]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge remote-tracking branch 'drm-intel/for-linux-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 908000, .max = 1512000 },
94         .n = { .min = 2, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 908000, .max = 1512000 },
107         .n = { .min = 2, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 908000, .max = 1512000 },
120         .n = { .min = 2, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         if (WARN_ON(clock->n == 0 || clock->p == 0))
333                 return;
334         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
335         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
336 }
337
338 /**
339  * Returns whether any output on the specified pipe is of the specified type
340  */
341 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
342 {
343         struct drm_device *dev = crtc->dev;
344         struct intel_encoder *encoder;
345
346         for_each_encoder_on_crtc(dev, crtc, encoder)
347                 if (encoder->type == type)
348                         return true;
349
350         return false;
351 }
352
353 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
354                                                 int refclk)
355 {
356         struct drm_device *dev = crtc->dev;
357         const intel_limit_t *limit;
358
359         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
360                 if (intel_is_dual_link_lvds(dev)) {
361                         if (refclk == 100000)
362                                 limit = &intel_limits_ironlake_dual_lvds_100m;
363                         else
364                                 limit = &intel_limits_ironlake_dual_lvds;
365                 } else {
366                         if (refclk == 100000)
367                                 limit = &intel_limits_ironlake_single_lvds_100m;
368                         else
369                                 limit = &intel_limits_ironlake_single_lvds;
370                 }
371         } else
372                 limit = &intel_limits_ironlake_dac;
373
374         return limit;
375 }
376
377 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
378 {
379         struct drm_device *dev = crtc->dev;
380         const intel_limit_t *limit;
381
382         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
383                 if (intel_is_dual_link_lvds(dev))
384                         limit = &intel_limits_g4x_dual_channel_lvds;
385                 else
386                         limit = &intel_limits_g4x_single_channel_lvds;
387         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
388                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
389                 limit = &intel_limits_g4x_hdmi;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
391                 limit = &intel_limits_g4x_sdvo;
392         } else /* The option is for other outputs */
393                 limit = &intel_limits_i9xx_sdvo;
394
395         return limit;
396 }
397
398 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
399 {
400         struct drm_device *dev = crtc->dev;
401         const intel_limit_t *limit;
402
403         if (HAS_PCH_SPLIT(dev))
404                 limit = intel_ironlake_limit(crtc, refclk);
405         else if (IS_G4X(dev)) {
406                 limit = intel_g4x_limit(crtc);
407         } else if (IS_PINEVIEW(dev)) {
408                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
409                         limit = &intel_limits_pineview_lvds;
410                 else
411                         limit = &intel_limits_pineview_sdvo;
412         } else if (IS_VALLEYVIEW(dev)) {
413                 limit = &intel_limits_vlv;
414         } else if (!IS_GEN2(dev)) {
415                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
416                         limit = &intel_limits_i9xx_lvds;
417                 else
418                         limit = &intel_limits_i9xx_sdvo;
419         } else {
420                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
421                         limit = &intel_limits_i8xx_lvds;
422                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
423                         limit = &intel_limits_i8xx_dvo;
424                 else
425                         limit = &intel_limits_i8xx_dac;
426         }
427         return limit;
428 }
429
430 /* m1 is reserved as 0 in Pineview, n is a ring counter */
431 static void pineview_clock(int refclk, intel_clock_t *clock)
432 {
433         clock->m = clock->m2 + 2;
434         clock->p = clock->p1 * clock->p2;
435         if (WARN_ON(clock->n == 0 || clock->p == 0))
436                 return;
437         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
438         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
439 }
440
441 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
442 {
443         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
444 }
445
446 static void i9xx_clock(int refclk, intel_clock_t *clock)
447 {
448         clock->m = i9xx_dpll_compute_m(clock);
449         clock->p = clock->p1 * clock->p2;
450         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
451                 return;
452         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
453         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
454 }
455
456 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458  * Returns whether the given set of divisors are valid for a given refclk with
459  * the given connectors.
460  */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463                                const intel_limit_t *limit,
464                                const intel_clock_t *clock)
465 {
466         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
467                 INTELPllInvalid("n out of range\n");
468         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
469                 INTELPllInvalid("p1 out of range\n");
470         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
471                 INTELPllInvalid("m2 out of range\n");
472         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
473                 INTELPllInvalid("m1 out of range\n");
474
475         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
476                 if (clock->m1 <= clock->m2)
477                         INTELPllInvalid("m1 <= m2\n");
478
479         if (!IS_VALLEYVIEW(dev)) {
480                 if (clock->p < limit->p.min || limit->p.max < clock->p)
481                         INTELPllInvalid("p out of range\n");
482                 if (clock->m < limit->m.min || limit->m.max < clock->m)
483                         INTELPllInvalid("m out of range\n");
484         }
485
486         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
487                 INTELPllInvalid("vco out of range\n");
488         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
489          * connector, etc., rather than just a single range.
490          */
491         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
492                 INTELPllInvalid("dot out of range\n");
493
494         return true;
495 }
496
497 static bool
498 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
499                     int target, int refclk, intel_clock_t *match_clock,
500                     intel_clock_t *best_clock)
501 {
502         struct drm_device *dev = crtc->dev;
503         intel_clock_t clock;
504         int err = target;
505
506         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
507                 /*
508                  * For LVDS just rely on its current settings for dual-channel.
509                  * We haven't figured out how to reliably set up different
510                  * single/dual channel state, if we even can.
511                  */
512                 if (intel_is_dual_link_lvds(dev))
513                         clock.p2 = limit->p2.p2_fast;
514                 else
515                         clock.p2 = limit->p2.p2_slow;
516         } else {
517                 if (target < limit->p2.dot_limit)
518                         clock.p2 = limit->p2.p2_slow;
519                 else
520                         clock.p2 = limit->p2.p2_fast;
521         }
522
523         memset(best_clock, 0, sizeof(*best_clock));
524
525         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
526              clock.m1++) {
527                 for (clock.m2 = limit->m2.min;
528                      clock.m2 <= limit->m2.max; clock.m2++) {
529                         if (clock.m2 >= clock.m1)
530                                 break;
531                         for (clock.n = limit->n.min;
532                              clock.n <= limit->n.max; clock.n++) {
533                                 for (clock.p1 = limit->p1.min;
534                                         clock.p1 <= limit->p1.max; clock.p1++) {
535                                         int this_err;
536
537                                         i9xx_clock(refclk, &clock);
538                                         if (!intel_PLL_is_valid(dev, limit,
539                                                                 &clock))
540                                                 continue;
541                                         if (match_clock &&
542                                             clock.p != match_clock->p)
543                                                 continue;
544
545                                         this_err = abs(clock.dot - target);
546                                         if (this_err < err) {
547                                                 *best_clock = clock;
548                                                 err = this_err;
549                                         }
550                                 }
551                         }
552                 }
553         }
554
555         return (err != target);
556 }
557
558 static bool
559 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
560                    int target, int refclk, intel_clock_t *match_clock,
561                    intel_clock_t *best_clock)
562 {
563         struct drm_device *dev = crtc->dev;
564         intel_clock_t clock;
565         int err = target;
566
567         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
568                 /*
569                  * For LVDS just rely on its current settings for dual-channel.
570                  * We haven't figured out how to reliably set up different
571                  * single/dual channel state, if we even can.
572                  */
573                 if (intel_is_dual_link_lvds(dev))
574                         clock.p2 = limit->p2.p2_fast;
575                 else
576                         clock.p2 = limit->p2.p2_slow;
577         } else {
578                 if (target < limit->p2.dot_limit)
579                         clock.p2 = limit->p2.p2_slow;
580                 else
581                         clock.p2 = limit->p2.p2_fast;
582         }
583
584         memset(best_clock, 0, sizeof(*best_clock));
585
586         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
587              clock.m1++) {
588                 for (clock.m2 = limit->m2.min;
589                      clock.m2 <= limit->m2.max; clock.m2++) {
590                         for (clock.n = limit->n.min;
591                              clock.n <= limit->n.max; clock.n++) {
592                                 for (clock.p1 = limit->p1.min;
593                                         clock.p1 <= limit->p1.max; clock.p1++) {
594                                         int this_err;
595
596                                         pineview_clock(refclk, &clock);
597                                         if (!intel_PLL_is_valid(dev, limit,
598                                                                 &clock))
599                                                 continue;
600                                         if (match_clock &&
601                                             clock.p != match_clock->p)
602                                                 continue;
603
604                                         this_err = abs(clock.dot - target);
605                                         if (this_err < err) {
606                                                 *best_clock = clock;
607                                                 err = this_err;
608                                         }
609                                 }
610                         }
611                 }
612         }
613
614         return (err != target);
615 }
616
617 static bool
618 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
619                    int target, int refclk, intel_clock_t *match_clock,
620                    intel_clock_t *best_clock)
621 {
622         struct drm_device *dev = crtc->dev;
623         intel_clock_t clock;
624         int max_n;
625         bool found;
626         /* approximately equals target * 0.00585 */
627         int err_most = (target >> 8) + (target >> 9);
628         found = false;
629
630         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
631                 if (intel_is_dual_link_lvds(dev))
632                         clock.p2 = limit->p2.p2_fast;
633                 else
634                         clock.p2 = limit->p2.p2_slow;
635         } else {
636                 if (target < limit->p2.dot_limit)
637                         clock.p2 = limit->p2.p2_slow;
638                 else
639                         clock.p2 = limit->p2.p2_fast;
640         }
641
642         memset(best_clock, 0, sizeof(*best_clock));
643         max_n = limit->n.max;
644         /* based on hardware requirement, prefer smaller n to precision */
645         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
646                 /* based on hardware requirement, prefere larger m1,m2 */
647                 for (clock.m1 = limit->m1.max;
648                      clock.m1 >= limit->m1.min; clock.m1--) {
649                         for (clock.m2 = limit->m2.max;
650                              clock.m2 >= limit->m2.min; clock.m2--) {
651                                 for (clock.p1 = limit->p1.max;
652                                      clock.p1 >= limit->p1.min; clock.p1--) {
653                                         int this_err;
654
655                                         i9xx_clock(refclk, &clock);
656                                         if (!intel_PLL_is_valid(dev, limit,
657                                                                 &clock))
658                                                 continue;
659
660                                         this_err = abs(clock.dot - target);
661                                         if (this_err < err_most) {
662                                                 *best_clock = clock;
663                                                 err_most = this_err;
664                                                 max_n = clock.n;
665                                                 found = true;
666                                         }
667                                 }
668                         }
669                 }
670         }
671         return found;
672 }
673
674 static bool
675 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
676                    int target, int refclk, intel_clock_t *match_clock,
677                    intel_clock_t *best_clock)
678 {
679         struct drm_device *dev = crtc->dev;
680         intel_clock_t clock;
681         unsigned int bestppm = 1000000;
682         /* min update 19.2 MHz */
683         int max_n = min(limit->n.max, refclk / 19200);
684         bool found = false;
685
686         target *= 5; /* fast clock */
687
688         memset(best_clock, 0, sizeof(*best_clock));
689
690         /* based on hardware requirement, prefer smaller n to precision */
691         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
692                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
693                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
694                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
695                                 clock.p = clock.p1 * clock.p2;
696                                 /* based on hardware requirement, prefer bigger m1,m2 values */
697                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
698                                         unsigned int ppm, diff;
699
700                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
701                                                                      refclk * clock.m1);
702
703                                         vlv_clock(refclk, &clock);
704
705                                         if (!intel_PLL_is_valid(dev, limit,
706                                                                 &clock))
707                                                 continue;
708
709                                         diff = abs(clock.dot - target);
710                                         ppm = div_u64(1000000ULL * diff, target);
711
712                                         if (ppm < 100 && clock.p > best_clock->p) {
713                                                 bestppm = 0;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717
718                                         if (bestppm >= 10 && ppm < bestppm - 10) {
719                                                 bestppm = ppm;
720                                                 *best_clock = clock;
721                                                 found = true;
722                                         }
723                                 }
724                         }
725                 }
726         }
727
728         return found;
729 }
730
731 bool intel_crtc_active(struct drm_crtc *crtc)
732 {
733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
734
735         /* Be paranoid as we can arrive here with only partial
736          * state retrieved from the hardware during setup.
737          *
738          * We can ditch the adjusted_mode.crtc_clock check as soon
739          * as Haswell has gained clock readout/fastboot support.
740          *
741          * We can ditch the crtc->fb check as soon as we can
742          * properly reconstruct framebuffers.
743          */
744         return intel_crtc->active && crtc->fb &&
745                 intel_crtc->config.adjusted_mode.crtc_clock;
746 }
747
748 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
749                                              enum pipe pipe)
750 {
751         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753
754         return intel_crtc->config.cpu_transcoder;
755 }
756
757 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
758 {
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
761
762         frame = I915_READ(frame_reg);
763
764         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
765                 DRM_DEBUG_KMS("vblank wait timed out\n");
766 }
767
768 /**
769  * intel_wait_for_vblank - wait for vblank on a given pipe
770  * @dev: drm device
771  * @pipe: pipe to wait for
772  *
773  * Wait for vblank to occur on a given pipe.  Needed for various bits of
774  * mode setting code.
775  */
776 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
777 {
778         struct drm_i915_private *dev_priv = dev->dev_private;
779         int pipestat_reg = PIPESTAT(pipe);
780
781         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
782                 g4x_wait_for_vblank(dev, pipe);
783                 return;
784         }
785
786         /* Clear existing vblank status. Note this will clear any other
787          * sticky status fields as well.
788          *
789          * This races with i915_driver_irq_handler() with the result
790          * that either function could miss a vblank event.  Here it is not
791          * fatal, as we will either wait upon the next vblank interrupt or
792          * timeout.  Generally speaking intel_wait_for_vblank() is only
793          * called during modeset at which time the GPU should be idle and
794          * should *not* be performing page flips and thus not waiting on
795          * vblanks...
796          * Currently, the result of us stealing a vblank from the irq
797          * handler is that a single frame will be skipped during swapbuffers.
798          */
799         I915_WRITE(pipestat_reg,
800                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
801
802         /* Wait for vblank interrupt bit to set */
803         if (wait_for(I915_READ(pipestat_reg) &
804                      PIPE_VBLANK_INTERRUPT_STATUS,
805                      50))
806                 DRM_DEBUG_KMS("vblank wait timed out\n");
807 }
808
809 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
810 {
811         struct drm_i915_private *dev_priv = dev->dev_private;
812         u32 reg = PIPEDSL(pipe);
813         u32 line1, line2;
814         u32 line_mask;
815
816         if (IS_GEN2(dev))
817                 line_mask = DSL_LINEMASK_GEN2;
818         else
819                 line_mask = DSL_LINEMASK_GEN3;
820
821         line1 = I915_READ(reg) & line_mask;
822         mdelay(5);
823         line2 = I915_READ(reg) & line_mask;
824
825         return line1 == line2;
826 }
827
828 /*
829  * intel_wait_for_pipe_off - wait for pipe to turn off
830  * @dev: drm device
831  * @pipe: pipe to wait for
832  *
833  * After disabling a pipe, we can't wait for vblank in the usual way,
834  * spinning on the vblank interrupt status bit, since we won't actually
835  * see an interrupt when the pipe is disabled.
836  *
837  * On Gen4 and above:
838  *   wait for the pipe register state bit to turn off
839  *
840  * Otherwise:
841  *   wait for the display line value to settle (it usually
842  *   ends up stopping at the start of the next frame).
843  *
844  */
845 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
846 {
847         struct drm_i915_private *dev_priv = dev->dev_private;
848         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
849                                                                       pipe);
850
851         if (INTEL_INFO(dev)->gen >= 4) {
852                 int reg = PIPECONF(cpu_transcoder);
853
854                 /* Wait for the Pipe State to go off */
855                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
856                              100))
857                         WARN(1, "pipe_off wait timed out\n");
858         } else {
859                 /* Wait for the display line to settle */
860                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
861                         WARN(1, "pipe_off wait timed out\n");
862         }
863 }
864
865 /*
866  * ibx_digital_port_connected - is the specified port connected?
867  * @dev_priv: i915 private structure
868  * @port: the port to test
869  *
870  * Returns true if @port is connected, false otherwise.
871  */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873                                 struct intel_digital_port *port)
874 {
875         u32 bit;
876
877         if (HAS_PCH_IBX(dev_priv->dev)) {
878                 switch(port->port) {
879                 case PORT_B:
880                         bit = SDE_PORTB_HOTPLUG;
881                         break;
882                 case PORT_C:
883                         bit = SDE_PORTC_HOTPLUG;
884                         break;
885                 case PORT_D:
886                         bit = SDE_PORTD_HOTPLUG;
887                         break;
888                 default:
889                         return true;
890                 }
891         } else {
892                 switch(port->port) {
893                 case PORT_B:
894                         bit = SDE_PORTB_HOTPLUG_CPT;
895                         break;
896                 case PORT_C:
897                         bit = SDE_PORTC_HOTPLUG_CPT;
898                         break;
899                 case PORT_D:
900                         bit = SDE_PORTD_HOTPLUG_CPT;
901                         break;
902                 default:
903                         return true;
904                 }
905         }
906
907         return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912         return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917                 enum pipe pipe, bool state)
918 {
919         int reg;
920         u32 val;
921         bool cur_state;
922
923         reg = DPLL(pipe);
924         val = I915_READ(reg);
925         cur_state = !!(val & DPLL_VCO_ENABLE);
926         WARN(cur_state != state,
927              "PLL state assertion failure (expected %s, current %s)\n",
928              state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934         u32 val;
935         bool cur_state;
936
937         mutex_lock(&dev_priv->dpio_lock);
938         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939         mutex_unlock(&dev_priv->dpio_lock);
940
941         cur_state = val & DSI_PLL_VCO_EN;
942         WARN(cur_state != state,
943              "DSI PLL state assertion failure (expected %s, current %s)\n",
944              state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954         if (crtc->config.shared_dpll < 0)
955                 return NULL;
956
957         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962                         struct intel_shared_dpll *pll,
963                         bool state)
964 {
965         bool cur_state;
966         struct intel_dpll_hw_state hw_state;
967
968         if (HAS_PCH_LPT(dev_priv->dev)) {
969                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970                 return;
971         }
972
973         if (WARN (!pll,
974                   "asserting DPLL %s with no DPLL\n", state_string(state)))
975                 return;
976
977         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978         WARN(cur_state != state,
979              "%s assertion failure (expected %s, current %s)\n",
980              pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984                           enum pipe pipe, bool state)
985 {
986         int reg;
987         u32 val;
988         bool cur_state;
989         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990                                                                       pipe);
991
992         if (HAS_DDI(dev_priv->dev)) {
993                 /* DDI does not have a specific FDI_TX register */
994                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995                 val = I915_READ(reg);
996                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997         } else {
998                 reg = FDI_TX_CTL(pipe);
999                 val = I915_READ(reg);
1000                 cur_state = !!(val & FDI_TX_ENABLE);
1001         }
1002         WARN(cur_state != state,
1003              "FDI TX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010                           enum pipe pipe, bool state)
1011 {
1012         int reg;
1013         u32 val;
1014         bool cur_state;
1015
1016         reg = FDI_RX_CTL(pipe);
1017         val = I915_READ(reg);
1018         cur_state = !!(val & FDI_RX_ENABLE);
1019         WARN(cur_state != state,
1020              "FDI RX state assertion failure (expected %s, current %s)\n",
1021              state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027                                       enum pipe pipe)
1028 {
1029         int reg;
1030         u32 val;
1031
1032         /* ILK FDI PLL is always enabled */
1033         if (dev_priv->info->gen == 5)
1034                 return;
1035
1036         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037         if (HAS_DDI(dev_priv->dev))
1038                 return;
1039
1040         reg = FDI_TX_CTL(pipe);
1041         val = I915_READ(reg);
1042         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046                        enum pipe pipe, bool state)
1047 {
1048         int reg;
1049         u32 val;
1050         bool cur_state;
1051
1052         reg = FDI_RX_CTL(pipe);
1053         val = I915_READ(reg);
1054         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055         WARN(cur_state != state,
1056              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057              state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061                                   enum pipe pipe)
1062 {
1063         int pp_reg, lvds_reg;
1064         u32 val;
1065         enum pipe panel_pipe = PIPE_A;
1066         bool locked = true;
1067
1068         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069                 pp_reg = PCH_PP_CONTROL;
1070                 lvds_reg = PCH_LVDS;
1071         } else {
1072                 pp_reg = PP_CONTROL;
1073                 lvds_reg = LVDS;
1074         }
1075
1076         val = I915_READ(pp_reg);
1077         if (!(val & PANEL_POWER_ON) ||
1078             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079                 locked = false;
1080
1081         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082                 panel_pipe = PIPE_B;
1083
1084         WARN(panel_pipe == pipe && locked,
1085              "panel assertion failure, pipe %c regs locked\n",
1086              pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090                           enum pipe pipe, bool state)
1091 {
1092         struct drm_device *dev = dev_priv->dev;
1093         bool cur_state;
1094
1095         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097         else if (IS_845G(dev) || IS_I865G(dev))
1098                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099         else
1100                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102         WARN(cur_state != state,
1103              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104              pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110                  enum pipe pipe, bool state)
1111 {
1112         int reg;
1113         u32 val;
1114         bool cur_state;
1115         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116                                                                       pipe);
1117
1118         /* if we need the pipe A quirk it must be always on */
1119         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120                 state = true;
1121
1122         if (!intel_display_power_enabled(dev_priv->dev,
1123                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124                 cur_state = false;
1125         } else {
1126                 reg = PIPECONF(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & PIPECONF_ENABLE);
1129         }
1130
1131         WARN(cur_state != state,
1132              "pipe %c assertion failure (expected %s, current %s)\n",
1133              pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137                          enum plane plane, bool state)
1138 {
1139         int reg;
1140         u32 val;
1141         bool cur_state;
1142
1143         reg = DSPCNTR(plane);
1144         val = I915_READ(reg);
1145         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146         WARN(cur_state != state,
1147              "plane %c assertion failure (expected %s, current %s)\n",
1148              plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155                                    enum pipe pipe)
1156 {
1157         struct drm_device *dev = dev_priv->dev;
1158         int reg, i;
1159         u32 val;
1160         int cur_pipe;
1161
1162         /* Primary planes are fixed to pipes on gen4+ */
1163         if (INTEL_INFO(dev)->gen >= 4) {
1164                 reg = DSPCNTR(pipe);
1165                 val = I915_READ(reg);
1166                 WARN((val & DISPLAY_PLANE_ENABLE),
1167                      "plane %c assertion failure, should be disabled but not\n",
1168                      plane_name(pipe));
1169                 return;
1170         }
1171
1172         /* Need to check both planes against the pipe */
1173         for_each_pipe(i) {
1174                 reg = DSPCNTR(i);
1175                 val = I915_READ(reg);
1176                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177                         DISPPLANE_SEL_PIPE_SHIFT;
1178                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180                      plane_name(i), pipe_name(pipe));
1181         }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185                                     enum pipe pipe)
1186 {
1187         struct drm_device *dev = dev_priv->dev;
1188         int reg, i;
1189         u32 val;
1190
1191         if (IS_VALLEYVIEW(dev)) {
1192                 for (i = 0; i < dev_priv->num_plane; i++) {
1193                         reg = SPCNTR(pipe, i);
1194                         val = I915_READ(reg);
1195                         WARN((val & SP_ENABLE),
1196                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197                              sprite_name(pipe, i), pipe_name(pipe));
1198                 }
1199         } else if (INTEL_INFO(dev)->gen >= 7) {
1200                 reg = SPRCTL(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & SPRITE_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         } else if (INTEL_INFO(dev)->gen >= 5) {
1206                 reg = DVSCNTR(pipe);
1207                 val = I915_READ(reg);
1208                 WARN((val & DVS_ENABLE),
1209                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210                      plane_name(pipe), pipe_name(pipe));
1211         }
1212 }
1213
1214 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216         u32 val;
1217         bool enabled;
1218
1219         if (HAS_PCH_LPT(dev_priv->dev)) {
1220                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1221                 return;
1222         }
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void intel_init_dpio(struct drm_device *dev)
1364 {
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366
1367         if (!IS_VALLEYVIEW(dev))
1368                 return;
1369
1370         /* Enable the CRI clock source so we can get at the display */
1371         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1372                    DPLL_INTEGRATED_CRI_CLK_VLV);
1373
1374         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1375         /*
1376          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1377          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1378          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1379          *   b. The other bits such as sfr settings / modesel may all be set
1380          *      to 0.
1381          *
1382          * This should only be done on init and resume from S3 with both
1383          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1384          */
1385         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1386 }
1387
1388 static void vlv_enable_pll(struct intel_crtc *crtc)
1389 {
1390         struct drm_device *dev = crtc->base.dev;
1391         struct drm_i915_private *dev_priv = dev->dev_private;
1392         int reg = DPLL(crtc->pipe);
1393         u32 dpll = crtc->config.dpll_hw_state.dpll;
1394
1395         assert_pipe_disabled(dev_priv, crtc->pipe);
1396
1397         /* No really, not for ILK+ */
1398         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1399
1400         /* PLL is protected by panel, make sure we can write it */
1401         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1402                 assert_panel_unlocked(dev_priv, crtc->pipe);
1403
1404         I915_WRITE(reg, dpll);
1405         POSTING_READ(reg);
1406         udelay(150);
1407
1408         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1409                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1410
1411         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1412         POSTING_READ(DPLL_MD(crtc->pipe));
1413
1414         /* We do this three times for luck */
1415         I915_WRITE(reg, dpll);
1416         POSTING_READ(reg);
1417         udelay(150); /* wait for warmup */
1418         I915_WRITE(reg, dpll);
1419         POSTING_READ(reg);
1420         udelay(150); /* wait for warmup */
1421         I915_WRITE(reg, dpll);
1422         POSTING_READ(reg);
1423         udelay(150); /* wait for warmup */
1424 }
1425
1426 static void i9xx_enable_pll(struct intel_crtc *crtc)
1427 {
1428         struct drm_device *dev = crtc->base.dev;
1429         struct drm_i915_private *dev_priv = dev->dev_private;
1430         int reg = DPLL(crtc->pipe);
1431         u32 dpll = crtc->config.dpll_hw_state.dpll;
1432
1433         assert_pipe_disabled(dev_priv, crtc->pipe);
1434
1435         /* No really, not for ILK+ */
1436         BUG_ON(dev_priv->info->gen >= 5);
1437
1438         /* PLL is protected by panel, make sure we can write it */
1439         if (IS_MOBILE(dev) && !IS_I830(dev))
1440                 assert_panel_unlocked(dev_priv, crtc->pipe);
1441
1442         I915_WRITE(reg, dpll);
1443
1444         /* Wait for the clocks to stabilize. */
1445         POSTING_READ(reg);
1446         udelay(150);
1447
1448         if (INTEL_INFO(dev)->gen >= 4) {
1449                 I915_WRITE(DPLL_MD(crtc->pipe),
1450                            crtc->config.dpll_hw_state.dpll_md);
1451         } else {
1452                 /* The pixel multiplier can only be updated once the
1453                  * DPLL is enabled and the clocks are stable.
1454                  *
1455                  * So write it again.
1456                  */
1457                 I915_WRITE(reg, dpll);
1458         }
1459
1460         /* We do this three times for luck */
1461         I915_WRITE(reg, dpll);
1462         POSTING_READ(reg);
1463         udelay(150); /* wait for warmup */
1464         I915_WRITE(reg, dpll);
1465         POSTING_READ(reg);
1466         udelay(150); /* wait for warmup */
1467         I915_WRITE(reg, dpll);
1468         POSTING_READ(reg);
1469         udelay(150); /* wait for warmup */
1470 }
1471
1472 /**
1473  * i9xx_disable_pll - disable a PLL
1474  * @dev_priv: i915 private structure
1475  * @pipe: pipe PLL to disable
1476  *
1477  * Disable the PLL for @pipe, making sure the pipe is off first.
1478  *
1479  * Note!  This is for pre-ILK only.
1480  */
1481 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1482 {
1483         /* Don't disable pipe A or pipe A PLLs if needed */
1484         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1485                 return;
1486
1487         /* Make sure the pipe isn't still relying on us */
1488         assert_pipe_disabled(dev_priv, pipe);
1489
1490         I915_WRITE(DPLL(pipe), 0);
1491         POSTING_READ(DPLL(pipe));
1492 }
1493
1494 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1495 {
1496         u32 val = 0;
1497
1498         /* Make sure the pipe isn't still relying on us */
1499         assert_pipe_disabled(dev_priv, pipe);
1500
1501         /* Leave integrated clock source enabled */
1502         if (pipe == PIPE_B)
1503                 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1504         I915_WRITE(DPLL(pipe), val);
1505         POSTING_READ(DPLL(pipe));
1506 }
1507
1508 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1509                 struct intel_digital_port *dport)
1510 {
1511         u32 port_mask;
1512
1513         switch (dport->port) {
1514         case PORT_B:
1515                 port_mask = DPLL_PORTB_READY_MASK;
1516                 break;
1517         case PORT_C:
1518                 port_mask = DPLL_PORTC_READY_MASK;
1519                 break;
1520         default:
1521                 BUG();
1522         }
1523
1524         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1525                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1526                      port_name(dport->port), I915_READ(DPLL(0)));
1527 }
1528
1529 /**
1530  * ironlake_enable_shared_dpll - enable PCH PLL
1531  * @dev_priv: i915 private structure
1532  * @pipe: pipe PLL to enable
1533  *
1534  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1535  * drives the transcoder clock.
1536  */
1537 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1538 {
1539         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1540         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1541
1542         /* PCH PLLs only available on ILK, SNB and IVB */
1543         BUG_ON(dev_priv->info->gen < 5);
1544         if (WARN_ON(pll == NULL))
1545                 return;
1546
1547         if (WARN_ON(pll->refcount == 0))
1548                 return;
1549
1550         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1551                       pll->name, pll->active, pll->on,
1552                       crtc->base.base.id);
1553
1554         if (pll->active++) {
1555                 WARN_ON(!pll->on);
1556                 assert_shared_dpll_enabled(dev_priv, pll);
1557                 return;
1558         }
1559         WARN_ON(pll->on);
1560
1561         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1562         pll->enable(dev_priv, pll);
1563         pll->on = true;
1564 }
1565
1566 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1567 {
1568         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1569         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1570
1571         /* PCH only available on ILK+ */
1572         BUG_ON(dev_priv->info->gen < 5);
1573         if (WARN_ON(pll == NULL))
1574                return;
1575
1576         if (WARN_ON(pll->refcount == 0))
1577                 return;
1578
1579         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1580                       pll->name, pll->active, pll->on,
1581                       crtc->base.base.id);
1582
1583         if (WARN_ON(pll->active == 0)) {
1584                 assert_shared_dpll_disabled(dev_priv, pll);
1585                 return;
1586         }
1587
1588         assert_shared_dpll_enabled(dev_priv, pll);
1589         WARN_ON(!pll->on);
1590         if (--pll->active)
1591                 return;
1592
1593         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1594         pll->disable(dev_priv, pll);
1595         pll->on = false;
1596 }
1597
1598 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1599                                            enum pipe pipe)
1600 {
1601         struct drm_device *dev = dev_priv->dev;
1602         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1604         uint32_t reg, val, pipeconf_val;
1605
1606         /* PCH only available on ILK+ */
1607         BUG_ON(dev_priv->info->gen < 5);
1608
1609         /* Make sure PCH DPLL is enabled */
1610         assert_shared_dpll_enabled(dev_priv,
1611                                    intel_crtc_to_shared_dpll(intel_crtc));
1612
1613         /* FDI must be feeding us bits for PCH ports */
1614         assert_fdi_tx_enabled(dev_priv, pipe);
1615         assert_fdi_rx_enabled(dev_priv, pipe);
1616
1617         if (HAS_PCH_CPT(dev)) {
1618                 /* Workaround: Set the timing override bit before enabling the
1619                  * pch transcoder. */
1620                 reg = TRANS_CHICKEN2(pipe);
1621                 val = I915_READ(reg);
1622                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1623                 I915_WRITE(reg, val);
1624         }
1625
1626         reg = PCH_TRANSCONF(pipe);
1627         val = I915_READ(reg);
1628         pipeconf_val = I915_READ(PIPECONF(pipe));
1629
1630         if (HAS_PCH_IBX(dev_priv->dev)) {
1631                 /*
1632                  * make the BPC in transcoder be consistent with
1633                  * that in pipeconf reg.
1634                  */
1635                 val &= ~PIPECONF_BPC_MASK;
1636                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1637         }
1638
1639         val &= ~TRANS_INTERLACE_MASK;
1640         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1641                 if (HAS_PCH_IBX(dev_priv->dev) &&
1642                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1643                         val |= TRANS_LEGACY_INTERLACED_ILK;
1644                 else
1645                         val |= TRANS_INTERLACED;
1646         else
1647                 val |= TRANS_PROGRESSIVE;
1648
1649         I915_WRITE(reg, val | TRANS_ENABLE);
1650         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1651                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1652 }
1653
1654 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1655                                       enum transcoder cpu_transcoder)
1656 {
1657         u32 val, pipeconf_val;
1658
1659         /* PCH only available on ILK+ */
1660         BUG_ON(dev_priv->info->gen < 5);
1661
1662         /* FDI must be feeding us bits for PCH ports */
1663         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1664         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1665
1666         /* Workaround: set timing override bit. */
1667         val = I915_READ(_TRANSA_CHICKEN2);
1668         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1669         I915_WRITE(_TRANSA_CHICKEN2, val);
1670
1671         val = TRANS_ENABLE;
1672         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1673
1674         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1675             PIPECONF_INTERLACED_ILK)
1676                 val |= TRANS_INTERLACED;
1677         else
1678                 val |= TRANS_PROGRESSIVE;
1679
1680         I915_WRITE(LPT_TRANSCONF, val);
1681         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1682                 DRM_ERROR("Failed to enable PCH transcoder\n");
1683 }
1684
1685 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1686                                             enum pipe pipe)
1687 {
1688         struct drm_device *dev = dev_priv->dev;
1689         uint32_t reg, val;
1690
1691         /* FDI relies on the transcoder */
1692         assert_fdi_tx_disabled(dev_priv, pipe);
1693         assert_fdi_rx_disabled(dev_priv, pipe);
1694
1695         /* Ports must be off as well */
1696         assert_pch_ports_disabled(dev_priv, pipe);
1697
1698         reg = PCH_TRANSCONF(pipe);
1699         val = I915_READ(reg);
1700         val &= ~TRANS_ENABLE;
1701         I915_WRITE(reg, val);
1702         /* wait for PCH transcoder off, transcoder state */
1703         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1704                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1705
1706         if (!HAS_PCH_IBX(dev)) {
1707                 /* Workaround: Clear the timing override chicken bit again. */
1708                 reg = TRANS_CHICKEN2(pipe);
1709                 val = I915_READ(reg);
1710                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711                 I915_WRITE(reg, val);
1712         }
1713 }
1714
1715 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1716 {
1717         u32 val;
1718
1719         val = I915_READ(LPT_TRANSCONF);
1720         val &= ~TRANS_ENABLE;
1721         I915_WRITE(LPT_TRANSCONF, val);
1722         /* wait for PCH transcoder off, transcoder state */
1723         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1724                 DRM_ERROR("Failed to disable PCH transcoder\n");
1725
1726         /* Workaround: clear timing override bit. */
1727         val = I915_READ(_TRANSA_CHICKEN2);
1728         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1729         I915_WRITE(_TRANSA_CHICKEN2, val);
1730 }
1731
1732 /**
1733  * intel_enable_pipe - enable a pipe, asserting requirements
1734  * @dev_priv: i915 private structure
1735  * @pipe: pipe to enable
1736  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1737  *
1738  * Enable @pipe, making sure that various hardware specific requirements
1739  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1740  *
1741  * @pipe should be %PIPE_A or %PIPE_B.
1742  *
1743  * Will wait until the pipe is actually running (i.e. first vblank) before
1744  * returning.
1745  */
1746 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1747                               bool pch_port, bool dsi)
1748 {
1749         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1750                                                                       pipe);
1751         enum pipe pch_transcoder;
1752         int reg;
1753         u32 val;
1754
1755         assert_planes_disabled(dev_priv, pipe);
1756         assert_cursor_disabled(dev_priv, pipe);
1757         assert_sprites_disabled(dev_priv, pipe);
1758
1759         if (HAS_PCH_LPT(dev_priv->dev))
1760                 pch_transcoder = TRANSCODER_A;
1761         else
1762                 pch_transcoder = pipe;
1763
1764         /*
1765          * A pipe without a PLL won't actually be able to drive bits from
1766          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1767          * need the check.
1768          */
1769         if (!HAS_PCH_SPLIT(dev_priv->dev))
1770                 if (dsi)
1771                         assert_dsi_pll_enabled(dev_priv);
1772                 else
1773                         assert_pll_enabled(dev_priv, pipe);
1774         else {
1775                 if (pch_port) {
1776                         /* if driving the PCH, we need FDI enabled */
1777                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1778                         assert_fdi_tx_pll_enabled(dev_priv,
1779                                                   (enum pipe) cpu_transcoder);
1780                 }
1781                 /* FIXME: assert CPU port conditions for SNB+ */
1782         }
1783
1784         reg = PIPECONF(cpu_transcoder);
1785         val = I915_READ(reg);
1786         if (val & PIPECONF_ENABLE)
1787                 return;
1788
1789         I915_WRITE(reg, val | PIPECONF_ENABLE);
1790         intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794  * intel_disable_pipe - disable a pipe, asserting requirements
1795  * @dev_priv: i915 private structure
1796  * @pipe: pipe to disable
1797  *
1798  * Disable @pipe, making sure that various hardware specific requirements
1799  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800  *
1801  * @pipe should be %PIPE_A or %PIPE_B.
1802  *
1803  * Will wait until the pipe has shut down before returning.
1804  */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806                                enum pipe pipe)
1807 {
1808         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809                                                                       pipe);
1810         int reg;
1811         u32 val;
1812
1813         /*
1814          * Make sure planes won't keep trying to pump pixels to us,
1815          * or we might hang the display.
1816          */
1817         assert_planes_disabled(dev_priv, pipe);
1818         assert_cursor_disabled(dev_priv, pipe);
1819         assert_sprites_disabled(dev_priv, pipe);
1820
1821         /* Don't disable pipe A or pipe A PLLs if needed */
1822         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1823                 return;
1824
1825         reg = PIPECONF(cpu_transcoder);
1826         val = I915_READ(reg);
1827         if ((val & PIPECONF_ENABLE) == 0)
1828                 return;
1829
1830         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1831         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1832 }
1833
1834 /*
1835  * Plane regs are double buffered, going from enabled->disabled needs a
1836  * trigger in order to latch.  The display address reg provides this.
1837  */
1838 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1839                                enum plane plane)
1840 {
1841         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1842
1843         I915_WRITE(reg, I915_READ(reg));
1844         POSTING_READ(reg);
1845 }
1846
1847 /**
1848  * intel_enable_primary_plane - enable the primary plane on a given pipe
1849  * @dev_priv: i915 private structure
1850  * @plane: plane to enable
1851  * @pipe: pipe being fed
1852  *
1853  * Enable @plane on @pipe, making sure that @pipe is running first.
1854  */
1855 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1856                                        enum plane plane, enum pipe pipe)
1857 {
1858         struct intel_crtc *intel_crtc =
1859                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1860         int reg;
1861         u32 val;
1862
1863         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1864         assert_pipe_enabled(dev_priv, pipe);
1865
1866         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1867
1868         intel_crtc->primary_enabled = true;
1869
1870         reg = DSPCNTR(plane);
1871         val = I915_READ(reg);
1872         if (val & DISPLAY_PLANE_ENABLE)
1873                 return;
1874
1875         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1876         intel_flush_primary_plane(dev_priv, plane);
1877         intel_wait_for_vblank(dev_priv->dev, pipe);
1878 }
1879
1880 /**
1881  * intel_disable_primary_plane - disable the primary plane
1882  * @dev_priv: i915 private structure
1883  * @plane: plane to disable
1884  * @pipe: pipe consuming the data
1885  *
1886  * Disable @plane; should be an independent operation.
1887  */
1888 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1889                                         enum plane plane, enum pipe pipe)
1890 {
1891         struct intel_crtc *intel_crtc =
1892                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1893         int reg;
1894         u32 val;
1895
1896         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1897
1898         intel_crtc->primary_enabled = false;
1899
1900         reg = DSPCNTR(plane);
1901         val = I915_READ(reg);
1902         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1903                 return;
1904
1905         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1906         intel_flush_primary_plane(dev_priv, plane);
1907         intel_wait_for_vblank(dev_priv->dev, pipe);
1908 }
1909
1910 static bool need_vtd_wa(struct drm_device *dev)
1911 {
1912 #ifdef CONFIG_INTEL_IOMMU
1913         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1914                 return true;
1915 #endif
1916         return false;
1917 }
1918
1919 int
1920 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1921                            struct drm_i915_gem_object *obj,
1922                            struct intel_ring_buffer *pipelined)
1923 {
1924         struct drm_i915_private *dev_priv = dev->dev_private;
1925         u32 alignment;
1926         int ret;
1927
1928         switch (obj->tiling_mode) {
1929         case I915_TILING_NONE:
1930                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1931                         alignment = 128 * 1024;
1932                 else if (INTEL_INFO(dev)->gen >= 4)
1933                         alignment = 4 * 1024;
1934                 else
1935                         alignment = 64 * 1024;
1936                 break;
1937         case I915_TILING_X:
1938                 /* pin() will align the object as required by fence */
1939                 alignment = 0;
1940                 break;
1941         case I915_TILING_Y:
1942                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1943                 return -EINVAL;
1944         default:
1945                 BUG();
1946         }
1947
1948         /* Note that the w/a also requires 64 PTE of padding following the
1949          * bo. We currently fill all unused PTE with the shadow page and so
1950          * we should always have valid PTE following the scanout preventing
1951          * the VT-d warning.
1952          */
1953         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1954                 alignment = 256 * 1024;
1955
1956         dev_priv->mm.interruptible = false;
1957         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1958         if (ret)
1959                 goto err_interruptible;
1960
1961         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1962          * fence, whereas 965+ only requires a fence if using
1963          * framebuffer compression.  For simplicity, we always install
1964          * a fence as the cost is not that onerous.
1965          */
1966         ret = i915_gem_object_get_fence(obj);
1967         if (ret)
1968                 goto err_unpin;
1969
1970         i915_gem_object_pin_fence(obj);
1971
1972         dev_priv->mm.interruptible = true;
1973         return 0;
1974
1975 err_unpin:
1976         i915_gem_object_unpin_from_display_plane(obj);
1977 err_interruptible:
1978         dev_priv->mm.interruptible = true;
1979         return ret;
1980 }
1981
1982 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1983 {
1984         i915_gem_object_unpin_fence(obj);
1985         i915_gem_object_unpin_from_display_plane(obj);
1986 }
1987
1988 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1989  * is assumed to be a power-of-two. */
1990 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1991                                              unsigned int tiling_mode,
1992                                              unsigned int cpp,
1993                                              unsigned int pitch)
1994 {
1995         if (tiling_mode != I915_TILING_NONE) {
1996                 unsigned int tile_rows, tiles;
1997
1998                 tile_rows = *y / 8;
1999                 *y %= 8;
2000
2001                 tiles = *x / (512/cpp);
2002                 *x %= 512/cpp;
2003
2004                 return tile_rows * pitch * 8 + tiles * 4096;
2005         } else {
2006                 unsigned int offset;
2007
2008                 offset = *y * pitch + *x * cpp;
2009                 *y = 0;
2010                 *x = (offset & 4095) / cpp;
2011                 return offset & -4096;
2012         }
2013 }
2014
2015 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2016                              int x, int y)
2017 {
2018         struct drm_device *dev = crtc->dev;
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2021         struct intel_framebuffer *intel_fb;
2022         struct drm_i915_gem_object *obj;
2023         int plane = intel_crtc->plane;
2024         unsigned long linear_offset;
2025         u32 dspcntr;
2026         u32 reg;
2027
2028         switch (plane) {
2029         case 0:
2030         case 1:
2031                 break;
2032         default:
2033                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2034                 return -EINVAL;
2035         }
2036
2037         intel_fb = to_intel_framebuffer(fb);
2038         obj = intel_fb->obj;
2039
2040         reg = DSPCNTR(plane);
2041         dspcntr = I915_READ(reg);
2042         /* Mask out pixel format bits in case we change it */
2043         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2044         switch (fb->pixel_format) {
2045         case DRM_FORMAT_C8:
2046                 dspcntr |= DISPPLANE_8BPP;
2047                 break;
2048         case DRM_FORMAT_XRGB1555:
2049         case DRM_FORMAT_ARGB1555:
2050                 dspcntr |= DISPPLANE_BGRX555;
2051                 break;
2052         case DRM_FORMAT_RGB565:
2053                 dspcntr |= DISPPLANE_BGRX565;
2054                 break;
2055         case DRM_FORMAT_XRGB8888:
2056         case DRM_FORMAT_ARGB8888:
2057                 dspcntr |= DISPPLANE_BGRX888;
2058                 break;
2059         case DRM_FORMAT_XBGR8888:
2060         case DRM_FORMAT_ABGR8888:
2061                 dspcntr |= DISPPLANE_RGBX888;
2062                 break;
2063         case DRM_FORMAT_XRGB2101010:
2064         case DRM_FORMAT_ARGB2101010:
2065                 dspcntr |= DISPPLANE_BGRX101010;
2066                 break;
2067         case DRM_FORMAT_XBGR2101010:
2068         case DRM_FORMAT_ABGR2101010:
2069                 dspcntr |= DISPPLANE_RGBX101010;
2070                 break;
2071         default:
2072                 BUG();
2073         }
2074
2075         if (INTEL_INFO(dev)->gen >= 4) {
2076                 if (obj->tiling_mode != I915_TILING_NONE)
2077                         dspcntr |= DISPPLANE_TILED;
2078                 else
2079                         dspcntr &= ~DISPPLANE_TILED;
2080         }
2081
2082         if (IS_G4X(dev))
2083                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2084
2085         I915_WRITE(reg, dspcntr);
2086
2087         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2088
2089         if (INTEL_INFO(dev)->gen >= 4) {
2090                 intel_crtc->dspaddr_offset =
2091                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2092                                                        fb->bits_per_pixel / 8,
2093                                                        fb->pitches[0]);
2094                 linear_offset -= intel_crtc->dspaddr_offset;
2095         } else {
2096                 intel_crtc->dspaddr_offset = linear_offset;
2097         }
2098
2099         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2100                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2101                       fb->pitches[0]);
2102         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2103         if (INTEL_INFO(dev)->gen >= 4) {
2104                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2105                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2106                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2107                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2108         } else
2109                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2110         POSTING_READ(reg);
2111
2112         return 0;
2113 }
2114
2115 static int ironlake_update_plane(struct drm_crtc *crtc,
2116                                  struct drm_framebuffer *fb, int x, int y)
2117 {
2118         struct drm_device *dev = crtc->dev;
2119         struct drm_i915_private *dev_priv = dev->dev_private;
2120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2121         struct intel_framebuffer *intel_fb;
2122         struct drm_i915_gem_object *obj;
2123         int plane = intel_crtc->plane;
2124         unsigned long linear_offset;
2125         u32 dspcntr;
2126         u32 reg;
2127
2128         switch (plane) {
2129         case 0:
2130         case 1:
2131         case 2:
2132                 break;
2133         default:
2134                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2135                 return -EINVAL;
2136         }
2137
2138         intel_fb = to_intel_framebuffer(fb);
2139         obj = intel_fb->obj;
2140
2141         reg = DSPCNTR(plane);
2142         dspcntr = I915_READ(reg);
2143         /* Mask out pixel format bits in case we change it */
2144         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2145         switch (fb->pixel_format) {
2146         case DRM_FORMAT_C8:
2147                 dspcntr |= DISPPLANE_8BPP;
2148                 break;
2149         case DRM_FORMAT_RGB565:
2150                 dspcntr |= DISPPLANE_BGRX565;
2151                 break;
2152         case DRM_FORMAT_XRGB8888:
2153         case DRM_FORMAT_ARGB8888:
2154                 dspcntr |= DISPPLANE_BGRX888;
2155                 break;
2156         case DRM_FORMAT_XBGR8888:
2157         case DRM_FORMAT_ABGR8888:
2158                 dspcntr |= DISPPLANE_RGBX888;
2159                 break;
2160         case DRM_FORMAT_XRGB2101010:
2161         case DRM_FORMAT_ARGB2101010:
2162                 dspcntr |= DISPPLANE_BGRX101010;
2163                 break;
2164         case DRM_FORMAT_XBGR2101010:
2165         case DRM_FORMAT_ABGR2101010:
2166                 dspcntr |= DISPPLANE_RGBX101010;
2167                 break;
2168         default:
2169                 BUG();
2170         }
2171
2172         if (obj->tiling_mode != I915_TILING_NONE)
2173                 dspcntr |= DISPPLANE_TILED;
2174         else
2175                 dspcntr &= ~DISPPLANE_TILED;
2176
2177         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2178                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2179         else
2180                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2181
2182         I915_WRITE(reg, dspcntr);
2183
2184         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2185         intel_crtc->dspaddr_offset =
2186                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2187                                                fb->bits_per_pixel / 8,
2188                                                fb->pitches[0]);
2189         linear_offset -= intel_crtc->dspaddr_offset;
2190
2191         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2192                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2193                       fb->pitches[0]);
2194         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2195         I915_MODIFY_DISPBASE(DSPSURF(plane),
2196                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2197         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2198                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2199         } else {
2200                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2201                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2202         }
2203         POSTING_READ(reg);
2204
2205         return 0;
2206 }
2207
2208 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2209 static int
2210 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2211                            int x, int y, enum mode_set_atomic state)
2212 {
2213         struct drm_device *dev = crtc->dev;
2214         struct drm_i915_private *dev_priv = dev->dev_private;
2215
2216         if (dev_priv->display.disable_fbc)
2217                 dev_priv->display.disable_fbc(dev);
2218         intel_increase_pllclock(crtc);
2219
2220         return dev_priv->display.update_plane(crtc, fb, x, y);
2221 }
2222
2223 void intel_display_handle_reset(struct drm_device *dev)
2224 {
2225         struct drm_i915_private *dev_priv = dev->dev_private;
2226         struct drm_crtc *crtc;
2227
2228         /*
2229          * Flips in the rings have been nuked by the reset,
2230          * so complete all pending flips so that user space
2231          * will get its events and not get stuck.
2232          *
2233          * Also update the base address of all primary
2234          * planes to the the last fb to make sure we're
2235          * showing the correct fb after a reset.
2236          *
2237          * Need to make two loops over the crtcs so that we
2238          * don't try to grab a crtc mutex before the
2239          * pending_flip_queue really got woken up.
2240          */
2241
2242         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2243                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2244                 enum plane plane = intel_crtc->plane;
2245
2246                 intel_prepare_page_flip(dev, plane);
2247                 intel_finish_page_flip_plane(dev, plane);
2248         }
2249
2250         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2251                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2252
2253                 mutex_lock(&crtc->mutex);
2254                 /*
2255                  * FIXME: Once we have proper support for primary planes (and
2256                  * disabling them without disabling the entire crtc) allow again
2257                  * a NULL crtc->fb.
2258                  */
2259                 if (intel_crtc->active && crtc->fb)
2260                         dev_priv->display.update_plane(crtc, crtc->fb,
2261                                                        crtc->x, crtc->y);
2262                 mutex_unlock(&crtc->mutex);
2263         }
2264 }
2265
2266 static int
2267 intel_finish_fb(struct drm_framebuffer *old_fb)
2268 {
2269         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2270         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2271         bool was_interruptible = dev_priv->mm.interruptible;
2272         int ret;
2273
2274         /* Big Hammer, we also need to ensure that any pending
2275          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2276          * current scanout is retired before unpinning the old
2277          * framebuffer.
2278          *
2279          * This should only fail upon a hung GPU, in which case we
2280          * can safely continue.
2281          */
2282         dev_priv->mm.interruptible = false;
2283         ret = i915_gem_object_finish_gpu(obj);
2284         dev_priv->mm.interruptible = was_interruptible;
2285
2286         return ret;
2287 }
2288
2289 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2290 {
2291         struct drm_device *dev = crtc->dev;
2292         struct drm_i915_master_private *master_priv;
2293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294
2295         if (!dev->primary->master)
2296                 return;
2297
2298         master_priv = dev->primary->master->driver_priv;
2299         if (!master_priv->sarea_priv)
2300                 return;
2301
2302         switch (intel_crtc->pipe) {
2303         case 0:
2304                 master_priv->sarea_priv->pipeA_x = x;
2305                 master_priv->sarea_priv->pipeA_y = y;
2306                 break;
2307         case 1:
2308                 master_priv->sarea_priv->pipeB_x = x;
2309                 master_priv->sarea_priv->pipeB_y = y;
2310                 break;
2311         default:
2312                 break;
2313         }
2314 }
2315
2316 static int
2317 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2318                     struct drm_framebuffer *fb)
2319 {
2320         struct drm_device *dev = crtc->dev;
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323         struct drm_framebuffer *old_fb;
2324         int ret;
2325
2326         /* no fb bound */
2327         if (!fb) {
2328                 DRM_ERROR("No FB bound\n");
2329                 return 0;
2330         }
2331
2332         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2333                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2334                           plane_name(intel_crtc->plane),
2335                           INTEL_INFO(dev)->num_pipes);
2336                 return -EINVAL;
2337         }
2338
2339         mutex_lock(&dev->struct_mutex);
2340         ret = intel_pin_and_fence_fb_obj(dev,
2341                                          to_intel_framebuffer(fb)->obj,
2342                                          NULL);
2343         if (ret != 0) {
2344                 mutex_unlock(&dev->struct_mutex);
2345                 DRM_ERROR("pin & fence failed\n");
2346                 return ret;
2347         }
2348
2349         /*
2350          * Update pipe size and adjust fitter if needed: the reason for this is
2351          * that in compute_mode_changes we check the native mode (not the pfit
2352          * mode) to see if we can flip rather than do a full mode set. In the
2353          * fastboot case, we'll flip, but if we don't update the pipesrc and
2354          * pfit state, we'll end up with a big fb scanned out into the wrong
2355          * sized surface.
2356          *
2357          * To fix this properly, we need to hoist the checks up into
2358          * compute_mode_changes (or above), check the actual pfit state and
2359          * whether the platform allows pfit disable with pipe active, and only
2360          * then update the pipesrc and pfit state, even on the flip path.
2361          */
2362         if (i915_fastboot) {
2363                 const struct drm_display_mode *adjusted_mode =
2364                         &intel_crtc->config.adjusted_mode;
2365
2366                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2367                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2368                            (adjusted_mode->crtc_vdisplay - 1));
2369                 if (!intel_crtc->config.pch_pfit.enabled &&
2370                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2371                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2372                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2373                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2374                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2375                 }
2376         }
2377
2378         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2379         if (ret) {
2380                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2381                 mutex_unlock(&dev->struct_mutex);
2382                 DRM_ERROR("failed to update base address\n");
2383                 return ret;
2384         }
2385
2386         old_fb = crtc->fb;
2387         crtc->fb = fb;
2388         crtc->x = x;
2389         crtc->y = y;
2390
2391         if (old_fb) {
2392                 if (intel_crtc->active && old_fb != fb)
2393                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2394                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2395         }
2396
2397         intel_update_fbc(dev);
2398         intel_edp_psr_update(dev);
2399         mutex_unlock(&dev->struct_mutex);
2400
2401         intel_crtc_update_sarea_pos(crtc, x, y);
2402
2403         return 0;
2404 }
2405
2406 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2407 {
2408         struct drm_device *dev = crtc->dev;
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2411         int pipe = intel_crtc->pipe;
2412         u32 reg, temp;
2413
2414         /* enable normal train */
2415         reg = FDI_TX_CTL(pipe);
2416         temp = I915_READ(reg);
2417         if (IS_IVYBRIDGE(dev)) {
2418                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2419                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2420         } else {
2421                 temp &= ~FDI_LINK_TRAIN_NONE;
2422                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2423         }
2424         I915_WRITE(reg, temp);
2425
2426         reg = FDI_RX_CTL(pipe);
2427         temp = I915_READ(reg);
2428         if (HAS_PCH_CPT(dev)) {
2429                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2430                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2431         } else {
2432                 temp &= ~FDI_LINK_TRAIN_NONE;
2433                 temp |= FDI_LINK_TRAIN_NONE;
2434         }
2435         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2436
2437         /* wait one idle pattern time */
2438         POSTING_READ(reg);
2439         udelay(1000);
2440
2441         /* IVB wants error correction enabled */
2442         if (IS_IVYBRIDGE(dev))
2443                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2444                            FDI_FE_ERRC_ENABLE);
2445 }
2446
2447 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2448 {
2449         return crtc->base.enabled && crtc->active &&
2450                 crtc->config.has_pch_encoder;
2451 }
2452
2453 static void ivb_modeset_global_resources(struct drm_device *dev)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         struct intel_crtc *pipe_B_crtc =
2457                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2458         struct intel_crtc *pipe_C_crtc =
2459                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2460         uint32_t temp;
2461
2462         /*
2463          * When everything is off disable fdi C so that we could enable fdi B
2464          * with all lanes. Note that we don't care about enabled pipes without
2465          * an enabled pch encoder.
2466          */
2467         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2468             !pipe_has_enabled_pch(pipe_C_crtc)) {
2469                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2470                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2471
2472                 temp = I915_READ(SOUTH_CHICKEN1);
2473                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2474                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2475                 I915_WRITE(SOUTH_CHICKEN1, temp);
2476         }
2477 }
2478
2479 /* The FDI link training functions for ILK/Ibexpeak. */
2480 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2481 {
2482         struct drm_device *dev = crtc->dev;
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2485         int pipe = intel_crtc->pipe;
2486         int plane = intel_crtc->plane;
2487         u32 reg, temp, tries;
2488
2489         /* FDI needs bits from pipe & plane first */
2490         assert_pipe_enabled(dev_priv, pipe);
2491         assert_plane_enabled(dev_priv, plane);
2492
2493         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2494            for train result */
2495         reg = FDI_RX_IMR(pipe);
2496         temp = I915_READ(reg);
2497         temp &= ~FDI_RX_SYMBOL_LOCK;
2498         temp &= ~FDI_RX_BIT_LOCK;
2499         I915_WRITE(reg, temp);
2500         I915_READ(reg);
2501         udelay(150);
2502
2503         /* enable CPU FDI TX and PCH FDI RX */
2504         reg = FDI_TX_CTL(pipe);
2505         temp = I915_READ(reg);
2506         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2507         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2508         temp &= ~FDI_LINK_TRAIN_NONE;
2509         temp |= FDI_LINK_TRAIN_PATTERN_1;
2510         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2511
2512         reg = FDI_RX_CTL(pipe);
2513         temp = I915_READ(reg);
2514         temp &= ~FDI_LINK_TRAIN_NONE;
2515         temp |= FDI_LINK_TRAIN_PATTERN_1;
2516         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518         POSTING_READ(reg);
2519         udelay(150);
2520
2521         /* Ironlake workaround, enable clock pointer after FDI enable*/
2522         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2523         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2524                    FDI_RX_PHASE_SYNC_POINTER_EN);
2525
2526         reg = FDI_RX_IIR(pipe);
2527         for (tries = 0; tries < 5; tries++) {
2528                 temp = I915_READ(reg);
2529                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2530
2531                 if ((temp & FDI_RX_BIT_LOCK)) {
2532                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2533                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2534                         break;
2535                 }
2536         }
2537         if (tries == 5)
2538                 DRM_ERROR("FDI train 1 fail!\n");
2539
2540         /* Train 2 */
2541         reg = FDI_TX_CTL(pipe);
2542         temp = I915_READ(reg);
2543         temp &= ~FDI_LINK_TRAIN_NONE;
2544         temp |= FDI_LINK_TRAIN_PATTERN_2;
2545         I915_WRITE(reg, temp);
2546
2547         reg = FDI_RX_CTL(pipe);
2548         temp = I915_READ(reg);
2549         temp &= ~FDI_LINK_TRAIN_NONE;
2550         temp |= FDI_LINK_TRAIN_PATTERN_2;
2551         I915_WRITE(reg, temp);
2552
2553         POSTING_READ(reg);
2554         udelay(150);
2555
2556         reg = FDI_RX_IIR(pipe);
2557         for (tries = 0; tries < 5; tries++) {
2558                 temp = I915_READ(reg);
2559                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2560
2561                 if (temp & FDI_RX_SYMBOL_LOCK) {
2562                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2563                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2564                         break;
2565                 }
2566         }
2567         if (tries == 5)
2568                 DRM_ERROR("FDI train 2 fail!\n");
2569
2570         DRM_DEBUG_KMS("FDI train done\n");
2571
2572 }
2573
2574 static const int snb_b_fdi_train_param[] = {
2575         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2576         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2577         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2578         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2579 };
2580
2581 /* The FDI link training functions for SNB/Cougarpoint. */
2582 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2583 {
2584         struct drm_device *dev = crtc->dev;
2585         struct drm_i915_private *dev_priv = dev->dev_private;
2586         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2587         int pipe = intel_crtc->pipe;
2588         u32 reg, temp, i, retry;
2589
2590         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2591            for train result */
2592         reg = FDI_RX_IMR(pipe);
2593         temp = I915_READ(reg);
2594         temp &= ~FDI_RX_SYMBOL_LOCK;
2595         temp &= ~FDI_RX_BIT_LOCK;
2596         I915_WRITE(reg, temp);
2597
2598         POSTING_READ(reg);
2599         udelay(150);
2600
2601         /* enable CPU FDI TX and PCH FDI RX */
2602         reg = FDI_TX_CTL(pipe);
2603         temp = I915_READ(reg);
2604         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2605         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2606         temp &= ~FDI_LINK_TRAIN_NONE;
2607         temp |= FDI_LINK_TRAIN_PATTERN_1;
2608         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2609         /* SNB-B */
2610         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2611         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2612
2613         I915_WRITE(FDI_RX_MISC(pipe),
2614                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2615
2616         reg = FDI_RX_CTL(pipe);
2617         temp = I915_READ(reg);
2618         if (HAS_PCH_CPT(dev)) {
2619                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2620                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2621         } else {
2622                 temp &= ~FDI_LINK_TRAIN_NONE;
2623                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2624         }
2625         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2626
2627         POSTING_READ(reg);
2628         udelay(150);
2629
2630         for (i = 0; i < 4; i++) {
2631                 reg = FDI_TX_CTL(pipe);
2632                 temp = I915_READ(reg);
2633                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2634                 temp |= snb_b_fdi_train_param[i];
2635                 I915_WRITE(reg, temp);
2636
2637                 POSTING_READ(reg);
2638                 udelay(500);
2639
2640                 for (retry = 0; retry < 5; retry++) {
2641                         reg = FDI_RX_IIR(pipe);
2642                         temp = I915_READ(reg);
2643                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2644                         if (temp & FDI_RX_BIT_LOCK) {
2645                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2646                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2647                                 break;
2648                         }
2649                         udelay(50);
2650                 }
2651                 if (retry < 5)
2652                         break;
2653         }
2654         if (i == 4)
2655                 DRM_ERROR("FDI train 1 fail!\n");
2656
2657         /* Train 2 */
2658         reg = FDI_TX_CTL(pipe);
2659         temp = I915_READ(reg);
2660         temp &= ~FDI_LINK_TRAIN_NONE;
2661         temp |= FDI_LINK_TRAIN_PATTERN_2;
2662         if (IS_GEN6(dev)) {
2663                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664                 /* SNB-B */
2665                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2666         }
2667         I915_WRITE(reg, temp);
2668
2669         reg = FDI_RX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         if (HAS_PCH_CPT(dev)) {
2672                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2674         } else {
2675                 temp &= ~FDI_LINK_TRAIN_NONE;
2676                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2677         }
2678         I915_WRITE(reg, temp);
2679
2680         POSTING_READ(reg);
2681         udelay(150);
2682
2683         for (i = 0; i < 4; i++) {
2684                 reg = FDI_TX_CTL(pipe);
2685                 temp = I915_READ(reg);
2686                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2687                 temp |= snb_b_fdi_train_param[i];
2688                 I915_WRITE(reg, temp);
2689
2690                 POSTING_READ(reg);
2691                 udelay(500);
2692
2693                 for (retry = 0; retry < 5; retry++) {
2694                         reg = FDI_RX_IIR(pipe);
2695                         temp = I915_READ(reg);
2696                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2697                         if (temp & FDI_RX_SYMBOL_LOCK) {
2698                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2699                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2700                                 break;
2701                         }
2702                         udelay(50);
2703                 }
2704                 if (retry < 5)
2705                         break;
2706         }
2707         if (i == 4)
2708                 DRM_ERROR("FDI train 2 fail!\n");
2709
2710         DRM_DEBUG_KMS("FDI train done.\n");
2711 }
2712
2713 /* Manual link training for Ivy Bridge A0 parts */
2714 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2715 {
2716         struct drm_device *dev = crtc->dev;
2717         struct drm_i915_private *dev_priv = dev->dev_private;
2718         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2719         int pipe = intel_crtc->pipe;
2720         u32 reg, temp, i, j;
2721
2722         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2723            for train result */
2724         reg = FDI_RX_IMR(pipe);
2725         temp = I915_READ(reg);
2726         temp &= ~FDI_RX_SYMBOL_LOCK;
2727         temp &= ~FDI_RX_BIT_LOCK;
2728         I915_WRITE(reg, temp);
2729
2730         POSTING_READ(reg);
2731         udelay(150);
2732
2733         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2734                       I915_READ(FDI_RX_IIR(pipe)));
2735
2736         /* Try each vswing and preemphasis setting twice before moving on */
2737         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2738                 /* disable first in case we need to retry */
2739                 reg = FDI_TX_CTL(pipe);
2740                 temp = I915_READ(reg);
2741                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2742                 temp &= ~FDI_TX_ENABLE;
2743                 I915_WRITE(reg, temp);
2744
2745                 reg = FDI_RX_CTL(pipe);
2746                 temp = I915_READ(reg);
2747                 temp &= ~FDI_LINK_TRAIN_AUTO;
2748                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2749                 temp &= ~FDI_RX_ENABLE;
2750                 I915_WRITE(reg, temp);
2751
2752                 /* enable CPU FDI TX and PCH FDI RX */
2753                 reg = FDI_TX_CTL(pipe);
2754                 temp = I915_READ(reg);
2755                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2756                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2757                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2758                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2759                 temp |= snb_b_fdi_train_param[j/2];
2760                 temp |= FDI_COMPOSITE_SYNC;
2761                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2762
2763                 I915_WRITE(FDI_RX_MISC(pipe),
2764                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2765
2766                 reg = FDI_RX_CTL(pipe);
2767                 temp = I915_READ(reg);
2768                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2769                 temp |= FDI_COMPOSITE_SYNC;
2770                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2771
2772                 POSTING_READ(reg);
2773                 udelay(1); /* should be 0.5us */
2774
2775                 for (i = 0; i < 4; i++) {
2776                         reg = FDI_RX_IIR(pipe);
2777                         temp = I915_READ(reg);
2778                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2779
2780                         if (temp & FDI_RX_BIT_LOCK ||
2781                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2782                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2783                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2784                                               i);
2785                                 break;
2786                         }
2787                         udelay(1); /* should be 0.5us */
2788                 }
2789                 if (i == 4) {
2790                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2791                         continue;
2792                 }
2793
2794                 /* Train 2 */
2795                 reg = FDI_TX_CTL(pipe);
2796                 temp = I915_READ(reg);
2797                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2798                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2799                 I915_WRITE(reg, temp);
2800
2801                 reg = FDI_RX_CTL(pipe);
2802                 temp = I915_READ(reg);
2803                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2804                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2805                 I915_WRITE(reg, temp);
2806
2807                 POSTING_READ(reg);
2808                 udelay(2); /* should be 1.5us */
2809
2810                 for (i = 0; i < 4; i++) {
2811                         reg = FDI_RX_IIR(pipe);
2812                         temp = I915_READ(reg);
2813                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2814
2815                         if (temp & FDI_RX_SYMBOL_LOCK ||
2816                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2817                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2818                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2819                                               i);
2820                                 goto train_done;
2821                         }
2822                         udelay(2); /* should be 1.5us */
2823                 }
2824                 if (i == 4)
2825                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2826         }
2827
2828 train_done:
2829         DRM_DEBUG_KMS("FDI train done.\n");
2830 }
2831
2832 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2833 {
2834         struct drm_device *dev = intel_crtc->base.dev;
2835         struct drm_i915_private *dev_priv = dev->dev_private;
2836         int pipe = intel_crtc->pipe;
2837         u32 reg, temp;
2838
2839
2840         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2841         reg = FDI_RX_CTL(pipe);
2842         temp = I915_READ(reg);
2843         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2844         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2845         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2846         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2847
2848         POSTING_READ(reg);
2849         udelay(200);
2850
2851         /* Switch from Rawclk to PCDclk */
2852         temp = I915_READ(reg);
2853         I915_WRITE(reg, temp | FDI_PCDCLK);
2854
2855         POSTING_READ(reg);
2856         udelay(200);
2857
2858         /* Enable CPU FDI TX PLL, always on for Ironlake */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2862                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2863
2864                 POSTING_READ(reg);
2865                 udelay(100);
2866         }
2867 }
2868
2869 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2870 {
2871         struct drm_device *dev = intel_crtc->base.dev;
2872         struct drm_i915_private *dev_priv = dev->dev_private;
2873         int pipe = intel_crtc->pipe;
2874         u32 reg, temp;
2875
2876         /* Switch from PCDclk to Rawclk */
2877         reg = FDI_RX_CTL(pipe);
2878         temp = I915_READ(reg);
2879         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2880
2881         /* Disable CPU FDI TX PLL */
2882         reg = FDI_TX_CTL(pipe);
2883         temp = I915_READ(reg);
2884         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2885
2886         POSTING_READ(reg);
2887         udelay(100);
2888
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2892
2893         /* Wait for the clocks to turn off. */
2894         POSTING_READ(reg);
2895         udelay(100);
2896 }
2897
2898 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2899 {
2900         struct drm_device *dev = crtc->dev;
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903         int pipe = intel_crtc->pipe;
2904         u32 reg, temp;
2905
2906         /* disable CPU FDI tx and PCH FDI rx */
2907         reg = FDI_TX_CTL(pipe);
2908         temp = I915_READ(reg);
2909         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2910         POSTING_READ(reg);
2911
2912         reg = FDI_RX_CTL(pipe);
2913         temp = I915_READ(reg);
2914         temp &= ~(0x7 << 16);
2915         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2916         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2917
2918         POSTING_READ(reg);
2919         udelay(100);
2920
2921         /* Ironlake workaround, disable clock pointer after downing FDI */
2922         if (HAS_PCH_IBX(dev)) {
2923                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2924         }
2925
2926         /* still set train pattern 1 */
2927         reg = FDI_TX_CTL(pipe);
2928         temp = I915_READ(reg);
2929         temp &= ~FDI_LINK_TRAIN_NONE;
2930         temp |= FDI_LINK_TRAIN_PATTERN_1;
2931         I915_WRITE(reg, temp);
2932
2933         reg = FDI_RX_CTL(pipe);
2934         temp = I915_READ(reg);
2935         if (HAS_PCH_CPT(dev)) {
2936                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2937                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2938         } else {
2939                 temp &= ~FDI_LINK_TRAIN_NONE;
2940                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2941         }
2942         /* BPC in FDI rx is consistent with that in PIPECONF */
2943         temp &= ~(0x07 << 16);
2944         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2945         I915_WRITE(reg, temp);
2946
2947         POSTING_READ(reg);
2948         udelay(100);
2949 }
2950
2951 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2952 {
2953         struct drm_device *dev = crtc->dev;
2954         struct drm_i915_private *dev_priv = dev->dev_private;
2955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2956         unsigned long flags;
2957         bool pending;
2958
2959         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2960             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2961                 return false;
2962
2963         spin_lock_irqsave(&dev->event_lock, flags);
2964         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2965         spin_unlock_irqrestore(&dev->event_lock, flags);
2966
2967         return pending;
2968 }
2969
2970 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2971 {
2972         struct drm_device *dev = crtc->dev;
2973         struct drm_i915_private *dev_priv = dev->dev_private;
2974
2975         if (crtc->fb == NULL)
2976                 return;
2977
2978         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2979
2980         wait_event(dev_priv->pending_flip_queue,
2981                    !intel_crtc_has_pending_flip(crtc));
2982
2983         mutex_lock(&dev->struct_mutex);
2984         intel_finish_fb(crtc->fb);
2985         mutex_unlock(&dev->struct_mutex);
2986 }
2987
2988 /* Program iCLKIP clock to the desired frequency */
2989 static void lpt_program_iclkip(struct drm_crtc *crtc)
2990 {
2991         struct drm_device *dev = crtc->dev;
2992         struct drm_i915_private *dev_priv = dev->dev_private;
2993         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2994         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2995         u32 temp;
2996
2997         mutex_lock(&dev_priv->dpio_lock);
2998
2999         /* It is necessary to ungate the pixclk gate prior to programming
3000          * the divisors, and gate it back when it is done.
3001          */
3002         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3003
3004         /* Disable SSCCTL */
3005         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3006                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3007                                 SBI_SSCCTL_DISABLE,
3008                         SBI_ICLK);
3009
3010         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3011         if (clock == 20000) {
3012                 auxdiv = 1;
3013                 divsel = 0x41;
3014                 phaseinc = 0x20;
3015         } else {
3016                 /* The iCLK virtual clock root frequency is in MHz,
3017                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3018                  * divisors, it is necessary to divide one by another, so we
3019                  * convert the virtual clock precision to KHz here for higher
3020                  * precision.
3021                  */
3022                 u32 iclk_virtual_root_freq = 172800 * 1000;
3023                 u32 iclk_pi_range = 64;
3024                 u32 desired_divisor, msb_divisor_value, pi_value;
3025
3026                 desired_divisor = (iclk_virtual_root_freq / clock);
3027                 msb_divisor_value = desired_divisor / iclk_pi_range;
3028                 pi_value = desired_divisor % iclk_pi_range;
3029
3030                 auxdiv = 0;
3031                 divsel = msb_divisor_value - 2;
3032                 phaseinc = pi_value;
3033         }
3034
3035         /* This should not happen with any sane values */
3036         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3037                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3038         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3039                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3040
3041         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3042                         clock,
3043                         auxdiv,
3044                         divsel,
3045                         phasedir,
3046                         phaseinc);
3047
3048         /* Program SSCDIVINTPHASE6 */
3049         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3050         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3051         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3052         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3053         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3054         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3055         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3056         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3057
3058         /* Program SSCAUXDIV */
3059         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3060         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3061         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3062         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3063
3064         /* Enable modulator and associated divider */
3065         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3066         temp &= ~SBI_SSCCTL_DISABLE;
3067         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3068
3069         /* Wait for initialization time */
3070         udelay(24);
3071
3072         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3073
3074         mutex_unlock(&dev_priv->dpio_lock);
3075 }
3076
3077 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3078                                                 enum pipe pch_transcoder)
3079 {
3080         struct drm_device *dev = crtc->base.dev;
3081         struct drm_i915_private *dev_priv = dev->dev_private;
3082         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3083
3084         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3085                    I915_READ(HTOTAL(cpu_transcoder)));
3086         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3087                    I915_READ(HBLANK(cpu_transcoder)));
3088         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3089                    I915_READ(HSYNC(cpu_transcoder)));
3090
3091         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3092                    I915_READ(VTOTAL(cpu_transcoder)));
3093         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3094                    I915_READ(VBLANK(cpu_transcoder)));
3095         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3096                    I915_READ(VSYNC(cpu_transcoder)));
3097         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3098                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3099 }
3100
3101 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3102 {
3103         struct drm_i915_private *dev_priv = dev->dev_private;
3104         uint32_t temp;
3105
3106         temp = I915_READ(SOUTH_CHICKEN1);
3107         if (temp & FDI_BC_BIFURCATION_SELECT)
3108                 return;
3109
3110         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3111         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3112
3113         temp |= FDI_BC_BIFURCATION_SELECT;
3114         DRM_DEBUG_KMS("enabling fdi C rx\n");
3115         I915_WRITE(SOUTH_CHICKEN1, temp);
3116         POSTING_READ(SOUTH_CHICKEN1);
3117 }
3118
3119 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3120 {
3121         struct drm_device *dev = intel_crtc->base.dev;
3122         struct drm_i915_private *dev_priv = dev->dev_private;
3123
3124         switch (intel_crtc->pipe) {
3125         case PIPE_A:
3126                 break;
3127         case PIPE_B:
3128                 if (intel_crtc->config.fdi_lanes > 2)
3129                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3130                 else
3131                         cpt_enable_fdi_bc_bifurcation(dev);
3132
3133                 break;
3134         case PIPE_C:
3135                 cpt_enable_fdi_bc_bifurcation(dev);
3136
3137                 break;
3138         default:
3139                 BUG();
3140         }
3141 }
3142
3143 /*
3144  * Enable PCH resources required for PCH ports:
3145  *   - PCH PLLs
3146  *   - FDI training & RX/TX
3147  *   - update transcoder timings
3148  *   - DP transcoding bits
3149  *   - transcoder
3150  */
3151 static void ironlake_pch_enable(struct drm_crtc *crtc)
3152 {
3153         struct drm_device *dev = crtc->dev;
3154         struct drm_i915_private *dev_priv = dev->dev_private;
3155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3156         int pipe = intel_crtc->pipe;
3157         u32 reg, temp;
3158
3159         assert_pch_transcoder_disabled(dev_priv, pipe);
3160
3161         if (IS_IVYBRIDGE(dev))
3162                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3163
3164         /* Write the TU size bits before fdi link training, so that error
3165          * detection works. */
3166         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3167                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3168
3169         /* For PCH output, training FDI link */
3170         dev_priv->display.fdi_link_train(crtc);
3171
3172         /* We need to program the right clock selection before writing the pixel
3173          * mutliplier into the DPLL. */
3174         if (HAS_PCH_CPT(dev)) {
3175                 u32 sel;
3176
3177                 temp = I915_READ(PCH_DPLL_SEL);
3178                 temp |= TRANS_DPLL_ENABLE(pipe);
3179                 sel = TRANS_DPLLB_SEL(pipe);
3180                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3181                         temp |= sel;
3182                 else
3183                         temp &= ~sel;
3184                 I915_WRITE(PCH_DPLL_SEL, temp);
3185         }
3186
3187         /* XXX: pch pll's can be enabled any time before we enable the PCH
3188          * transcoder, and we actually should do this to not upset any PCH
3189          * transcoder that already use the clock when we share it.
3190          *
3191          * Note that enable_shared_dpll tries to do the right thing, but
3192          * get_shared_dpll unconditionally resets the pll - we need that to have
3193          * the right LVDS enable sequence. */
3194         ironlake_enable_shared_dpll(intel_crtc);
3195
3196         /* set transcoder timing, panel must allow it */
3197         assert_panel_unlocked(dev_priv, pipe);
3198         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3199
3200         intel_fdi_normal_train(crtc);
3201
3202         /* For PCH DP, enable TRANS_DP_CTL */
3203         if (HAS_PCH_CPT(dev) &&
3204             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3205              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3206                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3207                 reg = TRANS_DP_CTL(pipe);
3208                 temp = I915_READ(reg);
3209                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3210                           TRANS_DP_SYNC_MASK |
3211                           TRANS_DP_BPC_MASK);
3212                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3213                          TRANS_DP_ENH_FRAMING);
3214                 temp |= bpc << 9; /* same format but at 11:9 */
3215
3216                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3217                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3218                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3219                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3220
3221                 switch (intel_trans_dp_port_sel(crtc)) {
3222                 case PCH_DP_B:
3223                         temp |= TRANS_DP_PORT_SEL_B;
3224                         break;
3225                 case PCH_DP_C:
3226                         temp |= TRANS_DP_PORT_SEL_C;
3227                         break;
3228                 case PCH_DP_D:
3229                         temp |= TRANS_DP_PORT_SEL_D;
3230                         break;
3231                 default:
3232                         BUG();
3233                 }
3234
3235                 I915_WRITE(reg, temp);
3236         }
3237
3238         ironlake_enable_pch_transcoder(dev_priv, pipe);
3239 }
3240
3241 static void lpt_pch_enable(struct drm_crtc *crtc)
3242 {
3243         struct drm_device *dev = crtc->dev;
3244         struct drm_i915_private *dev_priv = dev->dev_private;
3245         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3246         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3247
3248         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3249
3250         lpt_program_iclkip(crtc);
3251
3252         /* Set transcoder timing. */
3253         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3254
3255         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3256 }
3257
3258 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3259 {
3260         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3261
3262         if (pll == NULL)
3263                 return;
3264
3265         if (pll->refcount == 0) {
3266                 WARN(1, "bad %s refcount\n", pll->name);
3267                 return;
3268         }
3269
3270         if (--pll->refcount == 0) {
3271                 WARN_ON(pll->on);
3272                 WARN_ON(pll->active);
3273         }
3274
3275         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3276 }
3277
3278 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3279 {
3280         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3281         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3282         enum intel_dpll_id i;
3283
3284         if (pll) {
3285                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3286                               crtc->base.base.id, pll->name);
3287                 intel_put_shared_dpll(crtc);
3288         }
3289
3290         if (HAS_PCH_IBX(dev_priv->dev)) {
3291                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3292                 i = (enum intel_dpll_id) crtc->pipe;
3293                 pll = &dev_priv->shared_dplls[i];
3294
3295                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3296                               crtc->base.base.id, pll->name);
3297
3298                 goto found;
3299         }
3300
3301         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3302                 pll = &dev_priv->shared_dplls[i];
3303
3304                 /* Only want to check enabled timings first */
3305                 if (pll->refcount == 0)
3306                         continue;
3307
3308                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3309                            sizeof(pll->hw_state)) == 0) {
3310                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3311                                       crtc->base.base.id,
3312                                       pll->name, pll->refcount, pll->active);
3313
3314                         goto found;
3315                 }
3316         }
3317
3318         /* Ok no matching timings, maybe there's a free one? */
3319         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3320                 pll = &dev_priv->shared_dplls[i];
3321                 if (pll->refcount == 0) {
3322                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3323                                       crtc->base.base.id, pll->name);
3324                         goto found;
3325                 }
3326         }
3327
3328         return NULL;
3329
3330 found:
3331         crtc->config.shared_dpll = i;
3332         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3333                          pipe_name(crtc->pipe));
3334
3335         if (pll->active == 0) {
3336                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3337                        sizeof(pll->hw_state));
3338
3339                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3340                 WARN_ON(pll->on);
3341                 assert_shared_dpll_disabled(dev_priv, pll);
3342
3343                 pll->mode_set(dev_priv, pll);
3344         }
3345         pll->refcount++;
3346
3347         return pll;
3348 }
3349
3350 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3351 {
3352         struct drm_i915_private *dev_priv = dev->dev_private;
3353         int dslreg = PIPEDSL(pipe);
3354         u32 temp;
3355
3356         temp = I915_READ(dslreg);
3357         udelay(500);
3358         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3359                 if (wait_for(I915_READ(dslreg) != temp, 5))
3360                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3361         }
3362 }
3363
3364 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3365 {
3366         struct drm_device *dev = crtc->base.dev;
3367         struct drm_i915_private *dev_priv = dev->dev_private;
3368         int pipe = crtc->pipe;
3369
3370         if (crtc->config.pch_pfit.enabled) {
3371                 /* Force use of hard-coded filter coefficients
3372                  * as some pre-programmed values are broken,
3373                  * e.g. x201.
3374                  */
3375                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3376                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3377                                                  PF_PIPE_SEL_IVB(pipe));
3378                 else
3379                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3380                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3381                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3382         }
3383 }
3384
3385 static void intel_enable_planes(struct drm_crtc *crtc)
3386 {
3387         struct drm_device *dev = crtc->dev;
3388         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3389         struct intel_plane *intel_plane;
3390
3391         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3392                 if (intel_plane->pipe == pipe)
3393                         intel_plane_restore(&intel_plane->base);
3394 }
3395
3396 static void intel_disable_planes(struct drm_crtc *crtc)
3397 {
3398         struct drm_device *dev = crtc->dev;
3399         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3400         struct intel_plane *intel_plane;
3401
3402         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3403                 if (intel_plane->pipe == pipe)
3404                         intel_plane_disable(&intel_plane->base);
3405 }
3406
3407 void hsw_enable_ips(struct intel_crtc *crtc)
3408 {
3409         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3410
3411         if (!crtc->config.ips_enabled)
3412                 return;
3413
3414         /* We can only enable IPS after we enable a plane and wait for a vblank.
3415          * We guarantee that the plane is enabled by calling intel_enable_ips
3416          * only after intel_enable_plane. And intel_enable_plane already waits
3417          * for a vblank, so all we need to do here is to enable the IPS bit. */
3418         assert_plane_enabled(dev_priv, crtc->plane);
3419         if (IS_BROADWELL(crtc->base.dev)) {
3420                 mutex_lock(&dev_priv->rps.hw_lock);
3421                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3422                 mutex_unlock(&dev_priv->rps.hw_lock);
3423                 /* Quoting Art Runyan: "its not safe to expect any particular
3424                  * value in IPS_CTL bit 31 after enabling IPS through the
3425                  * mailbox." Therefore we need to defer waiting on the state
3426                  * change.
3427                  * TODO: need to fix this for state checker
3428                  */
3429         } else {
3430                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3431                 /* The bit only becomes 1 in the next vblank, so this wait here
3432                  * is essentially intel_wait_for_vblank. If we don't have this
3433                  * and don't wait for vblanks until the end of crtc_enable, then
3434                  * the HW state readout code will complain that the expected
3435                  * IPS_CTL value is not the one we read. */
3436                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3437                         DRM_ERROR("Timed out waiting for IPS enable\n");
3438         }
3439 }
3440
3441 void hsw_disable_ips(struct intel_crtc *crtc)
3442 {
3443         struct drm_device *dev = crtc->base.dev;
3444         struct drm_i915_private *dev_priv = dev->dev_private;
3445
3446         if (!crtc->config.ips_enabled)
3447                 return;
3448
3449         assert_plane_enabled(dev_priv, crtc->plane);
3450         if (IS_BROADWELL(crtc->base.dev)) {
3451                 mutex_lock(&dev_priv->rps.hw_lock);
3452                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3453                 mutex_unlock(&dev_priv->rps.hw_lock);
3454         } else
3455                 I915_WRITE(IPS_CTL, 0);
3456         POSTING_READ(IPS_CTL);
3457
3458         /* We need to wait for a vblank before we can disable the plane. */
3459         intel_wait_for_vblank(dev, crtc->pipe);
3460 }
3461
3462 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3463 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3464 {
3465         struct drm_device *dev = crtc->dev;
3466         struct drm_i915_private *dev_priv = dev->dev_private;
3467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3468         enum pipe pipe = intel_crtc->pipe;
3469         int palreg = PALETTE(pipe);
3470         int i;
3471         bool reenable_ips = false;
3472
3473         /* The clocks have to be on to load the palette. */
3474         if (!crtc->enabled || !intel_crtc->active)
3475                 return;
3476
3477         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3478                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3479                         assert_dsi_pll_enabled(dev_priv);
3480                 else
3481                         assert_pll_enabled(dev_priv, pipe);
3482         }
3483
3484         /* use legacy palette for Ironlake */
3485         if (HAS_PCH_SPLIT(dev))
3486                 palreg = LGC_PALETTE(pipe);
3487
3488         /* Workaround : Do not read or write the pipe palette/gamma data while
3489          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3490          */
3491         if (intel_crtc->config.ips_enabled &&
3492             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3493              GAMMA_MODE_MODE_SPLIT)) {
3494                 hsw_disable_ips(intel_crtc);
3495                 reenable_ips = true;
3496         }
3497
3498         for (i = 0; i < 256; i++) {
3499                 I915_WRITE(palreg + 4 * i,
3500                            (intel_crtc->lut_r[i] << 16) |
3501                            (intel_crtc->lut_g[i] << 8) |
3502                            intel_crtc->lut_b[i]);
3503         }
3504
3505         if (reenable_ips)
3506                 hsw_enable_ips(intel_crtc);
3507 }
3508
3509 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3510 {
3511         struct drm_device *dev = crtc->dev;
3512         struct drm_i915_private *dev_priv = dev->dev_private;
3513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514         struct intel_encoder *encoder;
3515         int pipe = intel_crtc->pipe;
3516         int plane = intel_crtc->plane;
3517
3518         WARN_ON(!crtc->enabled);
3519
3520         if (intel_crtc->active)
3521                 return;
3522
3523         intel_crtc->active = true;
3524
3525         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3526         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3527
3528         for_each_encoder_on_crtc(dev, crtc, encoder)
3529                 if (encoder->pre_enable)
3530                         encoder->pre_enable(encoder);
3531
3532         if (intel_crtc->config.has_pch_encoder) {
3533                 /* Note: FDI PLL enabling _must_ be done before we enable the
3534                  * cpu pipes, hence this is separate from all the other fdi/pch
3535                  * enabling. */
3536                 ironlake_fdi_pll_enable(intel_crtc);
3537         } else {
3538                 assert_fdi_tx_disabled(dev_priv, pipe);
3539                 assert_fdi_rx_disabled(dev_priv, pipe);
3540         }
3541
3542         ironlake_pfit_enable(intel_crtc);
3543
3544         /*
3545          * On ILK+ LUT must be loaded before the pipe is running but with
3546          * clocks enabled
3547          */
3548         intel_crtc_load_lut(crtc);
3549
3550         intel_update_watermarks(crtc);
3551         intel_enable_pipe(dev_priv, pipe,
3552                           intel_crtc->config.has_pch_encoder, false);
3553         intel_enable_primary_plane(dev_priv, plane, pipe);
3554         intel_enable_planes(crtc);
3555         intel_crtc_update_cursor(crtc, true);
3556
3557         if (intel_crtc->config.has_pch_encoder)
3558                 ironlake_pch_enable(crtc);
3559
3560         mutex_lock(&dev->struct_mutex);
3561         intel_update_fbc(dev);
3562         mutex_unlock(&dev->struct_mutex);
3563
3564         for_each_encoder_on_crtc(dev, crtc, encoder)
3565                 encoder->enable(encoder);
3566
3567         if (HAS_PCH_CPT(dev))
3568                 cpt_verify_modeset(dev, intel_crtc->pipe);
3569
3570         /*
3571          * There seems to be a race in PCH platform hw (at least on some
3572          * outputs) where an enabled pipe still completes any pageflip right
3573          * away (as if the pipe is off) instead of waiting for vblank. As soon
3574          * as the first vblank happend, everything works as expected. Hence just
3575          * wait for one vblank before returning to avoid strange things
3576          * happening.
3577          */
3578         intel_wait_for_vblank(dev, intel_crtc->pipe);
3579 }
3580
3581 /* IPS only exists on ULT machines and is tied to pipe A. */
3582 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3583 {
3584         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3585 }
3586
3587 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3588 {
3589         struct drm_device *dev = crtc->dev;
3590         struct drm_i915_private *dev_priv = dev->dev_private;
3591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3592         int pipe = intel_crtc->pipe;
3593         int plane = intel_crtc->plane;
3594
3595         intel_enable_primary_plane(dev_priv, plane, pipe);
3596         intel_enable_planes(crtc);
3597         intel_crtc_update_cursor(crtc, true);
3598
3599         hsw_enable_ips(intel_crtc);
3600
3601         mutex_lock(&dev->struct_mutex);
3602         intel_update_fbc(dev);
3603         mutex_unlock(&dev->struct_mutex);
3604 }
3605
3606 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3607 {
3608         struct drm_device *dev = crtc->dev;
3609         struct drm_i915_private *dev_priv = dev->dev_private;
3610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3611         int pipe = intel_crtc->pipe;
3612         int plane = intel_crtc->plane;
3613
3614         intel_crtc_wait_for_pending_flips(crtc);
3615         drm_vblank_off(dev, pipe);
3616
3617         /* FBC must be disabled before disabling the plane on HSW. */
3618         if (dev_priv->fbc.plane == plane)
3619                 intel_disable_fbc(dev);
3620
3621         hsw_disable_ips(intel_crtc);
3622
3623         intel_crtc_update_cursor(crtc, false);
3624         intel_disable_planes(crtc);
3625         intel_disable_primary_plane(dev_priv, plane, pipe);
3626 }
3627
3628 /*
3629  * This implements the workaround described in the "notes" section of the mode
3630  * set sequence documentation. When going from no pipes or single pipe to
3631  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3632  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3633  */
3634 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3635 {
3636         struct drm_device *dev = crtc->base.dev;
3637         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3638
3639         /* We want to get the other_active_crtc only if there's only 1 other
3640          * active crtc. */
3641         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3642                 if (!crtc_it->active || crtc_it == crtc)
3643                         continue;
3644
3645                 if (other_active_crtc)
3646                         return;
3647
3648                 other_active_crtc = crtc_it;
3649         }
3650         if (!other_active_crtc)
3651                 return;
3652
3653         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3654         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3655 }
3656
3657 static void haswell_crtc_enable(struct drm_crtc *crtc)
3658 {
3659         struct drm_device *dev = crtc->dev;
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3662         struct intel_encoder *encoder;
3663         int pipe = intel_crtc->pipe;
3664
3665         WARN_ON(!crtc->enabled);
3666
3667         if (intel_crtc->active)
3668                 return;
3669
3670         intel_crtc->active = true;
3671
3672         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3673         if (intel_crtc->config.has_pch_encoder)
3674                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3675
3676         if (intel_crtc->config.has_pch_encoder)
3677                 dev_priv->display.fdi_link_train(crtc);
3678
3679         for_each_encoder_on_crtc(dev, crtc, encoder)
3680                 if (encoder->pre_enable)
3681                         encoder->pre_enable(encoder);
3682
3683         intel_ddi_enable_pipe_clock(intel_crtc);
3684
3685         ironlake_pfit_enable(intel_crtc);
3686
3687         /*
3688          * On ILK+ LUT must be loaded before the pipe is running but with
3689          * clocks enabled
3690          */
3691         intel_crtc_load_lut(crtc);
3692
3693         intel_ddi_set_pipe_settings(crtc);
3694         intel_ddi_enable_transcoder_func(crtc);
3695
3696         intel_update_watermarks(crtc);
3697         intel_enable_pipe(dev_priv, pipe,
3698                           intel_crtc->config.has_pch_encoder, false);
3699
3700         if (intel_crtc->config.has_pch_encoder)
3701                 lpt_pch_enable(crtc);
3702
3703         for_each_encoder_on_crtc(dev, crtc, encoder) {
3704                 encoder->enable(encoder);
3705                 intel_opregion_notify_encoder(encoder, true);
3706         }
3707
3708         /* If we change the relative order between pipe/planes enabling, we need
3709          * to change the workaround. */
3710         haswell_mode_set_planes_workaround(intel_crtc);
3711         haswell_crtc_enable_planes(crtc);
3712
3713         /*
3714          * There seems to be a race in PCH platform hw (at least on some
3715          * outputs) where an enabled pipe still completes any pageflip right
3716          * away (as if the pipe is off) instead of waiting for vblank. As soon
3717          * as the first vblank happend, everything works as expected. Hence just
3718          * wait for one vblank before returning to avoid strange things
3719          * happening.
3720          */
3721         intel_wait_for_vblank(dev, intel_crtc->pipe);
3722 }
3723
3724 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3725 {
3726         struct drm_device *dev = crtc->base.dev;
3727         struct drm_i915_private *dev_priv = dev->dev_private;
3728         int pipe = crtc->pipe;
3729
3730         /* To avoid upsetting the power well on haswell only disable the pfit if
3731          * it's in use. The hw state code will make sure we get this right. */
3732         if (crtc->config.pch_pfit.enabled) {
3733                 I915_WRITE(PF_CTL(pipe), 0);
3734                 I915_WRITE(PF_WIN_POS(pipe), 0);
3735                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3736         }
3737 }
3738
3739 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3740 {
3741         struct drm_device *dev = crtc->dev;
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3744         struct intel_encoder *encoder;
3745         int pipe = intel_crtc->pipe;
3746         int plane = intel_crtc->plane;
3747         u32 reg, temp;
3748
3749
3750         if (!intel_crtc->active)
3751                 return;
3752
3753         for_each_encoder_on_crtc(dev, crtc, encoder)
3754                 encoder->disable(encoder);
3755
3756         intel_crtc_wait_for_pending_flips(crtc);
3757         drm_vblank_off(dev, pipe);
3758
3759         if (dev_priv->fbc.plane == plane)
3760                 intel_disable_fbc(dev);
3761
3762         intel_crtc_update_cursor(crtc, false);
3763         intel_disable_planes(crtc);
3764         intel_disable_primary_plane(dev_priv, plane, pipe);
3765
3766         if (intel_crtc->config.has_pch_encoder)
3767                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3768
3769         intel_disable_pipe(dev_priv, pipe);
3770
3771         ironlake_pfit_disable(intel_crtc);
3772
3773         for_each_encoder_on_crtc(dev, crtc, encoder)
3774                 if (encoder->post_disable)
3775                         encoder->post_disable(encoder);
3776
3777         if (intel_crtc->config.has_pch_encoder) {
3778                 ironlake_fdi_disable(crtc);
3779
3780                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3781                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3782
3783                 if (HAS_PCH_CPT(dev)) {
3784                         /* disable TRANS_DP_CTL */
3785                         reg = TRANS_DP_CTL(pipe);
3786                         temp = I915_READ(reg);
3787                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3788                                   TRANS_DP_PORT_SEL_MASK);
3789                         temp |= TRANS_DP_PORT_SEL_NONE;
3790                         I915_WRITE(reg, temp);
3791
3792                         /* disable DPLL_SEL */
3793                         temp = I915_READ(PCH_DPLL_SEL);
3794                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3795                         I915_WRITE(PCH_DPLL_SEL, temp);
3796                 }
3797
3798                 /* disable PCH DPLL */
3799                 intel_disable_shared_dpll(intel_crtc);
3800
3801                 ironlake_fdi_pll_disable(intel_crtc);
3802         }
3803
3804         intel_crtc->active = false;
3805         intel_update_watermarks(crtc);
3806
3807         mutex_lock(&dev->struct_mutex);
3808         intel_update_fbc(dev);
3809         mutex_unlock(&dev->struct_mutex);
3810 }
3811
3812 static void haswell_crtc_disable(struct drm_crtc *crtc)
3813 {
3814         struct drm_device *dev = crtc->dev;
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817         struct intel_encoder *encoder;
3818         int pipe = intel_crtc->pipe;
3819         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3820
3821         if (!intel_crtc->active)
3822                 return;
3823
3824         haswell_crtc_disable_planes(crtc);
3825
3826         for_each_encoder_on_crtc(dev, crtc, encoder) {
3827                 intel_opregion_notify_encoder(encoder, false);
3828                 encoder->disable(encoder);
3829         }
3830
3831         if (intel_crtc->config.has_pch_encoder)
3832                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3833         intel_disable_pipe(dev_priv, pipe);
3834
3835         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3836
3837         ironlake_pfit_disable(intel_crtc);
3838
3839         intel_ddi_disable_pipe_clock(intel_crtc);
3840
3841         for_each_encoder_on_crtc(dev, crtc, encoder)
3842                 if (encoder->post_disable)
3843                         encoder->post_disable(encoder);
3844
3845         if (intel_crtc->config.has_pch_encoder) {
3846                 lpt_disable_pch_transcoder(dev_priv);
3847                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3848                 intel_ddi_fdi_disable(crtc);
3849         }
3850
3851         intel_crtc->active = false;
3852         intel_update_watermarks(crtc);
3853
3854         mutex_lock(&dev->struct_mutex);
3855         intel_update_fbc(dev);
3856         mutex_unlock(&dev->struct_mutex);
3857 }
3858
3859 static void ironlake_crtc_off(struct drm_crtc *crtc)
3860 {
3861         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3862         intel_put_shared_dpll(intel_crtc);
3863 }
3864
3865 static void haswell_crtc_off(struct drm_crtc *crtc)
3866 {
3867         intel_ddi_put_crtc_pll(crtc);
3868 }
3869
3870 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3871 {
3872         if (!enable && intel_crtc->overlay) {
3873                 struct drm_device *dev = intel_crtc->base.dev;
3874                 struct drm_i915_private *dev_priv = dev->dev_private;
3875
3876                 mutex_lock(&dev->struct_mutex);
3877                 dev_priv->mm.interruptible = false;
3878                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3879                 dev_priv->mm.interruptible = true;
3880                 mutex_unlock(&dev->struct_mutex);
3881         }
3882
3883         /* Let userspace switch the overlay on again. In most cases userspace
3884          * has to recompute where to put it anyway.
3885          */
3886 }
3887
3888 /**
3889  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3890  * cursor plane briefly if not already running after enabling the display
3891  * plane.
3892  * This workaround avoids occasional blank screens when self refresh is
3893  * enabled.
3894  */
3895 static void
3896 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3897 {
3898         u32 cntl = I915_READ(CURCNTR(pipe));
3899
3900         if ((cntl & CURSOR_MODE) == 0) {
3901                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3902
3903                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3904                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3905                 intel_wait_for_vblank(dev_priv->dev, pipe);
3906                 I915_WRITE(CURCNTR(pipe), cntl);
3907                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3908                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3909         }
3910 }
3911
3912 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3913 {
3914         struct drm_device *dev = crtc->base.dev;
3915         struct drm_i915_private *dev_priv = dev->dev_private;
3916         struct intel_crtc_config *pipe_config = &crtc->config;
3917
3918         if (!crtc->config.gmch_pfit.control)
3919                 return;
3920
3921         /*
3922          * The panel fitter should only be adjusted whilst the pipe is disabled,
3923          * according to register description and PRM.
3924          */
3925         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3926         assert_pipe_disabled(dev_priv, crtc->pipe);
3927
3928         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3929         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3930
3931         /* Border color in case we don't scale up to the full screen. Black by
3932          * default, change to something else for debugging. */
3933         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3934 }
3935
3936 int valleyview_get_vco(struct drm_i915_private *dev_priv)
3937 {
3938         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3939
3940         /* Obtain SKU information */
3941         mutex_lock(&dev_priv->dpio_lock);
3942         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3943                 CCK_FUSE_HPLL_FREQ_MASK;
3944         mutex_unlock(&dev_priv->dpio_lock);
3945
3946         return vco_freq[hpll_freq];
3947 }
3948
3949 /* Adjust CDclk dividers to allow high res or save power if possible */
3950 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3951 {
3952         struct drm_i915_private *dev_priv = dev->dev_private;
3953         u32 val, cmd;
3954
3955         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3956                 cmd = 2;
3957         else if (cdclk == 266)
3958                 cmd = 1;
3959         else
3960                 cmd = 0;
3961
3962         mutex_lock(&dev_priv->rps.hw_lock);
3963         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3964         val &= ~DSPFREQGUAR_MASK;
3965         val |= (cmd << DSPFREQGUAR_SHIFT);
3966         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
3967         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
3968                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
3969                      50)) {
3970                 DRM_ERROR("timed out waiting for CDclk change\n");
3971         }
3972         mutex_unlock(&dev_priv->rps.hw_lock);
3973
3974         if (cdclk == 400) {
3975                 u32 divider, vco;
3976
3977                 vco = valleyview_get_vco(dev_priv);
3978                 divider = ((vco << 1) / cdclk) - 1;
3979
3980                 mutex_lock(&dev_priv->dpio_lock);
3981                 /* adjust cdclk divider */
3982                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
3983                 val &= ~0xf;
3984                 val |= divider;
3985                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
3986                 mutex_unlock(&dev_priv->dpio_lock);
3987         }
3988
3989         mutex_lock(&dev_priv->dpio_lock);
3990         /* adjust self-refresh exit latency value */
3991         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
3992         val &= ~0x7f;
3993
3994         /*
3995          * For high bandwidth configs, we set a higher latency in the bunit
3996          * so that the core display fetch happens in time to avoid underruns.
3997          */
3998         if (cdclk == 400)
3999                 val |= 4500 / 250; /* 4.5 usec */
4000         else
4001                 val |= 3000 / 250; /* 3.0 usec */
4002         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4003         mutex_unlock(&dev_priv->dpio_lock);
4004
4005         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4006         intel_i2c_reset(dev);
4007 }
4008
4009 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4010 {
4011         int cur_cdclk, vco;
4012         int divider;
4013
4014         vco = valleyview_get_vco(dev_priv);
4015
4016         mutex_lock(&dev_priv->dpio_lock);
4017         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4018         mutex_unlock(&dev_priv->dpio_lock);
4019
4020         divider &= 0xf;
4021
4022         cur_cdclk = (vco << 1) / (divider + 1);
4023
4024         return cur_cdclk;
4025 }
4026
4027 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4028                                  int max_pixclk)
4029 {
4030         int cur_cdclk;
4031
4032         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4033
4034         /*
4035          * Really only a few cases to deal with, as only 4 CDclks are supported:
4036          *   200MHz
4037          *   267MHz
4038          *   320MHz
4039          *   400MHz
4040          * So we check to see whether we're above 90% of the lower bin and
4041          * adjust if needed.
4042          */
4043         if (max_pixclk > 288000) {
4044                 return 400;
4045         } else if (max_pixclk > 240000) {
4046                 return 320;
4047         } else
4048                 return 266;
4049         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4050 }
4051
4052 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4053                                  unsigned modeset_pipes,
4054                                  struct intel_crtc_config *pipe_config)
4055 {
4056         struct drm_device *dev = dev_priv->dev;
4057         struct intel_crtc *intel_crtc;
4058         int max_pixclk = 0;
4059
4060         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4061                             base.head) {
4062                 if (modeset_pipes & (1 << intel_crtc->pipe))
4063                         max_pixclk = max(max_pixclk,
4064                                          pipe_config->adjusted_mode.crtc_clock);
4065                 else if (intel_crtc->base.enabled)
4066                         max_pixclk = max(max_pixclk,
4067                                          intel_crtc->config.adjusted_mode.crtc_clock);
4068         }
4069
4070         return max_pixclk;
4071 }
4072
4073 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4074                                             unsigned *prepare_pipes,
4075                                             unsigned modeset_pipes,
4076                                             struct intel_crtc_config *pipe_config)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         struct intel_crtc *intel_crtc;
4080         int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4081                                                pipe_config);
4082         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4083
4084         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4085                 return;
4086
4087         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4088                             base.head)
4089                 if (intel_crtc->base.enabled)
4090                         *prepare_pipes |= (1 << intel_crtc->pipe);
4091 }
4092
4093 static void valleyview_modeset_global_resources(struct drm_device *dev)
4094 {
4095         struct drm_i915_private *dev_priv = dev->dev_private;
4096         int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4097         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4098         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4099
4100         if (req_cdclk != cur_cdclk)
4101                 valleyview_set_cdclk(dev, req_cdclk);
4102 }
4103
4104 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4105 {
4106         struct drm_device *dev = crtc->dev;
4107         struct drm_i915_private *dev_priv = dev->dev_private;
4108         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109         struct intel_encoder *encoder;
4110         int pipe = intel_crtc->pipe;
4111         int plane = intel_crtc->plane;
4112         bool is_dsi;
4113
4114         WARN_ON(!crtc->enabled);
4115
4116         if (intel_crtc->active)
4117                 return;
4118
4119         intel_crtc->active = true;
4120
4121         for_each_encoder_on_crtc(dev, crtc, encoder)
4122                 if (encoder->pre_pll_enable)
4123                         encoder->pre_pll_enable(encoder);
4124
4125         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4126
4127         if (!is_dsi)
4128                 vlv_enable_pll(intel_crtc);
4129
4130         for_each_encoder_on_crtc(dev, crtc, encoder)
4131                 if (encoder->pre_enable)
4132                         encoder->pre_enable(encoder);
4133
4134         i9xx_pfit_enable(intel_crtc);
4135
4136         intel_crtc_load_lut(crtc);
4137
4138         intel_update_watermarks(crtc);
4139         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4140         intel_enable_primary_plane(dev_priv, plane, pipe);
4141         intel_enable_planes(crtc);
4142         intel_crtc_update_cursor(crtc, true);
4143
4144         intel_update_fbc(dev);
4145
4146         for_each_encoder_on_crtc(dev, crtc, encoder)
4147                 encoder->enable(encoder);
4148 }
4149
4150 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4151 {
4152         struct drm_device *dev = crtc->dev;
4153         struct drm_i915_private *dev_priv = dev->dev_private;
4154         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4155         struct intel_encoder *encoder;
4156         int pipe = intel_crtc->pipe;
4157         int plane = intel_crtc->plane;
4158
4159         WARN_ON(!crtc->enabled);
4160
4161         if (intel_crtc->active)
4162                 return;
4163
4164         intel_crtc->active = true;
4165
4166         for_each_encoder_on_crtc(dev, crtc, encoder)
4167                 if (encoder->pre_enable)
4168                         encoder->pre_enable(encoder);
4169
4170         i9xx_enable_pll(intel_crtc);
4171
4172         i9xx_pfit_enable(intel_crtc);
4173
4174         intel_crtc_load_lut(crtc);
4175
4176         intel_update_watermarks(crtc);
4177         intel_enable_pipe(dev_priv, pipe, false, false);
4178         intel_enable_primary_plane(dev_priv, plane, pipe);
4179         intel_enable_planes(crtc);
4180         /* The fixup needs to happen before cursor is enabled */
4181         if (IS_G4X(dev))
4182                 g4x_fixup_plane(dev_priv, pipe);
4183         intel_crtc_update_cursor(crtc, true);
4184
4185         /* Give the overlay scaler a chance to enable if it's on this pipe */
4186         intel_crtc_dpms_overlay(intel_crtc, true);
4187
4188         intel_update_fbc(dev);
4189
4190         for_each_encoder_on_crtc(dev, crtc, encoder)
4191                 encoder->enable(encoder);
4192 }
4193
4194 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4195 {
4196         struct drm_device *dev = crtc->base.dev;
4197         struct drm_i915_private *dev_priv = dev->dev_private;
4198
4199         if (!crtc->config.gmch_pfit.control)
4200                 return;
4201
4202         assert_pipe_disabled(dev_priv, crtc->pipe);
4203
4204         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4205                          I915_READ(PFIT_CONTROL));
4206         I915_WRITE(PFIT_CONTROL, 0);
4207 }
4208
4209 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4210 {
4211         struct drm_device *dev = crtc->dev;
4212         struct drm_i915_private *dev_priv = dev->dev_private;
4213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4214         struct intel_encoder *encoder;
4215         int pipe = intel_crtc->pipe;
4216         int plane = intel_crtc->plane;
4217
4218         if (!intel_crtc->active)
4219                 return;
4220
4221         for_each_encoder_on_crtc(dev, crtc, encoder)
4222                 encoder->disable(encoder);
4223
4224         /* Give the overlay scaler a chance to disable if it's on this pipe */
4225         intel_crtc_wait_for_pending_flips(crtc);
4226         drm_vblank_off(dev, pipe);
4227
4228         if (dev_priv->fbc.plane == plane)
4229                 intel_disable_fbc(dev);
4230
4231         intel_crtc_dpms_overlay(intel_crtc, false);
4232         intel_crtc_update_cursor(crtc, false);
4233         intel_disable_planes(crtc);
4234         intel_disable_primary_plane(dev_priv, plane, pipe);
4235
4236         intel_disable_pipe(dev_priv, pipe);
4237
4238         i9xx_pfit_disable(intel_crtc);
4239
4240         for_each_encoder_on_crtc(dev, crtc, encoder)
4241                 if (encoder->post_disable)
4242                         encoder->post_disable(encoder);
4243
4244         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4245                 vlv_disable_pll(dev_priv, pipe);
4246         else if (!IS_VALLEYVIEW(dev))
4247                 i9xx_disable_pll(dev_priv, pipe);
4248
4249         intel_crtc->active = false;
4250         intel_update_watermarks(crtc);
4251
4252         intel_update_fbc(dev);
4253 }
4254
4255 static void i9xx_crtc_off(struct drm_crtc *crtc)
4256 {
4257 }
4258
4259 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4260                                     bool enabled)
4261 {
4262         struct drm_device *dev = crtc->dev;
4263         struct drm_i915_master_private *master_priv;
4264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265         int pipe = intel_crtc->pipe;
4266
4267         if (!dev->primary->master)
4268                 return;
4269
4270         master_priv = dev->primary->master->driver_priv;
4271         if (!master_priv->sarea_priv)
4272                 return;
4273
4274         switch (pipe) {
4275         case 0:
4276                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4277                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4278                 break;
4279         case 1:
4280                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4281                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4282                 break;
4283         default:
4284                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4285                 break;
4286         }
4287 }
4288
4289 /**
4290  * Sets the power management mode of the pipe and plane.
4291  */
4292 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4293 {
4294         struct drm_device *dev = crtc->dev;
4295         struct drm_i915_private *dev_priv = dev->dev_private;
4296         struct intel_encoder *intel_encoder;
4297         bool enable = false;
4298
4299         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4300                 enable |= intel_encoder->connectors_active;
4301
4302         if (enable)
4303                 dev_priv->display.crtc_enable(crtc);
4304         else
4305                 dev_priv->display.crtc_disable(crtc);
4306
4307         intel_crtc_update_sarea(crtc, enable);
4308 }
4309
4310 static void intel_crtc_disable(struct drm_crtc *crtc)
4311 {
4312         struct drm_device *dev = crtc->dev;
4313         struct drm_connector *connector;
4314         struct drm_i915_private *dev_priv = dev->dev_private;
4315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4316
4317         /* crtc should still be enabled when we disable it. */
4318         WARN_ON(!crtc->enabled);
4319
4320         dev_priv->display.crtc_disable(crtc);
4321         intel_crtc->eld_vld = false;
4322         intel_crtc_update_sarea(crtc, false);
4323         dev_priv->display.off(crtc);
4324
4325         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4326         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4327         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4328
4329         if (crtc->fb) {
4330                 mutex_lock(&dev->struct_mutex);
4331                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4332                 mutex_unlock(&dev->struct_mutex);
4333                 crtc->fb = NULL;
4334         }
4335
4336         /* Update computed state. */
4337         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4338                 if (!connector->encoder || !connector->encoder->crtc)
4339                         continue;
4340
4341                 if (connector->encoder->crtc != crtc)
4342                         continue;
4343
4344                 connector->dpms = DRM_MODE_DPMS_OFF;
4345                 to_intel_encoder(connector->encoder)->connectors_active = false;
4346         }
4347 }
4348
4349 void intel_encoder_destroy(struct drm_encoder *encoder)
4350 {
4351         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4352
4353         drm_encoder_cleanup(encoder);
4354         kfree(intel_encoder);
4355 }
4356
4357 /* Simple dpms helper for encoders with just one connector, no cloning and only
4358  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4359  * state of the entire output pipe. */
4360 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4361 {
4362         if (mode == DRM_MODE_DPMS_ON) {
4363                 encoder->connectors_active = true;
4364
4365                 intel_crtc_update_dpms(encoder->base.crtc);
4366         } else {
4367                 encoder->connectors_active = false;
4368
4369                 intel_crtc_update_dpms(encoder->base.crtc);
4370         }
4371 }
4372
4373 /* Cross check the actual hw state with our own modeset state tracking (and it's
4374  * internal consistency). */
4375 static void intel_connector_check_state(struct intel_connector *connector)
4376 {
4377         if (connector->get_hw_state(connector)) {
4378                 struct intel_encoder *encoder = connector->encoder;
4379                 struct drm_crtc *crtc;
4380                 bool encoder_enabled;
4381                 enum pipe pipe;
4382
4383                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4384                               connector->base.base.id,
4385                               drm_get_connector_name(&connector->base));
4386
4387                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4388                      "wrong connector dpms state\n");
4389                 WARN(connector->base.encoder != &encoder->base,
4390                      "active connector not linked to encoder\n");
4391                 WARN(!encoder->connectors_active,
4392                      "encoder->connectors_active not set\n");
4393
4394                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4395                 WARN(!encoder_enabled, "encoder not enabled\n");
4396                 if (WARN_ON(!encoder->base.crtc))
4397                         return;
4398
4399                 crtc = encoder->base.crtc;
4400
4401                 WARN(!crtc->enabled, "crtc not enabled\n");
4402                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4403                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4404                      "encoder active on the wrong pipe\n");
4405         }
4406 }
4407
4408 /* Even simpler default implementation, if there's really no special case to
4409  * consider. */
4410 void intel_connector_dpms(struct drm_connector *connector, int mode)
4411 {
4412         /* All the simple cases only support two dpms states. */
4413         if (mode != DRM_MODE_DPMS_ON)
4414                 mode = DRM_MODE_DPMS_OFF;
4415
4416         if (mode == connector->dpms)
4417                 return;
4418
4419         connector->dpms = mode;
4420
4421         /* Only need to change hw state when actually enabled */
4422         if (connector->encoder)
4423                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4424
4425         intel_modeset_check_state(connector->dev);
4426 }
4427
4428 /* Simple connector->get_hw_state implementation for encoders that support only
4429  * one connector and no cloning and hence the encoder state determines the state
4430  * of the connector. */
4431 bool intel_connector_get_hw_state(struct intel_connector *connector)
4432 {
4433         enum pipe pipe = 0;
4434         struct intel_encoder *encoder = connector->encoder;
4435
4436         return encoder->get_hw_state(encoder, &pipe);
4437 }
4438
4439 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4440                                      struct intel_crtc_config *pipe_config)
4441 {
4442         struct drm_i915_private *dev_priv = dev->dev_private;
4443         struct intel_crtc *pipe_B_crtc =
4444                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4445
4446         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4447                       pipe_name(pipe), pipe_config->fdi_lanes);
4448         if (pipe_config->fdi_lanes > 4) {
4449                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4450                               pipe_name(pipe), pipe_config->fdi_lanes);
4451                 return false;
4452         }
4453
4454         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4455                 if (pipe_config->fdi_lanes > 2) {
4456                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4457                                       pipe_config->fdi_lanes);
4458                         return false;
4459                 } else {
4460                         return true;
4461                 }
4462         }
4463
4464         if (INTEL_INFO(dev)->num_pipes == 2)
4465                 return true;
4466
4467         /* Ivybridge 3 pipe is really complicated */
4468         switch (pipe) {
4469         case PIPE_A:
4470                 return true;
4471         case PIPE_B:
4472                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4473                     pipe_config->fdi_lanes > 2) {
4474                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4475                                       pipe_name(pipe), pipe_config->fdi_lanes);
4476                         return false;
4477                 }
4478                 return true;
4479         case PIPE_C:
4480                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4481                     pipe_B_crtc->config.fdi_lanes <= 2) {
4482                         if (pipe_config->fdi_lanes > 2) {
4483                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4484                                               pipe_name(pipe), pipe_config->fdi_lanes);
4485                                 return false;
4486                         }
4487                 } else {
4488                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4489                         return false;
4490                 }
4491                 return true;
4492         default:
4493                 BUG();
4494         }
4495 }
4496
4497 #define RETRY 1
4498 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4499                                        struct intel_crtc_config *pipe_config)
4500 {
4501         struct drm_device *dev = intel_crtc->base.dev;
4502         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4503         int lane, link_bw, fdi_dotclock;
4504         bool setup_ok, needs_recompute = false;
4505
4506 retry:
4507         /* FDI is a binary signal running at ~2.7GHz, encoding
4508          * each output octet as 10 bits. The actual frequency
4509          * is stored as a divider into a 100MHz clock, and the
4510          * mode pixel clock is stored in units of 1KHz.
4511          * Hence the bw of each lane in terms of the mode signal
4512          * is:
4513          */
4514         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4515
4516         fdi_dotclock = adjusted_mode->crtc_clock;
4517
4518         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4519                                            pipe_config->pipe_bpp);
4520
4521         pipe_config->fdi_lanes = lane;
4522
4523         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4524                                link_bw, &pipe_config->fdi_m_n);
4525
4526         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4527                                             intel_crtc->pipe, pipe_config);
4528         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4529                 pipe_config->pipe_bpp -= 2*3;
4530                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4531                               pipe_config->pipe_bpp);
4532                 needs_recompute = true;
4533                 pipe_config->bw_constrained = true;
4534
4535                 goto retry;
4536         }
4537
4538         if (needs_recompute)
4539                 return RETRY;
4540
4541         return setup_ok ? 0 : -EINVAL;
4542 }
4543
4544 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4545                                    struct intel_crtc_config *pipe_config)
4546 {
4547         pipe_config->ips_enabled = i915_enable_ips &&
4548                                    hsw_crtc_supports_ips(crtc) &&
4549                                    pipe_config->pipe_bpp <= 24;
4550 }
4551
4552 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4553                                      struct intel_crtc_config *pipe_config)
4554 {
4555         struct drm_device *dev = crtc->base.dev;
4556         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4557
4558         /* FIXME should check pixel clock limits on all platforms */
4559         if (INTEL_INFO(dev)->gen < 4) {
4560                 struct drm_i915_private *dev_priv = dev->dev_private;
4561                 int clock_limit =
4562                         dev_priv->display.get_display_clock_speed(dev);
4563
4564                 /*
4565                  * Enable pixel doubling when the dot clock
4566                  * is > 90% of the (display) core speed.
4567                  *
4568                  * GDG double wide on either pipe,
4569                  * otherwise pipe A only.
4570                  */
4571                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4572                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4573                         clock_limit *= 2;
4574                         pipe_config->double_wide = true;
4575                 }
4576
4577                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4578                         return -EINVAL;
4579         }
4580
4581         /*
4582          * Pipe horizontal size must be even in:
4583          * - DVO ganged mode
4584          * - LVDS dual channel mode
4585          * - Double wide pipe
4586          */
4587         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4588              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4589                 pipe_config->pipe_src_w &= ~1;
4590
4591         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4592          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4593          */
4594         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4595                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4596                 return -EINVAL;
4597
4598         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4599                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4600         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4601                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4602                  * for lvds. */
4603                 pipe_config->pipe_bpp = 8*3;
4604         }
4605
4606         if (HAS_IPS(dev))
4607                 hsw_compute_ips_config(crtc, pipe_config);
4608
4609         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4610          * clock survives for now. */
4611         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4612                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4613
4614         if (pipe_config->has_pch_encoder)
4615                 return ironlake_fdi_compute_config(crtc, pipe_config);
4616
4617         return 0;
4618 }
4619
4620 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4621 {
4622         return 400000; /* FIXME */
4623 }
4624
4625 static int i945_get_display_clock_speed(struct drm_device *dev)
4626 {
4627         return 400000;
4628 }
4629
4630 static int i915_get_display_clock_speed(struct drm_device *dev)
4631 {
4632         return 333000;
4633 }
4634
4635 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4636 {
4637         return 200000;
4638 }
4639
4640 static int pnv_get_display_clock_speed(struct drm_device *dev)
4641 {
4642         u16 gcfgc = 0;
4643
4644         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4645
4646         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4647         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4648                 return 267000;
4649         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4650                 return 333000;
4651         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4652                 return 444000;
4653         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4654                 return 200000;
4655         default:
4656                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4657         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4658                 return 133000;
4659         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4660                 return 167000;
4661         }
4662 }
4663
4664 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4665 {
4666         u16 gcfgc = 0;
4667
4668         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4669
4670         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4671                 return 133000;
4672         else {
4673                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4674                 case GC_DISPLAY_CLOCK_333_MHZ:
4675                         return 333000;
4676                 default:
4677                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4678                         return 190000;
4679                 }
4680         }
4681 }
4682
4683 static int i865_get_display_clock_speed(struct drm_device *dev)
4684 {
4685         return 266000;
4686 }
4687
4688 static int i855_get_display_clock_speed(struct drm_device *dev)
4689 {
4690         u16 hpllcc = 0;
4691         /* Assume that the hardware is in the high speed state.  This
4692          * should be the default.
4693          */
4694         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4695         case GC_CLOCK_133_200:
4696         case GC_CLOCK_100_200:
4697                 return 200000;
4698         case GC_CLOCK_166_250:
4699                 return 250000;
4700         case GC_CLOCK_100_133:
4701                 return 133000;
4702         }
4703
4704         /* Shouldn't happen */
4705         return 0;
4706 }
4707
4708 static int i830_get_display_clock_speed(struct drm_device *dev)
4709 {
4710         return 133000;
4711 }
4712
4713 static void
4714 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4715 {
4716         while (*num > DATA_LINK_M_N_MASK ||
4717                *den > DATA_LINK_M_N_MASK) {
4718                 *num >>= 1;
4719                 *den >>= 1;
4720         }
4721 }
4722
4723 static void compute_m_n(unsigned int m, unsigned int n,
4724                         uint32_t *ret_m, uint32_t *ret_n)
4725 {
4726         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4727         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4728         intel_reduce_m_n_ratio(ret_m, ret_n);
4729 }
4730
4731 void
4732 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4733                        int pixel_clock, int link_clock,
4734                        struct intel_link_m_n *m_n)
4735 {
4736         m_n->tu = 64;
4737
4738         compute_m_n(bits_per_pixel * pixel_clock,
4739                     link_clock * nlanes * 8,
4740                     &m_n->gmch_m, &m_n->gmch_n);
4741
4742         compute_m_n(pixel_clock, link_clock,
4743                     &m_n->link_m, &m_n->link_n);
4744 }
4745
4746 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4747 {
4748         if (i915_panel_use_ssc >= 0)
4749                 return i915_panel_use_ssc != 0;
4750         return dev_priv->vbt.lvds_use_ssc
4751                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4752 }
4753
4754 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4755 {
4756         struct drm_device *dev = crtc->dev;
4757         struct drm_i915_private *dev_priv = dev->dev_private;
4758         int refclk;
4759
4760         if (IS_VALLEYVIEW(dev)) {
4761                 refclk = 100000;
4762         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4763             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4764                 refclk = dev_priv->vbt.lvds_ssc_freq;
4765                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
4766         } else if (!IS_GEN2(dev)) {
4767                 refclk = 96000;
4768         } else {
4769                 refclk = 48000;
4770         }
4771
4772         return refclk;
4773 }
4774
4775 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4776 {
4777         return (1 << dpll->n) << 16 | dpll->m2;
4778 }
4779
4780 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4781 {
4782         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4783 }
4784
4785 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4786                                      intel_clock_t *reduced_clock)
4787 {
4788         struct drm_device *dev = crtc->base.dev;
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790         int pipe = crtc->pipe;
4791         u32 fp, fp2 = 0;
4792
4793         if (IS_PINEVIEW(dev)) {
4794                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4795                 if (reduced_clock)
4796                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4797         } else {
4798                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4799                 if (reduced_clock)
4800                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4801         }
4802
4803         I915_WRITE(FP0(pipe), fp);
4804         crtc->config.dpll_hw_state.fp0 = fp;
4805
4806         crtc->lowfreq_avail = false;
4807         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4808             reduced_clock && i915_powersave) {
4809                 I915_WRITE(FP1(pipe), fp2);
4810                 crtc->config.dpll_hw_state.fp1 = fp2;
4811                 crtc->lowfreq_avail = true;
4812         } else {
4813                 I915_WRITE(FP1(pipe), fp);
4814                 crtc->config.dpll_hw_state.fp1 = fp;
4815         }
4816 }
4817
4818 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4819                 pipe)
4820 {
4821         u32 reg_val;
4822
4823         /*
4824          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4825          * and set it to a reasonable value instead.
4826          */
4827         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4828         reg_val &= 0xffffff00;
4829         reg_val |= 0x00000030;
4830         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4831
4832         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4833         reg_val &= 0x8cffffff;
4834         reg_val = 0x8c000000;
4835         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4836
4837         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4838         reg_val &= 0xffffff00;
4839         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4840
4841         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4842         reg_val &= 0x00ffffff;
4843         reg_val |= 0xb0000000;
4844         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4845 }
4846
4847 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4848                                          struct intel_link_m_n *m_n)
4849 {
4850         struct drm_device *dev = crtc->base.dev;
4851         struct drm_i915_private *dev_priv = dev->dev_private;
4852         int pipe = crtc->pipe;
4853
4854         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4855         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4856         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4857         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4858 }
4859
4860 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4861                                          struct intel_link_m_n *m_n)
4862 {
4863         struct drm_device *dev = crtc->base.dev;
4864         struct drm_i915_private *dev_priv = dev->dev_private;
4865         int pipe = crtc->pipe;
4866         enum transcoder transcoder = crtc->config.cpu_transcoder;
4867
4868         if (INTEL_INFO(dev)->gen >= 5) {
4869                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4870                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4871                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4872                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4873         } else {
4874                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4875                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4876                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4877                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4878         }
4879 }
4880
4881 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4882 {
4883         if (crtc->config.has_pch_encoder)
4884                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4885         else
4886                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4887 }
4888
4889 static void vlv_update_pll(struct intel_crtc *crtc)
4890 {
4891         struct drm_device *dev = crtc->base.dev;
4892         struct drm_i915_private *dev_priv = dev->dev_private;
4893         int pipe = crtc->pipe;
4894         u32 dpll, mdiv;
4895         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4896         u32 coreclk, reg_val, dpll_md;
4897
4898         mutex_lock(&dev_priv->dpio_lock);
4899
4900         bestn = crtc->config.dpll.n;
4901         bestm1 = crtc->config.dpll.m1;
4902         bestm2 = crtc->config.dpll.m2;
4903         bestp1 = crtc->config.dpll.p1;
4904         bestp2 = crtc->config.dpll.p2;
4905
4906         /* See eDP HDMI DPIO driver vbios notes doc */
4907
4908         /* PLL B needs special handling */
4909         if (pipe)
4910                 vlv_pllb_recal_opamp(dev_priv, pipe);
4911
4912         /* Set up Tx target for periodic Rcomp update */
4913         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4914
4915         /* Disable target IRef on PLL */
4916         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4917         reg_val &= 0x00ffffff;
4918         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4919
4920         /* Disable fast lock */
4921         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4922
4923         /* Set idtafcrecal before PLL is enabled */
4924         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4925         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4926         mdiv |= ((bestn << DPIO_N_SHIFT));
4927         mdiv |= (1 << DPIO_K_SHIFT);
4928
4929         /*
4930          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4931          * but we don't support that).
4932          * Note: don't use the DAC post divider as it seems unstable.
4933          */
4934         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4935         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4936
4937         mdiv |= DPIO_ENABLE_CALIBRATION;
4938         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4939
4940         /* Set HBR and RBR LPF coefficients */
4941         if (crtc->config.port_clock == 162000 ||
4942             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4943             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4944                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4945                                  0x009f0003);
4946         else
4947                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4948                                  0x00d0000f);
4949
4950         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4951             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4952                 /* Use SSC source */
4953                 if (!pipe)
4954                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4955                                          0x0df40000);
4956                 else
4957                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4958                                          0x0df70000);
4959         } else { /* HDMI or VGA */
4960                 /* Use bend source */
4961                 if (!pipe)
4962                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4963                                          0x0df70000);
4964                 else
4965                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4966                                          0x0df40000);
4967         }
4968
4969         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4970         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4971         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4972             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4973                 coreclk |= 0x01000000;
4974         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
4975
4976         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
4977
4978         /* Enable DPIO clock input */
4979         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4980                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4981         /* We should never disable this, set it here for state tracking */
4982         if (pipe == PIPE_B)
4983                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4984         dpll |= DPLL_VCO_ENABLE;
4985         crtc->config.dpll_hw_state.dpll = dpll;
4986
4987         dpll_md = (crtc->config.pixel_multiplier - 1)
4988                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4989         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4990
4991         if (crtc->config.has_dp_encoder)
4992                 intel_dp_set_m_n(crtc);
4993
4994         mutex_unlock(&dev_priv->dpio_lock);
4995 }
4996
4997 static void i9xx_update_pll(struct intel_crtc *crtc,
4998                             intel_clock_t *reduced_clock,
4999                             int num_connectors)
5000 {
5001         struct drm_device *dev = crtc->base.dev;
5002         struct drm_i915_private *dev_priv = dev->dev_private;
5003         u32 dpll;
5004         bool is_sdvo;
5005         struct dpll *clock = &crtc->config.dpll;
5006
5007         i9xx_update_pll_dividers(crtc, reduced_clock);
5008
5009         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5010                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5011
5012         dpll = DPLL_VGA_MODE_DIS;
5013
5014         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5015                 dpll |= DPLLB_MODE_LVDS;
5016         else
5017                 dpll |= DPLLB_MODE_DAC_SERIAL;
5018
5019         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5020                 dpll |= (crtc->config.pixel_multiplier - 1)
5021                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5022         }
5023
5024         if (is_sdvo)
5025                 dpll |= DPLL_SDVO_HIGH_SPEED;
5026
5027         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5028                 dpll |= DPLL_SDVO_HIGH_SPEED;
5029
5030         /* compute bitmask from p1 value */
5031         if (IS_PINEVIEW(dev))
5032                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5033         else {
5034                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5035                 if (IS_G4X(dev) && reduced_clock)
5036                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5037         }
5038         switch (clock->p2) {
5039         case 5:
5040                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5041                 break;
5042         case 7:
5043                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5044                 break;
5045         case 10:
5046                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5047                 break;
5048         case 14:
5049                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5050                 break;
5051         }
5052         if (INTEL_INFO(dev)->gen >= 4)
5053                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5054
5055         if (crtc->config.sdvo_tv_clock)
5056                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5057         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5058                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5059                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5060         else
5061                 dpll |= PLL_REF_INPUT_DREFCLK;
5062
5063         dpll |= DPLL_VCO_ENABLE;
5064         crtc->config.dpll_hw_state.dpll = dpll;
5065
5066         if (INTEL_INFO(dev)->gen >= 4) {
5067                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5068                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5069                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5070         }
5071
5072         if (crtc->config.has_dp_encoder)
5073                 intel_dp_set_m_n(crtc);
5074 }
5075
5076 static void i8xx_update_pll(struct intel_crtc *crtc,
5077                             intel_clock_t *reduced_clock,
5078                             int num_connectors)
5079 {
5080         struct drm_device *dev = crtc->base.dev;
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082         u32 dpll;
5083         struct dpll *clock = &crtc->config.dpll;
5084
5085         i9xx_update_pll_dividers(crtc, reduced_clock);
5086
5087         dpll = DPLL_VGA_MODE_DIS;
5088
5089         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5090                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5091         } else {
5092                 if (clock->p1 == 2)
5093                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5094                 else
5095                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5096                 if (clock->p2 == 4)
5097                         dpll |= PLL_P2_DIVIDE_BY_4;
5098         }
5099
5100         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5101                 dpll |= DPLL_DVO_2X_MODE;
5102
5103         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5104                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5105                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5106         else
5107                 dpll |= PLL_REF_INPUT_DREFCLK;
5108
5109         dpll |= DPLL_VCO_ENABLE;
5110         crtc->config.dpll_hw_state.dpll = dpll;
5111 }
5112
5113 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5114 {
5115         struct drm_device *dev = intel_crtc->base.dev;
5116         struct drm_i915_private *dev_priv = dev->dev_private;
5117         enum pipe pipe = intel_crtc->pipe;
5118         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5119         struct drm_display_mode *adjusted_mode =
5120                 &intel_crtc->config.adjusted_mode;
5121         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5122
5123         /* We need to be careful not to changed the adjusted mode, for otherwise
5124          * the hw state checker will get angry at the mismatch. */
5125         crtc_vtotal = adjusted_mode->crtc_vtotal;
5126         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5127
5128         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5129                 /* the chip adds 2 halflines automatically */
5130                 crtc_vtotal -= 1;
5131                 crtc_vblank_end -= 1;
5132                 vsyncshift = adjusted_mode->crtc_hsync_start
5133                              - adjusted_mode->crtc_htotal / 2;
5134         } else {
5135                 vsyncshift = 0;
5136         }
5137
5138         if (INTEL_INFO(dev)->gen > 3)
5139                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5140
5141         I915_WRITE(HTOTAL(cpu_transcoder),
5142                    (adjusted_mode->crtc_hdisplay - 1) |
5143                    ((adjusted_mode->crtc_htotal - 1) << 16));
5144         I915_WRITE(HBLANK(cpu_transcoder),
5145                    (adjusted_mode->crtc_hblank_start - 1) |
5146                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5147         I915_WRITE(HSYNC(cpu_transcoder),
5148                    (adjusted_mode->crtc_hsync_start - 1) |
5149                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5150
5151         I915_WRITE(VTOTAL(cpu_transcoder),
5152                    (adjusted_mode->crtc_vdisplay - 1) |
5153                    ((crtc_vtotal - 1) << 16));
5154         I915_WRITE(VBLANK(cpu_transcoder),
5155                    (adjusted_mode->crtc_vblank_start - 1) |
5156                    ((crtc_vblank_end - 1) << 16));
5157         I915_WRITE(VSYNC(cpu_transcoder),
5158                    (adjusted_mode->crtc_vsync_start - 1) |
5159                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5160
5161         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5162          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5163          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5164          * bits. */
5165         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5166             (pipe == PIPE_B || pipe == PIPE_C))
5167                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5168
5169         /* pipesrc controls the size that is scaled from, which should
5170          * always be the user's requested size.
5171          */
5172         I915_WRITE(PIPESRC(pipe),
5173                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5174                    (intel_crtc->config.pipe_src_h - 1));
5175 }
5176
5177 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5178                                    struct intel_crtc_config *pipe_config)
5179 {
5180         struct drm_device *dev = crtc->base.dev;
5181         struct drm_i915_private *dev_priv = dev->dev_private;
5182         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5183         uint32_t tmp;
5184
5185         tmp = I915_READ(HTOTAL(cpu_transcoder));
5186         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5187         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5188         tmp = I915_READ(HBLANK(cpu_transcoder));
5189         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5190         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5191         tmp = I915_READ(HSYNC(cpu_transcoder));
5192         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5193         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5194
5195         tmp = I915_READ(VTOTAL(cpu_transcoder));
5196         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5197         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5198         tmp = I915_READ(VBLANK(cpu_transcoder));
5199         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5200         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5201         tmp = I915_READ(VSYNC(cpu_transcoder));
5202         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5203         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5204
5205         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5206                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5207                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5208                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5209         }
5210
5211         tmp = I915_READ(PIPESRC(crtc->pipe));
5212         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5213         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5214
5215         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5216         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5217 }
5218
5219 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5220                                              struct intel_crtc_config *pipe_config)
5221 {
5222         struct drm_crtc *crtc = &intel_crtc->base;
5223
5224         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5225         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5226         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5227         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5228
5229         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5230         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5231         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5232         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5233
5234         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5235
5236         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5237         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5238 }
5239
5240 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5241 {
5242         struct drm_device *dev = intel_crtc->base.dev;
5243         struct drm_i915_private *dev_priv = dev->dev_private;
5244         uint32_t pipeconf;
5245
5246         pipeconf = 0;
5247
5248         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5249             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5250                 pipeconf |= PIPECONF_ENABLE;
5251
5252         if (intel_crtc->config.double_wide)
5253                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5254
5255         /* only g4x and later have fancy bpc/dither controls */
5256         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5257                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5258                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5259                         pipeconf |= PIPECONF_DITHER_EN |
5260                                     PIPECONF_DITHER_TYPE_SP;
5261
5262                 switch (intel_crtc->config.pipe_bpp) {
5263                 case 18:
5264                         pipeconf |= PIPECONF_6BPC;
5265                         break;
5266                 case 24:
5267                         pipeconf |= PIPECONF_8BPC;
5268                         break;
5269                 case 30:
5270                         pipeconf |= PIPECONF_10BPC;
5271                         break;
5272                 default:
5273                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5274                         BUG();
5275                 }
5276         }
5277
5278         if (HAS_PIPE_CXSR(dev)) {
5279                 if (intel_crtc->lowfreq_avail) {
5280                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5281                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5282                 } else {
5283                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5284                 }
5285         }
5286
5287         if (!IS_GEN2(dev) &&
5288             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5289                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5290         else
5291                 pipeconf |= PIPECONF_PROGRESSIVE;
5292
5293         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5294                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5295
5296         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5297         POSTING_READ(PIPECONF(intel_crtc->pipe));
5298 }
5299
5300 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5301                               int x, int y,
5302                               struct drm_framebuffer *fb)
5303 {
5304         struct drm_device *dev = crtc->dev;
5305         struct drm_i915_private *dev_priv = dev->dev_private;
5306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5307         int pipe = intel_crtc->pipe;
5308         int plane = intel_crtc->plane;
5309         int refclk, num_connectors = 0;
5310         intel_clock_t clock, reduced_clock;
5311         u32 dspcntr;
5312         bool ok, has_reduced_clock = false;
5313         bool is_lvds = false, is_dsi = false;
5314         struct intel_encoder *encoder;
5315         const intel_limit_t *limit;
5316         int ret;
5317
5318         for_each_encoder_on_crtc(dev, crtc, encoder) {
5319                 switch (encoder->type) {
5320                 case INTEL_OUTPUT_LVDS:
5321                         is_lvds = true;
5322                         break;
5323                 case INTEL_OUTPUT_DSI:
5324                         is_dsi = true;
5325                         break;
5326                 }
5327
5328                 num_connectors++;
5329         }
5330
5331         if (is_dsi)
5332                 goto skip_dpll;
5333
5334         if (!intel_crtc->config.clock_set) {
5335                 refclk = i9xx_get_refclk(crtc, num_connectors);
5336
5337                 /*
5338                  * Returns a set of divisors for the desired target clock with
5339                  * the given refclk, or FALSE.  The returned values represent
5340                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5341                  * 2) / p1 / p2.
5342                  */
5343                 limit = intel_limit(crtc, refclk);
5344                 ok = dev_priv->display.find_dpll(limit, crtc,
5345                                                  intel_crtc->config.port_clock,
5346                                                  refclk, NULL, &clock);
5347                 if (!ok) {
5348                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5349                         return -EINVAL;
5350                 }
5351
5352                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5353                         /*
5354                          * Ensure we match the reduced clock's P to the target
5355                          * clock.  If the clocks don't match, we can't switch
5356                          * the display clock by using the FP0/FP1. In such case
5357                          * we will disable the LVDS downclock feature.
5358                          */
5359                         has_reduced_clock =
5360                                 dev_priv->display.find_dpll(limit, crtc,
5361                                                             dev_priv->lvds_downclock,
5362                                                             refclk, &clock,
5363                                                             &reduced_clock);
5364                 }
5365                 /* Compat-code for transition, will disappear. */
5366                 intel_crtc->config.dpll.n = clock.n;
5367                 intel_crtc->config.dpll.m1 = clock.m1;
5368                 intel_crtc->config.dpll.m2 = clock.m2;
5369                 intel_crtc->config.dpll.p1 = clock.p1;
5370                 intel_crtc->config.dpll.p2 = clock.p2;
5371         }
5372
5373         if (IS_GEN2(dev)) {
5374                 i8xx_update_pll(intel_crtc,
5375                                 has_reduced_clock ? &reduced_clock : NULL,
5376                                 num_connectors);
5377         } else if (IS_VALLEYVIEW(dev)) {
5378                 vlv_update_pll(intel_crtc);
5379         } else {
5380                 i9xx_update_pll(intel_crtc,
5381                                 has_reduced_clock ? &reduced_clock : NULL,
5382                                 num_connectors);
5383         }
5384
5385 skip_dpll:
5386         /* Set up the display plane register */
5387         dspcntr = DISPPLANE_GAMMA_ENABLE;
5388
5389         if (!IS_VALLEYVIEW(dev)) {
5390                 if (pipe == 0)
5391                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5392                 else
5393                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5394         }
5395
5396         intel_set_pipe_timings(intel_crtc);
5397
5398         /* pipesrc and dspsize control the size that is scaled from,
5399          * which should always be the user's requested size.
5400          */
5401         I915_WRITE(DSPSIZE(plane),
5402                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5403                    (intel_crtc->config.pipe_src_w - 1));
5404         I915_WRITE(DSPPOS(plane), 0);
5405
5406         i9xx_set_pipeconf(intel_crtc);
5407
5408         I915_WRITE(DSPCNTR(plane), dspcntr);
5409         POSTING_READ(DSPCNTR(plane));
5410
5411         ret = intel_pipe_set_base(crtc, x, y, fb);
5412
5413         return ret;
5414 }
5415
5416 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5417                                  struct intel_crtc_config *pipe_config)
5418 {
5419         struct drm_device *dev = crtc->base.dev;
5420         struct drm_i915_private *dev_priv = dev->dev_private;
5421         uint32_t tmp;
5422
5423         tmp = I915_READ(PFIT_CONTROL);
5424         if (!(tmp & PFIT_ENABLE))
5425                 return;
5426
5427         /* Check whether the pfit is attached to our pipe. */
5428         if (INTEL_INFO(dev)->gen < 4) {
5429                 if (crtc->pipe != PIPE_B)
5430                         return;
5431         } else {
5432                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5433                         return;
5434         }
5435
5436         pipe_config->gmch_pfit.control = tmp;
5437         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5438         if (INTEL_INFO(dev)->gen < 5)
5439                 pipe_config->gmch_pfit.lvds_border_bits =
5440                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5441 }
5442
5443 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5444                                struct intel_crtc_config *pipe_config)
5445 {
5446         struct drm_device *dev = crtc->base.dev;
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448         int pipe = pipe_config->cpu_transcoder;
5449         intel_clock_t clock;
5450         u32 mdiv;
5451         int refclk = 100000;
5452
5453         mutex_lock(&dev_priv->dpio_lock);
5454         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5455         mutex_unlock(&dev_priv->dpio_lock);
5456
5457         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5458         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5459         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5460         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5461         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5462
5463         vlv_clock(refclk, &clock);
5464
5465         /* clock.dot is the fast clock */
5466         pipe_config->port_clock = clock.dot / 5;
5467 }
5468
5469 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5470                                  struct intel_crtc_config *pipe_config)
5471 {
5472         struct drm_device *dev = crtc->base.dev;
5473         struct drm_i915_private *dev_priv = dev->dev_private;
5474         uint32_t tmp;
5475
5476         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5477         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5478
5479         tmp = I915_READ(PIPECONF(crtc->pipe));
5480         if (!(tmp & PIPECONF_ENABLE))
5481                 return false;
5482
5483         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5484                 switch (tmp & PIPECONF_BPC_MASK) {
5485                 case PIPECONF_6BPC:
5486                         pipe_config->pipe_bpp = 18;
5487                         break;
5488                 case PIPECONF_8BPC:
5489                         pipe_config->pipe_bpp = 24;
5490                         break;
5491                 case PIPECONF_10BPC:
5492                         pipe_config->pipe_bpp = 30;
5493                         break;
5494                 default:
5495                         break;
5496                 }
5497         }
5498
5499         if (INTEL_INFO(dev)->gen < 4)
5500                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5501
5502         intel_get_pipe_timings(crtc, pipe_config);
5503
5504         i9xx_get_pfit_config(crtc, pipe_config);
5505
5506         if (INTEL_INFO(dev)->gen >= 4) {
5507                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5508                 pipe_config->pixel_multiplier =
5509                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5510                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5511                 pipe_config->dpll_hw_state.dpll_md = tmp;
5512         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5513                 tmp = I915_READ(DPLL(crtc->pipe));
5514                 pipe_config->pixel_multiplier =
5515                         ((tmp & SDVO_MULTIPLIER_MASK)
5516                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5517         } else {
5518                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5519                  * port and will be fixed up in the encoder->get_config
5520                  * function. */
5521                 pipe_config->pixel_multiplier = 1;
5522         }
5523         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5524         if (!IS_VALLEYVIEW(dev)) {
5525                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5526                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5527         } else {
5528                 /* Mask out read-only status bits. */
5529                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5530                                                      DPLL_PORTC_READY_MASK |
5531                                                      DPLL_PORTB_READY_MASK);
5532         }
5533
5534         if (IS_VALLEYVIEW(dev))
5535                 vlv_crtc_clock_get(crtc, pipe_config);
5536         else
5537                 i9xx_crtc_clock_get(crtc, pipe_config);
5538
5539         return true;
5540 }
5541
5542 static void ironlake_init_pch_refclk(struct drm_device *dev)
5543 {
5544         struct drm_i915_private *dev_priv = dev->dev_private;
5545         struct drm_mode_config *mode_config = &dev->mode_config;
5546         struct intel_encoder *encoder;
5547         u32 val, final;
5548         bool has_lvds = false;
5549         bool has_cpu_edp = false;
5550         bool has_panel = false;
5551         bool has_ck505 = false;
5552         bool can_ssc = false;
5553
5554         /* We need to take the global config into account */
5555         list_for_each_entry(encoder, &mode_config->encoder_list,
5556                             base.head) {
5557                 switch (encoder->type) {
5558                 case INTEL_OUTPUT_LVDS:
5559                         has_panel = true;
5560                         has_lvds = true;
5561                         break;
5562                 case INTEL_OUTPUT_EDP:
5563                         has_panel = true;
5564                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5565                                 has_cpu_edp = true;
5566                         break;
5567                 }
5568         }
5569
5570         if (HAS_PCH_IBX(dev)) {
5571                 has_ck505 = dev_priv->vbt.display_clock_mode;
5572                 can_ssc = has_ck505;
5573         } else {
5574                 has_ck505 = false;
5575                 can_ssc = true;
5576         }
5577
5578         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5579                       has_panel, has_lvds, has_ck505);
5580
5581         /* Ironlake: try to setup display ref clock before DPLL
5582          * enabling. This is only under driver's control after
5583          * PCH B stepping, previous chipset stepping should be
5584          * ignoring this setting.
5585          */
5586         val = I915_READ(PCH_DREF_CONTROL);
5587
5588         /* As we must carefully and slowly disable/enable each source in turn,
5589          * compute the final state we want first and check if we need to
5590          * make any changes at all.
5591          */
5592         final = val;
5593         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5594         if (has_ck505)
5595                 final |= DREF_NONSPREAD_CK505_ENABLE;
5596         else
5597                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5598
5599         final &= ~DREF_SSC_SOURCE_MASK;
5600         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5601         final &= ~DREF_SSC1_ENABLE;
5602
5603         if (has_panel) {
5604                 final |= DREF_SSC_SOURCE_ENABLE;
5605
5606                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5607                         final |= DREF_SSC1_ENABLE;
5608
5609                 if (has_cpu_edp) {
5610                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5611                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5612                         else
5613                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5614                 } else
5615                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5616         } else {
5617                 final |= DREF_SSC_SOURCE_DISABLE;
5618                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5619         }
5620
5621         if (final == val)
5622                 return;
5623
5624         /* Always enable nonspread source */
5625         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5626
5627         if (has_ck505)
5628                 val |= DREF_NONSPREAD_CK505_ENABLE;
5629         else
5630                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5631
5632         if (has_panel) {
5633                 val &= ~DREF_SSC_SOURCE_MASK;
5634                 val |= DREF_SSC_SOURCE_ENABLE;
5635
5636                 /* SSC must be turned on before enabling the CPU output  */
5637                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5638                         DRM_DEBUG_KMS("Using SSC on panel\n");
5639                         val |= DREF_SSC1_ENABLE;
5640                 } else
5641                         val &= ~DREF_SSC1_ENABLE;
5642
5643                 /* Get SSC going before enabling the outputs */
5644                 I915_WRITE(PCH_DREF_CONTROL, val);
5645                 POSTING_READ(PCH_DREF_CONTROL);
5646                 udelay(200);
5647
5648                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5649
5650                 /* Enable CPU source on CPU attached eDP */
5651                 if (has_cpu_edp) {
5652                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5653                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5654                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5655                         }
5656                         else
5657                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5658                 } else
5659                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5660
5661                 I915_WRITE(PCH_DREF_CONTROL, val);
5662                 POSTING_READ(PCH_DREF_CONTROL);
5663                 udelay(200);
5664         } else {
5665                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5666
5667                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5668
5669                 /* Turn off CPU output */
5670                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5671
5672                 I915_WRITE(PCH_DREF_CONTROL, val);
5673                 POSTING_READ(PCH_DREF_CONTROL);
5674                 udelay(200);
5675
5676                 /* Turn off the SSC source */
5677                 val &= ~DREF_SSC_SOURCE_MASK;
5678                 val |= DREF_SSC_SOURCE_DISABLE;
5679
5680                 /* Turn off SSC1 */
5681                 val &= ~DREF_SSC1_ENABLE;
5682
5683                 I915_WRITE(PCH_DREF_CONTROL, val);
5684                 POSTING_READ(PCH_DREF_CONTROL);
5685                 udelay(200);
5686         }
5687
5688         BUG_ON(val != final);
5689 }
5690
5691 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5692 {
5693         uint32_t tmp;
5694
5695         tmp = I915_READ(SOUTH_CHICKEN2);
5696         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5697         I915_WRITE(SOUTH_CHICKEN2, tmp);
5698
5699         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5700                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5701                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5702
5703         tmp = I915_READ(SOUTH_CHICKEN2);
5704         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5705         I915_WRITE(SOUTH_CHICKEN2, tmp);
5706
5707         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5708                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5709                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5710 }
5711
5712 /* WaMPhyProgramming:hsw */
5713 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5714 {
5715         uint32_t tmp;
5716
5717         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5718         tmp &= ~(0xFF << 24);
5719         tmp |= (0x12 << 24);
5720         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5721
5722         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5723         tmp |= (1 << 11);
5724         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5725
5726         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5727         tmp |= (1 << 11);
5728         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5729
5730         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5731         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5732         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5733
5734         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5735         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5736         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5737
5738         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5739         tmp &= ~(7 << 13);
5740         tmp |= (5 << 13);
5741         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5742
5743         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5744         tmp &= ~(7 << 13);
5745         tmp |= (5 << 13);
5746         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5747
5748         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5749         tmp &= ~0xFF;
5750         tmp |= 0x1C;
5751         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5752
5753         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5754         tmp &= ~0xFF;
5755         tmp |= 0x1C;
5756         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5757
5758         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5759         tmp &= ~(0xFF << 16);
5760         tmp |= (0x1C << 16);
5761         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5762
5763         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5764         tmp &= ~(0xFF << 16);
5765         tmp |= (0x1C << 16);
5766         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5767
5768         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5769         tmp |= (1 << 27);
5770         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5771
5772         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5773         tmp |= (1 << 27);
5774         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5775
5776         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5777         tmp &= ~(0xF << 28);
5778         tmp |= (4 << 28);
5779         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5780
5781         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5782         tmp &= ~(0xF << 28);
5783         tmp |= (4 << 28);
5784         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5785 }
5786
5787 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5788  * Programming" based on the parameters passed:
5789  * - Sequence to enable CLKOUT_DP
5790  * - Sequence to enable CLKOUT_DP without spread
5791  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5792  */
5793 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5794                                  bool with_fdi)
5795 {
5796         struct drm_i915_private *dev_priv = dev->dev_private;
5797         uint32_t reg, tmp;
5798
5799         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5800                 with_spread = true;
5801         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5802                  with_fdi, "LP PCH doesn't have FDI\n"))
5803                 with_fdi = false;
5804
5805         mutex_lock(&dev_priv->dpio_lock);
5806
5807         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5808         tmp &= ~SBI_SSCCTL_DISABLE;
5809         tmp |= SBI_SSCCTL_PATHALT;
5810         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5811
5812         udelay(24);
5813
5814         if (with_spread) {
5815                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5816                 tmp &= ~SBI_SSCCTL_PATHALT;
5817                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5818
5819                 if (with_fdi) {
5820                         lpt_reset_fdi_mphy(dev_priv);
5821                         lpt_program_fdi_mphy(dev_priv);
5822                 }
5823         }
5824
5825         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5826                SBI_GEN0 : SBI_DBUFF0;
5827         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5828         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5829         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5830
5831         mutex_unlock(&dev_priv->dpio_lock);
5832 }
5833
5834 /* Sequence to disable CLKOUT_DP */
5835 static void lpt_disable_clkout_dp(struct drm_device *dev)
5836 {
5837         struct drm_i915_private *dev_priv = dev->dev_private;
5838         uint32_t reg, tmp;
5839
5840         mutex_lock(&dev_priv->dpio_lock);
5841
5842         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5843                SBI_GEN0 : SBI_DBUFF0;
5844         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5845         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5846         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5847
5848         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5849         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5850                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5851                         tmp |= SBI_SSCCTL_PATHALT;
5852                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5853                         udelay(32);
5854                 }
5855                 tmp |= SBI_SSCCTL_DISABLE;
5856                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5857         }
5858
5859         mutex_unlock(&dev_priv->dpio_lock);
5860 }
5861
5862 static void lpt_init_pch_refclk(struct drm_device *dev)
5863 {
5864         struct drm_mode_config *mode_config = &dev->mode_config;
5865         struct intel_encoder *encoder;
5866         bool has_vga = false;
5867
5868         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5869                 switch (encoder->type) {
5870                 case INTEL_OUTPUT_ANALOG:
5871                         has_vga = true;
5872                         break;
5873                 }
5874         }
5875
5876         if (has_vga)
5877                 lpt_enable_clkout_dp(dev, true, true);
5878         else
5879                 lpt_disable_clkout_dp(dev);
5880 }
5881
5882 /*
5883  * Initialize reference clocks when the driver loads
5884  */
5885 void intel_init_pch_refclk(struct drm_device *dev)
5886 {
5887         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5888                 ironlake_init_pch_refclk(dev);
5889         else if (HAS_PCH_LPT(dev))
5890                 lpt_init_pch_refclk(dev);
5891 }
5892
5893 static int ironlake_get_refclk(struct drm_crtc *crtc)
5894 {
5895         struct drm_device *dev = crtc->dev;
5896         struct drm_i915_private *dev_priv = dev->dev_private;
5897         struct intel_encoder *encoder;
5898         int num_connectors = 0;
5899         bool is_lvds = false;
5900
5901         for_each_encoder_on_crtc(dev, crtc, encoder) {
5902                 switch (encoder->type) {
5903                 case INTEL_OUTPUT_LVDS:
5904                         is_lvds = true;
5905                         break;
5906                 }
5907                 num_connectors++;
5908         }
5909
5910         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5911                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
5912                               dev_priv->vbt.lvds_ssc_freq);
5913                 return dev_priv->vbt.lvds_ssc_freq;
5914         }
5915
5916         return 120000;
5917 }
5918
5919 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5920 {
5921         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5923         int pipe = intel_crtc->pipe;
5924         uint32_t val;
5925
5926         val = 0;
5927
5928         switch (intel_crtc->config.pipe_bpp) {
5929         case 18:
5930                 val |= PIPECONF_6BPC;
5931                 break;
5932         case 24:
5933                 val |= PIPECONF_8BPC;
5934                 break;
5935         case 30:
5936                 val |= PIPECONF_10BPC;
5937                 break;
5938         case 36:
5939                 val |= PIPECONF_12BPC;
5940                 break;
5941         default:
5942                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5943                 BUG();
5944         }
5945
5946         if (intel_crtc->config.dither)
5947                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5948
5949         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5950                 val |= PIPECONF_INTERLACED_ILK;
5951         else
5952                 val |= PIPECONF_PROGRESSIVE;
5953
5954         if (intel_crtc->config.limited_color_range)
5955                 val |= PIPECONF_COLOR_RANGE_SELECT;
5956
5957         I915_WRITE(PIPECONF(pipe), val);
5958         POSTING_READ(PIPECONF(pipe));
5959 }
5960
5961 /*
5962  * Set up the pipe CSC unit.
5963  *
5964  * Currently only full range RGB to limited range RGB conversion
5965  * is supported, but eventually this should handle various
5966  * RGB<->YCbCr scenarios as well.
5967  */
5968 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5969 {
5970         struct drm_device *dev = crtc->dev;
5971         struct drm_i915_private *dev_priv = dev->dev_private;
5972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5973         int pipe = intel_crtc->pipe;
5974         uint16_t coeff = 0x7800; /* 1.0 */
5975
5976         /*
5977          * TODO: Check what kind of values actually come out of the pipe
5978          * with these coeff/postoff values and adjust to get the best
5979          * accuracy. Perhaps we even need to take the bpc value into
5980          * consideration.
5981          */
5982
5983         if (intel_crtc->config.limited_color_range)
5984                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5985
5986         /*
5987          * GY/GU and RY/RU should be the other way around according
5988          * to BSpec, but reality doesn't agree. Just set them up in
5989          * a way that results in the correct picture.
5990          */
5991         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5992         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5993
5994         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5995         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5996
5997         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5998         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5999
6000         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6001         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6002         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6003
6004         if (INTEL_INFO(dev)->gen > 6) {
6005                 uint16_t postoff = 0;
6006
6007                 if (intel_crtc->config.limited_color_range)
6008                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6009
6010                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6011                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6012                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6013
6014                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6015         } else {
6016                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6017
6018                 if (intel_crtc->config.limited_color_range)
6019                         mode |= CSC_BLACK_SCREEN_OFFSET;
6020
6021                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6022         }
6023 }
6024
6025 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6026 {
6027         struct drm_device *dev = crtc->dev;
6028         struct drm_i915_private *dev_priv = dev->dev_private;
6029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6030         enum pipe pipe = intel_crtc->pipe;
6031         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6032         uint32_t val;
6033
6034         val = 0;
6035
6036         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6037                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6038
6039         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6040                 val |= PIPECONF_INTERLACED_ILK;
6041         else
6042                 val |= PIPECONF_PROGRESSIVE;
6043
6044         I915_WRITE(PIPECONF(cpu_transcoder), val);
6045         POSTING_READ(PIPECONF(cpu_transcoder));
6046
6047         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6048         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6049
6050         if (IS_BROADWELL(dev)) {
6051                 val = 0;
6052
6053                 switch (intel_crtc->config.pipe_bpp) {
6054                 case 18:
6055                         val |= PIPEMISC_DITHER_6_BPC;
6056                         break;
6057                 case 24:
6058                         val |= PIPEMISC_DITHER_8_BPC;
6059                         break;
6060                 case 30:
6061                         val |= PIPEMISC_DITHER_10_BPC;
6062                         break;
6063                 case 36:
6064                         val |= PIPEMISC_DITHER_12_BPC;
6065                         break;
6066                 default:
6067                         /* Case prevented by pipe_config_set_bpp. */
6068                         BUG();
6069                 }
6070
6071                 if (intel_crtc->config.dither)
6072                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6073
6074                 I915_WRITE(PIPEMISC(pipe), val);
6075         }
6076 }
6077
6078 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6079                                     intel_clock_t *clock,
6080                                     bool *has_reduced_clock,
6081                                     intel_clock_t *reduced_clock)
6082 {
6083         struct drm_device *dev = crtc->dev;
6084         struct drm_i915_private *dev_priv = dev->dev_private;
6085         struct intel_encoder *intel_encoder;
6086         int refclk;
6087         const intel_limit_t *limit;
6088         bool ret, is_lvds = false;
6089
6090         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6091                 switch (intel_encoder->type) {
6092                 case INTEL_OUTPUT_LVDS:
6093                         is_lvds = true;
6094                         break;
6095                 }
6096         }
6097
6098         refclk = ironlake_get_refclk(crtc);
6099
6100         /*
6101          * Returns a set of divisors for the desired target clock with the given
6102          * refclk, or FALSE.  The returned values represent the clock equation:
6103          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6104          */
6105         limit = intel_limit(crtc, refclk);
6106         ret = dev_priv->display.find_dpll(limit, crtc,
6107                                           to_intel_crtc(crtc)->config.port_clock,
6108                                           refclk, NULL, clock);
6109         if (!ret)
6110                 return false;
6111
6112         if (is_lvds && dev_priv->lvds_downclock_avail) {
6113                 /*
6114                  * Ensure we match the reduced clock's P to the target clock.
6115                  * If the clocks don't match, we can't switch the display clock
6116                  * by using the FP0/FP1. In such case we will disable the LVDS
6117                  * downclock feature.
6118                 */
6119                 *has_reduced_clock =
6120                         dev_priv->display.find_dpll(limit, crtc,
6121                                                     dev_priv->lvds_downclock,
6122                                                     refclk, clock,
6123                                                     reduced_clock);
6124         }
6125
6126         return true;
6127 }
6128
6129 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6130 {
6131         /*
6132          * Account for spread spectrum to avoid
6133          * oversubscribing the link. Max center spread
6134          * is 2.5%; use 5% for safety's sake.
6135          */
6136         u32 bps = target_clock * bpp * 21 / 20;
6137         return bps / (link_bw * 8) + 1;
6138 }
6139
6140 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6141 {
6142         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6143 }
6144
6145 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6146                                       u32 *fp,
6147                                       intel_clock_t *reduced_clock, u32 *fp2)
6148 {
6149         struct drm_crtc *crtc = &intel_crtc->base;
6150         struct drm_device *dev = crtc->dev;
6151         struct drm_i915_private *dev_priv = dev->dev_private;
6152         struct intel_encoder *intel_encoder;
6153         uint32_t dpll;
6154         int factor, num_connectors = 0;
6155         bool is_lvds = false, is_sdvo = false;
6156
6157         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6158                 switch (intel_encoder->type) {
6159                 case INTEL_OUTPUT_LVDS:
6160                         is_lvds = true;
6161                         break;
6162                 case INTEL_OUTPUT_SDVO:
6163                 case INTEL_OUTPUT_HDMI:
6164                         is_sdvo = true;
6165                         break;
6166                 }
6167
6168                 num_connectors++;
6169         }
6170
6171         /* Enable autotuning of the PLL clock (if permissible) */
6172         factor = 21;
6173         if (is_lvds) {
6174                 if ((intel_panel_use_ssc(dev_priv) &&
6175                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6176                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6177                         factor = 25;
6178         } else if (intel_crtc->config.sdvo_tv_clock)
6179                 factor = 20;
6180
6181         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6182                 *fp |= FP_CB_TUNE;
6183
6184         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6185                 *fp2 |= FP_CB_TUNE;
6186
6187         dpll = 0;
6188
6189         if (is_lvds)
6190                 dpll |= DPLLB_MODE_LVDS;
6191         else
6192                 dpll |= DPLLB_MODE_DAC_SERIAL;
6193
6194         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6195                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6196
6197         if (is_sdvo)
6198                 dpll |= DPLL_SDVO_HIGH_SPEED;
6199         if (intel_crtc->config.has_dp_encoder)
6200                 dpll |= DPLL_SDVO_HIGH_SPEED;
6201
6202         /* compute bitmask from p1 value */
6203         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6204         /* also FPA1 */
6205         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6206
6207         switch (intel_crtc->config.dpll.p2) {
6208         case 5:
6209                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6210                 break;
6211         case 7:
6212                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6213                 break;
6214         case 10:
6215                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6216                 break;
6217         case 14:
6218                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6219                 break;
6220         }
6221
6222         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6223                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6224         else
6225                 dpll |= PLL_REF_INPUT_DREFCLK;
6226
6227         return dpll | DPLL_VCO_ENABLE;
6228 }
6229
6230 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6231                                   int x, int y,
6232                                   struct drm_framebuffer *fb)
6233 {
6234         struct drm_device *dev = crtc->dev;
6235         struct drm_i915_private *dev_priv = dev->dev_private;
6236         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6237         int pipe = intel_crtc->pipe;
6238         int plane = intel_crtc->plane;
6239         int num_connectors = 0;
6240         intel_clock_t clock, reduced_clock;
6241         u32 dpll = 0, fp = 0, fp2 = 0;
6242         bool ok, has_reduced_clock = false;
6243         bool is_lvds = false;
6244         struct intel_encoder *encoder;
6245         struct intel_shared_dpll *pll;
6246         int ret;
6247
6248         for_each_encoder_on_crtc(dev, crtc, encoder) {
6249                 switch (encoder->type) {
6250                 case INTEL_OUTPUT_LVDS:
6251                         is_lvds = true;
6252                         break;
6253                 }
6254
6255                 num_connectors++;
6256         }
6257
6258         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6259              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6260
6261         ok = ironlake_compute_clocks(crtc, &clock,
6262                                      &has_reduced_clock, &reduced_clock);
6263         if (!ok && !intel_crtc->config.clock_set) {
6264                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6265                 return -EINVAL;
6266         }
6267         /* Compat-code for transition, will disappear. */
6268         if (!intel_crtc->config.clock_set) {
6269                 intel_crtc->config.dpll.n = clock.n;
6270                 intel_crtc->config.dpll.m1 = clock.m1;
6271                 intel_crtc->config.dpll.m2 = clock.m2;
6272                 intel_crtc->config.dpll.p1 = clock.p1;
6273                 intel_crtc->config.dpll.p2 = clock.p2;
6274         }
6275
6276         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6277         if (intel_crtc->config.has_pch_encoder) {
6278                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6279                 if (has_reduced_clock)
6280                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6281
6282                 dpll = ironlake_compute_dpll(intel_crtc,
6283                                              &fp, &reduced_clock,
6284                                              has_reduced_clock ? &fp2 : NULL);
6285
6286                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6287                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6288                 if (has_reduced_clock)
6289                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6290                 else
6291                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6292
6293                 pll = intel_get_shared_dpll(intel_crtc);
6294                 if (pll == NULL) {
6295                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6296                                          pipe_name(pipe));
6297                         return -EINVAL;
6298                 }
6299         } else
6300                 intel_put_shared_dpll(intel_crtc);
6301
6302         if (intel_crtc->config.has_dp_encoder)
6303                 intel_dp_set_m_n(intel_crtc);
6304
6305         if (is_lvds && has_reduced_clock && i915_powersave)
6306                 intel_crtc->lowfreq_avail = true;
6307         else
6308                 intel_crtc->lowfreq_avail = false;
6309
6310         intel_set_pipe_timings(intel_crtc);
6311
6312         if (intel_crtc->config.has_pch_encoder) {
6313                 intel_cpu_transcoder_set_m_n(intel_crtc,
6314                                              &intel_crtc->config.fdi_m_n);
6315         }
6316
6317         ironlake_set_pipeconf(crtc);
6318
6319         /* Set up the display plane register */
6320         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6321         POSTING_READ(DSPCNTR(plane));
6322
6323         ret = intel_pipe_set_base(crtc, x, y, fb);
6324
6325         return ret;
6326 }
6327
6328 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6329                                          struct intel_link_m_n *m_n)
6330 {
6331         struct drm_device *dev = crtc->base.dev;
6332         struct drm_i915_private *dev_priv = dev->dev_private;
6333         enum pipe pipe = crtc->pipe;
6334
6335         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6336         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6337         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6338                 & ~TU_SIZE_MASK;
6339         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6340         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6341                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6342 }
6343
6344 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6345                                          enum transcoder transcoder,
6346                                          struct intel_link_m_n *m_n)
6347 {
6348         struct drm_device *dev = crtc->base.dev;
6349         struct drm_i915_private *dev_priv = dev->dev_private;
6350         enum pipe pipe = crtc->pipe;
6351
6352         if (INTEL_INFO(dev)->gen >= 5) {
6353                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6354                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6355                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6356                         & ~TU_SIZE_MASK;
6357                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6358                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6359                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6360         } else {
6361                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6362                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6363                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6364                         & ~TU_SIZE_MASK;
6365                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6366                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6367                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6368         }
6369 }
6370
6371 void intel_dp_get_m_n(struct intel_crtc *crtc,
6372                       struct intel_crtc_config *pipe_config)
6373 {
6374         if (crtc->config.has_pch_encoder)
6375                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6376         else
6377                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6378                                              &pipe_config->dp_m_n);
6379 }
6380
6381 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6382                                         struct intel_crtc_config *pipe_config)
6383 {
6384         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6385                                      &pipe_config->fdi_m_n);
6386 }
6387
6388 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6389                                      struct intel_crtc_config *pipe_config)
6390 {
6391         struct drm_device *dev = crtc->base.dev;
6392         struct drm_i915_private *dev_priv = dev->dev_private;
6393         uint32_t tmp;
6394
6395         tmp = I915_READ(PF_CTL(crtc->pipe));
6396
6397         if (tmp & PF_ENABLE) {
6398                 pipe_config->pch_pfit.enabled = true;
6399                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6400                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6401
6402                 /* We currently do not free assignements of panel fitters on
6403                  * ivb/hsw (since we don't use the higher upscaling modes which
6404                  * differentiates them) so just WARN about this case for now. */
6405                 if (IS_GEN7(dev)) {
6406                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6407                                 PF_PIPE_SEL_IVB(crtc->pipe));
6408                 }
6409         }
6410 }
6411
6412 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6413                                      struct intel_crtc_config *pipe_config)
6414 {
6415         struct drm_device *dev = crtc->base.dev;
6416         struct drm_i915_private *dev_priv = dev->dev_private;
6417         uint32_t tmp;
6418
6419         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6420         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6421
6422         tmp = I915_READ(PIPECONF(crtc->pipe));
6423         if (!(tmp & PIPECONF_ENABLE))
6424                 return false;
6425
6426         switch (tmp & PIPECONF_BPC_MASK) {
6427         case PIPECONF_6BPC:
6428                 pipe_config->pipe_bpp = 18;
6429                 break;
6430         case PIPECONF_8BPC:
6431                 pipe_config->pipe_bpp = 24;
6432                 break;
6433         case PIPECONF_10BPC:
6434                 pipe_config->pipe_bpp = 30;
6435                 break;
6436         case PIPECONF_12BPC:
6437                 pipe_config->pipe_bpp = 36;
6438                 break;
6439         default:
6440                 break;
6441         }
6442
6443         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6444                 struct intel_shared_dpll *pll;
6445
6446                 pipe_config->has_pch_encoder = true;
6447
6448                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6449                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6450                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6451
6452                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6453
6454                 if (HAS_PCH_IBX(dev_priv->dev)) {
6455                         pipe_config->shared_dpll =
6456                                 (enum intel_dpll_id) crtc->pipe;
6457                 } else {
6458                         tmp = I915_READ(PCH_DPLL_SEL);
6459                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6460                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6461                         else
6462                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6463                 }
6464
6465                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6466
6467                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6468                                            &pipe_config->dpll_hw_state));
6469
6470                 tmp = pipe_config->dpll_hw_state.dpll;
6471                 pipe_config->pixel_multiplier =
6472                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6473                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6474
6475                 ironlake_pch_clock_get(crtc, pipe_config);
6476         } else {
6477                 pipe_config->pixel_multiplier = 1;
6478         }
6479
6480         intel_get_pipe_timings(crtc, pipe_config);
6481
6482         ironlake_get_pfit_config(crtc, pipe_config);
6483
6484         return true;
6485 }
6486
6487 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6488 {
6489         struct drm_device *dev = dev_priv->dev;
6490         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6491         struct intel_crtc *crtc;
6492         unsigned long irqflags;
6493         uint32_t val;
6494
6495         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6496                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6497                      pipe_name(crtc->pipe));
6498
6499         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6500         WARN(plls->spll_refcount, "SPLL enabled\n");
6501         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6502         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6503         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6504         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6505              "CPU PWM1 enabled\n");
6506         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6507              "CPU PWM2 enabled\n");
6508         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6509              "PCH PWM1 enabled\n");
6510         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6511              "Utility pin enabled\n");
6512         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6513
6514         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6515         val = I915_READ(DEIMR);
6516         WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6517              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6518         val = I915_READ(SDEIMR);
6519         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6520              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6521         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6522 }
6523
6524 /*
6525  * This function implements pieces of two sequences from BSpec:
6526  * - Sequence for display software to disable LCPLL
6527  * - Sequence for display software to allow package C8+
6528  * The steps implemented here are just the steps that actually touch the LCPLL
6529  * register. Callers should take care of disabling all the display engine
6530  * functions, doing the mode unset, fixing interrupts, etc.
6531  */
6532 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6533                               bool switch_to_fclk, bool allow_power_down)
6534 {
6535         uint32_t val;
6536
6537         assert_can_disable_lcpll(dev_priv);
6538
6539         val = I915_READ(LCPLL_CTL);
6540
6541         if (switch_to_fclk) {
6542                 val |= LCPLL_CD_SOURCE_FCLK;
6543                 I915_WRITE(LCPLL_CTL, val);
6544
6545                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6546                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6547                         DRM_ERROR("Switching to FCLK failed\n");
6548
6549                 val = I915_READ(LCPLL_CTL);
6550         }
6551
6552         val |= LCPLL_PLL_DISABLE;
6553         I915_WRITE(LCPLL_CTL, val);
6554         POSTING_READ(LCPLL_CTL);
6555
6556         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6557                 DRM_ERROR("LCPLL still locked\n");
6558
6559         val = I915_READ(D_COMP);
6560         val |= D_COMP_COMP_DISABLE;
6561         mutex_lock(&dev_priv->rps.hw_lock);
6562         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6563                 DRM_ERROR("Failed to disable D_COMP\n");
6564         mutex_unlock(&dev_priv->rps.hw_lock);
6565         POSTING_READ(D_COMP);
6566         ndelay(100);
6567
6568         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6569                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6570
6571         if (allow_power_down) {
6572                 val = I915_READ(LCPLL_CTL);
6573                 val |= LCPLL_POWER_DOWN_ALLOW;
6574                 I915_WRITE(LCPLL_CTL, val);
6575                 POSTING_READ(LCPLL_CTL);
6576         }
6577 }
6578
6579 /*
6580  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6581  * source.
6582  */
6583 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6584 {
6585         uint32_t val;
6586
6587         val = I915_READ(LCPLL_CTL);
6588
6589         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6590                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6591                 return;
6592
6593         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6594          * we'll hang the machine! */
6595         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
6596
6597         if (val & LCPLL_POWER_DOWN_ALLOW) {
6598                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6599                 I915_WRITE(LCPLL_CTL, val);
6600                 POSTING_READ(LCPLL_CTL);
6601         }
6602
6603         val = I915_READ(D_COMP);
6604         val |= D_COMP_COMP_FORCE;
6605         val &= ~D_COMP_COMP_DISABLE;
6606         mutex_lock(&dev_priv->rps.hw_lock);
6607         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6608                 DRM_ERROR("Failed to enable D_COMP\n");
6609         mutex_unlock(&dev_priv->rps.hw_lock);
6610         POSTING_READ(D_COMP);
6611
6612         val = I915_READ(LCPLL_CTL);
6613         val &= ~LCPLL_PLL_DISABLE;
6614         I915_WRITE(LCPLL_CTL, val);
6615
6616         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6617                 DRM_ERROR("LCPLL not locked yet\n");
6618
6619         if (val & LCPLL_CD_SOURCE_FCLK) {
6620                 val = I915_READ(LCPLL_CTL);
6621                 val &= ~LCPLL_CD_SOURCE_FCLK;
6622                 I915_WRITE(LCPLL_CTL, val);
6623
6624                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6625                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6626                         DRM_ERROR("Switching back to LCPLL failed\n");
6627         }
6628
6629         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
6630 }
6631
6632 void hsw_enable_pc8_work(struct work_struct *__work)
6633 {
6634         struct drm_i915_private *dev_priv =
6635                 container_of(to_delayed_work(__work), struct drm_i915_private,
6636                              pc8.enable_work);
6637         struct drm_device *dev = dev_priv->dev;
6638         uint32_t val;
6639
6640         WARN_ON(!HAS_PC8(dev));
6641
6642         if (dev_priv->pc8.enabled)
6643                 return;
6644
6645         DRM_DEBUG_KMS("Enabling package C8+\n");
6646
6647         dev_priv->pc8.enabled = true;
6648
6649         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6650                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6651                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6652                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6653         }
6654
6655         lpt_disable_clkout_dp(dev);
6656         hsw_pc8_disable_interrupts(dev);
6657         hsw_disable_lcpll(dev_priv, true, true);
6658
6659         intel_runtime_pm_put(dev_priv);
6660 }
6661
6662 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6663 {
6664         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6665         WARN(dev_priv->pc8.disable_count < 1,
6666              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6667
6668         dev_priv->pc8.disable_count--;
6669         if (dev_priv->pc8.disable_count != 0)
6670                 return;
6671
6672         schedule_delayed_work(&dev_priv->pc8.enable_work,
6673                               msecs_to_jiffies(i915_pc8_timeout));
6674 }
6675
6676 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6677 {
6678         struct drm_device *dev = dev_priv->dev;
6679         uint32_t val;
6680
6681         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6682         WARN(dev_priv->pc8.disable_count < 0,
6683              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6684
6685         dev_priv->pc8.disable_count++;
6686         if (dev_priv->pc8.disable_count != 1)
6687                 return;
6688
6689         WARN_ON(!HAS_PC8(dev));
6690
6691         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6692         if (!dev_priv->pc8.enabled)
6693                 return;
6694
6695         DRM_DEBUG_KMS("Disabling package C8+\n");
6696
6697         intel_runtime_pm_get(dev_priv);
6698
6699         hsw_restore_lcpll(dev_priv);
6700         hsw_pc8_restore_interrupts(dev);
6701         lpt_init_pch_refclk(dev);
6702
6703         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6704                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6705                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6706                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6707         }
6708
6709         intel_prepare_ddi(dev);
6710         i915_gem_init_swizzling(dev);
6711         mutex_lock(&dev_priv->rps.hw_lock);
6712         gen6_update_ring_freq(dev);
6713         mutex_unlock(&dev_priv->rps.hw_lock);
6714         dev_priv->pc8.enabled = false;
6715 }
6716
6717 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6718 {
6719         if (!HAS_PC8(dev_priv->dev))
6720                 return;
6721
6722         mutex_lock(&dev_priv->pc8.lock);
6723         __hsw_enable_package_c8(dev_priv);
6724         mutex_unlock(&dev_priv->pc8.lock);
6725 }
6726
6727 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6728 {
6729         if (!HAS_PC8(dev_priv->dev))
6730                 return;
6731
6732         mutex_lock(&dev_priv->pc8.lock);
6733         __hsw_disable_package_c8(dev_priv);
6734         mutex_unlock(&dev_priv->pc8.lock);
6735 }
6736
6737 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6738 {
6739         struct drm_device *dev = dev_priv->dev;
6740         struct intel_crtc *crtc;
6741         uint32_t val;
6742
6743         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6744                 if (crtc->base.enabled)
6745                         return false;
6746
6747         /* This case is still possible since we have the i915.disable_power_well
6748          * parameter and also the KVMr or something else might be requesting the
6749          * power well. */
6750         val = I915_READ(HSW_PWR_WELL_DRIVER);
6751         if (val != 0) {
6752                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6753                 return false;
6754         }
6755
6756         return true;
6757 }
6758
6759 /* Since we're called from modeset_global_resources there's no way to
6760  * symmetrically increase and decrease the refcount, so we use
6761  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6762  * or not.
6763  */
6764 static void hsw_update_package_c8(struct drm_device *dev)
6765 {
6766         struct drm_i915_private *dev_priv = dev->dev_private;
6767         bool allow;
6768
6769         if (!HAS_PC8(dev_priv->dev))
6770                 return;
6771
6772         if (!i915_enable_pc8)
6773                 return;
6774
6775         mutex_lock(&dev_priv->pc8.lock);
6776
6777         allow = hsw_can_enable_package_c8(dev_priv);
6778
6779         if (allow == dev_priv->pc8.requirements_met)
6780                 goto done;
6781
6782         dev_priv->pc8.requirements_met = allow;
6783
6784         if (allow)
6785                 __hsw_enable_package_c8(dev_priv);
6786         else
6787                 __hsw_disable_package_c8(dev_priv);
6788
6789 done:
6790         mutex_unlock(&dev_priv->pc8.lock);
6791 }
6792
6793 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6794 {
6795         if (!HAS_PC8(dev_priv->dev))
6796                 return;
6797
6798         mutex_lock(&dev_priv->pc8.lock);
6799         if (!dev_priv->pc8.gpu_idle) {
6800                 dev_priv->pc8.gpu_idle = true;
6801                 __hsw_enable_package_c8(dev_priv);
6802         }
6803         mutex_unlock(&dev_priv->pc8.lock);
6804 }
6805
6806 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6807 {
6808         if (!HAS_PC8(dev_priv->dev))
6809                 return;
6810
6811         mutex_lock(&dev_priv->pc8.lock);
6812         if (dev_priv->pc8.gpu_idle) {
6813                 dev_priv->pc8.gpu_idle = false;
6814                 __hsw_disable_package_c8(dev_priv);
6815         }
6816         mutex_unlock(&dev_priv->pc8.lock);
6817 }
6818
6819 #define for_each_power_domain(domain, mask)                             \
6820         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6821                 if ((1 << (domain)) & (mask))
6822
6823 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6824                                             enum pipe pipe, bool pfit_enabled)
6825 {
6826         unsigned long mask;
6827         enum transcoder transcoder;
6828
6829         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6830
6831         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6832         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6833         if (pfit_enabled)
6834                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6835
6836         return mask;
6837 }
6838
6839 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6840 {
6841         struct drm_i915_private *dev_priv = dev->dev_private;
6842
6843         if (dev_priv->power_domains.init_power_on == enable)
6844                 return;
6845
6846         if (enable)
6847                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6848         else
6849                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6850
6851         dev_priv->power_domains.init_power_on = enable;
6852 }
6853
6854 static void modeset_update_power_wells(struct drm_device *dev)
6855 {
6856         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6857         struct intel_crtc *crtc;
6858
6859         /*
6860          * First get all needed power domains, then put all unneeded, to avoid
6861          * any unnecessary toggling of the power wells.
6862          */
6863         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6864                 enum intel_display_power_domain domain;
6865
6866                 if (!crtc->base.enabled)
6867                         continue;
6868
6869                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6870                                                 crtc->pipe,
6871                                                 crtc->config.pch_pfit.enabled);
6872
6873                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6874                         intel_display_power_get(dev, domain);
6875         }
6876
6877         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6878                 enum intel_display_power_domain domain;
6879
6880                 for_each_power_domain(domain, crtc->enabled_power_domains)
6881                         intel_display_power_put(dev, domain);
6882
6883                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6884         }
6885
6886         intel_display_set_init_power(dev, false);
6887 }
6888
6889 static void haswell_modeset_global_resources(struct drm_device *dev)
6890 {
6891         modeset_update_power_wells(dev);
6892         hsw_update_package_c8(dev);
6893 }
6894
6895 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6896                                  int x, int y,
6897                                  struct drm_framebuffer *fb)
6898 {
6899         struct drm_device *dev = crtc->dev;
6900         struct drm_i915_private *dev_priv = dev->dev_private;
6901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6902         int plane = intel_crtc->plane;
6903         int ret;
6904
6905         if (!intel_ddi_pll_select(intel_crtc))
6906                 return -EINVAL;
6907         intel_ddi_pll_enable(intel_crtc);
6908
6909         if (intel_crtc->config.has_dp_encoder)
6910                 intel_dp_set_m_n(intel_crtc);
6911
6912         intel_crtc->lowfreq_avail = false;
6913
6914         intel_set_pipe_timings(intel_crtc);
6915
6916         if (intel_crtc->config.has_pch_encoder) {
6917                 intel_cpu_transcoder_set_m_n(intel_crtc,
6918                                              &intel_crtc->config.fdi_m_n);
6919         }
6920
6921         haswell_set_pipeconf(crtc);
6922
6923         intel_set_pipe_csc(crtc);
6924
6925         /* Set up the display plane register */
6926         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6927         POSTING_READ(DSPCNTR(plane));
6928
6929         ret = intel_pipe_set_base(crtc, x, y, fb);
6930
6931         return ret;
6932 }
6933
6934 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6935                                     struct intel_crtc_config *pipe_config)
6936 {
6937         struct drm_device *dev = crtc->base.dev;
6938         struct drm_i915_private *dev_priv = dev->dev_private;
6939         enum intel_display_power_domain pfit_domain;
6940         uint32_t tmp;
6941
6942         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6943         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6944
6945         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6946         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6947                 enum pipe trans_edp_pipe;
6948                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6949                 default:
6950                         WARN(1, "unknown pipe linked to edp transcoder\n");
6951                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6952                 case TRANS_DDI_EDP_INPUT_A_ON:
6953                         trans_edp_pipe = PIPE_A;
6954                         break;
6955                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6956                         trans_edp_pipe = PIPE_B;
6957                         break;
6958                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6959                         trans_edp_pipe = PIPE_C;
6960                         break;
6961                 }
6962
6963                 if (trans_edp_pipe == crtc->pipe)
6964                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6965         }
6966
6967         if (!intel_display_power_enabled(dev,
6968                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6969                 return false;
6970
6971         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6972         if (!(tmp & PIPECONF_ENABLE))
6973                 return false;
6974
6975         /*
6976          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6977          * DDI E. So just check whether this pipe is wired to DDI E and whether
6978          * the PCH transcoder is on.
6979          */
6980         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6981         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6982             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6983                 pipe_config->has_pch_encoder = true;
6984
6985                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6986                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6987                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6988
6989                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6990         }
6991
6992         intel_get_pipe_timings(crtc, pipe_config);
6993
6994         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6995         if (intel_display_power_enabled(dev, pfit_domain))
6996                 ironlake_get_pfit_config(crtc, pipe_config);
6997
6998         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6999                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
7000
7001         pipe_config->pixel_multiplier = 1;
7002
7003         return true;
7004 }
7005
7006 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7007                                int x, int y,
7008                                struct drm_framebuffer *fb)
7009 {
7010         struct drm_device *dev = crtc->dev;
7011         struct drm_i915_private *dev_priv = dev->dev_private;
7012         struct intel_encoder *encoder;
7013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7014         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7015         int pipe = intel_crtc->pipe;
7016         int ret;
7017
7018         drm_vblank_pre_modeset(dev, pipe);
7019
7020         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7021
7022         drm_vblank_post_modeset(dev, pipe);
7023
7024         if (ret != 0)
7025                 return ret;
7026
7027         for_each_encoder_on_crtc(dev, crtc, encoder) {
7028                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7029                         encoder->base.base.id,
7030                         drm_get_encoder_name(&encoder->base),
7031                         mode->base.id, mode->name);
7032                 encoder->mode_set(encoder);
7033         }
7034
7035         return 0;
7036 }
7037
7038 static struct {
7039         int clock;
7040         u32 config;
7041 } hdmi_audio_clock[] = {
7042         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7043         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7044         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7045         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7046         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7047         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7048         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7049         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7050         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7051         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7052 };
7053
7054 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7055 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7056 {
7057         int i;
7058
7059         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7060                 if (mode->clock == hdmi_audio_clock[i].clock)
7061                         break;
7062         }
7063
7064         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7065                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7066                 i = 1;
7067         }
7068
7069         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7070                       hdmi_audio_clock[i].clock,
7071                       hdmi_audio_clock[i].config);
7072
7073         return hdmi_audio_clock[i].config;
7074 }
7075
7076 static bool intel_eld_uptodate(struct drm_connector *connector,
7077                                int reg_eldv, uint32_t bits_eldv,
7078                                int reg_elda, uint32_t bits_elda,
7079                                int reg_edid)
7080 {
7081         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7082         uint8_t *eld = connector->eld;
7083         uint32_t i;
7084
7085         i = I915_READ(reg_eldv);
7086         i &= bits_eldv;
7087
7088         if (!eld[0])
7089                 return !i;
7090
7091         if (!i)
7092                 return false;
7093
7094         i = I915_READ(reg_elda);
7095         i &= ~bits_elda;
7096         I915_WRITE(reg_elda, i);
7097
7098         for (i = 0; i < eld[2]; i++)
7099                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7100                         return false;
7101
7102         return true;
7103 }
7104
7105 static void g4x_write_eld(struct drm_connector *connector,
7106                           struct drm_crtc *crtc,
7107                           struct drm_display_mode *mode)
7108 {
7109         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7110         uint8_t *eld = connector->eld;
7111         uint32_t eldv;
7112         uint32_t len;
7113         uint32_t i;
7114
7115         i = I915_READ(G4X_AUD_VID_DID);
7116
7117         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7118                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7119         else
7120                 eldv = G4X_ELDV_DEVCTG;
7121
7122         if (intel_eld_uptodate(connector,
7123                                G4X_AUD_CNTL_ST, eldv,
7124                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7125                                G4X_HDMIW_HDMIEDID))
7126                 return;
7127
7128         i = I915_READ(G4X_AUD_CNTL_ST);
7129         i &= ~(eldv | G4X_ELD_ADDR);
7130         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7131         I915_WRITE(G4X_AUD_CNTL_ST, i);
7132
7133         if (!eld[0])
7134                 return;
7135
7136         len = min_t(uint8_t, eld[2], len);
7137         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7138         for (i = 0; i < len; i++)
7139                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7140
7141         i = I915_READ(G4X_AUD_CNTL_ST);
7142         i |= eldv;
7143         I915_WRITE(G4X_AUD_CNTL_ST, i);
7144 }
7145
7146 static void haswell_write_eld(struct drm_connector *connector,
7147                               struct drm_crtc *crtc,
7148                               struct drm_display_mode *mode)
7149 {
7150         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7151         uint8_t *eld = connector->eld;
7152         struct drm_device *dev = crtc->dev;
7153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7154         uint32_t eldv;
7155         uint32_t i;
7156         int len;
7157         int pipe = to_intel_crtc(crtc)->pipe;
7158         int tmp;
7159
7160         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7161         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7162         int aud_config = HSW_AUD_CFG(pipe);
7163         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7164
7165
7166         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7167
7168         /* Audio output enable */
7169         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7170         tmp = I915_READ(aud_cntrl_st2);
7171         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7172         I915_WRITE(aud_cntrl_st2, tmp);
7173
7174         /* Wait for 1 vertical blank */
7175         intel_wait_for_vblank(dev, pipe);
7176
7177         /* Set ELD valid state */
7178         tmp = I915_READ(aud_cntrl_st2);
7179         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7180         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7181         I915_WRITE(aud_cntrl_st2, tmp);
7182         tmp = I915_READ(aud_cntrl_st2);
7183         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7184
7185         /* Enable HDMI mode */
7186         tmp = I915_READ(aud_config);
7187         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7188         /* clear N_programing_enable and N_value_index */
7189         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7190         I915_WRITE(aud_config, tmp);
7191
7192         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7193
7194         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7195         intel_crtc->eld_vld = true;
7196
7197         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7198                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7199                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7200                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7201         } else {
7202                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7203         }
7204
7205         if (intel_eld_uptodate(connector,
7206                                aud_cntrl_st2, eldv,
7207                                aud_cntl_st, IBX_ELD_ADDRESS,
7208                                hdmiw_hdmiedid))
7209                 return;
7210
7211         i = I915_READ(aud_cntrl_st2);
7212         i &= ~eldv;
7213         I915_WRITE(aud_cntrl_st2, i);
7214
7215         if (!eld[0])
7216                 return;
7217
7218         i = I915_READ(aud_cntl_st);
7219         i &= ~IBX_ELD_ADDRESS;
7220         I915_WRITE(aud_cntl_st, i);
7221         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7222         DRM_DEBUG_DRIVER("port num:%d\n", i);
7223
7224         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7225         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7226         for (i = 0; i < len; i++)
7227                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7228
7229         i = I915_READ(aud_cntrl_st2);
7230         i |= eldv;
7231         I915_WRITE(aud_cntrl_st2, i);
7232
7233 }
7234
7235 static void ironlake_write_eld(struct drm_connector *connector,
7236                                struct drm_crtc *crtc,
7237                                struct drm_display_mode *mode)
7238 {
7239         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7240         uint8_t *eld = connector->eld;
7241         uint32_t eldv;
7242         uint32_t i;
7243         int len;
7244         int hdmiw_hdmiedid;
7245         int aud_config;
7246         int aud_cntl_st;
7247         int aud_cntrl_st2;
7248         int pipe = to_intel_crtc(crtc)->pipe;
7249
7250         if (HAS_PCH_IBX(connector->dev)) {
7251                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7252                 aud_config = IBX_AUD_CFG(pipe);
7253                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7254                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7255         } else if (IS_VALLEYVIEW(connector->dev)) {
7256                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7257                 aud_config = VLV_AUD_CFG(pipe);
7258                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7259                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7260         } else {
7261                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7262                 aud_config = CPT_AUD_CFG(pipe);
7263                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7264                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7265         }
7266
7267         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7268
7269         if (IS_VALLEYVIEW(connector->dev))  {
7270                 struct intel_encoder *intel_encoder;
7271                 struct intel_digital_port *intel_dig_port;
7272
7273                 intel_encoder = intel_attached_encoder(connector);
7274                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7275                 i = intel_dig_port->port;
7276         } else {
7277                 i = I915_READ(aud_cntl_st);
7278                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7279                 /* DIP_Port_Select, 0x1 = PortB */
7280         }
7281
7282         if (!i) {
7283                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7284                 /* operate blindly on all ports */
7285                 eldv = IBX_ELD_VALIDB;
7286                 eldv |= IBX_ELD_VALIDB << 4;
7287                 eldv |= IBX_ELD_VALIDB << 8;
7288         } else {
7289                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7290                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7291         }
7292
7293         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7294                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7295                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7296                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7297         } else {
7298                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7299         }
7300
7301         if (intel_eld_uptodate(connector,
7302                                aud_cntrl_st2, eldv,
7303                                aud_cntl_st, IBX_ELD_ADDRESS,
7304                                hdmiw_hdmiedid))
7305                 return;
7306
7307         i = I915_READ(aud_cntrl_st2);
7308         i &= ~eldv;
7309         I915_WRITE(aud_cntrl_st2, i);
7310
7311         if (!eld[0])
7312                 return;
7313
7314         i = I915_READ(aud_cntl_st);
7315         i &= ~IBX_ELD_ADDRESS;
7316         I915_WRITE(aud_cntl_st, i);
7317
7318         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7319         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7320         for (i = 0; i < len; i++)
7321                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7322
7323         i = I915_READ(aud_cntrl_st2);
7324         i |= eldv;
7325         I915_WRITE(aud_cntrl_st2, i);
7326 }
7327
7328 void intel_write_eld(struct drm_encoder *encoder,
7329                      struct drm_display_mode *mode)
7330 {
7331         struct drm_crtc *crtc = encoder->crtc;
7332         struct drm_connector *connector;
7333         struct drm_device *dev = encoder->dev;
7334         struct drm_i915_private *dev_priv = dev->dev_private;
7335
7336         connector = drm_select_eld(encoder, mode);
7337         if (!connector)
7338                 return;
7339
7340         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7341                          connector->base.id,
7342                          drm_get_connector_name(connector),
7343                          connector->encoder->base.id,
7344                          drm_get_encoder_name(connector->encoder));
7345
7346         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7347
7348         if (dev_priv->display.write_eld)
7349                 dev_priv->display.write_eld(connector, crtc, mode);
7350 }
7351
7352 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7353 {
7354         struct drm_device *dev = crtc->dev;
7355         struct drm_i915_private *dev_priv = dev->dev_private;
7356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7357         bool visible = base != 0;
7358         u32 cntl;
7359
7360         if (intel_crtc->cursor_visible == visible)
7361                 return;
7362
7363         cntl = I915_READ(_CURACNTR);
7364         if (visible) {
7365                 /* On these chipsets we can only modify the base whilst
7366                  * the cursor is disabled.
7367                  */
7368                 I915_WRITE(_CURABASE, base);
7369
7370                 cntl &= ~(CURSOR_FORMAT_MASK);
7371                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7372                 cntl |= CURSOR_ENABLE |
7373                         CURSOR_GAMMA_ENABLE |
7374                         CURSOR_FORMAT_ARGB;
7375         } else
7376                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7377         I915_WRITE(_CURACNTR, cntl);
7378
7379         intel_crtc->cursor_visible = visible;
7380 }
7381
7382 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7383 {
7384         struct drm_device *dev = crtc->dev;
7385         struct drm_i915_private *dev_priv = dev->dev_private;
7386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7387         int pipe = intel_crtc->pipe;
7388         bool visible = base != 0;
7389
7390         if (intel_crtc->cursor_visible != visible) {
7391                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7392                 if (base) {
7393                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7394                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7395                         cntl |= pipe << 28; /* Connect to correct pipe */
7396                 } else {
7397                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7398                         cntl |= CURSOR_MODE_DISABLE;
7399                 }
7400                 I915_WRITE(CURCNTR(pipe), cntl);
7401
7402                 intel_crtc->cursor_visible = visible;
7403         }
7404         /* and commit changes on next vblank */
7405         POSTING_READ(CURCNTR(pipe));
7406         I915_WRITE(CURBASE(pipe), base);
7407         POSTING_READ(CURBASE(pipe));
7408 }
7409
7410 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7411 {
7412         struct drm_device *dev = crtc->dev;
7413         struct drm_i915_private *dev_priv = dev->dev_private;
7414         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7415         int pipe = intel_crtc->pipe;
7416         bool visible = base != 0;
7417
7418         if (intel_crtc->cursor_visible != visible) {
7419                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7420                 if (base) {
7421                         cntl &= ~CURSOR_MODE;
7422                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7423                 } else {
7424                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7425                         cntl |= CURSOR_MODE_DISABLE;
7426                 }
7427                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7428                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7429                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7430                 }
7431                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7432
7433                 intel_crtc->cursor_visible = visible;
7434         }
7435         /* and commit changes on next vblank */
7436         POSTING_READ(CURCNTR_IVB(pipe));
7437         I915_WRITE(CURBASE_IVB(pipe), base);
7438         POSTING_READ(CURBASE_IVB(pipe));
7439 }
7440
7441 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7442 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7443                                      bool on)
7444 {
7445         struct drm_device *dev = crtc->dev;
7446         struct drm_i915_private *dev_priv = dev->dev_private;
7447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7448         int pipe = intel_crtc->pipe;
7449         int x = intel_crtc->cursor_x;
7450         int y = intel_crtc->cursor_y;
7451         u32 base = 0, pos = 0;
7452         bool visible;
7453
7454         if (on)
7455                 base = intel_crtc->cursor_addr;
7456
7457         if (x >= intel_crtc->config.pipe_src_w)
7458                 base = 0;
7459
7460         if (y >= intel_crtc->config.pipe_src_h)
7461                 base = 0;
7462
7463         if (x < 0) {
7464                 if (x + intel_crtc->cursor_width <= 0)
7465                         base = 0;
7466
7467                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7468                 x = -x;
7469         }
7470         pos |= x << CURSOR_X_SHIFT;
7471
7472         if (y < 0) {
7473                 if (y + intel_crtc->cursor_height <= 0)
7474                         base = 0;
7475
7476                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7477                 y = -y;
7478         }
7479         pos |= y << CURSOR_Y_SHIFT;
7480
7481         visible = base != 0;
7482         if (!visible && !intel_crtc->cursor_visible)
7483                 return;
7484
7485         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7486                 I915_WRITE(CURPOS_IVB(pipe), pos);
7487                 ivb_update_cursor(crtc, base);
7488         } else {
7489                 I915_WRITE(CURPOS(pipe), pos);
7490                 if (IS_845G(dev) || IS_I865G(dev))
7491                         i845_update_cursor(crtc, base);
7492                 else
7493                         i9xx_update_cursor(crtc, base);
7494         }
7495 }
7496
7497 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7498                                  struct drm_file *file,
7499                                  uint32_t handle,
7500                                  uint32_t width, uint32_t height)
7501 {
7502         struct drm_device *dev = crtc->dev;
7503         struct drm_i915_private *dev_priv = dev->dev_private;
7504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7505         struct drm_i915_gem_object *obj;
7506         uint32_t addr;
7507         int ret;
7508
7509         /* if we want to turn off the cursor ignore width and height */
7510         if (!handle) {
7511                 DRM_DEBUG_KMS("cursor off\n");
7512                 addr = 0;
7513                 obj = NULL;
7514                 mutex_lock(&dev->struct_mutex);
7515                 goto finish;
7516         }
7517
7518         /* Currently we only support 64x64 cursors */
7519         if (width != 64 || height != 64) {
7520                 DRM_ERROR("we currently only support 64x64 cursors\n");
7521                 return -EINVAL;
7522         }
7523
7524         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7525         if (&obj->base == NULL)
7526                 return -ENOENT;
7527
7528         if (obj->base.size < width * height * 4) {
7529                 DRM_ERROR("buffer is to small\n");
7530                 ret = -ENOMEM;
7531                 goto fail;
7532         }
7533
7534         /* we only need to pin inside GTT if cursor is non-phy */
7535         mutex_lock(&dev->struct_mutex);
7536         if (!dev_priv->info->cursor_needs_physical) {
7537                 unsigned alignment;
7538
7539                 if (obj->tiling_mode) {
7540                         DRM_ERROR("cursor cannot be tiled\n");
7541                         ret = -EINVAL;
7542                         goto fail_locked;
7543                 }
7544
7545                 /* Note that the w/a also requires 2 PTE of padding following
7546                  * the bo. We currently fill all unused PTE with the shadow
7547                  * page and so we should always have valid PTE following the
7548                  * cursor preventing the VT-d warning.
7549                  */
7550                 alignment = 0;
7551                 if (need_vtd_wa(dev))
7552                         alignment = 64*1024;
7553
7554                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7555                 if (ret) {
7556                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7557                         goto fail_locked;
7558                 }
7559
7560                 ret = i915_gem_object_put_fence(obj);
7561                 if (ret) {
7562                         DRM_ERROR("failed to release fence for cursor");
7563                         goto fail_unpin;
7564                 }
7565
7566                 addr = i915_gem_obj_ggtt_offset(obj);
7567         } else {
7568                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7569                 ret = i915_gem_attach_phys_object(dev, obj,
7570                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7571                                                   align);
7572                 if (ret) {
7573                         DRM_ERROR("failed to attach phys object\n");
7574                         goto fail_locked;
7575                 }
7576                 addr = obj->phys_obj->handle->busaddr;
7577         }
7578
7579         if (IS_GEN2(dev))
7580                 I915_WRITE(CURSIZE, (height << 12) | width);
7581
7582  finish:
7583         if (intel_crtc->cursor_bo) {
7584                 if (dev_priv->info->cursor_needs_physical) {
7585                         if (intel_crtc->cursor_bo != obj)
7586                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7587                 } else
7588                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7589                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7590         }
7591
7592         mutex_unlock(&dev->struct_mutex);
7593
7594         intel_crtc->cursor_addr = addr;
7595         intel_crtc->cursor_bo = obj;
7596         intel_crtc->cursor_width = width;
7597         intel_crtc->cursor_height = height;
7598
7599         if (intel_crtc->active)
7600                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7601
7602         return 0;
7603 fail_unpin:
7604         i915_gem_object_unpin_from_display_plane(obj);
7605 fail_locked:
7606         mutex_unlock(&dev->struct_mutex);
7607 fail:
7608         drm_gem_object_unreference_unlocked(&obj->base);
7609         return ret;
7610 }
7611
7612 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7613 {
7614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7615
7616         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7617         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7618
7619         if (intel_crtc->active)
7620                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7621
7622         return 0;
7623 }
7624
7625 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7626                                  u16 *blue, uint32_t start, uint32_t size)
7627 {
7628         int end = (start + size > 256) ? 256 : start + size, i;
7629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7630
7631         for (i = start; i < end; i++) {
7632                 intel_crtc->lut_r[i] = red[i] >> 8;
7633                 intel_crtc->lut_g[i] = green[i] >> 8;
7634                 intel_crtc->lut_b[i] = blue[i] >> 8;
7635         }
7636
7637         intel_crtc_load_lut(crtc);
7638 }
7639
7640 /* VESA 640x480x72Hz mode to set on the pipe */
7641 static struct drm_display_mode load_detect_mode = {
7642         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7643                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7644 };
7645
7646 static struct drm_framebuffer *
7647 intel_framebuffer_create(struct drm_device *dev,
7648                          struct drm_mode_fb_cmd2 *mode_cmd,
7649                          struct drm_i915_gem_object *obj)
7650 {
7651         struct intel_framebuffer *intel_fb;
7652         int ret;
7653
7654         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7655         if (!intel_fb) {
7656                 drm_gem_object_unreference_unlocked(&obj->base);
7657                 return ERR_PTR(-ENOMEM);
7658         }
7659
7660         ret = i915_mutex_lock_interruptible(dev);
7661         if (ret)
7662                 goto err;
7663
7664         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7665         mutex_unlock(&dev->struct_mutex);
7666         if (ret)
7667                 goto err;
7668
7669         return &intel_fb->base;
7670 err:
7671         drm_gem_object_unreference_unlocked(&obj->base);
7672         kfree(intel_fb);
7673
7674         return ERR_PTR(ret);
7675 }
7676
7677 static u32
7678 intel_framebuffer_pitch_for_width(int width, int bpp)
7679 {
7680         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7681         return ALIGN(pitch, 64);
7682 }
7683
7684 static u32
7685 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7686 {
7687         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7688         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7689 }
7690
7691 static struct drm_framebuffer *
7692 intel_framebuffer_create_for_mode(struct drm_device *dev,
7693                                   struct drm_display_mode *mode,
7694                                   int depth, int bpp)
7695 {
7696         struct drm_i915_gem_object *obj;
7697         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7698
7699         obj = i915_gem_alloc_object(dev,
7700                                     intel_framebuffer_size_for_mode(mode, bpp));
7701         if (obj == NULL)
7702                 return ERR_PTR(-ENOMEM);
7703
7704         mode_cmd.width = mode->hdisplay;
7705         mode_cmd.height = mode->vdisplay;
7706         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7707                                                                 bpp);
7708         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7709
7710         return intel_framebuffer_create(dev, &mode_cmd, obj);
7711 }
7712
7713 static struct drm_framebuffer *
7714 mode_fits_in_fbdev(struct drm_device *dev,
7715                    struct drm_display_mode *mode)
7716 {
7717 #ifdef CONFIG_DRM_I915_FBDEV
7718         struct drm_i915_private *dev_priv = dev->dev_private;
7719         struct drm_i915_gem_object *obj;
7720         struct drm_framebuffer *fb;
7721
7722         if (dev_priv->fbdev == NULL)
7723                 return NULL;
7724
7725         obj = dev_priv->fbdev->ifb.obj;
7726         if (obj == NULL)
7727                 return NULL;
7728
7729         fb = &dev_priv->fbdev->ifb.base;
7730         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7731                                                                fb->bits_per_pixel))
7732                 return NULL;
7733
7734         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7735                 return NULL;
7736
7737         return fb;
7738 #else
7739         return NULL;
7740 #endif
7741 }
7742
7743 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7744                                 struct drm_display_mode *mode,
7745                                 struct intel_load_detect_pipe *old)
7746 {
7747         struct intel_crtc *intel_crtc;
7748         struct intel_encoder *intel_encoder =
7749                 intel_attached_encoder(connector);
7750         struct drm_crtc *possible_crtc;
7751         struct drm_encoder *encoder = &intel_encoder->base;
7752         struct drm_crtc *crtc = NULL;
7753         struct drm_device *dev = encoder->dev;
7754         struct drm_framebuffer *fb;
7755         int i = -1;
7756
7757         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7758                       connector->base.id, drm_get_connector_name(connector),
7759                       encoder->base.id, drm_get_encoder_name(encoder));
7760
7761         /*
7762          * Algorithm gets a little messy:
7763          *
7764          *   - if the connector already has an assigned crtc, use it (but make
7765          *     sure it's on first)
7766          *
7767          *   - try to find the first unused crtc that can drive this connector,
7768          *     and use that if we find one
7769          */
7770
7771         /* See if we already have a CRTC for this connector */
7772         if (encoder->crtc) {
7773                 crtc = encoder->crtc;
7774
7775                 mutex_lock(&crtc->mutex);
7776
7777                 old->dpms_mode = connector->dpms;
7778                 old->load_detect_temp = false;
7779
7780                 /* Make sure the crtc and connector are running */
7781                 if (connector->dpms != DRM_MODE_DPMS_ON)
7782                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7783
7784                 return true;
7785         }
7786
7787         /* Find an unused one (if possible) */
7788         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7789                 i++;
7790                 if (!(encoder->possible_crtcs & (1 << i)))
7791                         continue;
7792                 if (!possible_crtc->enabled) {
7793                         crtc = possible_crtc;
7794                         break;
7795                 }
7796         }
7797
7798         /*
7799          * If we didn't find an unused CRTC, don't use any.
7800          */
7801         if (!crtc) {
7802                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7803                 return false;
7804         }
7805
7806         mutex_lock(&crtc->mutex);
7807         intel_encoder->new_crtc = to_intel_crtc(crtc);
7808         to_intel_connector(connector)->new_encoder = intel_encoder;
7809
7810         intel_crtc = to_intel_crtc(crtc);
7811         old->dpms_mode = connector->dpms;
7812         old->load_detect_temp = true;
7813         old->release_fb = NULL;
7814
7815         if (!mode)
7816                 mode = &load_detect_mode;
7817
7818         /* We need a framebuffer large enough to accommodate all accesses
7819          * that the plane may generate whilst we perform load detection.
7820          * We can not rely on the fbcon either being present (we get called
7821          * during its initialisation to detect all boot displays, or it may
7822          * not even exist) or that it is large enough to satisfy the
7823          * requested mode.
7824          */
7825         fb = mode_fits_in_fbdev(dev, mode);
7826         if (fb == NULL) {
7827                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7828                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7829                 old->release_fb = fb;
7830         } else
7831                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7832         if (IS_ERR(fb)) {
7833                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7834                 mutex_unlock(&crtc->mutex);
7835                 return false;
7836         }
7837
7838         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7839                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7840                 if (old->release_fb)
7841                         old->release_fb->funcs->destroy(old->release_fb);
7842                 mutex_unlock(&crtc->mutex);
7843                 return false;
7844         }
7845
7846         /* let the connector get through one full cycle before testing */
7847         intel_wait_for_vblank(dev, intel_crtc->pipe);
7848         return true;
7849 }
7850
7851 void intel_release_load_detect_pipe(struct drm_connector *connector,
7852                                     struct intel_load_detect_pipe *old)
7853 {
7854         struct intel_encoder *intel_encoder =
7855                 intel_attached_encoder(connector);
7856         struct drm_encoder *encoder = &intel_encoder->base;
7857         struct drm_crtc *crtc = encoder->crtc;
7858
7859         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7860                       connector->base.id, drm_get_connector_name(connector),
7861                       encoder->base.id, drm_get_encoder_name(encoder));
7862
7863         if (old->load_detect_temp) {
7864                 to_intel_connector(connector)->new_encoder = NULL;
7865                 intel_encoder->new_crtc = NULL;
7866                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7867
7868                 if (old->release_fb) {
7869                         drm_framebuffer_unregister_private(old->release_fb);
7870                         drm_framebuffer_unreference(old->release_fb);
7871                 }
7872
7873                 mutex_unlock(&crtc->mutex);
7874                 return;
7875         }
7876
7877         /* Switch crtc and encoder back off if necessary */
7878         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7879                 connector->funcs->dpms(connector, old->dpms_mode);
7880
7881         mutex_unlock(&crtc->mutex);
7882 }
7883
7884 static int i9xx_pll_refclk(struct drm_device *dev,
7885                            const struct intel_crtc_config *pipe_config)
7886 {
7887         struct drm_i915_private *dev_priv = dev->dev_private;
7888         u32 dpll = pipe_config->dpll_hw_state.dpll;
7889
7890         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7891                 return dev_priv->vbt.lvds_ssc_freq;
7892         else if (HAS_PCH_SPLIT(dev))
7893                 return 120000;
7894         else if (!IS_GEN2(dev))
7895                 return 96000;
7896         else
7897                 return 48000;
7898 }
7899
7900 /* Returns the clock of the currently programmed mode of the given pipe. */
7901 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7902                                 struct intel_crtc_config *pipe_config)
7903 {
7904         struct drm_device *dev = crtc->base.dev;
7905         struct drm_i915_private *dev_priv = dev->dev_private;
7906         int pipe = pipe_config->cpu_transcoder;
7907         u32 dpll = pipe_config->dpll_hw_state.dpll;
7908         u32 fp;
7909         intel_clock_t clock;
7910         int refclk = i9xx_pll_refclk(dev, pipe_config);
7911
7912         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7913                 fp = pipe_config->dpll_hw_state.fp0;
7914         else
7915                 fp = pipe_config->dpll_hw_state.fp1;
7916
7917         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7918         if (IS_PINEVIEW(dev)) {
7919                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7920                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7921         } else {
7922                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7923                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7924         }
7925
7926         if (!IS_GEN2(dev)) {
7927                 if (IS_PINEVIEW(dev))
7928                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7929                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7930                 else
7931                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7932                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7933
7934                 switch (dpll & DPLL_MODE_MASK) {
7935                 case DPLLB_MODE_DAC_SERIAL:
7936                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7937                                 5 : 10;
7938                         break;
7939                 case DPLLB_MODE_LVDS:
7940                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7941                                 7 : 14;
7942                         break;
7943                 default:
7944                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7945                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7946                         return;
7947                 }
7948
7949                 if (IS_PINEVIEW(dev))
7950                         pineview_clock(refclk, &clock);
7951                 else
7952                         i9xx_clock(refclk, &clock);
7953         } else {
7954                 u32 lvds = I915_READ(LVDS);
7955                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
7956
7957                 if (is_lvds) {
7958                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7959                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7960
7961                         if (lvds & LVDS_CLKB_POWER_UP)
7962                                 clock.p2 = 7;
7963                         else
7964                                 clock.p2 = 14;
7965                 } else {
7966                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7967                                 clock.p1 = 2;
7968                         else {
7969                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7970                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7971                         }
7972                         if (dpll & PLL_P2_DIVIDE_BY_4)
7973                                 clock.p2 = 4;
7974                         else
7975                                 clock.p2 = 2;
7976                 }
7977
7978                 i9xx_clock(refclk, &clock);
7979         }
7980
7981         /*
7982          * This value includes pixel_multiplier. We will use
7983          * port_clock to compute adjusted_mode.crtc_clock in the
7984          * encoder's get_config() function.
7985          */
7986         pipe_config->port_clock = clock.dot;
7987 }
7988
7989 int intel_dotclock_calculate(int link_freq,
7990                              const struct intel_link_m_n *m_n)
7991 {
7992         /*
7993          * The calculation for the data clock is:
7994          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7995          * But we want to avoid losing precison if possible, so:
7996          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7997          *
7998          * and the link clock is simpler:
7999          * link_clock = (m * link_clock) / n
8000          */
8001
8002         if (!m_n->link_n)
8003                 return 0;
8004
8005         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8006 }
8007
8008 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8009                                    struct intel_crtc_config *pipe_config)
8010 {
8011         struct drm_device *dev = crtc->base.dev;
8012
8013         /* read out port_clock from the DPLL */
8014         i9xx_crtc_clock_get(crtc, pipe_config);
8015
8016         /*
8017          * This value does not include pixel_multiplier.
8018          * We will check that port_clock and adjusted_mode.crtc_clock
8019          * agree once we know their relationship in the encoder's
8020          * get_config() function.
8021          */
8022         pipe_config->adjusted_mode.crtc_clock =
8023                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8024                                          &pipe_config->fdi_m_n);
8025 }
8026
8027 /** Returns the currently programmed mode of the given pipe. */
8028 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8029                                              struct drm_crtc *crtc)
8030 {
8031         struct drm_i915_private *dev_priv = dev->dev_private;
8032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8033         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8034         struct drm_display_mode *mode;
8035         struct intel_crtc_config pipe_config;
8036         int htot = I915_READ(HTOTAL(cpu_transcoder));
8037         int hsync = I915_READ(HSYNC(cpu_transcoder));
8038         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8039         int vsync = I915_READ(VSYNC(cpu_transcoder));
8040         enum pipe pipe = intel_crtc->pipe;
8041
8042         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8043         if (!mode)
8044                 return NULL;
8045
8046         /*
8047          * Construct a pipe_config sufficient for getting the clock info
8048          * back out of crtc_clock_get.
8049          *
8050          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8051          * to use a real value here instead.
8052          */
8053         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8054         pipe_config.pixel_multiplier = 1;
8055         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8056         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8057         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8058         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8059
8060         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8061         mode->hdisplay = (htot & 0xffff) + 1;
8062         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8063         mode->hsync_start = (hsync & 0xffff) + 1;
8064         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8065         mode->vdisplay = (vtot & 0xffff) + 1;
8066         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8067         mode->vsync_start = (vsync & 0xffff) + 1;
8068         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8069
8070         drm_mode_set_name(mode);
8071
8072         return mode;
8073 }
8074
8075 static void intel_increase_pllclock(struct drm_crtc *crtc)
8076 {
8077         struct drm_device *dev = crtc->dev;
8078         drm_i915_private_t *dev_priv = dev->dev_private;
8079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8080         int pipe = intel_crtc->pipe;
8081         int dpll_reg = DPLL(pipe);
8082         int dpll;
8083
8084         if (HAS_PCH_SPLIT(dev))
8085                 return;
8086
8087         if (!dev_priv->lvds_downclock_avail)
8088                 return;
8089
8090         dpll = I915_READ(dpll_reg);
8091         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8092                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8093
8094                 assert_panel_unlocked(dev_priv, pipe);
8095
8096                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8097                 I915_WRITE(dpll_reg, dpll);
8098                 intel_wait_for_vblank(dev, pipe);
8099
8100                 dpll = I915_READ(dpll_reg);
8101                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8102                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8103         }
8104 }
8105
8106 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8107 {
8108         struct drm_device *dev = crtc->dev;
8109         drm_i915_private_t *dev_priv = dev->dev_private;
8110         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8111
8112         if (HAS_PCH_SPLIT(dev))
8113                 return;
8114
8115         if (!dev_priv->lvds_downclock_avail)
8116                 return;
8117
8118         /*
8119          * Since this is called by a timer, we should never get here in
8120          * the manual case.
8121          */
8122         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8123                 int pipe = intel_crtc->pipe;
8124                 int dpll_reg = DPLL(pipe);
8125                 int dpll;
8126
8127                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8128
8129                 assert_panel_unlocked(dev_priv, pipe);
8130
8131                 dpll = I915_READ(dpll_reg);
8132                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8133                 I915_WRITE(dpll_reg, dpll);
8134                 intel_wait_for_vblank(dev, pipe);
8135                 dpll = I915_READ(dpll_reg);
8136                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8137                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8138         }
8139
8140 }
8141
8142 void intel_mark_busy(struct drm_device *dev)
8143 {
8144         struct drm_i915_private *dev_priv = dev->dev_private;
8145
8146         hsw_package_c8_gpu_busy(dev_priv);
8147         i915_update_gfx_val(dev_priv);
8148 }
8149
8150 void intel_mark_idle(struct drm_device *dev)
8151 {
8152         struct drm_i915_private *dev_priv = dev->dev_private;
8153         struct drm_crtc *crtc;
8154
8155         hsw_package_c8_gpu_idle(dev_priv);
8156
8157         if (!i915_powersave)
8158                 return;
8159
8160         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8161                 if (!crtc->fb)
8162                         continue;
8163
8164                 intel_decrease_pllclock(crtc);
8165         }
8166
8167         if (dev_priv->info->gen >= 6)
8168                 gen6_rps_idle(dev->dev_private);
8169 }
8170
8171 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8172                         struct intel_ring_buffer *ring)
8173 {
8174         struct drm_device *dev = obj->base.dev;
8175         struct drm_crtc *crtc;
8176
8177         if (!i915_powersave)
8178                 return;
8179
8180         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8181                 if (!crtc->fb)
8182                         continue;
8183
8184                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8185                         continue;
8186
8187                 intel_increase_pllclock(crtc);
8188                 if (ring && intel_fbc_enabled(dev))
8189                         ring->fbc_dirty = true;
8190         }
8191 }
8192
8193 static void intel_crtc_destroy(struct drm_crtc *crtc)
8194 {
8195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8196         struct drm_device *dev = crtc->dev;
8197         struct intel_unpin_work *work;
8198         unsigned long flags;
8199
8200         spin_lock_irqsave(&dev->event_lock, flags);
8201         work = intel_crtc->unpin_work;
8202         intel_crtc->unpin_work = NULL;
8203         spin_unlock_irqrestore(&dev->event_lock, flags);
8204
8205         if (work) {
8206                 cancel_work_sync(&work->work);
8207                 kfree(work);
8208         }
8209
8210         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8211
8212         drm_crtc_cleanup(crtc);
8213
8214         kfree(intel_crtc);
8215 }
8216
8217 static void intel_unpin_work_fn(struct work_struct *__work)
8218 {
8219         struct intel_unpin_work *work =
8220                 container_of(__work, struct intel_unpin_work, work);
8221         struct drm_device *dev = work->crtc->dev;
8222
8223         mutex_lock(&dev->struct_mutex);
8224         intel_unpin_fb_obj(work->old_fb_obj);
8225         drm_gem_object_unreference(&work->pending_flip_obj->base);
8226         drm_gem_object_unreference(&work->old_fb_obj->base);
8227
8228         intel_update_fbc(dev);
8229         mutex_unlock(&dev->struct_mutex);
8230
8231         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8232         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8233
8234         kfree(work);
8235 }
8236
8237 static void do_intel_finish_page_flip(struct drm_device *dev,
8238                                       struct drm_crtc *crtc)
8239 {
8240         drm_i915_private_t *dev_priv = dev->dev_private;
8241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8242         struct intel_unpin_work *work;
8243         unsigned long flags;
8244
8245         /* Ignore early vblank irqs */
8246         if (intel_crtc == NULL)
8247                 return;
8248
8249         spin_lock_irqsave(&dev->event_lock, flags);
8250         work = intel_crtc->unpin_work;
8251
8252         /* Ensure we don't miss a work->pending update ... */
8253         smp_rmb();
8254
8255         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8256                 spin_unlock_irqrestore(&dev->event_lock, flags);
8257                 return;
8258         }
8259
8260         /* and that the unpin work is consistent wrt ->pending. */
8261         smp_rmb();
8262
8263         intel_crtc->unpin_work = NULL;
8264
8265         if (work->event)
8266                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8267
8268         drm_vblank_put(dev, intel_crtc->pipe);
8269
8270         spin_unlock_irqrestore(&dev->event_lock, flags);
8271
8272         wake_up_all(&dev_priv->pending_flip_queue);
8273
8274         queue_work(dev_priv->wq, &work->work);
8275
8276         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8277 }
8278
8279 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8280 {
8281         drm_i915_private_t *dev_priv = dev->dev_private;
8282         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8283
8284         do_intel_finish_page_flip(dev, crtc);
8285 }
8286
8287 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8288 {
8289         drm_i915_private_t *dev_priv = dev->dev_private;
8290         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8291
8292         do_intel_finish_page_flip(dev, crtc);
8293 }
8294
8295 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8296 {
8297         drm_i915_private_t *dev_priv = dev->dev_private;
8298         struct intel_crtc *intel_crtc =
8299                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8300         unsigned long flags;
8301
8302         /* NB: An MMIO update of the plane base pointer will also
8303          * generate a page-flip completion irq, i.e. every modeset
8304          * is also accompanied by a spurious intel_prepare_page_flip().
8305          */
8306         spin_lock_irqsave(&dev->event_lock, flags);
8307         if (intel_crtc->unpin_work)
8308                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8309         spin_unlock_irqrestore(&dev->event_lock, flags);
8310 }
8311
8312 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8313 {
8314         /* Ensure that the work item is consistent when activating it ... */
8315         smp_wmb();
8316         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8317         /* and that it is marked active as soon as the irq could fire. */
8318         smp_wmb();
8319 }
8320
8321 static int intel_gen2_queue_flip(struct drm_device *dev,
8322                                  struct drm_crtc *crtc,
8323                                  struct drm_framebuffer *fb,
8324                                  struct drm_i915_gem_object *obj,
8325                                  uint32_t flags)
8326 {
8327         struct drm_i915_private *dev_priv = dev->dev_private;
8328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8329         u32 flip_mask;
8330         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8331         int ret;
8332
8333         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8334         if (ret)
8335                 goto err;
8336
8337         ret = intel_ring_begin(ring, 6);
8338         if (ret)
8339                 goto err_unpin;
8340
8341         /* Can't queue multiple flips, so wait for the previous
8342          * one to finish before executing the next.
8343          */
8344         if (intel_crtc->plane)
8345                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8346         else
8347                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8348         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8349         intel_ring_emit(ring, MI_NOOP);
8350         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8351                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8352         intel_ring_emit(ring, fb->pitches[0]);
8353         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8354         intel_ring_emit(ring, 0); /* aux display base address, unused */
8355
8356         intel_mark_page_flip_active(intel_crtc);
8357         __intel_ring_advance(ring);
8358         return 0;
8359
8360 err_unpin:
8361         intel_unpin_fb_obj(obj);
8362 err:
8363         return ret;
8364 }
8365
8366 static int intel_gen3_queue_flip(struct drm_device *dev,
8367                                  struct drm_crtc *crtc,
8368                                  struct drm_framebuffer *fb,
8369                                  struct drm_i915_gem_object *obj,
8370                                  uint32_t flags)
8371 {
8372         struct drm_i915_private *dev_priv = dev->dev_private;
8373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8374         u32 flip_mask;
8375         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8376         int ret;
8377
8378         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8379         if (ret)
8380                 goto err;
8381
8382         ret = intel_ring_begin(ring, 6);
8383         if (ret)
8384                 goto err_unpin;
8385
8386         if (intel_crtc->plane)
8387                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8388         else
8389                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8390         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8391         intel_ring_emit(ring, MI_NOOP);
8392         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8393                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8394         intel_ring_emit(ring, fb->pitches[0]);
8395         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8396         intel_ring_emit(ring, MI_NOOP);
8397
8398         intel_mark_page_flip_active(intel_crtc);
8399         __intel_ring_advance(ring);
8400         return 0;
8401
8402 err_unpin:
8403         intel_unpin_fb_obj(obj);
8404 err:
8405         return ret;
8406 }
8407
8408 static int intel_gen4_queue_flip(struct drm_device *dev,
8409                                  struct drm_crtc *crtc,
8410                                  struct drm_framebuffer *fb,
8411                                  struct drm_i915_gem_object *obj,
8412                                  uint32_t flags)
8413 {
8414         struct drm_i915_private *dev_priv = dev->dev_private;
8415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8416         uint32_t pf, pipesrc;
8417         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8418         int ret;
8419
8420         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8421         if (ret)
8422                 goto err;
8423
8424         ret = intel_ring_begin(ring, 4);
8425         if (ret)
8426                 goto err_unpin;
8427
8428         /* i965+ uses the linear or tiled offsets from the
8429          * Display Registers (which do not change across a page-flip)
8430          * so we need only reprogram the base address.
8431          */
8432         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8433                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8434         intel_ring_emit(ring, fb->pitches[0]);
8435         intel_ring_emit(ring,
8436                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8437                         obj->tiling_mode);
8438
8439         /* XXX Enabling the panel-fitter across page-flip is so far
8440          * untested on non-native modes, so ignore it for now.
8441          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8442          */
8443         pf = 0;
8444         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8445         intel_ring_emit(ring, pf | pipesrc);
8446
8447         intel_mark_page_flip_active(intel_crtc);
8448         __intel_ring_advance(ring);
8449         return 0;
8450
8451 err_unpin:
8452         intel_unpin_fb_obj(obj);
8453 err:
8454         return ret;
8455 }
8456
8457 static int intel_gen6_queue_flip(struct drm_device *dev,
8458                                  struct drm_crtc *crtc,
8459                                  struct drm_framebuffer *fb,
8460                                  struct drm_i915_gem_object *obj,
8461                                  uint32_t flags)
8462 {
8463         struct drm_i915_private *dev_priv = dev->dev_private;
8464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8465         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8466         uint32_t pf, pipesrc;
8467         int ret;
8468
8469         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8470         if (ret)
8471                 goto err;
8472
8473         ret = intel_ring_begin(ring, 4);
8474         if (ret)
8475                 goto err_unpin;
8476
8477         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8478                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8479         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8480         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8481
8482         /* Contrary to the suggestions in the documentation,
8483          * "Enable Panel Fitter" does not seem to be required when page
8484          * flipping with a non-native mode, and worse causes a normal
8485          * modeset to fail.
8486          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8487          */
8488         pf = 0;
8489         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8490         intel_ring_emit(ring, pf | pipesrc);
8491
8492         intel_mark_page_flip_active(intel_crtc);
8493         __intel_ring_advance(ring);
8494         return 0;
8495
8496 err_unpin:
8497         intel_unpin_fb_obj(obj);
8498 err:
8499         return ret;
8500 }
8501
8502 static int intel_gen7_queue_flip(struct drm_device *dev,
8503                                  struct drm_crtc *crtc,
8504                                  struct drm_framebuffer *fb,
8505                                  struct drm_i915_gem_object *obj,
8506                                  uint32_t flags)
8507 {
8508         struct drm_i915_private *dev_priv = dev->dev_private;
8509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8510         struct intel_ring_buffer *ring;
8511         uint32_t plane_bit = 0;
8512         int len, ret;
8513
8514         ring = obj->ring;
8515         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8516                 ring = &dev_priv->ring[BCS];
8517
8518         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8519         if (ret)
8520                 goto err;
8521
8522         switch(intel_crtc->plane) {
8523         case PLANE_A:
8524                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8525                 break;
8526         case PLANE_B:
8527                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8528                 break;
8529         case PLANE_C:
8530                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8531                 break;
8532         default:
8533                 WARN_ONCE(1, "unknown plane in flip command\n");
8534                 ret = -ENODEV;
8535                 goto err_unpin;
8536         }
8537
8538         len = 4;
8539         if (ring->id == RCS)
8540                 len += 6;
8541
8542         ret = intel_ring_begin(ring, len);
8543         if (ret)
8544                 goto err_unpin;
8545
8546         /* Unmask the flip-done completion message. Note that the bspec says that
8547          * we should do this for both the BCS and RCS, and that we must not unmask
8548          * more than one flip event at any time (or ensure that one flip message
8549          * can be sent by waiting for flip-done prior to queueing new flips).
8550          * Experimentation says that BCS works despite DERRMR masking all
8551          * flip-done completion events and that unmasking all planes at once
8552          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8553          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8554          */
8555         if (ring->id == RCS) {
8556                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8557                 intel_ring_emit(ring, DERRMR);
8558                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8559                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8560                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8561                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8562                                 MI_SRM_LRM_GLOBAL_GTT);
8563                 intel_ring_emit(ring, DERRMR);
8564                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8565         }
8566
8567         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8568         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8569         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8570         intel_ring_emit(ring, (MI_NOOP));
8571
8572         intel_mark_page_flip_active(intel_crtc);
8573         __intel_ring_advance(ring);
8574         return 0;
8575
8576 err_unpin:
8577         intel_unpin_fb_obj(obj);
8578 err:
8579         return ret;
8580 }
8581
8582 static int intel_default_queue_flip(struct drm_device *dev,
8583                                     struct drm_crtc *crtc,
8584                                     struct drm_framebuffer *fb,
8585                                     struct drm_i915_gem_object *obj,
8586                                     uint32_t flags)
8587 {
8588         return -ENODEV;
8589 }
8590
8591 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8592                                 struct drm_framebuffer *fb,
8593                                 struct drm_pending_vblank_event *event,
8594                                 uint32_t page_flip_flags)
8595 {
8596         struct drm_device *dev = crtc->dev;
8597         struct drm_i915_private *dev_priv = dev->dev_private;
8598         struct drm_framebuffer *old_fb = crtc->fb;
8599         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8601         struct intel_unpin_work *work;
8602         unsigned long flags;
8603         int ret;
8604
8605         /* Can't change pixel format via MI display flips. */
8606         if (fb->pixel_format != crtc->fb->pixel_format)
8607                 return -EINVAL;
8608
8609         /*
8610          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8611          * Note that pitch changes could also affect these register.
8612          */
8613         if (INTEL_INFO(dev)->gen > 3 &&
8614             (fb->offsets[0] != crtc->fb->offsets[0] ||
8615              fb->pitches[0] != crtc->fb->pitches[0]))
8616                 return -EINVAL;
8617
8618         work = kzalloc(sizeof(*work), GFP_KERNEL);
8619         if (work == NULL)
8620                 return -ENOMEM;
8621
8622         work->event = event;
8623         work->crtc = crtc;
8624         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8625         INIT_WORK(&work->work, intel_unpin_work_fn);
8626
8627         ret = drm_vblank_get(dev, intel_crtc->pipe);
8628         if (ret)
8629                 goto free_work;
8630
8631         /* We borrow the event spin lock for protecting unpin_work */
8632         spin_lock_irqsave(&dev->event_lock, flags);
8633         if (intel_crtc->unpin_work) {
8634                 spin_unlock_irqrestore(&dev->event_lock, flags);
8635                 kfree(work);
8636                 drm_vblank_put(dev, intel_crtc->pipe);
8637
8638                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8639                 return -EBUSY;
8640         }
8641         intel_crtc->unpin_work = work;
8642         spin_unlock_irqrestore(&dev->event_lock, flags);
8643
8644         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8645                 flush_workqueue(dev_priv->wq);
8646
8647         ret = i915_mutex_lock_interruptible(dev);
8648         if (ret)
8649                 goto cleanup;
8650
8651         /* Reference the objects for the scheduled work. */
8652         drm_gem_object_reference(&work->old_fb_obj->base);
8653         drm_gem_object_reference(&obj->base);
8654
8655         crtc->fb = fb;
8656
8657         work->pending_flip_obj = obj;
8658
8659         work->enable_stall_check = true;
8660
8661         atomic_inc(&intel_crtc->unpin_work_count);
8662         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8663
8664         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8665         if (ret)
8666                 goto cleanup_pending;
8667
8668         intel_disable_fbc(dev);
8669         intel_mark_fb_busy(obj, NULL);
8670         mutex_unlock(&dev->struct_mutex);
8671
8672         trace_i915_flip_request(intel_crtc->plane, obj);
8673
8674         return 0;
8675
8676 cleanup_pending:
8677         atomic_dec(&intel_crtc->unpin_work_count);
8678         crtc->fb = old_fb;
8679         drm_gem_object_unreference(&work->old_fb_obj->base);
8680         drm_gem_object_unreference(&obj->base);
8681         mutex_unlock(&dev->struct_mutex);
8682
8683 cleanup:
8684         spin_lock_irqsave(&dev->event_lock, flags);
8685         intel_crtc->unpin_work = NULL;
8686         spin_unlock_irqrestore(&dev->event_lock, flags);
8687
8688         drm_vblank_put(dev, intel_crtc->pipe);
8689 free_work:
8690         kfree(work);
8691
8692         return ret;
8693 }
8694
8695 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8696         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8697         .load_lut = intel_crtc_load_lut,
8698 };
8699
8700 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8701                                   struct drm_crtc *crtc)
8702 {
8703         struct drm_device *dev;
8704         struct drm_crtc *tmp;
8705         int crtc_mask = 1;
8706
8707         WARN(!crtc, "checking null crtc?\n");
8708
8709         dev = crtc->dev;
8710
8711         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8712                 if (tmp == crtc)
8713                         break;
8714                 crtc_mask <<= 1;
8715         }
8716
8717         if (encoder->possible_crtcs & crtc_mask)
8718                 return true;
8719         return false;
8720 }
8721
8722 /**
8723  * intel_modeset_update_staged_output_state
8724  *
8725  * Updates the staged output configuration state, e.g. after we've read out the
8726  * current hw state.
8727  */
8728 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8729 {
8730         struct intel_encoder *encoder;
8731         struct intel_connector *connector;
8732
8733         list_for_each_entry(connector, &dev->mode_config.connector_list,
8734                             base.head) {
8735                 connector->new_encoder =
8736                         to_intel_encoder(connector->base.encoder);
8737         }
8738
8739         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8740                             base.head) {
8741                 encoder->new_crtc =
8742                         to_intel_crtc(encoder->base.crtc);
8743         }
8744 }
8745
8746 /**
8747  * intel_modeset_commit_output_state
8748  *
8749  * This function copies the stage display pipe configuration to the real one.
8750  */
8751 static void intel_modeset_commit_output_state(struct drm_device *dev)
8752 {
8753         struct intel_encoder *encoder;
8754         struct intel_connector *connector;
8755
8756         list_for_each_entry(connector, &dev->mode_config.connector_list,
8757                             base.head) {
8758                 connector->base.encoder = &connector->new_encoder->base;
8759         }
8760
8761         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8762                             base.head) {
8763                 encoder->base.crtc = &encoder->new_crtc->base;
8764         }
8765 }
8766
8767 static void
8768 connected_sink_compute_bpp(struct intel_connector * connector,
8769                            struct intel_crtc_config *pipe_config)
8770 {
8771         int bpp = pipe_config->pipe_bpp;
8772
8773         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8774                 connector->base.base.id,
8775                 drm_get_connector_name(&connector->base));
8776
8777         /* Don't use an invalid EDID bpc value */
8778         if (connector->base.display_info.bpc &&
8779             connector->base.display_info.bpc * 3 < bpp) {
8780                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8781                               bpp, connector->base.display_info.bpc*3);
8782                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8783         }
8784
8785         /* Clamp bpp to 8 on screens without EDID 1.4 */
8786         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8787                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8788                               bpp);
8789                 pipe_config->pipe_bpp = 24;
8790         }
8791 }
8792
8793 static int
8794 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8795                           struct drm_framebuffer *fb,
8796                           struct intel_crtc_config *pipe_config)
8797 {
8798         struct drm_device *dev = crtc->base.dev;
8799         struct intel_connector *connector;
8800         int bpp;
8801
8802         switch (fb->pixel_format) {
8803         case DRM_FORMAT_C8:
8804                 bpp = 8*3; /* since we go through a colormap */
8805                 break;
8806         case DRM_FORMAT_XRGB1555:
8807         case DRM_FORMAT_ARGB1555:
8808                 /* checked in intel_framebuffer_init already */
8809                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8810                         return -EINVAL;
8811         case DRM_FORMAT_RGB565:
8812                 bpp = 6*3; /* min is 18bpp */
8813                 break;
8814         case DRM_FORMAT_XBGR8888:
8815         case DRM_FORMAT_ABGR8888:
8816                 /* checked in intel_framebuffer_init already */
8817                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8818                         return -EINVAL;
8819         case DRM_FORMAT_XRGB8888:
8820         case DRM_FORMAT_ARGB8888:
8821                 bpp = 8*3;
8822                 break;
8823         case DRM_FORMAT_XRGB2101010:
8824         case DRM_FORMAT_ARGB2101010:
8825         case DRM_FORMAT_XBGR2101010:
8826         case DRM_FORMAT_ABGR2101010:
8827                 /* checked in intel_framebuffer_init already */
8828                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8829                         return -EINVAL;
8830                 bpp = 10*3;
8831                 break;
8832         /* TODO: gen4+ supports 16 bpc floating point, too. */
8833         default:
8834                 DRM_DEBUG_KMS("unsupported depth\n");
8835                 return -EINVAL;
8836         }
8837
8838         pipe_config->pipe_bpp = bpp;
8839
8840         /* Clamp display bpp to EDID value */
8841         list_for_each_entry(connector, &dev->mode_config.connector_list,
8842                             base.head) {
8843                 if (!connector->new_encoder ||
8844                     connector->new_encoder->new_crtc != crtc)
8845                         continue;
8846
8847                 connected_sink_compute_bpp(connector, pipe_config);
8848         }
8849
8850         return bpp;
8851 }
8852
8853 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8854 {
8855         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8856                         "type: 0x%x flags: 0x%x\n",
8857                 mode->crtc_clock,
8858                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8859                 mode->crtc_hsync_end, mode->crtc_htotal,
8860                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8861                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8862 }
8863
8864 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8865                                    struct intel_crtc_config *pipe_config,
8866                                    const char *context)
8867 {
8868         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8869                       context, pipe_name(crtc->pipe));
8870
8871         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8872         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8873                       pipe_config->pipe_bpp, pipe_config->dither);
8874         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8875                       pipe_config->has_pch_encoder,
8876                       pipe_config->fdi_lanes,
8877                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8878                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8879                       pipe_config->fdi_m_n.tu);
8880         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8881                       pipe_config->has_dp_encoder,
8882                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8883                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8884                       pipe_config->dp_m_n.tu);
8885         DRM_DEBUG_KMS("requested mode:\n");
8886         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8887         DRM_DEBUG_KMS("adjusted mode:\n");
8888         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8889         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8890         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8891         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8892                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8893         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8894                       pipe_config->gmch_pfit.control,
8895                       pipe_config->gmch_pfit.pgm_ratios,
8896                       pipe_config->gmch_pfit.lvds_border_bits);
8897         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8898                       pipe_config->pch_pfit.pos,
8899                       pipe_config->pch_pfit.size,
8900                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8901         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8902         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8903 }
8904
8905 static bool check_encoder_cloning(struct drm_crtc *crtc)
8906 {
8907         int num_encoders = 0;
8908         bool uncloneable_encoders = false;
8909         struct intel_encoder *encoder;
8910
8911         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8912                             base.head) {
8913                 if (&encoder->new_crtc->base != crtc)
8914                         continue;
8915
8916                 num_encoders++;
8917                 if (!encoder->cloneable)
8918                         uncloneable_encoders = true;
8919         }
8920
8921         return !(num_encoders > 1 && uncloneable_encoders);
8922 }
8923
8924 static struct intel_crtc_config *
8925 intel_modeset_pipe_config(struct drm_crtc *crtc,
8926                           struct drm_framebuffer *fb,
8927                           struct drm_display_mode *mode)
8928 {
8929         struct drm_device *dev = crtc->dev;
8930         struct intel_encoder *encoder;
8931         struct intel_crtc_config *pipe_config;
8932         int plane_bpp, ret = -EINVAL;
8933         bool retry = true;
8934
8935         if (!check_encoder_cloning(crtc)) {
8936                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8937                 return ERR_PTR(-EINVAL);
8938         }
8939
8940         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8941         if (!pipe_config)
8942                 return ERR_PTR(-ENOMEM);
8943
8944         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8945         drm_mode_copy(&pipe_config->requested_mode, mode);
8946
8947         pipe_config->cpu_transcoder =
8948                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8949         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8950
8951         /*
8952          * Sanitize sync polarity flags based on requested ones. If neither
8953          * positive or negative polarity is requested, treat this as meaning
8954          * negative polarity.
8955          */
8956         if (!(pipe_config->adjusted_mode.flags &
8957               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8958                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8959
8960         if (!(pipe_config->adjusted_mode.flags &
8961               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8962                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8963
8964         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8965          * plane pixel format and any sink constraints into account. Returns the
8966          * source plane bpp so that dithering can be selected on mismatches
8967          * after encoders and crtc also have had their say. */
8968         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8969                                               fb, pipe_config);
8970         if (plane_bpp < 0)
8971                 goto fail;
8972
8973         /*
8974          * Determine the real pipe dimensions. Note that stereo modes can
8975          * increase the actual pipe size due to the frame doubling and
8976          * insertion of additional space for blanks between the frame. This
8977          * is stored in the crtc timings. We use the requested mode to do this
8978          * computation to clearly distinguish it from the adjusted mode, which
8979          * can be changed by the connectors in the below retry loop.
8980          */
8981         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8982         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8983         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8984
8985 encoder_retry:
8986         /* Ensure the port clock defaults are reset when retrying. */
8987         pipe_config->port_clock = 0;
8988         pipe_config->pixel_multiplier = 1;
8989
8990         /* Fill in default crtc timings, allow encoders to overwrite them. */
8991         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8992
8993         /* Pass our mode to the connectors and the CRTC to give them a chance to
8994          * adjust it according to limitations or connector properties, and also
8995          * a chance to reject the mode entirely.
8996          */
8997         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8998                             base.head) {
8999
9000                 if (&encoder->new_crtc->base != crtc)
9001                         continue;
9002
9003                 if (!(encoder->compute_config(encoder, pipe_config))) {
9004                         DRM_DEBUG_KMS("Encoder config failure\n");
9005                         goto fail;
9006                 }
9007         }
9008
9009         /* Set default port clock if not overwritten by the encoder. Needs to be
9010          * done afterwards in case the encoder adjusts the mode. */
9011         if (!pipe_config->port_clock)
9012                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9013                         * pipe_config->pixel_multiplier;
9014
9015         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9016         if (ret < 0) {
9017                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9018                 goto fail;
9019         }
9020
9021         if (ret == RETRY) {
9022                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9023                         ret = -EINVAL;
9024                         goto fail;
9025                 }
9026
9027                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9028                 retry = false;
9029                 goto encoder_retry;
9030         }
9031
9032         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9033         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9034                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9035
9036         return pipe_config;
9037 fail:
9038         kfree(pipe_config);
9039         return ERR_PTR(ret);
9040 }
9041
9042 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9043  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9044 static void
9045 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9046                              unsigned *prepare_pipes, unsigned *disable_pipes)
9047 {
9048         struct intel_crtc *intel_crtc;
9049         struct drm_device *dev = crtc->dev;
9050         struct intel_encoder *encoder;
9051         struct intel_connector *connector;
9052         struct drm_crtc *tmp_crtc;
9053
9054         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9055
9056         /* Check which crtcs have changed outputs connected to them, these need
9057          * to be part of the prepare_pipes mask. We don't (yet) support global
9058          * modeset across multiple crtcs, so modeset_pipes will only have one
9059          * bit set at most. */
9060         list_for_each_entry(connector, &dev->mode_config.connector_list,
9061                             base.head) {
9062                 if (connector->base.encoder == &connector->new_encoder->base)
9063                         continue;
9064
9065                 if (connector->base.encoder) {
9066                         tmp_crtc = connector->base.encoder->crtc;
9067
9068                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9069                 }
9070
9071                 if (connector->new_encoder)
9072                         *prepare_pipes |=
9073                                 1 << connector->new_encoder->new_crtc->pipe;
9074         }
9075
9076         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9077                             base.head) {
9078                 if (encoder->base.crtc == &encoder->new_crtc->base)
9079                         continue;
9080
9081                 if (encoder->base.crtc) {
9082                         tmp_crtc = encoder->base.crtc;
9083
9084                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9085                 }
9086
9087                 if (encoder->new_crtc)
9088                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9089         }
9090
9091         /* Check for any pipes that will be fully disabled ... */
9092         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9093                             base.head) {
9094                 bool used = false;
9095
9096                 /* Don't try to disable disabled crtcs. */
9097                 if (!intel_crtc->base.enabled)
9098                         continue;
9099
9100                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9101                                     base.head) {
9102                         if (encoder->new_crtc == intel_crtc)
9103                                 used = true;
9104                 }
9105
9106                 if (!used)
9107                         *disable_pipes |= 1 << intel_crtc->pipe;
9108         }
9109
9110
9111         /* set_mode is also used to update properties on life display pipes. */
9112         intel_crtc = to_intel_crtc(crtc);
9113         if (crtc->enabled)
9114                 *prepare_pipes |= 1 << intel_crtc->pipe;
9115
9116         /*
9117          * For simplicity do a full modeset on any pipe where the output routing
9118          * changed. We could be more clever, but that would require us to be
9119          * more careful with calling the relevant encoder->mode_set functions.
9120          */
9121         if (*prepare_pipes)
9122                 *modeset_pipes = *prepare_pipes;
9123
9124         /* ... and mask these out. */
9125         *modeset_pipes &= ~(*disable_pipes);
9126         *prepare_pipes &= ~(*disable_pipes);
9127
9128         /*
9129          * HACK: We don't (yet) fully support global modesets. intel_set_config
9130          * obies this rule, but the modeset restore mode of
9131          * intel_modeset_setup_hw_state does not.
9132          */
9133         *modeset_pipes &= 1 << intel_crtc->pipe;
9134         *prepare_pipes &= 1 << intel_crtc->pipe;
9135
9136         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9137                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9138 }
9139
9140 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9141 {
9142         struct drm_encoder *encoder;
9143         struct drm_device *dev = crtc->dev;
9144
9145         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9146                 if (encoder->crtc == crtc)
9147                         return true;
9148
9149         return false;
9150 }
9151
9152 static void
9153 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9154 {
9155         struct intel_encoder *intel_encoder;
9156         struct intel_crtc *intel_crtc;
9157         struct drm_connector *connector;
9158
9159         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9160                             base.head) {
9161                 if (!intel_encoder->base.crtc)
9162                         continue;
9163
9164                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9165
9166                 if (prepare_pipes & (1 << intel_crtc->pipe))
9167                         intel_encoder->connectors_active = false;
9168         }
9169
9170         intel_modeset_commit_output_state(dev);
9171
9172         /* Update computed state. */
9173         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9174                             base.head) {
9175                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9176         }
9177
9178         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9179                 if (!connector->encoder || !connector->encoder->crtc)
9180                         continue;
9181
9182                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9183
9184                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9185                         struct drm_property *dpms_property =
9186                                 dev->mode_config.dpms_property;
9187
9188                         connector->dpms = DRM_MODE_DPMS_ON;
9189                         drm_object_property_set_value(&connector->base,
9190                                                          dpms_property,
9191                                                          DRM_MODE_DPMS_ON);
9192
9193                         intel_encoder = to_intel_encoder(connector->encoder);
9194                         intel_encoder->connectors_active = true;
9195                 }
9196         }
9197
9198 }
9199
9200 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9201 {
9202         int diff;
9203
9204         if (clock1 == clock2)
9205                 return true;
9206
9207         if (!clock1 || !clock2)
9208                 return false;
9209
9210         diff = abs(clock1 - clock2);
9211
9212         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9213                 return true;
9214
9215         return false;
9216 }
9217
9218 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9219         list_for_each_entry((intel_crtc), \
9220                             &(dev)->mode_config.crtc_list, \
9221                             base.head) \
9222                 if (mask & (1 <<(intel_crtc)->pipe))
9223
9224 static bool
9225 intel_pipe_config_compare(struct drm_device *dev,
9226                           struct intel_crtc_config *current_config,
9227                           struct intel_crtc_config *pipe_config)
9228 {
9229 #define PIPE_CONF_CHECK_X(name) \
9230         if (current_config->name != pipe_config->name) { \
9231                 DRM_ERROR("mismatch in " #name " " \
9232                           "(expected 0x%08x, found 0x%08x)\n", \
9233                           current_config->name, \
9234                           pipe_config->name); \
9235                 return false; \
9236         }
9237
9238 #define PIPE_CONF_CHECK_I(name) \
9239         if (current_config->name != pipe_config->name) { \
9240                 DRM_ERROR("mismatch in " #name " " \
9241                           "(expected %i, found %i)\n", \
9242                           current_config->name, \
9243                           pipe_config->name); \
9244                 return false; \
9245         }
9246
9247 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9248         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9249                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9250                           "(expected %i, found %i)\n", \
9251                           current_config->name & (mask), \
9252                           pipe_config->name & (mask)); \
9253                 return false; \
9254         }
9255
9256 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9257         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9258                 DRM_ERROR("mismatch in " #name " " \
9259                           "(expected %i, found %i)\n", \
9260                           current_config->name, \
9261                           pipe_config->name); \
9262                 return false; \
9263         }
9264
9265 #define PIPE_CONF_QUIRK(quirk)  \
9266         ((current_config->quirks | pipe_config->quirks) & (quirk))
9267
9268         PIPE_CONF_CHECK_I(cpu_transcoder);
9269
9270         PIPE_CONF_CHECK_I(has_pch_encoder);
9271         PIPE_CONF_CHECK_I(fdi_lanes);
9272         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9273         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9274         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9275         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9276         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9277
9278         PIPE_CONF_CHECK_I(has_dp_encoder);
9279         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9280         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9281         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9282         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9283         PIPE_CONF_CHECK_I(dp_m_n.tu);
9284
9285         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9286         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9287         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9288         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9289         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9290         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9291
9292         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9293         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9294         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9295         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9296         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9297         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9298
9299         PIPE_CONF_CHECK_I(pixel_multiplier);
9300
9301         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9302                               DRM_MODE_FLAG_INTERLACE);
9303
9304         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9305                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9306                                       DRM_MODE_FLAG_PHSYNC);
9307                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9308                                       DRM_MODE_FLAG_NHSYNC);
9309                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9310                                       DRM_MODE_FLAG_PVSYNC);
9311                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9312                                       DRM_MODE_FLAG_NVSYNC);
9313         }
9314
9315         PIPE_CONF_CHECK_I(pipe_src_w);
9316         PIPE_CONF_CHECK_I(pipe_src_h);
9317
9318         PIPE_CONF_CHECK_I(gmch_pfit.control);
9319         /* pfit ratios are autocomputed by the hw on gen4+ */
9320         if (INTEL_INFO(dev)->gen < 4)
9321                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9322         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9323         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9324         if (current_config->pch_pfit.enabled) {
9325                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9326                 PIPE_CONF_CHECK_I(pch_pfit.size);
9327         }
9328
9329         PIPE_CONF_CHECK_I(ips_enabled);
9330
9331         PIPE_CONF_CHECK_I(double_wide);
9332
9333         PIPE_CONF_CHECK_I(shared_dpll);
9334         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9335         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9336         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9337         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9338
9339         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9340                 PIPE_CONF_CHECK_I(pipe_bpp);
9341
9342         if (!HAS_DDI(dev)) {
9343                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9344                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9345         }
9346
9347 #undef PIPE_CONF_CHECK_X
9348 #undef PIPE_CONF_CHECK_I
9349 #undef PIPE_CONF_CHECK_FLAGS
9350 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9351 #undef PIPE_CONF_QUIRK
9352
9353         return true;
9354 }
9355
9356 static void
9357 check_connector_state(struct drm_device *dev)
9358 {
9359         struct intel_connector *connector;
9360
9361         list_for_each_entry(connector, &dev->mode_config.connector_list,
9362                             base.head) {
9363                 /* This also checks the encoder/connector hw state with the
9364                  * ->get_hw_state callbacks. */
9365                 intel_connector_check_state(connector);
9366
9367                 WARN(&connector->new_encoder->base != connector->base.encoder,
9368                      "connector's staged encoder doesn't match current encoder\n");
9369         }
9370 }
9371
9372 static void
9373 check_encoder_state(struct drm_device *dev)
9374 {
9375         struct intel_encoder *encoder;
9376         struct intel_connector *connector;
9377
9378         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9379                             base.head) {
9380                 bool enabled = false;
9381                 bool active = false;
9382                 enum pipe pipe, tracked_pipe;
9383
9384                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9385                               encoder->base.base.id,
9386                               drm_get_encoder_name(&encoder->base));
9387
9388                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9389                      "encoder's stage crtc doesn't match current crtc\n");
9390                 WARN(encoder->connectors_active && !encoder->base.crtc,
9391                      "encoder's active_connectors set, but no crtc\n");
9392
9393                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9394                                     base.head) {
9395                         if (connector->base.encoder != &encoder->base)
9396                                 continue;
9397                         enabled = true;
9398                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9399                                 active = true;
9400                 }
9401                 WARN(!!encoder->base.crtc != enabled,
9402                      "encoder's enabled state mismatch "
9403                      "(expected %i, found %i)\n",
9404                      !!encoder->base.crtc, enabled);
9405                 WARN(active && !encoder->base.crtc,
9406                      "active encoder with no crtc\n");
9407
9408                 WARN(encoder->connectors_active != active,
9409                      "encoder's computed active state doesn't match tracked active state "
9410                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9411
9412                 active = encoder->get_hw_state(encoder, &pipe);
9413                 WARN(active != encoder->connectors_active,
9414                      "encoder's hw state doesn't match sw tracking "
9415                      "(expected %i, found %i)\n",
9416                      encoder->connectors_active, active);
9417
9418                 if (!encoder->base.crtc)
9419                         continue;
9420
9421                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9422                 WARN(active && pipe != tracked_pipe,
9423                      "active encoder's pipe doesn't match"
9424                      "(expected %i, found %i)\n",
9425                      tracked_pipe, pipe);
9426
9427         }
9428 }
9429
9430 static void
9431 check_crtc_state(struct drm_device *dev)
9432 {
9433         drm_i915_private_t *dev_priv = dev->dev_private;
9434         struct intel_crtc *crtc;
9435         struct intel_encoder *encoder;
9436         struct intel_crtc_config pipe_config;
9437
9438         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9439                             base.head) {
9440                 bool enabled = false;
9441                 bool active = false;
9442
9443                 memset(&pipe_config, 0, sizeof(pipe_config));
9444
9445                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9446                               crtc->base.base.id);
9447
9448                 WARN(crtc->active && !crtc->base.enabled,
9449                      "active crtc, but not enabled in sw tracking\n");
9450
9451                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9452                                     base.head) {
9453                         if (encoder->base.crtc != &crtc->base)
9454                                 continue;
9455                         enabled = true;
9456                         if (encoder->connectors_active)
9457                                 active = true;
9458                 }
9459
9460                 WARN(active != crtc->active,
9461                      "crtc's computed active state doesn't match tracked active state "
9462                      "(expected %i, found %i)\n", active, crtc->active);
9463                 WARN(enabled != crtc->base.enabled,
9464                      "crtc's computed enabled state doesn't match tracked enabled state "
9465                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9466
9467                 active = dev_priv->display.get_pipe_config(crtc,
9468                                                            &pipe_config);
9469
9470                 /* hw state is inconsistent with the pipe A quirk */
9471                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9472                         active = crtc->active;
9473
9474                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9475                                     base.head) {
9476                         enum pipe pipe;
9477                         if (encoder->base.crtc != &crtc->base)
9478                                 continue;
9479                         if (encoder->get_hw_state(encoder, &pipe))
9480                                 encoder->get_config(encoder, &pipe_config);
9481                 }
9482
9483                 WARN(crtc->active != active,
9484                      "crtc active state doesn't match with hw state "
9485                      "(expected %i, found %i)\n", crtc->active, active);
9486
9487                 if (active &&
9488                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9489                         WARN(1, "pipe state doesn't match!\n");
9490                         intel_dump_pipe_config(crtc, &pipe_config,
9491                                                "[hw state]");
9492                         intel_dump_pipe_config(crtc, &crtc->config,
9493                                                "[sw state]");
9494                 }
9495         }
9496 }
9497
9498 static void
9499 check_shared_dpll_state(struct drm_device *dev)
9500 {
9501         drm_i915_private_t *dev_priv = dev->dev_private;
9502         struct intel_crtc *crtc;
9503         struct intel_dpll_hw_state dpll_hw_state;
9504         int i;
9505
9506         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9507                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9508                 int enabled_crtcs = 0, active_crtcs = 0;
9509                 bool active;
9510
9511                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9512
9513                 DRM_DEBUG_KMS("%s\n", pll->name);
9514
9515                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9516
9517                 WARN(pll->active > pll->refcount,
9518                      "more active pll users than references: %i vs %i\n",
9519                      pll->active, pll->refcount);
9520                 WARN(pll->active && !pll->on,
9521                      "pll in active use but not on in sw tracking\n");
9522                 WARN(pll->on && !pll->active,
9523                      "pll in on but not on in use in sw tracking\n");
9524                 WARN(pll->on != active,
9525                      "pll on state mismatch (expected %i, found %i)\n",
9526                      pll->on, active);
9527
9528                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9529                                     base.head) {
9530                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9531                                 enabled_crtcs++;
9532                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9533                                 active_crtcs++;
9534                 }
9535                 WARN(pll->active != active_crtcs,
9536                      "pll active crtcs mismatch (expected %i, found %i)\n",
9537                      pll->active, active_crtcs);
9538                 WARN(pll->refcount != enabled_crtcs,
9539                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9540                      pll->refcount, enabled_crtcs);
9541
9542                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9543                                        sizeof(dpll_hw_state)),
9544                      "pll hw state mismatch\n");
9545         }
9546 }
9547
9548 void
9549 intel_modeset_check_state(struct drm_device *dev)
9550 {
9551         check_connector_state(dev);
9552         check_encoder_state(dev);
9553         check_crtc_state(dev);
9554         check_shared_dpll_state(dev);
9555 }
9556
9557 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9558                                      int dotclock)
9559 {
9560         /*
9561          * FDI already provided one idea for the dotclock.
9562          * Yell if the encoder disagrees.
9563          */
9564         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9565              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9566              pipe_config->adjusted_mode.crtc_clock, dotclock);
9567 }
9568
9569 static int __intel_set_mode(struct drm_crtc *crtc,
9570                             struct drm_display_mode *mode,
9571                             int x, int y, struct drm_framebuffer *fb)
9572 {
9573         struct drm_device *dev = crtc->dev;
9574         drm_i915_private_t *dev_priv = dev->dev_private;
9575         struct drm_display_mode *saved_mode, *saved_hwmode;
9576         struct intel_crtc_config *pipe_config = NULL;
9577         struct intel_crtc *intel_crtc;
9578         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9579         int ret = 0;
9580
9581         saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9582         if (!saved_mode)
9583                 return -ENOMEM;
9584         saved_hwmode = saved_mode + 1;
9585
9586         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9587                                      &prepare_pipes, &disable_pipes);
9588
9589         *saved_hwmode = crtc->hwmode;
9590         *saved_mode = crtc->mode;
9591
9592         /* Hack: Because we don't (yet) support global modeset on multiple
9593          * crtcs, we don't keep track of the new mode for more than one crtc.
9594          * Hence simply check whether any bit is set in modeset_pipes in all the
9595          * pieces of code that are not yet converted to deal with mutliple crtcs
9596          * changing their mode at the same time. */
9597         if (modeset_pipes) {
9598                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9599                 if (IS_ERR(pipe_config)) {
9600                         ret = PTR_ERR(pipe_config);
9601                         pipe_config = NULL;
9602
9603                         goto out;
9604                 }
9605                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9606                                        "[modeset]");
9607         }
9608
9609         /*
9610          * See if the config requires any additional preparation, e.g.
9611          * to adjust global state with pipes off.  We need to do this
9612          * here so we can get the modeset_pipe updated config for the new
9613          * mode set on this crtc.  For other crtcs we need to use the
9614          * adjusted_mode bits in the crtc directly.
9615          */
9616         if (IS_VALLEYVIEW(dev)) {
9617                 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9618                                                 modeset_pipes, pipe_config);
9619
9620                 /* may have added more to prepare_pipes than we should */
9621                 prepare_pipes &= ~disable_pipes;
9622         }
9623
9624         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9625                 intel_crtc_disable(&intel_crtc->base);
9626
9627         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9628                 if (intel_crtc->base.enabled)
9629                         dev_priv->display.crtc_disable(&intel_crtc->base);
9630         }
9631
9632         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9633          * to set it here already despite that we pass it down the callchain.
9634          */
9635         if (modeset_pipes) {
9636                 crtc->mode = *mode;
9637                 /* mode_set/enable/disable functions rely on a correct pipe
9638                  * config. */
9639                 to_intel_crtc(crtc)->config = *pipe_config;
9640         }
9641
9642         /* Only after disabling all output pipelines that will be changed can we
9643          * update the the output configuration. */
9644         intel_modeset_update_state(dev, prepare_pipes);
9645
9646         if (dev_priv->display.modeset_global_resources)
9647                 dev_priv->display.modeset_global_resources(dev);
9648
9649         /* Set up the DPLL and any encoders state that needs to adjust or depend
9650          * on the DPLL.
9651          */
9652         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9653                 ret = intel_crtc_mode_set(&intel_crtc->base,
9654                                           x, y, fb);
9655                 if (ret)
9656                         goto done;
9657         }
9658
9659         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9660         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9661                 dev_priv->display.crtc_enable(&intel_crtc->base);
9662
9663         if (modeset_pipes) {
9664                 /* Store real post-adjustment hardware mode. */
9665                 crtc->hwmode = pipe_config->adjusted_mode;
9666
9667                 /* Calculate and store various constants which
9668                  * are later needed by vblank and swap-completion
9669                  * timestamping. They are derived from true hwmode.
9670                  */
9671                 drm_calc_timestamping_constants(crtc);
9672         }
9673
9674         /* FIXME: add subpixel order */
9675 done:
9676         if (ret && crtc->enabled) {
9677                 crtc->hwmode = *saved_hwmode;
9678                 crtc->mode = *saved_mode;
9679         }
9680
9681 out:
9682         kfree(pipe_config);
9683         kfree(saved_mode);
9684         return ret;
9685 }
9686
9687 static int intel_set_mode(struct drm_crtc *crtc,
9688                           struct drm_display_mode *mode,
9689                           int x, int y, struct drm_framebuffer *fb)
9690 {
9691         int ret;
9692
9693         ret = __intel_set_mode(crtc, mode, x, y, fb);
9694
9695         if (ret == 0)
9696                 intel_modeset_check_state(crtc->dev);
9697
9698         return ret;
9699 }
9700
9701 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9702 {
9703         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9704 }
9705
9706 #undef for_each_intel_crtc_masked
9707
9708 static void intel_set_config_free(struct intel_set_config *config)
9709 {
9710         if (!config)
9711                 return;
9712
9713         kfree(config->save_connector_encoders);
9714         kfree(config->save_encoder_crtcs);
9715         kfree(config);
9716 }
9717
9718 static int intel_set_config_save_state(struct drm_device *dev,
9719                                        struct intel_set_config *config)
9720 {
9721         struct drm_encoder *encoder;
9722         struct drm_connector *connector;
9723         int count;
9724
9725         config->save_encoder_crtcs =
9726                 kcalloc(dev->mode_config.num_encoder,
9727                         sizeof(struct drm_crtc *), GFP_KERNEL);
9728         if (!config->save_encoder_crtcs)
9729                 return -ENOMEM;
9730
9731         config->save_connector_encoders =
9732                 kcalloc(dev->mode_config.num_connector,
9733                         sizeof(struct drm_encoder *), GFP_KERNEL);
9734         if (!config->save_connector_encoders)
9735                 return -ENOMEM;
9736
9737         /* Copy data. Note that driver private data is not affected.
9738          * Should anything bad happen only the expected state is
9739          * restored, not the drivers personal bookkeeping.
9740          */
9741         count = 0;
9742         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9743                 config->save_encoder_crtcs[count++] = encoder->crtc;
9744         }
9745
9746         count = 0;
9747         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9748                 config->save_connector_encoders[count++] = connector->encoder;
9749         }
9750
9751         return 0;
9752 }
9753
9754 static void intel_set_config_restore_state(struct drm_device *dev,
9755                                            struct intel_set_config *config)
9756 {
9757         struct intel_encoder *encoder;
9758         struct intel_connector *connector;
9759         int count;
9760
9761         count = 0;
9762         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9763                 encoder->new_crtc =
9764                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9765         }
9766
9767         count = 0;
9768         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9769                 connector->new_encoder =
9770                         to_intel_encoder(config->save_connector_encoders[count++]);
9771         }
9772 }
9773
9774 static bool
9775 is_crtc_connector_off(struct drm_mode_set *set)
9776 {
9777         int i;
9778
9779         if (set->num_connectors == 0)
9780                 return false;
9781
9782         if (WARN_ON(set->connectors == NULL))
9783                 return false;
9784
9785         for (i = 0; i < set->num_connectors; i++)
9786                 if (set->connectors[i]->encoder &&
9787                     set->connectors[i]->encoder->crtc == set->crtc &&
9788                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9789                         return true;
9790
9791         return false;
9792 }
9793
9794 static void
9795 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9796                                       struct intel_set_config *config)
9797 {
9798
9799         /* We should be able to check here if the fb has the same properties
9800          * and then just flip_or_move it */
9801         if (is_crtc_connector_off(set)) {
9802                 config->mode_changed = true;
9803         } else if (set->crtc->fb != set->fb) {
9804                 /* If we have no fb then treat it as a full mode set */
9805                 if (set->crtc->fb == NULL) {
9806                         struct intel_crtc *intel_crtc =
9807                                 to_intel_crtc(set->crtc);
9808
9809                         if (intel_crtc->active && i915_fastboot) {
9810                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9811                                 config->fb_changed = true;
9812                         } else {
9813                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9814                                 config->mode_changed = true;
9815                         }
9816                 } else if (set->fb == NULL) {
9817                         config->mode_changed = true;
9818                 } else if (set->fb->pixel_format !=
9819                            set->crtc->fb->pixel_format) {
9820                         config->mode_changed = true;
9821                 } else {
9822                         config->fb_changed = true;
9823                 }
9824         }
9825
9826         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9827                 config->fb_changed = true;
9828
9829         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9830                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9831                 drm_mode_debug_printmodeline(&set->crtc->mode);
9832                 drm_mode_debug_printmodeline(set->mode);
9833                 config->mode_changed = true;
9834         }
9835
9836         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9837                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9838 }
9839
9840 static int
9841 intel_modeset_stage_output_state(struct drm_device *dev,
9842                                  struct drm_mode_set *set,
9843                                  struct intel_set_config *config)
9844 {
9845         struct drm_crtc *new_crtc;
9846         struct intel_connector *connector;
9847         struct intel_encoder *encoder;
9848         int ro;
9849
9850         /* The upper layers ensure that we either disable a crtc or have a list
9851          * of connectors. For paranoia, double-check this. */
9852         WARN_ON(!set->fb && (set->num_connectors != 0));
9853         WARN_ON(set->fb && (set->num_connectors == 0));
9854
9855         list_for_each_entry(connector, &dev->mode_config.connector_list,
9856                             base.head) {
9857                 /* Otherwise traverse passed in connector list and get encoders
9858                  * for them. */
9859                 for (ro = 0; ro < set->num_connectors; ro++) {
9860                         if (set->connectors[ro] == &connector->base) {
9861                                 connector->new_encoder = connector->encoder;
9862                                 break;
9863                         }
9864                 }
9865
9866                 /* If we disable the crtc, disable all its connectors. Also, if
9867                  * the connector is on the changing crtc but not on the new
9868                  * connector list, disable it. */
9869                 if ((!set->fb || ro == set->num_connectors) &&
9870                     connector->base.encoder &&
9871                     connector->base.encoder->crtc == set->crtc) {
9872                         connector->new_encoder = NULL;
9873
9874                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9875                                 connector->base.base.id,
9876                                 drm_get_connector_name(&connector->base));
9877                 }
9878
9879
9880                 if (&connector->new_encoder->base != connector->base.encoder) {
9881                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9882                         config->mode_changed = true;
9883                 }
9884         }
9885         /* connector->new_encoder is now updated for all connectors. */
9886
9887         /* Update crtc of enabled connectors. */
9888         list_for_each_entry(connector, &dev->mode_config.connector_list,
9889                             base.head) {
9890                 if (!connector->new_encoder)
9891                         continue;
9892
9893                 new_crtc = connector->new_encoder->base.crtc;
9894
9895                 for (ro = 0; ro < set->num_connectors; ro++) {
9896                         if (set->connectors[ro] == &connector->base)
9897                                 new_crtc = set->crtc;
9898                 }
9899
9900                 /* Make sure the new CRTC will work with the encoder */
9901                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9902                                            new_crtc)) {
9903                         return -EINVAL;
9904                 }
9905                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9906
9907                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9908                         connector->base.base.id,
9909                         drm_get_connector_name(&connector->base),
9910                         new_crtc->base.id);
9911         }
9912
9913         /* Check for any encoders that needs to be disabled. */
9914         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9915                             base.head) {
9916                 list_for_each_entry(connector,
9917                                     &dev->mode_config.connector_list,
9918                                     base.head) {
9919                         if (connector->new_encoder == encoder) {
9920                                 WARN_ON(!connector->new_encoder->new_crtc);
9921
9922                                 goto next_encoder;
9923                         }
9924                 }
9925                 encoder->new_crtc = NULL;
9926 next_encoder:
9927                 /* Only now check for crtc changes so we don't miss encoders
9928                  * that will be disabled. */
9929                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9930                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9931                         config->mode_changed = true;
9932                 }
9933         }
9934         /* Now we've also updated encoder->new_crtc for all encoders. */
9935
9936         return 0;
9937 }
9938
9939 static int intel_crtc_set_config(struct drm_mode_set *set)
9940 {
9941         struct drm_device *dev;
9942         struct drm_mode_set save_set;
9943         struct intel_set_config *config;
9944         int ret;
9945
9946         BUG_ON(!set);
9947         BUG_ON(!set->crtc);
9948         BUG_ON(!set->crtc->helper_private);
9949
9950         /* Enforce sane interface api - has been abused by the fb helper. */
9951         BUG_ON(!set->mode && set->fb);
9952         BUG_ON(set->fb && set->num_connectors == 0);
9953
9954         if (set->fb) {
9955                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9956                                 set->crtc->base.id, set->fb->base.id,
9957                                 (int)set->num_connectors, set->x, set->y);
9958         } else {
9959                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9960         }
9961
9962         dev = set->crtc->dev;
9963
9964         ret = -ENOMEM;
9965         config = kzalloc(sizeof(*config), GFP_KERNEL);
9966         if (!config)
9967                 goto out_config;
9968
9969         ret = intel_set_config_save_state(dev, config);
9970         if (ret)
9971                 goto out_config;
9972
9973         save_set.crtc = set->crtc;
9974         save_set.mode = &set->crtc->mode;
9975         save_set.x = set->crtc->x;
9976         save_set.y = set->crtc->y;
9977         save_set.fb = set->crtc->fb;
9978
9979         /* Compute whether we need a full modeset, only an fb base update or no
9980          * change at all. In the future we might also check whether only the
9981          * mode changed, e.g. for LVDS where we only change the panel fitter in
9982          * such cases. */
9983         intel_set_config_compute_mode_changes(set, config);
9984
9985         ret = intel_modeset_stage_output_state(dev, set, config);
9986         if (ret)
9987                 goto fail;
9988
9989         if (config->mode_changed) {
9990                 ret = intel_set_mode(set->crtc, set->mode,
9991                                      set->x, set->y, set->fb);
9992         } else if (config->fb_changed) {
9993                 intel_crtc_wait_for_pending_flips(set->crtc);
9994
9995                 ret = intel_pipe_set_base(set->crtc,
9996                                           set->x, set->y, set->fb);
9997         }
9998
9999         if (ret) {
10000                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10001                               set->crtc->base.id, ret);
10002 fail:
10003                 intel_set_config_restore_state(dev, config);
10004
10005                 /* Try to restore the config */
10006                 if (config->mode_changed &&
10007                     intel_set_mode(save_set.crtc, save_set.mode,
10008                                    save_set.x, save_set.y, save_set.fb))
10009                         DRM_ERROR("failed to restore config after modeset failure\n");
10010         }
10011
10012 out_config:
10013         intel_set_config_free(config);
10014         return ret;
10015 }
10016
10017 static const struct drm_crtc_funcs intel_crtc_funcs = {
10018         .cursor_set = intel_crtc_cursor_set,
10019         .cursor_move = intel_crtc_cursor_move,
10020         .gamma_set = intel_crtc_gamma_set,
10021         .set_config = intel_crtc_set_config,
10022         .destroy = intel_crtc_destroy,
10023         .page_flip = intel_crtc_page_flip,
10024 };
10025
10026 static void intel_cpu_pll_init(struct drm_device *dev)
10027 {
10028         if (HAS_DDI(dev))
10029                 intel_ddi_pll_init(dev);
10030 }
10031
10032 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10033                                       struct intel_shared_dpll *pll,
10034                                       struct intel_dpll_hw_state *hw_state)
10035 {
10036         uint32_t val;
10037
10038         val = I915_READ(PCH_DPLL(pll->id));
10039         hw_state->dpll = val;
10040         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10041         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10042
10043         return val & DPLL_VCO_ENABLE;
10044 }
10045
10046 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10047                                   struct intel_shared_dpll *pll)
10048 {
10049         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10050         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10051 }
10052
10053 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10054                                 struct intel_shared_dpll *pll)
10055 {
10056         /* PCH refclock must be enabled first */
10057         assert_pch_refclk_enabled(dev_priv);
10058
10059         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10060
10061         /* Wait for the clocks to stabilize. */
10062         POSTING_READ(PCH_DPLL(pll->id));
10063         udelay(150);
10064
10065         /* The pixel multiplier can only be updated once the
10066          * DPLL is enabled and the clocks are stable.
10067          *
10068          * So write it again.
10069          */
10070         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10071         POSTING_READ(PCH_DPLL(pll->id));
10072         udelay(200);
10073 }
10074
10075 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10076                                  struct intel_shared_dpll *pll)
10077 {
10078         struct drm_device *dev = dev_priv->dev;
10079         struct intel_crtc *crtc;
10080
10081         /* Make sure no transcoder isn't still depending on us. */
10082         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10083                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10084                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10085         }
10086
10087         I915_WRITE(PCH_DPLL(pll->id), 0);
10088         POSTING_READ(PCH_DPLL(pll->id));
10089         udelay(200);
10090 }
10091
10092 static char *ibx_pch_dpll_names[] = {
10093         "PCH DPLL A",
10094         "PCH DPLL B",
10095 };
10096
10097 static void ibx_pch_dpll_init(struct drm_device *dev)
10098 {
10099         struct drm_i915_private *dev_priv = dev->dev_private;
10100         int i;
10101
10102         dev_priv->num_shared_dpll = 2;
10103
10104         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10105                 dev_priv->shared_dplls[i].id = i;
10106                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10107                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10108                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10109                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10110                 dev_priv->shared_dplls[i].get_hw_state =
10111                         ibx_pch_dpll_get_hw_state;
10112         }
10113 }
10114
10115 static void intel_shared_dpll_init(struct drm_device *dev)
10116 {
10117         struct drm_i915_private *dev_priv = dev->dev_private;
10118
10119         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10120                 ibx_pch_dpll_init(dev);
10121         else
10122                 dev_priv->num_shared_dpll = 0;
10123
10124         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10125         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
10126                       dev_priv->num_shared_dpll);
10127 }
10128
10129 static void intel_crtc_init(struct drm_device *dev, int pipe)
10130 {
10131         drm_i915_private_t *dev_priv = dev->dev_private;
10132         struct intel_crtc *intel_crtc;
10133         int i;
10134
10135         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10136         if (intel_crtc == NULL)
10137                 return;
10138
10139         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10140
10141         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10142         for (i = 0; i < 256; i++) {
10143                 intel_crtc->lut_r[i] = i;
10144                 intel_crtc->lut_g[i] = i;
10145                 intel_crtc->lut_b[i] = i;
10146         }
10147
10148         /*
10149          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10150          * is hooked to plane B. Hence we want plane A feeding pipe B.
10151          */
10152         intel_crtc->pipe = pipe;
10153         intel_crtc->plane = pipe;
10154         if (IS_MOBILE(dev) && INTEL_INFO(dev)->gen < 4) {
10155                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10156                 intel_crtc->plane = !pipe;
10157         }
10158
10159         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10160                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10161         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10162         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10163
10164         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10165 }
10166
10167 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10168 {
10169         struct drm_encoder *encoder = connector->base.encoder;
10170
10171         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10172
10173         if (!encoder)
10174                 return INVALID_PIPE;
10175
10176         return to_intel_crtc(encoder->crtc)->pipe;
10177 }
10178
10179 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10180                                 struct drm_file *file)
10181 {
10182         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10183         struct drm_mode_object *drmmode_obj;
10184         struct intel_crtc *crtc;
10185
10186         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10187                 return -ENODEV;
10188
10189         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10190                         DRM_MODE_OBJECT_CRTC);
10191
10192         if (!drmmode_obj) {
10193                 DRM_ERROR("no such CRTC id\n");
10194                 return -ENOENT;
10195         }
10196
10197         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10198         pipe_from_crtc_id->pipe = crtc->pipe;
10199
10200         return 0;
10201 }
10202
10203 static int intel_encoder_clones(struct intel_encoder *encoder)
10204 {
10205         struct drm_device *dev = encoder->base.dev;
10206         struct intel_encoder *source_encoder;
10207         int index_mask = 0;
10208         int entry = 0;
10209
10210         list_for_each_entry(source_encoder,
10211                             &dev->mode_config.encoder_list, base.head) {
10212
10213                 if (encoder == source_encoder)
10214                         index_mask |= (1 << entry);
10215
10216                 /* Intel hw has only one MUX where enocoders could be cloned. */
10217                 if (encoder->cloneable && source_encoder->cloneable)
10218                         index_mask |= (1 << entry);
10219
10220                 entry++;
10221         }
10222
10223         return index_mask;
10224 }
10225
10226 static bool has_edp_a(struct drm_device *dev)
10227 {
10228         struct drm_i915_private *dev_priv = dev->dev_private;
10229
10230         if (!IS_MOBILE(dev))
10231                 return false;
10232
10233         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10234                 return false;
10235
10236         if (IS_GEN5(dev) &&
10237             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10238                 return false;
10239
10240         return true;
10241 }
10242
10243 static void intel_setup_outputs(struct drm_device *dev)
10244 {
10245         struct drm_i915_private *dev_priv = dev->dev_private;
10246         struct intel_encoder *encoder;
10247         bool dpd_is_edp = false;
10248
10249         intel_lvds_init(dev);
10250
10251         if (!IS_ULT(dev))
10252                 intel_crt_init(dev);
10253
10254         if (HAS_DDI(dev)) {
10255                 int found;
10256
10257                 /* Haswell uses DDI functions to detect digital outputs */
10258                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10259                 /* DDI A only supports eDP */
10260                 if (found)
10261                         intel_ddi_init(dev, PORT_A);
10262
10263                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10264                  * register */
10265                 found = I915_READ(SFUSE_STRAP);
10266
10267                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10268                         intel_ddi_init(dev, PORT_B);
10269                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10270                         intel_ddi_init(dev, PORT_C);
10271                 if (found & SFUSE_STRAP_DDID_DETECTED)
10272                         intel_ddi_init(dev, PORT_D);
10273         } else if (HAS_PCH_SPLIT(dev)) {
10274                 int found;
10275                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10276
10277                 if (has_edp_a(dev))
10278                         intel_dp_init(dev, DP_A, PORT_A);
10279
10280                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10281                         /* PCH SDVOB multiplex with HDMIB */
10282                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10283                         if (!found)
10284                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10285                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10286                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10287                 }
10288
10289                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10290                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10291
10292                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10293                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10294
10295                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10296                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10297
10298                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10299                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10300         } else if (IS_VALLEYVIEW(dev)) {
10301                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10302                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10303                                         PORT_B);
10304                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10305                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10306                 }
10307
10308                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10309                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10310                                         PORT_C);
10311                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10312                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10313                 }
10314
10315                 intel_dsi_init(dev);
10316         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10317                 bool found = false;
10318
10319                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10320                         DRM_DEBUG_KMS("probing SDVOB\n");
10321                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10322                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10323                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10324                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10325                         }
10326
10327                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10328                                 intel_dp_init(dev, DP_B, PORT_B);
10329                 }
10330
10331                 /* Before G4X SDVOC doesn't have its own detect register */
10332
10333                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10334                         DRM_DEBUG_KMS("probing SDVOC\n");
10335                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10336                 }
10337
10338                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10339
10340                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10341                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10342                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10343                         }
10344                         if (SUPPORTS_INTEGRATED_DP(dev))
10345                                 intel_dp_init(dev, DP_C, PORT_C);
10346                 }
10347
10348                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10349                     (I915_READ(DP_D) & DP_DETECTED))
10350                         intel_dp_init(dev, DP_D, PORT_D);
10351         } else if (IS_GEN2(dev))
10352                 intel_dvo_init(dev);
10353
10354         if (SUPPORTS_TV(dev))
10355                 intel_tv_init(dev);
10356
10357         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10358                 encoder->base.possible_crtcs = encoder->crtc_mask;
10359                 encoder->base.possible_clones =
10360                         intel_encoder_clones(encoder);
10361         }
10362
10363         intel_init_pch_refclk(dev);
10364
10365         drm_helper_move_panel_connectors_to_head(dev);
10366 }
10367
10368 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10369 {
10370         drm_framebuffer_cleanup(&fb->base);
10371         WARN_ON(!fb->obj->framebuffer_references--);
10372         drm_gem_object_unreference_unlocked(&fb->obj->base);
10373 }
10374
10375 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10376 {
10377         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10378
10379         intel_framebuffer_fini(intel_fb);
10380         kfree(intel_fb);
10381 }
10382
10383 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10384                                                 struct drm_file *file,
10385                                                 unsigned int *handle)
10386 {
10387         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10388         struct drm_i915_gem_object *obj = intel_fb->obj;
10389
10390         return drm_gem_handle_create(file, &obj->base, handle);
10391 }
10392
10393 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10394         .destroy = intel_user_framebuffer_destroy,
10395         .create_handle = intel_user_framebuffer_create_handle,
10396 };
10397
10398 int intel_framebuffer_init(struct drm_device *dev,
10399                            struct intel_framebuffer *intel_fb,
10400                            struct drm_mode_fb_cmd2 *mode_cmd,
10401                            struct drm_i915_gem_object *obj)
10402 {
10403         int aligned_height, tile_height;
10404         int pitch_limit;
10405         int ret;
10406
10407         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10408
10409         if (obj->tiling_mode == I915_TILING_Y) {
10410                 DRM_DEBUG("hardware does not support tiling Y\n");
10411                 return -EINVAL;
10412         }
10413
10414         if (mode_cmd->pitches[0] & 63) {
10415                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10416                           mode_cmd->pitches[0]);
10417                 return -EINVAL;
10418         }
10419
10420         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10421                 pitch_limit = 32*1024;
10422         } else if (INTEL_INFO(dev)->gen >= 4) {
10423                 if (obj->tiling_mode)
10424                         pitch_limit = 16*1024;
10425                 else
10426                         pitch_limit = 32*1024;
10427         } else if (INTEL_INFO(dev)->gen >= 3) {
10428                 if (obj->tiling_mode)
10429                         pitch_limit = 8*1024;
10430                 else
10431                         pitch_limit = 16*1024;
10432         } else
10433                 /* XXX DSPC is limited to 4k tiled */
10434                 pitch_limit = 8*1024;
10435
10436         if (mode_cmd->pitches[0] > pitch_limit) {
10437                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10438                           obj->tiling_mode ? "tiled" : "linear",
10439                           mode_cmd->pitches[0], pitch_limit);
10440                 return -EINVAL;
10441         }
10442
10443         if (obj->tiling_mode != I915_TILING_NONE &&
10444             mode_cmd->pitches[0] != obj->stride) {
10445                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10446                           mode_cmd->pitches[0], obj->stride);
10447                 return -EINVAL;
10448         }
10449
10450         /* Reject formats not supported by any plane early. */
10451         switch (mode_cmd->pixel_format) {
10452         case DRM_FORMAT_C8:
10453         case DRM_FORMAT_RGB565:
10454         case DRM_FORMAT_XRGB8888:
10455         case DRM_FORMAT_ARGB8888:
10456                 break;
10457         case DRM_FORMAT_XRGB1555:
10458         case DRM_FORMAT_ARGB1555:
10459                 if (INTEL_INFO(dev)->gen > 3) {
10460                         DRM_DEBUG("unsupported pixel format: %s\n",
10461                                   drm_get_format_name(mode_cmd->pixel_format));
10462                         return -EINVAL;
10463                 }
10464                 break;
10465         case DRM_FORMAT_XBGR8888:
10466         case DRM_FORMAT_ABGR8888:
10467         case DRM_FORMAT_XRGB2101010:
10468         case DRM_FORMAT_ARGB2101010:
10469         case DRM_FORMAT_XBGR2101010:
10470         case DRM_FORMAT_ABGR2101010:
10471                 if (INTEL_INFO(dev)->gen < 4) {
10472                         DRM_DEBUG("unsupported pixel format: %s\n",
10473                                   drm_get_format_name(mode_cmd->pixel_format));
10474                         return -EINVAL;
10475                 }
10476                 break;
10477         case DRM_FORMAT_YUYV:
10478         case DRM_FORMAT_UYVY:
10479         case DRM_FORMAT_YVYU:
10480         case DRM_FORMAT_VYUY:
10481                 if (INTEL_INFO(dev)->gen < 5) {
10482                         DRM_DEBUG("unsupported pixel format: %s\n",
10483                                   drm_get_format_name(mode_cmd->pixel_format));
10484                         return -EINVAL;
10485                 }
10486                 break;
10487         default:
10488                 DRM_DEBUG("unsupported pixel format: %s\n",
10489                           drm_get_format_name(mode_cmd->pixel_format));
10490                 return -EINVAL;
10491         }
10492
10493         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10494         if (mode_cmd->offsets[0] != 0)
10495                 return -EINVAL;
10496
10497         tile_height = IS_GEN2(dev) ? 16 : 8;
10498         aligned_height = ALIGN(mode_cmd->height,
10499                                obj->tiling_mode ? tile_height : 1);
10500         /* FIXME drm helper for size checks (especially planar formats)? */
10501         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10502                 return -EINVAL;
10503
10504         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10505         intel_fb->obj = obj;
10506         intel_fb->obj->framebuffer_references++;
10507
10508         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10509         if (ret) {
10510                 DRM_ERROR("framebuffer init failed %d\n", ret);
10511                 return ret;
10512         }
10513
10514         return 0;
10515 }
10516
10517 static struct drm_framebuffer *
10518 intel_user_framebuffer_create(struct drm_device *dev,
10519                               struct drm_file *filp,
10520                               struct drm_mode_fb_cmd2 *mode_cmd)
10521 {
10522         struct drm_i915_gem_object *obj;
10523
10524         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10525                                                 mode_cmd->handles[0]));
10526         if (&obj->base == NULL)
10527                 return ERR_PTR(-ENOENT);
10528
10529         return intel_framebuffer_create(dev, mode_cmd, obj);
10530 }
10531
10532 #ifndef CONFIG_DRM_I915_FBDEV
10533 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10534 {
10535 }
10536 #endif
10537
10538 static const struct drm_mode_config_funcs intel_mode_funcs = {
10539         .fb_create = intel_user_framebuffer_create,
10540         .output_poll_changed = intel_fbdev_output_poll_changed,
10541 };
10542
10543 /* Set up chip specific display functions */
10544 static void intel_init_display(struct drm_device *dev)
10545 {
10546         struct drm_i915_private *dev_priv = dev->dev_private;
10547
10548         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10549                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10550         else if (IS_VALLEYVIEW(dev))
10551                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10552         else if (IS_PINEVIEW(dev))
10553                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10554         else
10555                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10556
10557         if (HAS_DDI(dev)) {
10558                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10559                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10560                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10561                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10562                 dev_priv->display.off = haswell_crtc_off;
10563                 dev_priv->display.update_plane = ironlake_update_plane;
10564         } else if (HAS_PCH_SPLIT(dev)) {
10565                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10566                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10567                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10568                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10569                 dev_priv->display.off = ironlake_crtc_off;
10570                 dev_priv->display.update_plane = ironlake_update_plane;
10571         } else if (IS_VALLEYVIEW(dev)) {
10572                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10573                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10574                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10575                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10576                 dev_priv->display.off = i9xx_crtc_off;
10577                 dev_priv->display.update_plane = i9xx_update_plane;
10578         } else {
10579                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10580                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10581                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10582                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10583                 dev_priv->display.off = i9xx_crtc_off;
10584                 dev_priv->display.update_plane = i9xx_update_plane;
10585         }
10586
10587         /* Returns the core display clock speed */
10588         if (IS_VALLEYVIEW(dev))
10589                 dev_priv->display.get_display_clock_speed =
10590                         valleyview_get_display_clock_speed;
10591         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10592                 dev_priv->display.get_display_clock_speed =
10593                         i945_get_display_clock_speed;
10594         else if (IS_I915G(dev))
10595                 dev_priv->display.get_display_clock_speed =
10596                         i915_get_display_clock_speed;
10597         else if (IS_I945GM(dev) || IS_845G(dev))
10598                 dev_priv->display.get_display_clock_speed =
10599                         i9xx_misc_get_display_clock_speed;
10600         else if (IS_PINEVIEW(dev))
10601                 dev_priv->display.get_display_clock_speed =
10602                         pnv_get_display_clock_speed;
10603         else if (IS_I915GM(dev))
10604                 dev_priv->display.get_display_clock_speed =
10605                         i915gm_get_display_clock_speed;
10606         else if (IS_I865G(dev))
10607                 dev_priv->display.get_display_clock_speed =
10608                         i865_get_display_clock_speed;
10609         else if (IS_I85X(dev))
10610                 dev_priv->display.get_display_clock_speed =
10611                         i855_get_display_clock_speed;
10612         else /* 852, 830 */
10613                 dev_priv->display.get_display_clock_speed =
10614                         i830_get_display_clock_speed;
10615
10616         if (HAS_PCH_SPLIT(dev)) {
10617                 if (IS_GEN5(dev)) {
10618                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10619                         dev_priv->display.write_eld = ironlake_write_eld;
10620                 } else if (IS_GEN6(dev)) {
10621                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10622                         dev_priv->display.write_eld = ironlake_write_eld;
10623                 } else if (IS_IVYBRIDGE(dev)) {
10624                         /* FIXME: detect B0+ stepping and use auto training */
10625                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10626                         dev_priv->display.write_eld = ironlake_write_eld;
10627                         dev_priv->display.modeset_global_resources =
10628                                 ivb_modeset_global_resources;
10629                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10630                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10631                         dev_priv->display.write_eld = haswell_write_eld;
10632                         dev_priv->display.modeset_global_resources =
10633                                 haswell_modeset_global_resources;
10634                 }
10635         } else if (IS_G4X(dev)) {
10636                 dev_priv->display.write_eld = g4x_write_eld;
10637         } else if (IS_VALLEYVIEW(dev)) {
10638                 dev_priv->display.modeset_global_resources =
10639                         valleyview_modeset_global_resources;
10640                 dev_priv->display.write_eld = ironlake_write_eld;
10641         }
10642
10643         /* Default just returns -ENODEV to indicate unsupported */
10644         dev_priv->display.queue_flip = intel_default_queue_flip;
10645
10646         switch (INTEL_INFO(dev)->gen) {
10647         case 2:
10648                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10649                 break;
10650
10651         case 3:
10652                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10653                 break;
10654
10655         case 4:
10656         case 5:
10657                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10658                 break;
10659
10660         case 6:
10661                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10662                 break;
10663         case 7:
10664         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10665                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10666                 break;
10667         }
10668
10669         intel_panel_init_backlight_funcs(dev);
10670 }
10671
10672 /*
10673  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10674  * resume, or other times.  This quirk makes sure that's the case for
10675  * affected systems.
10676  */
10677 static void quirk_pipea_force(struct drm_device *dev)
10678 {
10679         struct drm_i915_private *dev_priv = dev->dev_private;
10680
10681         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10682         DRM_INFO("applying pipe a force quirk\n");
10683 }
10684
10685 /*
10686  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10687  */
10688 static void quirk_ssc_force_disable(struct drm_device *dev)
10689 {
10690         struct drm_i915_private *dev_priv = dev->dev_private;
10691         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10692         DRM_INFO("applying lvds SSC disable quirk\n");
10693 }
10694
10695 /*
10696  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10697  * brightness value
10698  */
10699 static void quirk_invert_brightness(struct drm_device *dev)
10700 {
10701         struct drm_i915_private *dev_priv = dev->dev_private;
10702         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10703         DRM_INFO("applying inverted panel brightness quirk\n");
10704 }
10705
10706 struct intel_quirk {
10707         int device;
10708         int subsystem_vendor;
10709         int subsystem_device;
10710         void (*hook)(struct drm_device *dev);
10711 };
10712
10713 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10714 struct intel_dmi_quirk {
10715         void (*hook)(struct drm_device *dev);
10716         const struct dmi_system_id (*dmi_id_list)[];
10717 };
10718
10719 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10720 {
10721         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10722         return 1;
10723 }
10724
10725 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10726         {
10727                 .dmi_id_list = &(const struct dmi_system_id[]) {
10728                         {
10729                                 .callback = intel_dmi_reverse_brightness,
10730                                 .ident = "NCR Corporation",
10731                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10732                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10733                                 },
10734                         },
10735                         { }  /* terminating entry */
10736                 },
10737                 .hook = quirk_invert_brightness,
10738         },
10739 };
10740
10741 static struct intel_quirk intel_quirks[] = {
10742         /* HP Mini needs pipe A force quirk (LP: #322104) */
10743         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10744
10745         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10746         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10747
10748         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10749         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10750
10751         /* 830 needs to leave pipe A & dpll A up */
10752         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10753
10754         /* Lenovo U160 cannot use SSC on LVDS */
10755         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10756
10757         /* Sony Vaio Y cannot use SSC on LVDS */
10758         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10759
10760         /*
10761          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10762          * seem to use inverted backlight PWM.
10763          */
10764         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10765 };
10766
10767 static void intel_init_quirks(struct drm_device *dev)
10768 {
10769         struct pci_dev *d = dev->pdev;
10770         int i;
10771
10772         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10773                 struct intel_quirk *q = &intel_quirks[i];
10774
10775                 if (d->device == q->device &&
10776                     (d->subsystem_vendor == q->subsystem_vendor ||
10777                      q->subsystem_vendor == PCI_ANY_ID) &&
10778                     (d->subsystem_device == q->subsystem_device ||
10779                      q->subsystem_device == PCI_ANY_ID))
10780                         q->hook(dev);
10781         }
10782         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10783                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10784                         intel_dmi_quirks[i].hook(dev);
10785         }
10786 }
10787
10788 /* Disable the VGA plane that we never use */
10789 static void i915_disable_vga(struct drm_device *dev)
10790 {
10791         struct drm_i915_private *dev_priv = dev->dev_private;
10792         u8 sr1;
10793         u32 vga_reg = i915_vgacntrl_reg(dev);
10794
10795         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10796         outb(SR01, VGA_SR_INDEX);
10797         sr1 = inb(VGA_SR_DATA);
10798         outb(sr1 | 1<<5, VGA_SR_DATA);
10799         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10800         udelay(300);
10801
10802         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10803         POSTING_READ(vga_reg);
10804 }
10805
10806 void intel_modeset_init_hw(struct drm_device *dev)
10807 {
10808         intel_prepare_ddi(dev);
10809
10810         intel_init_clock_gating(dev);
10811
10812         intel_init_dpio(dev);
10813
10814         mutex_lock(&dev->struct_mutex);
10815         intel_enable_gt_powersave(dev);
10816         mutex_unlock(&dev->struct_mutex);
10817 }
10818
10819 void intel_modeset_suspend_hw(struct drm_device *dev)
10820 {
10821         intel_suspend_hw(dev);
10822 }
10823
10824 void intel_modeset_init(struct drm_device *dev)
10825 {
10826         struct drm_i915_private *dev_priv = dev->dev_private;
10827         int i, j, ret;
10828
10829         drm_mode_config_init(dev);
10830
10831         dev->mode_config.min_width = 0;
10832         dev->mode_config.min_height = 0;
10833
10834         dev->mode_config.preferred_depth = 24;
10835         dev->mode_config.prefer_shadow = 1;
10836
10837         dev->mode_config.funcs = &intel_mode_funcs;
10838
10839         intel_init_quirks(dev);
10840
10841         intel_init_pm(dev);
10842
10843         if (INTEL_INFO(dev)->num_pipes == 0)
10844                 return;
10845
10846         intel_init_display(dev);
10847
10848         if (IS_GEN2(dev)) {
10849                 dev->mode_config.max_width = 2048;
10850                 dev->mode_config.max_height = 2048;
10851         } else if (IS_GEN3(dev)) {
10852                 dev->mode_config.max_width = 4096;
10853                 dev->mode_config.max_height = 4096;
10854         } else {
10855                 dev->mode_config.max_width = 8192;
10856                 dev->mode_config.max_height = 8192;
10857         }
10858         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10859
10860         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10861                       INTEL_INFO(dev)->num_pipes,
10862                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10863
10864         for_each_pipe(i) {
10865                 intel_crtc_init(dev, i);
10866                 for (j = 0; j < dev_priv->num_plane; j++) {
10867                         ret = intel_plane_init(dev, i, j);
10868                         if (ret)
10869                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10870                                               pipe_name(i), sprite_name(i, j), ret);
10871                 }
10872         }
10873
10874         intel_cpu_pll_init(dev);
10875         intel_shared_dpll_init(dev);
10876
10877         /* Just disable it once at startup */
10878         i915_disable_vga(dev);
10879         intel_setup_outputs(dev);
10880
10881         /* Just in case the BIOS is doing something questionable. */
10882         intel_disable_fbc(dev);
10883 }
10884
10885 static void
10886 intel_connector_break_all_links(struct intel_connector *connector)
10887 {
10888         connector->base.dpms = DRM_MODE_DPMS_OFF;
10889         connector->base.encoder = NULL;
10890         connector->encoder->connectors_active = false;
10891         connector->encoder->base.crtc = NULL;
10892 }
10893
10894 static void intel_enable_pipe_a(struct drm_device *dev)
10895 {
10896         struct intel_connector *connector;
10897         struct drm_connector *crt = NULL;
10898         struct intel_load_detect_pipe load_detect_temp;
10899
10900         /* We can't just switch on the pipe A, we need to set things up with a
10901          * proper mode and output configuration. As a gross hack, enable pipe A
10902          * by enabling the load detect pipe once. */
10903         list_for_each_entry(connector,
10904                             &dev->mode_config.connector_list,
10905                             base.head) {
10906                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10907                         crt = &connector->base;
10908                         break;
10909                 }
10910         }
10911
10912         if (!crt)
10913                 return;
10914
10915         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10916                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10917
10918
10919 }
10920
10921 static bool
10922 intel_check_plane_mapping(struct intel_crtc *crtc)
10923 {
10924         struct drm_device *dev = crtc->base.dev;
10925         struct drm_i915_private *dev_priv = dev->dev_private;
10926         u32 reg, val;
10927
10928         if (INTEL_INFO(dev)->num_pipes == 1)
10929                 return true;
10930
10931         reg = DSPCNTR(!crtc->plane);
10932         val = I915_READ(reg);
10933
10934         if ((val & DISPLAY_PLANE_ENABLE) &&
10935             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10936                 return false;
10937
10938         return true;
10939 }
10940
10941 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10942 {
10943         struct drm_device *dev = crtc->base.dev;
10944         struct drm_i915_private *dev_priv = dev->dev_private;
10945         u32 reg;
10946
10947         /* Clear any frame start delays used for debugging left by the BIOS */
10948         reg = PIPECONF(crtc->config.cpu_transcoder);
10949         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10950
10951         /* We need to sanitize the plane -> pipe mapping first because this will
10952          * disable the crtc (and hence change the state) if it is wrong. Note
10953          * that gen4+ has a fixed plane -> pipe mapping.  */
10954         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10955                 struct intel_connector *connector;
10956                 bool plane;
10957
10958                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10959                               crtc->base.base.id);
10960
10961                 /* Pipe has the wrong plane attached and the plane is active.
10962                  * Temporarily change the plane mapping and disable everything
10963                  * ...  */
10964                 plane = crtc->plane;
10965                 crtc->plane = !plane;
10966                 dev_priv->display.crtc_disable(&crtc->base);
10967                 crtc->plane = plane;
10968
10969                 /* ... and break all links. */
10970                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10971                                     base.head) {
10972                         if (connector->encoder->base.crtc != &crtc->base)
10973                                 continue;
10974
10975                         intel_connector_break_all_links(connector);
10976                 }
10977
10978                 WARN_ON(crtc->active);
10979                 crtc->base.enabled = false;
10980         }
10981
10982         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10983             crtc->pipe == PIPE_A && !crtc->active) {
10984                 /* BIOS forgot to enable pipe A, this mostly happens after
10985                  * resume. Force-enable the pipe to fix this, the update_dpms
10986                  * call below we restore the pipe to the right state, but leave
10987                  * the required bits on. */
10988                 intel_enable_pipe_a(dev);
10989         }
10990
10991         /* Adjust the state of the output pipe according to whether we
10992          * have active connectors/encoders. */
10993         intel_crtc_update_dpms(&crtc->base);
10994
10995         if (crtc->active != crtc->base.enabled) {
10996                 struct intel_encoder *encoder;
10997
10998                 /* This can happen either due to bugs in the get_hw_state
10999                  * functions or because the pipe is force-enabled due to the
11000                  * pipe A quirk. */
11001                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11002                               crtc->base.base.id,
11003                               crtc->base.enabled ? "enabled" : "disabled",
11004                               crtc->active ? "enabled" : "disabled");
11005
11006                 crtc->base.enabled = crtc->active;
11007
11008                 /* Because we only establish the connector -> encoder ->
11009                  * crtc links if something is active, this means the
11010                  * crtc is now deactivated. Break the links. connector
11011                  * -> encoder links are only establish when things are
11012                  *  actually up, hence no need to break them. */
11013                 WARN_ON(crtc->active);
11014
11015                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11016                         WARN_ON(encoder->connectors_active);
11017                         encoder->base.crtc = NULL;
11018                 }
11019         }
11020 }
11021
11022 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11023 {
11024         struct intel_connector *connector;
11025         struct drm_device *dev = encoder->base.dev;
11026
11027         /* We need to check both for a crtc link (meaning that the
11028          * encoder is active and trying to read from a pipe) and the
11029          * pipe itself being active. */
11030         bool has_active_crtc = encoder->base.crtc &&
11031                 to_intel_crtc(encoder->base.crtc)->active;
11032
11033         if (encoder->connectors_active && !has_active_crtc) {
11034                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11035                               encoder->base.base.id,
11036                               drm_get_encoder_name(&encoder->base));
11037
11038                 /* Connector is active, but has no active pipe. This is
11039                  * fallout from our resume register restoring. Disable
11040                  * the encoder manually again. */
11041                 if (encoder->base.crtc) {
11042                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11043                                       encoder->base.base.id,
11044                                       drm_get_encoder_name(&encoder->base));
11045                         encoder->disable(encoder);
11046                 }
11047
11048                 /* Inconsistent output/port/pipe state happens presumably due to
11049                  * a bug in one of the get_hw_state functions. Or someplace else
11050                  * in our code, like the register restore mess on resume. Clamp
11051                  * things to off as a safer default. */
11052                 list_for_each_entry(connector,
11053                                     &dev->mode_config.connector_list,
11054                                     base.head) {
11055                         if (connector->encoder != encoder)
11056                                 continue;
11057
11058                         intel_connector_break_all_links(connector);
11059                 }
11060         }
11061         /* Enabled encoders without active connectors will be fixed in
11062          * the crtc fixup. */
11063 }
11064
11065 void i915_redisable_vga(struct drm_device *dev)
11066 {
11067         struct drm_i915_private *dev_priv = dev->dev_private;
11068         u32 vga_reg = i915_vgacntrl_reg(dev);
11069
11070         /* This function can be called both from intel_modeset_setup_hw_state or
11071          * at a very early point in our resume sequence, where the power well
11072          * structures are not yet restored. Since this function is at a very
11073          * paranoid "someone might have enabled VGA while we were not looking"
11074          * level, just check if the power well is enabled instead of trying to
11075          * follow the "don't touch the power well if we don't need it" policy
11076          * the rest of the driver uses. */
11077         if ((IS_HASWELL(dev) || IS_BROADWELL(dev)) &&
11078             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
11079                 return;
11080
11081         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11082                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11083                 i915_disable_vga(dev);
11084         }
11085 }
11086
11087 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11088 {
11089         struct drm_i915_private *dev_priv = dev->dev_private;
11090         enum pipe pipe;
11091         struct intel_crtc *crtc;
11092         struct intel_encoder *encoder;
11093         struct intel_connector *connector;
11094         int i;
11095
11096         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11097                             base.head) {
11098                 memset(&crtc->config, 0, sizeof(crtc->config));
11099
11100                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11101                                                                  &crtc->config);
11102
11103                 crtc->base.enabled = crtc->active;
11104                 crtc->primary_enabled = crtc->active;
11105
11106                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11107                               crtc->base.base.id,
11108                               crtc->active ? "enabled" : "disabled");
11109         }
11110
11111         /* FIXME: Smash this into the new shared dpll infrastructure. */
11112         if (HAS_DDI(dev))
11113                 intel_ddi_setup_hw_pll_state(dev);
11114
11115         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11116                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11117
11118                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11119                 pll->active = 0;
11120                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11121                                     base.head) {
11122                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11123                                 pll->active++;
11124                 }
11125                 pll->refcount = pll->active;
11126
11127                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11128                               pll->name, pll->refcount, pll->on);
11129         }
11130
11131         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11132                             base.head) {
11133                 pipe = 0;
11134
11135                 if (encoder->get_hw_state(encoder, &pipe)) {
11136                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11137                         encoder->base.crtc = &crtc->base;
11138                         encoder->get_config(encoder, &crtc->config);
11139                 } else {
11140                         encoder->base.crtc = NULL;
11141                 }
11142
11143                 encoder->connectors_active = false;
11144                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11145                               encoder->base.base.id,
11146                               drm_get_encoder_name(&encoder->base),
11147                               encoder->base.crtc ? "enabled" : "disabled",
11148                               pipe_name(pipe));
11149         }
11150
11151         list_for_each_entry(connector, &dev->mode_config.connector_list,
11152                             base.head) {
11153                 if (connector->get_hw_state(connector)) {
11154                         connector->base.dpms = DRM_MODE_DPMS_ON;
11155                         connector->encoder->connectors_active = true;
11156                         connector->base.encoder = &connector->encoder->base;
11157                 } else {
11158                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11159                         connector->base.encoder = NULL;
11160                 }
11161                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11162                               connector->base.base.id,
11163                               drm_get_connector_name(&connector->base),
11164                               connector->base.encoder ? "enabled" : "disabled");
11165         }
11166 }
11167
11168 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11169  * and i915 state tracking structures. */
11170 void intel_modeset_setup_hw_state(struct drm_device *dev,
11171                                   bool force_restore)
11172 {
11173         struct drm_i915_private *dev_priv = dev->dev_private;
11174         enum pipe pipe;
11175         struct intel_crtc *crtc;
11176         struct intel_encoder *encoder;
11177         int i;
11178
11179         intel_modeset_readout_hw_state(dev);
11180
11181         /*
11182          * Now that we have the config, copy it to each CRTC struct
11183          * Note that this could go away if we move to using crtc_config
11184          * checking everywhere.
11185          */
11186         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11187                             base.head) {
11188                 if (crtc->active && i915_fastboot) {
11189                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11190
11191                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11192                                       crtc->base.base.id);
11193                         drm_mode_debug_printmodeline(&crtc->base.mode);
11194                 }
11195         }
11196
11197         /* HW state is read out, now we need to sanitize this mess. */
11198         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11199                             base.head) {
11200                 intel_sanitize_encoder(encoder);
11201         }
11202
11203         for_each_pipe(pipe) {
11204                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11205                 intel_sanitize_crtc(crtc);
11206                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11207         }
11208
11209         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11210                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11211
11212                 if (!pll->on || pll->active)
11213                         continue;
11214
11215                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11216
11217                 pll->disable(dev_priv, pll);
11218                 pll->on = false;
11219         }
11220
11221         if (IS_HASWELL(dev))
11222                 ilk_wm_get_hw_state(dev);
11223
11224         if (force_restore) {
11225                 i915_redisable_vga(dev);
11226
11227                 /*
11228                  * We need to use raw interfaces for restoring state to avoid
11229                  * checking (bogus) intermediate states.
11230                  */
11231                 for_each_pipe(pipe) {
11232                         struct drm_crtc *crtc =
11233                                 dev_priv->pipe_to_crtc_mapping[pipe];
11234
11235                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11236                                          crtc->fb);
11237                 }
11238         } else {
11239                 intel_modeset_update_staged_output_state(dev);
11240         }
11241
11242         intel_modeset_check_state(dev);
11243 }
11244
11245 void intel_modeset_gem_init(struct drm_device *dev)
11246 {
11247         intel_modeset_init_hw(dev);
11248
11249         intel_setup_overlay(dev);
11250
11251         drm_modeset_lock_all(dev);
11252         drm_mode_config_reset(dev);
11253         intel_modeset_setup_hw_state(dev, false);
11254         drm_modeset_unlock_all(dev);
11255 }
11256
11257 void intel_modeset_cleanup(struct drm_device *dev)
11258 {
11259         struct drm_i915_private *dev_priv = dev->dev_private;
11260         struct drm_crtc *crtc;
11261         struct drm_connector *connector;
11262
11263         /*
11264          * Interrupts and polling as the first thing to avoid creating havoc.
11265          * Too much stuff here (turning of rps, connectors, ...) would
11266          * experience fancy races otherwise.
11267          */
11268         drm_irq_uninstall(dev);
11269         cancel_work_sync(&dev_priv->hotplug_work);
11270         /*
11271          * Due to the hpd irq storm handling the hotplug work can re-arm the
11272          * poll handlers. Hence disable polling after hpd handling is shut down.
11273          */
11274         drm_kms_helper_poll_fini(dev);
11275
11276         mutex_lock(&dev->struct_mutex);
11277
11278         intel_unregister_dsm_handler();
11279
11280         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11281                 /* Skip inactive CRTCs */
11282                 if (!crtc->fb)
11283                         continue;
11284
11285                 intel_increase_pllclock(crtc);
11286         }
11287
11288         intel_disable_fbc(dev);
11289
11290         intel_disable_gt_powersave(dev);
11291
11292         ironlake_teardown_rc6(dev);
11293
11294         mutex_unlock(&dev->struct_mutex);
11295
11296         /* flush any delayed tasks or pending work */
11297         flush_scheduled_work();
11298
11299         /* destroy the backlight and sysfs files before encoders/connectors */
11300         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11301                 intel_panel_destroy_backlight(connector);
11302                 drm_sysfs_connector_remove(connector);
11303         }
11304
11305         drm_mode_config_cleanup(dev);
11306
11307         intel_cleanup_overlay(dev);
11308 }
11309
11310 /*
11311  * Return which encoder is currently attached for connector.
11312  */
11313 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11314 {
11315         return &intel_attached_encoder(connector)->base;
11316 }
11317
11318 void intel_connector_attach_encoder(struct intel_connector *connector,
11319                                     struct intel_encoder *encoder)
11320 {
11321         connector->encoder = encoder;
11322         drm_mode_connector_attach_encoder(&connector->base,
11323                                           &encoder->base);
11324 }
11325
11326 /*
11327  * set vga decode state - true == enable VGA decode
11328  */
11329 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11330 {
11331         struct drm_i915_private *dev_priv = dev->dev_private;
11332         u16 gmch_ctrl;
11333
11334         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11335         if (state)
11336                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11337         else
11338                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11339         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11340         return 0;
11341 }
11342
11343 struct intel_display_error_state {
11344
11345         u32 power_well_driver;
11346
11347         int num_transcoders;
11348
11349         struct intel_cursor_error_state {
11350                 u32 control;
11351                 u32 position;
11352                 u32 base;
11353                 u32 size;
11354         } cursor[I915_MAX_PIPES];
11355
11356         struct intel_pipe_error_state {
11357                 bool power_domain_on;
11358                 u32 source;
11359         } pipe[I915_MAX_PIPES];
11360
11361         struct intel_plane_error_state {
11362                 u32 control;
11363                 u32 stride;
11364                 u32 size;
11365                 u32 pos;
11366                 u32 addr;
11367                 u32 surface;
11368                 u32 tile_offset;
11369         } plane[I915_MAX_PIPES];
11370
11371         struct intel_transcoder_error_state {
11372                 bool power_domain_on;
11373                 enum transcoder cpu_transcoder;
11374
11375                 u32 conf;
11376
11377                 u32 htotal;
11378                 u32 hblank;
11379                 u32 hsync;
11380                 u32 vtotal;
11381                 u32 vblank;
11382                 u32 vsync;
11383         } transcoder[4];
11384 };
11385
11386 struct intel_display_error_state *
11387 intel_display_capture_error_state(struct drm_device *dev)
11388 {
11389         drm_i915_private_t *dev_priv = dev->dev_private;
11390         struct intel_display_error_state *error;
11391         int transcoders[] = {
11392                 TRANSCODER_A,
11393                 TRANSCODER_B,
11394                 TRANSCODER_C,
11395                 TRANSCODER_EDP,
11396         };
11397         int i;
11398
11399         if (INTEL_INFO(dev)->num_pipes == 0)
11400                 return NULL;
11401
11402         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11403         if (error == NULL)
11404                 return NULL;
11405
11406         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11407                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11408
11409         for_each_pipe(i) {
11410                 error->pipe[i].power_domain_on =
11411                         intel_display_power_enabled_sw(dev, POWER_DOMAIN_PIPE(i));
11412                 if (!error->pipe[i].power_domain_on)
11413                         continue;
11414
11415                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11416                         error->cursor[i].control = I915_READ(CURCNTR(i));
11417                         error->cursor[i].position = I915_READ(CURPOS(i));
11418                         error->cursor[i].base = I915_READ(CURBASE(i));
11419                 } else {
11420                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11421                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11422                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11423                 }
11424
11425                 error->plane[i].control = I915_READ(DSPCNTR(i));
11426                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11427                 if (INTEL_INFO(dev)->gen <= 3) {
11428                         error->plane[i].size = I915_READ(DSPSIZE(i));
11429                         error->plane[i].pos = I915_READ(DSPPOS(i));
11430                 }
11431                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11432                         error->plane[i].addr = I915_READ(DSPADDR(i));
11433                 if (INTEL_INFO(dev)->gen >= 4) {
11434                         error->plane[i].surface = I915_READ(DSPSURF(i));
11435                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11436                 }
11437
11438                 error->pipe[i].source = I915_READ(PIPESRC(i));
11439         }
11440
11441         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11442         if (HAS_DDI(dev_priv->dev))
11443                 error->num_transcoders++; /* Account for eDP. */
11444
11445         for (i = 0; i < error->num_transcoders; i++) {
11446                 enum transcoder cpu_transcoder = transcoders[i];
11447
11448                 error->transcoder[i].power_domain_on =
11449                         intel_display_power_enabled_sw(dev, POWER_DOMAIN_PIPE(i));
11450                 if (!error->transcoder[i].power_domain_on)
11451                         continue;
11452
11453                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11454
11455                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11456                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11457                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11458                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11459                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11460                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11461                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11462         }
11463
11464         return error;
11465 }
11466
11467 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11468
11469 void
11470 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11471                                 struct drm_device *dev,
11472                                 struct intel_display_error_state *error)
11473 {
11474         int i;
11475
11476         if (!error)
11477                 return;
11478
11479         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11480         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11481                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11482                            error->power_well_driver);
11483         for_each_pipe(i) {
11484                 err_printf(m, "Pipe [%d]:\n", i);
11485                 err_printf(m, "  Power: %s\n",
11486                            error->pipe[i].power_domain_on ? "on" : "off");
11487                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11488
11489                 err_printf(m, "Plane [%d]:\n", i);
11490                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11491                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11492                 if (INTEL_INFO(dev)->gen <= 3) {
11493                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11494                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11495                 }
11496                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11497                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11498                 if (INTEL_INFO(dev)->gen >= 4) {
11499                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11500                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11501                 }
11502
11503                 err_printf(m, "Cursor [%d]:\n", i);
11504                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11505                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11506                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11507         }
11508
11509         for (i = 0; i < error->num_transcoders; i++) {
11510                 err_printf(m, "CPU transcoder: %c\n",
11511                            transcoder_name(error->transcoder[i].cpu_transcoder));
11512                 err_printf(m, "  Power: %s\n",
11513                            error->transcoder[i].power_domain_on ? "on" : "off");
11514                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11515                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11516                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11517                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11518                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11519                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11520                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11521         }
11522 }