_MASK;
1905                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1906         }
1907
1908         val &= ~TRANS_INTERLACE_MASK;
1909         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1910                 if (HAS_PCH_IBX(dev_priv->dev) &&
1911                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1912                         val |= TRANS_LEGACY_INTERLACED_ILK;
1913                 else
1914                         val |= TRANS_INTERLACED;
1915         else
1916                 val |= TRANS_PROGRESSIVE;
1917
1918         I915_WRITE(reg, val | TRANS_ENABLE);
1919         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1920                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1921 }
1922
1923 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1924                                       enum transcoder cpu_transcoder)
1925 {
1926         u32 val, pipeconf_val;
1927
1928         /* PCH only available on ILK+ */
1929         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1930
1931         /* FDI must be feeding us bits for PCH ports */
1932         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1933         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1934
1935         /* Workaround: set timing override bit. */
1936         val = I915_READ(_TRANSA_CHICKEN2);
1937         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1938         I915_WRITE(_TRANSA_CHICKEN2, val);
1939
1940         val = TRANS_ENABLE;
1941         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1942
1943         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1944             PIPECONF_INTERLACED_ILK)
1945                 val |= TRANS_INTERLACED;
1946         else
1947                 val |= TRANS_PROGRESSIVE;
1948
1949         I915_WRITE(LPT_TRANSCONF, val);
1950         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1951                 DRM_ERROR("Failed to enable PCH transcoder\n");
1952 }
1953
1954 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1955                                             enum pipe pipe)
1956 {
1957         struct drm_device *dev = dev_priv->dev;
1958         uint32_t reg, val;
1959
1960         /* FDI relies on the transcoder */
1961         assert_fdi_tx_disabled(dev_priv, pipe);
1962         assert_fdi_rx_disabled(dev_priv, pipe);
1963
1964         /* Ports must be off as well */
1965         assert_pch_ports_disabled(dev_priv, pipe);
1966
1967         reg = PCH_TRANSCONF(pipe);
1968         val = I915_READ(reg);
1969         val &= ~TRANS_ENABLE;
1970         I915_WRITE(reg, val);
1971         /* wait for PCH transcoder off, transcoder state */
1972         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1973                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1974
1975         if (!HAS_PCH_IBX(dev)) {
1976                 /* Workaround: Clear the timing override chicken bit again. */
1977                 reg = TRANS_CHICKEN2(pipe);
1978                 val = I915_READ(reg);
1979                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1980                 I915_WRITE(reg, val);
1981         }
1982 }
1983
1984 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1985 {
1986         u32 val;
1987
1988         val = I915_READ(LPT_TRANSCONF);
1989         val &= ~TRANS_ENABLE;
1990         I915_WRITE(LPT_TRANSCONF, val);
1991         /* wait for PCH transcoder off, transcoder state */
1992         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1993                 DRM_ERROR("Failed to disable PCH transcoder\n");
1994
1995         /* Workaround: clear timing override bit. */
1996         val = I915_READ(_TRANSA_CHICKEN2);
1997         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1998         I915_WRITE(_TRANSA_CHICKEN2, val);
1999 }
2000
2001 /**
2002  * intel_enable_pipe - enable a pipe, asserting requirements
2003  * @crtc: crtc responsible for the pipe
2004  *
2005  * Enable @crtc's pipe, making sure that various hardware specific requirements
2006  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2007  */
2008 static void intel_enable_pipe(struct intel_crtc *crtc)
2009 {
2010         struct drm_device *dev = crtc->base.dev;
2011         struct drm_i915_private *dev_priv = dev->dev_private;
2012         enum pipe pipe = crtc->pipe;
2013         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2014                                                                       pipe);
2015         enum pipe pch_transcoder;
2016         int reg;
2017         u32 val;
2018
2019         assert_planes_disabled(dev_priv, pipe);
2020         assert_cursor_disabled(dev_priv, pipe);
2021         assert_sprites_disabled(dev_priv, pipe);
2022
2023         if (HAS_PCH_LPT(dev_priv->dev))
2024                 pch_transcoder = TRANSCODER_A;
2025         else
2026                 pch_transcoder = pipe;
2027
2028         /*
2029          * A pipe without a PLL won't actually be able to drive bits from
2030          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2031          * need the check.
2032          */
2033         if (!HAS_PCH_SPLIT(dev_priv->dev))
2034                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2035                         assert_dsi_pll_enabled(dev_priv);
2036                 else
2037                         assert_pll_enabled(dev_priv, pipe);
2038         else {
2039                 if (crtc->config.has_pch_encoder) {
2040                         /* if driving the PCH, we need FDI enabled */
2041                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2042                         assert_fdi_tx_pll_enabled(dev_priv,
2043                                                   (enum pipe) cpu_transcoder);
2044                 }
2045                 /* FIXME: assert CPU port conditions for SNB+ */
2046         }
2047
2048         reg = PIPECONF(cpu_transcoder);
2049         val = I915_READ(reg);
2050         if (val & PIPECONF_ENABLE) {
2051                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2052                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2053                 return;
2054         }
2055
2056         I915_WRITE(reg, val | PIPECONF_ENABLE);
2057         POSTING_READ(reg);
2058 }
2059
2060 /**
2061  * intel_disable_pipe - disable a pipe, asserting requirements
2062  * @crtc: crtc whose pipes is to be disabled
2063  *
2064  * Disable the pipe of @crtc, making sure that various hardware
2065  * specific requirements are met, if applicable, e.g. plane
2066  * disabled, panel fitter off, etc.
2067  *
2068  * Will wait until the pipe has shut down before returning.
2069  */
2070 static void intel_disable_pipe(struct intel_crtc *crtc)
2071 {
2072         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2073         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2074         enum pipe pipe = crtc->pipe;
2075         int reg;
2076         u32 val;
2077
2078         /*
2079          * Make sure planes won't keep trying to pump pixels to us,
2080          * or we might hang the display.
2081          */
2082         assert_planes_disabled(dev_priv, pipe);
2083         assert_cursor_disabled(dev_priv, pipe);
2084         assert_sprites_disabled(dev_priv, pipe);
2085
2086         reg = PIPECONF(cpu_transcoder);
2087         val = I915_READ(reg);
2088         if ((val & PIPECONF_ENABLE) == 0)
2089                 return;
2090
2091         /*
2092          * Double wide has implications for planes
2093          * so best keep it disabled when not needed.
2094          */
2095         if (crtc->config.double_wide)
2096                 val &= ~PIPECONF_DOUBLE_WIDE;
2097
2098         /* Don't disable pipe or pipe PLLs if needed */
2099         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2100             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2101                 val &= ~PIPECONF_ENABLE;
2102
2103         I915_WRITE(reg, val);
2104         if ((val & PIPECONF_ENABLE) == 0)
2105                 intel_wait_for_pipe_off(crtc);
2106 }
2107
2108 /*
2109  * Plane regs are double buffered, going from enabled->disabled needs a
2110  * trigger in order to latch.  The display address reg provides this.
2111  */
2112 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2113                                enum plane plane)
2114 {
2115         struct drm_device *dev = dev_priv->dev;
2116         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2117
2118         I915_WRITE(reg, I915_READ(reg));
2119         POSTING_READ(reg);
2120 }
2121
2122 /**
2123  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2124  * @plane:  plane to be enabled
2125  * @crtc: crtc for the plane
2126  *
2127  * Enable @plane on @crtc, making sure that the pipe is running first.
2128  */
2129 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2130                                           struct drm_crtc *crtc)
2131 {
2132         struct drm_device *dev = plane->dev;
2133         struct drm_i915_private *dev_priv = dev->dev_private;
2134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135
2136         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2137         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2138
2139         if (intel_crtc->primary_enabled)
2140                 return;
2141
2142         intel_crtc->primary_enabled = true;
2143
2144         dev_priv->display.update_primary_plane(crtc, plane->fb,
2145                                                crtc->x, crtc->y);
2146
2147         /*
2148          * BDW signals flip done immediately if the plane
2149          * is disabled, even if the plane enable is already
2150          * armed to occur at the next vblank :(
2151          */
2152         if (IS_BROADWELL(dev))
2153                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2154 }
2155
2156 /**
2157  * intel_disable_primary_hw_plane - disable the primary hardware plane
2158  * @plane: plane to be disabled
2159  * @crtc: crtc for the plane
2160  *
2161  * Disable @plane on @crtc, making sure that the pipe is running first.
2162  */
2163 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2164                                            struct drm_crtc *crtc)
2165 {
2166         struct drm_device *dev = plane->dev;
2167         struct drm_i915_private *dev_priv = dev->dev_private;
2168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169
2170         if (WARN_ON(!intel_crtc->active))
2171                 return;
2172
2173         if (!intel_crtc->primary_enabled)
2174                 return;
2175
2176         intel_crtc->primary_enabled = false;
2177
2178         dev_priv->display.update_primary_plane(crtc, plane->fb,
2179                                                crtc->x, crtc->y);
2180 }
2181
2182 static bool need_vtd_wa(struct drm_device *dev)
2183 {
2184 #ifdef CONFIG_INTEL_IOMMU
2185         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186                 return true;
2187 #endif
2188         return false;
2189 }
2190
2191 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2192 {
2193         int tile_height;
2194
2195         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2196         return ALIGN(height, tile_height);
2197 }
2198
2199 int
2200 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2201                            struct drm_framebuffer *fb,
2202                            struct intel_engine_cs *pipelined)
2203 {
2204         struct drm_device *dev = fb->dev;
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2207         u32 alignment;
2208         int ret;
2209
2210         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2211
2212         switch (obj->tiling_mode) {
2213         case I915_TILING_NONE:
2214                 if (INTEL_INFO(dev)->gen >= 9)
2215                         alignment = 256 * 1024;
2216                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2217                         alignment = 128 * 1024;
2218                 else if (INTEL_INFO(dev)->gen >= 4)
2219                         alignment = 4 * 1024;
2220                 else
2221                         alignment = 64 * 1024;
2222                 break;
2223         case I915_TILING_X:
2224                 if (INTEL_INFO(dev)->gen >= 9)
2225                         alignment = 256 * 1024;
2226                 else {
2227                         /* pin() will align the object as required by fence */
2228                         alignment = 0;
2229                 }
2230                 break;
2231         case I915_TILING_Y:
2232                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2233                 return -EINVAL;
2234         default:
2235                 BUG();
2236         }
2237
2238         /* Note that the w/a also requires 64 PTE of padding following the
2239          * bo. We currently fill all unused PTE with the shadow page and so
2240          * we should always have valid PTE following the scanout preventing
2241          * the VT-d warning.
2242          */
2243         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2244                 alignment = 256 * 1024;
2245
2246         /*
2247          * Global gtt pte registers are special registers which actually forward
2248          * writes to a chunk of system memory. Which means that there is no risk
2249          * that the register values disappear as soon as we call
2250          * intel_runtime_pm_put(), so it is correct to wrap only the
2251          * pin/unpin/fence and not more.
2252          */
2253         intel_runtime_pm_get(dev_priv);
2254
2255         dev_priv->mm.interruptible = false;
2256         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2257         if (ret)
2258                 goto err_interruptible;
2259
2260         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2261          * fence, whereas 965+ only requires a fence if using
2262          * framebuffer compression.  For simplicity, we always install
2263          * a fence as the cost is not that onerous.
2264          */
2265         ret = i915_gem_object_get_fence(obj);
2266         if (ret)
2267                 goto err_unpin;
2268
2269         i915_gem_object_pin_fence(obj);
2270
2271         dev_priv->mm.interruptible = true;
2272         intel_runtime_pm_put(dev_priv);
2273         return 0;
2274
2275 err_unpin:
2276         i915_gem_object_unpin_from_display_plane(obj);
2277 err_interruptible:
2278         dev_priv->mm.interruptible = true;
2279         intel_runtime_pm_put(dev_priv);
2280         return ret;
2281 }
2282
2283 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2284 {
2285         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2286
2287         i915_gem_object_unpin_fence(obj);
2288         i915_gem_object_unpin_from_display_plane(obj);
2289 }
2290
2291 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2292  * is assumed to be a power-of-two. */
2293 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2294                                              unsigned int tiling_mode,
2295                                              unsigned int cpp,
2296                                              unsigned int pitch)
2297 {
2298         if (tiling_mode != I915_TILING_NONE) {
2299                 unsigned int tile_rows, tiles;
2300
2301                 tile_rows = *y / 8;
2302                 *y %= 8;
2303
2304                 tiles = *x / (512/cpp);
2305                 *x %= 512/cpp;
2306
2307                 return tile_rows * pitch * 8 + tiles * 4096;
2308         } else {
2309                 unsigned int offset;
2310
2311                 offset = *y * pitch + *x * cpp;
2312                 *y = 0;
2313                 *x = (offset & 4095) / cpp;
2314                 return offset & -4096;
2315         }
2316 }
2317
2318 int intel_format_to_fourcc(int format)
2319 {
2320         switch (format) {
2321         case DISPPLANE_8BPP:
2322                 return DRM_FORMAT_C8;
2323         case DISPPLANE_BGRX555:
2324                 return DRM_FORMAT_XRGB1555;
2325         case DISPPLANE_BGRX565:
2326                 return DRM_FORMAT_RGB565;
2327         default:
2328         case DISPPLANE_BGRX888:
2329                 return DRM_FORMAT_XRGB8888;
2330         case DISPPLANE_RGBX888:
2331                 return DRM_FORMAT_XBGR8888;
2332         case DISPPLANE_BGRX101010:
2333                 return DRM_FORMAT_XRGB2101010;
2334         case DISPPLANE_RGBX101010:
2335                 return DRM_FORMAT_XBGR2101010;
2336         }
2337 }
2338
2339 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2340                                   struct intel_plane_config *plane_config)
2341 {
2342         struct drm_device *dev = crtc->base.dev;
2343         struct drm_i915_gem_object *obj = NULL;
2344         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2345         u32 base = plane_config->base;
2346
2347         if (plane_config->size == 0)
2348                 return false;
2349
2350         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2351                                                              plane_config->size);
2352         if (!obj)
2353                 return false;
2354
2355         if (plane_config->tiled) {
2356                 obj->tiling_mode = I915_TILING_X;
2357                 obj->stride = crtc->base.primary->fb->pitches[0];
2358         }
2359
2360         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2361         mode_cmd.width = crtc->base.primary->fb->width;
2362         mode_cmd.height = crtc->base.primary->fb->height;
2363         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2364
2365         mutex_lock(&dev->struct_mutex);
2366
2367         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2368                                    &mode_cmd, obj)) {
2369                 DRM_DEBUG_KMS("intel fb init failed\n");
2370                 goto out_unref_obj;
2371         }
2372
2373         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2374         mutex_unlock(&dev->struct_mutex);
2375
2376         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2377         return true;
2378
2379 out_unref_obj:
2380         drm_gem_object_unreference(&obj->base);
2381         mutex_unlock(&dev->struct_mutex);
2382         return false;
2383 }
2384
2385 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2386                                  struct intel_plane_config *plane_config)
2387 {
2388         struct drm_device *dev = intel_crtc->base.dev;
2389         struct drm_i915_private *dev_priv = dev->dev_private;
2390         struct drm_crtc *c;
2391         struct intel_crtc *i;
2392         struct drm_i915_gem_object *obj;
2393
2394         if (!intel_crtc->base.primary->fb)
2395                 return;
2396
2397         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2398                 return;
2399
2400         kfree(intel_crtc->base.primary->fb);
2401         intel_crtc->base.primary->fb = NULL;
2402
2403         /*
2404          * Failed to alloc the obj, check to see if we should share
2405          * an fb with another CRTC instead
2406          */
2407         for_each_crtc(dev, c) {
2408                 i = to_intel_crtc(c);
2409
2410                 if (c == &intel_crtc->base)
2411                         continue;
2412
2413                 if (!i->active)
2414                         continue;
2415
2416                 obj = intel_fb_obj(c->primary->fb);
2417                 if (obj == NULL)
2418                         continue;
2419
2420                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2421                         if (obj->tiling_mode != I915_TILING_NONE)
2422                                 dev_priv->preserve_bios_swizzle = true;
2423
2424                         drm_framebuffer_reference(c->primary->fb);
2425                         intel_crtc->base.primary->fb = c->primary->fb;
2426                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2427                         break;
2428                 }
2429         }
2430 }
2431
2432 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2433                                       struct drm_framebuffer *fb,
2434                                       int x, int y)
2435 {
2436         struct drm_device *dev = crtc->dev;
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2439         struct drm_i915_gem_object *obj;
2440         int plane = intel_crtc->plane;
2441         unsigned long linear_offset;
2442         u32 dspcntr;
2443         u32 reg = DSPCNTR(plane);
2444         int pixel_size;
2445
2446         if (!intel_crtc->primary_enabled) {
2447                 I915_WRITE(reg, 0);
2448                 if (INTEL_INFO(dev)->gen >= 4)
2449                         I915_WRITE(DSPSURF(plane), 0);
2450                 else
2451                         I915_WRITE(DSPADDR(plane), 0);
2452                 POSTING_READ(reg);
2453                 return;
2454         }
2455
2456         obj = intel_fb_obj(fb);
2457         if (WARN_ON(obj == NULL))
2458                 return;
2459
2460         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2461
2462         dspcntr = DISPPLANE_GAMMA_ENABLE;
2463
2464         dspcntr |= DISPLAY_PLANE_ENABLE;
2465
2466         if (INTEL_INFO(dev)->gen < 4) {
2467                 if (intel_crtc->pipe == PIPE_B)
2468                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2469
2470                 /* pipesrc and dspsize control the size that is scaled from,
2471                  * which should always be the user's requested size.
2472                  */
2473                 I915_WRITE(DSPSIZE(plane),
2474                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475                            (intel_crtc->config.pipe_src_w - 1));
2476                 I915_WRITE(DSPPOS(plane), 0);
2477         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2478                 I915_WRITE(PRIMSIZE(plane),
2479                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2480                            (intel_crtc->config.pipe_src_w - 1));
2481                 I915_WRITE(PRIMPOS(plane), 0);
2482                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2483         }
2484
2485         switch (fb->pixel_format) {
2486         case DRM_FORMAT_C8:
2487                 dspcntr |= DISPPLANE_8BPP;
2488                 break;
2489         case DRM_FORMAT_XRGB1555:
2490         case DRM_FORMAT_ARGB1555:
2491                 dspcntr |= DISPPLANE_BGRX555;
2492                 break;
2493         case DRM_FORMAT_RGB565:
2494                 dspcntr |= DISPPLANE_BGRX565;
2495                 break;
2496         case DRM_FORMAT_XRGB8888:
2497         case DRM_FORMAT_ARGB8888:
2498                 dspcntr |= DISPPLANE_BGRX888;
2499                 break;
2500         case DRM_FORMAT_XBGR8888:
2501         case DRM_FORMAT_ABGR8888:
2502                 dspcntr |= DISPPLANE_RGBX888;
2503                 break;
2504         case DRM_FORMAT_XRGB2101010:
2505         case DRM_FORMAT_ARGB2101010:
2506                 dspcntr |= DISPPLANE_BGRX101010;
2507                 break;
2508         case DRM_FORMAT_XBGR2101010:
2509         case DRM_FORMAT_ABGR2101010:
2510                 dspcntr |= DISPPLANE_RGBX101010;
2511                 break;
2512         default:
2513                 BUG();
2514         }
2515
2516         if (INTEL_INFO(dev)->gen >= 4 &&
2517             obj->tiling_mode != I915_TILING_NONE)
2518                 dspcntr |= DISPPLANE_TILED;
2519
2520         if (IS_G4X(dev))
2521                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2522
2523         linear_offset = y * fb->pitches[0] + x * pixel_size;
2524
2525         if (INTEL_INFO(dev)->gen >= 4) {
2526                 intel_crtc->dspaddr_offset =
2527                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2528                                                        pixel_size,
2529                                                        fb->pitches[0]);
2530                 linear_offset -= intel_crtc->dspaddr_offset;
2531         } else {
2532                 intel_crtc->dspaddr_offset = linear_offset;
2533         }
2534
2535         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2536                 dspcntr |= DISPPLANE_ROTATE_180;
2537
2538                 x += (intel_crtc->config.pipe_src_w - 1);
2539                 y += (intel_crtc->config.pipe_src_h - 1);
2540
2541                 /* Finding the last pixel of the last line of the display
2542                 data and adding to linear_offset*/
2543                 linear_offset +=
2544                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2545                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2546         }
2547
2548         I915_WRITE(reg, dspcntr);
2549
2550         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2551                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2552                       fb->pitches[0]);
2553         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2554         if (INTEL_INFO(dev)->gen >= 4) {
2555                 I915_WRITE(DSPSURF(plane),
2556                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2557                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2558                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2559         } else
2560                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2561         POSTING_READ(reg);
2562 }
2563
2564 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2565                                           struct drm_framebuffer *fb,
2566                                           int x, int y)
2567 {
2568         struct drm_device *dev = crtc->dev;
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2571         struct drm_i915_gem_object *obj;
2572         int plane = intel_crtc->plane;
2573         unsigned long linear_offset;
2574         u32 dspcntr;
2575         u32 reg = DSPCNTR(plane);
2576         int pixel_size;
2577
2578         if (!intel_crtc->primary_enabled) {
2579                 I915_WRITE(reg, 0);
2580                 I915_WRITE(DSPSURF(plane), 0);
2581                 POSTING_READ(reg);
2582                 return;
2583         }
2584
2585         obj = intel_fb_obj(fb);
2586         if (WARN_ON(obj == NULL))
2587                 return;
2588
2589         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2590
2591         dspcntr = DISPPLANE_GAMMA_ENABLE;
2592
2593         dspcntr |= DISPLAY_PLANE_ENABLE;
2594
2595         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2596                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2597
2598         switch (fb->pixel_format) {
2599         case DRM_FORMAT_C8:
2600                 dspcntr |= DISPPLANE_8BPP;
2601                 break;
2602         case DRM_FORMAT_RGB565:
2603                 dspcntr |= DISPPLANE_BGRX565;
2604                 break;
2605         case DRM_FORMAT_XRGB8888:
2606         case DRM_FORMAT_ARGB8888:
2607                 dspcntr |= DISPPLANE_BGRX888;
2608                 break;
2609         case DRM_FORMAT_XBGR8888:
2610         case DRM_FORMAT_ABGR8888:
2611                 dspcntr |= DISPPLANE_RGBX888;
2612                 break;
2613         case DRM_FORMAT_XRGB2101010:
2614         case DRM_FORMAT_ARGB2101010:
2615                 dspcntr |= DISPPLANE_BGRX101010;
2616                 break;
2617         case DRM_FORMAT_XBGR2101010:
2618         case DRM_FORMAT_ABGR2101010:
2619                 dspcntr |= DISPPLANE_RGBX101010;
2620                 break;
2621         default:
2622                 BUG();
2623         }
2624
2625         if (obj->tiling_mode != I915_TILING_NONE)
2626                 dspcntr |= DISPPLANE_TILED;
2627
2628         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2629                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2630
2631         linear_offset = y * fb->pitches[0] + x * pixel_size;
2632         intel_crtc->dspaddr_offset =
2633                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2634                                                pixel_size,
2635                                                fb->pitches[0]);
2636         linear_offset -= intel_crtc->dspaddr_offset;
2637         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2638                 dspcntr |= DISPPLANE_ROTATE_180;
2639
2640                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2641                         x += (intel_crtc->config.pipe_src_w - 1);
2642                         y += (intel_crtc->config.pipe_src_h - 1);
2643
2644                         /* Finding the last pixel of the last line of the display
2645                         data and adding to linear_offset*/
2646                         linear_offset +=
2647                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2648                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2649                 }
2650         }
2651
2652         I915_WRITE(reg, dspcntr);
2653
2654         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2655                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2656                       fb->pitches[0]);
2657         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2658         I915_WRITE(DSPSURF(plane),
2659                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2660         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2661                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2662         } else {
2663                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2664                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2665         }
2666         POSTING_READ(reg);
2667 }
2668
2669 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2670                                          struct drm_framebuffer *fb,
2671                                          int x, int y)
2672 {
2673         struct drm_device *dev = crtc->dev;
2674         struct drm_i915_private *dev_priv = dev->dev_private;
2675         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2676         struct intel_framebuffer *intel_fb;
2677         struct drm_i915_gem_object *obj;
2678         int pipe = intel_crtc->pipe;
2679         u32 plane_ctl, stride;
2680
2681         if (!intel_crtc->primary_enabled) {
2682                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2683                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2684                 POSTING_READ(PLANE_CTL(pipe, 0));
2685                 return;
2686         }
2687
2688         plane_ctl = PLANE_CTL_ENABLE |
2689                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2690                     PLANE_CTL_PIPE_CSC_ENABLE;
2691
2692         switch (fb->pixel_format) {
2693         case DRM_FORMAT_RGB565:
2694                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2695                 break;
2696         case DRM_FORMAT_XRGB8888:
2697                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2698                 break;
2699         case DRM_FORMAT_XBGR8888:
2700                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2701                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2702                 break;
2703         case DRM_FORMAT_XRGB2101010:
2704                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2705                 break;
2706         case DRM_FORMAT_XBGR2101010:
2707                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2708                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2709                 break;
2710         default:
2711                 BUG();
2712         }
2713
2714         intel_fb = to_intel_framebuffer(fb);
2715         obj = intel_fb->obj;
2716
2717         /*
2718          * The stride is either expressed as a multiple of 64 bytes chunks for
2719          * linear buffers or in number of tiles for tiled buffers.
2720          */
2721         switch (obj->tiling_mode) {
2722         case I915_TILING_NONE:
2723                 stride = fb->pitches[0] >> 6;
2724                 break;
2725         case I915_TILING_X:
2726                 plane_ctl |= PLANE_CTL_TILED_X;
2727                 stride = fb->pitches[0] >> 9;
2728                 break;
2729         default:
2730                 BUG();
2731         }
2732
2733         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2734         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2735                 plane_ctl |= PLANE_CTL_ROTATE_180;
2736
2737         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2738
2739         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2740                       i915_gem_obj_ggtt_offset(obj),
2741                       x, y, fb->width, fb->height,
2742                       fb->pitches[0]);
2743
2744         I915_WRITE(PLANE_POS(pipe, 0), 0);
2745         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2746         I915_WRITE(PLANE_SIZE(pipe, 0),
2747                    (intel_crtc->config.pipe_src_h - 1) << 16 |
2748                    (intel_crtc->config.pipe_src_w - 1));
2749         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2750         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2751
2752         POSTING_READ(PLANE_SURF(pipe, 0));
2753 }
2754
2755 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2756 static int
2757 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2758                            int x, int y, enum mode_set_atomic state)
2759 {
2760         struct drm_device *dev = crtc->dev;
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762
2763         if (dev_priv->display.disable_fbc)
2764                 dev_priv->display.disable_fbc(dev);
2765
2766         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2767
2768         return 0;
2769 }
2770
2771 static void intel_complete_page_flips(struct drm_device *dev)
2772 {
2773         struct drm_crtc *crtc;
2774
2775         for_each_crtc(dev, crtc) {
2776                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777                 enum plane plane = intel_crtc->plane;
2778
2779                 intel_prepare_page_flip(dev, plane);
2780                 intel_finish_page_flip_plane(dev, plane);
2781         }
2782 }
2783
2784 static void intel_update_primary_planes(struct drm_device *dev)
2785 {
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         struct drm_crtc *crtc;
2788
2789         for_each_crtc(dev, crtc) {
2790                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791
2792                 drm_modeset_lock(&crtc->mutex, NULL);
2793                 /*
2794                  * FIXME: Once we have proper support for primary planes (and
2795                  * disabling them without disabling the entire crtc) allow again
2796                  * a NULL crtc->primary->fb.
2797                  */
2798                 if (intel_crtc->active && crtc->primary->fb)
2799                         dev_priv->display.update_primary_plane(crtc,
2800                                                                crtc->primary->fb,
2801                                                                crtc->x,
2802                                                                crtc->y);
2803                 drm_modeset_unlock(&crtc->mutex);
2804         }
2805 }
2806
2807 void intel_prepare_reset(struct drm_device *dev)
2808 {
2809         struct drm_i915_private *dev_priv = to_i915(dev);
2810         struct intel_crtc *crtc;
2811
2812         /* no reset support for gen2 */
2813         if (IS_GEN2(dev))
2814                 return;
2815
2816         /* reset doesn't touch the display */
2817         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2818                 return;
2819
2820         drm_modeset_lock_all(dev);
2821
2822         /*
2823          * Disabling the crtcs gracefully seems nicer. Also the
2824          * g33 docs say we should at least disable all the planes.
2825          */
2826         for_each_intel_crtc(dev, crtc) {
2827                 if (crtc->active)
2828                         dev_priv->display.crtc_disable(&crtc->base);
2829         }
2830 }
2831
2832 void intel_finish_reset(struct drm_device *dev)
2833 {
2834         struct drm_i915_private *dev_priv = to_i915(dev);
2835
2836         /*
2837          * Flips in the rings will be nuked by the reset,
2838          * so complete all pending flips so that user space
2839          * will get its events and not get stuck.
2840          */
2841         intel_complete_page_flips(dev);
2842
2843         /* no reset support for gen2 */
2844         if (IS_GEN2(dev))
2845                 return;
2846
2847         /* reset doesn't touch the display */
2848         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2849                 /*
2850                  * Flips in the rings have been nuked by the reset,
2851                  * so update the base address of all primary
2852                  * planes to the the last fb to make sure we're
2853                  * showing the correct fb after a reset.
2854                  */
2855                 intel_update_primary_planes(dev);
2856                 return;
2857         }
2858
2859         /*
2860          * The display has been reset as well,
2861          * so need a full re-initialization.
2862          */
2863         intel_runtime_pm_disable_interrupts(dev_priv);
2864         intel_runtime_pm_enable_interrupts(dev_priv);
2865
2866         intel_modeset_init_hw(dev);
2867
2868         spin_lock_irq(&dev_priv->irq_lock);
2869         if (dev_priv->display.hpd_irq_setup)
2870                 dev_priv->display.hpd_irq_setup(dev);
2871         spin_unlock_irq(&dev_priv->irq_lock);
2872
2873         intel_modeset_setup_hw_state(dev, true);
2874
2875         intel_hpd_init(dev_priv);
2876
2877         drm_modeset_unlock_all(dev);
2878 }
2879
2880 static int
2881 intel_finish_fb(struct drm_framebuffer *old_fb)
2882 {
2883         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2884         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2885         bool was_interruptible = dev_priv->mm.interruptible;
2886         int ret;
2887
2888         /* Big Hammer, we also need to ensure that any pending
2889          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2890          * current scanout is retired before unpinning the old
2891          * framebuffer.
2892          *
2893          * This should only fail upon a hung GPU, in which case we
2894          * can safely continue.
2895          */
2896         dev_priv->mm.interruptible = false;
2897         ret = i915_gem_object_finish_gpu(obj);
2898         dev_priv->mm.interruptible = was_interruptible;
2899
2900         return ret;
2901 }
2902
2903 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2904 {
2905         struct drm_device *dev = crtc->dev;
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2908         bool pending;
2909
2910         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2911             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2912                 return false;
2913
2914         spin_lock_irq(&dev->event_lock);
2915         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916         spin_unlock_irq(&dev->event_lock);
2917
2918         return pending;
2919 }
2920
2921 static void intel_update_pipe_size(struct intel_crtc *crtc)
2922 {
2923         struct drm_device *dev = crtc->base.dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925         const struct drm_display_mode *adjusted_mode;
2926
2927         if (!i915.fastboot)
2928                 return;
2929
2930         /*
2931          * Update pipe size and adjust fitter if needed: the reason for this is
2932          * that in compute_mode_changes we check the native mode (not the pfit
2933          * mode) to see if we can flip rather than do a full mode set. In the
2934          * fastboot case, we'll flip, but if we don't update the pipesrc and
2935          * pfit state, we'll end up with a big fb scanned out into the wrong
2936          * sized surface.
2937          *
2938          * To fix this properly, we need to hoist the checks up into
2939          * compute_mode_changes (or above), check the actual pfit state and
2940          * whether the platform allows pfit disable with pipe active, and only
2941          * then update the pipesrc and pfit state, even on the flip path.
2942          */
2943
2944         adjusted_mode = &crtc->config.adjusted_mode;
2945
2946         I915_WRITE(PIPESRC(crtc->pipe),
2947                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2948                    (adjusted_mode->crtc_vdisplay - 1));
2949         if (!crtc->config.pch_pfit.enabled &&
2950             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2951              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2952                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2953                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2954                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2955         }
2956         crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2957         crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2958 }
2959
2960 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2961 {
2962         struct drm_device *dev = crtc->dev;
2963         struct drm_i915_private *dev_priv = dev->dev_private;
2964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2965         int pipe = intel_crtc->pipe;
2966         u32 reg, temp;
2967
2968         /* enable normal train */
2969         reg = FDI_TX_CTL(pipe);
2970         temp = I915_READ(reg);
2971         if (IS_IVYBRIDGE(dev)) {
2972                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2973                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2974         } else {
2975                 temp &= ~FDI_LINK_TRAIN_NONE;
2976                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2977         }
2978         I915_WRITE(reg, temp);
2979
2980         reg = FDI_RX_CTL(pipe);
2981         temp = I915_READ(reg);
2982         if (HAS_PCH_CPT(dev)) {
2983                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2985         } else {
2986                 temp &= ~FDI_LINK_TRAIN_NONE;
2987                 temp |= FDI_LINK_TRAIN_NONE;
2988         }
2989         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2990
2991         /* wait one idle pattern time */
2992         POSTING_READ(reg);
2993         udelay(1000);
2994
2995         /* IVB wants error correction enabled */
2996         if (IS_IVYBRIDGE(dev))
2997                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2998                            FDI_FE_ERRC_ENABLE);
2999 }
3000
3001 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3002 {
3003         return crtc->base.enabled && crtc->active &&
3004                 crtc->config.has_pch_encoder;
3005 }
3006
3007 static void ivb_modeset_global_resources(struct drm_device *dev)
3008 {
3009         struct drm_i915_private *dev_priv = dev->dev_private;
3010         struct intel_crtc *pipe_B_crtc =
3011                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3012         struct intel_crtc *pipe_C_crtc =
3013                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3014         uint32_t temp;
3015
3016         /*
3017          * When everything is off disable fdi C so that we could enable fdi B
3018          * with all lanes. Note that we don't care about enabled pipes without
3019          * an enabled pch encoder.
3020          */
3021         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3022             !pipe_has_enabled_pch(pipe_C_crtc)) {
3023                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3024                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3025
3026                 temp = I915_READ(SOUTH_CHICKEN1);
3027                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3028                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3029                 I915_WRITE(SOUTH_CHICKEN1, temp);
3030         }
3031 }
3032
3033 /* The FDI link training functions for ILK/Ibexpeak. */
3034 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3035 {
3036         struct drm_device *dev = crtc->dev;
3037         struct drm_i915_private *dev_priv = dev->dev_private;
3038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039         int pipe = intel_crtc->pipe;
3040         u32 reg, temp, tries;
3041
3042         /* FDI needs bits from pipe first */
3043         assert_pipe_enabled(dev_priv, pipe);
3044
3045         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3046            for train result */
3047         reg = FDI_RX_IMR(pipe);
3048         temp = I915_READ(reg);
3049         temp &= ~FDI_RX_SYMBOL_LOCK;
3050         temp &= ~FDI_RX_BIT_LOCK;
3051         I915_WRITE(reg, temp);
3052         I915_READ(reg);
3053         udelay(150);
3054
3055         /* enable CPU FDI TX and PCH FDI RX */
3056         reg = FDI_TX_CTL(pipe);
3057         temp = I915_READ(reg);
3058         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3059         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3060         temp &= ~FDI_LINK_TRAIN_NONE;
3061         temp |= FDI_LINK_TRAIN_PATTERN_1;
3062         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3063
3064         reg = FDI_RX_CTL(pipe);
3065         temp = I915_READ(reg);
3066         temp &= ~FDI_LINK_TRAIN_NONE;
3067         temp |= FDI_LINK_TRAIN_PATTERN_1;
3068         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3069
3070         POSTING_READ(reg);
3071         udelay(150);
3072
3073         /* Ironlake workaround, enable clock pointer after FDI enable*/
3074         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3075         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3076                    FDI_RX_PHASE_SYNC_POINTER_EN);
3077
3078         reg = FDI_RX_IIR(pipe);
3079         for (tries = 0; tries < 5; tries++) {
3080                 temp = I915_READ(reg);
3081                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3082
3083                 if ((temp & FDI_RX_BIT_LOCK)) {
3084                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3085                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3086                         break;
3087                 }
3088         }
3089         if (tries == 5)
3090                 DRM_ERROR("FDI train 1 fail!\n");
3091
3092         /* Train 2 */
3093         reg = FDI_TX_CTL(pipe);
3094         temp = I915_READ(reg);
3095         temp &= ~FDI_LINK_TRAIN_NONE;
3096         temp |= FDI_LINK_TRAIN_PATTERN_2;
3097         I915_WRITE(reg, temp);
3098
3099         reg = FDI_RX_CTL(pipe);
3100         temp = I915_READ(reg);
3101         temp &= ~FDI_LINK_TRAIN_NONE;
3102         temp |= FDI_LINK_TRAIN_PATTERN_2;
3103         I915_WRITE(reg, temp);
3104
3105         POSTING_READ(reg);
3106         udelay(150);
3107
3108         reg = FDI_RX_IIR(pipe);
3109         for (tries = 0; tries < 5; tries++) {
3110                 temp = I915_READ(reg);
3111                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112
3113                 if (temp & FDI_RX_SYMBOL_LOCK) {
3114                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3115                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3116                         break;
3117                 }
3118         }
3119         if (tries == 5)
3120                 DRM_ERROR("FDI train 2 fail!\n");
3121
3122         DRM_DEBUG_KMS("FDI train done\n");
3123
3124 }
3125
3126 static const int snb_b_fdi_train_param[] = {
3127         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3128         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3129         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3130         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3131 };
3132
3133 /* The FDI link training functions for SNB/Cougarpoint. */
3134 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3135 {
3136         struct drm_device *dev = crtc->dev;
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139         int pipe = intel_crtc->pipe;
3140         u32 reg, temp, i, retry;
3141
3142         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3143            for train result */
3144         reg = FDI_RX_IMR(pipe);
3145         temp = I915_READ(reg);
3146         temp &= ~FDI_RX_SYMBOL_LOCK;
3147         temp &= ~FDI_RX_BIT_LOCK;
3148         I915_WRITE(reg, temp);
3149
3150         POSTING_READ(reg);
3151         udelay(150);
3152
3153         /* enable CPU FDI TX and PCH FDI RX */
3154         reg = FDI_TX_CTL(pipe);
3155         temp = I915_READ(reg);
3156         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3157         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3158         temp &= ~FDI_LINK_TRAIN_NONE;
3159         temp |= FDI_LINK_TRAIN_PATTERN_1;
3160         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3161         /* SNB-B */
3162         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3163         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3164
3165         I915_WRITE(FDI_RX_MISC(pipe),
3166                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3167
3168         reg = FDI_RX_CTL(pipe);
3169         temp = I915_READ(reg);
3170         if (HAS_PCH_CPT(dev)) {
3171                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3172                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3173         } else {
3174                 temp &= ~FDI_LINK_TRAIN_NONE;
3175                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3176         }
3177         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3178
3179         POSTING_READ(reg);
3180         udelay(150);
3181
3182         for (i = 0; i < 4; i++) {
3183                 reg = FDI_TX_CTL(pipe);
3184                 temp = I915_READ(reg);
3185                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3186                 temp |= snb_b_fdi_train_param[i];
3187                 I915_WRITE(reg, temp);
3188
3189                 POSTING_READ(reg);
3190                 udelay(500);
3191
3192                 for (retry = 0; retry < 5; retry++) {
3193                         reg = FDI_RX_IIR(pipe);
3194                         temp = I915_READ(reg);
3195                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3196                         if (temp & FDI_RX_BIT_LOCK) {
3197                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3198                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3199                                 break;
3200                         }
3201                         udelay(50);
3202                 }
3203                 if (retry < 5)
3204                         break;
3205         }
3206         if (i == 4)
3207                 DRM_ERROR("FDI train 1 fail!\n");
3208
3209         /* Train 2 */
3210         reg = FDI_TX_CTL(pipe);
3211         temp = I915_READ(reg);
3212         temp &= ~FDI_LINK_TRAIN_NONE;
3213         temp |= FDI_LINK_TRAIN_PATTERN_2;
3214         if (IS_GEN6(dev)) {
3215                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3216                 /* SNB-B */
3217                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3218         }
3219         I915_WRITE(reg, temp);
3220
3221         reg = FDI_RX_CTL(pipe);
3222         temp = I915_READ(reg);
3223         if (HAS_PCH_CPT(dev)) {
3224                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3225                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3226         } else {
3227                 temp &= ~FDI_LINK_TRAIN_NONE;
3228                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3229         }
3230         I915_WRITE(reg, temp);
3231
3232         POSTING_READ(reg);
3233         udelay(150);
3234
3235         for (i = 0; i < 4; i++) {
3236                 reg = FDI_TX_CTL(pipe);
3237                 temp = I915_READ(reg);
3238                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3239                 temp |= snb_b_fdi_train_param[i];
3240                 I915_WRITE(reg, temp);
3241
3242                 POSTING_READ(reg);
3243                 udelay(500);
3244
3245                 for (retry = 0; retry < 5; retry++) {
3246                         reg = FDI_RX_IIR(pipe);
3247                         temp = I915_READ(reg);
3248                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3249                         if (temp & FDI_RX_SYMBOL_LOCK) {
3250                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3251                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3252                                 break;
3253                         }
3254                         udelay(50);
3255                 }
3256                 if (retry < 5)
3257                         break;
3258         }
3259         if (i == 4)
3260                 DRM_ERROR("FDI train 2 fail!\n");
3261
3262         DRM_DEBUG_KMS("FDI train done.\n");
3263 }
3264
3265 /* Manual link training for Ivy Bridge A0 parts */
3266 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3267 {
3268         struct drm_device *dev = crtc->dev;
3269         struct drm_i915_private *dev_priv = dev->dev_private;
3270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271         int pipe = intel_crtc->pipe;
3272         u32 reg, temp, i, j;
3273
3274         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3275            for train result */
3276         reg = FDI_RX_IMR(pipe);
3277         temp = I915_READ(reg);
3278         temp &= ~FDI_RX_SYMBOL_LOCK;
3279         temp &= ~FDI_RX_BIT_LOCK;
3280         I915_WRITE(reg, temp);
3281
3282         POSTING_READ(reg);
3283         udelay(150);
3284
3285         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3286                       I915_READ(FDI_RX_IIR(pipe)));
3287
3288         /* Try each vswing and preemphasis setting twice before moving on */
3289         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3290                 /* disable first in case we need to retry */
3291                 reg = FDI_TX_CTL(pipe);
3292                 temp = I915_READ(reg);
3293                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3294                 temp &= ~FDI_TX_ENABLE;
3295                 I915_WRITE(reg, temp);
3296
3297                 reg = FDI_RX_CTL(pipe);
3298                 temp = I915_READ(reg);
3299                 temp &= ~FDI_LINK_TRAIN_AUTO;
3300                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3301                 temp &= ~FDI_RX_ENABLE;
3302                 I915_WRITE(reg, temp);
3303
3304                 /* enable CPU FDI TX and PCH FDI RX */
3305                 reg = FDI_TX_CTL(pipe);
3306                 temp = I915_READ(reg);
3307                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3308                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3309                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3310                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3311                 temp |= snb_b_fdi_train_param[j/2];
3312                 temp |= FDI_COMPOSITE_SYNC;
3313                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3314
3315                 I915_WRITE(FDI_RX_MISC(pipe),
3316                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3317
3318                 reg = FDI_RX_CTL(pipe);
3319                 temp = I915_READ(reg);
3320                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3321                 temp |= FDI_COMPOSITE_SYNC;
3322                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3323
3324                 POSTING_READ(reg);
3325                 udelay(1); /* should be 0.5us */
3326
3327                 for (i = 0; i < 4; i++) {
3328                         reg = FDI_RX_IIR(pipe);
3329                         temp = I915_READ(reg);
3330                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3331
3332                         if (temp & FDI_RX_BIT_LOCK ||
3333                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3334                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3335                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3336                                               i);
3337                                 break;
3338                         }
3339                         udelay(1); /* should be 0.5us */
3340                 }
3341                 if (i == 4) {
3342                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3343                         continue;
3344                 }
3345
3346                 /* Train 2 */
3347                 reg = FDI_TX_CTL(pipe);
3348                 temp = I915_READ(reg);
3349                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3350                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3351                 I915_WRITE(reg, temp);
3352
3353                 reg = FDI_RX_CTL(pipe);
3354                 temp = I915_READ(reg);
3355                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3356                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3357                 I915_WRITE(reg, temp);
3358
3359                 POSTING_READ(reg);
3360                 udelay(2); /* should be 1.5us */
3361
3362                 for (i = 0; i < 4; i++) {
3363                         reg = FDI_RX_IIR(pipe);
3364                         temp = I915_READ(reg);
3365                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3366
3367                         if (temp & FDI_RX_SYMBOL_LOCK ||
3368                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3369                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3370                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3371                                               i);
3372                                 goto train_done;
3373                         }
3374                         udelay(2); /* should be 1.5us */
3375                 }
3376                 if (i == 4)
3377                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3378         }
3379
3380 train_done:
3381         DRM_DEBUG_KMS("FDI train done.\n");
3382 }
3383
3384 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3385 {
3386         struct drm_device *dev = intel_crtc->base.dev;
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388         int pipe = intel_crtc->pipe;
3389         u32 reg, temp;
3390
3391
3392         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3393         reg = FDI_RX_CTL(pipe);
3394         temp = I915_READ(reg);
3395         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3396         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3397         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3398         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3399
3400         POSTING_READ(reg);
3401         udelay(200);
3402
3403         /* Switch from Rawclk to PCDclk */
3404         temp = I915_READ(reg);
3405         I915_WRITE(reg, temp | FDI_PCDCLK);
3406
3407         POSTING_READ(reg);
3408         udelay(200);
3409
3410         /* Enable CPU FDI TX PLL, always on for Ironlake */
3411         reg = FDI_TX_CTL(pipe);
3412         temp = I915_READ(reg);
3413         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3414                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3415
3416                 POSTING_READ(reg);
3417                 udelay(100);
3418         }
3419 }
3420
3421 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3422 {
3423         struct drm_device *dev = intel_crtc->base.dev;
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         int pipe = intel_crtc->pipe;
3426         u32 reg, temp;
3427
3428         /* Switch from PCDclk to Rawclk */
3429         reg = FDI_RX_CTL(pipe);
3430         temp = I915_READ(reg);
3431         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3432
3433         /* Disable CPU FDI TX PLL */
3434         reg = FDI_TX_CTL(pipe);
3435         temp = I915_READ(reg);
3436         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3437
3438         POSTING_READ(reg);
3439         udelay(100);
3440
3441         reg = FDI_RX_CTL(pipe);
3442         temp = I915_READ(reg);
3443         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3444
3445         /* Wait for the clocks to turn off. */
3446         POSTING_READ(reg);
3447         udelay(100);
3448 }
3449
3450 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3451 {
3452         struct drm_device *dev = crtc->dev;
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3455         int pipe = intel_crtc->pipe;
3456         u32 reg, temp;
3457
3458         /* disable CPU FDI tx and PCH FDI rx */
3459         reg = FDI_TX_CTL(pipe);
3460         temp = I915_READ(reg);
3461         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3462         POSTING_READ(reg);
3463
3464         reg = FDI_RX_CTL(pipe);
3465         temp = I915_READ(reg);
3466         temp &= ~(0x7 << 16);
3467         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3468         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3469
3470         POSTING_READ(reg);
3471         udelay(100);
3472
3473         /* Ironlake workaround, disable clock pointer after downing FDI */
3474         if (HAS_PCH_IBX(dev))
3475                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3476
3477         /* still set train pattern 1 */
3478         reg = FDI_TX_CTL(pipe);
3479         temp = I915_READ(reg);
3480         temp &= ~FDI_LINK_TRAIN_NONE;
3481         temp |= FDI_LINK_TRAIN_PATTERN_1;
3482         I915_WRITE(reg, temp);
3483
3484         reg = FDI_RX_CTL(pipe);
3485         temp = I915_READ(reg);
3486         if (HAS_PCH_CPT(dev)) {
3487                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3488                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3489         } else {
3490                 temp &= ~FDI_LINK_TRAIN_NONE;
3491                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3492         }
3493         /* BPC in FDI rx is consistent with that in PIPECONF */
3494         temp &= ~(0x07 << 16);
3495         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3496         I915_WRITE(reg, temp);
3497
3498         POSTING_READ(reg);
3499         udelay(100);
3500 }
3501
3502 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3503 {
3504         struct intel_crtc *crtc;
3505
3506         /* Note that we don't need to be called with mode_config.lock here
3507          * as our list of CRTC objects is static for the lifetime of the
3508          * device and so cannot disappear as we iterate. Similarly, we can
3509          * happily treat the predicates as racy, atomic checks as userspace
3510          * cannot claim and pin a new fb without at least acquring the
3511          * struct_mutex and so serialising with us.
3512          */
3513         for_each_intel_crtc(dev, crtc) {
3514                 if (atomic_read(&crtc->unpin_work_count) == 0)
3515                         continue;
3516
3517                 if (crtc->unpin_work)
3518                         intel_wait_for_vblank(dev, crtc->pipe);
3519
3520                 return true;
3521         }
3522
3523         return false;
3524 }
3525
3526 static void page_flip_completed(struct intel_crtc *intel_crtc)
3527 {
3528         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3529         struct intel_unpin_work *work = intel_crtc->unpin_work;
3530
3531         /* ensure that the unpin work is consistent wrt ->pending. */
3532         smp_rmb();
3533         intel_crtc->unpin_work = NULL;
3534
3535         if (work->event)
3536                 drm_send_vblank_event(intel_crtc->base.dev,
3537                                       intel_crtc->pipe,
3538                                       work->event);
3539
3540         drm_crtc_vblank_put(&intel_crtc->base);
3541
3542         wake_up_all(&dev_priv->pending_flip_queue);
3543         queue_work(dev_priv->wq, &work->work);
3544
3545         trace_i915_flip_complete(intel_crtc->plane,
3546                                  work->pending_flip_obj);
3547 }
3548
3549 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553
3554         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3555         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3556                                        !intel_crtc_has_pending_flip(crtc),
3557                                        60*HZ) == 0)) {
3558                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559
3560                 spin_lock_irq(&dev->event_lock);
3561                 if (intel_crtc->unpin_work) {
3562                         WARN_ONCE(1, "Removing stuck page flip\n");
3563                         page_flip_completed(intel_crtc);
3564                 }
3565                 spin_unlock_irq(&dev->event_lock);
3566         }
3567
3568         if (crtc->primary->fb) {
3569                 mutex_lock(&dev->struct_mutex);
3570                 intel_finish_fb(crtc->primary->fb);
3571                 mutex_unlock(&dev->struct_mutex);
3572         }
3573 }
3574
3575 /* Program iCLKIP clock to the desired frequency */
3576 static void lpt_program_iclkip(struct drm_crtc *crtc)
3577 {
3578         struct drm_device *dev = crtc->dev;
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3581         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3582         u32 temp;
3583
3584         mutex_lock(&dev_priv->dpio_lock);
3585
3586         /* It is necessary to ungate the pixclk gate prior to programming
3587          * the divisors, and gate it back when it is done.
3588          */
3589         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3590
3591         /* Disable SSCCTL */
3592         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3593                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3594                                 SBI_SSCCTL_DISABLE,
3595                         SBI_ICLK);
3596
3597         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3598         if (clock == 20000) {
3599                 auxdiv = 1;
3600                 divsel = 0x41;
3601                 phaseinc = 0x20;
3602         } else {
3603                 /* The iCLK virtual clock root frequency is in MHz,
3604                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3605                  * divisors, it is necessary to divide one by another, so we
3606                  * convert the virtual clock precision to KHz here for higher
3607                  * precision.
3608                  */
3609                 u32 iclk_virtual_root_freq = 172800 * 1000;
3610                 u32 iclk_pi_range = 64;
3611                 u32 desired_divisor, msb_divisor_value, pi_value;
3612
3613                 desired_divisor = (iclk_virtual_root_freq / clock);
3614                 msb_divisor_value = desired_divisor / iclk_pi_range;
3615                 pi_value = desired_divisor % iclk_pi_range;
3616
3617                 auxdiv = 0;
3618                 divsel = msb_divisor_value - 2;
3619                 phaseinc = pi_value;
3620         }
3621
3622         /* This should not happen with any sane values */
3623         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3624                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3625         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3626                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3627
3628         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3629                         clock,
3630                         auxdiv,
3631                         divsel,
3632                         phasedir,
3633                         phaseinc);
3634
3635         /* Program SSCDIVINTPHASE6 */
3636         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3637         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3638         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3639         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3640         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3641         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3642         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3643         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3644
3645         /* Program SSCAUXDIV */
3646         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3647         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3648         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3649         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3650
3651         /* Enable modulator and associated divider */
3652         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3653         temp &= ~SBI_SSCCTL_DISABLE;
3654         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3655
3656         /* Wait for initialization time */
3657         udelay(24);
3658
3659         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3660
3661         mutex_unlock(&dev_priv->dpio_lock);
3662 }
3663
3664 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3665                                                 enum pipe pch_transcoder)
3666 {
3667         struct drm_device *dev = crtc->base.dev;
3668         struct drm_i915_private *dev_priv = dev->dev_private;
3669         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3670
3671         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3672                    I915_READ(HTOTAL(cpu_transcoder)));
3673         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3674                    I915_READ(HBLANK(cpu_transcoder)));
3675         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3676                    I915_READ(HSYNC(cpu_transcoder)));
3677
3678         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3679                    I915_READ(VTOTAL(cpu_transcoder)));
3680         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3681                    I915_READ(VBLANK(cpu_transcoder)));
3682         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3683                    I915_READ(VSYNC(cpu_transcoder)));
3684         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3685                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3686 }
3687
3688 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3689 {
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         uint32_t temp;
3692
3693         temp = I915_READ(SOUTH_CHICKEN1);
3694         if (temp & FDI_BC_BIFURCATION_SELECT)
3695                 return;
3696
3697         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3698         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3699
3700         temp |= FDI_BC_BIFURCATION_SELECT;
3701         DRM_DEBUG_KMS("enabling fdi C rx\n");
3702         I915_WRITE(SOUTH_CHICKEN1, temp);
3703         POSTING_READ(SOUTH_CHICKEN1);
3704 }
3705
3706 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3707 {
3708         struct drm_device *dev = intel_crtc->base.dev;
3709         struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711         switch (intel_crtc->pipe) {
3712         case PIPE_A:
3713                 break;
3714         case PIPE_B:
3715                 if (intel_crtc->config.fdi_lanes > 2)
3716                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3717                 else
3718                         cpt_enable_fdi_bc_bifurcation(dev);
3719
3720                 break;
3721         case PIPE_C:
3722                 cpt_enable_fdi_bc_bifurcation(dev);
3723
3724                 break;
3725         default:
3726                 BUG();
3727         }
3728 }
3729
3730 /*
3731  * Enable PCH resources required for PCH ports:
3732  *   - PCH PLLs
3733  *   - FDI training & RX/TX
3734  *   - update transcoder timings
3735  *   - DP transcoding bits
3736  *   - transcoder
3737  */
3738 static void ironlake_pch_enable(struct drm_crtc *crtc)
3739 {
3740         struct drm_device *dev = crtc->dev;
3741         struct drm_i915_private *dev_priv = dev->dev_private;
3742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743         int pipe = intel_crtc->pipe;
3744         u32 reg, temp;
3745
3746         assert_pch_transcoder_disabled(dev_priv, pipe);
3747
3748         if (IS_IVYBRIDGE(dev))
3749                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3750
3751         /* Write the TU size bits before fdi link training, so that error
3752          * detection works. */
3753         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3754                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3755
3756         /* For PCH output, training FDI link */
3757         dev_priv->display.fdi_link_train(crtc);
3758
3759         /* We need to program the right clock selection before writing the pixel
3760          * mutliplier into the DPLL. */
3761         if (HAS_PCH_CPT(dev)) {
3762                 u32 sel;
3763
3764                 temp = I915_READ(PCH_DPLL_SEL);
3765                 temp |= TRANS_DPLL_ENABLE(pipe);
3766                 sel = TRANS_DPLLB_SEL(pipe);
3767                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3768                         temp |= sel;
3769                 else
3770                         temp &= ~sel;
3771                 I915_WRITE(PCH_DPLL_SEL, temp);
3772         }
3773
3774         /* XXX: pch pll's can be enabled any time before we enable the PCH
3775          * transcoder, and we actually should do this to not upset any PCH
3776          * transcoder that already use the clock when we share it.
3777          *
3778          * Note that enable_shared_dpll tries to do the right thing, but
3779          * get_shared_dpll unconditionally resets the pll - we need that to have
3780          * the right LVDS enable sequence. */
3781         intel_enable_shared_dpll(intel_crtc);
3782
3783         /* set transcoder timing, panel must allow it */
3784         assert_panel_unlocked(dev_priv, pipe);
3785         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3786
3787         intel_fdi_normal_train(crtc);
3788
3789         /* For PCH DP, enable TRANS_DP_CTL */
3790         if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3791                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3792                 reg = TRANS_DP_CTL(pipe);
3793                 temp = I915_READ(reg);
3794                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3795                           TRANS_DP_SYNC_MASK |
3796                           TRANS_DP_BPC_MASK);
3797                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3798                          TRANS_DP_ENH_FRAMING);
3799                 temp |= bpc << 9; /* same format but at 11:9 */
3800
3801                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3802                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3803                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3804                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3805
3806                 switch (intel_trans_dp_port_sel(crtc)) {
3807                 case PCH_DP_B:
3808                         temp |= TRANS_DP_PORT_SEL_B;
3809                         break;
3810                 case PCH_DP_C:
3811                         temp |= TRANS_DP_PORT_SEL_C;
3812                         break;
3813                 case PCH_DP_D:
3814                         temp |= TRANS_DP_PORT_SEL_D;
3815                         break;
3816                 default:
3817                         BUG();
3818                 }
3819
3820                 I915_WRITE(reg, temp);
3821         }
3822
3823         ironlake_enable_pch_transcoder(dev_priv, pipe);
3824 }
3825
3826 static void lpt_pch_enable(struct drm_crtc *crtc)
3827 {
3828         struct drm_device *dev = crtc->dev;
3829         struct drm_i915_private *dev_priv = dev->dev_private;
3830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3831         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3832
3833         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3834
3835         lpt_program_iclkip(crtc);
3836
3837         /* Set transcoder timing. */
3838         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3839
3840         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3841 }
3842
3843 void intel_put_shared_dpll(struct intel_crtc *crtc)
3844 {
3845         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3846
3847         if (pll == NULL)
3848                 return;
3849
3850         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3851                 WARN(1, "bad %s crtc mask\n", pll->name);
3852                 return;
3853         }
3854
3855         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3856         if (pll->config.crtc_mask == 0) {
3857                 WARN_ON(pll->on);
3858                 WARN_ON(pll->active);
3859         }
3860
3861         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3862 }
3863
3864 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3865 {
3866         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3867         struct intel_shared_dpll *pll;
3868         enum intel_dpll_id i;
3869
3870         if (HAS_PCH_IBX(dev_priv->dev)) {
3871                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3872                 i = (enum intel_dpll_id) crtc->pipe;
3873                 pll = &dev_priv->shared_dplls[i];
3874
3875                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3876                               crtc->base.base.id, pll->name);
3877
3878                 WARN_ON(pll->new_config->crtc_mask);
3879
3880                 goto found;
3881         }
3882
3883         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3884                 pll = &dev_priv->shared_dplls[i];
3885
3886                 /* Only want to check enabled timings first */
3887                 if (pll->new_config->crtc_mask == 0)
3888                         continue;
3889
3890                 if (memcmp(&crtc->new_config->dpll_hw_state,
3891                            &pll->new_config->hw_state,
3892                            sizeof(pll->new_config->hw_state)) == 0) {
3893                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3894                                       crtc->base.base.id, pll->name,
3895                                       pll->new_config->crtc_mask,
3896                                       pll->active);
3897                         goto found;
3898                 }
3899         }
3900
3901         /* Ok no matching timings, maybe there's a free one? */
3902         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3903                 pll = &dev_priv->shared_dplls[i];
3904                 if (pll->new_config->crtc_mask == 0) {
3905                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3906                                       crtc->base.base.id, pll->name);
3907                         goto found;
3908                 }
3909         }
3910
3911         return NULL;
3912
3913 found:
3914         if (pll->new_config->crtc_mask == 0)
3915                 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3916
3917         crtc->new_config->shared_dpll = i;
3918         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3919                          pipe_name(crtc->pipe));
3920
3921         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3922
3923         return pll;
3924 }
3925
3926 /**
3927  * intel_shared_dpll_start_config - start a new PLL staged config
3928  * @dev_priv: DRM device
3929  * @clear_pipes: mask of pipes that will have their PLLs freed
3930  *
3931  * Starts a new PLL staged config, copying the current config but
3932  * releasing the references of pipes specified in clear_pipes.
3933  */
3934 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3935                                           unsigned clear_pipes)
3936 {
3937         struct intel_shared_dpll *pll;
3938         enum intel_dpll_id i;
3939
3940         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3941                 pll = &dev_priv->shared_dplls[i];
3942
3943                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3944                                           GFP_KERNEL);
3945                 if (!pll->new_config)
3946                         goto cleanup;
3947
3948                 pll->new_config->crtc_mask &= ~clear_pipes;
3949         }
3950
3951         return 0;
3952
3953 cleanup:
3954         while (--i >= 0) {
3955                 pll = &dev_priv->shared_dplls[i];
3956                 kfree(pll->new_config);
3957                 pll->new_config = NULL;
3958         }
3959
3960         return -ENOMEM;
3961 }
3962
3963 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3964 {
3965         struct intel_shared_dpll *pll;
3966         enum intel_dpll_id i;
3967
3968         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3969                 pll = &dev_priv->shared_dplls[i];
3970
3971                 WARN_ON(pll->new_config == &pll->config);
3972
3973                 pll->config = *pll->new_config;
3974                 kfree(pll->new_config);
3975                 pll->new_config = NULL;
3976         }
3977 }
3978
3979 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3980 {
3981         struct intel_shared_dpll *pll;
3982         enum intel_dpll_id i;
3983
3984         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3985                 pll = &dev_priv->shared_dplls[i];
3986
3987                 WARN_ON(pll->new_config == &pll->config);
3988
3989                 kfree(pll->new_config);
3990                 pll->new_config = NULL;
3991         }
3992 }
3993
3994 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3995 {
3996         struct drm_i915_private *dev_priv = dev->dev_private;
3997         int dslreg = PIPEDSL(pipe);
3998         u32 temp;
3999
4000         temp = I915_READ(dslreg);
4001         udelay(500);
4002         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4003                 if (wait_for(I915_READ(dslreg) != temp, 5))
4004                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4005         }
4006 }
4007
4008 static void skylake_pfit_enable(struct intel_crtc *crtc)
4009 {
4010         struct drm_device *dev = crtc->base.dev;
4011         struct drm_i915_private *dev_priv = dev->dev_private;
4012         int pipe = crtc->pipe;
4013
4014         if (crtc->config.pch_pfit.enabled) {
4015                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4016                 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4017                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4018         }
4019 }
4020
4021 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4022 {
4023         struct drm_device *dev = crtc->base.dev;
4024         struct drm_i915_private *dev_priv = dev->dev_private;
4025         int pipe = crtc->pipe;
4026
4027         if (crtc->config.pch_pfit.enabled) {
4028                 /* Force use of hard-coded filter coefficients
4029                  * as some pre-programmed values are broken,
4030                  * e.g. x201.
4031                  */
4032                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4033                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4034                                                  PF_PIPE_SEL_IVB(pipe));
4035                 else
4036                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4037                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4038                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4039         }
4040 }
4041
4042 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4043 {
4044         struct drm_device *dev = crtc->dev;
4045         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4046         struct drm_plane *plane;
4047         struct intel_plane *intel_plane;
4048
4049         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4050                 intel_plane = to_intel_plane(plane);
4051                 if (intel_plane->pipe == pipe)
4052                         intel_plane_restore(&intel_plane->base);
4053         }
4054 }
4055
4056 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4057 {
4058         struct drm_device *dev = crtc->dev;
4059         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4060         struct drm_plane *plane;
4061         struct intel_plane *intel_plane;
4062
4063         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4064                 intel_plane = to_intel_plane(plane);
4065                 if (intel_plane->pipe == pipe)
4066                         plane->funcs->disable_plane(plane);
4067         }
4068 }
4069
4070 void hsw_enable_ips(struct intel_crtc *crtc)
4071 {
4072         struct drm_device *dev = crtc->base.dev;
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074
4075         if (!crtc->config.ips_enabled)
4076                 return;
4077
4078         /* We can only enable IPS after we enable a plane and wait for a vblank */
4079         intel_wait_for_vblank(dev, crtc->pipe);
4080
4081         assert_plane_enabled(dev_priv, crtc->plane);
4082         if (IS_BROADWELL(dev)) {
4083                 mutex_lock(&dev_priv->rps.hw_lock);
4084                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4085                 mutex_unlock(&dev_priv->rps.hw_lock);
4086                 /* Quoting Art Runyan: "its not safe to expect any particular
4087                  * value in IPS_CTL bit 31 after enabling IPS through the
4088                  * mailbox." Moreover, the mailbox may return a bogus state,
4089                  * so we need to just enable it and continue on.
4090                  */
4091         } else {
4092                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4093                 /* The bit only becomes 1 in the next vblank, so this wait here
4094                  * is essentially intel_wait_for_vblank. If we don't have this
4095                  * and don't wait for vblanks until the end of crtc_enable, then
4096                  * the HW state readout code will complain that the expected
4097                  * IPS_CTL value is not the one we read. */
4098                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4099                         DRM_ERROR("Timed out waiting for IPS enable\n");
4100         }
4101 }
4102
4103 void hsw_disable_ips(struct intel_crtc *crtc)
4104 {
4105         struct drm_device *dev = crtc->base.dev;
4106         struct drm_i915_private *dev_priv = dev->dev_private;
4107
4108         if (!crtc->config.ips_enabled)
4109                 return;
4110
4111         assert_plane_enabled(dev_priv, crtc->plane);
4112         if (IS_BROADWELL(dev)) {
4113                 mutex_lock(&dev_priv->rps.hw_lock);
4114                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4115                 mutex_unlock(&dev_priv->rps.hw_lock);
4116                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4117                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4118                         DRM_ERROR("Timed out waiting for IPS disable\n");
4119         } else {
4120                 I915_WRITE(IPS_CTL, 0);
4121                 POSTING_READ(IPS_CTL);
4122         }
4123
4124         /* We need to wait for a vblank before we can disable the plane. */
4125         intel_wait_for_vblank(dev, crtc->pipe);
4126 }
4127
4128 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4129 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4130 {
4131         struct drm_device *dev = crtc->dev;
4132         struct drm_i915_private *dev_priv = dev->dev_private;
4133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4134         enum pipe pipe = intel_crtc->pipe;
4135         int palreg = PALETTE(pipe);
4136         int i;
4137         bool reenable_ips = false;
4138
4139         /* The clocks have to be on to load the palette. */
4140         if (!crtc->enabled || !intel_crtc->active)
4141                 return;
4142
4143         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4144                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4145                         assert_dsi_pll_enabled(dev_priv);
4146                 else
4147                         assert_pll_enabled(dev_priv, pipe);
4148         }
4149
4150         /* use legacy palette for Ironlake */
4151         if (!HAS_GMCH_DISPLAY(dev))
4152                 palreg = LGC_PALETTE(pipe);
4153
4154         /* Workaround : Do not read or write the pipe palette/gamma data while
4155          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4156          */
4157         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4158             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4159              GAMMA_MODE_MODE_SPLIT)) {
4160                 hsw_disable_ips(intel_crtc);
4161                 reenable_ips = true;
4162         }
4163
4164         for (i = 0; i < 256; i++) {
4165                 I915_WRITE(palreg + 4 * i,
4166                            (intel_crtc->lut_r[i] << 16) |
4167                            (intel_crtc->lut_g[i] << 8) |
4168                            intel_crtc->lut_b[i]);
4169         }
4170
4171         if (reenable_ips)
4172                 hsw_enable_ips(intel_crtc);
4173 }
4174
4175 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4176 {
4177         if (!enable && intel_crtc->overlay) {
4178                 struct drm_device *dev = intel_crtc->base.dev;
4179                 struct drm_i915_private *dev_priv = dev->dev_private;
4180
4181                 mutex_lock(&dev->struct_mutex);
4182                 dev_priv->mm.interruptible = false;
4183                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4184                 dev_priv->mm.interruptible = true;
4185                 mutex_unlock(&dev->struct_mutex);
4186         }
4187
4188         /* Let userspace switch the overlay on again. In most cases userspace
4189          * has to recompute where to put it anyway.
4190          */
4191 }
4192
4193 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4194 {
4195         struct drm_device *dev = crtc->dev;
4196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4197         int pipe = intel_crtc->pipe;
4198
4199         intel_enable_primary_hw_plane(crtc->primary, crtc);
4200         intel_enable_sprite_planes(crtc);
4201         intel_crtc_update_cursor(crtc, true);
4202         intel_crtc_dpms_overlay(intel_crtc, true);
4203
4204         hsw_enable_ips(intel_crtc);
4205
4206         mutex_lock(&dev->struct_mutex);
4207         intel_fbc_update(dev);
4208         mutex_unlock(&dev->struct_mutex);
4209
4210         /*
4211          * FIXME: Once we grow proper nuclear flip support out of this we need
4212          * to compute the mask of flip planes precisely. For the time being
4213          * consider this a flip from a NULL plane.
4214          */
4215         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4216 }
4217
4218 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4219 {
4220         struct drm_device *dev = crtc->dev;
4221         struct drm_i915_private *dev_priv = dev->dev_private;
4222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4223         int pipe = intel_crtc->pipe;
4224         int plane = intel_crtc->plane;
4225
4226         intel_crtc_wait_for_pending_flips(crtc);
4227
4228         if (dev_priv->fbc.plane == plane)
4229                 intel_fbc_disable(dev);
4230
4231         hsw_disable_ips(intel_crtc);
4232
4233         intel_crtc_dpms_overlay(intel_crtc, false);
4234         intel_crtc_update_cursor(crtc, false);
4235         intel_disable_sprite_planes(crtc);
4236         intel_disable_primary_hw_plane(crtc->primary, crtc);
4237
4238         /*
4239          * FIXME: Once we grow proper nuclear flip support out of this we need
4240          * to compute the mask of flip planes precisely. For the time being
4241          * consider this a flip to a NULL plane.
4242          */
4243         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4244 }
4245
4246 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4247 {
4248         struct drm_device *dev = crtc->dev;
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4251         struct intel_encoder *encoder;
4252         int pipe = intel_crtc->pipe;
4253
4254         WARN_ON(!crtc->enabled);
4255
4256         if (intel_crtc->active)
4257                 return;
4258
4259         if (intel_crtc->config.has_pch_encoder)
4260                 intel_prepare_shared_dpll(intel_crtc);
4261
4262         if (intel_crtc->config.has_dp_encoder)
4263                 intel_dp_set_m_n(intel_crtc);
4264
4265         intel_set_pipe_timings(intel_crtc);
4266
4267         if (intel_crtc->config.has_pch_encoder) {
4268                 intel_cpu_transcoder_set_m_n(intel_crtc,
4269                                      &intel_crtc->config.fdi_m_n, NULL);
4270         }
4271
4272         ironlake_set_pipeconf(crtc);
4273
4274         intel_crtc->active = true;
4275
4276         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4277         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4278
4279         for_each_encoder_on_crtc(dev, crtc, encoder)
4280                 if (encoder->pre_enable)
4281                         encoder->pre_enable(encoder);
4282
4283         if (intel_crtc->config.has_pch_encoder) {
4284                 /* Note: FDI PLL enabling _must_ be done before we enable the
4285                  * cpu pipes, hence this is separate from all the other fdi/pch
4286                  * enabling. */
4287                 ironlake_fdi_pll_enable(intel_crtc);
4288         } else {
4289                 assert_fdi_tx_disabled(dev_priv, pipe);
4290                 assert_fdi_rx_disabled(dev_priv, pipe);
4291         }
4292
4293         ironlake_pfit_enable(intel_crtc);
4294
4295         /*
4296          * On ILK+ LUT must be loaded before the pipe is running but with
4297          * clocks enabled
4298          */
4299         intel_crtc_load_lut(crtc);
4300
4301         intel_update_watermarks(crtc);
4302         intel_enable_pipe(intel_crtc);
4303
4304         if (intel_crtc->config.has_pch_encoder)
4305                 ironlake_pch_enable(crtc);
4306
4307         assert_vblank_disabled(crtc);
4308         drm_crtc_vblank_on(crtc);
4309
4310         for_each_encoder_on_crtc(dev, crtc, encoder)
4311                 encoder->enable(encoder);
4312
4313         if (HAS_PCH_CPT(dev))
4314                 cpt_verify_modeset(dev, intel_crtc->pipe);
4315
4316         intel_crtc_enable_planes(crtc);
4317 }
4318
4319 /* IPS only exists on ULT machines and is tied to pipe A. */
4320 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4321 {
4322         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4323 }
4324
4325 /*
4326  * This implements the workaround described in the "notes" section of the mode
4327  * set sequence documentation. When going from no pipes or single pipe to
4328  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4329  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4330  */
4331 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4332 {
4333         struct drm_device *dev = crtc->base.dev;
4334         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4335
4336         /* We want to get the other_active_crtc only if there's only 1 other
4337          * active crtc. */
4338         for_each_intel_crtc(dev, crtc_it) {
4339                 if (!crtc_it->active || crtc_it == crtc)
4340                         continue;
4341
4342                 if (other_active_crtc)
4343                         return;
4344
4345                 other_active_crtc = crtc_it;
4346         }
4347         if (!other_active_crtc)
4348                 return;
4349
4350         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4351         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4352 }
4353
4354 static void haswell_crtc_enable(struct drm_crtc *crtc)
4355 {
4356         struct drm_device *dev = crtc->dev;
4357         struct drm_i915_private *dev_priv = dev->dev_private;
4358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4359         struct intel_encoder *encoder;
4360         int pipe = intel_crtc->pipe;
4361
4362         WARN_ON(!crtc->enabled);
4363
4364         if (intel_crtc->active)
4365                 return;
4366
4367         if (intel_crtc_to_shared_dpll(intel_crtc))
4368                 intel_enable_shared_dpll(intel_crtc);
4369
4370         if (intel_crtc->config.has_dp_encoder)
4371                 intel_dp_set_m_n(intel_crtc);
4372
4373         intel_set_pipe_timings(intel_crtc);
4374
4375         if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4376                 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4377                            intel_crtc->config.pixel_multiplier - 1);
4378         }
4379
4380         if (intel_crtc->config.has_pch_encoder) {
4381                 intel_cpu_transcoder_set_m_n(intel_crtc,
4382                                      &intel_crtc->config.fdi_m_n, NULL);
4383         }
4384
4385         haswell_set_pipeconf(crtc);
4386
4387         intel_set_pipe_csc(crtc);
4388
4389         intel_crtc->active = true;
4390
4391         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4392         for_each_encoder_on_crtc(dev, crtc, encoder)
4393                 if (encoder->pre_enable)
4394                         encoder->pre_enable(encoder);
4395
4396         if (intel_crtc->config.has_pch_encoder) {
4397                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4398                                                       true);
4399                 dev_priv->display.fdi_link_train(crtc);
4400         }
4401
4402         intel_ddi_enable_pipe_clock(intel_crtc);
4403
4404         if (IS_SKYLAKE(dev))
4405                 skylake_pfit_enable(intel_crtc);
4406         else
4407                 ironlake_pfit_enable(intel_crtc);
4408
4409         /*
4410          * On ILK+ LUT must be loaded before the pipe is running but with
4411          * clocks enabled
4412          */
4413         intel_crtc_load_lut(crtc);
4414
4415         intel_ddi_set_pipe_settings(crtc);
4416         intel_ddi_enable_transcoder_func(crtc);
4417
4418         intel_update_watermarks(crtc);
4419         intel_enable_pipe(intel_crtc);
4420
4421         if (intel_crtc->config.has_pch_encoder)
4422                 lpt_pch_enable(crtc);
4423
4424         if (intel_crtc->config.dp_encoder_is_mst)
4425                 intel_ddi_set_vc_payload_alloc(crtc, true);
4426
4427         assert_vblank_disabled(crtc);
4428         drm_crtc_vblank_on(crtc);
4429
4430         for_each_encoder_on_crtc(dev, crtc, encoder) {
4431                 encoder->enable(encoder);
4432                 intel_opregion_notify_encoder(encoder, true);
4433         }
4434
4435         /* If we change the relative order between pipe/planes enabling, we need
4436          * to change the workaround. */
4437         haswell_mode_set_planes_workaround(intel_crtc);
4438         intel_crtc_enable_planes(crtc);
4439 }
4440
4441 static void skylake_pfit_disable(struct intel_crtc *crtc)
4442 {
4443         struct drm_device *dev = crtc->base.dev;
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445         int pipe = crtc->pipe;
4446
4447         /* To avoid upsetting the power well on haswell only disable the pfit if
4448          * it's in use. The hw state code will make sure we get this right. */
4449         if (crtc->config.pch_pfit.enabled) {
4450                 I915_WRITE(PS_CTL(pipe), 0);
4451                 I915_WRITE(PS_WIN_POS(pipe), 0);
4452                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4453         }
4454 }
4455
4456 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4457 {
4458         struct drm_device *dev = crtc->base.dev;
4459         struct drm_i915_private *dev_priv = dev->dev_private;
4460         int pipe = crtc->pipe;
4461
4462         /* To avoid upsetting the power well on haswell only disable the pfit if
4463          * it's in use. The hw state code will make sure we get this right. */
4464         if (crtc->config.pch_pfit.enabled) {
4465                 I915_WRITE(PF_CTL(pipe), 0);
4466                 I915_WRITE(PF_WIN_POS(pipe), 0);
4467                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4468         }
4469 }
4470
4471 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4472 {
4473         struct drm_device *dev = crtc->dev;
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4476         struct intel_encoder *encoder;
4477         int pipe = intel_crtc->pipe;
4478         u32 reg, temp;
4479
4480         if (!intel_crtc->active)
4481                 return;
4482
4483         intel_crtc_disable_planes(crtc);
4484
4485         for_each_encoder_on_crtc(dev, crtc, encoder)
4486                 encoder->disable(encoder);
4487
4488         drm_crtc_vblank_off(crtc);
4489         assert_vblank_disabled(crtc);
4490
4491         if (intel_crtc->config.has_pch_encoder)
4492                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4493
4494         intel_disable_pipe(intel_crtc);
4495
4496         ironlake_pfit_disable(intel_crtc);
4497
4498         for_each_encoder_on_crtc(dev, crtc, encoder)
4499                 if (encoder->post_disable)
4500                         encoder->post_disable(encoder);
4501
4502         if (intel_crtc->config.has_pch_encoder) {
4503                 ironlake_fdi_disable(crtc);
4504
4505                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4506
4507                 if (HAS_PCH_CPT(dev)) {
4508                         /* disable TRANS_DP_CTL */
4509                         reg = TRANS_DP_CTL(pipe);
4510                         temp = I915_READ(reg);
4511                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4512                                   TRANS_DP_PORT_SEL_MASK);
4513                         temp |= TRANS_DP_PORT_SEL_NONE;
4514                         I915_WRITE(reg, temp);
4515
4516                         /* disable DPLL_SEL */
4517                         temp = I915_READ(PCH_DPLL_SEL);
4518                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4519                         I915_WRITE(PCH_DPLL_SEL, temp);
4520                 }
4521
4522                 /* disable PCH DPLL */
4523                 intel_disable_shared_dpll(intel_crtc);
4524
4525                 ironlake_fdi_pll_disable(intel_crtc);
4526         }
4527
4528         intel_crtc->active = false;
4529         intel_update_watermarks(crtc);
4530
4531         mutex_lock(&dev->struct_mutex);
4532         intel_fbc_update(dev);
4533         mutex_unlock(&dev->struct_mutex);
4534 }
4535
4536 static void haswell_crtc_disable(struct drm_crtc *crtc)
4537 {
4538         struct drm_device *dev = crtc->dev;
4539         struct drm_i915_private *dev_priv = dev->dev_private;
4540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541         struct intel_encoder *encoder;
4542         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4543
4544         if (!intel_crtc->active)
4545                 return;
4546
4547         intel_crtc_disable_planes(crtc);
4548
4549         for_each_encoder_on_crtc(dev, crtc, encoder) {
4550                 intel_opregion_notify_encoder(encoder, false);
4551                 encoder->disable(encoder);
4552         }
4553
4554         drm_crtc_vblank_off(crtc);
4555         assert_vblank_disabled(crtc);
4556
4557         if (intel_crtc->config.has_pch_encoder)
4558                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4559                                                       false);
4560         intel_disable_pipe(intel_crtc);
4561
4562         if (intel_crtc->config.dp_encoder_is_mst)
4563                 intel_ddi_set_vc_payload_alloc(crtc, false);
4564
4565         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4566
4567         if (IS_SKYLAKE(dev))
4568                 skylake_pfit_disable(intel_crtc);
4569         else
4570                 ironlake_pfit_disable(intel_crtc);
4571
4572         intel_ddi_disable_pipe_clock(intel_crtc);
4573
4574         if (intel_crtc->config.has_pch_encoder) {
4575                 lpt_disable_pch_transcoder(dev_priv);
4576                 intel_ddi_fdi_disable(crtc);
4577         }
4578
4579         for_each_encoder_on_crtc(dev, crtc, encoder)
4580                 if (encoder->post_disable)
4581                         encoder->post_disable(encoder);
4582
4583         intel_crtc->active = false;
4584         intel_update_watermarks(crtc);
4585
4586         mutex_lock(&dev->struct_mutex);
4587         intel_fbc_update(dev);
4588         mutex_unlock(&dev->struct_mutex);
4589
4590         if (intel_crtc_to_shared_dpll(intel_crtc))
4591                 intel_disable_shared_dpll(intel_crtc);
4592 }
4593
4594 static void ironlake_crtc_off(struct drm_crtc *crtc)
4595 {
4596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4597         intel_put_shared_dpll(intel_crtc);
4598 }
4599
4600
4601 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4602 {
4603         struct drm_device *dev = crtc->base.dev;
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605         struct intel_crtc_config *pipe_config = &crtc->config;
4606
4607         if (!crtc->config.gmch_pfit.control)
4608                 return;
4609
4610         /*
4611          * The panel fitter should only be adjusted whilst the pipe is disabled,
4612          * according to register description and PRM.
4613          */
4614         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4615         assert_pipe_disabled(dev_priv, crtc->pipe);
4616
4617         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4618         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4619
4620         /* Border color in case we don't scale up to the full screen. Black by
4621          * default, change to something else for debugging. */
4622         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4623 }
4624
4625 static enum intel_display_power_domain port_to_power_domain(enum port port)
4626 {
4627         switch (port) {
4628         case PORT_A:
4629                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4630         case PORT_B:
4631                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4632         case PORT_C:
4633                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4634         case PORT_D:
4635                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4636         default:
4637                 WARN_ON_ONCE(1);
4638                 return POWER_DOMAIN_PORT_OTHER;
4639         }
4640 }
4641
4642 #define for_each_power_domain(domain, mask)                             \
4643         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4644                 if ((1 << (domain)) & (mask))
4645
4646 enum intel_display_power_domain
4647 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4648 {
4649         struct drm_device *dev = intel_encoder->base.dev;
4650         struct intel_digital_port *intel_dig_port;
4651
4652         switch (intel_encoder->type) {
4653         case INTEL_OUTPUT_UNKNOWN:
4654                 /* Only DDI platforms should ever use this output type */
4655                 WARN_ON_ONCE(!HAS_DDI(dev));
4656         case INTEL_OUTPUT_DISPLAYPORT:
4657         case INTEL_OUTPUT_HDMI:
4658         case INTEL_OUTPUT_EDP:
4659                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4660                 return port_to_power_domain(intel_dig_port->port);
4661         case INTEL_OUTPUT_DP_MST:
4662                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4663                 return port_to_power_domain(intel_dig_port->port);
4664         case INTEL_OUTPUT_ANALOG:
4665                 return POWER_DOMAIN_PORT_CRT;
4666         case INTEL_OUTPUT_DSI:
4667                 return POWER_DOMAIN_PORT_DSI;
4668         default:
4669                 return POWER_DOMAIN_PORT_OTHER;
4670         }
4671 }
4672
4673 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4674 {
4675         struct drm_device *dev = crtc->dev;
4676         struct intel_encoder *intel_encoder;
4677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4678         enum pipe pipe = intel_crtc->pipe;
4679         unsigned long mask;
4680         enum transcoder transcoder;
4681
4682         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4683
4684         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4685         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4686         if (intel_crtc->config.pch_pfit.enabled ||
4687             intel_crtc->config.pch_pfit.force_thru)
4688                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4689
4690         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4691                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4692
4693         return mask;
4694 }
4695
4696 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4697 {
4698         struct drm_i915_private *dev_priv = dev->dev_private;
4699         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4700         struct intel_crtc *crtc;
4701
4702         /*
4703          * First get all needed power domains, then put all unneeded, to avoid
4704          * any unnecessary toggling of the power wells.
4705          */
4706         for_each_intel_crtc(dev, crtc) {
4707                 enum intel_display_power_domain domain;
4708
4709                 if (!crtc->base.enabled)
4710                         continue;
4711
4712                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4713
4714                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4715                         intel_display_power_get(dev_priv, domain);
4716         }
4717
4718         if (dev_priv->display.modeset_global_resources)
4719                 dev_priv->display.modeset_global_resources(dev);
4720
4721         for_each_intel_crtc(dev, crtc) {
4722                 enum intel_display_power_domain domain;
4723
4724                 for_each_power_domain(domain, crtc->enabled_power_domains)
4725                         intel_display_power_put(dev_priv, domain);
4726
4727                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4728         }
4729
4730         intel_display_set_init_power(dev_priv, false);
4731 }
4732
4733 /* returns HPLL frequency in kHz */
4734 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4735 {
4736         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4737
4738         /* Obtain SKU information */
4739         mutex_lock(&dev_priv->dpio_lock);
4740         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4741                 CCK_FUSE_HPLL_FREQ_MASK;
4742         mutex_unlock(&dev_priv->dpio_lock);
4743
4744         return vco_freq[hpll_freq] * 1000;
4745 }
4746
4747 static void vlv_update_cdclk(struct drm_device *dev)
4748 {
4749         struct drm_i915_private *dev_priv = dev->dev_private;
4750
4751         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4752         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4753                          dev_priv->vlv_cdclk_freq);
4754
4755         /*
4756          * Program the gmbus_freq based on the cdclk frequency.
4757          * BSpec erroneously claims we should aim for 4MHz, but
4758          * in fact 1MHz is the correct frequency.
4759          */
4760         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4761 }
4762
4763 /* Adjust CDclk dividers to allow high res or save power if possible */
4764 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4765 {
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767         u32 val, cmd;
4768
4769         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4770
4771         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4772                 cmd = 2;
4773         else if (cdclk == 266667)
4774                 cmd = 1;
4775         else
4776                 cmd = 0;
4777
4778         mutex_lock(&dev_priv->rps.hw_lock);
4779         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4780         val &= ~DSPFREQGUAR_MASK;
4781         val |= (cmd << DSPFREQGUAR_SHIFT);
4782         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4783         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4784                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4785                      50)) {
4786                 DRM_ERROR("timed out waiting for CDclk change\n");
4787         }
4788         mutex_unlock(&dev_priv->rps.hw_lock);
4789
4790         if (cdclk == 400000) {
4791                 u32 divider;
4792
4793                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4794
4795                 mutex_lock(&dev_priv->dpio_lock);
4796                 /* adjust cdclk divider */
4797                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4798                 val &= ~DISPLAY_FREQUENCY_VALUES;
4799                 val |= divider;
4800                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4801
4802                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4803                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4804                              50))
4805                         DRM_ERROR("timed out waiting for CDclk change\n");
4806                 mutex_unlock(&dev_priv->dpio_lock);
4807         }
4808
4809         mutex_lock(&dev_priv->dpio_lock);
4810         /* adjust self-refresh exit latency value */
4811         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4812         val &= ~0x7f;
4813
4814         /*
4815          * For high bandwidth configs, we set a higher latency in the bunit
4816          * so that the core display fetch happens in time to avoid underruns.
4817          */
4818         if (cdclk == 400000)
4819                 val |= 4500 / 250; /* 4.5 usec */
4820         else
4821                 val |= 3000 / 250; /* 3.0 usec */
4822         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4823         mutex_unlock(&dev_priv->dpio_lock);
4824
4825         vlv_update_cdclk(dev);
4826 }
4827
4828 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4829 {
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         u32 val, cmd;
4832
4833         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4834
4835         switch (cdclk) {
4836         case 400000:
4837                 cmd = 3;
4838                 break;
4839         case 333333:
4840         case 320000:
4841                 cmd = 2;
4842                 break;
4843         case 266667:
4844                 cmd = 1;
4845                 break;
4846         case 200000:
4847                 cmd = 0;
4848                 break;
4849         default:
4850                 MISSING_CASE(cdclk);
4851                 return;
4852         }
4853
4854         mutex_lock(&dev_priv->rps.hw_lock);
4855         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4856         val &= ~DSPFREQGUAR_MASK_CHV;
4857         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4858         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4859         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4860                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4861                      50)) {
4862                 DRM_ERROR("timed out waiting for CDclk change\n");
4863         }
4864         mutex_unlock(&dev_priv->rps.hw_lock);
4865
4866         vlv_update_cdclk(dev);
4867 }
4868
4869 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4870                                  int max_pixclk)
4871 {
4872         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4873
4874         /* FIXME: Punit isn't quite ready yet */
4875         if (IS_CHERRYVIEW(dev_priv->dev))
4876                 return 400000;
4877
4878         /*
4879          * Really only a few cases to deal with, as only 4 CDclks are supported:
4880          *   200MHz
4881          *   267MHz
4882          *   320/333MHz (depends on HPLL freq)
4883          *   400MHz
4884          * So we check to see whether we're above 90% of the lower bin and
4885          * adjust if needed.
4886          *
4887          * We seem to get an unstable or solid color picture at 200MHz.
4888          * Not sure what's wrong. For now use 200MHz only when all pipes
4889          * are off.
4890          */
4891         if (max_pixclk > freq_320*9/10)
4892                 return 400000;
4893         else if (max_pixclk > 266667*9/10)
4894                 return freq_320;
4895         else if (max_pixclk > 0)
4896                 return 266667;
4897         else
4898                 return 200000;
4899 }
4900
4901 /* compute the max pixel clock for new configuration */
4902 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4903 {
4904         struct drm_device *dev = dev_priv->dev;
4905         struct intel_crtc *intel_crtc;
4906         int max_pixclk = 0;
4907
4908         for_each_intel_crtc(dev, intel_crtc) {
4909                 if (intel_crtc->new_enabled)
4910                         max_pixclk = max(max_pixclk,
4911                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4912         }
4913
4914         return max_pixclk;
4915 }
4916
4917 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4918                                             unsigned *prepare_pipes)
4919 {
4920         struct drm_i915_private *dev_priv = dev->dev_private;
4921         struct intel_crtc *intel_crtc;
4922         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4923
4924         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4925             dev_priv->vlv_cdclk_freq)
4926                 return;
4927
4928         /* disable/enable all currently active pipes while we change cdclk */
4929         for_each_intel_crtc(dev, intel_crtc)
4930                 if (intel_crtc->base.enabled)
4931                         *prepare_pipes |= (1 << intel_crtc->pipe);
4932 }
4933
4934 static void valleyview_modeset_global_resources(struct drm_device *dev)
4935 {
4936         struct drm_i915_private *dev_priv = dev->dev_private;
4937         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4938         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4939
4940         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4941                 /*
4942                  * FIXME: We can end up here with all power domains off, yet
4943                  * with a CDCLK frequency other than the minimum. To account
4944                  * for this take the PIPE-A power domain, which covers the HW
4945                  * blocks needed for the following programming. This can be
4946                  * removed once it's guaranteed that we get here either with
4947                  * the minimum CDCLK set, or the required power domains
4948                  * enabled.
4949                  */
4950                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4951
4952                 if (IS_CHERRYVIEW(dev))
4953                         cherryview_set_cdclk(dev, req_cdclk);
4954                 else
4955                         valleyview_set_cdclk(dev, req_cdclk);
4956
4957                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4958         }
4959 }
4960
4961 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4962 {
4963         struct drm_device *dev = crtc->dev;
4964         struct drm_i915_private *dev_priv = to_i915(dev);
4965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966         struct intel_encoder *encoder;
4967         int pipe = intel_crtc->pipe;
4968         bool is_dsi;
4969
4970         WARN_ON(!crtc->enabled);
4971
4972         if (intel_crtc->active)
4973                 return;
4974
4975         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4976
4977         if (!is_dsi) {
4978                 if (IS_CHERRYVIEW(dev))
4979                         chv_prepare_pll(intel_crtc, &intel_crtc->config);
4980                 else
4981                         vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4982         }
4983
4984         if (intel_crtc->config.has_dp_encoder)
4985                 intel_dp_set_m_n(intel_crtc);
4986
4987         intel_set_pipe_timings(intel_crtc);
4988
4989         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4990                 struct drm_i915_private *dev_priv = dev->dev_private;
4991
4992                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4993                 I915_WRITE(CHV_CANVAS(pipe), 0);
4994         }
4995
4996         i9xx_set_pipeconf(intel_crtc);
4997
4998         intel_crtc->active = true;
4999
5000         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5001
5002         for_each_encoder_on_crtc(dev, crtc, encoder)
5003                 if (encoder->pre_pll_enable)
5004                         encoder->pre_pll_enable(encoder);
5005
5006         if (!is_dsi) {
5007                 if (IS_CHERRYVIEW(dev))
5008                         chv_enable_pll(intel_crtc, &intel_crtc->config);
5009                 else
5010                         vlv_enable_pll(intel_crtc, &intel_crtc->config);
5011         }
5012
5013         for_each_encoder_on_crtc(dev, crtc, encoder)
5014                 if (encoder->pre_enable)
5015                         encoder->pre_enable(encoder);
5016
5017         i9xx_pfit_enable(intel_crtc);
5018
5019         intel_crtc_load_lut(crtc);
5020
5021         intel_update_watermarks(crtc);
5022         intel_enable_pipe(intel_crtc);
5023
5024         assert_vblank_disabled(crtc);
5025         drm_crtc_vblank_on(crtc);
5026
5027         for_each_encoder_on_crtc(dev, crtc, encoder)
5028                 encoder->enable(encoder);
5029
5030         intel_crtc_enable_planes(crtc);
5031
5032         /* Underruns don't raise interrupts, so check manually. */
5033         i9xx_check_fifo_underruns(dev_priv);
5034 }
5035
5036 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5037 {
5038         struct drm_device *dev = crtc->base.dev;
5039         struct drm_i915_private *dev_priv = dev->dev_private;
5040
5041         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5042         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5043 }
5044
5045 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5046 {
5047         struct drm_device *dev = crtc->dev;
5048         struct drm_i915_private *dev_priv = to_i915(dev);
5049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5050         struct intel_encoder *encoder;
5051         int pipe = intel_crtc->pipe;
5052
5053         WARN_ON(!crtc->enabled);
5054
5055         if (intel_crtc->active)
5056                 return;
5057
5058         i9xx_set_pll_dividers(intel_crtc);
5059
5060         if (intel_crtc->config.has_dp_encoder)
5061                 intel_dp_set_m_n(intel_crtc);
5062
5063         intel_set_pipe_timings(intel_crtc);
5064
5065         i9xx_set_pipeconf(intel_crtc);
5066
5067         intel_crtc->active = true;
5068
5069         if (!IS_GEN2(dev))
5070                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5071
5072         for_each_encoder_on_crtc(dev, crtc, encoder)
5073                 if (encoder->pre_enable)
5074                         encoder->pre_enable(encoder);
5075
5076         i9xx_enable_pll(intel_crtc);
5077
5078         i9xx_pfit_enable(intel_crtc);
5079
5080         intel_crtc_load_lut(crtc);
5081
5082         intel_update_watermarks(crtc);
5083         intel_enable_pipe(intel_crtc);
5084
5085         assert_vblank_disabled(crtc);
5086         drm_crtc_vblank_on(crtc);
5087
5088         for_each_encoder_on_crtc(dev, crtc, encoder)
5089                 encoder->enable(encoder);
5090
5091         intel_crtc_enable_planes(crtc);
5092
5093         /*
5094          * Gen2 reports pipe underruns whenever all planes are disabled.
5095          * So don't enable underrun reporting before at least some planes
5096          * are enabled.
5097          * FIXME: Need to fix the logic to work when we turn off all planes
5098          * but leave the pipe running.
5099          */
5100         if (IS_GEN2(dev))
5101                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5102
5103         /* Underruns don't raise interrupts, so check manually. */
5104         i9xx_check_fifo_underruns(dev_priv);
5105 }
5106
5107 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5108 {
5109         struct drm_device *dev = crtc->base.dev;
5110         struct drm_i915_private *dev_priv = dev->dev_private;
5111
5112         if (!crtc->config.gmch_pfit.control)
5113                 return;
5114
5115         assert_pipe_disabled(dev_priv, crtc->pipe);
5116
5117         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5118                          I915_READ(PFIT_CONTROL));
5119         I915_WRITE(PFIT_CONTROL, 0);
5120 }
5121
5122 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5123 {
5124         struct drm_device *dev = crtc->dev;
5125         struct drm_i915_private *dev_priv = dev->dev_private;
5126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5127         struct intel_encoder *encoder;
5128         int pipe = intel_crtc->pipe;
5129
5130         if (!intel_crtc->active)
5131                 return;
5132
5133         /*
5134          * Gen2 reports pipe underruns whenever all planes are disabled.
5135          * So diasble underrun reporting before all the planes get disabled.
5136          * FIXME: Need to fix the logic to work when we turn off all planes
5137          * but leave the pipe running.
5138          */
5139         if (IS_GEN2(dev))
5140                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5141
5142         /*
5143          * Vblank time updates from the shadow to live plane control register
5144          * are blocked if the memory self-refresh mode is active at that
5145          * moment. So to make sure the plane gets truly disabled, disable
5146          * first the self-refresh mode. The self-refresh enable bit in turn
5147          * will be checked/applied by the HW only at the next frame start
5148          * event which is after the vblank start event, so we need to have a
5149          * wait-for-vblank between disabling the plane and the pipe.
5150          */
5151         intel_set_memory_cxsr(dev_priv, false);
5152         intel_crtc_disable_planes(crtc);
5153
5154         /*
5155          * On gen2 planes are double buffered but the pipe isn't, so we must
5156          * wait for planes to fully turn off before disabling the pipe.
5157          * We also need to wait on all gmch platforms because of the
5158          * self-refresh mode constraint explained above.
5159          */
5160         intel_wait_for_vblank(dev, pipe);
5161
5162         for_each_encoder_on_crtc(dev, crtc, encoder)
5163                 encoder->disable(encoder);
5164
5165         drm_crtc_vblank_off(crtc);
5166         assert_vblank_disabled(crtc);
5167
5168         intel_disable_pipe(intel_crtc);
5169
5170         i9xx_pfit_disable(intel_crtc);
5171
5172         for_each_encoder_on_crtc(dev, crtc, encoder)
5173                 if (encoder->post_disable)
5174                         encoder->post_disable(encoder);
5175
5176         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5177                 if (IS_CHERRYVIEW(dev))
5178                         chv_disable_pll(dev_priv, pipe);
5179                 else if (IS_VALLEYVIEW(dev))
5180                         vlv_disable_pll(dev_priv, pipe);
5181                 else
5182                         i9xx_disable_pll(intel_crtc);
5183         }
5184
5185         if (!IS_GEN2(dev))
5186                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5187
5188         intel_crtc->active = false;
5189         intel_update_watermarks(crtc);
5190
5191         mutex_lock(&dev->struct_mutex);
5192         intel_fbc_update(dev);
5193         mutex_unlock(&dev->struct_mutex);
5194 }
5195
5196 static void i9xx_crtc_off(struct drm_crtc *crtc)
5197 {
5198 }
5199
5200 /* Master function to enable/disable CRTC and corresponding power wells */
5201 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5202 {
5203         struct drm_device *dev = crtc->dev;
5204         struct drm_i915_private *dev_priv = dev->dev_private;
5205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206         enum intel_display_power_domain domain;
5207         unsigned long domains;
5208
5209         if (enable) {
5210                 if (!intel_crtc->active) {
5211                         domains = get_crtc_power_domains(crtc);
5212                         for_each_power_domain(domain, domains)
5213                                 intel_display_power_get(dev_priv, domain);
5214                         intel_crtc->enabled_power_domains = domains;
5215
5216                         dev_priv->display.crtc_enable(crtc);
5217                 }
5218         } else {
5219                 if (intel_crtc->active) {
5220                         dev_priv->display.crtc_disable(crtc);
5221
5222                         domains = intel_crtc->enabled_power_domains;
5223                         for_each_power_domain(domain, domains)
5224                                 intel_display_power_put(dev_priv, domain);
5225                         intel_crtc->enabled_power_domains = 0;
5226                 }
5227         }
5228 }
5229
5230 /**
5231  * Sets the power management mode of the pipe and plane.
5232  */
5233 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5234 {
5235         struct drm_device *dev = crtc->dev;
5236         struct intel_encoder *intel_encoder;
5237         bool enable = false;
5238
5239         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5240                 enable |= intel_encoder->connectors_active;
5241
5242         intel_crtc_control(crtc, enable);
5243 }
5244
5245 static void intel_crtc_disable(struct drm_crtc *crtc)
5246 {
5247         struct drm_device *dev = crtc->dev;
5248         struct drm_connector *connector;
5249         struct drm_i915_private *dev_priv = dev->dev_private;
5250
5251         /* crtc should still be enabled when we disable it. */
5252         WARN_ON(!crtc->enabled);
5253
5254         dev_priv->display.crtc_disable(crtc);
5255         dev_priv->display.off(crtc);
5256
5257         crtc->primary->funcs->disable_plane(crtc->primary);
5258
5259         /* Update computed state. */
5260         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5261                 if (!connector->encoder || !connector->encoder->crtc)
5262                         continue;
5263
5264                 if (connector->encoder->crtc != crtc)
5265                         continue;
5266
5267                 connector->dpms = DRM_MODE_DPMS_OFF;
5268                 to_intel_encoder(connector->encoder)->connectors_active = false;
5269         }
5270 }
5271
5272 void intel_encoder_destroy(struct drm_encoder *encoder)
5273 {
5274         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5275
5276         drm_encoder_cleanup(encoder);
5277         kfree(intel_encoder);
5278 }
5279
5280 /* Simple dpms helper for encoders with just one connector, no cloning and only
5281  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5282  * state of the entire output pipe. */
5283 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5284 {
5285         if (mode == DRM_MODE_DPMS_ON) {
5286                 encoder->connectors_active = true;
5287
5288                 intel_crtc_update_dpms(encoder->base.crtc);
5289         } else {
5290                 encoder->connectors_active = false;
5291
5292                 intel_crtc_update_dpms(encoder->base.crtc);
5293         }
5294 }
5295
5296 /* Cross check the actual hw state with our own modeset state tracking (and it's
5297  * internal consistency). */
5298 static void intel_connector_check_state(struct intel_connector *connector)
5299 {
5300         if (connector->get_hw_state(connector)) {
5301                 struct intel_encoder *encoder = connector->encoder;
5302                 struct drm_crtc *crtc;
5303                 bool encoder_enabled;
5304                 enum pipe pipe;
5305
5306                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5307                               connector->base.base.id,
5308                               connector->base.name);
5309
5310                 /* there is no real hw state for MST connectors */
5311                 if (connector->mst_port)
5312                         return;
5313
5314                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5315                      "wrong connector dpms state\n");
5316                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5317                      "active connector not linked to encoder\n");
5318
5319                 if (encoder) {
5320                         I915_STATE_WARN(!encoder->connectors_active,
5321                              "encoder->connectors_active not set\n");
5322
5323                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5324                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5325                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5326                                 return;
5327
5328                         crtc = encoder->base.crtc;
5329
5330                         I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5331                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5332                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5333                              "encoder active on the wrong pipe\n");
5334                 }
5335         }
5336 }
5337
5338 /* Even simpler default implementation, if there's really no special case to
5339  * consider. */
5340 void intel_connector_dpms(struct drm_connector *connector, int mode)
5341 {
5342         /* All the simple cases only support two dpms states. */
5343         if (mode != DRM_MODE_DPMS_ON)
5344                 mode = DRM_MODE_DPMS_OFF;
5345
5346         if (mode == connector->dpms)
5347                 return;
5348
5349         connector->dpms = mode;
5350
5351         /* Only need to change hw state when actually enabled */
5352         if (connector->encoder)
5353                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5354
5355         intel_modeset_check_state(connector->dev);
5356 }
5357
5358 /* Simple connector->get_hw_state implementation for encoders that support only
5359  * one connector and no cloning and hence the encoder state determines the state
5360  * of the connector. */
5361 bool intel_connector_get_hw_state(struct intel_connector *connector)
5362 {
5363         enum pipe pipe = 0;
5364         struct intel_encoder *encoder = connector->encoder;
5365
5366         return encoder->get_hw_state(encoder, &pipe);
5367 }
5368
5369 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5370                                      struct intel_crtc_config *pipe_config)
5371 {
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         struct intel_crtc *pipe_B_crtc =
5374                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5375
5376         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5377                       pipe_name(pipe), pipe_config->fdi_lanes);
5378         if (pipe_config->fdi_lanes > 4) {
5379                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5380                               pipe_name(pipe), pipe_config->fdi_lanes);
5381                 return false;
5382         }
5383
5384         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5385                 if (pipe_config->fdi_lanes > 2) {
5386                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5387                                       pipe_config->fdi_lanes);
5388                         return false;
5389                 } else {
5390                         return true;
5391                 }
5392         }
5393
5394         if (INTEL_INFO(dev)->num_pipes == 2)
5395                 return true;
5396
5397         /* Ivybridge 3 pipe is really complicated */
5398         switch (pipe) {
5399         case PIPE_A:
5400                 return true;
5401         case PIPE_B:
5402                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5403                     pipe_config->fdi_lanes > 2) {
5404                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5405                                       pipe_name(pipe), pipe_config->fdi_lanes);
5406                         return false;
5407                 }
5408                 return true;
5409         case PIPE_C:
5410                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5411                     pipe_B_crtc->config.fdi_lanes <= 2) {
5412                         if (pipe_config->fdi_lanes > 2) {
5413                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5414                                               pipe_name(pipe), pipe_config->fdi_lanes);
5415                                 return false;
5416                         }
5417                 } else {
5418                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5419                         return false;
5420                 }
5421                 return true;
5422         default:
5423                 BUG();
5424         }
5425 }
5426
5427 #define RETRY 1
5428 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5429                                        struct intel_crtc_config *pipe_config)
5430 {
5431         struct drm_device *dev = intel_crtc->base.dev;
5432         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5433         int lane, link_bw, fdi_dotclock;
5434         bool setup_ok, needs_recompute = false;
5435
5436 retry:
5437         /* FDI is a binary signal running at ~2.7GHz, encoding
5438          * each output octet as 10 bits. The actual frequency
5439          * is stored as a divider into a 100MHz clock, and the
5440          * mode pixel clock is stored in units of 1KHz.
5441          * Hence the bw of each lane in terms of the mode signal
5442          * is:
5443          */
5444         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5445
5446         fdi_dotclock = adjusted_mode->crtc_clock;
5447
5448         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5449                                            pipe_config->pipe_bpp);
5450
5451         pipe_config->fdi_lanes = lane;
5452
5453         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5454                                link_bw, &pipe_config->fdi_m_n);
5455
5456         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5457                                             intel_crtc->pipe, pipe_config);
5458         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5459                 pipe_config->pipe_bpp -= 2*3;
5460                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5461                               pipe_config->pipe_bpp);
5462                 needs_recompute = true;
5463                 pipe_config->bw_constrained = true;
5464
5465                 goto retry;
5466         }
5467
5468         if (needs_recompute)
5469                 return RETRY;
5470
5471         return setup_ok ? 0 : -EINVAL;
5472 }
5473
5474 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5475                                    struct intel_crtc_config *pipe_config)
5476 {
5477         pipe_config->ips_enabled = i915.enable_ips &&
5478                                    hsw_crtc_supports_ips(crtc) &&
5479                                    pipe_config->pipe_bpp <= 24;
5480 }
5481
5482 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5483                                      struct intel_crtc_config *pipe_config)
5484 {
5485         struct drm_device *dev = crtc->base.dev;
5486         struct drm_i915_private *dev_priv = dev->dev_private;
5487         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5488
5489         /* FIXME should check pixel clock limits on all platforms */
5490         if (INTEL_INFO(dev)->gen < 4) {
5491                 int clock_limit =
5492                         dev_priv->display.get_display_clock_speed(dev);
5493
5494                 /*
5495                  * Enable pixel doubling when the dot clock
5496                  * is > 90% of the (display) core speed.
5497                  *
5498                  * GDG double wide on either pipe,
5499                  * otherwise pipe A only.
5500                  */
5501                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5502                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5503                         clock_limit *= 2;
5504                         pipe_config->double_wide = true;
5505                 }
5506
5507                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5508                         return -EINVAL;
5509         }
5510
5511         /*
5512          * Pipe horizontal size must be even in:
5513          * - DVO ganged mode
5514          * - LVDS dual channel mode
5515          * - Double wide pipe
5516          */
5517         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5518              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5519                 pipe_config->pipe_src_w &= ~1;
5520
5521         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5522          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5523          */
5524         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5525                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5526                 return -EINVAL;
5527
5528         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5529                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5530         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5531                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5532                  * for lvds. */
5533                 pipe_config->pipe_bpp = 8*3;
5534         }
5535
5536         if (HAS_IPS(dev))
5537                 hsw_compute_ips_config(crtc, pipe_config);
5538
5539         if (pipe_config->has_pch_encoder)
5540                 return ironlake_fdi_compute_config(crtc, pipe_config);
5541
5542         return 0;
5543 }
5544
5545 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5546 {
5547         struct drm_i915_private *dev_priv = dev->dev_private;
5548         u32 val;
5549         int divider;
5550
5551         /* FIXME: Punit isn't quite ready yet */
5552         if (IS_CHERRYVIEW(dev))
5553                 return 400000;
5554
5555         if (dev_priv->hpll_freq == 0)
5556                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5557
5558         mutex_lock(&dev_priv->dpio_lock);
5559         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5560         mutex_unlock(&dev_priv->dpio_lock);
5561
5562         divider = val & DISPLAY_FREQUENCY_VALUES;
5563
5564         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5565              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5566              "cdclk change in progress\n");
5567
5568         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5569 }
5570
5571 static int i945_get_display_clock_speed(struct drm_device *dev)
5572 {
5573         return 400000;
5574 }
5575
5576 static int i915_get_display_clock_speed(struct drm_device *dev)
5577 {
5578         return 333000;
5579 }
5580
5581 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5582 {
5583         return 200000;
5584 }
5585
5586 static int pnv_get_display_clock_speed(struct drm_device *dev)
5587 {
5588         u16 gcfgc = 0;
5589
5590         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5591
5592         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5593         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5594                 return 267000;
5595         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5596                 return 333000;
5597         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5598                 return 444000;
5599         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5600                 return 200000;
5601         default:
5602                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5603         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5604                 return 133000;
5605         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5606                 return 167000;
5607         }
5608 }
5609
5610 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5611 {
5612         u16 gcfgc = 0;
5613
5614         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5615
5616         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5617                 return 133000;
5618         else {
5619                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5620                 case GC_DISPLAY_CLOCK_333_MHZ:
5621                         return 333000;
5622                 default:
5623                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5624                         return 190000;
5625                 }
5626         }
5627 }
5628
5629 static int i865_get_display_clock_speed(struct drm_device *dev)
5630 {
5631         return 266000;
5632 }
5633
5634 static int i855_get_display_clock_speed(struct drm_device *dev)
5635 {
5636         u16 hpllcc = 0;
5637         /* Assume that the hardware is in the high speed state.  This
5638          * should be the default.
5639          */
5640         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5641         case GC_CLOCK_133_200:
5642         case GC_CLOCK_100_200:
5643                 return 200000;
5644         case GC_CLOCK_166_250:
5645                 return 250000;
5646         case GC_CLOCK_100_133:
5647                 return 133000;
5648         }
5649
5650         /* Shouldn't happen */
5651         return 0;
5652 }
5653
5654 static int i830_get_display_clock_speed(struct drm_device *dev)
5655 {
5656         return 133000;
5657 }
5658
5659 static void
5660 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5661 {
5662         while (*num > DATA_LINK_M_N_MASK ||
5663                *den > DATA_LINK_M_N_MASK) {
5664                 *num >>= 1;
5665                 *den >>= 1;
5666         }
5667 }
5668
5669 static void compute_m_n(unsigned int m, unsigned int n,
5670                         uint32_t *ret_m, uint32_t *ret_n)
5671 {
5672         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5673         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5674         intel_reduce_m_n_ratio(ret_m, ret_n);
5675 }
5676
5677 void
5678 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5679                        int pixel_clock, int link_clock,
5680                        struct intel_link_m_n *m_n)
5681 {
5682         m_n->tu = 64;
5683
5684         compute_m_n(bits_per_pixel * pixel_clock,
5685                     link_clock * nlanes * 8,
5686                     &m_n->gmch_m, &m_n->gmch_n);
5687
5688         compute_m_n(pixel_clock, link_clock,
5689                     &m_n->link_m, &m_n->link_n);
5690 }
5691
5692 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5693 {
5694         if (i915.panel_use_ssc >= 0)
5695                 return i915.panel_use_ssc != 0;
5696         return dev_priv->vbt.lvds_use_ssc
5697                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5698 }
5699
5700 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5701 {
5702         struct drm_device *dev = crtc->base.dev;
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704         int refclk;
5705
5706         if (IS_VALLEYVIEW(dev)) {
5707                 refclk = 100000;
5708         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5709             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5710                 refclk = dev_priv->vbt.lvds_ssc_freq;
5711                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5712         } else if (!IS_GEN2(dev)) {
5713                 refclk = 96000;
5714         } else {
5715                 refclk = 48000;
5716         }
5717
5718         return refclk;
5719 }
5720
5721 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5722 {
5723         return (1 << dpll->n) << 16 | dpll->m2;
5724 }
5725
5726 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5727 {
5728         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5729 }
5730
5731 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5732                                      intel_clock_t *reduced_clock)
5733 {
5734         struct drm_device *dev = crtc->base.dev;
5735         u32 fp, fp2 = 0;
5736
5737         if (IS_PINEVIEW(dev)) {
5738                 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5739                 if (reduced_clock)
5740                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5741         } else {
5742                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5743                 if (reduced_clock)
5744                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5745         }
5746
5747         crtc->new_config->dpll_hw_state.fp0 = fp;
5748
5749         crtc->lowfreq_avail = false;
5750         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5751             reduced_clock && i915.powersave) {
5752                 crtc->new_config->dpll_hw_state.fp1 = fp2;
5753                 crtc->lowfreq_avail = true;
5754         } else {
5755                 crtc->new_config->dpll_hw_state.fp1 = fp;
5756         }
5757 }
5758
5759 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5760                 pipe)
5761 {
5762         u32 reg_val;
5763
5764         /*
5765          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5766          * and set it to a reasonable value instead.
5767          */
5768         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5769         reg_val &= 0xffffff00;
5770         reg_val |= 0x00000030;
5771         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5772
5773         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5774         reg_val &= 0x8cffffff;
5775         reg_val = 0x8c000000;
5776         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5777
5778         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5779         reg_val &= 0xffffff00;
5780         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5781
5782         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5783         reg_val &= 0x00ffffff;
5784         reg_val |= 0xb0000000;
5785         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5786 }
5787
5788 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5789                                          struct intel_link_m_n *m_n)
5790 {
5791         struct drm_device *dev = crtc->base.dev;
5792         struct drm_i915_private *dev_priv = dev->dev_private;
5793         int pipe = crtc->pipe;
5794
5795         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5796         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5797         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5798         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5799 }
5800
5801 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5802                                          struct intel_link_m_n *m_n,
5803                                          struct intel_link_m_n *m2_n2)
5804 {
5805         struct drm_device *dev = crtc->base.dev;
5806         struct drm_i915_private *dev_priv = dev->dev_private;
5807         int pipe = crtc->pipe;
5808         enum transcoder transcoder = crtc->config.cpu_transcoder;
5809
5810         if (INTEL_INFO(dev)->gen >= 5) {
5811                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5812                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5813                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5814                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5815                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5816                  * for gen < 8) and if DRRS is supported (to make sure the
5817                  * registers are not unnecessarily accessed).
5818                  */
5819                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5820                         crtc->config.has_drrs) {
5821                         I915_WRITE(PIPE_DATA_M2(transcoder),
5822                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5823                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5824                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5825                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5826                 }
5827         } else {
5828                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5829                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5830                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5831                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5832         }
5833 }
5834
5835 void intel_dp_set_m_n(struct intel_crtc *crtc)
5836 {
5837         if (crtc->config.has_pch_encoder)
5838                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5839         else
5840                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5841                                                    &crtc->config.dp_m2_n2);
5842 }
5843
5844 static void vlv_update_pll(struct intel_crtc *crtc,
5845                            struct intel_crtc_config *pipe_config)
5846 {
5847         u32 dpll, dpll_md;
5848
5849         /*
5850          * Enable DPIO clock input. We should never disable the reference
5851          * clock for pipe B, since VGA hotplug / manual detection depends
5852          * on it.
5853          */
5854         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5855                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5856         /* We should never disable this, set it here for state tracking */
5857         if (crtc->pipe == PIPE_B)
5858                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5859         dpll |= DPLL_VCO_ENABLE;
5860         pipe_config->dpll_hw_state.dpll = dpll;
5861
5862         dpll_md = (pipe_config->pixel_multiplier - 1)
5863                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5864         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5865 }
5866
5867 static void vlv_prepare_pll(struct intel_crtc *crtc,
5868                             const struct intel_crtc_config *pipe_config)
5869 {
5870         struct drm_device *dev = crtc->base.dev;
5871         struct drm_i915_private *dev_priv = dev->dev_private;
5872         int pipe = crtc->pipe;
5873         u32 mdiv;
5874         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5875         u32 coreclk, reg_val;
5876
5877         mutex_lock(&dev_priv->dpio_lock);
5878
5879         bestn = pipe_config->dpll.n;
5880         bestm1 = pipe_config->dpll.m1;
5881         bestm2 = pipe_config->dpll.m2;
5882         bestp1 = pipe_config->dpll.p1;
5883         bestp2 = pipe_config->dpll.p2;
5884
5885         /* See eDP HDMI DPIO driver vbios notes doc */
5886
5887         /* PLL B needs special handling */
5888         if (pipe == PIPE_B)
5889                 vlv_pllb_recal_opamp(dev_priv, pipe);
5890
5891         /* Set up Tx target for periodic Rcomp update */
5892         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5893
5894         /* Disable target IRef on PLL */
5895         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5896         reg_val &= 0x00ffffff;
5897         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5898
5899         /* Disable fast lock */
5900         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5901
5902         /* Set idtafcrecal before PLL is enabled */
5903         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5904         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5905         mdiv |= ((bestn << DPIO_N_SHIFT));
5906         mdiv |= (1 << DPIO_K_SHIFT);
5907
5908         /*
5909          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5910          * but we don't support that).
5911          * Note: don't use the DAC post divider as it seems unstable.
5912          */
5913         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5914         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5915
5916         mdiv |= DPIO_ENABLE_CALIBRATION;
5917         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5918
5919         /* Set HBR and RBR LPF coefficients */
5920         if (pipe_config->port_clock == 162000 ||
5921             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5922             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5923                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5924                                  0x009f0003);
5925         else
5926                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5927                                  0x00d0000f);
5928
5929         if (crtc->config.has_dp_encoder) {
5930                 /* Use SSC source */
5931                 if (pipe == PIPE_A)
5932                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5933                                          0x0df40000);
5934                 else
5935                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5936                                          0x0df70000);
5937         } else { /* HDMI or VGA */
5938                 /* Use bend source */
5939                 if (pipe == PIPE_A)
5940                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5941                                          0x0df70000);
5942                 else
5943                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5944                                          0x0df40000);
5945         }
5946
5947         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5948         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5949         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5950             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5951                 coreclk |= 0x01000000;
5952         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5953
5954         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5955         mutex_unlock(&dev_priv->dpio_lock);
5956 }
5957
5958 static void chv_update_pll(struct intel_crtc *crtc,
5959                            struct intel_crtc_config *pipe_config)
5960 {
5961         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5962                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5963                 DPLL_VCO_ENABLE;
5964         if (crtc->pipe != PIPE_A)
5965                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5966
5967         pipe_config->dpll_hw_state.dpll_md =
5968                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5969 }
5970
5971 static void chv_prepare_pll(struct intel_crtc *crtc,
5972                             const struct intel_crtc_config *pipe_config)
5973 {
5974         struct drm_device *dev = crtc->base.dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         int pipe = crtc->pipe;
5977         int dpll_reg = DPLL(crtc->pipe);
5978         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5979         u32 loopfilter, intcoeff;
5980         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5981         int refclk;
5982
5983         bestn = pipe_config->dpll.n;
5984         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5985         bestm1 = pipe_config->dpll.m1;
5986         bestm2 = pipe_config->dpll.m2 >> 22;
5987         bestp1 = pipe_config->dpll.p1;
5988         bestp2 = pipe_config->dpll.p2;
5989
5990         /*
5991          * Enable Refclk and SSC
5992          */
5993         I915_WRITE(dpll_reg,
5994                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5995
5996         mutex_lock(&dev_priv->dpio_lock);
5997
5998         /* p1 and p2 divider */
5999         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6000                         5 << DPIO_CHV_S1_DIV_SHIFT |
6001                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6002                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6003                         1 << DPIO_CHV_K_DIV_SHIFT);
6004
6005         /* Feedback post-divider - m2 */
6006         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6007
6008         /* Feedback refclk divider - n and m1 */
6009         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6010                         DPIO_CHV_M1_DIV_BY_2 |
6011                         1 << DPIO_CHV_N_DIV_SHIFT);
6012
6013         /* M2 fraction division */
6014         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6015
6016         /* M2 fraction division enable */
6017         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6018                        DPIO_CHV_FRAC_DIV_EN |
6019                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6020
6021         /* Loop filter */
6022         refclk = i9xx_get_refclk(crtc, 0);
6023         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6024                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6025         if (refclk == 100000)
6026                 intcoeff = 11;
6027         else if (refclk == 38400)
6028                 intcoeff = 10;
6029         else
6030                 intcoeff = 9;
6031         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6032         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6033
6034         /* AFC Recal */
6035         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6036                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6037                         DPIO_AFC_RECAL);
6038
6039         mutex_unlock(&dev_priv->dpio_lock);
6040 }
6041
6042 /**
6043  * vlv_force_pll_on - forcibly enable just the PLL
6044  * @dev_priv: i915 private structure
6045  * @pipe: pipe PLL to enable
6046  * @dpll: PLL configuration
6047  *
6048  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6049  * in cases where we need the PLL enabled even when @pipe is not going to
6050  * be enabled.
6051  */
6052 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6053                       const struct dpll *dpll)
6054 {
6055         struct intel_crtc *crtc =
6056                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6057         struct intel_crtc_config pipe_config = {
6058                 .pixel_multiplier = 1,
6059                 .dpll = *dpll,
6060         };
6061
6062         if (IS_CHERRYVIEW(dev)) {
6063                 chv_update_pll(crtc, &pipe_config);
6064                 chv_prepare_pll(crtc, &pipe_config);
6065                 chv_enable_pll(crtc, &pipe_config);
6066         } else {
6067                 vlv_update_pll(crtc, &pipe_config);
6068                 vlv_prepare_pll(crtc, &pipe_config);
6069                 vlv_enable_pll(crtc, &pipe_config);
6070         }
6071 }
6072
6073 /**
6074  * vlv_force_pll_off - forcibly disable just the PLL
6075  * @dev_priv: i915 private structure
6076  * @pipe: pipe PLL to disable
6077  *
6078  * Disable the PLL for @pipe. To be used in cases where we need
6079  * the PLL enabled even when @pipe is not going to be enabled.
6080  */
6081 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6082 {
6083         if (IS_CHERRYVIEW(dev))
6084                 chv_disable_pll(to_i915(dev), pipe);
6085         else
6086                 vlv_disable_pll(to_i915(dev), pipe);
6087 }
6088
6089 static void i9xx_update_pll(struct intel_crtc *crtc,
6090                             intel_clock_t *reduced_clock,
6091                             int num_connectors)
6092 {
6093         struct drm_device *dev = crtc->base.dev;
6094         struct drm_i915_private *dev_priv = dev->dev_private;
6095         u32 dpll;
6096         bool is_sdvo;
6097         struct dpll *clock = &crtc->new_config->dpll;
6098
6099         i9xx_update_pll_dividers(crtc, reduced_clock);
6100
6101         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6102                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6103
6104         dpll = DPLL_VGA_MODE_DIS;
6105
6106         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6107                 dpll |= DPLLB_MODE_LVDS;
6108         else
6109                 dpll |= DPLLB_MODE_DAC_SERIAL;
6110
6111         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6112                 dpll |= (crtc->new_config->pixel_multiplier - 1)
6113                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6114         }
6115
6116         if (is_sdvo)
6117                 dpll |= DPLL_SDVO_HIGH_SPEED;
6118
6119         if (crtc->new_config->has_dp_encoder)
6120                 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122         /* compute bitmask from p1 value */
6123         if (IS_PINEVIEW(dev))
6124                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6125         else {
6126                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6127                 if (IS_G4X(dev) && reduced_clock)
6128                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6129         }
6130         switch (clock->p2) {
6131         case 5:
6132                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6133                 break;
6134         case 7:
6135                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6136                 break;
6137         case 10:
6138                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6139                 break;
6140         case 14:
6141                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6142                 break;
6143         }
6144         if (INTEL_INFO(dev)->gen >= 4)
6145                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6146
6147         if (crtc->new_config->sdvo_tv_clock)
6148                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6149         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6150                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6151                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6152         else
6153                 dpll |= PLL_REF_INPUT_DREFCLK;
6154
6155         dpll |= DPLL_VCO_ENABLE;
6156         crtc->new_config->dpll_hw_state.dpll = dpll;
6157
6158         if (INTEL_INFO(dev)->gen >= 4) {
6159                 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6160                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6161                 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6162         }
6163 }
6164
6165 static void i8xx_update_pll(struct intel_crtc *crtc,
6166                             intel_clock_t *reduced_clock,
6167                             int num_connectors)
6168 {
6169         struct drm_device *dev = crtc->base.dev;
6170         struct drm_i915_private *dev_priv = dev->dev_private;
6171         u32 dpll;
6172         struct dpll *clock = &crtc->new_config->dpll;
6173
6174         i9xx_update_pll_dividers(crtc, reduced_clock);
6175
6176         dpll = DPLL_VGA_MODE_DIS;
6177
6178         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6179                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6180         } else {
6181                 if (clock->p1 == 2)
6182                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6183                 else
6184                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6185                 if (clock->p2 == 4)
6186                         dpll |= PLL_P2_DIVIDE_BY_4;
6187         }
6188
6189         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6190                 dpll |= DPLL_DVO_2X_MODE;
6191
6192         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6193                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6194                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6195         else
6196                 dpll |= PLL_REF_INPUT_DREFCLK;
6197
6198         dpll |= DPLL_VCO_ENABLE;
6199         crtc->new_config->dpll_hw_state.dpll = dpll;
6200 }
6201
6202 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6203 {
6204         struct drm_device *dev = intel_crtc->base.dev;
6205         struct drm_i915_private *dev_priv = dev->dev_private;
6206         enum pipe pipe = intel_crtc->pipe;
6207         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6208         struct drm_display_mode *adjusted_mode =
6209                 &intel_crtc->config.adjusted_mode;
6210         uint32_t crtc_vtotal, crtc_vblank_end;
6211         int vsyncshift = 0;
6212
6213         /* We need to be careful not to changed the adjusted mode, for otherwise
6214          * the hw state checker will get angry at the mismatch. */
6215         crtc_vtotal = adjusted_mode->crtc_vtotal;
6216         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6217
6218         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6219                 /* the chip adds 2 halflines automatically */
6220                 crtc_vtotal -= 1;
6221                 crtc_vblank_end -= 1;
6222
6223                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6224                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6225                 else
6226                         vsyncshift = adjusted_mode->crtc_hsync_start -
6227                                 adjusted_mode->crtc_htotal / 2;
6228                 if (vsyncshift < 0)
6229                         vsyncshift += adjusted_mode->crtc_htotal;
6230         }
6231
6232         if (INTEL_INFO(dev)->gen > 3)
6233                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6234
6235         I915_WRITE(HTOTAL(cpu_transcoder),
6236                    (adjusted_mode->crtc_hdisplay - 1) |
6237                    ((adjusted_mode->crtc_htotal - 1) << 16));
6238         I915_WRITE(HBLANK(cpu_transcoder),
6239                    (adjusted_mode->crtc_hblank_start - 1) |
6240                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6241         I915_WRITE(HSYNC(cpu_transcoder),
6242                    (adjusted_mode->crtc_hsync_start - 1) |
6243                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6244
6245         I915_WRITE(VTOTAL(cpu_transcoder),
6246                    (adjusted_mode->crtc_vdisplay - 1) |
6247                    ((crtc_vtotal - 1) << 16));
6248         I915_WRITE(VBLANK(cpu_transcoder),
6249                    (adjusted_mode->crtc_vblank_start - 1) |
6250                    ((crtc_vblank_end - 1) << 16));
6251         I915_WRITE(VSYNC(cpu_transcoder),
6252                    (adjusted_mode->crtc_vsync_start - 1) |
6253                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6254
6255         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6256          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6257          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6258          * bits. */
6259         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6260             (pipe == PIPE_B || pipe == PIPE_C))
6261                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6262
6263         /* pipesrc controls the size that is scaled from, which should
6264          * always be the user's requested size.
6265          */
6266         I915_WRITE(PIPESRC(pipe),
6267                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6268                    (intel_crtc->config.pipe_src_h - 1));
6269 }
6270
6271 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6272                                    struct intel_crtc_config *pipe_config)
6273 {
6274         struct drm_device *dev = crtc->base.dev;
6275         struct drm_i915_private *dev_priv = dev->dev_private;
6276         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6277         uint32_t tmp;
6278
6279         tmp = I915_READ(HTOTAL(cpu_transcoder));
6280         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6281         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6282         tmp = I915_READ(HBLANK(cpu_transcoder));
6283         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6284         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6285         tmp = I915_READ(HSYNC(cpu_transcoder));
6286         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6287         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6288
6289         tmp = I915_READ(VTOTAL(cpu_transcoder));
6290         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6291         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6292         tmp = I915_READ(VBLANK(cpu_transcoder));
6293         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6294         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6295         tmp = I915_READ(VSYNC(cpu_transcoder));
6296         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6297         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6298
6299         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6300                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6301                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6302                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6303         }
6304
6305         tmp = I915_READ(PIPESRC(crtc->pipe));
6306         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6307         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6308
6309         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6310         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6311 }
6312
6313 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6314                                  struct intel_crtc_config *pipe_config)
6315 {
6316         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6317         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6318         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6319         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6320
6321         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6322         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6323         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6324         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6325
6326         mode->flags = pipe_config->adjusted_mode.flags;
6327
6328         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6329         mode->flags |= pipe_config->adjusted_mode.flags;
6330 }
6331
6332 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6333 {
6334         struct drm_device *dev = intel_crtc->base.dev;
6335         struct drm_i915_private *dev_priv = dev->dev_private;
6336         uint32_t pipeconf;
6337
6338         pipeconf = 0;
6339
6340         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6341             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6342                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6343
6344         if (intel_crtc->config.double_wide)
6345                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6346
6347         /* only g4x and later have fancy bpc/dither controls */
6348         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6349                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6350                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6351                         pipeconf |= PIPECONF_DITHER_EN |
6352                                     PIPECONF_DITHER_TYPE_SP;
6353
6354                 switch (intel_crtc->config.pipe_bpp) {
6355                 case 18:
6356                         pipeconf |= PIPECONF_6BPC;
6357                         break;
6358                 case 24:
6359                         pipeconf |= PIPECONF_8BPC;
6360                         break;
6361                 case 30:
6362                         pipeconf |= PIPECONF_10BPC;
6363                         break;
6364                 default:
6365                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6366                         BUG();
6367                 }
6368         }
6369
6370         if (HAS_PIPE_CXSR(dev)) {
6371                 if (intel_crtc->lowfreq_avail) {
6372                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6373                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6374                 } else {
6375                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6376                 }
6377         }
6378
6379         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6380                 if (INTEL_INFO(dev)->gen < 4 ||
6381                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6382                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6383                 else
6384                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6385         } else
6386                 pipeconf |= PIPECONF_PROGRESSIVE;
6387
6388         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6389                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6390
6391         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6392         POSTING_READ(PIPECONF(intel_crtc->pipe));
6393 }
6394
6395 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6396 {
6397         struct drm_device *dev = crtc->base.dev;
6398         struct drm_i915_private *dev_priv = dev->dev_private;
6399         int refclk, num_connectors = 0;
6400         intel_clock_t clock, reduced_clock;
6401         bool ok, has_reduced_clock = false;
6402         bool is_lvds = false, is_dsi = false;
6403         struct intel_encoder *encoder;
6404         const intel_limit_t *limit;
6405
6406         for_each_intel_encoder(dev, encoder) {
6407                 if (encoder->new_crtc != crtc)
6408                         continue;
6409
6410                 switch (encoder->type) {
6411                 case INTEL_OUTPUT_LVDS:
6412                         is_lvds = true;
6413                         break;
6414                 case INTEL_OUTPUT_DSI:
6415                         is_dsi = true;
6416                         break;
6417                 default:
6418                         break;
6419                 }
6420
6421                 num_connectors++;
6422         }
6423
6424         if (is_dsi)
6425                 return 0;
6426
6427         if (!crtc->new_config->clock_set) {
6428                 refclk = i9xx_get_refclk(crtc, num_connectors);
6429
6430                 /*
6431                  * Returns a set of divisors for the desired target clock with
6432                  * the given refclk, or FALSE.  The returned values represent
6433                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6434                  * 2) / p1 / p2.
6435                  */
6436                 limit = intel_limit(crtc, refclk);
6437                 ok = dev_priv->display.find_dpll(limit, crtc,
6438                                                  crtc->new_config->port_clock,
6439                                                  refclk, NULL, &clock);
6440                 if (!ok) {
6441                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6442                         return -EINVAL;
6443                 }
6444
6445                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6446                         /*
6447                          * Ensure we match the reduced clock's P to the target
6448                          * clock.  If the clocks don't match, we can't switch
6449                          * the display clock by using the FP0/FP1. In such case
6450                          * we will disable the LVDS downclock feature.
6451                          */
6452                         has_reduced_clock =
6453                                 dev_priv->display.find_dpll(limit, crtc,
6454                                                             dev_priv->lvds_downclock,
6455                                                             refclk, &clock,
6456                                                             &reduced_clock);
6457                 }
6458                 /* Compat-code for transition, will disappear. */
6459                 crtc->new_config->dpll.n = clock.n;
6460                 crtc->new_config->dpll.m1 = clock.m1;
6461                 crtc->new_config->dpll.m2 = clock.m2;
6462                 crtc->new_config->dpll.p1 = clock.p1;
6463                 crtc->new_config->dpll.p2 = clock.p2;
6464         }
6465
6466         if (IS_GEN2(dev)) {
6467                 i8xx_update_pll(crtc,
6468                                 has_reduced_clock ? &reduced_clock : NULL,
6469                                 num_connectors);
6470         } else if (IS_CHERRYVIEW(dev)) {
6471                 chv_update_pll(crtc, crtc->new_config);
6472         } else if (IS_VALLEYVIEW(dev)) {
6473                 vlv_update_pll(crtc, crtc->new_config);
6474         } else {
6475                 i9xx_update_pll(crtc,
6476                                 has_reduced_clock ? &reduced_clock : NULL,
6477                                 num_connectors);
6478         }
6479
6480         return 0;
6481 }
6482
6483 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6484                                  struct intel_crtc_config *pipe_config)
6485 {
6486         struct drm_device *dev = crtc->base.dev;
6487         struct drm_i915_private *dev_priv = dev->dev_private;
6488         uint32_t tmp;
6489
6490         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6491                 return;
6492
6493         tmp = I915_READ(PFIT_CONTROL);
6494         if (!(tmp & PFIT_ENABLE))
6495                 return;
6496
6497         /* Check whether the pfit is attached to our pipe. */
6498         if (INTEL_INFO(dev)->gen < 4) {
6499                 if (crtc->pipe != PIPE_B)
6500                         return;
6501         } else {
6502                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6503                         return;
6504         }
6505
6506         pipe_config->gmch_pfit.control = tmp;
6507         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6508         if (INTEL_INFO(dev)->gen < 5)
6509                 pipe_config->gmch_pfit.lvds_border_bits =
6510                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6511 }
6512
6513 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6514                                struct intel_crtc_config *pipe_config)
6515 {
6516         struct drm_device *dev = crtc->base.dev;
6517         struct drm_i915_private *dev_priv = dev->dev_private;
6518         int pipe = pipe_config->cpu_transcoder;
6519         intel_clock_t clock;
6520         u32 mdiv;
6521         int refclk = 100000;
6522
6523         /* In case of MIPI DPLL will not even be used */
6524         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6525                 return;
6526
6527         mutex_lock(&dev_priv->dpio_lock);
6528         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6529         mutex_unlock(&dev_priv->dpio_lock);
6530
6531         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6532         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6533         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6534         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6535         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6536
6537         vlv_clock(refclk, &clock);
6538
6539         /* clock.dot is the fast clock */
6540         pipe_config->port_clock = clock.dot / 5;
6541 }
6542
6543 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6544                                   struct intel_plane_config *plane_config)
6545 {
6546         struct drm_device *dev = crtc->base.dev;
6547         struct drm_i915_private *dev_priv = dev->dev_private;
6548         u32 val, base, offset;
6549         int pipe = crtc->pipe, plane = crtc->plane;
6550         int fourcc, pixel_format;
6551         int aligned_height;
6552
6553         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6554         if (!crtc->base.primary->fb) {
6555                 DRM_DEBUG_KMS("failed to alloc fb\n");
6556                 return;
6557         }
6558
6559         val = I915_READ(DSPCNTR(plane));
6560
6561         if (INTEL_INFO(dev)->gen >= 4)
6562                 if (val & DISPPLANE_TILED)
6563                         plane_config->tiled = true;
6564
6565         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6566         fourcc = intel_format_to_fourcc(pixel_format);
6567         crtc->base.primary->fb->pixel_format = fourcc;
6568         crtc->base.primary->fb->bits_per_pixel =
6569                 drm_format_plane_cpp(fourcc, 0) * 8;
6570
6571         if (INTEL_INFO(dev)->gen >= 4) {
6572                 if (plane_config->tiled)
6573                         offset = I915_READ(DSPTILEOFF(plane));
6574                 else
6575                         offset = I915_READ(DSPLINOFF(plane));
6576                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6577         } else {
6578                 base = I915_READ(DSPADDR(plane));
6579         }
6580         plane_config->base = base;
6581
6582         val = I915_READ(PIPESRC(pipe));
6583         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6584         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6585
6586         val = I915_READ(DSPSTRIDE(pipe));
6587         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6588
6589         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6590                                             plane_config->tiled);
6591
6592         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6593                                         aligned_height);
6594
6595         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6596                       pipe, plane, crtc->base.primary->fb->width,
6597                       crtc->base.primary->fb->height,
6598                       crtc->base.primary->fb->bits_per_pixel, base,
6599                       crtc->base.primary->fb->pitches[0],
6600                       plane_config->size);
6601
6602 }
6603
6604 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6605                                struct intel_crtc_config *pipe_config)
6606 {
6607         struct drm_device *dev = crtc->base.dev;
6608         struct drm_i915_private *dev_priv = dev->dev_private;
6609         int pipe = pipe_config->cpu_transcoder;
6610         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6611         intel_clock_t clock;
6612         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6613         int refclk = 100000;
6614
6615         mutex_lock(&dev_priv->dpio_lock);
6616         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6617         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6618         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6619         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6620         mutex_unlock(&dev_priv->dpio_lock);
6621
6622         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6623         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6624         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6625         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6626         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6627
6628         chv_clock(refclk, &clock);
6629
6630         /* clock.dot is the fast clock */
6631         pipe_config->port_clock = clock.dot / 5;
6632 }
6633
6634 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6635                                  struct intel_crtc_config *pipe_config)
6636 {
6637         struct drm_device *dev = crtc->base.dev;
6638         struct drm_i915_private *dev_priv = dev->dev_private;
6639         uint32_t tmp;
6640
6641         if (!intel_display_power_is_enabled(dev_priv,
6642                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6643                 return false;
6644
6645         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6646         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6647
6648         tmp = I915_READ(PIPECONF(crtc->pipe));
6649         if (!(tmp & PIPECONF_ENABLE))
6650                 return false;
6651
6652         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6653                 switch (tmp & PIPECONF_BPC_MASK) {
6654                 case PIPECONF_6BPC:
6655                         pipe_config->pipe_bpp = 18;
6656                         break;
6657                 case PIPECONF_8BPC:
6658                         pipe_config->pipe_bpp = 24;
6659                         break;
6660                 case PIPECONF_10BPC:
6661                         pipe_config->pipe_bpp = 30;
6662                         break;
6663                 default:
6664                         break;
6665                 }
6666         }
6667
6668         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6669                 pipe_config->limited_color_range = true;
6670
6671         if (INTEL_INFO(dev)->gen < 4)
6672                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6673
6674         intel_get_pipe_timings(crtc, pipe_config);
6675
6676         i9xx_get_pfit_config(crtc, pipe_config);
6677
6678         if (INTEL_INFO(dev)->gen >= 4) {
6679                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6680                 pipe_config->pixel_multiplier =
6681                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6682                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6683                 pipe_config->dpll_hw_state.dpll_md = tmp;
6684         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6685                 tmp = I915_READ(DPLL(crtc->pipe));
6686                 pipe_config->pixel_multiplier =
6687                         ((tmp & SDVO_MULTIPLIER_MASK)
6688                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6689         } else {
6690                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6691                  * port and will be fixed up in the encoder->get_config
6692                  * function. */
6693                 pipe_config->pixel_multiplier = 1;
6694         }
6695         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6696         if (!IS_VALLEYVIEW(dev)) {
6697                 /*
6698                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6699                  * on 830. Filter it out here so that we don't
6700                  * report errors due to that.
6701                  */
6702                 if (IS_I830(dev))
6703                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6704
6705                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6706                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6707         } else {
6708                 /* Mask out read-only status bits. */
6709                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6710                                                      DPLL_PORTC_READY_MASK |
6711                                                      DPLL_PORTB_READY_MASK);
6712         }
6713
6714         if (IS_CHERRYVIEW(dev))
6715                 chv_crtc_clock_get(crtc, pipe_config);
6716         else if (IS_VALLEYVIEW(dev))
6717                 vlv_crtc_clock_get(crtc, pipe_config);
6718         else
6719                 i9xx_crtc_clock_get(crtc, pipe_config);
6720
6721         return true;
6722 }
6723
6724 static void ironlake_init_pch_refclk(struct drm_device *dev)
6725 {
6726         struct drm_i915_private *dev_priv = dev->dev_private;
6727         struct intel_encoder *encoder;
6728         u32 val, final;
6729         bool has_lvds = false;
6730         bool has_cpu_edp = false;
6731         bool has_panel = false;
6732         bool has_ck505 = false;
6733         bool can_ssc = false;
6734
6735         /* We need to take the global config into account */
6736         for_each_intel_encoder(dev, encoder) {
6737                 switch (encoder->type) {
6738                 case INTEL_OUTPUT_LVDS:
6739                         has_panel = true;
6740                         has_lvds = true;
6741                         break;
6742                 case INTEL_OUTPUT_EDP:
6743                         has_panel = true;
6744                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6745                                 has_cpu_edp = true;
6746                         break;
6747                 default:
6748                         break;
6749                 }
6750         }
6751
6752         if (HAS_PCH_IBX(dev)) {
6753                 has_ck505 = dev_priv->vbt.display_clock_mode;
6754                 can_ssc = has_ck505;
6755         } else {
6756                 has_ck505 = false;
6757                 can_ssc = true;
6758         }
6759
6760         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6761                       has_panel, has_lvds, has_ck505);
6762
6763         /* Ironlake: try to setup display ref clock before DPLL
6764          * enabling. This is only under driver's control after
6765          * PCH B stepping, previous chipset stepping should be
6766          * ignoring this setting.
6767          */
6768         val = I915_READ(PCH_DREF_CONTROL);
6769
6770         /* As we must carefully and slowly disable/enable each source in turn,
6771          * compute the final state we want first and check if we need to
6772          * make any changes at all.
6773          */
6774         final = val;
6775         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6776         if (has_ck505)
6777                 final |= DREF_NONSPREAD_CK505_ENABLE;
6778         else
6779                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6780
6781         final &= ~DREF_SSC_SOURCE_MASK;
6782         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6783         final &= ~DREF_SSC1_ENABLE;
6784
6785         if (has_panel) {
6786                 final |= DREF_SSC_SOURCE_ENABLE;
6787
6788                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6789                         final |= DREF_SSC1_ENABLE;
6790
6791                 if (has_cpu_edp) {
6792                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6793                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6794                         else
6795                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6796                 } else
6797                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6798         } else {
6799                 final |= DREF_SSC_SOURCE_DISABLE;
6800                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6801         }
6802
6803         if (final == val)
6804                 return;
6805
6806         /* Always enable nonspread source */
6807         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6808
6809         if (has_ck505)
6810                 val |= DREF_NONSPREAD_CK505_ENABLE;
6811         else
6812                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6813
6814         if (has_panel) {
6815                 val &= ~DREF_SSC_SOURCE_MASK;
6816                 val |= DREF_SSC_SOURCE_ENABLE;
6817
6818                 /* SSC must be turned on before enabling the CPU output  */
6819                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6820                         DRM_DEBUG_KMS("Using SSC on panel\n");
6821                         val |= DREF_SSC1_ENABLE;
6822                 } else
6823                         val &= ~DREF_SSC1_ENABLE;
6824
6825                 /* Get SSC going before enabling the outputs */
6826                 I915_WRITE(PCH_DREF_CONTROL, val);
6827                 POSTING_READ(PCH_DREF_CONTROL);
6828                 udelay(200);
6829
6830                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6831
6832                 /* Enable CPU source on CPU attached eDP */
6833                 if (has_cpu_edp) {
6834                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6835                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6836                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6837                         } else
6838                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6839                 } else
6840                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6841
6842                 I915_WRITE(PCH_DREF_CONTROL, val);
6843                 POSTING_READ(PCH_DREF_CONTROL);
6844                 udelay(200);
6845         } else {
6846                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6847
6848                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6849
6850                 /* Turn off CPU output */
6851                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6852
6853                 I915_WRITE(PCH_DREF_CONTROL, val);
6854                 POSTING_READ(PCH_DREF_CONTROL);
6855                 udelay(200);
6856
6857                 /* Turn off the SSC source */
6858                 val &= ~DREF_SSC_SOURCE_MASK;
6859                 val |= DREF_SSC_SOURCE_DISABLE;
6860
6861                 /* Turn off SSC1 */
6862                 val &= ~DREF_SSC1_ENABLE;
6863
6864                 I915_WRITE(PCH_DREF_CONTROL, val);
6865                 POSTING_READ(PCH_DREF_CONTROL);
6866                 udelay(200);
6867         }
6868
6869         BUG_ON(val != final);
6870 }
6871
6872 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6873 {
6874         uint32_t tmp;
6875
6876         tmp = I915_READ(SOUTH_CHICKEN2);
6877         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6878         I915_WRITE(SOUTH_CHICKEN2, tmp);
6879
6880         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6881                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6882                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6883
6884         tmp = I915_READ(SOUTH_CHICKEN2);
6885         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6886         I915_WRITE(SOUTH_CHICKEN2, tmp);
6887
6888         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6889                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6890                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6891 }
6892
6893 /* WaMPhyProgramming:hsw */
6894 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6895 {
6896         uint32_t tmp;
6897
6898         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6899         tmp &= ~(0xFF << 24);
6900         tmp |= (0x12 << 24);
6901         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6902
6903         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6904         tmp |= (1 << 11);
6905         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6906
6907         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6908         tmp |= (1 << 11);
6909         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6910
6911         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6912         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6913         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6914
6915         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6916         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6917         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6918
6919         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6920         tmp &= ~(7 << 13);
6921         tmp |= (5 << 13);
6922         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6923
6924         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6925         tmp &= ~(7 << 13);
6926         tmp |= (5 << 13);
6927         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6928
6929         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6930         tmp &= ~0xFF;
6931         tmp |= 0x1C;
6932         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6933
6934         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6935         tmp &= ~0xFF;
6936         tmp |= 0x1C;
6937         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6938
6939         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6940         tmp &= ~(0xFF << 16);
6941         tmp |= (0x1C << 16);
6942         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6943
6944         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6945         tmp &= ~(0xFF << 16);
6946         tmp |= (0x1C << 16);
6947         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6948
6949         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6950         tmp |= (1 << 27);
6951         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6952
6953         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6954         tmp |= (1 << 27);
6955         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6956
6957         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6958         tmp &= ~(0xF << 28);
6959         tmp |= (4 << 28);
6960         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6961
6962         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6963         tmp &= ~(0xF << 28);
6964         tmp |= (4 << 28);
6965         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6966 }
6967
6968 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6969  * Programming" based on the parameters passed:
6970  * - Sequence to enable CLKOUT_DP
6971  * - Sequence to enable CLKOUT_DP without spread
6972  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6973  */
6974 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6975                                  bool with_fdi)
6976 {
6977         struct drm_i915_private *dev_priv = dev->dev_private;
6978         uint32_t reg, tmp;
6979
6980         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6981                 with_spread = true;
6982         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6983                  with_fdi, "LP PCH doesn't have FDI\n"))
6984                 with_fdi = false;
6985
6986         mutex_lock(&dev_priv->dpio_lock);
6987
6988         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6989         tmp &= ~SBI_SSCCTL_DISABLE;
6990         tmp |= SBI_SSCCTL_PATHALT;
6991         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6992
6993         udelay(24);
6994
6995         if (with_spread) {
6996                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6997                 tmp &= ~SBI_SSCCTL_PATHALT;
6998                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6999
7000                 if (with_fdi) {
7001                         lpt_reset_fdi_mphy(dev_priv);
7002                         lpt_program_fdi_mphy(dev_priv);
7003                 }
7004         }
7005
7006         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7007                SBI_GEN0 : SBI_DBUFF0;
7008         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7009         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7010         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7011
7012         mutex_unlock(&dev_priv->dpio_lock);
7013 }
7014
7015 /* Sequence to disable CLKOUT_DP */
7016 static void lpt_disable_clkout_dp(struct drm_device *dev)
7017 {
7018         struct drm_i915_private *dev_priv = dev->dev_private;
7019         uint32_t reg, tmp;
7020
7021         mutex_lock(&dev_priv->dpio_lock);
7022
7023         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7024                SBI_GEN0 : SBI_DBUFF0;
7025         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7026         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7027         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7028
7029         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7030         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7031                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7032                         tmp |= SBI_SSCCTL_PATHALT;
7033                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7034                         udelay(32);
7035                 }
7036                 tmp |= SBI_SSCCTL_DISABLE;
7037                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7038         }
7039
7040         mutex_unlock(&dev_priv->dpio_lock);
7041 }
7042
7043 static void lpt_init_pch_refclk(struct drm_device *dev)
7044 {
7045         struct intel_encoder *encoder;
7046         bool has_vga = false;
7047
7048         for_each_intel_encoder(dev, encoder) {
7049                 switch (encoder->type) {
7050                 case INTEL_OUTPUT_ANALOG:
7051                         has_vga = true;
7052                         break;
7053                 default:
7054                         break;
7055                 }
7056         }
7057
7058         if (has_vga)
7059                 lpt_enable_clkout_dp(dev, true, true);
7060         else
7061                 lpt_disable_clkout_dp(dev);
7062 }
7063
7064 /*
7065  * Initialize reference clocks when the driver loads
7066  */
7067 void intel_init_pch_refclk(struct drm_device *dev)
7068 {
7069         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7070                 ironlake_init_pch_refclk(dev);
7071         else if (HAS_PCH_LPT(dev))
7072                 lpt_init_pch_refclk(dev);
7073 }
7074
7075 static int ironlake_get_refclk(struct drm_crtc *crtc)
7076 {
7077         struct drm_device *dev = crtc->dev;
7078         struct drm_i915_private *dev_priv = dev->dev_private;
7079         struct intel_encoder *encoder;
7080         int num_connectors = 0;
7081         bool is_lvds = false;
7082
7083         for_each_intel_encoder(dev, encoder) {
7084                 if (encoder->new_crtc != to_intel_crtc(crtc))
7085                         continue;
7086
7087                 switch (encoder->type) {
7088                 case INTEL_OUTPUT_LVDS:
7089                         is_lvds = true;
7090                         break;
7091                 default:
7092                         break;
7093                 }
7094                 num_connectors++;
7095         }
7096
7097         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7098                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7099                               dev_priv->vbt.lvds_ssc_freq);
7100                 return dev_priv->vbt.lvds_ssc_freq;
7101         }
7102
7103         return 120000;
7104 }
7105
7106 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7107 {
7108         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7109         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7110         int pipe = intel_crtc->pipe;
7111         uint32_t val;
7112
7113         val = 0;
7114
7115         switch (intel_crtc->config.pipe_bpp) {
7116         case 18:
7117                 val |= PIPECONF_6BPC;
7118                 break;
7119         case 24:
7120                 val |= PIPECONF_8BPC;
7121                 break;
7122         case 30:
7123                 val |= PIPECONF_10BPC;
7124                 break;
7125         case 36:
7126                 val |= PIPECONF_12BPC;
7127                 break;
7128         default:
7129                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7130                 BUG();
7131         }
7132
7133         if (intel_crtc->config.dither)
7134                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7135
7136         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7137                 val |= PIPECONF_INTERLACED_ILK;
7138         else
7139                 val |= PIPECONF_PROGRESSIVE;
7140
7141         if (intel_crtc->config.limited_color_range)
7142                 val |= PIPECONF_COLOR_RANGE_SELECT;
7143
7144         I915_WRITE(PIPECONF(pipe), val);
7145         POSTING_READ(PIPECONF(pipe));
7146 }
7147
7148 /*
7149  * Set up the pipe CSC unit.
7150  *
7151  * Currently only full range RGB to limited range RGB conversion
7152  * is supported, but eventually this should handle various
7153  * RGB<->YCbCr scenarios as well.
7154  */
7155 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7156 {
7157         struct drm_device *dev = crtc->dev;
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7160         int pipe = intel_crtc->pipe;
7161         uint16_t coeff = 0x7800; /* 1.0 */
7162
7163         /*
7164          * TODO: Check what kind of values actually come out of the pipe
7165          * with these coeff/postoff values and adjust to get the best
7166          * accuracy. Perhaps we even need to take the bpc value into
7167          * consideration.
7168          */
7169
7170         if (intel_crtc->config.limited_color_range)
7171                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7172
7173         /*
7174          * GY/GU and RY/RU should be the other way around according
7175          * to BSpec, but reality doesn't agree. Just set them up in
7176          * a way that results in the correct picture.
7177          */
7178         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7179         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7180
7181         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7182         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7183
7184         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7185         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7186
7187         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7188         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7189         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7190
7191         if (INTEL_INFO(dev)->gen > 6) {
7192                 uint16_t postoff = 0;
7193
7194                 if (intel_crtc->config.limited_color_range)
7195                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7196
7197                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7198                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7199                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7200
7201                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7202         } else {
7203                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7204
7205                 if (intel_crtc->config.limited_color_range)
7206                         mode |= CSC_BLACK_SCREEN_OFFSET;
7207
7208                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7209         }
7210 }
7211
7212 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7213 {
7214         struct drm_device *dev = crtc->dev;
7215         struct drm_i915_private *dev_priv = dev->dev_private;
7216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7217         enum pipe pipe = intel_crtc->pipe;
7218         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7219         uint32_t val;
7220
7221         val = 0;
7222
7223         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7224                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7225
7226         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7227                 val |= PIPECONF_INTERLACED_ILK;
7228         else
7229                 val |= PIPECONF_PROGRESSIVE;
7230
7231         I915_WRITE(PIPECONF(cpu_transcoder), val);
7232         POSTING_READ(PIPECONF(cpu_transcoder));
7233
7234         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7235         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7236
7237         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7238                 val = 0;
7239
7240                 switch (intel_crtc->config.pipe_bpp) {
7241                 case 18:
7242                         val |= PIPEMISC_DITHER_6_BPC;
7243                         break;
7244                 case 24:
7245                         val |= PIPEMISC_DITHER_8_BPC;
7246                         break;
7247                 case 30:
7248                         val |= PIPEMISC_DITHER_10_BPC;
7249                         break;
7250                 case 36:
7251                         val |= PIPEMISC_DITHER_12_BPC;
7252                         break;
7253                 default:
7254                         /* Case prevented by pipe_config_set_bpp. */
7255                         BUG();
7256                 }
7257
7258                 if (intel_crtc->config.dither)
7259                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7260
7261                 I915_WRITE(PIPEMISC(pipe), val);
7262         }
7263 }
7264
7265 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7266                                     intel_clock_t *clock,
7267                                     bool *has_reduced_clock,
7268                                     intel_clock_t *reduced_clock)
7269 {
7270         struct drm_device *dev = crtc->dev;
7271         struct drm_i915_private *dev_priv = dev->dev_private;
7272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7273         int refclk;
7274         const intel_limit_t *limit;
7275         bool ret, is_lvds = false;
7276
7277         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7278
7279         refclk = ironlake_get_refclk(crtc);
7280
7281         /*
7282          * Returns a set of divisors for the desired target clock with the given
7283          * refclk, or FALSE.  The returned values represent the clock equation:
7284          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7285          */
7286         limit = intel_limit(intel_crtc, refclk);
7287         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7288                                           intel_crtc->new_config->port_clock,
7289                                           refclk, NULL, clock);
7290         if (!ret)
7291                 return false;
7292
7293         if (is_lvds && dev_priv->lvds_downclock_avail) {
7294                 /*
7295                  * Ensure we match the reduced clock's P to the target clock.
7296                  * If the clocks don't match, we can't switch the display clock
7297                  * by using the FP0/FP1. In such case we will disable the LVDS
7298                  * downclock feature.
7299                 */
7300                 *has_reduced_clock =
7301                         dev_priv->display.find_dpll(limit, intel_crtc,
7302                                                     dev_priv->lvds_downclock,
7303                                                     refclk, clock,
7304                                                     reduced_clock);
7305         }
7306
7307         return true;
7308 }
7309
7310 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7311 {
7312         /*
7313          * Account for spread spectrum to avoid
7314          * oversubscribing the link. Max center spread
7315          * is 2.5%; use 5% for safety's sake.
7316          */
7317         u32 bps = target_clock * bpp * 21 / 20;
7318         return DIV_ROUND_UP(bps, link_bw * 8);
7319 }
7320
7321 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7322 {
7323         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7324 }
7325
7326 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7327                                       u32 *fp,
7328                                       intel_clock_t *reduced_clock, u32 *fp2)
7329 {
7330         struct drm_crtc *crtc = &intel_crtc->base;
7331         struct drm_device *dev = crtc->dev;
7332         struct drm_i915_private *dev_priv = dev->dev_private;
7333         struct intel_encoder *intel_encoder;
7334         uint32_t dpll;
7335         int factor, num_connectors = 0;
7336         bool is_lvds = false, is_sdvo = false;
7337
7338         for_each_intel_encoder(dev, intel_encoder) {
7339                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7340                         continue;
7341
7342                 switch (intel_encoder->type) {
7343                 case INTEL_OUTPUT_LVDS:
7344                         is_lvds = true;
7345                         break;
7346                 case INTEL_OUTPUT_SDVO:
7347                 case INTEL_OUTPUT_HDMI:
7348                         is_sdvo = true;
7349                         break;
7350                 default:
7351                         break;
7352                 }
7353
7354                 num_connectors++;
7355         }
7356
7357         /* Enable autotuning of the PLL clock (if permissible) */
7358         factor = 21;
7359         if (is_lvds) {
7360                 if ((intel_panel_use_ssc(dev_priv) &&
7361                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7362                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7363                         factor = 25;
7364         } else if (intel_crtc->new_config->sdvo_tv_clock)
7365                 factor = 20;
7366
7367         if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7368                 *fp |= FP_CB_TUNE;
7369
7370         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7371                 *fp2 |= FP_CB_TUNE;
7372
7373         dpll = 0;
7374
7375         if (is_lvds)
7376                 dpll |= DPLLB_MODE_LVDS;
7377         else
7378                 dpll |= DPLLB_MODE_DAC_SERIAL;
7379
7380         dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7381                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7382
7383         if (is_sdvo)
7384                 dpll |= DPLL_SDVO_HIGH_SPEED;
7385         if (intel_crtc->new_config->has_dp_encoder)
7386                 dpll |= DPLL_SDVO_HIGH_SPEED;
7387
7388         /* compute bitmask from p1 value */
7389         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7390         /* also FPA1 */
7391         dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7392
7393         switch (intel_crtc->new_config->dpll.p2) {
7394         case 5:
7395                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7396                 break;
7397         case 7:
7398                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7399                 break;
7400         case 10:
7401                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7402                 break;
7403         case 14:
7404                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7405                 break;
7406         }
7407
7408         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7409                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7410         else
7411                 dpll |= PLL_REF_INPUT_DREFCLK;
7412
7413         return dpll | DPLL_VCO_ENABLE;
7414 }
7415
7416 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7417 {
7418         struct drm_device *dev = crtc->base.dev;
7419         intel_clock_t clock, reduced_clock;
7420         u32 dpll = 0, fp = 0, fp2 = 0;
7421         bool ok, has_reduced_clock = false;
7422         bool is_lvds = false;
7423         struct intel_shared_dpll *pll;
7424
7425         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7426
7427         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7428              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7429
7430         ok = ironlake_compute_clocks(&crtc->base, &clock,
7431                                      &has_reduced_clock, &reduced_clock);
7432         if (!ok && !crtc->new_config->clock_set) {
7433                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7434                 return -EINVAL;
7435         }
7436         /* Compat-code for transition, will disappear. */
7437         if (!crtc->new_config->clock_set) {
7438                 crtc->new_config->dpll.n = clock.n;
7439                 crtc->new_config->dpll.m1 = clock.m1;
7440                 crtc->new_config->dpll.m2 = clock.m2;
7441                 crtc->new_config->dpll.p1 = clock.p1;
7442                 crtc->new_config->dpll.p2 = clock.p2;
7443         }
7444
7445         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7446         if (crtc->new_config->has_pch_encoder) {
7447                 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7448                 if (has_reduced_clock)
7449                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7450
7451                 dpll = ironlake_compute_dpll(crtc,
7452                                              &fp, &reduced_clock,
7453                                              has_reduced_clock ? &fp2 : NULL);
7454
7455                 crtc->new_config->dpll_hw_state.dpll = dpll;
7456                 crtc->new_config->dpll_hw_state.fp0 = fp;
7457                 if (has_reduced_clock)
7458                         crtc->new_config->dpll_hw_state.fp1 = fp2;
7459                 else
7460                         crtc->new_config->dpll_hw_state.fp1 = fp;
7461
7462                 pll = intel_get_shared_dpll(crtc);
7463                 if (pll == NULL) {
7464                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7465                                          pipe_name(crtc->pipe));
7466                         return -EINVAL;
7467                 }
7468         }
7469
7470         if (is_lvds && has_reduced_clock && i915.powersave)
7471                 crtc->lowfreq_avail = true;
7472         else
7473                 crtc->lowfreq_avail = false;
7474
7475         return 0;
7476 }
7477
7478 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7479                                          struct intel_link_m_n *m_n)
7480 {
7481         struct drm_device *dev = crtc->base.dev;
7482         struct drm_i915_private *dev_priv = dev->dev_private;
7483         enum pipe pipe = crtc->pipe;
7484
7485         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7486         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7487         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7488                 & ~TU_SIZE_MASK;
7489         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7490         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7491                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7492 }
7493
7494 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7495                                          enum transcoder transcoder,
7496                                          struct intel_link_m_n *m_n,
7497                                          struct intel_link_m_n *m2_n2)
7498 {
7499         struct drm_device *dev = crtc->base.dev;
7500         struct drm_i915_private *dev_priv = dev->dev_private;
7501         enum pipe pipe = crtc->pipe;
7502
7503         if (INTEL_INFO(dev)->gen >= 5) {
7504                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7505                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7506                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7507                         & ~TU_SIZE_MASK;
7508                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7509                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7510                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7511                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7512                  * gen < 8) and if DRRS is supported (to make sure the
7513                  * registers are not unnecessarily read).
7514                  */
7515                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7516                         crtc->config.has_drrs) {
7517                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7518                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7519                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7520                                         & ~TU_SIZE_MASK;
7521                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7522                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7523                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7524                 }
7525         } else {
7526                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7527                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7528                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7529                         & ~TU_SIZE_MASK;
7530                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7531                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7532                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7533         }
7534 }
7535
7536 void intel_dp_get_m_n(struct intel_crtc *crtc,
7537                       struct intel_crtc_config *pipe_config)
7538 {
7539         if (crtc->config.has_pch_encoder)
7540                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7541         else
7542                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7543                                              &pipe_config->dp_m_n,
7544                                              &pipe_config->dp_m2_n2);
7545 }
7546
7547 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7548                                         struct intel_crtc_config *pipe_config)
7549 {
7550         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7551                                      &pipe_config->fdi_m_n, NULL);
7552 }
7553
7554 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7555                                     struct intel_crtc_config *pipe_config)
7556 {
7557         struct drm_device *dev = crtc->base.dev;
7558         struct drm_i915_private *dev_priv = dev->dev_private;
7559         uint32_t tmp;
7560
7561         tmp = I915_READ(PS_CTL(crtc->pipe));
7562
7563         if (tmp & PS_ENABLE) {
7564                 pipe_config->pch_pfit.enabled = true;
7565                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7566                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7567         }
7568 }
7569
7570 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7571                                      struct intel_crtc_config *pipe_config)
7572 {
7573         struct drm_device *dev = crtc->base.dev;
7574         struct drm_i915_private *dev_priv = dev->dev_private;
7575         uint32_t tmp;
7576
7577         tmp = I915_READ(PF_CTL(crtc->pipe));
7578
7579         if (tmp & PF_ENABLE) {
7580                 pipe_config->pch_pfit.enabled = true;
7581                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7582                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7583
7584                 /* We currently do not free assignements of panel fitters on
7585                  * ivb/hsw (since we don't use the higher upscaling modes which
7586                  * differentiates them) so just WARN about this case for now. */
7587                 if (IS_GEN7(dev)) {
7588                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7589                                 PF_PIPE_SEL_IVB(crtc->pipe));
7590                 }
7591         }
7592 }
7593
7594 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7595                                       struct intel_plane_config *plane_config)
7596 {
7597         struct drm_device *dev = crtc->base.dev;
7598         struct drm_i915_private *dev_priv = dev->dev_private;
7599         u32 val, base, offset;
7600         int pipe = crtc->pipe, plane = crtc->plane;
7601         int fourcc, pixel_format;
7602         int aligned_height;
7603
7604         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7605         if (!crtc->base.primary->fb) {
7606                 DRM_DEBUG_KMS("failed to alloc fb\n");
7607                 return;
7608         }
7609
7610         val = I915_READ(DSPCNTR(plane));
7611
7612         if (INTEL_INFO(dev)->gen >= 4)
7613                 if (val & DISPPLANE_TILED)
7614                         plane_config->tiled = true;
7615
7616         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7617         fourcc = intel_format_to_fourcc(pixel_format);
7618         crtc->base.primary->fb->pixel_format = fourcc;
7619         crtc->base.primary->fb->bits_per_pixel =
7620                 drm_format_plane_cpp(fourcc, 0) * 8;
7621
7622         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7623         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7624                 offset = I915_READ(DSPOFFSET(plane));
7625         } else {
7626                 if (plane_config->tiled)
7627                         offset = I915_READ(DSPTILEOFF(plane));
7628                 else
7629                         offset = I915_READ(DSPLINOFF(plane));
7630         }
7631         plane_config->base = base;
7632
7633         val = I915_READ(PIPESRC(pipe));
7634         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7635         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7636
7637         val = I915_READ(DSPSTRIDE(pipe));
7638         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7639
7640         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7641                                             plane_config->tiled);
7642
7643         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7644                                         aligned_height);
7645
7646         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7647                       pipe, plane, crtc->base.primary->fb->width,
7648                       crtc->base.primary->fb->height,
7649                       crtc->base.primary->fb->bits_per_pixel, base,
7650                       crtc->base.primary->fb->pitches[0],
7651                       plane_config->size);
7652 }
7653
7654 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7655                                      struct intel_crtc_config *pipe_config)
7656 {
7657         struct drm_device *dev = crtc->base.dev;
7658         struct drm_i915_private *dev_priv = dev->dev_private;
7659         uint32_t tmp;
7660
7661         if (!intel_display_power_is_enabled(dev_priv,
7662                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7663                 return false;
7664
7665         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7666         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7667
7668         tmp = I915_READ(PIPECONF(crtc->pipe));
7669         if (!(tmp & PIPECONF_ENABLE))
7670                 return false;
7671
7672         switch (tmp & PIPECONF_BPC_MASK) {
7673         case PIPECONF_6BPC:
7674                 pipe_config->pipe_bpp = 18;
7675                 break;
7676         case PIPECONF_8BPC:
7677                 pipe_config->pipe_bpp = 24;
7678                 break;
7679         case PIPECONF_10BPC:
7680                 pipe_config->pipe_bpp = 30;
7681                 break;
7682         case PIPECONF_12BPC:
7683                 pipe_config->pipe_bpp = 36;
7684                 break;
7685         default:
7686                 break;
7687         }
7688
7689         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7690                 pipe_config->limited_color_range = true;
7691
7692         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7693                 struct intel_shared_dpll *pll;
7694
7695                 pipe_config->has_pch_encoder = true;
7696
7697                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7698                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7699                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7700
7701                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7702
7703                 if (HAS_PCH_IBX(dev_priv->dev)) {
7704                         pipe_config->shared_dpll =
7705                                 (enum intel_dpll_id) crtc->pipe;
7706                 } else {
7707                         tmp = I915_READ(PCH_DPLL_SEL);
7708                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7709                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7710                         else
7711                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7712                 }
7713
7714                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7715
7716                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7717                                            &pipe_config->dpll_hw_state));
7718
7719                 tmp = pipe_config->dpll_hw_state.dpll;
7720                 pipe_config->pixel_multiplier =
7721                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7722                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7723
7724                 ironlake_pch_clock_get(crtc, pipe_config);
7725         } else {
7726                 pipe_config->pixel_multiplier = 1;
7727         }
7728
7729         intel_get_pipe_timings(crtc, pipe_config);
7730
7731         ironlake_get_pfit_config(crtc, pipe_config);
7732
7733         return true;
7734 }
7735
7736 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7737 {
7738         struct drm_device *dev = dev_priv->dev;
7739         struct intel_crtc *crtc;
7740
7741         for_each_intel_crtc(dev, crtc)
7742                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7743                      pipe_name(crtc->pipe));
7744
7745         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7746         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7747         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7748         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7749         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7750         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7751              "CPU PWM1 enabled\n");
7752         if (IS_HASWELL(dev))
7753                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7754                      "CPU PWM2 enabled\n");
7755         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7756              "PCH PWM1 enabled\n");
7757         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7758              "Utility pin enabled\n");
7759         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7760
7761         /*
7762          * In theory we can still leave IRQs enabled, as long as only the HPD
7763          * interrupts remain enabled. We used to check for that, but since it's
7764          * gen-specific and since we only disable LCPLL after we fully disable
7765          * the interrupts, the check below should be enough.
7766          */
7767         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7768 }
7769
7770 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7771 {
7772         struct drm_device *dev = dev_priv->dev;
7773
7774         if (IS_HASWELL(dev))
7775                 return I915_READ(D_COMP_HSW);
7776         else
7777                 return I915_READ(D_COMP_BDW);
7778 }
7779
7780 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7781 {
7782         struct drm_device *dev = dev_priv->dev;
7783
7784         if (IS_HASWELL(dev)) {
7785                 mutex_lock(&dev_priv->rps.hw_lock);
7786                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7787                                             val))
7788                         DRM_ERROR("Failed to write to D_COMP\n");
7789                 mutex_unlock(&dev_priv->rps.hw_lock);
7790         } else {
7791                 I915_WRITE(D_COMP_BDW, val);
7792                 POSTING_READ(D_COMP_BDW);
7793         }
7794 }
7795
7796 /*
7797  * This function implements pieces of two sequences from BSpec:
7798  * - Sequence for display software to disable LCPLL
7799  * - Sequence for display software to allow package C8+
7800  * The steps implemented here are just the steps that actually touch the LCPLL
7801  * register. Callers should take care of disabling all the display engine
7802  * functions, doing the mode unset, fixing interrupts, etc.
7803  */
7804 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7805                               bool switch_to_fclk, bool allow_power_down)
7806 {
7807         uint32_t val;
7808
7809         assert_can_disable_lcpll(dev_priv);
7810
7811         val = I915_READ(LCPLL_CTL);
7812
7813         if (switch_to_fclk) {
7814                 val |= LCPLL_CD_SOURCE_FCLK;
7815                 I915_WRITE(LCPLL_CTL, val);
7816
7817                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7818                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7819                         DRM_ERROR("Switching to FCLK failed\n");
7820
7821                 val = I915_READ(LCPLL_CTL);
7822         }
7823
7824         val |= LCPLL_PLL_DISABLE;
7825         I915_WRITE(LCPLL_CTL, val);
7826         POSTING_READ(LCPLL_CTL);
7827
7828         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7829                 DRM_ERROR("LCPLL still locked\n");
7830
7831         val = hsw_read_dcomp(dev_priv);
7832         val |= D_COMP_COMP_DISABLE;
7833         hsw_write_dcomp(dev_priv, val);
7834         ndelay(100);
7835
7836         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7837                      1))
7838                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7839
7840         if (allow_power_down) {
7841                 val = I915_READ(LCPLL_CTL);
7842                 val |= LCPLL_POWER_DOWN_ALLOW;
7843                 I915_WRITE(LCPLL_CTL, val);
7844                 POSTING_READ(LCPLL_CTL);
7845         }
7846 }
7847
7848 /*
7849  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7850  * source.
7851  */
7852 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7853 {
7854         uint32_t val;
7855
7856         val = I915_READ(LCPLL_CTL);
7857
7858         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7859                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7860                 return;
7861
7862         /*
7863          * Make sure we're not on PC8 state before disabling PC8, otherwise
7864          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7865          *
7866          * The other problem is that hsw_restore_lcpll() is called as part of
7867          * the runtime PM resume sequence, so we can't just call
7868          * gen6_gt_force_wake_get() because that function calls
7869          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7870          * while we are on the resume sequence. So to solve this problem we have
7871          * to call special forcewake code that doesn't touch runtime PM and
7872          * doesn't enable the forcewake delayed work.
7873          */
7874         spin_lock_irq(&dev_priv->uncore.lock);
7875         if (dev_priv->uncore.forcewake_count++ == 0)
7876                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7877         spin_unlock_irq(&dev_priv->uncore.lock);
7878
7879         if (val & LCPLL_POWER_DOWN_ALLOW) {
7880                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7881                 I915_WRITE(LCPLL_CTL, val);
7882                 POSTING_READ(LCPLL_CTL);
7883         }
7884
7885         val = hsw_read_dcomp(dev_priv);
7886         val |= D_COMP_COMP_FORCE;
7887         val &= ~D_COMP_COMP_DISABLE;
7888         hsw_write_dcomp(dev_priv, val);
7889
7890         val = I915_READ(LCPLL_CTL);
7891         val &= ~LCPLL_PLL_DISABLE;
7892         I915_WRITE(LCPLL_CTL, val);
7893
7894         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7895                 DRM_ERROR("LCPLL not locked yet\n");
7896
7897         if (val & LCPLL_CD_SOURCE_FCLK) {
7898                 val = I915_READ(LCPLL_CTL);
7899                 val &= ~LCPLL_CD_SOURCE_FCLK;
7900                 I915_WRITE(LCPLL_CTL, val);
7901
7902                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7903                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7904                         DRM_ERROR("Switching back to LCPLL failed\n");
7905         }
7906
7907         /* See the big comment above. */
7908         spin_lock_irq(&dev_priv->uncore.lock);
7909         if (--dev_priv->uncore.forcewake_count == 0)
7910                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7911         spin_unlock_irq(&dev_priv->uncore.lock);
7912 }
7913
7914 /*
7915  * Package states C8 and deeper are really deep PC states that can only be
7916  * reached when all the devices on the system allow it, so even if the graphics
7917  * device allows PC8+, it doesn't mean the system will actually get to these
7918  * states. Our driver only allows PC8+ when going into runtime PM.
7919  *
7920  * The requirements for PC8+ are that all the outputs are disabled, the power
7921  * well is disabled and most interrupts are disabled, and these are also
7922  * requirements for runtime PM. When these conditions are met, we manually do
7923  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7924  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7925  * hang the machine.
7926  *
7927  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7928  * the state of some registers, so when we come back from PC8+ we need to
7929  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7930  * need to take care of the registers kept by RC6. Notice that this happens even
7931  * if we don't put the device in PCI D3 state (which is what currently happens
7932  * because of the runtime PM support).
7933  *
7934  * For more, read "Display Sequences for Package C8" on the hardware
7935  * documentation.
7936  */
7937 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7938 {
7939         struct drm_device *dev = dev_priv->dev;
7940         uint32_t val;
7941
7942         DRM_DEBUG_KMS("Enabling package C8+\n");
7943
7944         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7945                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7946                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7947                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7948         }
7949
7950         lpt_disable_clkout_dp(dev);
7951         hsw_disable_lcpll(dev_priv, true, true);
7952 }
7953
7954 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7955 {
7956         struct drm_device *dev = dev_priv->dev;
7957         uint32_t val;
7958
7959         DRM_DEBUG_KMS("Disabling package C8+\n");
7960
7961         hsw_restore_lcpll(dev_priv);
7962         lpt_init_pch_refclk(dev);
7963
7964         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7965                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7966                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7967                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7968         }
7969
7970         intel_prepare_ddi(dev);
7971 }
7972
7973 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7974 {
7975         if (!intel_ddi_pll_select(crtc))
7976                 return -EINVAL;
7977
7978         crtc->lowfreq_avail = false;
7979
7980         return 0;
7981 }
7982
7983 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7984                                 enum port port,
7985                                 struct intel_crtc_config *pipe_config)
7986 {
7987         u32 temp, dpll_ctl1;
7988
7989         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7990         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7991
7992         switch (pipe_config->ddi_pll_sel) {
7993         case SKL_DPLL0:
7994                 /*
7995                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
7996                  * of the shared DPLL framework and thus needs to be read out
7997                  * separately
7998                  */
7999                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8000                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8001                 break;
8002         case SKL_DPLL1:
8003                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8004                 break;
8005         case SKL_DPLL2:
8006                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8007                 break;
8008         case SKL_DPLL3:
8009                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8010                 break;
8011         }
8012 }
8013
8014 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8015                                 enum port port,
8016                                 struct intel_crtc_config *pipe_config)
8017 {
8018         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8019
8020         switch (pipe_config->ddi_pll_sel) {
8021         case PORT_CLK_SEL_WRPLL1:
8022                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8023                 break;
8024         case PORT_CLK_SEL_WRPLL2:
8025                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8026                 break;
8027         }
8028 }
8029
8030 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8031                                        struct intel_crtc_config *pipe_config)
8032 {
8033         struct drm_device *dev = crtc->base.dev;
8034         struct drm_i915_private *dev_priv = dev->dev_private;
8035         struct intel_shared_dpll *pll;
8036         enum port port;
8037         uint32_t tmp;
8038
8039         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8040
8041         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8042
8043         if (IS_SKYLAKE(dev))
8044                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8045         else
8046                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8047
8048         if (pipe_config->shared_dpll >= 0) {
8049                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8050
8051                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8052                                            &pipe_config->dpll_hw_state));
8053         }
8054
8055         /*
8056          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8057          * DDI E. So just check whether this pipe is wired to DDI E and whether
8058          * the PCH transcoder is on.
8059          */
8060         if (INTEL_INFO(dev)->gen < 9 &&
8061             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8062                 pipe_config->has_pch_encoder = true;
8063
8064                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8065                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8066                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8067
8068                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8069         }
8070 }
8071
8072 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8073                                     struct intel_crtc_config *pipe_config)
8074 {
8075         struct drm_device *dev = crtc->base.dev;
8076         struct drm_i915_private *dev_priv = dev->dev_private;
8077         enum intel_display_power_domain pfit_domain;
8078         uint32_t tmp;
8079
8080         if (!intel_display_power_is_enabled(dev_priv,
8081                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8082                 return false;
8083
8084         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8085         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8086
8087         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8088         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8089                 enum pipe trans_edp_pipe;
8090                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8091                 default:
8092                         WARN(1, "unknown pipe linked to edp transcoder\n");
8093                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8094                 case TRANS_DDI_EDP_INPUT_A_ON:
8095                         trans_edp_pipe = PIPE_A;
8096                         break;
8097                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8098                         trans_edp_pipe = PIPE_B;
8099                         break;
8100                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8101                         trans_edp_pipe = PIPE_C;
8102                         break;
8103                 }
8104
8105                 if (trans_edp_pipe == crtc->pipe)
8106                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8107         }
8108
8109         if (!intel_display_power_is_enabled(dev_priv,
8110                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8111                 return false;
8112
8113         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8114         if (!(tmp & PIPECONF_ENABLE))
8115                 return false;
8116
8117         haswell_get_ddi_port_state(crtc, pipe_config);
8118
8119         intel_get_pipe_timings(crtc, pipe_config);
8120
8121         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8122         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8123                 if (IS_SKYLAKE(dev))
8124                         skylake_get_pfit_config(crtc, pipe_config);
8125                 else
8126                         ironlake_get_pfit_config(crtc, pipe_config);
8127         }
8128
8129         if (IS_HASWELL(dev))
8130                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8131                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8132
8133         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8134                 pipe_config->pixel_multiplier =
8135                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8136         } else {
8137                 pipe_config->pixel_multiplier = 1;
8138         }
8139
8140         return true;
8141 }
8142
8143 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8144 {
8145         struct drm_device *dev = crtc->dev;
8146         struct drm_i915_private *dev_priv = dev->dev_private;
8147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8148         uint32_t cntl = 0, size = 0;
8149
8150         if (base) {
8151                 unsigned int width = intel_crtc->cursor_width;
8152                 unsigned int height = intel_crtc->cursor_height;
8153                 unsigned int stride = roundup_pow_of_two(width) * 4;
8154
8155                 switch (stride) {
8156                 default:
8157                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8158                                   width, stride);
8159                         stride = 256;
8160                         /* fallthrough */
8161                 case 256:
8162                 case 512:
8163                 case 1024:
8164                 case 2048:
8165                         break;
8166                 }
8167
8168                 cntl |= CURSOR_ENABLE |
8169                         CURSOR_GAMMA_ENABLE |
8170                         CURSOR_FORMAT_ARGB |
8171                         CURSOR_STRIDE(stride);
8172
8173                 size = (height << 12) | width;
8174         }
8175
8176         if (intel_crtc->cursor_cntl != 0 &&
8177             (intel_crtc->cursor_base != base ||
8178              intel_crtc->cursor_size != size ||
8179              intel_crtc->cursor_cntl != cntl)) {
8180                 /* On these chipsets we can only modify the base/size/stride
8181                  * whilst the cursor is disabled.
8182                  */
8183                 I915_WRITE(_CURACNTR, 0);
8184                 POSTING_READ(_CURACNTR);
8185                 intel_crtc->cursor_cntl = 0;
8186         }
8187
8188         if (intel_crtc->cursor_base != base) {
8189                 I915_WRITE(_CURABASE, base);
8190                 intel_crtc->cursor_base = base;
8191         }
8192
8193         if (intel_crtc->cursor_size != size) {
8194                 I915_WRITE(CURSIZE, size);
8195                 intel_crtc->cursor_size = size;
8196         }
8197
8198         if (intel_crtc->cursor_cntl != cntl) {
8199                 I915_WRITE(_CURACNTR, cntl);
8200                 POSTING_READ(_CURACNTR);
8201                 intel_crtc->cursor_cntl = cntl;
8202         }
8203 }
8204
8205 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8206 {
8207         struct drm_device *dev = crtc->dev;
8208         struct drm_i915_private *dev_priv = dev->dev_private;
8209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210         int pipe = intel_crtc->pipe;
8211         uint32_t cntl;
8212
8213         cntl = 0;
8214         if (base) {
8215                 cntl = MCURSOR_GAMMA_ENABLE;
8216                 switch (intel_crtc->cursor_width) {
8217                         case 64:
8218                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8219                                 break;
8220                         case 128:
8221                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8222                                 break;
8223                         case 256:
8224                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8225                                 break;
8226                         default:
8227                                 MISSING_CASE(intel_crtc->cursor_width);
8228                                 return;
8229                 }
8230                 cntl |= pipe << 28; /* Connect to correct pipe */
8231
8232                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8233                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8234         }
8235
8236         if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8237                 cntl |= CURSOR_ROTATE_180;
8238
8239         if (intel_crtc->cursor_cntl != cntl) {
8240                 I915_WRITE(CURCNTR(pipe), cntl);
8241                 POSTING_READ(CURCNTR(pipe));
8242                 intel_crtc->cursor_cntl = cntl;
8243         }
8244
8245         /* and commit changes on next vblank */
8246         I915_WRITE(CURBASE(pipe), base);
8247         POSTING_READ(CURBASE(pipe));
8248
8249         intel_crtc->cursor_base = base;
8250 }
8251
8252 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8253 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8254                                      bool on)
8255 {
8256         struct drm_device *dev = crtc->dev;
8257         struct drm_i915_private *dev_priv = dev->dev_private;
8258         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8259         int pipe = intel_crtc->pipe;
8260         int x = crtc->cursor_x;
8261         int y = crtc->cursor_y;
8262         u32 base = 0, pos = 0;
8263
8264         if (on)
8265                 base = intel_crtc->cursor_addr;
8266
8267         if (x >= intel_crtc->config.pipe_src_w)
8268                 base = 0;
8269
8270         if (y >= intel_crtc->config.pipe_src_h)
8271                 base = 0;
8272
8273         if (x < 0) {
8274                 if (x + intel_crtc->cursor_width <= 0)
8275                         base = 0;
8276
8277                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8278                 x = -x;
8279         }
8280         pos |= x << CURSOR_X_SHIFT;
8281
8282         if (y < 0) {
8283                 if (y + intel_crtc->cursor_height <= 0)
8284                         base = 0;
8285
8286                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8287                 y = -y;
8288         }
8289         pos |= y << CURSOR_Y_SHIFT;
8290
8291         if (base == 0 && intel_crtc->cursor_base == 0)
8292                 return;
8293
8294         I915_WRITE(CURPOS(pipe), pos);
8295
8296         /* ILK+ do this automagically */
8297         if (HAS_GMCH_DISPLAY(dev) &&
8298                 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8299                 base += (intel_crtc->cursor_height *
8300                         intel_crtc->cursor_width - 1) * 4;
8301         }
8302
8303         if (IS_845G(dev) || IS_I865G(dev))
8304                 i845_update_cursor(crtc, base);
8305         else
8306                 i9xx_update_cursor(crtc, base);
8307 }
8308
8309 static bool cursor_size_ok(struct drm_device *dev,
8310                            uint32_t width, uint32_t height)
8311 {
8312         if (width == 0 || height == 0)
8313                 return false;
8314
8315         /*
8316          * 845g/865g are special in that they are only limited by
8317          * the width of their cursors, the height is arbitrary up to
8318          * the precision of the register. Everything else requires
8319          * square cursors, limited to a few power-of-two sizes.
8320          */
8321         if (IS_845G(dev) || IS_I865G(dev)) {
8322                 if ((width & 63) != 0)
8323                         return false;
8324
8325                 if (width > (IS_845G(dev) ? 64 : 512))
8326                         return false;
8327
8328                 if (height > 1023)
8329                         return false;
8330         } else {
8331                 switch (width | height) {
8332                 case 256:
8333                 case 128:
8334                         if (IS_GEN2(dev))
8335                                 return false;
8336                 case 64:
8337                         break;
8338                 default:
8339                         return false;
8340                 }
8341         }
8342
8343         return true;
8344 }
8345
8346 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8347                                  u16 *blue, uint32_t start, uint32_t size)
8348 {
8349         int end = (start + size > 256) ? 256 : start + size, i;
8350         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8351
8352         for (i = start; i < end; i++) {
8353                 intel_crtc->lut_r[i] = red[i] >> 8;
8354                 intel_crtc->lut_g[i] = green[i] >> 8;
8355                 intel_crtc->lut_b[i] = blue[i] >> 8;
8356         }
8357
8358         intel_crtc_load_lut(crtc);
8359 }
8360
8361 /* VESA 640x480x72Hz mode to set on the pipe */
8362 static struct drm_display_mode load_detect_mode = {
8363         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8364                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8365 };
8366
8367 struct drm_framebuffer *
8368 __intel_framebuffer_create(struct drm_device *dev,
8369                            struct drm_mode_fb_cmd2 *mode_cmd,
8370                            struct drm_i915_gem_object *obj)
8371 {
8372         struct intel_framebuffer *intel_fb;
8373         int ret;
8374
8375         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8376         if (!intel_fb) {
8377                 drm_gem_object_unreference(&obj->base);
8378                 return ERR_PTR(-ENOMEM);
8379         }
8380
8381         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8382         if (ret)
8383                 goto err;
8384
8385         return &intel_fb->base;
8386 err:
8387         drm_gem_object_unreference(&obj->base);
8388         kfree(intel_fb);
8389
8390         return ERR_PTR(ret);
8391 }
8392
8393 static struct drm_framebuffer *
8394 intel_framebuffer_create(struct drm_device *dev,
8395                          struct drm_mode_fb_cmd2 *mode_cmd,
8396                          struct drm_i915_gem_object *obj)
8397 {
8398         struct drm_framebuffer *fb;
8399         int ret;
8400
8401         ret = i915_mutex_lock_interruptible(dev);
8402         if (ret)
8403                 return ERR_PTR(ret);
8404         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8405         mutex_unlock(&dev->struct_mutex);
8406
8407         return fb;
8408 }
8409
8410 static u32
8411 intel_framebuffer_pitch_for_width(int width, int bpp)
8412 {
8413         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8414         return ALIGN(pitch, 64);
8415 }
8416
8417 static u32
8418 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8419 {
8420         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8421         return PAGE_ALIGN(pitch * mode->vdisplay);
8422 }
8423
8424 static struct drm_framebuffer *
8425 intel_framebuffer_create_for_mode(struct drm_device *dev,
8426                                   struct drm_display_mode *mode,
8427                                   int depth, int bpp)
8428 {
8429         struct drm_i915_gem_object *obj;
8430         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8431
8432         obj = i915_gem_alloc_object(dev,
8433                                     intel_framebuffer_size_for_mode(mode, bpp));
8434         if (obj == NULL)
8435                 return ERR_PTR(-ENOMEM);
8436
8437         mode_cmd.width = mode->hdisplay;
8438         mode_cmd.height = mode->vdisplay;
8439         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8440                                                                 bpp);
8441         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8442
8443         return intel_framebuffer_create(dev, &mode_cmd, obj);
8444 }
8445
8446 static struct drm_framebuffer *
8447 mode_fits_in_fbdev(struct drm_device *dev,
8448                    struct drm_display_mode *mode)
8449 {
8450 #ifdef CONFIG_DRM_I915_FBDEV
8451         struct drm_i915_private *dev_priv = dev->dev_private;
8452         struct drm_i915_gem_object *obj;
8453         struct drm_framebuffer *fb;
8454
8455         if (!dev_priv->fbdev)
8456                 return NULL;
8457
8458         if (!dev_priv->fbdev->fb)
8459                 return NULL;
8460
8461         obj = dev_priv->fbdev->fb->obj;
8462         BUG_ON(!obj);
8463
8464         fb = &dev_priv->fbdev->fb->base;
8465         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8466                                                                fb->bits_per_pixel))
8467                 return NULL;
8468
8469         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8470                 return NULL;
8471
8472         return fb;
8473 #else
8474         return NULL;
8475 #endif
8476 }
8477
8478 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8479                                 struct drm_display_mode *mode,
8480                                 struct intel_load_detect_pipe *old,
8481                                 struct drm_modeset_acquire_ctx *ctx)
8482 {
8483         struct intel_crtc *intel_crtc;
8484         struct intel_encoder *intel_encoder =
8485                 intel_attached_encoder(connector);
8486         struct drm_crtc *possible_crtc;
8487         struct drm_encoder *encoder = &intel_encoder->base;
8488         struct drm_crtc *crtc = NULL;
8489         struct drm_device *dev = encoder->dev;
8490         struct drm_framebuffer *fb;
8491         struct drm_mode_config *config = &dev->mode_config;
8492         int ret, i = -1;
8493
8494         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8495                       connector->base.id, connector->name,
8496                       encoder->base.id, encoder->name);
8497
8498 retry:
8499         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8500         if (ret)
8501                 goto fail_unlock;
8502
8503         /*
8504          * Algorithm gets a little messy:
8505          *
8506          *   - if the connector already has an assigned crtc, use it (but make
8507          *     sure it's on first)
8508          *
8509          *   - try to find the first unused crtc that can drive this connector,
8510          *     and use that if we find one
8511          */
8512
8513         /* See if we already have a CRTC for this connector */
8514         if (encoder->crtc) {
8515                 crtc = encoder->crtc;
8516
8517                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8518                 if (ret)
8519                         goto fail_unlock;
8520                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8521                 if (ret)
8522                         goto fail_unlock;
8523
8524                 old->dpms_mode = connector->dpms;
8525                 old->load_detect_temp = false;
8526
8527                 /* Make sure the crtc and connector are running */
8528                 if (connector->dpms != DRM_MODE_DPMS_ON)
8529                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8530
8531                 return true;
8532         }
8533
8534         /* Find an unused one (if possible) */
8535         for_each_crtc(dev, possible_crtc) {
8536                 i++;
8537                 if (!(encoder->possible_crtcs & (1 << i)))
8538                         continue;
8539                 if (possible_crtc->enabled)
8540                         continue;
8541                 /* This can occur when applying the pipe A quirk on resume. */
8542                 if (to_intel_crtc(possible_crtc)->new_enabled)
8543                         continue;
8544
8545                 crtc = possible_crtc;
8546                 break;
8547         }
8548
8549         /*
8550          * If we didn't find an unused CRTC, don't use any.
8551          */
8552         if (!crtc) {
8553                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8554                 goto fail_unlock;
8555         }
8556
8557         ret = drm_modeset_lock(&crtc->mutex, ctx);
8558         if (ret)
8559                 goto fail_unlock;
8560         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8561         if (ret)
8562                 goto fail_unlock;
8563         intel_encoder->new_crtc = to_intel_crtc(crtc);
8564         to_intel_connector(connector)->new_encoder = intel_encoder;
8565
8566         intel_crtc = to_intel_crtc(crtc);
8567         intel_crtc->new_enabled = true;
8568         intel_crtc->new_config = &intel_crtc->config;
8569         old->dpms_mode = connector->dpms;
8570         old->load_detect_temp = true;
8571         old->release_fb = NULL;
8572
8573         if (!mode)
8574                 mode = &load_detect_mode;
8575
8576         /* We need a framebuffer large enough to accommodate all accesses
8577          * that the plane may generate whilst we perform load detection.
8578          * We can not rely on the fbcon either being present (we get called
8579          * during its initialisation to detect all boot displays, or it may
8580          * not even exist) or that it is large enough to satisfy the
8581          * requested mode.
8582          */
8583         fb = mode_fits_in_fbdev(dev, mode);
8584         if (fb == NULL) {
8585                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8586                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8587                 old->release_fb = fb;
8588         } else
8589                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8590         if (IS_ERR(fb)) {
8591                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8592                 goto fail;
8593         }
8594
8595         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8596                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8597                 if (old->release_fb)
8598                         old->release_fb->funcs->destroy(old->release_fb);
8599                 goto fail;
8600         }
8601
8602         /* let the connector get through one full cycle before testing */
8603         intel_wait_for_vblank(dev, intel_crtc->pipe);
8604         return true;
8605
8606  fail:
8607         intel_crtc->new_enabled = crtc->enabled;
8608         if (intel_crtc->new_enabled)
8609                 intel_crtc->new_config = &intel_crtc->config;
8610         else
8611                 intel_crtc->new_config = NULL;
8612 fail_unlock:
8613         if (ret == -EDEADLK) {
8614                 drm_modeset_backoff(ctx);
8615                 goto retry;
8616         }
8617
8618         return false;
8619 }
8620
8621 void intel_release_load_detect_pipe(struct drm_connector *connector,
8622                                     struct intel_load_detect_pipe *old)
8623 {
8624         struct intel_encoder *intel_encoder =
8625                 intel_attached_encoder(connector);
8626         struct drm_encoder *encoder = &intel_encoder->base;
8627         struct drm_crtc *crtc = encoder->crtc;
8628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629
8630         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8631                       connector->base.id, connector->name,
8632                       encoder->base.id, encoder->name);
8633
8634         if (old->load_detect_temp) {
8635                 to_intel_connector(connector)->new_encoder = NULL;
8636                 intel_encoder->new_crtc = NULL;
8637                 intel_crtc->new_enabled = false;
8638                 intel_crtc->new_config = NULL;
8639                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8640
8641                 if (old->release_fb) {
8642                         drm_framebuffer_unregister_private(old->release_fb);
8643                         drm_framebuffer_unreference(old->release_fb);
8644                 }
8645
8646                 return;
8647         }
8648
8649         /* Switch crtc and encoder back off if necessary */
8650         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8651                 connector->funcs->dpms(connector, old->dpms_mode);
8652 }
8653
8654 static int i9xx_pll_refclk(struct drm_device *dev,
8655                            const struct intel_crtc_config *pipe_config)
8656 {
8657         struct drm_i915_private *dev_priv = dev->dev_private;
8658         u32 dpll = pipe_config->dpll_hw_state.dpll;
8659
8660         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8661                 return dev_priv->vbt.lvds_ssc_freq;
8662         else if (HAS_PCH_SPLIT(dev))
8663                 return 120000;
8664         else if (!IS_GEN2(dev))
8665                 return 96000;
8666         else
8667                 return 48000;
8668 }
8669
8670 /* Returns the clock of the currently programmed mode of the given pipe. */
8671 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8672                                 struct intel_crtc_config *pipe_config)
8673 {
8674         struct drm_device *dev = crtc->base.dev;
8675         struct drm_i915_private *dev_priv = dev->dev_private;
8676         int pipe = pipe_config->cpu_transcoder;
8677         u32 dpll = pipe_config->dpll_hw_state.dpll;
8678         u32 fp;
8679         intel_clock_t clock;
8680         int refclk = i9xx_pll_refclk(dev, pipe_config);
8681
8682         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8683                 fp = pipe_config->dpll_hw_state.fp0;
8684         else
8685                 fp = pipe_config->dpll_hw_state.fp1;
8686
8687         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8688         if (IS_PINEVIEW(dev)) {
8689                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8690                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8691         } else {
8692                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8693                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8694         }
8695
8696         if (!IS_GEN2(dev)) {
8697                 if (IS_PINEVIEW(dev))
8698                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8699                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8700                 else
8701                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8702                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8703
8704                 switch (dpll & DPLL_MODE_MASK) {
8705                 case DPLLB_MODE_DAC_SERIAL:
8706                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8707                                 5 : 10;
8708                         break;
8709                 case DPLLB_MODE_LVDS:
8710                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8711                                 7 : 14;
8712                         break;
8713                 default:
8714                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8715                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8716                         return;
8717                 }
8718
8719                 if (IS_PINEVIEW(dev))
8720                         pineview_clock(refclk, &clock);
8721                 else
8722                         i9xx_clock(refclk, &clock);
8723         } else {
8724                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8725                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8726
8727                 if (is_lvds) {
8728                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8729                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8730
8731                         if (lvds & LVDS_CLKB_POWER_UP)
8732                                 clock.p2 = 7;
8733                         else
8734                                 clock.p2 = 14;
8735                 } else {
8736                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8737                                 clock.p1 = 2;
8738                         else {
8739                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8740                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8741                         }
8742                         if (dpll & PLL_P2_DIVIDE_BY_4)
8743                                 clock.p2 = 4;
8744                         else
8745                                 clock.p2 = 2;
8746                 }
8747
8748                 i9xx_clock(refclk, &clock);
8749         }
8750
8751         /*
8752          * This value includes pixel_multiplier. We will use
8753          * port_clock to compute adjusted_mode.crtc_clock in the
8754          * encoder's get_config() function.
8755          */
8756         pipe_config->port_clock = clock.dot;
8757 }
8758
8759 int intel_dotclock_calculate(int link_freq,
8760                              const struct intel_link_m_n *m_n)
8761 {
8762         /*
8763          * The calculation for the data clock is:
8764          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8765          * But we want to avoid losing precison if possible, so:
8766          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8767          *
8768          * and the link clock is simpler:
8769          * link_clock = (m * link_clock) / n
8770          */
8771
8772         if (!m_n->link_n)
8773                 return 0;
8774
8775         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8776 }
8777
8778 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8779                                    struct intel_crtc_config *pipe_config)
8780 {
8781         struct drm_device *dev = crtc->base.dev;
8782
8783         /* read out port_clock from the DPLL */
8784         i9xx_crtc_clock_get(crtc, pipe_config);
8785
8786         /*
8787          * This value does not include pixel_multiplier.
8788          * We will check that port_clock and adjusted_mode.crtc_clock
8789          * agree once we know their relationship in the encoder's
8790          * get_config() function.
8791          */
8792         pipe_config->adjusted_mode.crtc_clock =
8793                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8794                                          &pipe_config->fdi_m_n);
8795 }
8796
8797 /** Returns the currently programmed mode of the given pipe. */
8798 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8799                                              struct drm_crtc *crtc)
8800 {
8801         struct drm_i915_private *dev_priv = dev->dev_private;
8802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8803         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8804         struct drm_display_mode *mode;
8805         struct intel_crtc_config pipe_config;
8806         int htot = I915_READ(HTOTAL(cpu_transcoder));
8807         int hsync = I915_READ(HSYNC(cpu_transcoder));
8808         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8809         int vsync = I915_READ(VSYNC(cpu_transcoder));
8810         enum pipe pipe = intel_crtc->pipe;
8811
8812         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8813         if (!mode)
8814                 return NULL;
8815
8816         /*
8817          * Construct a pipe_config sufficient for getting the clock info
8818          * back out of crtc_clock_get.
8819          *
8820          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8821          * to use a real value here instead.
8822          */
8823         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8824         pipe_config.pixel_multiplier = 1;
8825         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8826         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8827         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8828         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8829
8830         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8831         mode->hdisplay = (htot & 0xffff) + 1;
8832         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8833         mode->hsync_start = (hsync & 0xffff) + 1;
8834         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8835         mode->vdisplay = (vtot & 0xffff) + 1;
8836         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8837         mode->vsync_start = (vsync & 0xffff) + 1;
8838         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8839
8840         drm_mode_set_name(mode);
8841
8842         return mode;
8843 }
8844
8845 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8846 {
8847         struct drm_device *dev = crtc->dev;
8848         struct drm_i915_private *dev_priv = dev->dev_private;
8849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8850
8851         if (!HAS_GMCH_DISPLAY(dev))
8852                 return;
8853
8854         if (!dev_priv->lvds_downclock_avail)
8855                 return;
8856
8857         /*
8858          * Since this is called by a timer, we should never get here in
8859          * the manual case.
8860          */
8861         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8862                 int pipe = intel_crtc->pipe;
8863                 int dpll_reg = DPLL(pipe);
8864                 int dpll;
8865
8866                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8867
8868                 assert_panel_unlocked(dev_priv, pipe);
8869
8870                 dpll = I915_READ(dpll_reg);
8871                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8872                 I915_WRITE(dpll_reg, dpll);
8873                 intel_wait_for_vblank(dev, pipe);
8874                 dpll = I915_READ(dpll_reg);
8875                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8876                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8877         }
8878
8879 }
8880
8881 void intel_mark_busy(struct drm_device *dev)
8882 {
8883         struct drm_i915_private *dev_priv = dev->dev_private;
8884
8885         if (dev_priv->mm.busy)
8886                 return;
8887
8888         intel_runtime_pm_get(dev_priv);
8889         i915_update_gfx_val(dev_priv);
8890         dev_priv->mm.busy = true;
8891 }
8892
8893 void intel_mark_idle(struct drm_device *dev)
8894 {
8895         struct drm_i915_private *dev_priv = dev->dev_private;
8896         struct drm_crtc *crtc;
8897
8898         if (!dev_priv->mm.busy)
8899                 return;
8900
8901         dev_priv->mm.busy = false;
8902
8903         if (!i915.powersave)
8904                 goto out;
8905
8906         for_each_crtc(dev, crtc) {
8907                 if (!crtc->primary->fb)
8908                         continue;
8909
8910                 intel_decrease_pllclock(crtc);
8911         }
8912
8913         if (INTEL_INFO(dev)->gen >= 6)
8914                 gen6_rps_idle(dev->dev_private);
8915
8916 out:
8917         intel_runtime_pm_put(dev_priv);
8918 }
8919
8920 static void intel_crtc_destroy(struct drm_crtc *crtc)
8921 {
8922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8923         struct drm_device *dev = crtc->dev;
8924         struct intel_unpin_work *work;
8925
8926         spin_lock_irq(&dev->event_lock);
8927         work = intel_crtc->unpin_work;
8928         intel_crtc->unpin_work = NULL;
8929         spin_unlock_irq(&dev->event_lock);
8930
8931         if (work) {
8932                 cancel_work_sync(&work->work);
8933                 kfree(work);
8934         }
8935
8936         drm_crtc_cleanup(crtc);
8937
8938         kfree(intel_crtc);
8939 }
8940
8941 static void intel_unpin_work_fn(struct work_struct *__work)
8942 {
8943         struct intel_unpin_work *work =
8944                 container_of(__work, struct intel_unpin_work, work);
8945         struct drm_device *dev = work->crtc->dev;
8946         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
8947
8948         mutex_lock(&dev->struct_mutex);
8949         intel_unpin_fb_obj(work->old_fb_obj);
8950         drm_gem_object_unreference(&work->pending_flip_obj->base);
8951         drm_gem_object_unreference(&work->old_fb_obj->base);
8952
8953         intel_fbc_update(dev);
8954
8955         if (work->flip_queued_req)
8956                 i915_gem_request_assign(&work->flip_queued_req, NULL);
8957         mutex_unlock(&dev->struct_mutex);
8958
8959         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8960
8961         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8962         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8963
8964         kfree(work);
8965 }
8966
8967 static void do_intel_finish_page_flip(struct drm_device *dev,
8968                                       struct drm_crtc *crtc)
8969 {
8970         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8971         struct intel_unpin_work *work;
8972         unsigned long flags;
8973
8974         /* Ignore early vblank irqs */
8975         if (intel_crtc == NULL)
8976                 return;
8977
8978         /*
8979          * This is called both by irq handlers and the reset code (to complete
8980          * lost pageflips) so needs the full irqsave spinlocks.
8981          */
8982         spin_lock_irqsave(&dev->event_lock, flags);
8983         work = intel_crtc->unpin_work;
8984
8985         /* Ensure we don't miss a work->pending update ... */
8986         smp_rmb();
8987
8988         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8989                 spin_unlock_irqrestore(&dev->event_lock, flags);
8990                 return;
8991         }
8992
8993         page_flip_completed(intel_crtc);
8994
8995         spin_unlock_irqrestore(&dev->event_lock, flags);
8996 }
8997
8998 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8999 {
9000         struct drm_i915_private *dev_priv = dev->dev_private;
9001         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9002
9003         do_intel_finish_page_flip(dev, crtc);
9004 }
9005
9006 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9007 {
9008         struct drm_i915_private *dev_priv = dev->dev_private;
9009         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9010
9011         do_intel_finish_page_flip(dev, crtc);
9012 }
9013
9014 /* Is 'a' after or equal to 'b'? */
9015 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9016 {
9017         return !((a - b) & 0x80000000);
9018 }
9019
9020 static bool page_flip_finished(struct intel_crtc *crtc)
9021 {
9022         struct drm_device *dev = crtc->base.dev;
9023         struct drm_i915_private *dev_priv = dev->dev_private;
9024
9025         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9026             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9027                 return true;
9028
9029         /*
9030          * The relevant registers doen't exist on pre-ctg.
9031          * As the flip done interrupt doesn't trigger for mmio
9032          * flips on gmch platforms, a flip count check isn't
9033          * really needed there. But since ctg has the registers,
9034          * include it in the check anyway.
9035          */
9036         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9037                 return true;
9038
9039         /*
9040          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9041          * used the same base address. In that case the mmio flip might
9042          * have completed, but the CS hasn't even executed the flip yet.
9043          *
9044          * A flip count check isn't enough as the CS might have updated
9045          * the base address just after start of vblank, but before we
9046          * managed to process the interrupt. This means we'd complete the
9047          * CS flip too soon.
9048          *
9049          * Combining both checks should get us a good enough result. It may
9050          * still happen that the CS flip has been executed, but has not
9051          * yet actually completed. But in case the base address is the same
9052          * anyway, we don't really care.
9053          */
9054         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9055                 crtc->unpin_work->gtt_offset &&
9056                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9057                                     crtc->unpin_work->flip_count);
9058 }
9059
9060 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9061 {
9062         struct drm_i915_private *dev_priv = dev->dev_private;
9063         struct intel_crtc *intel_crtc =
9064                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9065         unsigned long flags;
9066
9067
9068         /*
9069          * This is called both by irq handlers and the reset code (to complete
9070          * lost pageflips) so needs the full irqsave spinlocks.
9071          *
9072          * NB: An MMIO update of the plane base pointer will also
9073          * generate a page-flip completion irq, i.e. every modeset
9074          * is also accompanied by a spurious intel_prepare_page_flip().
9075          */
9076         spin_lock_irqsave(&dev->event_lock, flags);
9077         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9078                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9079         spin_unlock_irqrestore(&dev->event_lock, flags);
9080 }
9081
9082 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9083 {
9084         /* Ensure that the work item is consistent when activating it ... */
9085         smp_wmb();
9086         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9087         /* and that it is marked active as soon as the irq could fire. */
9088         smp_wmb();
9089 }
9090
9091 static int intel_gen2_queue_flip(struct drm_device *dev,
9092                                  struct drm_crtc *crtc,
9093                                  struct drm_framebuffer *fb,
9094                                  struct drm_i915_gem_object *obj,
9095                                  struct intel_engine_cs *ring,
9096                                  uint32_t flags)
9097 {
9098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9099         u32 flip_mask;
9100         int ret;
9101
9102         ret = intel_ring_begin(ring, 6);
9103         if (ret)
9104                 return ret;
9105
9106         /* Can't queue multiple flips, so wait for the previous
9107          * one to finish before executing the next.
9108          */
9109         if (intel_crtc->plane)
9110                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9111         else
9112                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9113         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9114         intel_ring_emit(ring, MI_NOOP);
9115         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9116                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9117         intel_ring_emit(ring, fb->pitches[0]);
9118         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9119         intel_ring_emit(ring, 0); /* aux display base address, unused */
9120
9121         intel_mark_page_flip_active(intel_crtc);
9122         __intel_ring_advance(ring);
9123         return 0;
9124 }
9125
9126 static int intel_gen3_queue_flip(struct drm_device *dev,
9127                                  struct drm_crtc *crtc,
9128                                  struct drm_framebuffer *fb,
9129                                  struct drm_i915_gem_object *obj,
9130                                  struct intel_engine_cs *ring,
9131                                  uint32_t flags)
9132 {
9133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9134         u32 flip_mask;
9135         int ret;
9136
9137         ret = intel_ring_begin(ring, 6);
9138         if (ret)
9139                 return ret;
9140
9141         if (intel_crtc->plane)
9142                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9143         else
9144                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9145         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9146         intel_ring_emit(ring, MI_NOOP);
9147         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9148                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9149         intel_ring_emit(ring, fb->pitches[0]);
9150         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9151         intel_ring_emit(ring, MI_NOOP);
9152
9153         intel_mark_page_flip_active(intel_crtc);
9154         __intel_ring_advance(ring);
9155         return 0;
9156 }
9157
9158 static int intel_gen4_queue_flip(struct drm_device *dev,
9159                                  struct drm_crtc *crtc,
9160                                  struct drm_framebuffer *fb,
9161                                  struct drm_i915_gem_object *obj,
9162                                  struct intel_engine_cs *ring,
9163                                  uint32_t flags)
9164 {
9165         struct drm_i915_private *dev_priv = dev->dev_private;
9166         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9167         uint32_t pf, pipesrc;
9168         int ret;
9169
9170         ret = intel_ring_begin(ring, 4);
9171         if (ret)
9172                 return ret;
9173
9174         /* i965+ uses the linear or tiled offsets from the
9175          * Display Registers (which do not change across a page-flip)
9176          * so we need only reprogram the base address.
9177          */
9178         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9179                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9180         intel_ring_emit(ring, fb->pitches[0]);
9181         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9182                         obj->tiling_mode);
9183
9184         /* XXX Enabling the panel-fitter across page-flip is so far
9185          * untested on non-native modes, so ignore it for now.
9186          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9187          */
9188         pf = 0;
9189         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9190         intel_ring_emit(ring, pf | pipesrc);
9191
9192         intel_mark_page_flip_active(intel_crtc);
9193         __intel_ring_advance(ring);
9194         return 0;
9195 }
9196
9197 static int intel_gen6_queue_flip(struct drm_device *dev,
9198                                  struct drm_crtc *crtc,
9199                                  struct drm_framebuffer *fb,
9200                                  struct drm_i915_gem_object *obj,
9201                                  struct intel_engine_cs *ring,
9202                                  uint32_t flags)
9203 {
9204         struct drm_i915_private *dev_priv = dev->dev_private;
9205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9206         uint32_t pf, pipesrc;
9207         int ret;
9208
9209         ret = intel_ring_begin(ring, 4);
9210         if (ret)
9211                 return ret;
9212
9213         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9214                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9215         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9216         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9217
9218         /* Contrary to the suggestions in the documentation,
9219          * "Enable Panel Fitter" does not seem to be required when page
9220          * flipping with a non-native mode, and worse causes a normal
9221          * modeset to fail.
9222          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9223          */
9224         pf = 0;
9225         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9226         intel_ring_emit(ring, pf | pipesrc);
9227
9228         intel_mark_page_flip_active(intel_crtc);
9229         __intel_ring_advance(ring);
9230         return 0;
9231 }
9232
9233 static int intel_gen7_queue_flip(struct drm_device *dev,
9234                                  struct drm_crtc *crtc,
9235                                  struct drm_framebuffer *fb,
9236                                  struct drm_i915_gem_object *obj,
9237                                  struct intel_engine_cs *ring,
9238                                  uint32_t flags)
9239 {
9240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9241         uint32_t plane_bit = 0;
9242         int len, ret;
9243
9244         switch (intel_crtc->plane) {
9245         case PLANE_A:
9246                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9247                 break;
9248         case PLANE_B:
9249                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9250                 break;
9251         case PLANE_C:
9252                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9253                 break;
9254         default:
9255                 WARN_ONCE(1, "unknown plane in flip command\n");
9256                 return -ENODEV;
9257         }
9258
9259         len = 4;
9260         if (ring->id == RCS) {
9261                 len += 6;
9262                 /*
9263                  * On Gen 8, SRM is now taking an extra dword to accommodate
9264                  * 48bits addresses, and we need a NOOP for the batch size to
9265                  * stay even.
9266                  */
9267                 if (IS_GEN8(dev))
9268                         len += 2;
9269         }
9270
9271         /*
9272          * BSpec MI_DISPLAY_FLIP for IVB:
9273          * "The full packet must be contained within the same cache line."
9274          *
9275          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9276          * cacheline, if we ever start emitting more commands before
9277          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9278          * then do the cacheline alignment, and finally emit the
9279          * MI_DISPLAY_FLIP.
9280          */
9281         ret = intel_ring_cacheline_align(ring);
9282         if (ret)
9283                 return ret;
9284
9285         ret = intel_ring_begin(ring, len);
9286         if (ret)
9287                 return ret;
9288
9289         /* Unmask the flip-done completion message. Note that the bspec says that
9290          * we should do this for both the BCS and RCS, and that we must not unmask
9291          * more than one flip event at any time (or ensure that one flip message
9292          * can be sent by waiting for flip-done prior to queueing new flips).
9293          * Experimentation says that BCS works despite DERRMR masking all
9294          * flip-done completion events and that unmasking all planes at once
9295          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9296          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9297          */
9298         if (ring->id == RCS) {
9299                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9300                 intel_ring_emit(ring, DERRMR);
9301                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9302                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9303                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9304                 if (IS_GEN8(dev))
9305                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9306                                               MI_SRM_LRM_GLOBAL_GTT);
9307                 else
9308                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9309                                               MI_SRM_LRM_GLOBAL_GTT);
9310                 intel_ring_emit(ring, DERRMR);
9311                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9312                 if (IS_GEN8(dev)) {
9313                         intel_ring_emit(ring, 0);
9314                         intel_ring_emit(ring, MI_NOOP);
9315                 }
9316         }
9317
9318         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9319         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9320         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9321         intel_ring_emit(ring, (MI_NOOP));
9322
9323         intel_mark_page_flip_active(intel_crtc);
9324         __intel_ring_advance(ring);
9325         return 0;
9326 }
9327
9328 static bool use_mmio_flip(struct intel_engine_cs *ring,
9329                           struct drm_i915_gem_object *obj)
9330 {
9331         /*
9332          * This is not being used for older platforms, because
9333          * non-availability of flip done interrupt forces us to use
9334          * CS flips. Older platforms derive flip done using some clever
9335          * tricks involving the flip_pending status bits and vblank irqs.
9336          * So using MMIO flips there would disrupt this mechanism.
9337          */
9338
9339         if (ring == NULL)
9340                 return true;
9341
9342         if (INTEL_INFO(ring->dev)->gen < 5)
9343                 return false;
9344
9345         if (i915.use_mmio_flip < 0)
9346                 return false;
9347         else if (i915.use_mmio_flip > 0)
9348                 return true;
9349         else if (i915.enable_execlists)
9350                 return true;
9351         else
9352                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9353 }
9354
9355 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9356 {
9357         struct drm_device *dev = intel_crtc->base.dev;
9358         struct drm_i915_private *dev_priv = dev->dev_private;
9359         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9360         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9361         struct drm_i915_gem_object *obj = intel_fb->obj;
9362         const enum pipe pipe = intel_crtc->pipe;
9363         u32 ctl, stride;
9364
9365         ctl = I915_READ(PLANE_CTL(pipe, 0));
9366         ctl &= ~PLANE_CTL_TILED_MASK;
9367         if (obj->tiling_mode == I915_TILING_X)
9368                 ctl |= PLANE_CTL_TILED_X;
9369
9370         /*
9371          * The stride is either expressed as a multiple of 64 bytes chunks for
9372          * linear buffers or in number of tiles for tiled buffers.
9373          */
9374         stride = fb->pitches[0] >> 6;
9375         if (obj->tiling_mode == I915_TILING_X)
9376                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9377
9378         /*
9379          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9380          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9381          */
9382         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9383         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9384
9385         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9386         POSTING_READ(PLANE_SURF(pipe, 0));
9387 }
9388
9389 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9390 {
9391         struct drm_device *dev = intel_crtc->base.dev;
9392         struct drm_i915_private *dev_priv = dev->dev_private;
9393         struct intel_framebuffer *intel_fb =
9394                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9395         struct drm_i915_gem_object *obj = intel_fb->obj;
9396         u32 dspcntr;
9397         u32 reg;
9398
9399         reg = DSPCNTR(intel_crtc->plane);
9400         dspcntr = I915_READ(reg);
9401
9402         if (obj->tiling_mode != I915_TILING_NONE)
9403                 dspcntr |= DISPPLANE_TILED;
9404         else
9405                 dspcntr &= ~DISPPLANE_TILED;
9406
9407         I915_WRITE(reg, dspcntr);
9408
9409         I915_WRITE(DSPSURF(intel_crtc->plane),
9410                    intel_crtc->unpin_work->gtt_offset);
9411         POSTING_READ(DSPSURF(intel_crtc->plane));
9412
9413 }
9414
9415 /*
9416  * XXX: This is the temporary way to update the plane registers until we get
9417  * around to using the usual plane update functions for MMIO flips
9418  */
9419 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9420 {
9421         struct drm_device *dev = intel_crtc->base.dev;
9422         bool atomic_update;
9423         u32 start_vbl_count;
9424
9425         intel_mark_page_flip_active(intel_crtc);
9426
9427         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9428
9429         if (INTEL_INFO(dev)->gen >= 9)
9430                 skl_do_mmio_flip(intel_crtc);
9431         else
9432                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9433                 ilk_do_mmio_flip(intel_crtc);
9434
9435         if (atomic_update)
9436                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9437 }
9438
9439 static void intel_mmio_flip_work_func(struct work_struct *work)
9440 {
9441         struct intel_crtc *crtc =
9442                 container_of(work, struct intel_crtc, mmio_flip.work);
9443         struct intel_mmio_flip *mmio_flip;
9444
9445         mmio_flip = &crtc->mmio_flip;
9446         if (mmio_flip->req)
9447                 WARN_ON(__i915_wait_request(mmio_flip->req,
9448                                             crtc->reset_counter,
9449                                             false, NULL, NULL) != 0);
9450
9451         intel_do_mmio_flip(crtc);
9452         if (mmio_flip->req) {
9453                 mutex_lock(&crtc->base.dev->struct_mutex);
9454                 i915_gem_request_assign(&mmio_flip->req, NULL);
9455                 mutex_unlock(&crtc->base.dev->struct_mutex);
9456         }
9457 }
9458
9459 static int intel_queue_mmio_flip(struct drm_device *dev,
9460                                  struct drm_crtc *crtc,
9461                                  struct drm_framebuffer *fb,
9462                                  struct drm_i915_gem_object *obj,
9463                                  struct intel_engine_cs *ring,
9464                                  uint32_t flags)
9465 {
9466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9467
9468         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9469                                 obj->last_write_req);
9470
9471         schedule_work(&intel_crtc->mmio_flip.work);
9472
9473         return 0;
9474 }
9475
9476 static int intel_gen9_queue_flip(struct drm_device *dev,
9477                                  struct drm_crtc *crtc,
9478                                  struct drm_framebuffer *fb,
9479                                  struct drm_i915_gem_object *obj,
9480                                  struct intel_engine_cs *ring,
9481                                  uint32_t flags)
9482 {
9483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9484         uint32_t plane = 0, stride;
9485         int ret;
9486
9487         switch(intel_crtc->pipe) {
9488         case PIPE_A:
9489                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9490                 break;
9491         case PIPE_B:
9492                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9493                 break;
9494         case PIPE_C:
9495                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9496                 break;
9497         default:
9498                 WARN_ONCE(1, "unknown plane in flip command\n");
9499                 return -ENODEV;
9500         }
9501
9502         switch (obj->tiling_mode) {
9503         case I915_TILING_NONE:
9504                 stride = fb->pitches[0] >> 6;
9505                 break;
9506         case I915_TILING_X:
9507                 stride = fb->pitches[0] >> 9;
9508                 break;
9509         default:
9510                 WARN_ONCE(1, "unknown tiling in flip command\n");
9511                 return -ENODEV;
9512         }
9513
9514         ret = intel_ring_begin(ring, 10);
9515         if (ret)
9516                 return ret;
9517
9518         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9519         intel_ring_emit(ring, DERRMR);
9520         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9521                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9522                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9523         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9524                               MI_SRM_LRM_GLOBAL_GTT);
9525         intel_ring_emit(ring, DERRMR);
9526         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9527         intel_ring_emit(ring, 0);
9528
9529         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9530         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9531         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9532
9533         intel_mark_page_flip_active(intel_crtc);
9534         __intel_ring_advance(ring);
9535
9536         return 0;
9537 }
9538
9539 static int intel_default_queue_flip(struct drm_device *dev,
9540                                     struct drm_crtc *crtc,
9541                                     struct drm_framebuffer *fb,
9542                                     struct drm_i915_gem_object *obj,
9543                                     struct intel_engine_cs *ring,
9544                                     uint32_t flags)
9545 {
9546         return -ENODEV;
9547 }
9548
9549 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9550                                          struct drm_crtc *crtc)
9551 {
9552         struct drm_i915_private *dev_priv = dev->dev_private;
9553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9554         struct intel_unpin_work *work = intel_crtc->unpin_work;
9555         u32 addr;
9556
9557         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9558                 return true;
9559
9560         if (!work->enable_stall_check)
9561                 return false;
9562
9563         if (work->flip_ready_vblank == 0) {
9564                 if (work->flip_queued_req &&
9565                     !i915_gem_request_completed(work->flip_queued_req, true))
9566                         return false;
9567
9568                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9569         }
9570
9571         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9572                 return false;
9573
9574         /* Potential stall - if we see that the flip has happened,
9575          * assume a missed interrupt. */
9576         if (INTEL_INFO(dev)->gen >= 4)
9577                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9578         else
9579                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9580
9581         /* There is a potential issue here with a false positive after a flip
9582          * to the same address. We could address this by checking for a
9583          * non-incrementing frame counter.
9584          */
9585         return addr == work->gtt_offset;
9586 }
9587
9588 void intel_check_page_flip(struct drm_device *dev, int pipe)
9589 {
9590         struct drm_i915_private *dev_priv = dev->dev_private;
9591         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9593
9594         WARN_ON(!in_irq());
9595
9596         if (crtc == NULL)
9597                 return;
9598
9599         spin_lock(&dev->event_lock);
9600         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9601                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9602                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9603                 page_flip_completed(intel_crtc);
9604         }
9605         spin_unlock(&dev->event_lock);
9606 }
9607
9608 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9609                                 struct drm_framebuffer *fb,
9610                                 struct drm_pending_vblank_event *event,
9611                                 uint32_t page_flip_flags)
9612 {
9613         struct drm_device *dev = crtc->dev;
9614         struct drm_i915_private *dev_priv = dev->dev_private;
9615         struct drm_framebuffer *old_fb = crtc->primary->fb;
9616         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9617         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9618         struct drm_plane *primary = crtc->primary;
9619         enum pipe pipe = intel_crtc->pipe;
9620         struct intel_unpin_work *work;
9621         struct intel_engine_cs *ring;
9622         int ret;
9623
9624         /*
9625          * drm_mode_page_flip_ioctl() should already catch this, but double
9626          * check to be safe.  In the future we may enable pageflipping from
9627          * a disabled primary plane.
9628          */
9629         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9630                 return -EBUSY;
9631
9632         /* Can't change pixel format via MI display flips. */
9633         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9634                 return -EINVAL;
9635
9636         /*
9637          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9638          * Note that pitch changes could also affect these register.
9639          */
9640         if (INTEL_INFO(dev)->gen > 3 &&
9641             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9642              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9643                 return -EINVAL;
9644
9645         if (i915_terminally_wedged(&dev_priv->gpu_error))
9646                 goto out_hang;
9647
9648         work = kzalloc(sizeof(*work), GFP_KERNEL);
9649         if (work == NULL)
9650                 return -ENOMEM;
9651
9652         work->event = event;
9653         work->crtc = crtc;
9654         work->old_fb_obj = intel_fb_obj(old_fb);
9655         INIT_WORK(&work->work, intel_unpin_work_fn);
9656
9657         ret = drm_crtc_vblank_get(crtc);
9658         if (ret)
9659                 goto free_work;
9660
9661         /* We borrow the event spin lock for protecting unpin_work */
9662         spin_lock_irq(&dev->event_lock);
9663         if (intel_crtc->unpin_work) {
9664                 /* Before declaring the flip queue wedged, check if
9665                  * the hardware completed the operation behind our backs.
9666                  */
9667                 if (__intel_pageflip_stall_check(dev, crtc)) {
9668                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9669                         page_flip_completed(intel_crtc);
9670                 } else {
9671                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9672                         spin_unlock_irq(&dev->event_lock);
9673
9674                         drm_crtc_vblank_put(crtc);
9675                         kfree(work);
9676                         return -EBUSY;
9677                 }
9678         }
9679         intel_crtc->unpin_work = work;
9680         spin_unlock_irq(&dev->event_lock);
9681
9682         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9683                 flush_workqueue(dev_priv->wq);
9684
9685         ret = i915_mutex_lock_interruptible(dev);
9686         if (ret)
9687                 goto cleanup;
9688
9689         /* Reference the objects for the scheduled work. */
9690         drm_gem_object_reference(&work->old_fb_obj->base);
9691         drm_gem_object_reference(&obj->base);
9692
9693         crtc->primary->fb = fb;
9694
9695         work->pending_flip_obj = obj;
9696
9697         atomic_inc(&intel_crtc->unpin_work_count);
9698         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9699
9700         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9701                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9702
9703         if (IS_VALLEYVIEW(dev)) {
9704                 ring = &dev_priv->ring[BCS];
9705                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9706                         /* vlv: DISPLAY_FLIP fails to change tiling */
9707                         ring = NULL;
9708         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9709                 ring = &dev_priv->ring[BCS];
9710         } else if (INTEL_INFO(dev)->gen >= 7) {
9711                 ring = i915_gem_request_get_ring(obj->last_read_req);
9712                 if (ring == NULL || ring->id != RCS)
9713                         ring = &dev_priv->ring[BCS];
9714         } else {
9715                 ring = &dev_priv->ring[RCS];
9716         }
9717
9718         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9719         if (ret)
9720                 goto cleanup_pending;
9721
9722         work->gtt_offset =
9723                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9724
9725         if (use_mmio_flip(ring, obj)) {
9726                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9727                                             page_flip_flags);
9728                 if (ret)
9729                         goto cleanup_unpin;
9730
9731                 i915_gem_request_assign(&work->flip_queued_req,
9732                                         obj->last_write_req);
9733         } else {
9734                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9735                                                    page_flip_flags);
9736                 if (ret)
9737                         goto cleanup_unpin;
9738
9739                 i915_gem_request_assign(&work->flip_queued_req,
9740                                         intel_ring_get_request(ring));
9741         }
9742
9743         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9744         work->enable_stall_check = true;
9745
9746         i915_gem_track_fb(work->old_fb_obj, obj,
9747                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9748
9749         intel_fbc_disable(dev);
9750         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9751         mutex_unlock(&dev->struct_mutex);
9752
9753         trace_i915_flip_request(intel_crtc->plane, obj);
9754
9755         return 0;
9756
9757 cleanup_unpin:
9758         intel_unpin_fb_obj(obj);
9759 cleanup_pending:
9760         atomic_dec(&intel_crtc->unpin_work_count);
9761         crtc->primary->fb = old_fb;
9762         drm_gem_object_unreference(&work->old_fb_obj->base);
9763         drm_gem_object_unreference(&obj->base);
9764         mutex_unlock(&dev->struct_mutex);
9765
9766 cleanup:
9767         spin_lock_irq(&dev->event_lock);
9768         intel_crtc->unpin_work = NULL;
9769         spin_unlock_irq(&dev->event_lock);
9770
9771         drm_crtc_vblank_put(crtc);
9772 free_work:
9773         kfree(work);
9774
9775         if (ret == -EIO) {
9776 out_hang:
9777                 ret = intel_plane_restore(primary);
9778                 if (ret == 0 && event) {
9779                         spin_lock_irq(&dev->event_lock);
9780                         drm_send_vblank_event(dev, pipe, event);
9781                         spin_unlock_irq(&dev->event_lock);
9782                 }
9783         }
9784         return ret;
9785 }
9786
9787 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9788         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9789         .load_lut = intel_crtc_load_lut,
9790         .atomic_begin = intel_begin_crtc_commit,
9791         .atomic_flush = intel_finish_crtc_commit,
9792 };
9793
9794 /**
9795  * intel_modeset_update_staged_output_state
9796  *
9797  * Updates the staged output configuration state, e.g. after we've read out the
9798  * current hw state.
9799  */
9800 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9801 {
9802         struct intel_crtc *crtc;
9803         struct intel_encoder *encoder;
9804         struct intel_connector *connector;
9805
9806         list_for_each_entry(connector, &dev->mode_config.connector_list,
9807                             base.head) {
9808                 connector->new_encoder =
9809                         to_intel_encoder(connector->base.encoder);
9810         }
9811
9812         for_each_intel_encoder(dev, encoder) {
9813                 encoder->new_crtc =
9814                         to_intel_crtc(encoder->base.crtc);
9815         }
9816
9817         for_each_intel_crtc(dev, crtc) {
9818                 crtc->new_enabled = crtc->base.enabled;
9819
9820                 if (crtc->new_enabled)
9821                         crtc->new_config = &crtc->config;
9822                 else
9823                         crtc->new_config = NULL;
9824         }
9825 }
9826
9827 /**
9828  * intel_modeset_commit_output_state
9829  *
9830  * This function copies the stage display pipe configuration to the real one.
9831  */
9832 static void intel_modeset_commit_output_state(struct drm_device *dev)
9833 {
9834         struct intel_crtc *crtc;
9835         struct intel_encoder *encoder;
9836         struct intel_connector *connector;
9837
9838         list_for_each_entry(connector, &dev->mode_config.connector_list,
9839                             base.head) {
9840                 connector->base.encoder = &connector->new_encoder->base;
9841         }
9842
9843         for_each_intel_encoder(dev, encoder) {
9844                 encoder->base.crtc = &encoder->new_crtc->base;
9845         }
9846
9847         for_each_intel_crtc(dev, crtc) {
9848                 crtc->base.enabled = crtc->new_enabled;
9849         }
9850 }
9851
9852 static void
9853 connected_sink_compute_bpp(struct intel_connector *connector,
9854                            struct intel_crtc_config *pipe_config)
9855 {
9856         int bpp = pipe_config->pipe_bpp;
9857
9858         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9859                 connector->base.base.id,
9860                 connector->base.name);
9861
9862         /* Don't use an invalid EDID bpc value */
9863         if (connector->base.display_info.bpc &&
9864             connector->base.display_info.bpc * 3 < bpp) {
9865                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9866                               bpp, connector->base.display_info.bpc*3);
9867                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9868         }
9869
9870         /* Clamp bpp to 8 on screens without EDID 1.4 */
9871         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9872                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9873                               bpp);
9874                 pipe_config->pipe_bpp = 24;
9875         }
9876 }
9877
9878 static int
9879 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9880                           struct drm_framebuffer *fb,
9881                           struct intel_crtc_config *pipe_config)
9882 {
9883         struct drm_device *dev = crtc->base.dev;
9884         struct intel_connector *connector;
9885         int bpp;
9886
9887         switch (fb->pixel_format) {
9888         case DRM_FORMAT_C8:
9889                 bpp = 8*3; /* since we go through a colormap */
9890                 break;
9891         case DRM_FORMAT_XRGB1555:
9892         case DRM_FORMAT_ARGB1555:
9893                 /* checked in intel_framebuffer_init already */
9894                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9895                         return -EINVAL;
9896         case DRM_FORMAT_RGB565:
9897                 bpp = 6*3; /* min is 18bpp */
9898                 break;
9899         case DRM_FORMAT_XBGR8888:
9900         case DRM_FORMAT_ABGR8888:
9901                 /* checked in intel_framebuffer_init already */
9902                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9903                         return -EINVAL;
9904         case DRM_FORMAT_XRGB8888:
9905         case DRM_FORMAT_ARGB8888:
9906                 bpp = 8*3;
9907                 break;
9908         case DRM_FORMAT_XRGB2101010:
9909         case DRM_FORMAT_ARGB2101010:
9910         case DRM_FORMAT_XBGR2101010:
9911         case DRM_FORMAT_ABGR2101010:
9912                 /* checked in intel_framebuffer_init already */
9913                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9914                         return -EINVAL;
9915                 bpp = 10*3;
9916                 break;
9917         /* TODO: gen4+ supports 16 bpc floating point, too. */
9918         default:
9919                 DRM_DEBUG_KMS("unsupported depth\n");
9920                 return -EINVAL;
9921         }
9922
9923         pipe_config->pipe_bpp = bpp;
9924
9925         /* Clamp display bpp to EDID value */
9926         list_for_each_entry(connector, &dev->mode_config.connector_list,
9927                             base.head) {
9928                 if (!connector->new_encoder ||
9929                     connector->new_encoder->new_crtc != crtc)
9930                         continue;
9931
9932                 connected_sink_compute_bpp(connector, pipe_config);
9933         }
9934
9935         return bpp;
9936 }
9937
9938 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9939 {
9940         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9941                         "type: 0x%x flags: 0x%x\n",
9942                 mode->crtc_clock,
9943                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9944                 mode->crtc_hsync_end, mode->crtc_htotal,
9945                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9946                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9947 }
9948
9949 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9950                                    struct intel_crtc_config *pipe_config,
9951                                    const char *context)
9952 {
9953         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9954                       context, pipe_name(crtc->pipe));
9955
9956         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9957         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9958                       pipe_config->pipe_bpp, pipe_config->dither);
9959         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9960                       pipe_config->has_pch_encoder,
9961                       pipe_config->fdi_lanes,
9962                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9963                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9964                       pipe_config->fdi_m_n.tu);
9965         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9966                       pipe_config->has_dp_encoder,
9967                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9968                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9969                       pipe_config->dp_m_n.tu);
9970
9971         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9972                       pipe_config->has_dp_encoder,
9973                       pipe_config->dp_m2_n2.gmch_m,
9974                       pipe_config->dp_m2_n2.gmch_n,
9975                       pipe_config->dp_m2_n2.link_m,
9976                       pipe_config->dp_m2_n2.link_n,
9977                       pipe_config->dp_m2_n2.tu);
9978
9979         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
9980                       pipe_config->has_audio,
9981                       pipe_config->has_infoframe);
9982
9983         DRM_DEBUG_KMS("requested mode:\n");
9984         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9985         DRM_DEBUG_KMS("adjusted mode:\n");
9986         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9987         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9988         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9989         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9990                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9991         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9992                       pipe_config->gmch_pfit.control,
9993                       pipe_config->gmch_pfit.pgm_ratios,
9994                       pipe_config->gmch_pfit.lvds_border_bits);
9995         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9996                       pipe_config->pch_pfit.pos,
9997                       pipe_config->pch_pfit.size,
9998                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9999         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10000         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10001 }
10002
10003 static bool encoders_cloneable(const struct intel_encoder *a,
10004                                const struct intel_encoder *b)
10005 {
10006         /* masks could be asymmetric, so check both ways */
10007         return a == b || (a->cloneable & (1 << b->type) &&
10008                           b->cloneable & (1 << a->type));
10009 }
10010
10011 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10012                                          struct intel_encoder *encoder)
10013 {
10014         struct drm_device *dev = crtc->base.dev;
10015         struct intel_encoder *source_encoder;
10016
10017         for_each_intel_encoder(dev, source_encoder) {
10018                 if (source_encoder->new_crtc != crtc)
10019                         continue;
10020
10021                 if (!encoders_cloneable(encoder, source_encoder))
10022                         return false;
10023         }
10024
10025         return true;
10026 }
10027
10028 static bool check_encoder_cloning(struct intel_crtc *crtc)
10029 {
10030         struct drm_device *dev = crtc->base.dev;
10031         struct intel_encoder *encoder;
10032
10033         for_each_intel_encoder(dev, encoder) {
10034                 if (encoder->new_crtc != crtc)
10035                         continue;
10036
10037                 if (!check_single_encoder_cloning(crtc, encoder))
10038                         return false;
10039         }
10040
10041         return true;
10042 }
10043
10044 static bool check_digital_port_conflicts(struct drm_device *dev)
10045 {
10046         struct intel_connector *connector;
10047         unsigned int used_ports = 0;
10048
10049         /*
10050          * Walk the connector list instead of the encoder
10051          * list to detect the problem on ddi platforms
10052          * where there's just one encoder per digital port.
10053          */
10054         list_for_each_entry(connector,
10055                             &dev->mode_config.connector_list, base.head) {
10056                 struct intel_encoder *encoder = connector->new_encoder;
10057
10058                 if (!encoder)
10059                         continue;
10060
10061                 WARN_ON(!encoder->new_crtc);
10062
10063                 switch (encoder->type) {
10064                         unsigned int port_mask;
10065                 case INTEL_OUTPUT_UNKNOWN:
10066                         if (WARN_ON(!HAS_DDI(dev)))
10067                                 break;
10068                 case INTEL_OUTPUT_DISPLAYPORT:
10069                 case INTEL_OUTPUT_HDMI:
10070                 case INTEL_OUTPUT_EDP:
10071                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10072
10073                         /* the same port mustn't appear more than once */
10074                         if (used_ports & port_mask)
10075                                 return false;
10076
10077                         used_ports |= port_mask;
10078                 default:
10079                         break;
10080                 }
10081         }
10082
10083         return true;
10084 }
10085
10086 static struct intel_crtc_config *
10087 intel_modeset_pipe_config(struct drm_crtc *crtc,
10088                           struct drm_framebuffer *fb,
10089                           struct drm_display_mode *mode)
10090 {
10091         struct drm_device *dev = crtc->dev;
10092         struct intel_encoder *encoder;
10093         struct intel_crtc_config *pipe_config;
10094         int plane_bpp, ret = -EINVAL;
10095         bool retry = true;
10096
10097         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10098                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10099                 return ERR_PTR(-EINVAL);
10100         }
10101
10102         if (!check_digital_port_conflicts(dev)) {
10103                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10104                 return ERR_PTR(-EINVAL);
10105         }
10106
10107         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10108         if (!pipe_config)
10109                 return ERR_PTR(-ENOMEM);
10110
10111         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10112         drm_mode_copy(&pipe_config->requested_mode, mode);
10113
10114         pipe_config->cpu_transcoder =
10115                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10116         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10117
10118         /*
10119          * Sanitize sync polarity flags based on requested ones. If neither
10120          * positive or negative polarity is requested, treat this as meaning
10121          * negative polarity.
10122          */
10123         if (!(pipe_config->adjusted_mode.flags &
10124               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10125                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10126
10127         if (!(pipe_config->adjusted_mode.flags &
10128               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10129                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10130
10131         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10132          * plane pixel format and any sink constraints into account. Returns the
10133          * source plane bpp so that dithering can be selected on mismatches
10134          * after encoders and crtc also have had their say. */
10135         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10136                                               fb, pipe_config);
10137         if (plane_bpp < 0)
10138                 goto fail;
10139
10140         /*
10141          * Determine the real pipe dimensions. Note that stereo modes can
10142          * increase the actual pipe size due to the frame doubling and
10143          * insertion of additional space for blanks between the frame. This
10144          * is stored in the crtc timings. We use the requested mode to do this
10145          * computation to clearly distinguish it from the adjusted mode, which
10146          * can be changed by the connectors in the below retry loop.
10147          */
10148         drm_crtc_get_hv_timing(&pipe_config->requested_mode,
10149                                &pipe_config->pipe_src_w,
10150                                &pipe_config->pipe_src_h);
10151
10152 encoder_retry:
10153         /* Ensure the port clock defaults are reset when retrying. */
10154         pipe_config->port_clock = 0;
10155         pipe_config->pixel_multiplier = 1;
10156
10157         /* Fill in default crtc timings, allow encoders to overwrite them. */
10158         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10159
10160         /* Pass our mode to the connectors and the CRTC to give them a chance to
10161          * adjust it according to limitations or connector properties, and also
10162          * a chance to reject the mode entirely.
10163          */
10164         for_each_intel_encoder(dev, encoder) {
10165
10166                 if (&encoder->new_crtc->base != crtc)
10167                         continue;
10168
10169                 if (!(encoder->compute_config(encoder, pipe_config))) {
10170                         DRM_DEBUG_KMS("Encoder config failure\n");
10171                         goto fail;
10172                 }
10173         }
10174
10175         /* Set default port clock if not overwritten by the encoder. Needs to be
10176          * done afterwards in case the encoder adjusts the mode. */
10177         if (!pipe_config->port_clock)
10178                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10179                         * pipe_config->pixel_multiplier;
10180
10181         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10182         if (ret < 0) {
10183                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10184                 goto fail;
10185         }
10186
10187         if (ret == RETRY) {
10188                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10189                         ret = -EINVAL;
10190                         goto fail;
10191                 }
10192
10193                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10194                 retry = false;
10195                 goto encoder_retry;
10196         }
10197
10198         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10199         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10200                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10201
10202         return pipe_config;
10203 fail:
10204         kfree(pipe_config);
10205         return ERR_PTR(ret);
10206 }
10207
10208 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10209  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10210 static void
10211 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10212                              unsigned *prepare_pipes, unsigned *disable_pipes)
10213 {
10214         struct intel_crtc *intel_crtc;
10215         struct drm_device *dev = crtc->dev;
10216         struct intel_encoder *encoder;
10217         struct intel_connector *connector;
10218         struct drm_crtc *tmp_crtc;
10219
10220         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10221
10222         /* Check which crtcs have changed outputs connected to them, these need
10223          * to be part of the prepare_pipes mask. We don't (yet) support global
10224          * modeset across multiple crtcs, so modeset_pipes will only have one
10225          * bit set at most. */
10226         list_for_each_entry(connector, &dev->mode_config.connector_list,
10227                             base.head) {
10228                 if (connector->base.encoder == &connector->new_encoder->base)
10229                         continue;
10230
10231                 if (connector->base.encoder) {
10232                         tmp_crtc = connector->base.encoder->crtc;
10233
10234                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10235                 }
10236
10237                 if (connector->new_encoder)
10238                         *prepare_pipes |=
10239                                 1 << connector->new_encoder->new_crtc->pipe;
10240         }
10241
10242         for_each_intel_encoder(dev, encoder) {
10243                 if (encoder->base.crtc == &encoder->new_crtc->base)
10244                         continue;
10245
10246                 if (encoder->base.crtc) {
10247                         tmp_crtc = encoder->base.crtc;
10248
10249                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10250                 }
10251
10252                 if (encoder->new_crtc)
10253                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10254         }
10255
10256         /* Check for pipes that will be enabled/disabled ... */
10257         for_each_intel_crtc(dev, intel_crtc) {
10258                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10259                         continue;
10260
10261                 if (!intel_crtc->new_enabled)
10262                         *disable_pipes |= 1 << intel_crtc->pipe;
10263                 else
10264                         *prepare_pipes |= 1 << intel_crtc->pipe;
10265         }
10266
10267
10268         /* set_mode is also used to update properties on life display pipes. */
10269         intel_crtc = to_intel_crtc(crtc);
10270         if (intel_crtc->new_enabled)
10271                 *prepare_pipes |= 1 << intel_crtc->pipe;
10272
10273         /*
10274          * For simplicity do a full modeset on any pipe where the output routing
10275          * changed. We could be more clever, but that would require us to be
10276          * more careful with calling the relevant encoder->mode_set functions.
10277          */
10278         if (*prepare_pipes)
10279                 *modeset_pipes = *prepare_pipes;
10280
10281         /* ... and mask these out. */
10282         *modeset_pipes &= ~(*disable_pipes);
10283         *prepare_pipes &= ~(*disable_pipes);
10284
10285         /*
10286          * HACK: We don't (yet) fully support global modesets. intel_set_config
10287          * obies this rule, but the modeset restore mode of
10288          * intel_modeset_setup_hw_state does not.
10289          */
10290         *modeset_pipes &= 1 << intel_crtc->pipe;
10291         *prepare_pipes &= 1 << intel_crtc->pipe;
10292
10293         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10294                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10295 }
10296
10297 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10298 {
10299         struct drm_encoder *encoder;
10300         struct drm_device *dev = crtc->dev;
10301
10302         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10303                 if (encoder->crtc == crtc)
10304                         return true;
10305
10306         return false;
10307 }
10308
10309 static void
10310 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10311 {
10312         struct drm_i915_private *dev_priv = dev->dev_private;
10313         struct intel_encoder *intel_encoder;
10314         struct intel_crtc *intel_crtc;
10315         struct drm_connector *connector;
10316
10317         intel_shared_dpll_commit(dev_priv);
10318
10319         for_each_intel_encoder(dev, intel_encoder) {
10320                 if (!intel_encoder->base.crtc)
10321                         continue;
10322
10323                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10324
10325                 if (prepare_pipes & (1 << intel_crtc->pipe))
10326                         intel_encoder->connectors_active = false;
10327         }
10328
10329         intel_modeset_commit_output_state(dev);
10330
10331         /* Double check state. */
10332         for_each_intel_crtc(dev, intel_crtc) {
10333                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10334                 WARN_ON(intel_crtc->new_config &&
10335                         intel_crtc->new_config != &intel_crtc->config);
10336                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10337         }
10338
10339         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10340                 if (!connector->encoder || !connector->encoder->crtc)
10341                         continue;
10342
10343                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10344
10345                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10346                         struct drm_property *dpms_property =
10347                                 dev->mode_config.dpms_property;
10348
10349                         connector->dpms = DRM_MODE_DPMS_ON;
10350                         drm_object_property_set_value(&connector->base,
10351                                                          dpms_property,
10352                                                          DRM_MODE_DPMS_ON);
10353
10354                         intel_encoder = to_intel_encoder(connector->encoder);
10355                         intel_encoder->connectors_active = true;
10356                 }
10357         }
10358
10359 }
10360
10361 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10362 {
10363         int diff;
10364
10365         if (clock1 == clock2)
10366                 return true;
10367
10368         if (!clock1 || !clock2)
10369                 return false;
10370
10371         diff = abs(clock1 - clock2);
10372
10373         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10374                 return true;
10375
10376         return false;
10377 }
10378
10379 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10380         list_for_each_entry((intel_crtc), \
10381                             &(dev)->mode_config.crtc_list, \
10382                             base.head) \
10383                 if (mask & (1 <<(intel_crtc)->pipe))
10384
10385 static bool
10386 intel_pipe_config_compare(struct drm_device *dev,
10387                           struct intel_crtc_config *current_config,
10388                           struct intel_crtc_config *pipe_config)
10389 {
10390 #define PIPE_CONF_CHECK_X(name) \
10391         if (current_config->name != pipe_config->name) { \
10392                 DRM_ERROR("mismatch in " #name " " \
10393                           "(expected 0x%08x, found 0x%08x)\n", \
10394                           current_config->name, \
10395                           pipe_config->name); \
10396                 return false; \
10397         }
10398
10399 #define PIPE_CONF_CHECK_I(name) \
10400         if (current_config->name != pipe_config->name) { \
10401                 DRM_ERROR("mismatch in " #name " " \
10402                           "(expected %i, found %i)\n", \
10403                           current_config->name, \
10404                           pipe_config->name); \
10405                 return false; \
10406         }
10407
10408 /* This is required for BDW+ where there is only one set of registers for
10409  * switching between high and low RR.
10410  * This macro can be used whenever a comparison has to be made between one
10411  * hw state and multiple sw state variables.
10412  */
10413 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10414         if ((current_config->name != pipe_config->name) && \
10415                 (current_config->alt_name != pipe_config->name)) { \
10416                         DRM_ERROR("mismatch in " #name " " \
10417                                   "(expected %i or %i, found %i)\n", \
10418                                   current_config->name, \
10419                                   current_config->alt_name, \
10420                                   pipe_config->name); \
10421                         return false; \
10422         }
10423
10424 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10425         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10426                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10427                           "(expected %i, found %i)\n", \
10428                           current_config->name & (mask), \
10429                           pipe_config->name & (mask)); \
10430                 return false; \
10431         }
10432
10433 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10434         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10435                 DRM_ERROR("mismatch in " #name " " \
10436                           "(expected %i, found %i)\n", \
10437                           current_config->name, \
10438                           pipe_config->name); \
10439                 return false; \
10440         }
10441
10442 #define PIPE_CONF_QUIRK(quirk)  \
10443         ((current_config->quirks | pipe_config->quirks) & (quirk))
10444
10445         PIPE_CONF_CHECK_I(cpu_transcoder);
10446
10447         PIPE_CONF_CHECK_I(has_pch_encoder);
10448         PIPE_CONF_CHECK_I(fdi_lanes);
10449         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10450         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10451         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10452         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10453         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10454
10455         PIPE_CONF_CHECK_I(has_dp_encoder);
10456
10457         if (INTEL_INFO(dev)->gen < 8) {
10458                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10459                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10460                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10461                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10462                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10463
10464                 if (current_config->has_drrs) {
10465                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10466                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10467                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10468                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10469                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10470                 }
10471         } else {
10472                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10473                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10474                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10475                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10476                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10477         }
10478
10479         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10480         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10481         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10482         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10483         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10484         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10485
10486         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10487         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10488         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10489         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10490         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10491         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10492
10493         PIPE_CONF_CHECK_I(pixel_multiplier);
10494         PIPE_CONF_CHECK_I(has_hdmi_sink);
10495         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10496             IS_VALLEYVIEW(dev))
10497                 PIPE_CONF_CHECK_I(limited_color_range);
10498         PIPE_CONF_CHECK_I(has_infoframe);
10499
10500         PIPE_CONF_CHECK_I(has_audio);
10501
10502         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10503                               DRM_MODE_FLAG_INTERLACE);
10504
10505         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10506                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10507                                       DRM_MODE_FLAG_PHSYNC);
10508                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10509                                       DRM_MODE_FLAG_NHSYNC);
10510                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10511                                       DRM_MODE_FLAG_PVSYNC);
10512                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10513                                       DRM_MODE_FLAG_NVSYNC);
10514         }
10515
10516         PIPE_CONF_CHECK_I(pipe_src_w);
10517         PIPE_CONF_CHECK_I(pipe_src_h);
10518
10519         /*
10520          * FIXME: BIOS likes to set up a cloned config with lvds+external
10521          * screen. Since we don't yet re-compute the pipe config when moving
10522          * just the lvds port away to another pipe the sw tracking won't match.
10523          *
10524          * Proper atomic modesets with recomputed global state will fix this.
10525          * Until then just don't check gmch state for inherited modes.
10526          */
10527         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10528                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10529                 /* pfit ratios are autocomputed by the hw on gen4+ */
10530                 if (INTEL_INFO(dev)->gen < 4)
10531                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10532                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10533         }
10534
10535         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10536         if (current_config->pch_pfit.enabled) {
10537                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10538                 PIPE_CONF_CHECK_I(pch_pfit.size);
10539         }
10540
10541         /* BDW+ don't expose a synchronous way to read the state */
10542         if (IS_HASWELL(dev))
10543                 PIPE_CONF_CHECK_I(ips_enabled);
10544
10545         PIPE_CONF_CHECK_I(double_wide);
10546
10547         PIPE_CONF_CHECK_X(ddi_pll_sel);
10548
10549         PIPE_CONF_CHECK_I(shared_dpll);
10550         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10551         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10552         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10553         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10554         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10555         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10556         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10557         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10558
10559         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10560                 PIPE_CONF_CHECK_I(pipe_bpp);
10561
10562         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10563         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10564
10565 #undef PIPE_CONF_CHECK_X
10566 #undef PIPE_CONF_CHECK_I
10567 #undef PIPE_CONF_CHECK_I_ALT
10568 #undef PIPE_CONF_CHECK_FLAGS
10569 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10570 #undef PIPE_CONF_QUIRK
10571
10572         return true;
10573 }
10574
10575 static void check_wm_state(struct drm_device *dev)
10576 {
10577         struct drm_i915_private *dev_priv = dev->dev_private;
10578         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10579         struct intel_crtc *intel_crtc;
10580         int plane;
10581
10582         if (INTEL_INFO(dev)->gen < 9)
10583                 return;
10584
10585         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10586         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10587
10588         for_each_intel_crtc(dev, intel_crtc) {
10589                 struct skl_ddb_entry *hw_entry, *sw_entry;
10590                 const enum pipe pipe = intel_crtc->pipe;
10591
10592                 if (!intel_crtc->active)
10593                         continue;
10594
10595                 /* planes */
10596                 for_each_plane(pipe, plane) {
10597                         hw_entry = &hw_ddb.plane[pipe][plane];
10598                         sw_entry = &sw_ddb->plane[pipe][plane];
10599
10600                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10601                                 continue;
10602
10603                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10604                                   "(expected (%u,%u), found (%u,%u))\n",
10605                                   pipe_name(pipe), plane + 1,
10606                                   sw_entry->start, sw_entry->end,
10607                                   hw_entry->start, hw_entry->end);
10608                 }
10609
10610                 /* cursor */
10611                 hw_entry = &hw_ddb.cursor[pipe];
10612                 sw_entry = &sw_ddb->cursor[pipe];
10613
10614                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10615                         continue;
10616
10617                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10618                           "(expected (%u,%u), found (%u,%u))\n",
10619                           pipe_name(pipe),
10620                           sw_entry->start, sw_entry->end,
10621                           hw_entry->start, hw_entry->end);
10622         }
10623 }
10624
10625 static void
10626 check_connector_state(struct drm_device *dev)
10627 {
10628         struct intel_connector *connector;
10629
10630         list_for_each_entry(connector, &dev->mode_config.connector_list,
10631                             base.head) {
10632                 /* This also checks the encoder/connector hw state with the
10633                  * ->get_hw_state callbacks. */
10634                 intel_connector_check_state(connector);
10635
10636                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10637                      "connector's staged encoder doesn't match current encoder\n");
10638         }
10639 }
10640
10641 static void
10642 check_encoder_state(struct drm_device *dev)
10643 {
10644         struct intel_encoder *encoder;
10645         struct intel_connector *connector;
10646
10647         for_each_intel_encoder(dev, encoder) {
10648                 bool enabled = false;
10649                 bool active = false;
10650                 enum pipe pipe, tracked_pipe;
10651
10652                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10653                               encoder->base.base.id,
10654                               encoder->base.name);
10655
10656                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10657                      "encoder's stage crtc doesn't match current crtc\n");
10658                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10659                      "encoder's active_connectors set, but no crtc\n");
10660
10661                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10662                                     base.head) {
10663                         if (connector->base.encoder != &encoder->base)
10664                                 continue;
10665                         enabled = true;
10666                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10667                                 active = true;
10668                 }
10669                 /*
10670                  * for MST connectors if we unplug the connector is gone
10671                  * away but the encoder is still connected to a crtc
10672                  * until a modeset happens in response to the hotplug.
10673                  */
10674                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10675                         continue;
10676
10677                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10678                      "encoder's enabled state mismatch "
10679                      "(expected %i, found %i)\n",
10680                      !!encoder->base.crtc, enabled);
10681                 I915_STATE_WARN(active && !encoder->base.crtc,
10682                      "active encoder with no crtc\n");
10683
10684                 I915_STATE_WARN(encoder->connectors_active != active,
10685                      "encoder's computed active state doesn't match tracked active state "
10686                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10687
10688                 active = encoder->get_hw_state(encoder, &pipe);
10689                 I915_STATE_WARN(active != encoder->connectors_active,
10690                      "encoder's hw state doesn't match sw tracking "
10691                      "(expected %i, found %i)\n",
10692                      encoder->connectors_active, active);
10693
10694                 if (!encoder->base.crtc)
10695                         continue;
10696
10697                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10698                 I915_STATE_WARN(active && pipe != tracked_pipe,
10699                      "active encoder's pipe doesn't match"
10700                      "(expected %i, found %i)\n",
10701                      tracked_pipe, pipe);
10702
10703         }
10704 }
10705
10706 static void
10707 check_crtc_state(struct drm_device *dev)
10708 {
10709         struct drm_i915_private *dev_priv = dev->dev_private;
10710         struct intel_crtc *crtc;
10711         struct intel_encoder *encoder;
10712         struct intel_crtc_config pipe_config;
10713
10714         for_each_intel_crtc(dev, crtc) {
10715                 bool enabled = false;
10716                 bool active = false;
10717
10718                 memset(&pipe_config, 0, sizeof(pipe_config));
10719
10720                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10721                               crtc->base.base.id);
10722
10723                 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10724                      "active crtc, but not enabled in sw tracking\n");
10725
10726                 for_each_intel_encoder(dev, encoder) {
10727                         if (encoder->base.crtc != &crtc->base)
10728                                 continue;
10729                         enabled = true;
10730                         if (encoder->connectors_active)
10731                                 active = true;
10732                 }
10733
10734                 I915_STATE_WARN(active != crtc->active,
10735                      "crtc's computed active state doesn't match tracked active state "
10736                      "(expected %i, found %i)\n", active, crtc->active);
10737                 I915_STATE_WARN(enabled != crtc->base.enabled,
10738                      "crtc's computed enabled state doesn't match tracked enabled state "
10739                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10740
10741                 active = dev_priv->display.get_pipe_config(crtc,
10742                                                            &pipe_config);
10743
10744                 /* hw state is inconsistent with the pipe quirk */
10745                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10746                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10747                         active = crtc->active;
10748
10749                 for_each_intel_encoder(dev, encoder) {
10750                         enum pipe pipe;
10751                         if (encoder->base.crtc != &crtc->base)
10752                                 continue;
10753                         if (encoder->get_hw_state(encoder, &pipe))
10754                                 encoder->get_config(encoder, &pipe_config);
10755                 }
10756
10757                 I915_STATE_WARN(crtc->active != active,
10758                      "crtc active state doesn't match with hw state "
10759                      "(expected %i, found %i)\n", crtc->active, active);
10760
10761                 if (active &&
10762                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10763                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
10764                         intel_dump_pipe_config(crtc, &pipe_config,
10765                                                "[hw state]");
10766                         intel_dump_pipe_config(crtc, &crtc->config,
10767                                                "[sw state]");
10768                 }
10769         }
10770 }
10771
10772 static void
10773 check_shared_dpll_state(struct drm_device *dev)
10774 {
10775         struct drm_i915_private *dev_priv = dev->dev_private;
10776         struct intel_crtc *crtc;
10777         struct intel_dpll_hw_state dpll_hw_state;
10778         int i;
10779
10780         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10781                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10782                 int enabled_crtcs = 0, active_crtcs = 0;
10783                 bool active;
10784
10785                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10786
10787                 DRM_DEBUG_KMS("%s\n", pll->name);
10788
10789                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10790
10791                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10792                      "more active pll users than references: %i vs %i\n",
10793                      pll->active, hweight32(pll->config.crtc_mask));
10794                 I915_STATE_WARN(pll->active && !pll->on,
10795                      "pll in active use but not on in sw tracking\n");
10796                 I915_STATE_WARN(pll->on && !pll->active,
10797                      "pll in on but not on in use in sw tracking\n");
10798                 I915_STATE_WARN(pll->on != active,
10799                      "pll on state mismatch (expected %i, found %i)\n",
10800                      pll->on, active);
10801
10802                 for_each_intel_crtc(dev, crtc) {
10803                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10804                                 enabled_crtcs++;
10805                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10806                                 active_crtcs++;
10807                 }
10808                 I915_STATE_WARN(pll->active != active_crtcs,
10809                      "pll active crtcs mismatch (expected %i, found %i)\n",
10810                      pll->active, active_crtcs);
10811                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10812                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10813                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10814
10815                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10816                                        sizeof(dpll_hw_state)),
10817                      "pll hw state mismatch\n");
10818         }
10819 }
10820
10821 void
10822 intel_modeset_check_state(struct drm_device *dev)
10823 {
10824         check_wm_state(dev);
10825         check_connector_state(dev);
10826         check_encoder_state(dev);
10827         check_crtc_state(dev);
10828         check_shared_dpll_state(dev);
10829 }
10830
10831 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10832                                      int dotclock)
10833 {
10834         /*
10835          * FDI already provided one idea for the dotclock.
10836          * Yell if the encoder disagrees.
10837          */
10838         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10839              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10840              pipe_config->adjusted_mode.crtc_clock, dotclock);
10841 }
10842
10843 static void update_scanline_offset(struct intel_crtc *crtc)
10844 {
10845         struct drm_device *dev = crtc->base.dev;
10846
10847         /*
10848          * The scanline counter increments at the leading edge of hsync.
10849          *
10850          * On most platforms it starts counting from vtotal-1 on the
10851          * first active line. That means the scanline counter value is
10852          * always one less than what we would expect. Ie. just after
10853          * start of vblank, which also occurs at start of hsync (on the
10854          * last active line), the scanline counter will read vblank_start-1.
10855          *
10856          * On gen2 the scanline counter starts counting from 1 instead
10857          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10858          * to keep the value positive), instead of adding one.
10859          *
10860          * On HSW+ the behaviour of the scanline counter depends on the output
10861          * type. For DP ports it behaves like most other platforms, but on HDMI
10862          * there's an extra 1 line difference. So we need to add two instead of
10863          * one to the value.
10864          */
10865         if (IS_GEN2(dev)) {
10866                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10867                 int vtotal;
10868
10869                 vtotal = mode->crtc_vtotal;
10870                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10871                         vtotal /= 2;
10872
10873                 crtc->scanline_offset = vtotal - 1;
10874         } else if (HAS_DDI(dev) &&
10875                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10876                 crtc->scanline_offset = 2;
10877         } else
10878                 crtc->scanline_offset = 1;
10879 }
10880
10881 static struct intel_crtc_config *
10882 intel_modeset_compute_config(struct drm_crtc *crtc,
10883                              struct drm_display_mode *mode,
10884                              struct drm_framebuffer *fb,
10885                              unsigned *modeset_pipes,
10886                              unsigned *prepare_pipes,
10887                              unsigned *disable_pipes)
10888 {
10889         struct intel_crtc_config *pipe_config = NULL;
10890
10891         intel_modeset_affected_pipes(crtc, modeset_pipes,
10892                                      prepare_pipes, disable_pipes);
10893
10894         if ((*modeset_pipes) == 0)
10895                 goto out;
10896
10897         /*
10898          * Note this needs changes when we start tracking multiple modes
10899          * and crtcs.  At that point we'll need to compute the whole config
10900          * (i.e. one pipe_config for each crtc) rather than just the one
10901          * for this crtc.
10902          */
10903         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10904         if (IS_ERR(pipe_config)) {
10905                 goto out;
10906         }
10907         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10908                                "[modeset]");
10909
10910 out:
10911         return pipe_config;
10912 }
10913
10914 static int __intel_set_mode(struct drm_crtc *crtc,
10915                             struct drm_display_mode *mode,
10916                             int x, int y, struct drm_framebuffer *fb,
10917                             struct intel_crtc_config *pipe_config,
10918                             unsigned modeset_pipes,
10919                             unsigned prepare_pipes,
10920                             unsigned disable_pipes)
10921 {
10922         struct drm_device *dev = crtc->dev;
10923         struct drm_i915_private *dev_priv = dev->dev_private;
10924         struct drm_display_mode *saved_mode;
10925         struct intel_crtc *intel_crtc;
10926         int ret = 0;
10927
10928         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10929         if (!saved_mode)
10930                 return -ENOMEM;
10931
10932         *saved_mode = crtc->mode;
10933
10934         if (modeset_pipes)
10935                 to_intel_crtc(crtc)->new_config = pipe_config;
10936
10937         /*
10938          * See if the config requires any additional preparation, e.g.
10939          * to adjust global state with pipes off.  We need to do this
10940          * here so we can get the modeset_pipe updated config for the new
10941          * mode set on this crtc.  For other crtcs we need to use the
10942          * adjusted_mode bits in the crtc directly.
10943          */
10944         if (IS_VALLEYVIEW(dev)) {
10945                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10946
10947                 /* may have added more to prepare_pipes than we should */
10948                 prepare_pipes &= ~disable_pipes;
10949         }
10950
10951         if (dev_priv->display.crtc_compute_clock) {
10952                 unsigned clear_pipes = modeset_pipes | disable_pipes;
10953
10954                 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10955                 if (ret)
10956                         goto done;
10957
10958                 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10959                         ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10960                         if (ret) {
10961                                 intel_shared_dpll_abort_config(dev_priv);
10962                                 goto done;
10963                         }
10964                 }
10965         }
10966
10967         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10968                 intel_crtc_disable(&intel_crtc->base);
10969
10970         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10971                 if (intel_crtc->base.enabled)
10972                         dev_priv->display.crtc_disable(&intel_crtc->base);
10973         }
10974
10975         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10976          * to set it here already despite that we pass it down the callchain.
10977          *
10978          * Note we'll need to fix this up when we start tracking multiple
10979          * pipes; here we assume a single modeset_pipe and only track the
10980          * single crtc and mode.
10981          */
10982         if (modeset_pipes) {
10983                 crtc->mode = *mode;
10984                 /* mode_set/enable/disable functions rely on a correct pipe
10985                  * config. */
10986                 to_intel_crtc(crtc)->config = *pipe_config;
10987                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10988
10989                 /*
10990                  * Calculate and store various constants which
10991                  * are later needed by vblank and swap-completion
10992                  * timestamping. They are derived from true hwmode.
10993                  */
10994                 drm_calc_timestamping_constants(crtc,
10995                                                 &pipe_config->adjusted_mode);
10996         }
10997
10998         /* Only after disabling all output pipelines that will be changed can we
10999          * update the the output configuration. */
11000         intel_modeset_update_state(dev, prepare_pipes);
11001
11002         modeset_update_crtc_power_domains(dev);
11003
11004         /* Set up the DPLL and any encoders state that needs to adjust or depend
11005          * on the DPLL.
11006          */
11007         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11008                 struct drm_plane *primary = intel_crtc->base.primary;
11009                 int vdisplay, hdisplay;
11010
11011                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11012                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11013                                                    fb, 0, 0,
11014                                                    hdisplay, vdisplay,
11015                                                    x << 16, y << 16,
11016                                                    hdisplay << 16, vdisplay << 16);
11017         }
11018
11019         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11020         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11021                 update_scanline_offset(intel_crtc);
11022
11023                 dev_priv->display.crtc_enable(&intel_crtc->base);
11024         }
11025
11026         /* FIXME: add subpixel order */
11027 done:
11028         if (ret && crtc->enabled)
11029                 crtc->mode = *saved_mode;
11030
11031         kfree(pipe_config);
11032         kfree(saved_mode);
11033         return ret;
11034 }
11035
11036 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11037                                 struct drm_display_mode *mode,
11038                                 int x, int y, struct drm_framebuffer *fb,
11039                                 struct intel_crtc_config *pipe_config,
11040                                 unsigned modeset_pipes,
11041                                 unsigned prepare_pipes,
11042                                 unsigned disable_pipes)
11043 {
11044         int ret;
11045
11046         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11047                                prepare_pipes, disable_pipes);
11048
11049         if (ret == 0)
11050                 intel_modeset_check_state(crtc->dev);
11051
11052         return ret;
11053 }
11054
11055 static int intel_set_mode(struct drm_crtc *crtc,
11056                           struct drm_display_mode *mode,
11057                           int x, int y, struct drm_framebuffer *fb)
11058 {
11059         struct intel_crtc_config *pipe_config;
11060         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11061
11062         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11063                                                    &modeset_pipes,
11064                                                    &prepare_pipes,
11065                                                    &disable_pipes);
11066
11067         if (IS_ERR(pipe_config))
11068                 return PTR_ERR(pipe_config);
11069
11070         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11071                                     modeset_pipes, prepare_pipes,
11072                                     disable_pipes);
11073 }
11074
11075 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11076 {
11077         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11078 }
11079
11080 #undef for_each_intel_crtc_masked
11081
11082 static void intel_set_config_free(struct intel_set_config *config)
11083 {
11084         if (!config)
11085                 return;
11086
11087         kfree(config->save_connector_encoders);
11088         kfree(config->save_encoder_crtcs);
11089         kfree(config->save_crtc_enabled);
11090         kfree(config);
11091 }
11092
11093 static int intel_set_config_save_state(struct drm_device *dev,
11094                                        struct intel_set_config *config)
11095 {
11096         struct drm_crtc *crtc;
11097         struct drm_encoder *encoder;
11098         struct drm_connector *connector;
11099         int count;
11100
11101         config->save_crtc_enabled =
11102                 kcalloc(dev->mode_config.num_crtc,
11103                         sizeof(bool), GFP_KERNEL);
11104         if (!config->save_crtc_enabled)
11105                 return -ENOMEM;
11106
11107         config->save_encoder_crtcs =
11108                 kcalloc(dev->mode_config.num_encoder,
11109                         sizeof(struct drm_crtc *), GFP_KERNEL);
11110         if (!config->save_encoder_crtcs)
11111                 return -ENOMEM;
11112
11113         config->save_connector_encoders =
11114                 kcalloc(dev->mode_config.num_connector,
11115                         sizeof(struct drm_encoder *), GFP_KERNEL);
11116         if (!config->save_connector_encoders)
11117                 return -ENOMEM;
11118
11119         /* Copy data. Note that driver private data is not affected.
11120          * Should anything bad happen only the expected state is
11121          * restored, not the drivers personal bookkeeping.
11122          */
11123         count = 0;
11124         for_each_crtc(dev, crtc) {
11125                 config->save_crtc_enabled[count++] = crtc->enabled;
11126         }
11127
11128         count = 0;
11129         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11130                 config->save_encoder_crtcs[count++] = encoder->crtc;
11131         }
11132
11133         count = 0;
11134         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11135                 config->save_connector_encoders[count++] = connector->encoder;
11136         }
11137
11138         return 0;
11139 }
11140
11141 static void intel_set_config_restore_state(struct drm_device *dev,
11142                                            struct intel_set_config *config)
11143 {
11144         struct intel_crtc *crtc;
11145         struct intel_encoder *encoder;
11146         struct intel_connector *connector;
11147         int count;
11148
11149         count = 0;
11150         for_each_intel_crtc(dev, crtc) {
11151                 crtc->new_enabled = config->save_crtc_enabled[count++];
11152
11153                 if (crtc->new_enabled)
11154                         crtc->new_config = &crtc->config;
11155                 else
11156                         crtc->new_config = NULL;
11157         }
11158
11159         count = 0;
11160         for_each_intel_encoder(dev, encoder) {
11161                 encoder->new_crtc =
11162                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11163         }
11164
11165         count = 0;
11166         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11167                 connector->new_encoder =
11168                         to_intel_encoder(config->save_connector_encoders[count++]);
11169         }
11170 }
11171
11172 static bool
11173 is_crtc_connector_off(struct drm_mode_set *set)
11174 {
11175         int i;
11176
11177         if (set->num_connectors == 0)
11178                 return false;
11179
11180         if (WARN_ON(set->connectors == NULL))
11181                 return false;
11182
11183         for (i = 0; i < set->num_connectors; i++)
11184                 if (set->connectors[i]->encoder &&
11185                     set->connectors[i]->encoder->crtc == set->crtc &&
11186                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11187                         return true;
11188
11189         return false;
11190 }
11191
11192 static void
11193 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11194                                       struct intel_set_config *config)
11195 {
11196
11197         /* We should be able to check here if the fb has the same properties
11198          * and then just flip_or_move it */
11199         if (is_crtc_connector_off(set)) {
11200                 config->mode_changed = true;
11201         } else if (set->crtc->primary->fb != set->fb) {
11202                 /*
11203                  * If we have no fb, we can only flip as long as the crtc is
11204                  * active, otherwise we need a full mode set.  The crtc may
11205                  * be active if we've only disabled the primary plane, or
11206                  * in fastboot situations.
11207                  */
11208                 if (set->crtc->primary->fb == NULL) {
11209                         struct intel_crtc *intel_crtc =
11210                                 to_intel_crtc(set->crtc);
11211
11212                         if (intel_crtc->active) {
11213                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11214                                 config->fb_changed = true;
11215                         } else {
11216                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11217                                 config->mode_changed = true;
11218                         }
11219                 } else if (set->fb == NULL) {
11220                         config->mode_changed = true;
11221                 } else if (set->fb->pixel_format !=
11222                            set->crtc->primary->fb->pixel_format) {
11223                         config->mode_changed = true;
11224                 } else {
11225                         config->fb_changed = true;
11226                 }
11227         }
11228
11229         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11230                 config->fb_changed = true;
11231
11232         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11233                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11234                 drm_mode_debug_printmodeline(&set->crtc->mode);
11235                 drm_mode_debug_printmodeline(set->mode);
11236                 config->mode_changed = true;
11237         }
11238
11239         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11240                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11241 }
11242
11243 static int
11244 intel_modeset_stage_output_state(struct drm_device *dev,
11245                                  struct drm_mode_set *set,
11246                                  struct intel_set_config *config)
11247 {
11248         struct intel_connector *connector;
11249         struct intel_encoder *encoder;
11250         struct intel_crtc *crtc;
11251         int ro;
11252
11253         /* The upper layers ensure that we either disable a crtc or have a list
11254          * of connectors. For paranoia, double-check this. */
11255         WARN_ON(!set->fb && (set->num_connectors != 0));
11256         WARN_ON(set->fb && (set->num_connectors == 0));
11257
11258         list_for_each_entry(connector, &dev->mode_config.connector_list,
11259                             base.head) {
11260                 /* Otherwise traverse passed in connector list and get encoders
11261                  * for them. */
11262                 for (ro = 0; ro < set->num_connectors; ro++) {
11263                         if (set->connectors[ro] == &connector->base) {
11264                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11265                                 break;
11266                         }
11267                 }
11268
11269                 /* If we disable the crtc, disable all its connectors. Also, if
11270                  * the connector is on the changing crtc but not on the new
11271                  * connector list, disable it. */
11272                 if ((!set->fb || ro == set->num_connectors) &&
11273                     connector->base.encoder &&
11274                     connector->base.encoder->crtc == set->crtc) {
11275                         connector->new_encoder = NULL;
11276
11277                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11278                                 connector->base.base.id,
11279                                 connector->base.name);
11280                 }
11281
11282
11283                 if (&connector->new_encoder->base != connector->base.encoder) {
11284                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11285                         config->mode_changed = true;
11286                 }
11287         }
11288         /* connector->new_encoder is now updated for all connectors. */
11289
11290         /* Update crtc of enabled connectors. */
11291         list_for_each_entry(connector, &dev->mode_config.connector_list,
11292                             base.head) {
11293                 struct drm_crtc *new_crtc;
11294
11295                 if (!connector->new_encoder)
11296                         continue;
11297
11298                 new_crtc = connector->new_encoder->base.crtc;
11299
11300                 for (ro = 0; ro < set->num_connectors; ro++) {
11301                         if (set->connectors[ro] == &connector->base)
11302                                 new_crtc = set->crtc;
11303                 }
11304
11305                 /* Make sure the new CRTC will work with the encoder */
11306                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11307                                          new_crtc)) {
11308                         return -EINVAL;
11309                 }
11310                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11311
11312                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11313                         connector->base.base.id,
11314                         connector->base.name,
11315                         new_crtc->base.id);
11316         }
11317
11318         /* Check for any encoders that needs to be disabled. */
11319         for_each_intel_encoder(dev, encoder) {
11320                 int num_connectors = 0;
11321                 list_for_each_entry(connector,
11322                                     &dev->mode_config.connector_list,
11323                                     base.head) {
11324                         if (connector->new_encoder == encoder) {
11325                                 WARN_ON(!connector->new_encoder->new_crtc);
11326                                 num_connectors++;
11327                         }
11328                 }
11329
11330                 if (num_connectors == 0)
11331                         encoder->new_crtc = NULL;
11332                 else if (num_connectors > 1)
11333                         return -EINVAL;
11334
11335                 /* Only now check for crtc changes so we don't miss encoders
11336                  * that will be disabled. */
11337                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11338                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11339                         config->mode_changed = true;
11340                 }
11341         }
11342         /* Now we've also updated encoder->new_crtc for all encoders. */
11343         list_for_each_entry(connector, &dev->mode_config.connector_list,
11344                             base.head) {
11345                 if (connector->new_encoder)
11346                         if (connector->new_encoder != connector->encoder)
11347                                 connector->encoder = connector->new_encoder;
11348         }
11349         for_each_intel_crtc(dev, crtc) {
11350                 crtc->new_enabled = false;
11351
11352                 for_each_intel_encoder(dev, encoder) {
11353                         if (encoder->new_crtc == crtc) {
11354                                 crtc->new_enabled = true;
11355                                 break;
11356                         }
11357                 }
11358
11359                 if (crtc->new_enabled != crtc->base.enabled) {
11360                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11361                                       crtc->new_enabled ? "en" : "dis");
11362                         config->mode_changed = true;
11363                 }
11364
11365                 if (crtc->new_enabled)
11366                         crtc->new_config = &crtc->config;
11367                 else
11368                         crtc->new_config = NULL;
11369         }
11370
11371         return 0;
11372 }
11373
11374 static void disable_crtc_nofb(struct intel_crtc *crtc)
11375 {
11376         struct drm_device *dev = crtc->base.dev;
11377         struct intel_encoder *encoder;
11378         struct intel_connector *connector;
11379
11380         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11381                       pipe_name(crtc->pipe));
11382
11383         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11384                 if (connector->new_encoder &&
11385                     connector->new_encoder->new_crtc == crtc)
11386                         connector->new_encoder = NULL;
11387         }
11388
11389         for_each_intel_encoder(dev, encoder) {
11390                 if (encoder->new_crtc == crtc)
11391                         encoder->new_crtc = NULL;
11392         }
11393
11394         crtc->new_enabled = false;
11395         crtc->new_config = NULL;
11396 }
11397
11398 static int intel_crtc_set_config(struct drm_mode_set *set)
11399 {
11400         struct drm_device *dev;
11401         struct drm_mode_set save_set;
11402         struct intel_set_config *config;
11403         struct intel_crtc_config *pipe_config;
11404         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11405         int ret;
11406
11407         BUG_ON(!set);
11408         BUG_ON(!set->crtc);
11409         BUG_ON(!set->crtc->helper_private);
11410
11411         /* Enforce sane interface api - has been abused by the fb helper. */
11412         BUG_ON(!set->mode && set->fb);
11413         BUG_ON(set->fb && set->num_connectors == 0);
11414
11415         if (set->fb) {
11416                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11417                                 set->crtc->base.id, set->fb->base.id,
11418                                 (int)set->num_connectors, set->x, set->y);
11419         } else {
11420                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11421         }
11422
11423         dev = set->crtc->dev;
11424
11425         ret = -ENOMEM;
11426         config = kzalloc(sizeof(*config), GFP_KERNEL);
11427         if (!config)
11428                 goto out_config;
11429
11430         ret = intel_set_config_save_state(dev, config);
11431         if (ret)
11432                 goto out_config;
11433
11434         save_set.crtc = set->crtc;
11435         save_set.mode = &set->crtc->mode;
11436         save_set.x = set->crtc->x;
11437         save_set.y = set->crtc->y;
11438         save_set.fb = set->crtc->primary->fb;
11439
11440         /* Compute whether we need a full modeset, only an fb base update or no
11441          * change at all. In the future we might also check whether only the
11442          * mode changed, e.g. for LVDS where we only change the panel fitter in
11443          * such cases. */
11444         intel_set_config_compute_mode_changes(set, config);
11445
11446         ret = intel_modeset_stage_output_state(dev, set, config);
11447         if (ret)
11448                 goto fail;
11449
11450         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11451                                                    set->fb,
11452                                                    &modeset_pipes,
11453                                                    &prepare_pipes,
11454                                                    &disable_pipes);
11455         if (IS_ERR(pipe_config)) {
11456                 ret = PTR_ERR(pipe_config);
11457                 goto fail;
11458         } else if (pipe_config) {
11459                 if (pipe_config->has_audio !=
11460                     to_intel_crtc(set->crtc)->config.has_audio)
11461                         config->mode_changed = true;
11462
11463                 /*
11464                  * Note we have an issue here with infoframes: current code
11465                  * only updates them on the full mode set path per hw
11466                  * requirements.  So here we should be checking for any
11467                  * required changes and forcing a mode set.
11468                  */
11469         }
11470
11471         /* set_mode will free it in the mode_changed case */
11472         if (!config->mode_changed)
11473                 kfree(pipe_config);
11474
11475         intel_update_pipe_size(to_intel_crtc(set->crtc));
11476
11477         if (config->mode_changed) {
11478                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11479                                            set->x, set->y, set->fb, pipe_config,
11480                                            modeset_pipes, prepare_pipes,
11481                                            disable_pipes);
11482         } else if (config->fb_changed) {
11483                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11484                 struct drm_plane *primary = set->crtc->primary;
11485                 int vdisplay, hdisplay;
11486
11487                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11488                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11489                                                    0, 0, hdisplay, vdisplay,
11490                                                    set->x << 16, set->y << 16,
11491                                                    hdisplay << 16, vdisplay << 16);
11492
11493                 /*
11494                  * We need to make sure the primary plane is re-enabled if it
11495                  * has previously been turned off.
11496                  */
11497                 if (!intel_crtc->primary_enabled && ret == 0) {
11498                         WARN_ON(!intel_crtc->active);
11499                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11500                 }
11501
11502                 /*
11503                  * In the fastboot case this may be our only check of the
11504                  * state after boot.  It would be better to only do it on
11505                  * the first update, but we don't have a nice way of doing that
11506                  * (and really, set_config isn't used much for high freq page
11507                  * flipping, so increasing its cost here shouldn't be a big
11508                  * deal).
11509                  */
11510                 if (i915.fastboot && ret == 0)
11511                         intel_modeset_check_state(set->crtc->dev);
11512         }
11513
11514         if (ret) {
11515                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11516                               set->crtc->base.id, ret);
11517 fail:
11518                 intel_set_config_restore_state(dev, config);
11519
11520                 /*
11521                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11522                  * force the pipe off to avoid oopsing in the modeset code
11523                  * due to fb==NULL. This should only happen during boot since
11524                  * we don't yet reconstruct the FB from the hardware state.
11525                  */
11526                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11527                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11528
11529                 /* Try to restore the config */
11530                 if (config->mode_changed &&
11531                     intel_set_mode(save_set.crtc, save_set.mode,
11532                                    save_set.x, save_set.y, save_set.fb))
11533                         DRM_ERROR("failed to restore config after modeset failure\n");
11534         }
11535
11536 out_config:
11537         intel_set_config_free(config);
11538         return ret;
11539 }
11540
11541 static const struct drm_crtc_funcs intel_crtc_funcs = {
11542         .gamma_set = intel_crtc_gamma_set,
11543         .set_config = intel_crtc_set_config,
11544         .destroy = intel_crtc_destroy,
11545         .page_flip = intel_crtc_page_flip,
11546 };
11547
11548 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11549                                       struct intel_shared_dpll *pll,
11550                                       struct intel_dpll_hw_state *hw_state)
11551 {
11552         uint32_t val;
11553
11554         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11555                 return false;
11556
11557         val = I915_READ(PCH_DPLL(pll->id));
11558         hw_state->dpll = val;
11559         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11560         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11561
11562         return val & DPLL_VCO_ENABLE;
11563 }
11564
11565 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11566                                   struct intel_shared_dpll *pll)
11567 {
11568         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11569         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11570 }
11571
11572 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11573                                 struct intel_shared_dpll *pll)
11574 {
11575         /* PCH refclock must be enabled first */
11576         ibx_assert_pch_refclk_enabled(dev_priv);
11577
11578         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11579
11580         /* Wait for the clocks to stabilize. */
11581         POSTING_READ(PCH_DPLL(pll->id));
11582         udelay(150);
11583
11584         /* The pixel multiplier can only be updated once the
11585          * DPLL is enabled and the clocks are stable.
11586          *
11587          * So write it again.
11588          */
11589         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11590         POSTING_READ(PCH_DPLL(pll->id));
11591         udelay(200);
11592 }
11593
11594 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11595                                  struct intel_shared_dpll *pll)
11596 {
11597         struct drm_device *dev = dev_priv->dev;
11598         struct intel_crtc *crtc;
11599
11600         /* Make sure no transcoder isn't still depending on us. */
11601         for_each_intel_crtc(dev, crtc) {
11602                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11603                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11604         }
11605
11606         I915_WRITE(PCH_DPLL(pll->id), 0);
11607         POSTING_READ(PCH_DPLL(pll->id));
11608         udelay(200);
11609 }
11610
11611 static char *ibx_pch_dpll_names[] = {
11612         "PCH DPLL A",
11613         "PCH DPLL B",
11614 };
11615
11616 static void ibx_pch_dpll_init(struct drm_device *dev)
11617 {
11618         struct drm_i915_private *dev_priv = dev->dev_private;
11619         int i;
11620
11621         dev_priv->num_shared_dpll = 2;
11622
11623         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11624                 dev_priv->shared_dplls[i].id = i;
11625                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11626                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11627                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11628                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11629                 dev_priv->shared_dplls[i].get_hw_state =
11630                         ibx_pch_dpll_get_hw_state;
11631         }
11632 }
11633
11634 static void intel_shared_dpll_init(struct drm_device *dev)
11635 {
11636         struct drm_i915_private *dev_priv = dev->dev_private;
11637
11638         if (HAS_DDI(dev))
11639                 intel_ddi_pll_init(dev);
11640         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11641                 ibx_pch_dpll_init(dev);
11642         else
11643                 dev_priv->num_shared_dpll = 0;
11644
11645         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11646 }
11647
11648 /**
11649  * intel_prepare_plane_fb - Prepare fb for usage on plane
11650  * @plane: drm plane to prepare for
11651  * @fb: framebuffer to prepare for presentation
11652  *
11653  * Prepares a framebuffer for usage on a display plane.  Generally this
11654  * involves pinning the underlying object and updating the frontbuffer tracking
11655  * bits.  Some older platforms need special physical address handling for
11656  * cursor planes.
11657  *
11658  * Returns 0 on success, negative error code on failure.
11659  */
11660 int
11661 intel_prepare_plane_fb(struct drm_plane *plane,
11662                        struct drm_framebuffer *fb)
11663 {
11664         struct drm_device *dev = plane->dev;
11665         struct intel_plane *intel_plane = to_intel_plane(plane);
11666         enum pipe pipe = intel_plane->pipe;
11667         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11668         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11669         unsigned frontbuffer_bits = 0;
11670         int ret = 0;
11671
11672         if (!obj)
11673                 return 0;
11674
11675         switch (plane->type) {
11676         case DRM_PLANE_TYPE_PRIMARY:
11677                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11678                 break;
11679         case DRM_PLANE_TYPE_CURSOR:
11680                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11681                 break;
11682         case DRM_PLANE_TYPE_OVERLAY:
11683                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11684                 break;
11685         }
11686
11687         mutex_lock(&dev->struct_mutex);
11688
11689         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11690             INTEL_INFO(dev)->cursor_needs_physical) {
11691                 int align = IS_I830(dev) ? 16 * 1024 : 256;
11692                 ret = i915_gem_object_attach_phys(obj, align);
11693                 if (ret)
11694                         DRM_DEBUG_KMS("failed to attach phys object\n");
11695         } else {
11696                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11697         }
11698
11699         if (ret == 0)
11700                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11701
11702         mutex_unlock(&dev->struct_mutex);
11703
11704         return ret;
11705 }
11706
11707 /**
11708  * intel_cleanup_plane_fb - Cleans up an fb after plane use
11709  * @plane: drm plane to clean up for
11710  * @fb: old framebuffer that was on plane
11711  *
11712  * Cleans up a framebuffer that has just been removed from a plane.
11713  */
11714 void
11715 intel_cleanup_plane_fb(struct drm_plane *plane,
11716                        struct drm_framebuffer *fb)
11717 {
11718         struct drm_device *dev = plane->dev;
11719         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11720
11721         if (WARN_ON(!obj))
11722                 return;
11723
11724         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11725             !INTEL_INFO(dev)->cursor_needs_physical) {
11726                 mutex_lock(&dev->struct_mutex);
11727                 intel_unpin_fb_obj(obj);
11728                 mutex_unlock(&dev->struct_mutex);
11729         }
11730 }
11731
11732 static int
11733 intel_check_primary_plane(struct drm_plane *plane,
11734                           struct intel_plane_state *state)
11735 {
11736         struct drm_device *dev = plane->dev;
11737         struct drm_i915_private *dev_priv = dev->dev_private;
11738         struct drm_crtc *crtc = state->base.crtc;
11739         struct intel_crtc *intel_crtc;
11740         struct intel_plane *intel_plane = to_intel_plane(plane);
11741         struct drm_framebuffer *fb = state->base.fb;
11742         struct drm_rect *dest = &state->dst;
11743         struct drm_rect *src = &state->src;
11744         const struct drm_rect *clip = &state->clip;
11745         int ret;
11746
11747         crtc = crtc ? crtc : plane->crtc;
11748         intel_crtc = to_intel_crtc(crtc);
11749
11750         ret = drm_plane_helper_check_update(plane, crtc, fb,
11751                                             src, dest, clip,
11752                                             DRM_PLANE_HELPER_NO_SCALING,
11753                                             DRM_PLANE_HELPER_NO_SCALING,
11754                                             false, true, &state->visible);
11755         if (ret)
11756                 return ret;
11757
11758         if (intel_crtc->active) {
11759                 intel_crtc->atomic.wait_for_flips = true;
11760
11761                 /*
11762                  * FBC does not work on some platforms for rotated
11763                  * planes, so disable it when rotation is not 0 and
11764                  * update it when rotation is set back to 0.
11765                  *
11766                  * FIXME: This is redundant with the fbc update done in
11767                  * the primary plane enable function except that that
11768                  * one is done too late. We eventually need to unify
11769                  * this.
11770                  */
11771                 if (intel_crtc->primary_enabled &&
11772                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11773                     dev_priv->fbc.plane == intel_crtc->plane &&
11774                     intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11775                         intel_crtc->atomic.disable_fbc = true;
11776                 }
11777
11778                 if (state->visible) {
11779                         /*
11780                          * BDW signals flip done immediately if the plane
11781                          * is disabled, even if the plane enable is already
11782                          * armed to occur at the next vblank :(
11783                          */
11784                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11785                                 intel_crtc->atomic.wait_vblank = true;
11786                 }
11787
11788                 intel_crtc->atomic.fb_bits |=
11789                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11790
11791                 intel_crtc->atomic.update_fbc = true;
11792         }
11793
11794         return 0;
11795 }
11796
11797 static void
11798 intel_commit_primary_plane(struct drm_plane *plane,
11799                            struct intel_plane_state *state)
11800 {
11801         struct drm_crtc *crtc = state->base.crtc;
11802         struct drm_framebuffer *fb = state->base.fb;
11803         struct drm_device *dev = plane->dev;
11804         struct drm_i915_private *dev_priv = dev->dev_private;
11805         struct intel_crtc *intel_crtc;
11806         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11807         struct intel_plane *intel_plane = to_intel_plane(plane);
11808         struct drm_rect *src = &state->src;
11809
11810         crtc = crtc ? crtc : plane->crtc;
11811         intel_crtc = to_intel_crtc(crtc);
11812
11813         plane->fb = fb;
11814         crtc->x = src->x1 >> 16;
11815         crtc->y = src->y1 >> 16;
11816
11817         intel_plane->obj = obj;
11818
11819         if (intel_crtc->active) {
11820                 if (state->visible) {
11821                         /* FIXME: kill this fastboot hack */
11822                         intel_update_pipe_size(intel_crtc);
11823
11824                         intel_crtc->primary_enabled = true;
11825
11826                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11827                                         crtc->x, crtc->y);
11828                 } else {
11829                         /*
11830                          * If clipping results in a non-visible primary plane,
11831                          * we'll disable the primary plane.  Note that this is
11832                          * a bit different than what happens if userspace
11833                          * explicitly disables the plane by passing fb=0
11834                          * because plane->fb still gets set and pinned.
11835                          */
11836                         intel_disable_primary_hw_plane(plane, crtc);
11837                 }
11838         }
11839 }
11840
11841 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
11842 {
11843         struct drm_device *dev = crtc->dev;
11844         struct drm_i915_private *dev_priv = dev->dev_private;
11845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11846         struct intel_plane *intel_plane;
11847         struct drm_plane *p;
11848         unsigned fb_bits = 0;
11849
11850         /* Track fb's for any planes being disabled */
11851         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11852                 intel_plane = to_intel_plane(p);
11853
11854                 if (intel_crtc->atomic.disabled_planes &
11855                     (1 << drm_plane_index(p))) {
11856                         switch (p->type) {
11857                         case DRM_PLANE_TYPE_PRIMARY:
11858                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11859                                 break;
11860                         case DRM_PLANE_TYPE_CURSOR:
11861                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11862                                 break;
11863                         case DRM_PLANE_TYPE_OVERLAY:
11864                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11865                                 break;
11866                         }
11867
11868                         mutex_lock(&dev->struct_mutex);
11869                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11870                         mutex_unlock(&dev->struct_mutex);
11871                 }
11872         }
11873
11874         if (intel_crtc->atomic.wait_for_flips)
11875                 intel_crtc_wait_for_pending_flips(crtc);
11876
11877         if (intel_crtc->atomic.disable_fbc)
11878                 intel_fbc_disable(dev);
11879
11880         if (intel_crtc->atomic.pre_disable_primary)
11881                 intel_pre_disable_primary(crtc);
11882
11883         if (intel_crtc->atomic.update_wm)
11884                 intel_update_watermarks(crtc);
11885
11886         intel_runtime_pm_get(dev_priv);
11887
11888         /* Perform vblank evasion around commit operation */
11889         if (intel_crtc->active)
11890                 intel_crtc->atomic.evade =
11891                         intel_pipe_update_start(intel_crtc,
11892                                                 &intel_crtc->atomic.start_vbl_count);
11893 }
11894
11895 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
11896 {
11897         struct drm_device *dev = crtc->dev;
11898         struct drm_i915_private *dev_priv = dev->dev_private;
11899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11900         struct drm_plane *p;
11901
11902         if (intel_crtc->atomic.evade)
11903                 intel_pipe_update_end(intel_crtc,
11904                                       intel_crtc->atomic.start_vbl_count);
11905
11906         intel_runtime_pm_put(dev_priv);
11907
11908         if (intel_crtc->atomic.wait_vblank)
11909                 intel_wait_for_vblank(dev, intel_crtc->pipe);
11910
11911         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
11912
11913         if (intel_crtc->atomic.update_fbc) {
11914                 mutex_lock(&dev->struct_mutex);
11915                 intel_fbc_update(dev);
11916                 mutex_unlock(&dev->struct_mutex);
11917         }
11918
11919         if (intel_crtc->atomic.post_enable_primary)
11920                 intel_post_enable_primary(crtc);
11921
11922         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
11923                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
11924                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
11925                                                        false, false);
11926
11927         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
11928 }
11929
11930 /**
11931  * intel_plane_destroy - destroy a plane
11932  * @plane: plane to destroy
11933  *
11934  * Common destruction function for all types of planes (primary, cursor,
11935  * sprite).
11936  */
11937 void intel_plane_destroy(struct drm_plane *plane)
11938 {
11939         struct intel_plane *intel_plane = to_intel_plane(plane);
11940         intel_plane_destroy_state(plane, plane->state);
11941         drm_plane_cleanup(plane);
11942         kfree(intel_plane);
11943 }
11944
11945 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11946         .update_plane = drm_plane_helper_update,
11947         .disable_plane = drm_plane_helper_disable,
11948         .destroy = intel_plane_destroy,
11949         .set_property = intel_plane_set_property,
11950         .atomic_duplicate_state = intel_plane_duplicate_state,
11951         .atomic_destroy_state = intel_plane_destroy_state,
11952
11953 };
11954
11955 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11956                                                     int pipe)
11957 {
11958         struct intel_plane *primary;
11959         const uint32_t *intel_primary_formats;
11960         int num_formats;
11961
11962         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11963         if (primary == NULL)
11964                 return NULL;
11965
11966         primary->base.state = intel_plane_duplicate_state(&primary->base);
11967         if (primary->base.state == NULL) {
11968                 kfree(primary);
11969                 return NULL;
11970         }
11971
11972         primary->can_scale = false;
11973         primary->max_downscale = 1;
11974         primary->pipe = pipe;
11975         primary->plane = pipe;
11976         primary->rotation = BIT(DRM_ROTATE_0);
11977         primary->check_plane = intel_check_primary_plane;
11978         primary->commit_plane = intel_commit_primary_plane;
11979         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11980                 primary->plane = !pipe;
11981
11982         if (INTEL_INFO(dev)->gen <= 3) {
11983                 intel_primary_formats = intel_primary_formats_gen2;
11984                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11985         } else {
11986                 intel_primary_formats = intel_primary_formats_gen4;
11987                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11988         }
11989
11990         drm_universal_plane_init(dev, &primary->base, 0,
11991                                  &intel_primary_plane_funcs,
11992                                  intel_primary_formats, num_formats,
11993                                  DRM_PLANE_TYPE_PRIMARY);
11994
11995         if (INTEL_INFO(dev)->gen >= 4) {
11996                 if (!dev->mode_config.rotation_property)
11997                         dev->mode_config.rotation_property =
11998                                 drm_mode_create_rotation_property(dev,
11999                                                         BIT(DRM_ROTATE_0) |
12000                                                         BIT(DRM_ROTATE_180));
12001                 if (dev->mode_config.rotation_property)
12002                         drm_object_attach_property(&primary->base.base,
12003                                 dev->mode_config.rotation_property,
12004                                 primary->rotation);
12005         }
12006
12007         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12008
12009         return &primary->base;
12010 }
12011
12012 static int
12013 intel_check_cursor_plane(struct drm_plane *plane,
12014                          struct intel_plane_state *state)
12015 {
12016         struct drm_crtc *crtc = state->base.crtc;
12017         struct drm_device *dev = plane->dev;
12018         struct drm_framebuffer *fb = state->base.fb;
12019         struct drm_rect *dest = &state->dst;
12020         struct drm_rect *src = &state->src;
12021         const struct drm_rect *clip = &state->clip;
12022         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12023         struct intel_crtc *intel_crtc;
12024         unsigned stride;
12025         int ret;
12026
12027         crtc = crtc ? crtc : plane->crtc;
12028         intel_crtc = to_intel_crtc(crtc);
12029
12030         ret = drm_plane_helper_check_update(plane, crtc, fb,
12031                                             src, dest, clip,
12032                                             DRM_PLANE_HELPER_NO_SCALING,
12033                                             DRM_PLANE_HELPER_NO_SCALING,
12034                                             true, true, &state->visible);
12035         if (ret)
12036                 return ret;
12037
12038
12039         /* if we want to turn off the cursor ignore width and height */
12040         if (!obj)
12041                 goto finish;
12042
12043         /* Check for which cursor types we support */
12044         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12045                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12046                           state->base.crtc_w, state->base.crtc_h);
12047                 return -EINVAL;
12048         }
12049
12050         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12051         if (obj->base.size < stride * state->base.crtc_h) {
12052                 DRM_DEBUG_KMS("buffer is too small\n");
12053                 return -ENOMEM;
12054         }
12055
12056         if (fb == crtc->cursor->fb)
12057                 return 0;
12058
12059         /* we only need to pin inside GTT if cursor is non-phy */
12060         mutex_lock(&dev->struct_mutex);
12061         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12062                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12063                 ret = -EINVAL;
12064         }
12065         mutex_unlock(&dev->struct_mutex);
12066
12067 finish:
12068         if (intel_crtc->active) {
12069                 if (intel_crtc->cursor_width != state->base.crtc_w)
12070                         intel_crtc->atomic.update_wm = true;
12071
12072                 intel_crtc->atomic.fb_bits |=
12073                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12074         }
12075
12076         return ret;
12077 }
12078
12079 static void
12080 intel_commit_cursor_plane(struct drm_plane *plane,
12081                           struct intel_plane_state *state)
12082 {
12083         struct drm_crtc *crtc = state->base.crtc;
12084         struct drm_device *dev = plane->dev;
12085         struct intel_crtc *intel_crtc;
12086         struct intel_plane *intel_plane = to_intel_plane(plane);
12087         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12088         uint32_t addr;
12089
12090         crtc = crtc ? crtc : plane->crtc;
12091         intel_crtc = to_intel_crtc(crtc);
12092
12093         plane->fb = state->base.fb;
12094         crtc->cursor_x = state->base.crtc_x;
12095         crtc->cursor_y = state->base.crtc_y;
12096
12097         intel_plane->obj = obj;
12098
12099         if (intel_crtc->cursor_bo == obj)
12100                 goto update;
12101
12102         if (!obj)
12103                 addr = 0;
12104         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12105                 addr = i915_gem_obj_ggtt_offset(obj);
12106         else
12107                 addr = obj->phys_handle->busaddr;
12108
12109         intel_crtc->cursor_addr = addr;
12110         intel_crtc->cursor_bo = obj;
12111 update:
12112         intel_crtc->cursor_width = state->base.crtc_w;
12113         intel_crtc->cursor_height = state->base.crtc_h;
12114
12115         if (intel_crtc->active)
12116                 intel_crtc_update_cursor(crtc, state->visible);
12117 }
12118
12119 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12120         .update_plane = drm_plane_helper_update,
12121         .disable_plane = drm_plane_helper_disable,
12122         .destroy = intel_plane_destroy,
12123         .set_property = intel_plane_set_property,
12124         .atomic_duplicate_state = intel_plane_duplicate_state,
12125         .atomic_destroy_state = intel_plane_destroy_state,
12126 };
12127
12128 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12129                                                    int pipe)
12130 {
12131         struct intel_plane *cursor;
12132
12133         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12134         if (cursor == NULL)
12135                 return NULL;
12136
12137         cursor->base.state = intel_plane_duplicate_state(&cursor->base);
12138         if (cursor->base.state == NULL) {
12139                 kfree(cursor);
12140                 return NULL;
12141         }
12142
12143         cursor->can_scale = false;
12144         cursor->max_downscale = 1;
12145         cursor->pipe = pipe;
12146         cursor->plane = pipe;
12147         cursor->rotation = BIT(DRM_ROTATE_0);
12148         cursor->check_plane = intel_check_cursor_plane;
12149         cursor->commit_plane = intel_commit_cursor_plane;
12150
12151         drm_universal_plane_init(dev, &cursor->base, 0,
12152                                  &intel_cursor_plane_funcs,
12153                                  intel_cursor_formats,
12154                                  ARRAY_SIZE(intel_cursor_formats),
12155                                  DRM_PLANE_TYPE_CURSOR);
12156
12157         if (INTEL_INFO(dev)->gen >= 4) {
12158                 if (!dev->mode_config.rotation_property)
12159                         dev->mode_config.rotation_property =
12160                                 drm_mode_create_rotation_property(dev,
12161                                                         BIT(DRM_ROTATE_0) |
12162                                                         BIT(DRM_ROTATE_180));
12163                 if (dev->mode_config.rotation_property)
12164                         drm_object_attach_property(&cursor->base.base,
12165                                 dev->mode_config.rotation_property,
12166                                 cursor->rotation);
12167         }
12168
12169         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12170
12171         return &cursor->base;
12172 }
12173
12174 static void intel_crtc_init(struct drm_device *dev, int pipe)
12175 {
12176         struct drm_i915_private *dev_priv = dev->dev_private;
12177         struct intel_crtc *intel_crtc;
12178         struct drm_plane *primary = NULL;
12179         struct drm_plane *cursor = NULL;
12180         int i, ret;
12181
12182         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12183         if (intel_crtc == NULL)
12184                 return;
12185
12186         primary = intel_primary_plane_create(dev, pipe);
12187         if (!primary)
12188                 goto fail;
12189
12190         cursor = intel_cursor_plane_create(dev, pipe);
12191         if (!cursor)
12192                 goto fail;
12193
12194         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12195                                         cursor, &intel_crtc_funcs);
12196         if (ret)
12197                 goto fail;
12198
12199         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12200         for (i = 0; i < 256; i++) {
12201                 intel_crtc->lut_r[i] = i;
12202                 intel_crtc->lut_g[i] = i;
12203                 intel_crtc->lut_b[i] = i;
12204         }
12205
12206         /*
12207          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12208          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12209          */
12210         intel_crtc->pipe = pipe;
12211         intel_crtc->plane = pipe;
12212         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12213                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12214                 intel_crtc->plane = !pipe;
12215         }
12216
12217         intel_crtc->cursor_base = ~0;
12218         intel_crtc->cursor_cntl = ~0;
12219         intel_crtc->cursor_size = ~0;
12220
12221         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12222                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12223         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12224         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12225
12226         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12227
12228         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12229
12230         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12231         return;
12232
12233 fail:
12234         if (primary)
12235                 drm_plane_cleanup(primary);
12236         if (cursor)
12237                 drm_plane_cleanup(cursor);
12238         kfree(intel_crtc);
12239 }
12240
12241 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12242 {
12243         struct drm_encoder *encoder = connector->base.encoder;
12244         struct drm_device *dev = connector->base.dev;
12245
12246         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12247
12248         if (!encoder || WARN_ON(!encoder->crtc))
12249                 return INVALID_PIPE;
12250
12251         return to_intel_crtc(encoder->crtc)->pipe;
12252 }
12253
12254 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12255                                 struct drm_file *file)
12256 {
12257         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12258         struct drm_crtc *drmmode_crtc;
12259         struct intel_crtc *crtc;
12260
12261         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12262                 return -ENODEV;
12263
12264         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12265
12266         if (!drmmode_crtc) {
12267                 DRM_ERROR("no such CRTC id\n");
12268                 return -ENOENT;
12269         }
12270
12271         crtc = to_intel_crtc(drmmode_crtc);
12272         pipe_from_crtc_id->pipe = crtc->pipe;
12273
12274         return 0;
12275 }
12276
12277 static int intel_encoder_clones(struct intel_encoder *encoder)
12278 {
12279         struct drm_device *dev = encoder->base.dev;
12280         struct intel_encoder *source_encoder;
12281         int index_mask = 0;
12282         int entry = 0;
12283
12284         for_each_intel_encoder(dev, source_encoder) {
12285                 if (encoders_cloneable(encoder, source_encoder))
12286                         index_mask |= (1 << entry);
12287
12288                 entry++;
12289         }
12290
12291         return index_mask;
12292 }
12293
12294 static bool has_edp_a(struct drm_device *dev)
12295 {
12296         struct drm_i915_private *dev_priv = dev->dev_private;
12297
12298         if (!IS_MOBILE(dev))
12299                 return false;
12300
12301         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12302                 return false;
12303
12304         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12305                 return false;
12306
12307         return true;
12308 }
12309
12310 static bool intel_crt_present(struct drm_device *dev)
12311 {
12312         struct drm_i915_private *dev_priv = dev->dev_private;
12313
12314         if (INTEL_INFO(dev)->gen >= 9)
12315                 return false;
12316
12317         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12318                 return false;
12319
12320         if (IS_CHERRYVIEW(dev))
12321                 return false;
12322
12323         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12324                 return false;
12325
12326         return true;
12327 }
12328
12329 static void intel_setup_outputs(struct drm_device *dev)
12330 {
12331         struct drm_i915_private *dev_priv = dev->dev_private;
12332         struct intel_encoder *encoder;
12333         bool dpd_is_edp = false;
12334
12335         intel_lvds_init(dev);
12336
12337         if (intel_crt_present(dev))
12338                 intel_crt_init(dev);
12339
12340         if (HAS_DDI(dev)) {
12341                 int found;
12342
12343                 /* Haswell uses DDI functions to detect digital outputs */
12344                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12345                 /* DDI A only supports eDP */
12346                 if (found)
12347                         intel_ddi_init(dev, PORT_A);
12348
12349                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12350                  * register */
12351                 found = I915_READ(SFUSE_STRAP);
12352
12353                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12354                         intel_ddi_init(dev, PORT_B);
12355                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12356                         intel_ddi_init(dev, PORT_C);
12357                 if (found & SFUSE_STRAP_DDID_DETECTED)
12358                         intel_ddi_init(dev, PORT_D);
12359         } else if (HAS_PCH_SPLIT(dev)) {
12360                 int found;
12361                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12362
12363                 if (has_edp_a(dev))
12364                         intel_dp_init(dev, DP_A, PORT_A);
12365
12366                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12367                         /* PCH SDVOB multiplex with HDMIB */
12368                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12369                         if (!found)
12370                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12371                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12372                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12373                 }
12374
12375                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12376                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12377
12378                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12379                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12380
12381                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12382                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12383
12384                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12385                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12386         } else if (IS_VALLEYVIEW(dev)) {
12387                 /*
12388                  * The DP_DETECTED bit is the latched state of the DDC
12389                  * SDA pin at boot. However since eDP doesn't require DDC
12390                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12391                  * eDP ports may have been muxed to an alternate function.
12392                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12393                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12394                  * detect eDP ports.
12395                  */
12396                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12397                     !intel_dp_is_edp(dev, PORT_B))
12398                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12399                                         PORT_B);
12400                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12401                     intel_dp_is_edp(dev, PORT_B))
12402                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12403
12404                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12405                     !intel_dp_is_edp(dev, PORT_C))
12406                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12407                                         PORT_C);
12408                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12409                     intel_dp_is_edp(dev, PORT_C))
12410                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12411
12412                 if (IS_CHERRYVIEW(dev)) {
12413                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12414                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12415                                                 PORT_D);
12416                         /* eDP not supported on port D, so don't check VBT */
12417                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12418                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12419                 }
12420
12421                 intel_dsi_init(dev);
12422         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12423                 bool found = false;
12424
12425                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12426                         DRM_DEBUG_KMS("probing SDVOB\n");
12427                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12428                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12429                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12430                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12431                         }
12432
12433                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12434                                 intel_dp_init(dev, DP_B, PORT_B);
12435                 }
12436
12437                 /* Before G4X SDVOC doesn't have its own detect register */
12438
12439                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12440                         DRM_DEBUG_KMS("probing SDVOC\n");
12441                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12442                 }
12443
12444                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12445
12446                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12447                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12448                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12449                         }
12450                         if (SUPPORTS_INTEGRATED_DP(dev))
12451                                 intel_dp_init(dev, DP_C, PORT_C);
12452                 }
12453
12454                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12455                     (I915_READ(DP_D) & DP_DETECTED))
12456                         intel_dp_init(dev, DP_D, PORT_D);
12457         } else if (IS_GEN2(dev))
12458                 intel_dvo_init(dev);
12459
12460         if (SUPPORTS_TV(dev))
12461                 intel_tv_init(dev);
12462
12463         intel_psr_init(dev);
12464
12465         for_each_intel_encoder(dev, encoder) {
12466                 encoder->base.possible_crtcs = encoder->crtc_mask;
12467                 encoder->base.possible_clones =
12468                         intel_encoder_clones(encoder);
12469         }
12470
12471         intel_init_pch_refclk(dev);
12472
12473         drm_helper_move_panel_connectors_to_head(dev);
12474 }
12475
12476 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12477 {
12478         struct drm_device *dev = fb->dev;
12479         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12480
12481         drm_framebuffer_cleanup(fb);
12482         mutex_lock(&dev->struct_mutex);
12483         WARN_ON(!intel_fb->obj->framebuffer_references--);
12484         drm_gem_object_unreference(&intel_fb->obj->base);
12485         mutex_unlock(&dev->struct_mutex);
12486         kfree(intel_fb);
12487 }
12488
12489 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12490                                                 struct drm_file *file,
12491                                                 unsigned int *handle)
12492 {
12493         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12494         struct drm_i915_gem_object *obj = intel_fb->obj;
12495
12496         return drm_gem_handle_create(file, &obj->base, handle);
12497 }
12498
12499 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12500         .destroy = intel_user_framebuffer_destroy,
12501         .create_handle = intel_user_framebuffer_create_handle,
12502 };
12503
12504 static int intel_framebuffer_init(struct drm_device *dev,
12505                                   struct intel_framebuffer *intel_fb,
12506                                   struct drm_mode_fb_cmd2 *mode_cmd,
12507                                   struct drm_i915_gem_object *obj)
12508 {
12509         int aligned_height;
12510         int pitch_limit;
12511         int ret;
12512
12513         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12514
12515         if (obj->tiling_mode == I915_TILING_Y) {
12516                 DRM_DEBUG("hardware does not support tiling Y\n");
12517                 return -EINVAL;
12518         }
12519
12520         if (mode_cmd->pitches[0] & 63) {
12521                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12522                           mode_cmd->pitches[0]);
12523                 return -EINVAL;
12524         }
12525
12526         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12527                 pitch_limit = 32*1024;
12528         } else if (INTEL_INFO(dev)->gen >= 4) {
12529                 if (obj->tiling_mode)
12530                         pitch_limit = 16*1024;
12531                 else
12532                         pitch_limit = 32*1024;
12533         } else if (INTEL_INFO(dev)->gen >= 3) {
12534                 if (obj->tiling_mode)
12535                         pitch_limit = 8*1024;
12536                 else
12537                         pitch_limit = 16*1024;
12538         } else
12539                 /* XXX DSPC is limited to 4k tiled */
12540                 pitch_limit = 8*1024;
12541
12542         if (mode_cmd->pitches[0] > pitch_limit) {
12543                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12544                           obj->tiling_mode ? "tiled" : "linear",
12545                           mode_cmd->pitches[0], pitch_limit);
12546                 return -EINVAL;
12547         }
12548
12549         if (obj->tiling_mode != I915_TILING_NONE &&
12550             mode_cmd->pitches[0] != obj->stride) {
12551                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12552                           mode_cmd->pitches[0], obj->stride);
12553                 return -EINVAL;
12554         }
12555
12556         /* Reject formats not supported by any plane early. */
12557         switch (mode_cmd->pixel_format) {
12558         case DRM_FORMAT_C8:
12559         case DRM_FORMAT_RGB565:
12560         case DRM_FORMAT_XRGB8888:
12561         case DRM_FORMAT_ARGB8888:
12562                 break;
12563         case DRM_FORMAT_XRGB1555:
12564         case DRM_FORMAT_ARGB1555:
12565                 if (INTEL_INFO(dev)->gen > 3) {
12566                         DRM_DEBUG("unsupported pixel format: %s\n",
12567                                   drm_get_format_name(mode_cmd->pixel_format));
12568                         return -EINVAL;
12569                 }
12570                 break;
12571         case DRM_FORMAT_XBGR8888:
12572         case DRM_FORMAT_ABGR8888:
12573         case DRM_FORMAT_XRGB2101010:
12574         case DRM_FORMAT_ARGB2101010:
12575         case DRM_FORMAT_XBGR2101010:
12576         case DRM_FORMAT_ABGR2101010:
12577                 if (INTEL_INFO(dev)->gen < 4) {
12578                         DRM_DEBUG("unsupported pixel format: %s\n",
12579                                   drm_get_format_name(mode_cmd->pixel_format));
12580                         return -EINVAL;
12581                 }
12582                 break;
12583         case DRM_FORMAT_YUYV:
12584         case DRM_FORMAT_UYVY:
12585         case DRM_FORMAT_YVYU:
12586         case DRM_FORMAT_VYUY:
12587                 if (INTEL_INFO(dev)->gen < 5) {
12588                         DRM_DEBUG("unsupported pixel format: %s\n",
12589                                   drm_get_format_name(mode_cmd->pixel_format));
12590                         return -EINVAL;
12591                 }
12592                 break;
12593         default:
12594                 DRM_DEBUG("unsupported pixel format: %s\n",
12595                           drm_get_format_name(mode_cmd->pixel_format));
12596                 return -EINVAL;
12597         }
12598
12599         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12600         if (mode_cmd->offsets[0] != 0)
12601                 return -EINVAL;
12602
12603         aligned_height = intel_align_height(dev, mode_cmd->height,
12604                                             obj->tiling_mode);
12605         /* FIXME drm helper for size checks (especially planar formats)? */
12606         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12607                 return -EINVAL;
12608
12609         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12610         intel_fb->obj = obj;
12611         intel_fb->obj->framebuffer_references++;
12612
12613         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12614         if (ret) {
12615                 DRM_ERROR("framebuffer init failed %d\n", ret);
12616                 return ret;
12617         }
12618
12619         return 0;
12620 }
12621
12622 static struct drm_framebuffer *
12623 intel_user_framebuffer_create(struct drm_device *dev,
12624                               struct drm_file *filp,
12625                               struct drm_mode_fb_cmd2 *mode_cmd)
12626 {
12627         struct drm_i915_gem_object *obj;
12628
12629         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12630                                                 mode_cmd->handles[0]));
12631         if (&obj->base == NULL)
12632                 return ERR_PTR(-ENOENT);
12633
12634         return intel_framebuffer_create(dev, mode_cmd, obj);
12635 }
12636
12637 #ifndef CONFIG_DRM_I915_FBDEV
12638 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12639 {
12640 }
12641 #endif
12642
12643 static const struct drm_mode_config_funcs intel_mode_funcs = {
12644         .fb_create = intel_user_framebuffer_create,
12645         .output_poll_changed = intel_fbdev_output_poll_changed,
12646 };
12647
12648 /* Set up chip specific display functions */
12649 static void intel_init_display(struct drm_device *dev)
12650 {
12651         struct drm_i915_private *dev_priv = dev->dev_private;
12652
12653         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12654                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12655         else if (IS_CHERRYVIEW(dev))
12656                 dev_priv->display.find_dpll = chv_find_best_dpll;
12657         else if (IS_VALLEYVIEW(dev))
12658                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12659         else if (IS_PINEVIEW(dev))
12660                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12661         else
12662                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12663
12664         if (HAS_DDI(dev)) {
12665                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12666                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12667                 dev_priv->display.crtc_compute_clock =
12668                         haswell_crtc_compute_clock;
12669                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12670                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12671                 dev_priv->display.off = ironlake_crtc_off;
12672                 if (INTEL_INFO(dev)->gen >= 9)
12673                         dev_priv->display.update_primary_plane =
12674                                 skylake_update_primary_plane;
12675                 else
12676                         dev_priv->display.update_primary_plane =
12677                                 ironlake_update_primary_plane;
12678         } else if (HAS_PCH_SPLIT(dev)) {
12679                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12680                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12681                 dev_priv->display.crtc_compute_clock =
12682                         ironlake_crtc_compute_clock;
12683                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12684                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12685                 dev_priv->display.off = ironlake_crtc_off;
12686                 dev_priv->display.update_primary_plane =
12687                         ironlake_update_primary_plane;
12688         } else if (IS_VALLEYVIEW(dev)) {
12689                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12690                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12691                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12692                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12693                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12694                 dev_priv->display.off = i9xx_crtc_off;
12695                 dev_priv->display.update_primary_plane =
12696                         i9xx_update_primary_plane;
12697         } else {
12698                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12699                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12700                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12701                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12702                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12703                 dev_priv->display.off = i9xx_crtc_off;
12704                 dev_priv->display.update_primary_plane =
12705                         i9xx_update_primary_plane;
12706         }
12707
12708         /* Returns the core display clock speed */
12709         if (IS_VALLEYVIEW(dev))
12710                 dev_priv->display.get_display_clock_speed =
12711                         valleyview_get_display_clock_speed;
12712         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12713                 dev_priv->display.get_display_clock_speed =
12714                         i945_get_display_clock_speed;
12715         else if (IS_I915G(dev))
12716                 dev_priv->display.get_display_clock_speed =
12717                         i915_get_display_clock_speed;
12718         else if (IS_I945GM(dev) || IS_845G(dev))
12719                 dev_priv->display.get_display_clock_speed =
12720                         i9xx_misc_get_display_clock_speed;
12721         else if (IS_PINEVIEW(dev))
12722                 dev_priv->display.get_display_clock_speed =
12723                         pnv_get_display_clock_speed;
12724         else if (IS_I915GM(dev))
12725                 dev_priv->display.get_display_clock_speed =
12726                         i915gm_get_display_clock_speed;
12727         else if (IS_I865G(dev))
12728                 dev_priv->display.get_display_clock_speed =
12729                         i865_get_display_clock_speed;
12730         else if (IS_I85X(dev))
12731                 dev_priv->display.get_display_clock_speed =
12732                         i855_get_display_clock_speed;
12733         else /* 852, 830 */
12734                 dev_priv->display.get_display_clock_speed =
12735                         i830_get_display_clock_speed;
12736
12737         if (IS_GEN5(dev)) {
12738                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12739         } else if (IS_GEN6(dev)) {
12740                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12741         } else if (IS_IVYBRIDGE(dev)) {
12742                 /* FIXME: detect B0+ stepping and use auto training */
12743                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12744                 dev_priv->display.modeset_global_resources =
12745                         ivb_modeset_global_resources;
12746         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12747                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12748         } else if (IS_VALLEYVIEW(dev)) {
12749                 dev_priv->display.modeset_global_resources =
12750                         valleyview_modeset_global_resources;
12751         }
12752
12753         /* Default just returns -ENODEV to indicate unsupported */
12754         dev_priv->display.queue_flip = intel_default_queue_flip;
12755
12756         switch (INTEL_INFO(dev)->gen) {
12757         case 2:
12758                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12759                 break;
12760
12761         case 3:
12762                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12763                 break;
12764
12765         case 4:
12766         case 5:
12767                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12768                 break;
12769
12770         case 6:
12771                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12772                 break;
12773         case 7:
12774         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12775                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12776                 break;
12777         case 9:
12778                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12779                 break;
12780         }
12781
12782         intel_panel_init_backlight_funcs(dev);
12783
12784         mutex_init(&dev_priv->pps_mutex);
12785 }
12786
12787 /*
12788  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12789  * resume, or other times.  This quirk makes sure that's the case for
12790  * affected systems.
12791  */
12792 static void quirk_pipea_force(struct drm_device *dev)
12793 {
12794         struct drm_i915_private *dev_priv = dev->dev_private;
12795
12796         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12797         DRM_INFO("applying pipe a force quirk\n");
12798 }
12799
12800 static void quirk_pipeb_force(struct drm_device *dev)
12801 {
12802         struct drm_i915_private *dev_priv = dev->dev_private;
12803
12804         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12805         DRM_INFO("applying pipe b force quirk\n");
12806 }
12807
12808 /*
12809  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12810  */
12811 static void quirk_ssc_force_disable(struct drm_device *dev)
12812 {
12813         struct drm_i915_private *dev_priv = dev->dev_private;
12814         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12815         DRM_INFO("applying lvds SSC disable quirk\n");
12816 }
12817
12818 /*
12819  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12820  * brightness value
12821  */
12822 static void quirk_invert_brightness(struct drm_device *dev)
12823 {
12824         struct drm_i915_private *dev_priv = dev->dev_private;
12825         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12826         DRM_INFO("applying inverted panel brightness quirk\n");
12827 }
12828
12829 /* Some VBT's incorrectly indicate no backlight is present */
12830 static void quirk_backlight_present(struct drm_device *dev)
12831 {
12832         struct drm_i915_private *dev_priv = dev->dev_private;
12833         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12834         DRM_INFO("applying backlight present quirk\n");
12835 }
12836
12837 struct intel_quirk {
12838         int device;
12839         int subsystem_vendor;
12840         int subsystem_device;
12841         void (*hook)(struct drm_device *dev);
12842 };
12843
12844 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12845 struct intel_dmi_quirk {
12846         void (*hook)(struct drm_device *dev);
12847         const struct dmi_system_id (*dmi_id_list)[];
12848 };
12849
12850 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12851 {
12852         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12853         return 1;
12854 }
12855
12856 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12857         {
12858                 .dmi_id_list = &(const struct dmi_system_id[]) {
12859                         {
12860                                 .callback = intel_dmi_reverse_brightness,
12861                                 .ident = "NCR Corporation",
12862                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12863                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12864                                 },
12865                         },
12866                         { }  /* terminating entry */
12867                 },
12868                 .hook = quirk_invert_brightness,
12869         },
12870 };
12871
12872 static struct intel_quirk intel_quirks[] = {
12873         /* HP Mini needs pipe A force quirk (LP: #322104) */
12874         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12875
12876         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12877         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12878
12879         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12880         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12881
12882         /* 830 needs to leave pipe A & dpll A up */
12883         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12884
12885         /* 830 needs to leave pipe B & dpll B up */
12886         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12887
12888         /* Lenovo U160 cannot use SSC on LVDS */
12889         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12890
12891         /* Sony Vaio Y cannot use SSC on LVDS */
12892         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12893
12894         /* Acer Aspire 5734Z must invert backlight brightness */
12895         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12896
12897         /* Acer/eMachines G725 */
12898         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12899
12900         /* Acer/eMachines e725 */
12901         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12902
12903         /* Acer/Packard Bell NCL20 */
12904         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12905
12906         /* Acer Aspire 4736Z */
12907         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12908
12909         /* Acer Aspire 5336 */
12910         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12911
12912         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12913         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12914
12915         /* Acer C720 Chromebook (Core i3 4005U) */
12916         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12917
12918         /* Apple Macbook 2,1 (Core 2 T7400) */
12919         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12920
12921         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12922         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12923
12924         /* HP Chromebook 14 (Celeron 2955U) */
12925         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12926 };
12927
12928 static void intel_init_quirks(struct drm_device *dev)
12929 {
12930         struct pci_dev *d = dev->pdev;
12931         int i;
12932
12933         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12934                 struct intel_quirk *q = &intel_quirks[i];
12935
12936                 if (d->device == q->device &&
12937                     (d->subsystem_vendor == q->subsystem_vendor ||
12938                      q->subsystem_vendor == PCI_ANY_ID) &&
12939                     (d->subsystem_device == q->subsystem_device ||
12940                      q->subsystem_device == PCI_ANY_ID))
12941                         q->hook(dev);
12942         }
12943         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12944                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12945                         intel_dmi_quirks[i].hook(dev);
12946         }
12947 }
12948
12949 /* Disable the VGA plane that we never use */
12950 static void i915_disable_vga(struct drm_device *dev)
12951 {
12952         struct drm_i915_private *dev_priv = dev->dev_private;
12953         u8 sr1;
12954         u32 vga_reg = i915_vgacntrl_reg(dev);
12955
12956         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12957         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12958         outb(SR01, VGA_SR_INDEX);
12959         sr1 = inb(VGA_SR_DATA);
12960         outb(sr1 | 1<<5, VGA_SR_DATA);
12961         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12962         udelay(300);
12963
12964         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12965         POSTING_READ(vga_reg);
12966 }
12967
12968 void intel_modeset_init_hw(struct drm_device *dev)
12969 {
12970         intel_prepare_ddi(dev);
12971
12972         if (IS_VALLEYVIEW(dev))
12973                 vlv_update_cdclk(dev);
12974
12975         intel_init_clock_gating(dev);
12976
12977         intel_enable_gt_powersave(dev);
12978 }
12979
12980 void intel_modeset_init(struct drm_device *dev)
12981 {
12982         struct drm_i915_private *dev_priv = dev->dev_private;
12983         int sprite, ret;
12984         enum pipe pipe;
12985         struct intel_crtc *crtc;
12986
12987         drm_mode_config_init(dev);
12988
12989         dev->mode_config.min_width = 0;
12990         dev->mode_config.min_height = 0;
12991
12992         dev->mode_config.preferred_depth = 24;
12993         dev->mode_config.prefer_shadow = 1;
12994
12995         dev->mode_config.funcs = &intel_mode_funcs;
12996
12997         intel_init_quirks(dev);
12998
12999         intel_init_pm(dev);
13000
13001         if (INTEL_INFO(dev)->num_pipes == 0)
13002                 return;
13003
13004         intel_init_display(dev);
13005         intel_init_audio(dev);
13006
13007         if (IS_GEN2(dev)) {
13008                 dev->mode_config.max_width = 2048;
13009                 dev->mode_config.max_height = 2048;
13010         } else if (IS_GEN3(dev)) {
13011                 dev->mode_config.max_width = 4096;
13012                 dev->mode_config.max_height = 4096;
13013         } else {
13014                 dev->mode_config.max_width = 8192;
13015                 dev->mode_config.max_height = 8192;
13016         }
13017
13018         if (IS_845G(dev) || IS_I865G(dev)) {
13019                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13020                 dev->mode_config.cursor_height = 1023;
13021         } else if (IS_GEN2(dev)) {
13022                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13023                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13024         } else {
13025                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13026                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13027         }
13028
13029         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13030
13031         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13032                       INTEL_INFO(dev)->num_pipes,
13033                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13034
13035         for_each_pipe(dev_priv, pipe) {
13036                 intel_crtc_init(dev, pipe);
13037                 for_each_sprite(pipe, sprite) {
13038                         ret = intel_plane_init(dev, pipe, sprite);
13039                         if (ret)
13040                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13041                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13042                 }
13043         }
13044
13045         intel_init_dpio(dev);
13046
13047         intel_shared_dpll_init(dev);
13048
13049         /* Just disable it once at startup */
13050         i915_disable_vga(dev);
13051         intel_setup_outputs(dev);
13052
13053         /* Just in case the BIOS is doing something questionable. */
13054         intel_fbc_disable(dev);
13055
13056         drm_modeset_lock_all(dev);
13057         intel_modeset_setup_hw_state(dev, false);
13058         drm_modeset_unlock_all(dev);
13059
13060         for_each_intel_crtc(dev, crtc) {
13061                 if (!crtc->active)
13062                         continue;
13063
13064                 /*
13065                  * Note that reserving the BIOS fb up front prevents us
13066                  * from stuffing other stolen allocations like the ring
13067                  * on top.  This prevents some ugliness at boot time, and
13068                  * can even allow for smooth boot transitions if the BIOS
13069                  * fb is large enough for the active pipe configuration.
13070                  */
13071                 if (dev_priv->display.get_plane_config) {
13072                         dev_priv->display.get_plane_config(crtc,
13073                                                            &crtc->plane_config);
13074                         /*
13075                          * If the fb is shared between multiple heads, we'll
13076                          * just get the first one.
13077                          */
13078                         intel_find_plane_obj(crtc, &crtc->plane_config);
13079                 }
13080         }
13081 }
13082
13083 static void intel_enable_pipe_a(struct drm_device *dev)
13084 {
13085         struct intel_connector *connector;
13086         struct drm_connector *crt = NULL;
13087         struct intel_load_detect_pipe load_detect_temp;
13088         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13089
13090         /* We can't just switch on the pipe A, we need to set things up with a
13091          * proper mode and output configuration. As a gross hack, enable pipe A
13092          * by enabling the load detect pipe once. */
13093         list_for_each_entry(connector,
13094                             &dev->mode_config.connector_list,
13095                             base.head) {
13096                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13097                         crt = &connector->base;
13098                         break;
13099                 }
13100         }
13101
13102         if (!crt)
13103                 return;
13104
13105         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13106                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13107 }
13108
13109 static bool
13110 intel_check_plane_mapping(struct intel_crtc *crtc)
13111 {
13112         struct drm_device *dev = crtc->base.dev;
13113         struct drm_i915_private *dev_priv = dev->dev_private;
13114         u32 reg, val;
13115
13116         if (INTEL_INFO(dev)->num_pipes == 1)
13117                 return true;
13118
13119         reg = DSPCNTR(!crtc->plane);
13120         val = I915_READ(reg);
13121
13122         if ((val & DISPLAY_PLANE_ENABLE) &&
13123             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13124                 return false;
13125
13126         return true;
13127 }
13128
13129 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13130 {
13131         struct drm_device *dev = crtc->base.dev;
13132         struct drm_i915_private *dev_priv = dev->dev_private;
13133         u32 reg;
13134
13135         /* Clear any frame start delays used for debugging left by the BIOS */
13136         reg = PIPECONF(crtc->config.cpu_transcoder);
13137         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13138
13139         /* restore vblank interrupts to correct state */
13140         if (crtc->active) {
13141                 update_scanline_offset(crtc);
13142                 drm_vblank_on(dev, crtc->pipe);
13143         } else
13144                 drm_vblank_off(dev, crtc->pipe);
13145
13146         /* We need to sanitize the plane -> pipe mapping first because this will
13147          * disable the crtc (and hence change the state) if it is wrong. Note
13148          * that gen4+ has a fixed plane -> pipe mapping.  */
13149         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13150                 struct intel_connector *connector;
13151                 bool plane;
13152
13153                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13154                               crtc->base.base.id);
13155
13156                 /* Pipe has the wrong plane attached and the plane is active.
13157                  * Temporarily change the plane mapping and disable everything
13158                  * ...  */
13159                 plane = crtc->plane;
13160                 crtc->plane = !plane;
13161                 crtc->primary_enabled = true;
13162                 dev_priv->display.crtc_disable(&crtc->base);
13163                 crtc->plane = plane;
13164
13165                 /* ... and break all links. */
13166                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13167                                     base.head) {
13168                         if (connector->encoder->base.crtc != &crtc->base)
13169                                 continue;
13170
13171                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13172                         connector->base.encoder = NULL;
13173                 }
13174                 /* multiple connectors may have the same encoder:
13175                  *  handle them and break crtc link separately */
13176                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13177                                     base.head)
13178                         if (connector->encoder->base.crtc == &crtc->base) {
13179                                 connector->encoder->base.crtc = NULL;
13180                                 connector->encoder->connectors_active = false;
13181                         }
13182
13183                 WARN_ON(crtc->active);
13184                 crtc->base.enabled = false;
13185         }
13186
13187         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13188             crtc->pipe == PIPE_A && !crtc->active) {
13189                 /* BIOS forgot to enable pipe A, this mostly happens after
13190                  * resume. Force-enable the pipe to fix this, the update_dpms
13191                  * call below we restore the pipe to the right state, but leave
13192                  * the required bits on. */
13193                 intel_enable_pipe_a(dev);
13194         }
13195
13196         /* Adjust the state of the output pipe according to whether we
13197          * have active connectors/encoders. */
13198         intel_crtc_update_dpms(&crtc->base);
13199
13200         if (crtc->active != crtc->base.enabled) {
13201                 struct intel_encoder *encoder;
13202
13203                 /* This can happen either due to bugs in the get_hw_state
13204                  * functions or because the pipe is force-enabled due to the
13205                  * pipe A quirk. */
13206                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13207                               crtc->base.base.id,
13208                               crtc->base.enabled ? "enabled" : "disabled",
13209                               crtc->active ? "enabled" : "disabled");
13210
13211                 crtc->base.enabled = crtc->active;
13212
13213                 /* Because we only establish the connector -> encoder ->
13214                  * crtc links if something is active, this means the
13215                  * crtc is now deactivated. Break the links. connector
13216                  * -> encoder links are only establish when things are
13217                  *  actually up, hence no need to break them. */
13218                 WARN_ON(crtc->active);
13219
13220                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13221                         WARN_ON(encoder->connectors_active);
13222                         encoder->base.crtc = NULL;
13223                 }
13224         }
13225
13226         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13227                 /*
13228                  * We start out with underrun reporting disabled to avoid races.
13229                  * For correct bookkeeping mark this on active crtcs.
13230                  *
13231                  * Also on gmch platforms we dont have any hardware bits to
13232                  * disable the underrun reporting. Which means we need to start
13233                  * out with underrun reporting disabled also on inactive pipes,
13234                  * since otherwise we'll complain about the garbage we read when
13235                  * e.g. coming up after runtime pm.
13236                  *
13237                  * No protection against concurrent access is required - at
13238                  * worst a fifo underrun happens which also sets this to false.
13239                  */
13240                 crtc->cpu_fifo_underrun_disabled = true;
13241                 crtc->pch_fifo_underrun_disabled = true;
13242         }
13243 }
13244
13245 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13246 {
13247         struct intel_connector *connector;
13248         struct drm_device *dev = encoder->base.dev;
13249
13250         /* We need to check both for a crtc link (meaning that the
13251          * encoder is active and trying to read from a pipe) and the
13252          * pipe itself being active. */
13253         bool has_active_crtc = encoder->base.crtc &&
13254                 to_intel_crtc(encoder->base.crtc)->active;
13255
13256         if (encoder->connectors_active && !has_active_crtc) {
13257                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13258                               encoder->base.base.id,
13259                               encoder->base.name);
13260
13261                 /* Connector is active, but has no active pipe. This is
13262                  * fallout from our resume register restoring. Disable
13263                  * the encoder manually again. */
13264                 if (encoder->base.crtc) {
13265                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13266                                       encoder->base.base.id,
13267                                       encoder->base.name);
13268                         encoder->disable(encoder);
13269                         if (encoder->post_disable)
13270                                 encoder->post_disable(encoder);
13271                 }
13272                 encoder->base.crtc = NULL;
13273                 encoder->connectors_active = false;
13274
13275                 /* Inconsistent output/port/pipe state happens presumably due to
13276                  * a bug in one of the get_hw_state functions. Or someplace else
13277                  * in our code, like the register restore mess on resume. Clamp
13278                  * things to off as a safer default. */
13279                 list_for_each_entry(connector,
13280                                     &dev->mode_config.connector_list,
13281                                     base.head) {
13282                         if (connector->encoder != encoder)
13283                                 continue;
13284                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13285                         connector->base.encoder = NULL;
13286                 }
13287         }
13288         /* Enabled encoders without active connectors will be fixed in
13289          * the crtc fixup. */
13290 }
13291
13292 void i915_redisable_vga_power_on(struct drm_device *dev)
13293 {
13294         struct drm_i915_private *dev_priv = dev->dev_private;
13295         u32 vga_reg = i915_vgacntrl_reg(dev);
13296
13297         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13298                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13299                 i915_disable_vga(dev);
13300         }
13301 }
13302
13303 void i915_redisable_vga(struct drm_device *dev)
13304 {
13305         struct drm_i915_private *dev_priv = dev->dev_private;
13306
13307         /* This function can be called both from intel_modeset_setup_hw_state or
13308          * at a very early point in our resume sequence, where the power well
13309          * structures are not yet restored. Since this function is at a very
13310          * paranoid "someone might have enabled VGA while we were not looking"
13311          * level, just check if the power well is enabled instead of trying to
13312          * follow the "don't touch the power well if we don't need it" policy
13313          * the rest of the driver uses. */
13314         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13315                 return;
13316
13317         i915_redisable_vga_power_on(dev);
13318 }
13319
13320 static bool primary_get_hw_state(struct intel_crtc *crtc)
13321 {
13322         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13323
13324         if (!crtc->active)
13325                 return false;
13326
13327         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13328 }
13329
13330 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13331 {
13332         struct drm_i915_private *dev_priv = dev->dev_private;
13333         enum pipe pipe;
13334         struct intel_crtc *crtc;
13335         struct intel_encoder *encoder;
13336         struct intel_connector *connector;
13337         int i;
13338
13339         for_each_intel_crtc(dev, crtc) {
13340                 memset(&crtc->config, 0, sizeof(crtc->config));
13341
13342                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13343
13344                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13345                                                                  &crtc->config);
13346
13347                 crtc->base.enabled = crtc->active;
13348                 crtc->primary_enabled = primary_get_hw_state(crtc);
13349
13350                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13351                               crtc->base.base.id,
13352                               crtc->active ? "enabled" : "disabled");
13353         }
13354
13355         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13356                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13357
13358                 pll->on = pll->get_hw_state(dev_priv, pll,
13359                                             &pll->config.hw_state);
13360                 pll->active = 0;
13361                 pll->config.crtc_mask = 0;
13362                 for_each_intel_crtc(dev, crtc) {
13363                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13364                                 pll->active++;
13365                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13366                         }
13367                 }
13368
13369                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13370                               pll->name, pll->config.crtc_mask, pll->on);
13371
13372                 if (pll->config.crtc_mask)
13373                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13374         }
13375
13376         for_each_intel_encoder(dev, encoder) {
13377                 pipe = 0;
13378
13379                 if (encoder->get_hw_state(encoder, &pipe)) {
13380                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13381                         encoder->base.crtc = &crtc->base;
13382                         encoder->get_config(encoder, &crtc->config);
13383                 } else {
13384                         encoder->base.crtc = NULL;
13385                 }
13386
13387                 encoder->connectors_active = false;
13388                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13389                               encoder->base.base.id,
13390                               encoder->base.name,
13391                               encoder->base.crtc ? "enabled" : "disabled",
13392                               pipe_name(pipe));
13393         }
13394
13395         list_for_each_entry(connector, &dev->mode_config.connector_list,
13396                             base.head) {
13397                 if (connector->get_hw_state(connector)) {
13398                         connector->base.dpms = DRM_MODE_DPMS_ON;
13399                         connector->encoder->connectors_active = true;
13400                         connector->base.encoder = &connector->encoder->base;
13401                 } else {
13402                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13403                         connector->base.encoder = NULL;
13404                 }
13405                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13406                               connector->base.base.id,
13407                               connector->base.name,
13408                               connector->base.encoder ? "enabled" : "disabled");
13409         }
13410 }
13411
13412 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13413  * and i915 state tracking structures. */
13414 void intel_modeset_setup_hw_state(struct drm_device *dev,
13415                                   bool force_restore)
13416 {
13417         struct drm_i915_private *dev_priv = dev->dev_private;
13418         enum pipe pipe;
13419         struct intel_crtc *crtc;
13420         struct intel_encoder *encoder;
13421         int i;
13422
13423         intel_modeset_readout_hw_state(dev);
13424
13425         /*
13426          * Now that we have the config, copy it to each CRTC struct
13427          * Note that this could go away if we move to using crtc_config
13428          * checking everywhere.
13429          */
13430         for_each_intel_crtc(dev, crtc) {
13431                 if (crtc->active && i915.fastboot) {
13432                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13433                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13434                                       crtc->base.base.id);
13435                         drm_mode_debug_printmodeline(&crtc->base.mode);
13436                 }
13437         }
13438
13439         /* HW state is read out, now we need to sanitize this mess. */
13440         for_each_intel_encoder(dev, encoder) {
13441                 intel_sanitize_encoder(encoder);
13442         }
13443
13444         for_each_pipe(dev_priv, pipe) {
13445                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13446                 intel_sanitize_crtc(crtc);
13447                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13448         }
13449
13450         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13451                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13452
13453                 if (!pll->on || pll->active)
13454                         continue;
13455
13456                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13457
13458                 pll->disable(dev_priv, pll);
13459                 pll->on = false;
13460         }
13461
13462         if (IS_GEN9(dev))
13463                 skl_wm_get_hw_state(dev);
13464         else if (HAS_PCH_SPLIT(dev))
13465                 ilk_wm_get_hw_state(dev);
13466
13467         if (force_restore) {
13468                 i915_redisable_vga(dev);
13469
13470                 /*
13471                  * We need to use raw interfaces for restoring state to avoid
13472                  * checking (bogus) intermediate states.
13473                  */
13474                 for_each_pipe(dev_priv, pipe) {
13475                         struct drm_crtc *crtc =
13476                                 dev_priv->pipe_to_crtc_mapping[pipe];
13477
13478                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13479                                        crtc->primary->fb);
13480                 }
13481         } else {
13482                 intel_modeset_update_staged_output_state(dev);
13483         }
13484
13485         intel_modeset_check_state(dev);
13486 }
13487
13488 void intel_modeset_gem_init(struct drm_device *dev)
13489 {
13490         struct drm_i915_private *dev_priv = dev->dev_private;
13491         struct drm_crtc *c;
13492         struct drm_i915_gem_object *obj;
13493
13494         mutex_lock(&dev->struct_mutex);
13495         intel_init_gt_powersave(dev);
13496         mutex_unlock(&dev->struct_mutex);
13497
13498         /*
13499          * There may be no VBT; and if the BIOS enabled SSC we can
13500          * just keep using it to avoid unnecessary flicker.  Whereas if the
13501          * BIOS isn't using it, don't assume it will work even if the VBT
13502          * indicates as much.
13503          */
13504         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13505                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13506                                                 DREF_SSC1_ENABLE);
13507
13508         intel_modeset_init_hw(dev);
13509
13510         intel_setup_overlay(dev);
13511
13512         /*
13513          * Make sure any fbs we allocated at startup are properly
13514          * pinned & fenced.  When we do the allocation it's too early
13515          * for this.
13516          */
13517         mutex_lock(&dev->struct_mutex);
13518         for_each_crtc(dev, c) {
13519                 obj = intel_fb_obj(c->primary->fb);
13520                 if (obj == NULL)
13521                         continue;
13522
13523                 if (intel_pin_and_fence_fb_obj(c->primary,
13524                                                c->primary->fb,
13525                                                NULL)) {
13526                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13527                                   to_intel_crtc(c)->pipe);
13528                         drm_framebuffer_unreference(c->primary->fb);
13529                         c->primary->fb = NULL;
13530                 }
13531         }
13532         mutex_unlock(&dev->struct_mutex);
13533
13534         intel_backlight_register(dev);
13535 }
13536
13537 void intel_connector_unregister(struct intel_connector *intel_connector)
13538 {
13539         struct drm_connector *connector = &intel_connector->base;
13540
13541         intel_panel_destroy_backlight(connector);
13542         drm_connector_unregister(connector);
13543 }
13544
13545 void intel_modeset_cleanup(struct drm_device *dev)
13546 {
13547         struct drm_i915_private *dev_priv = dev->dev_private;
13548         struct drm_connector *connector;
13549
13550         intel_disable_gt_powersave(dev);
13551
13552         intel_backlight_unregister(dev);
13553
13554         /*
13555          * Interrupts and polling as the first thing to avoid creating havoc.
13556          * Too much stuff here (turning of connectors, ...) would
13557          * experience fancy races otherwise.
13558          */
13559         intel_irq_uninstall(dev_priv);
13560
13561         /*
13562          * Due to the hpd irq storm handling the hotplug work can re-arm the
13563          * poll handlers. Hence disable polling after hpd handling is shut down.
13564          */
13565         drm_kms_helper_poll_fini(dev);
13566
13567         mutex_lock(&dev->struct_mutex);
13568
13569         intel_unregister_dsm_handler();
13570
13571         intel_fbc_disable(dev);
13572
13573         ironlake_teardown_rc6(dev);
13574
13575         mutex_unlock(&dev->struct_mutex);
13576
13577         /* flush any delayed tasks or pending work */
13578         flush_scheduled_work();
13579
13580         /* destroy the backlight and sysfs files before encoders/connectors */
13581         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13582                 struct intel_connector *intel_connector;
13583
13584                 intel_connector = to_intel_connector(connector);
13585                 intel_connector->unregister(intel_connector);
13586         }
13587
13588         drm_mode_config_cleanup(dev);
13589
13590         intel_cleanup_overlay(dev);
13591
13592         mutex_lock(&dev->struct_mutex);
13593         intel_cleanup_gt_powersave(dev);
13594         mutex_unlock(&dev->struct_mutex);
13595 }
13596
13597 /*
13598  * Return which encoder is currently attached for connector.
13599  */
13600 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13601 {
13602         return &intel_attached_encoder(connector)->base;
13603 }
13604
13605 void intel_connector_attach_encoder(struct intel_connector *connector,
13606                                     struct intel_encoder *encoder)
13607 {
13608         connector->encoder = encoder;
13609         drm_mode_connector_attach_encoder(&connector->base,
13610                                           &encoder->base);
13611 }
13612
13613 /*
13614  * set vga decode state - true == enable VGA decode
13615  */
13616 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13617 {
13618         struct drm_i915_private *dev_priv = dev->dev_private;
13619         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13620         u16 gmch_ctrl;
13621
13622         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13623                 DRM_ERROR("failed to read control word\n");
13624                 return -EIO;
13625         }
13626
13627         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13628                 return 0;
13629
13630         if (state)
13631                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13632         else
13633                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13634
13635         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13636                 DRM_ERROR("failed to write control word\n");
13637                 return -EIO;
13638         }
13639
13640         return 0;
13641 }
13642
13643 struct intel_display_error_state {
13644
13645         u32 power_well_driver;
13646
13647         int num_transcoders;
13648
13649         struct intel_cursor_error_state {
13650                 u32 control;
13651                 u32 position;
13652                 u32 base;
13653                 u32 size;
13654         } cursor[I915_MAX_PIPES];
13655
13656         struct intel_pipe_error_state {
13657                 bool power_domain_on;
13658                 u32 source;
13659                 u32 stat;
13660         } pipe[I915_MAX_PIPES];
13661
13662         struct intel_plane_error_state {
13663                 u32 control;
13664                 u32 stride;
13665                 u32 size;
13666                 u32 pos;
13667                 u32 addr;
13668                 u32 surface;
13669                 u32 tile_offset;
13670         } plane[I915_MAX_PIPES];
13671
13672         struct intel_transcoder_error_state {
13673                 bool power_domain_on;
13674                 enum transcoder cpu_transcoder;
13675
13676                 u32 conf;
13677
13678                 u32 htotal;
13679                 u32 hblank;
13680                 u32 hsync;
13681                 u32 vtotal;
13682                 u32 vblank;
13683                 u32 vsync;
13684         } transcoder[4];
13685 };
13686
13687 struct intel_display_error_state *
13688 intel_display_capture_error_state(struct drm_device *dev)
13689 {
13690         struct drm_i915_private *dev_priv = dev->dev_private;
13691         struct intel_display_error_state *error;
13692         int transcoders[] = {
13693                 TRANSCODER_A,
13694                 TRANSCODER_B,
13695                 TRANSCODER_C,
13696                 TRANSCODER_EDP,
13697         };
13698         int i;
13699
13700         if (INTEL_INFO(dev)->num_pipes == 0)
13701                 return NULL;
13702
13703         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13704         if (error == NULL)
13705                 return NULL;
13706
13707         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13708                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13709
13710         for_each_pipe(dev_priv, i) {
13711                 error->pipe[i].power_domain_on =
13712                         __intel_display_power_is_enabled(dev_priv,
13713                                                          POWER_DOMAIN_PIPE(i));
13714                 if (!error->pipe[i].power_domain_on)
13715                         continue;
13716
13717                 error->cursor[i].control = I915_READ(CURCNTR(i));
13718                 error->cursor[i].position = I915_READ(CURPOS(i));
13719                 error->cursor[i].base = I915_READ(CURBASE(i));
13720
13721                 error->plane[i].control = I915_READ(DSPCNTR(i));
13722                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13723                 if (INTEL_INFO(dev)->gen <= 3) {
13724                         error->plane[i].size = I915_READ(DSPSIZE(i));
13725                         error->plane[i].pos = I915_READ(DSPPOS(i));
13726                 }
13727                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13728                         error->plane[i].addr = I915_READ(DSPADDR(i));
13729                 if (INTEL_INFO(dev)->gen >= 4) {
13730                         error->plane[i].surface = I915_READ(DSPSURF(i));
13731                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13732                 }
13733
13734                 error->pipe[i].source = I915_READ(PIPESRC(i));
13735
13736                 if (HAS_GMCH_DISPLAY(dev))
13737                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13738         }
13739
13740         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13741         if (HAS_DDI(dev_priv->dev))
13742                 error->num_transcoders++; /* Account for eDP. */
13743
13744         for (i = 0; i < error->num_transcoders; i++) {
13745                 enum transcoder cpu_transcoder = transcoders[i];
13746
13747                 error->transcoder[i].power_domain_on =
13748                         __intel_display_power_is_enabled(dev_priv,
13749                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13750                 if (!error->transcoder[i].power_domain_on)
13751                         continue;
13752
13753                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13754
13755                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13756                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13757                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13758                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13759                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13760                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13761                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13762         }
13763
13764         return error;
13765 }
13766
13767 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13768
13769 void
13770 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13771                                 struct drm_device *dev,
13772                                 struct intel_display_error_state *error)
13773 {
13774         struct drm_i915_private *dev_priv = dev->dev_private;
13775         int i;
13776
13777         if (!error)
13778                 return;
13779
13780         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13781         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13782                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13783                            error->power_well_driver);
13784         for_each_pipe(dev_priv, i) {
13785                 err_printf(m, "Pipe [%d]:\n", i);
13786                 err_printf(m, "  Power: %s\n",
13787                            error->pipe[i].power_domain_on ? "on" : "off");
13788                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13789                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13790
13791                 err_printf(m, "Plane [%d]:\n", i);
13792                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13793                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13794                 if (INTEL_INFO(dev)->gen <= 3) {
13795                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13796                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13797                 }
13798                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13799                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13800                 if (INTEL_INFO(dev)->gen >= 4) {
13801                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13802                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13803                 }
13804
13805                 err_printf(m, "Cursor [%d]:\n", i);
13806                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13807                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13808                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13809         }
13810
13811         for (i = 0; i < error->num_transcoders; i++) {
13812                 err_printf(m, "CPU transcoder: %c\n",
13813                            transcoder_name(error->transcoder[i].cpu_transcoder));
13814                 err_printf(m, "  Power: %s\n",
13815                            error->transcoder[i].power_domain_on ? "on" : "off");
13816                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13817                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13818                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13819                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13820                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13821                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13822                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13823         }
13824 }
13825
13826 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13827 {
13828         struct intel_crtc *crtc;
13829
13830         for_each_intel_crtc(dev, crtc) {
13831                 struct intel_unpin_work *work;
13832
13833                 spin_lock_irq(&dev->event_lock);
13834
13835                 work = crtc->unpin_work;
13836
13837                 if (work && work->event &&
13838                     work->event->base.file_priv == file) {
13839                         kfree(work->event);
13840                         work->event = NULL;
13841                 }
13842
13843                 spin_unlock_irq(&dev->event_lock);
13844         }
13845 }