]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
ba8307dc03be73b7ce2bb4f63718ac5cc26e8eb6
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 8, .max = 18 },
158         .m2 = { .min = 3, .max = 7 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 8, .max = 18 },
172         .m2 = { .min = 3, .max = 7 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
420
421         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
422                 DRM_ERROR("DPIO idle wait timed out\n");
423                 return 0;
424         }
425
426         I915_WRITE(DPIO_REG, reg);
427         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
428                    DPIO_BYTE);
429         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
430                 DRM_ERROR("DPIO read wait timed out\n");
431                 return 0;
432         }
433
434         return I915_READ(DPIO_DATA);
435 }
436
437 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
438                              u32 val)
439 {
440         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
441
442         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
443                 DRM_ERROR("DPIO idle wait timed out\n");
444                 return;
445         }
446
447         I915_WRITE(DPIO_DATA, val);
448         I915_WRITE(DPIO_REG, reg);
449         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
450                    DPIO_BYTE);
451         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
452                 DRM_ERROR("DPIO write wait timed out\n");
453 }
454
455 static void vlv_init_dpio(struct drm_device *dev)
456 {
457         struct drm_i915_private *dev_priv = dev->dev_private;
458
459         /* Reset the DPIO config */
460         I915_WRITE(DPIO_CTL, 0);
461         POSTING_READ(DPIO_CTL);
462         I915_WRITE(DPIO_CTL, 1);
463         POSTING_READ(DPIO_CTL);
464 }
465
466 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
467                                                 int refclk)
468 {
469         struct drm_device *dev = crtc->dev;
470         const intel_limit_t *limit;
471
472         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
473                 if (intel_is_dual_link_lvds(dev)) {
474                         /* LVDS dual channel */
475                         if (refclk == 100000)
476                                 limit = &intel_limits_ironlake_dual_lvds_100m;
477                         else
478                                 limit = &intel_limits_ironlake_dual_lvds;
479                 } else {
480                         if (refclk == 100000)
481                                 limit = &intel_limits_ironlake_single_lvds_100m;
482                         else
483                                 limit = &intel_limits_ironlake_single_lvds;
484                 }
485         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
486                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
487                 limit = &intel_limits_ironlake_display_port;
488         else
489                 limit = &intel_limits_ironlake_dac;
490
491         return limit;
492 }
493
494 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
495 {
496         struct drm_device *dev = crtc->dev;
497         const intel_limit_t *limit;
498
499         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
500                 if (intel_is_dual_link_lvds(dev))
501                         /* LVDS with dual channel */
502                         limit = &intel_limits_g4x_dual_channel_lvds;
503                 else
504                         /* LVDS with dual channel */
505                         limit = &intel_limits_g4x_single_channel_lvds;
506         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
507                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
508                 limit = &intel_limits_g4x_hdmi;
509         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
510                 limit = &intel_limits_g4x_sdvo;
511         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
512                 limit = &intel_limits_g4x_display_port;
513         } else /* The option is for other outputs */
514                 limit = &intel_limits_i9xx_sdvo;
515
516         return limit;
517 }
518
519 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
520 {
521         struct drm_device *dev = crtc->dev;
522         const intel_limit_t *limit;
523
524         if (HAS_PCH_SPLIT(dev))
525                 limit = intel_ironlake_limit(crtc, refclk);
526         else if (IS_G4X(dev)) {
527                 limit = intel_g4x_limit(crtc);
528         } else if (IS_PINEVIEW(dev)) {
529                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
530                         limit = &intel_limits_pineview_lvds;
531                 else
532                         limit = &intel_limits_pineview_sdvo;
533         } else if (IS_VALLEYVIEW(dev)) {
534                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
535                         limit = &intel_limits_vlv_dac;
536                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
537                         limit = &intel_limits_vlv_hdmi;
538                 else
539                         limit = &intel_limits_vlv_dp;
540         } else if (!IS_GEN2(dev)) {
541                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
542                         limit = &intel_limits_i9xx_lvds;
543                 else
544                         limit = &intel_limits_i9xx_sdvo;
545         } else {
546                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
547                         limit = &intel_limits_i8xx_lvds;
548                 else
549                         limit = &intel_limits_i8xx_dvo;
550         }
551         return limit;
552 }
553
554 /* m1 is reserved as 0 in Pineview, n is a ring counter */
555 static void pineview_clock(int refclk, intel_clock_t *clock)
556 {
557         clock->m = clock->m2 + 2;
558         clock->p = clock->p1 * clock->p2;
559         clock->vco = refclk * clock->m / clock->n;
560         clock->dot = clock->vco / clock->p;
561 }
562
563 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
564 {
565         if (IS_PINEVIEW(dev)) {
566                 pineview_clock(refclk, clock);
567                 return;
568         }
569         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
570         clock->p = clock->p1 * clock->p2;
571         clock->vco = refclk * clock->m / (clock->n + 2);
572         clock->dot = clock->vco / clock->p;
573 }
574
575 /**
576  * Returns whether any output on the specified pipe is of the specified type
577  */
578 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
579 {
580         struct drm_device *dev = crtc->dev;
581         struct intel_encoder *encoder;
582
583         for_each_encoder_on_crtc(dev, crtc, encoder)
584                 if (encoder->type == type)
585                         return true;
586
587         return false;
588 }
589
590 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
591 /**
592  * Returns whether the given set of divisors are valid for a given refclk with
593  * the given connectors.
594  */
595
596 static bool intel_PLL_is_valid(struct drm_device *dev,
597                                const intel_limit_t *limit,
598                                const intel_clock_t *clock)
599 {
600         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
601                 INTELPllInvalid("p1 out of range\n");
602         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
603                 INTELPllInvalid("p out of range\n");
604         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
605                 INTELPllInvalid("m2 out of range\n");
606         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
607                 INTELPllInvalid("m1 out of range\n");
608         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
609                 INTELPllInvalid("m1 <= m2\n");
610         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
611                 INTELPllInvalid("m out of range\n");
612         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
613                 INTELPllInvalid("n out of range\n");
614         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
615                 INTELPllInvalid("vco out of range\n");
616         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
617          * connector, etc., rather than just a single range.
618          */
619         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
620                 INTELPllInvalid("dot out of range\n");
621
622         return true;
623 }
624
625 static bool
626 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
627                     int target, int refclk, intel_clock_t *match_clock,
628                     intel_clock_t *best_clock)
629
630 {
631         struct drm_device *dev = crtc->dev;
632         intel_clock_t clock;
633         int err = target;
634
635         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
636                 /*
637                  * For LVDS just rely on its current settings for dual-channel.
638                  * We haven't figured out how to reliably set up different
639                  * single/dual channel state, if we even can.
640                  */
641                 if (intel_is_dual_link_lvds(dev))
642                         clock.p2 = limit->p2.p2_fast;
643                 else
644                         clock.p2 = limit->p2.p2_slow;
645         } else {
646                 if (target < limit->p2.dot_limit)
647                         clock.p2 = limit->p2.p2_slow;
648                 else
649                         clock.p2 = limit->p2.p2_fast;
650         }
651
652         memset(best_clock, 0, sizeof(*best_clock));
653
654         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655              clock.m1++) {
656                 for (clock.m2 = limit->m2.min;
657                      clock.m2 <= limit->m2.max; clock.m2++) {
658                         /* m1 is always 0 in Pineview */
659                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
660                                 break;
661                         for (clock.n = limit->n.min;
662                              clock.n <= limit->n.max; clock.n++) {
663                                 for (clock.p1 = limit->p1.min;
664                                         clock.p1 <= limit->p1.max; clock.p1++) {
665                                         int this_err;
666
667                                         intel_clock(dev, refclk, &clock);
668                                         if (!intel_PLL_is_valid(dev, limit,
669                                                                 &clock))
670                                                 continue;
671                                         if (match_clock &&
672                                             clock.p != match_clock->p)
673                                                 continue;
674
675                                         this_err = abs(clock.dot - target);
676                                         if (this_err < err) {
677                                                 *best_clock = clock;
678                                                 err = this_err;
679                                         }
680                                 }
681                         }
682                 }
683         }
684
685         return (err != target);
686 }
687
688 static bool
689 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
690                         int target, int refclk, intel_clock_t *match_clock,
691                         intel_clock_t *best_clock)
692 {
693         struct drm_device *dev = crtc->dev;
694         intel_clock_t clock;
695         int max_n;
696         bool found;
697         /* approximately equals target * 0.00585 */
698         int err_most = (target >> 8) + (target >> 9);
699         found = false;
700
701         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
702                 int lvds_reg;
703
704                 if (HAS_PCH_SPLIT(dev))
705                         lvds_reg = PCH_LVDS;
706                 else
707                         lvds_reg = LVDS;
708                 if (intel_is_dual_link_lvds(dev))
709                         clock.p2 = limit->p2.p2_fast;
710                 else
711                         clock.p2 = limit->p2.p2_slow;
712         } else {
713                 if (target < limit->p2.dot_limit)
714                         clock.p2 = limit->p2.p2_slow;
715                 else
716                         clock.p2 = limit->p2.p2_fast;
717         }
718
719         memset(best_clock, 0, sizeof(*best_clock));
720         max_n = limit->n.max;
721         /* based on hardware requirement, prefer smaller n to precision */
722         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
723                 /* based on hardware requirement, prefere larger m1,m2 */
724                 for (clock.m1 = limit->m1.max;
725                      clock.m1 >= limit->m1.min; clock.m1--) {
726                         for (clock.m2 = limit->m2.max;
727                              clock.m2 >= limit->m2.min; clock.m2--) {
728                                 for (clock.p1 = limit->p1.max;
729                                      clock.p1 >= limit->p1.min; clock.p1--) {
730                                         int this_err;
731
732                                         intel_clock(dev, refclk, &clock);
733                                         if (!intel_PLL_is_valid(dev, limit,
734                                                                 &clock))
735                                                 continue;
736                                         if (match_clock &&
737                                             clock.p != match_clock->p)
738                                                 continue;
739
740                                         this_err = abs(clock.dot - target);
741                                         if (this_err < err_most) {
742                                                 *best_clock = clock;
743                                                 err_most = this_err;
744                                                 max_n = clock.n;
745                                                 found = true;
746                                         }
747                                 }
748                         }
749                 }
750         }
751         return found;
752 }
753
754 static bool
755 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
756                            int target, int refclk, intel_clock_t *match_clock,
757                            intel_clock_t *best_clock)
758 {
759         struct drm_device *dev = crtc->dev;
760         intel_clock_t clock;
761
762         if (target < 200000) {
763                 clock.n = 1;
764                 clock.p1 = 2;
765                 clock.p2 = 10;
766                 clock.m1 = 12;
767                 clock.m2 = 9;
768         } else {
769                 clock.n = 2;
770                 clock.p1 = 1;
771                 clock.p2 = 10;
772                 clock.m1 = 14;
773                 clock.m2 = 8;
774         }
775         intel_clock(dev, refclk, &clock);
776         memcpy(best_clock, &clock, sizeof(intel_clock_t));
777         return true;
778 }
779
780 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
781 static bool
782 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
783                       int target, int refclk, intel_clock_t *match_clock,
784                       intel_clock_t *best_clock)
785 {
786         intel_clock_t clock;
787         if (target < 200000) {
788                 clock.p1 = 2;
789                 clock.p2 = 10;
790                 clock.n = 2;
791                 clock.m1 = 23;
792                 clock.m2 = 8;
793         } else {
794                 clock.p1 = 1;
795                 clock.p2 = 10;
796                 clock.n = 1;
797                 clock.m1 = 14;
798                 clock.m2 = 2;
799         }
800         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
801         clock.p = (clock.p1 * clock.p2);
802         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
803         clock.vco = 0;
804         memcpy(best_clock, &clock, sizeof(intel_clock_t));
805         return true;
806 }
807 static bool
808 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
809                         int target, int refclk, intel_clock_t *match_clock,
810                         intel_clock_t *best_clock)
811 {
812         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
813         u32 m, n, fastclk;
814         u32 updrate, minupdate, fracbits, p;
815         unsigned long bestppm, ppm, absppm;
816         int dotclk, flag;
817
818         flag = 0;
819         dotclk = target * 1000;
820         bestppm = 1000000;
821         ppm = absppm = 0;
822         fastclk = dotclk / (2*100);
823         updrate = 0;
824         minupdate = 19200;
825         fracbits = 1;
826         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
827         bestm1 = bestm2 = bestp1 = bestp2 = 0;
828
829         /* based on hardware requirement, prefer smaller n to precision */
830         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
831                 updrate = refclk / n;
832                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
833                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
834                                 if (p2 > 10)
835                                         p2 = p2 - 1;
836                                 p = p1 * p2;
837                                 /* based on hardware requirement, prefer bigger m1,m2 values */
838                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
839                                         m2 = (((2*(fastclk * p * n / m1 )) +
840                                                refclk) / (2*refclk));
841                                         m = m1 * m2;
842                                         vco = updrate * m;
843                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
844                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
845                                                 absppm = (ppm > 0) ? ppm : (-ppm);
846                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
847                                                         bestppm = 0;
848                                                         flag = 1;
849                                                 }
850                                                 if (absppm < bestppm - 10) {
851                                                         bestppm = absppm;
852                                                         flag = 1;
853                                                 }
854                                                 if (flag) {
855                                                         bestn = n;
856                                                         bestm1 = m1;
857                                                         bestm2 = m2;
858                                                         bestp1 = p1;
859                                                         bestp2 = p2;
860                                                         flag = 0;
861                                                 }
862                                         }
863                                 }
864                         }
865                 }
866         }
867         best_clock->n = bestn;
868         best_clock->m1 = bestm1;
869         best_clock->m2 = bestm2;
870         best_clock->p1 = bestp1;
871         best_clock->p2 = bestp2;
872
873         return true;
874 }
875
876 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
877                                              enum pipe pipe)
878 {
879         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
881
882         return intel_crtc->cpu_transcoder;
883 }
884
885 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
886 {
887         struct drm_i915_private *dev_priv = dev->dev_private;
888         u32 frame, frame_reg = PIPEFRAME(pipe);
889
890         frame = I915_READ(frame_reg);
891
892         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
893                 DRM_DEBUG_KMS("vblank wait timed out\n");
894 }
895
896 /**
897  * intel_wait_for_vblank - wait for vblank on a given pipe
898  * @dev: drm device
899  * @pipe: pipe to wait for
900  *
901  * Wait for vblank to occur on a given pipe.  Needed for various bits of
902  * mode setting code.
903  */
904 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
905 {
906         struct drm_i915_private *dev_priv = dev->dev_private;
907         int pipestat_reg = PIPESTAT(pipe);
908
909         if (INTEL_INFO(dev)->gen >= 5) {
910                 ironlake_wait_for_vblank(dev, pipe);
911                 return;
912         }
913
914         /* Clear existing vblank status. Note this will clear any other
915          * sticky status fields as well.
916          *
917          * This races with i915_driver_irq_handler() with the result
918          * that either function could miss a vblank event.  Here it is not
919          * fatal, as we will either wait upon the next vblank interrupt or
920          * timeout.  Generally speaking intel_wait_for_vblank() is only
921          * called during modeset at which time the GPU should be idle and
922          * should *not* be performing page flips and thus not waiting on
923          * vblanks...
924          * Currently, the result of us stealing a vblank from the irq
925          * handler is that a single frame will be skipped during swapbuffers.
926          */
927         I915_WRITE(pipestat_reg,
928                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
929
930         /* Wait for vblank interrupt bit to set */
931         if (wait_for(I915_READ(pipestat_reg) &
932                      PIPE_VBLANK_INTERRUPT_STATUS,
933                      50))
934                 DRM_DEBUG_KMS("vblank wait timed out\n");
935 }
936
937 /*
938  * intel_wait_for_pipe_off - wait for pipe to turn off
939  * @dev: drm device
940  * @pipe: pipe to wait for
941  *
942  * After disabling a pipe, we can't wait for vblank in the usual way,
943  * spinning on the vblank interrupt status bit, since we won't actually
944  * see an interrupt when the pipe is disabled.
945  *
946  * On Gen4 and above:
947  *   wait for the pipe register state bit to turn off
948  *
949  * Otherwise:
950  *   wait for the display line value to settle (it usually
951  *   ends up stopping at the start of the next frame).
952  *
953  */
954 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
955 {
956         struct drm_i915_private *dev_priv = dev->dev_private;
957         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
958                                                                       pipe);
959
960         if (INTEL_INFO(dev)->gen >= 4) {
961                 int reg = PIPECONF(cpu_transcoder);
962
963                 /* Wait for the Pipe State to go off */
964                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
965                              100))
966                         WARN(1, "pipe_off wait timed out\n");
967         } else {
968                 u32 last_line, line_mask;
969                 int reg = PIPEDSL(pipe);
970                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
971
972                 if (IS_GEN2(dev))
973                         line_mask = DSL_LINEMASK_GEN2;
974                 else
975                         line_mask = DSL_LINEMASK_GEN3;
976
977                 /* Wait for the display line to settle */
978                 do {
979                         last_line = I915_READ(reg) & line_mask;
980                         mdelay(5);
981                 } while (((I915_READ(reg) & line_mask) != last_line) &&
982                          time_after(timeout, jiffies));
983                 if (time_after(jiffies, timeout))
984                         WARN(1, "pipe_off wait timed out\n");
985         }
986 }
987
988 /*
989  * ibx_digital_port_connected - is the specified port connected?
990  * @dev_priv: i915 private structure
991  * @port: the port to test
992  *
993  * Returns true if @port is connected, false otherwise.
994  */
995 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
996                                 struct intel_digital_port *port)
997 {
998         u32 bit;
999
1000         if (HAS_PCH_IBX(dev_priv->dev)) {
1001                 switch(port->port) {
1002                 case PORT_B:
1003                         bit = SDE_PORTB_HOTPLUG;
1004                         break;
1005                 case PORT_C:
1006                         bit = SDE_PORTC_HOTPLUG;
1007                         break;
1008                 case PORT_D:
1009                         bit = SDE_PORTD_HOTPLUG;
1010                         break;
1011                 default:
1012                         return true;
1013                 }
1014         } else {
1015                 switch(port->port) {
1016                 case PORT_B:
1017                         bit = SDE_PORTB_HOTPLUG_CPT;
1018                         break;
1019                 case PORT_C:
1020                         bit = SDE_PORTC_HOTPLUG_CPT;
1021                         break;
1022                 case PORT_D:
1023                         bit = SDE_PORTD_HOTPLUG_CPT;
1024                         break;
1025                 default:
1026                         return true;
1027                 }
1028         }
1029
1030         return I915_READ(SDEISR) & bit;
1031 }
1032
1033 static const char *state_string(bool enabled)
1034 {
1035         return enabled ? "on" : "off";
1036 }
1037
1038 /* Only for pre-ILK configs */
1039 static void assert_pll(struct drm_i915_private *dev_priv,
1040                        enum pipe pipe, bool state)
1041 {
1042         int reg;
1043         u32 val;
1044         bool cur_state;
1045
1046         reg = DPLL(pipe);
1047         val = I915_READ(reg);
1048         cur_state = !!(val & DPLL_VCO_ENABLE);
1049         WARN(cur_state != state,
1050              "PLL state assertion failure (expected %s, current %s)\n",
1051              state_string(state), state_string(cur_state));
1052 }
1053 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1054 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1055
1056 /* For ILK+ */
1057 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1058                            struct intel_pch_pll *pll,
1059                            struct intel_crtc *crtc,
1060                            bool state)
1061 {
1062         u32 val;
1063         bool cur_state;
1064
1065         if (HAS_PCH_LPT(dev_priv->dev)) {
1066                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1067                 return;
1068         }
1069
1070         if (WARN (!pll,
1071                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1072                 return;
1073
1074         val = I915_READ(pll->pll_reg);
1075         cur_state = !!(val & DPLL_VCO_ENABLE);
1076         WARN(cur_state != state,
1077              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1078              pll->pll_reg, state_string(state), state_string(cur_state), val);
1079
1080         /* Make sure the selected PLL is correctly attached to the transcoder */
1081         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1082                 u32 pch_dpll;
1083
1084                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1085                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1086                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1087                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1088                           cur_state, crtc->pipe, pch_dpll)) {
1089                         cur_state = !!(val >> (4*crtc->pipe + 3));
1090                         WARN(cur_state != state,
1091                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1092                              pll->pll_reg == _PCH_DPLL_B,
1093                              state_string(state),
1094                              crtc->pipe,
1095                              val);
1096                 }
1097         }
1098 }
1099 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1100 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1101
1102 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1103                           enum pipe pipe, bool state)
1104 {
1105         int reg;
1106         u32 val;
1107         bool cur_state;
1108         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1109                                                                       pipe);
1110
1111         if (HAS_DDI(dev_priv->dev)) {
1112                 /* DDI does not have a specific FDI_TX register */
1113                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1114                 val = I915_READ(reg);
1115                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1116         } else {
1117                 reg = FDI_TX_CTL(pipe);
1118                 val = I915_READ(reg);
1119                 cur_state = !!(val & FDI_TX_ENABLE);
1120         }
1121         WARN(cur_state != state,
1122              "FDI TX state assertion failure (expected %s, current %s)\n",
1123              state_string(state), state_string(cur_state));
1124 }
1125 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1126 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1127
1128 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1129                           enum pipe pipe, bool state)
1130 {
1131         int reg;
1132         u32 val;
1133         bool cur_state;
1134
1135         reg = FDI_RX_CTL(pipe);
1136         val = I915_READ(reg);
1137         cur_state = !!(val & FDI_RX_ENABLE);
1138         WARN(cur_state != state,
1139              "FDI RX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1143 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1144
1145 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1146                                       enum pipe pipe)
1147 {
1148         int reg;
1149         u32 val;
1150
1151         /* ILK FDI PLL is always enabled */
1152         if (dev_priv->info->gen == 5)
1153                 return;
1154
1155         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1156         if (HAS_DDI(dev_priv->dev))
1157                 return;
1158
1159         reg = FDI_TX_CTL(pipe);
1160         val = I915_READ(reg);
1161         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1162 }
1163
1164 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1165                                       enum pipe pipe)
1166 {
1167         int reg;
1168         u32 val;
1169
1170         reg = FDI_RX_CTL(pipe);
1171         val = I915_READ(reg);
1172         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1173 }
1174
1175 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1176                                   enum pipe pipe)
1177 {
1178         int pp_reg, lvds_reg;
1179         u32 val;
1180         enum pipe panel_pipe = PIPE_A;
1181         bool locked = true;
1182
1183         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1184                 pp_reg = PCH_PP_CONTROL;
1185                 lvds_reg = PCH_LVDS;
1186         } else {
1187                 pp_reg = PP_CONTROL;
1188                 lvds_reg = LVDS;
1189         }
1190
1191         val = I915_READ(pp_reg);
1192         if (!(val & PANEL_POWER_ON) ||
1193             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1194                 locked = false;
1195
1196         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1197                 panel_pipe = PIPE_B;
1198
1199         WARN(panel_pipe == pipe && locked,
1200              "panel assertion failure, pipe %c regs locked\n",
1201              pipe_name(pipe));
1202 }
1203
1204 void assert_pipe(struct drm_i915_private *dev_priv,
1205                  enum pipe pipe, bool state)
1206 {
1207         int reg;
1208         u32 val;
1209         bool cur_state;
1210         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1211                                                                       pipe);
1212
1213         /* if we need the pipe A quirk it must be always on */
1214         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1215                 state = true;
1216
1217         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1218             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1219                 cur_state = false;
1220         } else {
1221                 reg = PIPECONF(cpu_transcoder);
1222                 val = I915_READ(reg);
1223                 cur_state = !!(val & PIPECONF_ENABLE);
1224         }
1225
1226         WARN(cur_state != state,
1227              "pipe %c assertion failure (expected %s, current %s)\n",
1228              pipe_name(pipe), state_string(state), state_string(cur_state));
1229 }
1230
1231 static void assert_plane(struct drm_i915_private *dev_priv,
1232                          enum plane plane, bool state)
1233 {
1234         int reg;
1235         u32 val;
1236         bool cur_state;
1237
1238         reg = DSPCNTR(plane);
1239         val = I915_READ(reg);
1240         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1241         WARN(cur_state != state,
1242              "plane %c assertion failure (expected %s, current %s)\n",
1243              plane_name(plane), state_string(state), state_string(cur_state));
1244 }
1245
1246 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1247 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1248
1249 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1250                                    enum pipe pipe)
1251 {
1252         int reg, i;
1253         u32 val;
1254         int cur_pipe;
1255
1256         /* Planes are fixed to pipes on ILK+ */
1257         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1258                 reg = DSPCNTR(pipe);
1259                 val = I915_READ(reg);
1260                 WARN((val & DISPLAY_PLANE_ENABLE),
1261                      "plane %c assertion failure, should be disabled but not\n",
1262                      plane_name(pipe));
1263                 return;
1264         }
1265
1266         /* Need to check both planes against the pipe */
1267         for (i = 0; i < 2; i++) {
1268                 reg = DSPCNTR(i);
1269                 val = I915_READ(reg);
1270                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1271                         DISPPLANE_SEL_PIPE_SHIFT;
1272                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1273                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1274                      plane_name(i), pipe_name(pipe));
1275         }
1276 }
1277
1278 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1279 {
1280         u32 val;
1281         bool enabled;
1282
1283         if (HAS_PCH_LPT(dev_priv->dev)) {
1284                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1285                 return;
1286         }
1287
1288         val = I915_READ(PCH_DREF_CONTROL);
1289         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1290                             DREF_SUPERSPREAD_SOURCE_MASK));
1291         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1292 }
1293
1294 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1295                                        enum pipe pipe)
1296 {
1297         int reg;
1298         u32 val;
1299         bool enabled;
1300
1301         reg = TRANSCONF(pipe);
1302         val = I915_READ(reg);
1303         enabled = !!(val & TRANS_ENABLE);
1304         WARN(enabled,
1305              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1306              pipe_name(pipe));
1307 }
1308
1309 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1310                             enum pipe pipe, u32 port_sel, u32 val)
1311 {
1312         if ((val & DP_PORT_EN) == 0)
1313                 return false;
1314
1315         if (HAS_PCH_CPT(dev_priv->dev)) {
1316                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1317                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1318                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1319                         return false;
1320         } else {
1321                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322                         return false;
1323         }
1324         return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328                               enum pipe pipe, u32 val)
1329 {
1330         if ((val & PORT_ENABLE) == 0)
1331                 return false;
1332
1333         if (HAS_PCH_CPT(dev_priv->dev)) {
1334                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1335                         return false;
1336         } else {
1337                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1338                         return false;
1339         }
1340         return true;
1341 }
1342
1343 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1344                               enum pipe pipe, u32 val)
1345 {
1346         if ((val & LVDS_PORT_EN) == 0)
1347                 return false;
1348
1349         if (HAS_PCH_CPT(dev_priv->dev)) {
1350                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1351                         return false;
1352         } else {
1353                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & ADPA_DAC_ENABLE) == 0)
1363                 return false;
1364         if (HAS_PCH_CPT(dev_priv->dev)) {
1365                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1366                         return false;
1367         } else {
1368                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1369                         return false;
1370         }
1371         return true;
1372 }
1373
1374 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1375                                    enum pipe pipe, int reg, u32 port_sel)
1376 {
1377         u32 val = I915_READ(reg);
1378         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1379              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1380              reg, pipe_name(pipe));
1381
1382         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1383              && (val & DP_PIPEB_SELECT),
1384              "IBX PCH dp port still using transcoder B\n");
1385 }
1386
1387 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1388                                      enum pipe pipe, int reg)
1389 {
1390         u32 val = I915_READ(reg);
1391         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1392              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1393              reg, pipe_name(pipe));
1394
1395         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1396              && (val & SDVO_PIPE_B_SELECT),
1397              "IBX PCH hdmi port still using transcoder B\n");
1398 }
1399
1400 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1401                                       enum pipe pipe)
1402 {
1403         int reg;
1404         u32 val;
1405
1406         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1407         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1408         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1409
1410         reg = PCH_ADPA;
1411         val = I915_READ(reg);
1412         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1413              "PCH VGA enabled on transcoder %c, should be disabled\n",
1414              pipe_name(pipe));
1415
1416         reg = PCH_LVDS;
1417         val = I915_READ(reg);
1418         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1419              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1420              pipe_name(pipe));
1421
1422         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1423         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1424         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1425 }
1426
1427 /**
1428  * intel_enable_pll - enable a PLL
1429  * @dev_priv: i915 private structure
1430  * @pipe: pipe PLL to enable
1431  *
1432  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1433  * make sure the PLL reg is writable first though, since the panel write
1434  * protect mechanism may be enabled.
1435  *
1436  * Note!  This is for pre-ILK only.
1437  *
1438  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1439  */
1440 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1441 {
1442         int reg;
1443         u32 val;
1444
1445         /* No really, not for ILK+ */
1446         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1447
1448         /* PLL is protected by panel, make sure we can write it */
1449         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1450                 assert_panel_unlocked(dev_priv, pipe);
1451
1452         reg = DPLL(pipe);
1453         val = I915_READ(reg);
1454         val |= DPLL_VCO_ENABLE;
1455
1456         /* We do this three times for luck */
1457         I915_WRITE(reg, val);
1458         POSTING_READ(reg);
1459         udelay(150); /* wait for warmup */
1460         I915_WRITE(reg, val);
1461         POSTING_READ(reg);
1462         udelay(150); /* wait for warmup */
1463         I915_WRITE(reg, val);
1464         POSTING_READ(reg);
1465         udelay(150); /* wait for warmup */
1466 }
1467
1468 /**
1469  * intel_disable_pll - disable a PLL
1470  * @dev_priv: i915 private structure
1471  * @pipe: pipe PLL to disable
1472  *
1473  * Disable the PLL for @pipe, making sure the pipe is off first.
1474  *
1475  * Note!  This is for pre-ILK only.
1476  */
1477 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1478 {
1479         int reg;
1480         u32 val;
1481
1482         /* Don't disable pipe A or pipe A PLLs if needed */
1483         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1484                 return;
1485
1486         /* Make sure the pipe isn't still relying on us */
1487         assert_pipe_disabled(dev_priv, pipe);
1488
1489         reg = DPLL(pipe);
1490         val = I915_READ(reg);
1491         val &= ~DPLL_VCO_ENABLE;
1492         I915_WRITE(reg, val);
1493         POSTING_READ(reg);
1494 }
1495
1496 /* SBI access */
1497 static void
1498 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1499                 enum intel_sbi_destination destination)
1500 {
1501         u32 tmp;
1502
1503         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1504
1505         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1506                                 100)) {
1507                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1508                 return;
1509         }
1510
1511         I915_WRITE(SBI_ADDR, (reg << 16));
1512         I915_WRITE(SBI_DATA, value);
1513
1514         if (destination == SBI_ICLK)
1515                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1516         else
1517                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1518         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1519
1520         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1521                                 100)) {
1522                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1523                 return;
1524         }
1525 }
1526
1527 static u32
1528 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1529                enum intel_sbi_destination destination)
1530 {
1531         u32 value = 0;
1532         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1533
1534         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1535                                 100)) {
1536                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1537                 return 0;
1538         }
1539
1540         I915_WRITE(SBI_ADDR, (reg << 16));
1541
1542         if (destination == SBI_ICLK)
1543                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1544         else
1545                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1546         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1547
1548         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1549                                 100)) {
1550                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1551                 return 0;
1552         }
1553
1554         return I915_READ(SBI_DATA);
1555 }
1556
1557 /**
1558  * ironlake_enable_pch_pll - enable PCH PLL
1559  * @dev_priv: i915 private structure
1560  * @pipe: pipe PLL to enable
1561  *
1562  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1563  * drives the transcoder clock.
1564  */
1565 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1566 {
1567         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1568         struct intel_pch_pll *pll;
1569         int reg;
1570         u32 val;
1571
1572         /* PCH PLLs only available on ILK, SNB and IVB */
1573         BUG_ON(dev_priv->info->gen < 5);
1574         pll = intel_crtc->pch_pll;
1575         if (pll == NULL)
1576                 return;
1577
1578         if (WARN_ON(pll->refcount == 0))
1579                 return;
1580
1581         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1582                       pll->pll_reg, pll->active, pll->on,
1583                       intel_crtc->base.base.id);
1584
1585         /* PCH refclock must be enabled first */
1586         assert_pch_refclk_enabled(dev_priv);
1587
1588         if (pll->active++ && pll->on) {
1589                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1590                 return;
1591         }
1592
1593         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1594
1595         reg = pll->pll_reg;
1596         val = I915_READ(reg);
1597         val |= DPLL_VCO_ENABLE;
1598         I915_WRITE(reg, val);
1599         POSTING_READ(reg);
1600         udelay(200);
1601
1602         pll->on = true;
1603 }
1604
1605 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1606 {
1607         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1608         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1609         int reg;
1610         u32 val;
1611
1612         /* PCH only available on ILK+ */
1613         BUG_ON(dev_priv->info->gen < 5);
1614         if (pll == NULL)
1615                return;
1616
1617         if (WARN_ON(pll->refcount == 0))
1618                 return;
1619
1620         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1621                       pll->pll_reg, pll->active, pll->on,
1622                       intel_crtc->base.base.id);
1623
1624         if (WARN_ON(pll->active == 0)) {
1625                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1626                 return;
1627         }
1628
1629         if (--pll->active) {
1630                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1631                 return;
1632         }
1633
1634         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1635
1636         /* Make sure transcoder isn't still depending on us */
1637         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1638
1639         reg = pll->pll_reg;
1640         val = I915_READ(reg);
1641         val &= ~DPLL_VCO_ENABLE;
1642         I915_WRITE(reg, val);
1643         POSTING_READ(reg);
1644         udelay(200);
1645
1646         pll->on = false;
1647 }
1648
1649 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1650                                            enum pipe pipe)
1651 {
1652         struct drm_device *dev = dev_priv->dev;
1653         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1654         uint32_t reg, val, pipeconf_val;
1655
1656         /* PCH only available on ILK+ */
1657         BUG_ON(dev_priv->info->gen < 5);
1658
1659         /* Make sure PCH DPLL is enabled */
1660         assert_pch_pll_enabled(dev_priv,
1661                                to_intel_crtc(crtc)->pch_pll,
1662                                to_intel_crtc(crtc));
1663
1664         /* FDI must be feeding us bits for PCH ports */
1665         assert_fdi_tx_enabled(dev_priv, pipe);
1666         assert_fdi_rx_enabled(dev_priv, pipe);
1667
1668         if (HAS_PCH_CPT(dev)) {
1669                 /* Workaround: Set the timing override bit before enabling the
1670                  * pch transcoder. */
1671                 reg = TRANS_CHICKEN2(pipe);
1672                 val = I915_READ(reg);
1673                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1674                 I915_WRITE(reg, val);
1675         }
1676
1677         reg = TRANSCONF(pipe);
1678         val = I915_READ(reg);
1679         pipeconf_val = I915_READ(PIPECONF(pipe));
1680
1681         if (HAS_PCH_IBX(dev_priv->dev)) {
1682                 /*
1683                  * make the BPC in transcoder be consistent with
1684                  * that in pipeconf reg.
1685                  */
1686                 val &= ~PIPECONF_BPC_MASK;
1687                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1688         }
1689
1690         val &= ~TRANS_INTERLACE_MASK;
1691         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1692                 if (HAS_PCH_IBX(dev_priv->dev) &&
1693                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1694                         val |= TRANS_LEGACY_INTERLACED_ILK;
1695                 else
1696                         val |= TRANS_INTERLACED;
1697         else
1698                 val |= TRANS_PROGRESSIVE;
1699
1700         I915_WRITE(reg, val | TRANS_ENABLE);
1701         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1702                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1703 }
1704
1705 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1706                                       enum transcoder cpu_transcoder)
1707 {
1708         u32 val, pipeconf_val;
1709
1710         /* PCH only available on ILK+ */
1711         BUG_ON(dev_priv->info->gen < 5);
1712
1713         /* FDI must be feeding us bits for PCH ports */
1714         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1715         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1716
1717         /* Workaround: set timing override bit. */
1718         val = I915_READ(_TRANSA_CHICKEN2);
1719         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1720         I915_WRITE(_TRANSA_CHICKEN2, val);
1721
1722         val = TRANS_ENABLE;
1723         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1724
1725         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1726             PIPECONF_INTERLACED_ILK)
1727                 val |= TRANS_INTERLACED;
1728         else
1729                 val |= TRANS_PROGRESSIVE;
1730
1731         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1732         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1733                 DRM_ERROR("Failed to enable PCH transcoder\n");
1734 }
1735
1736 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1737                                             enum pipe pipe)
1738 {
1739         struct drm_device *dev = dev_priv->dev;
1740         uint32_t reg, val;
1741
1742         /* FDI relies on the transcoder */
1743         assert_fdi_tx_disabled(dev_priv, pipe);
1744         assert_fdi_rx_disabled(dev_priv, pipe);
1745
1746         /* Ports must be off as well */
1747         assert_pch_ports_disabled(dev_priv, pipe);
1748
1749         reg = TRANSCONF(pipe);
1750         val = I915_READ(reg);
1751         val &= ~TRANS_ENABLE;
1752         I915_WRITE(reg, val);
1753         /* wait for PCH transcoder off, transcoder state */
1754         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1755                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1756
1757         if (!HAS_PCH_IBX(dev)) {
1758                 /* Workaround: Clear the timing override chicken bit again. */
1759                 reg = TRANS_CHICKEN2(pipe);
1760                 val = I915_READ(reg);
1761                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1762                 I915_WRITE(reg, val);
1763         }
1764 }
1765
1766 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1767 {
1768         u32 val;
1769
1770         val = I915_READ(_TRANSACONF);
1771         val &= ~TRANS_ENABLE;
1772         I915_WRITE(_TRANSACONF, val);
1773         /* wait for PCH transcoder off, transcoder state */
1774         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1775                 DRM_ERROR("Failed to disable PCH transcoder\n");
1776
1777         /* Workaround: clear timing override bit. */
1778         val = I915_READ(_TRANSA_CHICKEN2);
1779         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1780         I915_WRITE(_TRANSA_CHICKEN2, val);
1781 }
1782
1783 /**
1784  * intel_enable_pipe - enable a pipe, asserting requirements
1785  * @dev_priv: i915 private structure
1786  * @pipe: pipe to enable
1787  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1788  *
1789  * Enable @pipe, making sure that various hardware specific requirements
1790  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1791  *
1792  * @pipe should be %PIPE_A or %PIPE_B.
1793  *
1794  * Will wait until the pipe is actually running (i.e. first vblank) before
1795  * returning.
1796  */
1797 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1798                               bool pch_port)
1799 {
1800         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1801                                                                       pipe);
1802         enum pipe pch_transcoder;
1803         int reg;
1804         u32 val;
1805
1806         if (HAS_PCH_LPT(dev_priv->dev))
1807                 pch_transcoder = TRANSCODER_A;
1808         else
1809                 pch_transcoder = pipe;
1810
1811         /*
1812          * A pipe without a PLL won't actually be able to drive bits from
1813          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1814          * need the check.
1815          */
1816         if (!HAS_PCH_SPLIT(dev_priv->dev))
1817                 assert_pll_enabled(dev_priv, pipe);
1818         else {
1819                 if (pch_port) {
1820                         /* if driving the PCH, we need FDI enabled */
1821                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1822                         assert_fdi_tx_pll_enabled(dev_priv,
1823                                                   (enum pipe) cpu_transcoder);
1824                 }
1825                 /* FIXME: assert CPU port conditions for SNB+ */
1826         }
1827
1828         reg = PIPECONF(cpu_transcoder);
1829         val = I915_READ(reg);
1830         if (val & PIPECONF_ENABLE)
1831                 return;
1832
1833         I915_WRITE(reg, val | PIPECONF_ENABLE);
1834         intel_wait_for_vblank(dev_priv->dev, pipe);
1835 }
1836
1837 /**
1838  * intel_disable_pipe - disable a pipe, asserting requirements
1839  * @dev_priv: i915 private structure
1840  * @pipe: pipe to disable
1841  *
1842  * Disable @pipe, making sure that various hardware specific requirements
1843  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1844  *
1845  * @pipe should be %PIPE_A or %PIPE_B.
1846  *
1847  * Will wait until the pipe has shut down before returning.
1848  */
1849 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1850                                enum pipe pipe)
1851 {
1852         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1853                                                                       pipe);
1854         int reg;
1855         u32 val;
1856
1857         /*
1858          * Make sure planes won't keep trying to pump pixels to us,
1859          * or we might hang the display.
1860          */
1861         assert_planes_disabled(dev_priv, pipe);
1862
1863         /* Don't disable pipe A or pipe A PLLs if needed */
1864         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1865                 return;
1866
1867         reg = PIPECONF(cpu_transcoder);
1868         val = I915_READ(reg);
1869         if ((val & PIPECONF_ENABLE) == 0)
1870                 return;
1871
1872         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1873         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1874 }
1875
1876 /*
1877  * Plane regs are double buffered, going from enabled->disabled needs a
1878  * trigger in order to latch.  The display address reg provides this.
1879  */
1880 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1881                                       enum plane plane)
1882 {
1883         if (dev_priv->info->gen >= 4)
1884                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1885         else
1886                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1887 }
1888
1889 /**
1890  * intel_enable_plane - enable a display plane on a given pipe
1891  * @dev_priv: i915 private structure
1892  * @plane: plane to enable
1893  * @pipe: pipe being fed
1894  *
1895  * Enable @plane on @pipe, making sure that @pipe is running first.
1896  */
1897 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1898                                enum plane plane, enum pipe pipe)
1899 {
1900         int reg;
1901         u32 val;
1902
1903         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1904         assert_pipe_enabled(dev_priv, pipe);
1905
1906         reg = DSPCNTR(plane);
1907         val = I915_READ(reg);
1908         if (val & DISPLAY_PLANE_ENABLE)
1909                 return;
1910
1911         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1912         intel_flush_display_plane(dev_priv, plane);
1913         intel_wait_for_vblank(dev_priv->dev, pipe);
1914 }
1915
1916 /**
1917  * intel_disable_plane - disable a display plane
1918  * @dev_priv: i915 private structure
1919  * @plane: plane to disable
1920  * @pipe: pipe consuming the data
1921  *
1922  * Disable @plane; should be an independent operation.
1923  */
1924 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1925                                 enum plane plane, enum pipe pipe)
1926 {
1927         int reg;
1928         u32 val;
1929
1930         reg = DSPCNTR(plane);
1931         val = I915_READ(reg);
1932         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1933                 return;
1934
1935         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1936         intel_flush_display_plane(dev_priv, plane);
1937         intel_wait_for_vblank(dev_priv->dev, pipe);
1938 }
1939
1940 int
1941 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1942                            struct drm_i915_gem_object *obj,
1943                            struct intel_ring_buffer *pipelined)
1944 {
1945         struct drm_i915_private *dev_priv = dev->dev_private;
1946         u32 alignment;
1947         int ret;
1948
1949         switch (obj->tiling_mode) {
1950         case I915_TILING_NONE:
1951                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1952                         alignment = 128 * 1024;
1953                 else if (INTEL_INFO(dev)->gen >= 4)
1954                         alignment = 4 * 1024;
1955                 else
1956                         alignment = 64 * 1024;
1957                 break;
1958         case I915_TILING_X:
1959                 /* pin() will align the object as required by fence */
1960                 alignment = 0;
1961                 break;
1962         case I915_TILING_Y:
1963                 /* FIXME: Is this true? */
1964                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1965                 return -EINVAL;
1966         default:
1967                 BUG();
1968         }
1969
1970         dev_priv->mm.interruptible = false;
1971         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1972         if (ret)
1973                 goto err_interruptible;
1974
1975         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1976          * fence, whereas 965+ only requires a fence if using
1977          * framebuffer compression.  For simplicity, we always install
1978          * a fence as the cost is not that onerous.
1979          */
1980         ret = i915_gem_object_get_fence(obj);
1981         if (ret)
1982                 goto err_unpin;
1983
1984         i915_gem_object_pin_fence(obj);
1985
1986         dev_priv->mm.interruptible = true;
1987         return 0;
1988
1989 err_unpin:
1990         i915_gem_object_unpin(obj);
1991 err_interruptible:
1992         dev_priv->mm.interruptible = true;
1993         return ret;
1994 }
1995
1996 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1997 {
1998         i915_gem_object_unpin_fence(obj);
1999         i915_gem_object_unpin(obj);
2000 }
2001
2002 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2003  * is assumed to be a power-of-two. */
2004 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2005                                                unsigned int bpp,
2006                                                unsigned int pitch)
2007 {
2008         int tile_rows, tiles;
2009
2010         tile_rows = *y / 8;
2011         *y %= 8;
2012         tiles = *x / (512/bpp);
2013         *x %= 512/bpp;
2014
2015         return tile_rows * pitch * 8 + tiles * 4096;
2016 }
2017
2018 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2019                              int x, int y)
2020 {
2021         struct drm_device *dev = crtc->dev;
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024         struct intel_framebuffer *intel_fb;
2025         struct drm_i915_gem_object *obj;
2026         int plane = intel_crtc->plane;
2027         unsigned long linear_offset;
2028         u32 dspcntr;
2029         u32 reg;
2030
2031         switch (plane) {
2032         case 0:
2033         case 1:
2034                 break;
2035         default:
2036                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2037                 return -EINVAL;
2038         }
2039
2040         intel_fb = to_intel_framebuffer(fb);
2041         obj = intel_fb->obj;
2042
2043         reg = DSPCNTR(plane);
2044         dspcntr = I915_READ(reg);
2045         /* Mask out pixel format bits in case we change it */
2046         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2047         switch (fb->pixel_format) {
2048         case DRM_FORMAT_C8:
2049                 dspcntr |= DISPPLANE_8BPP;
2050                 break;
2051         case DRM_FORMAT_XRGB1555:
2052         case DRM_FORMAT_ARGB1555:
2053                 dspcntr |= DISPPLANE_BGRX555;
2054                 break;
2055         case DRM_FORMAT_RGB565:
2056                 dspcntr |= DISPPLANE_BGRX565;
2057                 break;
2058         case DRM_FORMAT_XRGB8888:
2059         case DRM_FORMAT_ARGB8888:
2060                 dspcntr |= DISPPLANE_BGRX888;
2061                 break;
2062         case DRM_FORMAT_XBGR8888:
2063         case DRM_FORMAT_ABGR8888:
2064                 dspcntr |= DISPPLANE_RGBX888;
2065                 break;
2066         case DRM_FORMAT_XRGB2101010:
2067         case DRM_FORMAT_ARGB2101010:
2068                 dspcntr |= DISPPLANE_BGRX101010;
2069                 break;
2070         case DRM_FORMAT_XBGR2101010:
2071         case DRM_FORMAT_ABGR2101010:
2072                 dspcntr |= DISPPLANE_RGBX101010;
2073                 break;
2074         default:
2075                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2076                 return -EINVAL;
2077         }
2078
2079         if (INTEL_INFO(dev)->gen >= 4) {
2080                 if (obj->tiling_mode != I915_TILING_NONE)
2081                         dspcntr |= DISPPLANE_TILED;
2082                 else
2083                         dspcntr &= ~DISPPLANE_TILED;
2084         }
2085
2086         I915_WRITE(reg, dspcntr);
2087
2088         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2089
2090         if (INTEL_INFO(dev)->gen >= 4) {
2091                 intel_crtc->dspaddr_offset =
2092                         intel_gen4_compute_offset_xtiled(&x, &y,
2093                                                          fb->bits_per_pixel / 8,
2094                                                          fb->pitches[0]);
2095                 linear_offset -= intel_crtc->dspaddr_offset;
2096         } else {
2097                 intel_crtc->dspaddr_offset = linear_offset;
2098         }
2099
2100         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2101                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2102         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2103         if (INTEL_INFO(dev)->gen >= 4) {
2104                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2105                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2106                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2107                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2108         } else
2109                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2110         POSTING_READ(reg);
2111
2112         return 0;
2113 }
2114
2115 static int ironlake_update_plane(struct drm_crtc *crtc,
2116                                  struct drm_framebuffer *fb, int x, int y)
2117 {
2118         struct drm_device *dev = crtc->dev;
2119         struct drm_i915_private *dev_priv = dev->dev_private;
2120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2121         struct intel_framebuffer *intel_fb;
2122         struct drm_i915_gem_object *obj;
2123         int plane = intel_crtc->plane;
2124         unsigned long linear_offset;
2125         u32 dspcntr;
2126         u32 reg;
2127
2128         switch (plane) {
2129         case 0:
2130         case 1:
2131         case 2:
2132                 break;
2133         default:
2134                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2135                 return -EINVAL;
2136         }
2137
2138         intel_fb = to_intel_framebuffer(fb);
2139         obj = intel_fb->obj;
2140
2141         reg = DSPCNTR(plane);
2142         dspcntr = I915_READ(reg);
2143         /* Mask out pixel format bits in case we change it */
2144         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2145         switch (fb->pixel_format) {
2146         case DRM_FORMAT_C8:
2147                 dspcntr |= DISPPLANE_8BPP;
2148                 break;
2149         case DRM_FORMAT_RGB565:
2150                 dspcntr |= DISPPLANE_BGRX565;
2151                 break;
2152         case DRM_FORMAT_XRGB8888:
2153         case DRM_FORMAT_ARGB8888:
2154                 dspcntr |= DISPPLANE_BGRX888;
2155                 break;
2156         case DRM_FORMAT_XBGR8888:
2157         case DRM_FORMAT_ABGR8888:
2158                 dspcntr |= DISPPLANE_RGBX888;
2159                 break;
2160         case DRM_FORMAT_XRGB2101010:
2161         case DRM_FORMAT_ARGB2101010:
2162                 dspcntr |= DISPPLANE_BGRX101010;
2163                 break;
2164         case DRM_FORMAT_XBGR2101010:
2165         case DRM_FORMAT_ABGR2101010:
2166                 dspcntr |= DISPPLANE_RGBX101010;
2167                 break;
2168         default:
2169                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2170                 return -EINVAL;
2171         }
2172
2173         if (obj->tiling_mode != I915_TILING_NONE)
2174                 dspcntr |= DISPPLANE_TILED;
2175         else
2176                 dspcntr &= ~DISPPLANE_TILED;
2177
2178         /* must disable */
2179         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2180
2181         I915_WRITE(reg, dspcntr);
2182
2183         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2184         intel_crtc->dspaddr_offset =
2185                 intel_gen4_compute_offset_xtiled(&x, &y,
2186                                                  fb->bits_per_pixel / 8,
2187                                                  fb->pitches[0]);
2188         linear_offset -= intel_crtc->dspaddr_offset;
2189
2190         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2191                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2192         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2193         I915_MODIFY_DISPBASE(DSPSURF(plane),
2194                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2195         if (IS_HASWELL(dev)) {
2196                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2197         } else {
2198                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2199                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2200         }
2201         POSTING_READ(reg);
2202
2203         return 0;
2204 }
2205
2206 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2207 static int
2208 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2209                            int x, int y, enum mode_set_atomic state)
2210 {
2211         struct drm_device *dev = crtc->dev;
2212         struct drm_i915_private *dev_priv = dev->dev_private;
2213
2214         if (dev_priv->display.disable_fbc)
2215                 dev_priv->display.disable_fbc(dev);
2216         intel_increase_pllclock(crtc);
2217
2218         return dev_priv->display.update_plane(crtc, fb, x, y);
2219 }
2220
2221 void intel_display_handle_reset(struct drm_device *dev)
2222 {
2223         struct drm_i915_private *dev_priv = dev->dev_private;
2224         struct drm_crtc *crtc;
2225
2226         /*
2227          * Flips in the rings have been nuked by the reset,
2228          * so complete all pending flips so that user space
2229          * will get its events and not get stuck.
2230          *
2231          * Also update the base address of all primary
2232          * planes to the the last fb to make sure we're
2233          * showing the correct fb after a reset.
2234          *
2235          * Need to make two loops over the crtcs so that we
2236          * don't try to grab a crtc mutex before the
2237          * pending_flip_queue really got woken up.
2238          */
2239
2240         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2241                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242                 enum plane plane = intel_crtc->plane;
2243
2244                 intel_prepare_page_flip(dev, plane);
2245                 intel_finish_page_flip_plane(dev, plane);
2246         }
2247
2248         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2249                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250
2251                 mutex_lock(&crtc->mutex);
2252                 if (intel_crtc->active)
2253                         dev_priv->display.update_plane(crtc, crtc->fb,
2254                                                        crtc->x, crtc->y);
2255                 mutex_unlock(&crtc->mutex);
2256         }
2257 }
2258
2259 static int
2260 intel_finish_fb(struct drm_framebuffer *old_fb)
2261 {
2262         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2263         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2264         bool was_interruptible = dev_priv->mm.interruptible;
2265         int ret;
2266
2267         /* Big Hammer, we also need to ensure that any pending
2268          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2269          * current scanout is retired before unpinning the old
2270          * framebuffer.
2271          *
2272          * This should only fail upon a hung GPU, in which case we
2273          * can safely continue.
2274          */
2275         dev_priv->mm.interruptible = false;
2276         ret = i915_gem_object_finish_gpu(obj);
2277         dev_priv->mm.interruptible = was_interruptible;
2278
2279         return ret;
2280 }
2281
2282 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2283 {
2284         struct drm_device *dev = crtc->dev;
2285         struct drm_i915_master_private *master_priv;
2286         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2287
2288         if (!dev->primary->master)
2289                 return;
2290
2291         master_priv = dev->primary->master->driver_priv;
2292         if (!master_priv->sarea_priv)
2293                 return;
2294
2295         switch (intel_crtc->pipe) {
2296         case 0:
2297                 master_priv->sarea_priv->pipeA_x = x;
2298                 master_priv->sarea_priv->pipeA_y = y;
2299                 break;
2300         case 1:
2301                 master_priv->sarea_priv->pipeB_x = x;
2302                 master_priv->sarea_priv->pipeB_y = y;
2303                 break;
2304         default:
2305                 break;
2306         }
2307 }
2308
2309 static int
2310 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2311                     struct drm_framebuffer *fb)
2312 {
2313         struct drm_device *dev = crtc->dev;
2314         struct drm_i915_private *dev_priv = dev->dev_private;
2315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2316         struct drm_framebuffer *old_fb;
2317         int ret;
2318
2319         /* no fb bound */
2320         if (!fb) {
2321                 DRM_ERROR("No FB bound\n");
2322                 return 0;
2323         }
2324
2325         if(intel_crtc->plane > dev_priv->num_pipe) {
2326                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2327                                 intel_crtc->plane,
2328                                 dev_priv->num_pipe);
2329                 return -EINVAL;
2330         }
2331
2332         mutex_lock(&dev->struct_mutex);
2333         ret = intel_pin_and_fence_fb_obj(dev,
2334                                          to_intel_framebuffer(fb)->obj,
2335                                          NULL);
2336         if (ret != 0) {
2337                 mutex_unlock(&dev->struct_mutex);
2338                 DRM_ERROR("pin & fence failed\n");
2339                 return ret;
2340         }
2341
2342         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2343         if (ret) {
2344                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2345                 mutex_unlock(&dev->struct_mutex);
2346                 DRM_ERROR("failed to update base address\n");
2347                 return ret;
2348         }
2349
2350         old_fb = crtc->fb;
2351         crtc->fb = fb;
2352         crtc->x = x;
2353         crtc->y = y;
2354
2355         if (old_fb) {
2356                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2357                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2358         }
2359
2360         intel_update_fbc(dev);
2361         mutex_unlock(&dev->struct_mutex);
2362
2363         intel_crtc_update_sarea_pos(crtc, x, y);
2364
2365         return 0;
2366 }
2367
2368 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2369 {
2370         struct drm_device *dev = crtc->dev;
2371         struct drm_i915_private *dev_priv = dev->dev_private;
2372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2373         int pipe = intel_crtc->pipe;
2374         u32 reg, temp;
2375
2376         /* enable normal train */
2377         reg = FDI_TX_CTL(pipe);
2378         temp = I915_READ(reg);
2379         if (IS_IVYBRIDGE(dev)) {
2380                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2381                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2382         } else {
2383                 temp &= ~FDI_LINK_TRAIN_NONE;
2384                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2385         }
2386         I915_WRITE(reg, temp);
2387
2388         reg = FDI_RX_CTL(pipe);
2389         temp = I915_READ(reg);
2390         if (HAS_PCH_CPT(dev)) {
2391                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2392                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2393         } else {
2394                 temp &= ~FDI_LINK_TRAIN_NONE;
2395                 temp |= FDI_LINK_TRAIN_NONE;
2396         }
2397         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2398
2399         /* wait one idle pattern time */
2400         POSTING_READ(reg);
2401         udelay(1000);
2402
2403         /* IVB wants error correction enabled */
2404         if (IS_IVYBRIDGE(dev))
2405                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2406                            FDI_FE_ERRC_ENABLE);
2407 }
2408
2409 static void ivb_modeset_global_resources(struct drm_device *dev)
2410 {
2411         struct drm_i915_private *dev_priv = dev->dev_private;
2412         struct intel_crtc *pipe_B_crtc =
2413                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2414         struct intel_crtc *pipe_C_crtc =
2415                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2416         uint32_t temp;
2417
2418         /* When everything is off disable fdi C so that we could enable fdi B
2419          * with all lanes. XXX: This misses the case where a pipe is not using
2420          * any pch resources and so doesn't need any fdi lanes. */
2421         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2422                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2423                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2424
2425                 temp = I915_READ(SOUTH_CHICKEN1);
2426                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2427                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2428                 I915_WRITE(SOUTH_CHICKEN1, temp);
2429         }
2430 }
2431
2432 /* The FDI link training functions for ILK/Ibexpeak. */
2433 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2434 {
2435         struct drm_device *dev = crtc->dev;
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2438         int pipe = intel_crtc->pipe;
2439         int plane = intel_crtc->plane;
2440         u32 reg, temp, tries;
2441
2442         /* FDI needs bits from pipe & plane first */
2443         assert_pipe_enabled(dev_priv, pipe);
2444         assert_plane_enabled(dev_priv, plane);
2445
2446         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2447            for train result */
2448         reg = FDI_RX_IMR(pipe);
2449         temp = I915_READ(reg);
2450         temp &= ~FDI_RX_SYMBOL_LOCK;
2451         temp &= ~FDI_RX_BIT_LOCK;
2452         I915_WRITE(reg, temp);
2453         I915_READ(reg);
2454         udelay(150);
2455
2456         /* enable CPU FDI TX and PCH FDI RX */
2457         reg = FDI_TX_CTL(pipe);
2458         temp = I915_READ(reg);
2459         temp &= ~(7 << 19);
2460         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2461         temp &= ~FDI_LINK_TRAIN_NONE;
2462         temp |= FDI_LINK_TRAIN_PATTERN_1;
2463         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2464
2465         reg = FDI_RX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         temp &= ~FDI_LINK_TRAIN_NONE;
2468         temp |= FDI_LINK_TRAIN_PATTERN_1;
2469         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2470
2471         POSTING_READ(reg);
2472         udelay(150);
2473
2474         /* Ironlake workaround, enable clock pointer after FDI enable*/
2475         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2476         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2477                    FDI_RX_PHASE_SYNC_POINTER_EN);
2478
2479         reg = FDI_RX_IIR(pipe);
2480         for (tries = 0; tries < 5; tries++) {
2481                 temp = I915_READ(reg);
2482                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2483
2484                 if ((temp & FDI_RX_BIT_LOCK)) {
2485                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2486                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2487                         break;
2488                 }
2489         }
2490         if (tries == 5)
2491                 DRM_ERROR("FDI train 1 fail!\n");
2492
2493         /* Train 2 */
2494         reg = FDI_TX_CTL(pipe);
2495         temp = I915_READ(reg);
2496         temp &= ~FDI_LINK_TRAIN_NONE;
2497         temp |= FDI_LINK_TRAIN_PATTERN_2;
2498         I915_WRITE(reg, temp);
2499
2500         reg = FDI_RX_CTL(pipe);
2501         temp = I915_READ(reg);
2502         temp &= ~FDI_LINK_TRAIN_NONE;
2503         temp |= FDI_LINK_TRAIN_PATTERN_2;
2504         I915_WRITE(reg, temp);
2505
2506         POSTING_READ(reg);
2507         udelay(150);
2508
2509         reg = FDI_RX_IIR(pipe);
2510         for (tries = 0; tries < 5; tries++) {
2511                 temp = I915_READ(reg);
2512                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2513
2514                 if (temp & FDI_RX_SYMBOL_LOCK) {
2515                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2516                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2517                         break;
2518                 }
2519         }
2520         if (tries == 5)
2521                 DRM_ERROR("FDI train 2 fail!\n");
2522
2523         DRM_DEBUG_KMS("FDI train done\n");
2524
2525 }
2526
2527 static const int snb_b_fdi_train_param[] = {
2528         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2529         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2530         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2531         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2532 };
2533
2534 /* The FDI link training functions for SNB/Cougarpoint. */
2535 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2536 {
2537         struct drm_device *dev = crtc->dev;
2538         struct drm_i915_private *dev_priv = dev->dev_private;
2539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2540         int pipe = intel_crtc->pipe;
2541         u32 reg, temp, i, retry;
2542
2543         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2544            for train result */
2545         reg = FDI_RX_IMR(pipe);
2546         temp = I915_READ(reg);
2547         temp &= ~FDI_RX_SYMBOL_LOCK;
2548         temp &= ~FDI_RX_BIT_LOCK;
2549         I915_WRITE(reg, temp);
2550
2551         POSTING_READ(reg);
2552         udelay(150);
2553
2554         /* enable CPU FDI TX and PCH FDI RX */
2555         reg = FDI_TX_CTL(pipe);
2556         temp = I915_READ(reg);
2557         temp &= ~(7 << 19);
2558         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2559         temp &= ~FDI_LINK_TRAIN_NONE;
2560         temp |= FDI_LINK_TRAIN_PATTERN_1;
2561         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2562         /* SNB-B */
2563         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2564         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2565
2566         I915_WRITE(FDI_RX_MISC(pipe),
2567                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2568
2569         reg = FDI_RX_CTL(pipe);
2570         temp = I915_READ(reg);
2571         if (HAS_PCH_CPT(dev)) {
2572                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2573                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2574         } else {
2575                 temp &= ~FDI_LINK_TRAIN_NONE;
2576                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2577         }
2578         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2579
2580         POSTING_READ(reg);
2581         udelay(150);
2582
2583         for (i = 0; i < 4; i++) {
2584                 reg = FDI_TX_CTL(pipe);
2585                 temp = I915_READ(reg);
2586                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587                 temp |= snb_b_fdi_train_param[i];
2588                 I915_WRITE(reg, temp);
2589
2590                 POSTING_READ(reg);
2591                 udelay(500);
2592
2593                 for (retry = 0; retry < 5; retry++) {
2594                         reg = FDI_RX_IIR(pipe);
2595                         temp = I915_READ(reg);
2596                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2597                         if (temp & FDI_RX_BIT_LOCK) {
2598                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2599                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2600                                 break;
2601                         }
2602                         udelay(50);
2603                 }
2604                 if (retry < 5)
2605                         break;
2606         }
2607         if (i == 4)
2608                 DRM_ERROR("FDI train 1 fail!\n");
2609
2610         /* Train 2 */
2611         reg = FDI_TX_CTL(pipe);
2612         temp = I915_READ(reg);
2613         temp &= ~FDI_LINK_TRAIN_NONE;
2614         temp |= FDI_LINK_TRAIN_PATTERN_2;
2615         if (IS_GEN6(dev)) {
2616                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2617                 /* SNB-B */
2618                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2619         }
2620         I915_WRITE(reg, temp);
2621
2622         reg = FDI_RX_CTL(pipe);
2623         temp = I915_READ(reg);
2624         if (HAS_PCH_CPT(dev)) {
2625                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2626                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2627         } else {
2628                 temp &= ~FDI_LINK_TRAIN_NONE;
2629                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2630         }
2631         I915_WRITE(reg, temp);
2632
2633         POSTING_READ(reg);
2634         udelay(150);
2635
2636         for (i = 0; i < 4; i++) {
2637                 reg = FDI_TX_CTL(pipe);
2638                 temp = I915_READ(reg);
2639                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2640                 temp |= snb_b_fdi_train_param[i];
2641                 I915_WRITE(reg, temp);
2642
2643                 POSTING_READ(reg);
2644                 udelay(500);
2645
2646                 for (retry = 0; retry < 5; retry++) {
2647                         reg = FDI_RX_IIR(pipe);
2648                         temp = I915_READ(reg);
2649                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2650                         if (temp & FDI_RX_SYMBOL_LOCK) {
2651                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2652                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2653                                 break;
2654                         }
2655                         udelay(50);
2656                 }
2657                 if (retry < 5)
2658                         break;
2659         }
2660         if (i == 4)
2661                 DRM_ERROR("FDI train 2 fail!\n");
2662
2663         DRM_DEBUG_KMS("FDI train done.\n");
2664 }
2665
2666 /* Manual link training for Ivy Bridge A0 parts */
2667 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2668 {
2669         struct drm_device *dev = crtc->dev;
2670         struct drm_i915_private *dev_priv = dev->dev_private;
2671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2672         int pipe = intel_crtc->pipe;
2673         u32 reg, temp, i;
2674
2675         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2676            for train result */
2677         reg = FDI_RX_IMR(pipe);
2678         temp = I915_READ(reg);
2679         temp &= ~FDI_RX_SYMBOL_LOCK;
2680         temp &= ~FDI_RX_BIT_LOCK;
2681         I915_WRITE(reg, temp);
2682
2683         POSTING_READ(reg);
2684         udelay(150);
2685
2686         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2687                       I915_READ(FDI_RX_IIR(pipe)));
2688
2689         /* enable CPU FDI TX and PCH FDI RX */
2690         reg = FDI_TX_CTL(pipe);
2691         temp = I915_READ(reg);
2692         temp &= ~(7 << 19);
2693         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2694         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2695         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2696         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2697         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2698         temp |= FDI_COMPOSITE_SYNC;
2699         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2700
2701         I915_WRITE(FDI_RX_MISC(pipe),
2702                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2703
2704         reg = FDI_RX_CTL(pipe);
2705         temp = I915_READ(reg);
2706         temp &= ~FDI_LINK_TRAIN_AUTO;
2707         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2708         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2709         temp |= FDI_COMPOSITE_SYNC;
2710         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2711
2712         POSTING_READ(reg);
2713         udelay(150);
2714
2715         for (i = 0; i < 4; i++) {
2716                 reg = FDI_TX_CTL(pipe);
2717                 temp = I915_READ(reg);
2718                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719                 temp |= snb_b_fdi_train_param[i];
2720                 I915_WRITE(reg, temp);
2721
2722                 POSTING_READ(reg);
2723                 udelay(500);
2724
2725                 reg = FDI_RX_IIR(pipe);
2726                 temp = I915_READ(reg);
2727                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2728
2729                 if (temp & FDI_RX_BIT_LOCK ||
2730                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2731                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2732                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2733                         break;
2734                 }
2735         }
2736         if (i == 4)
2737                 DRM_ERROR("FDI train 1 fail!\n");
2738
2739         /* Train 2 */
2740         reg = FDI_TX_CTL(pipe);
2741         temp = I915_READ(reg);
2742         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2743         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2744         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2745         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2746         I915_WRITE(reg, temp);
2747
2748         reg = FDI_RX_CTL(pipe);
2749         temp = I915_READ(reg);
2750         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2751         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2752         I915_WRITE(reg, temp);
2753
2754         POSTING_READ(reg);
2755         udelay(150);
2756
2757         for (i = 0; i < 4; i++) {
2758                 reg = FDI_TX_CTL(pipe);
2759                 temp = I915_READ(reg);
2760                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2761                 temp |= snb_b_fdi_train_param[i];
2762                 I915_WRITE(reg, temp);
2763
2764                 POSTING_READ(reg);
2765                 udelay(500);
2766
2767                 reg = FDI_RX_IIR(pipe);
2768                 temp = I915_READ(reg);
2769                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2770
2771                 if (temp & FDI_RX_SYMBOL_LOCK) {
2772                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2773                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2774                         break;
2775                 }
2776         }
2777         if (i == 4)
2778                 DRM_ERROR("FDI train 2 fail!\n");
2779
2780         DRM_DEBUG_KMS("FDI train done.\n");
2781 }
2782
2783 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2784 {
2785         struct drm_device *dev = intel_crtc->base.dev;
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         int pipe = intel_crtc->pipe;
2788         u32 reg, temp;
2789
2790
2791         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2792         reg = FDI_RX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         temp &= ~((0x7 << 19) | (0x7 << 16));
2795         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2796         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2797         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2798
2799         POSTING_READ(reg);
2800         udelay(200);
2801
2802         /* Switch from Rawclk to PCDclk */
2803         temp = I915_READ(reg);
2804         I915_WRITE(reg, temp | FDI_PCDCLK);
2805
2806         POSTING_READ(reg);
2807         udelay(200);
2808
2809         /* Enable CPU FDI TX PLL, always on for Ironlake */
2810         reg = FDI_TX_CTL(pipe);
2811         temp = I915_READ(reg);
2812         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2813                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2814
2815                 POSTING_READ(reg);
2816                 udelay(100);
2817         }
2818 }
2819
2820 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2821 {
2822         struct drm_device *dev = intel_crtc->base.dev;
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824         int pipe = intel_crtc->pipe;
2825         u32 reg, temp;
2826
2827         /* Switch from PCDclk to Rawclk */
2828         reg = FDI_RX_CTL(pipe);
2829         temp = I915_READ(reg);
2830         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2831
2832         /* Disable CPU FDI TX PLL */
2833         reg = FDI_TX_CTL(pipe);
2834         temp = I915_READ(reg);
2835         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2836
2837         POSTING_READ(reg);
2838         udelay(100);
2839
2840         reg = FDI_RX_CTL(pipe);
2841         temp = I915_READ(reg);
2842         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2843
2844         /* Wait for the clocks to turn off. */
2845         POSTING_READ(reg);
2846         udelay(100);
2847 }
2848
2849 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2850 {
2851         struct drm_device *dev = crtc->dev;
2852         struct drm_i915_private *dev_priv = dev->dev_private;
2853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2854         int pipe = intel_crtc->pipe;
2855         u32 reg, temp;
2856
2857         /* disable CPU FDI tx and PCH FDI rx */
2858         reg = FDI_TX_CTL(pipe);
2859         temp = I915_READ(reg);
2860         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2861         POSTING_READ(reg);
2862
2863         reg = FDI_RX_CTL(pipe);
2864         temp = I915_READ(reg);
2865         temp &= ~(0x7 << 16);
2866         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2867         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2868
2869         POSTING_READ(reg);
2870         udelay(100);
2871
2872         /* Ironlake workaround, disable clock pointer after downing FDI */
2873         if (HAS_PCH_IBX(dev)) {
2874                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2875         }
2876
2877         /* still set train pattern 1 */
2878         reg = FDI_TX_CTL(pipe);
2879         temp = I915_READ(reg);
2880         temp &= ~FDI_LINK_TRAIN_NONE;
2881         temp |= FDI_LINK_TRAIN_PATTERN_1;
2882         I915_WRITE(reg, temp);
2883
2884         reg = FDI_RX_CTL(pipe);
2885         temp = I915_READ(reg);
2886         if (HAS_PCH_CPT(dev)) {
2887                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2888                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2889         } else {
2890                 temp &= ~FDI_LINK_TRAIN_NONE;
2891                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2892         }
2893         /* BPC in FDI rx is consistent with that in PIPECONF */
2894         temp &= ~(0x07 << 16);
2895         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2896         I915_WRITE(reg, temp);
2897
2898         POSTING_READ(reg);
2899         udelay(100);
2900 }
2901
2902 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2903 {
2904         struct drm_device *dev = crtc->dev;
2905         struct drm_i915_private *dev_priv = dev->dev_private;
2906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2907         unsigned long flags;
2908         bool pending;
2909
2910         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2911             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2912                 return false;
2913
2914         spin_lock_irqsave(&dev->event_lock, flags);
2915         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916         spin_unlock_irqrestore(&dev->event_lock, flags);
2917
2918         return pending;
2919 }
2920
2921 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2922 {
2923         struct drm_device *dev = crtc->dev;
2924         struct drm_i915_private *dev_priv = dev->dev_private;
2925
2926         if (crtc->fb == NULL)
2927                 return;
2928
2929         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2930
2931         wait_event(dev_priv->pending_flip_queue,
2932                    !intel_crtc_has_pending_flip(crtc));
2933
2934         mutex_lock(&dev->struct_mutex);
2935         intel_finish_fb(crtc->fb);
2936         mutex_unlock(&dev->struct_mutex);
2937 }
2938
2939 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2940 {
2941         struct drm_device *dev = crtc->dev;
2942         struct intel_encoder *intel_encoder;
2943
2944         /*
2945          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2946          * must be driven by its own crtc; no sharing is possible.
2947          */
2948         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2949                 switch (intel_encoder->type) {
2950                 case INTEL_OUTPUT_EDP:
2951                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2952                                 return false;
2953                         continue;
2954                 }
2955         }
2956
2957         return true;
2958 }
2959
2960 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2961 {
2962         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2963 }
2964
2965 /* Program iCLKIP clock to the desired frequency */
2966 static void lpt_program_iclkip(struct drm_crtc *crtc)
2967 {
2968         struct drm_device *dev = crtc->dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2971         u32 temp;
2972
2973         mutex_lock(&dev_priv->dpio_lock);
2974
2975         /* It is necessary to ungate the pixclk gate prior to programming
2976          * the divisors, and gate it back when it is done.
2977          */
2978         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2979
2980         /* Disable SSCCTL */
2981         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2982                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2983                                 SBI_SSCCTL_DISABLE,
2984                         SBI_ICLK);
2985
2986         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2987         if (crtc->mode.clock == 20000) {
2988                 auxdiv = 1;
2989                 divsel = 0x41;
2990                 phaseinc = 0x20;
2991         } else {
2992                 /* The iCLK virtual clock root frequency is in MHz,
2993                  * but the crtc->mode.clock in in KHz. To get the divisors,
2994                  * it is necessary to divide one by another, so we
2995                  * convert the virtual clock precision to KHz here for higher
2996                  * precision.
2997                  */
2998                 u32 iclk_virtual_root_freq = 172800 * 1000;
2999                 u32 iclk_pi_range = 64;
3000                 u32 desired_divisor, msb_divisor_value, pi_value;
3001
3002                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3003                 msb_divisor_value = desired_divisor / iclk_pi_range;
3004                 pi_value = desired_divisor % iclk_pi_range;
3005
3006                 auxdiv = 0;
3007                 divsel = msb_divisor_value - 2;
3008                 phaseinc = pi_value;
3009         }
3010
3011         /* This should not happen with any sane values */
3012         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3013                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3014         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3015                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3016
3017         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3018                         crtc->mode.clock,
3019                         auxdiv,
3020                         divsel,
3021                         phasedir,
3022                         phaseinc);
3023
3024         /* Program SSCDIVINTPHASE6 */
3025         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3026         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3027         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3028         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3029         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3030         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3031         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3032         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3033
3034         /* Program SSCAUXDIV */
3035         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3036         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3037         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3038         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3039
3040         /* Enable modulator and associated divider */
3041         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3042         temp &= ~SBI_SSCCTL_DISABLE;
3043         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3044
3045         /* Wait for initialization time */
3046         udelay(24);
3047
3048         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3049
3050         mutex_unlock(&dev_priv->dpio_lock);
3051 }
3052
3053 /*
3054  * Enable PCH resources required for PCH ports:
3055  *   - PCH PLLs
3056  *   - FDI training & RX/TX
3057  *   - update transcoder timings
3058  *   - DP transcoding bits
3059  *   - transcoder
3060  */
3061 static void ironlake_pch_enable(struct drm_crtc *crtc)
3062 {
3063         struct drm_device *dev = crtc->dev;
3064         struct drm_i915_private *dev_priv = dev->dev_private;
3065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066         int pipe = intel_crtc->pipe;
3067         u32 reg, temp;
3068
3069         assert_transcoder_disabled(dev_priv, pipe);
3070
3071         /* Write the TU size bits before fdi link training, so that error
3072          * detection works. */
3073         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3074                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3075
3076         /* For PCH output, training FDI link */
3077         dev_priv->display.fdi_link_train(crtc);
3078
3079         /* XXX: pch pll's can be enabled any time before we enable the PCH
3080          * transcoder, and we actually should do this to not upset any PCH
3081          * transcoder that already use the clock when we share it.
3082          *
3083          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3084          * unconditionally resets the pll - we need that to have the right LVDS
3085          * enable sequence. */
3086         ironlake_enable_pch_pll(intel_crtc);
3087
3088         if (HAS_PCH_CPT(dev)) {
3089                 u32 sel;
3090
3091                 temp = I915_READ(PCH_DPLL_SEL);
3092                 switch (pipe) {
3093                 default:
3094                 case 0:
3095                         temp |= TRANSA_DPLL_ENABLE;
3096                         sel = TRANSA_DPLLB_SEL;
3097                         break;
3098                 case 1:
3099                         temp |= TRANSB_DPLL_ENABLE;
3100                         sel = TRANSB_DPLLB_SEL;
3101                         break;
3102                 case 2:
3103                         temp |= TRANSC_DPLL_ENABLE;
3104                         sel = TRANSC_DPLLB_SEL;
3105                         break;
3106                 }
3107                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3108                         temp |= sel;
3109                 else
3110                         temp &= ~sel;
3111                 I915_WRITE(PCH_DPLL_SEL, temp);
3112         }
3113
3114         /* set transcoder timing, panel must allow it */
3115         assert_panel_unlocked(dev_priv, pipe);
3116         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3117         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3118         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3119
3120         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3121         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3122         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3123         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3124
3125         intel_fdi_normal_train(crtc);
3126
3127         /* For PCH DP, enable TRANS_DP_CTL */
3128         if (HAS_PCH_CPT(dev) &&
3129             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3130              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3131                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3132                 reg = TRANS_DP_CTL(pipe);
3133                 temp = I915_READ(reg);
3134                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3135                           TRANS_DP_SYNC_MASK |
3136                           TRANS_DP_BPC_MASK);
3137                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3138                          TRANS_DP_ENH_FRAMING);
3139                 temp |= bpc << 9; /* same format but at 11:9 */
3140
3141                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3142                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3143                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3144                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3145
3146                 switch (intel_trans_dp_port_sel(crtc)) {
3147                 case PCH_DP_B:
3148                         temp |= TRANS_DP_PORT_SEL_B;
3149                         break;
3150                 case PCH_DP_C:
3151                         temp |= TRANS_DP_PORT_SEL_C;
3152                         break;
3153                 case PCH_DP_D:
3154                         temp |= TRANS_DP_PORT_SEL_D;
3155                         break;
3156                 default:
3157                         BUG();
3158                 }
3159
3160                 I915_WRITE(reg, temp);
3161         }
3162
3163         ironlake_enable_pch_transcoder(dev_priv, pipe);
3164 }
3165
3166 static void lpt_pch_enable(struct drm_crtc *crtc)
3167 {
3168         struct drm_device *dev = crtc->dev;
3169         struct drm_i915_private *dev_priv = dev->dev_private;
3170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3171         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3172
3173         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3174
3175         lpt_program_iclkip(crtc);
3176
3177         /* Set transcoder timing. */
3178         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3179         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3180         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3181
3182         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3183         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3184         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3185         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3186
3187         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3188 }
3189
3190 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3191 {
3192         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3193
3194         if (pll == NULL)
3195                 return;
3196
3197         if (pll->refcount == 0) {
3198                 WARN(1, "bad PCH PLL refcount\n");
3199                 return;
3200         }
3201
3202         --pll->refcount;
3203         intel_crtc->pch_pll = NULL;
3204 }
3205
3206 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3207 {
3208         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3209         struct intel_pch_pll *pll;
3210         int i;
3211
3212         pll = intel_crtc->pch_pll;
3213         if (pll) {
3214                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3215                               intel_crtc->base.base.id, pll->pll_reg);
3216                 goto prepare;
3217         }
3218
3219         if (HAS_PCH_IBX(dev_priv->dev)) {
3220                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3221                 i = intel_crtc->pipe;
3222                 pll = &dev_priv->pch_plls[i];
3223
3224                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3225                               intel_crtc->base.base.id, pll->pll_reg);
3226
3227                 goto found;
3228         }
3229
3230         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3231                 pll = &dev_priv->pch_plls[i];
3232
3233                 /* Only want to check enabled timings first */
3234                 if (pll->refcount == 0)
3235                         continue;
3236
3237                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3238                     fp == I915_READ(pll->fp0_reg)) {
3239                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3240                                       intel_crtc->base.base.id,
3241                                       pll->pll_reg, pll->refcount, pll->active);
3242
3243                         goto found;
3244                 }
3245         }
3246
3247         /* Ok no matching timings, maybe there's a free one? */
3248         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3249                 pll = &dev_priv->pch_plls[i];
3250                 if (pll->refcount == 0) {
3251                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3252                                       intel_crtc->base.base.id, pll->pll_reg);
3253                         goto found;
3254                 }
3255         }
3256
3257         return NULL;
3258
3259 found:
3260         intel_crtc->pch_pll = pll;
3261         pll->refcount++;
3262         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3263 prepare: /* separate function? */
3264         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3265
3266         /* Wait for the clocks to stabilize before rewriting the regs */
3267         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3268         POSTING_READ(pll->pll_reg);
3269         udelay(150);
3270
3271         I915_WRITE(pll->fp0_reg, fp);
3272         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3273         pll->on = false;
3274         return pll;
3275 }
3276
3277 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3278 {
3279         struct drm_i915_private *dev_priv = dev->dev_private;
3280         int dslreg = PIPEDSL(pipe);
3281         u32 temp;
3282
3283         temp = I915_READ(dslreg);
3284         udelay(500);
3285         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3286                 if (wait_for(I915_READ(dslreg) != temp, 5))
3287                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3288         }
3289 }
3290
3291 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3292 {
3293         struct drm_device *dev = crtc->dev;
3294         struct drm_i915_private *dev_priv = dev->dev_private;
3295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3296         struct intel_encoder *encoder;
3297         int pipe = intel_crtc->pipe;
3298         int plane = intel_crtc->plane;
3299         u32 temp;
3300         bool is_pch_port;
3301
3302         WARN_ON(!crtc->enabled);
3303
3304         if (intel_crtc->active)
3305                 return;
3306
3307         intel_crtc->active = true;
3308         intel_update_watermarks(dev);
3309
3310         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3311                 temp = I915_READ(PCH_LVDS);
3312                 if ((temp & LVDS_PORT_EN) == 0)
3313                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3314         }
3315
3316         is_pch_port = ironlake_crtc_driving_pch(crtc);
3317
3318         if (is_pch_port) {
3319                 /* Note: FDI PLL enabling _must_ be done before we enable the
3320                  * cpu pipes, hence this is separate from all the other fdi/pch
3321                  * enabling. */
3322                 ironlake_fdi_pll_enable(intel_crtc);
3323         } else {
3324                 assert_fdi_tx_disabled(dev_priv, pipe);
3325                 assert_fdi_rx_disabled(dev_priv, pipe);
3326         }
3327
3328         for_each_encoder_on_crtc(dev, crtc, encoder)
3329                 if (encoder->pre_enable)
3330                         encoder->pre_enable(encoder);
3331
3332         /* Enable panel fitting for LVDS */
3333         if (dev_priv->pch_pf_size &&
3334             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3335              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3336                 /* Force use of hard-coded filter coefficients
3337                  * as some pre-programmed values are broken,
3338                  * e.g. x201.
3339                  */
3340                 if (IS_IVYBRIDGE(dev))
3341                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3342                                                  PF_PIPE_SEL_IVB(pipe));
3343                 else
3344                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3345                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3346                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3347         }
3348
3349         /*
3350          * On ILK+ LUT must be loaded before the pipe is running but with
3351          * clocks enabled
3352          */
3353         intel_crtc_load_lut(crtc);
3354
3355         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3356         intel_enable_plane(dev_priv, plane, pipe);
3357
3358         if (is_pch_port)
3359                 ironlake_pch_enable(crtc);
3360
3361         mutex_lock(&dev->struct_mutex);
3362         intel_update_fbc(dev);
3363         mutex_unlock(&dev->struct_mutex);
3364
3365         intel_crtc_update_cursor(crtc, true);
3366
3367         for_each_encoder_on_crtc(dev, crtc, encoder)
3368                 encoder->enable(encoder);
3369
3370         if (HAS_PCH_CPT(dev))
3371                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3372
3373         /*
3374          * There seems to be a race in PCH platform hw (at least on some
3375          * outputs) where an enabled pipe still completes any pageflip right
3376          * away (as if the pipe is off) instead of waiting for vblank. As soon
3377          * as the first vblank happend, everything works as expected. Hence just
3378          * wait for one vblank before returning to avoid strange things
3379          * happening.
3380          */
3381         intel_wait_for_vblank(dev, intel_crtc->pipe);
3382 }
3383
3384 static void haswell_crtc_enable(struct drm_crtc *crtc)
3385 {
3386         struct drm_device *dev = crtc->dev;
3387         struct drm_i915_private *dev_priv = dev->dev_private;
3388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3389         struct intel_encoder *encoder;
3390         int pipe = intel_crtc->pipe;
3391         int plane = intel_crtc->plane;
3392         bool is_pch_port;
3393
3394         WARN_ON(!crtc->enabled);
3395
3396         if (intel_crtc->active)
3397                 return;
3398
3399         intel_crtc->active = true;
3400         intel_update_watermarks(dev);
3401
3402         is_pch_port = haswell_crtc_driving_pch(crtc);
3403
3404         if (is_pch_port)
3405                 dev_priv->display.fdi_link_train(crtc);
3406
3407         for_each_encoder_on_crtc(dev, crtc, encoder)
3408                 if (encoder->pre_enable)
3409                         encoder->pre_enable(encoder);
3410
3411         intel_ddi_enable_pipe_clock(intel_crtc);
3412
3413         /* Enable panel fitting for eDP */
3414         if (dev_priv->pch_pf_size &&
3415             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3416                 /* Force use of hard-coded filter coefficients
3417                  * as some pre-programmed values are broken,
3418                  * e.g. x201.
3419                  */
3420                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3421                                          PF_PIPE_SEL_IVB(pipe));
3422                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3423                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3424         }
3425
3426         /*
3427          * On ILK+ LUT must be loaded before the pipe is running but with
3428          * clocks enabled
3429          */
3430         intel_crtc_load_lut(crtc);
3431
3432         intel_ddi_set_pipe_settings(crtc);
3433         intel_ddi_enable_pipe_func(crtc);
3434
3435         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3436         intel_enable_plane(dev_priv, plane, pipe);
3437
3438         if (is_pch_port)
3439                 lpt_pch_enable(crtc);
3440
3441         mutex_lock(&dev->struct_mutex);
3442         intel_update_fbc(dev);
3443         mutex_unlock(&dev->struct_mutex);
3444
3445         intel_crtc_update_cursor(crtc, true);
3446
3447         for_each_encoder_on_crtc(dev, crtc, encoder)
3448                 encoder->enable(encoder);
3449
3450         /*
3451          * There seems to be a race in PCH platform hw (at least on some
3452          * outputs) where an enabled pipe still completes any pageflip right
3453          * away (as if the pipe is off) instead of waiting for vblank. As soon
3454          * as the first vblank happend, everything works as expected. Hence just
3455          * wait for one vblank before returning to avoid strange things
3456          * happening.
3457          */
3458         intel_wait_for_vblank(dev, intel_crtc->pipe);
3459 }
3460
3461 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3462 {
3463         struct drm_device *dev = crtc->dev;
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3466         struct intel_encoder *encoder;
3467         int pipe = intel_crtc->pipe;
3468         int plane = intel_crtc->plane;
3469         u32 reg, temp;
3470
3471
3472         if (!intel_crtc->active)
3473                 return;
3474
3475         for_each_encoder_on_crtc(dev, crtc, encoder)
3476                 encoder->disable(encoder);
3477
3478         intel_crtc_wait_for_pending_flips(crtc);
3479         drm_vblank_off(dev, pipe);
3480         intel_crtc_update_cursor(crtc, false);
3481
3482         intel_disable_plane(dev_priv, plane, pipe);
3483
3484         if (dev_priv->cfb_plane == plane)
3485                 intel_disable_fbc(dev);
3486
3487         intel_disable_pipe(dev_priv, pipe);
3488
3489         /* Disable PF */
3490         I915_WRITE(PF_CTL(pipe), 0);
3491         I915_WRITE(PF_WIN_SZ(pipe), 0);
3492
3493         for_each_encoder_on_crtc(dev, crtc, encoder)
3494                 if (encoder->post_disable)
3495                         encoder->post_disable(encoder);
3496
3497         ironlake_fdi_disable(crtc);
3498
3499         ironlake_disable_pch_transcoder(dev_priv, pipe);
3500
3501         if (HAS_PCH_CPT(dev)) {
3502                 /* disable TRANS_DP_CTL */
3503                 reg = TRANS_DP_CTL(pipe);
3504                 temp = I915_READ(reg);
3505                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3506                 temp |= TRANS_DP_PORT_SEL_NONE;
3507                 I915_WRITE(reg, temp);
3508
3509                 /* disable DPLL_SEL */
3510                 temp = I915_READ(PCH_DPLL_SEL);
3511                 switch (pipe) {
3512                 case 0:
3513                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3514                         break;
3515                 case 1:
3516                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3517                         break;
3518                 case 2:
3519                         /* C shares PLL A or B */
3520                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3521                         break;
3522                 default:
3523                         BUG(); /* wtf */
3524                 }
3525                 I915_WRITE(PCH_DPLL_SEL, temp);
3526         }
3527
3528         /* disable PCH DPLL */
3529         intel_disable_pch_pll(intel_crtc);
3530
3531         ironlake_fdi_pll_disable(intel_crtc);
3532
3533         intel_crtc->active = false;
3534         intel_update_watermarks(dev);
3535
3536         mutex_lock(&dev->struct_mutex);
3537         intel_update_fbc(dev);
3538         mutex_unlock(&dev->struct_mutex);
3539 }
3540
3541 static void haswell_crtc_disable(struct drm_crtc *crtc)
3542 {
3543         struct drm_device *dev = crtc->dev;
3544         struct drm_i915_private *dev_priv = dev->dev_private;
3545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3546         struct intel_encoder *encoder;
3547         int pipe = intel_crtc->pipe;
3548         int plane = intel_crtc->plane;
3549         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3550         bool is_pch_port;
3551
3552         if (!intel_crtc->active)
3553                 return;
3554
3555         is_pch_port = haswell_crtc_driving_pch(crtc);
3556
3557         for_each_encoder_on_crtc(dev, crtc, encoder)
3558                 encoder->disable(encoder);
3559
3560         intel_crtc_wait_for_pending_flips(crtc);
3561         drm_vblank_off(dev, pipe);
3562         intel_crtc_update_cursor(crtc, false);
3563
3564         intel_disable_plane(dev_priv, plane, pipe);
3565
3566         if (dev_priv->cfb_plane == plane)
3567                 intel_disable_fbc(dev);
3568
3569         intel_disable_pipe(dev_priv, pipe);
3570
3571         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3572
3573         /* Disable PF */
3574         I915_WRITE(PF_CTL(pipe), 0);
3575         I915_WRITE(PF_WIN_SZ(pipe), 0);
3576
3577         intel_ddi_disable_pipe_clock(intel_crtc);
3578
3579         for_each_encoder_on_crtc(dev, crtc, encoder)
3580                 if (encoder->post_disable)
3581                         encoder->post_disable(encoder);
3582
3583         if (is_pch_port) {
3584                 lpt_disable_pch_transcoder(dev_priv);
3585                 intel_ddi_fdi_disable(crtc);
3586         }
3587
3588         intel_crtc->active = false;
3589         intel_update_watermarks(dev);
3590
3591         mutex_lock(&dev->struct_mutex);
3592         intel_update_fbc(dev);
3593         mutex_unlock(&dev->struct_mutex);
3594 }
3595
3596 static void ironlake_crtc_off(struct drm_crtc *crtc)
3597 {
3598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3599         intel_put_pch_pll(intel_crtc);
3600 }
3601
3602 static void haswell_crtc_off(struct drm_crtc *crtc)
3603 {
3604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3605
3606         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3607          * start using it. */
3608         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3609
3610         intel_ddi_put_crtc_pll(crtc);
3611 }
3612
3613 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3614 {
3615         if (!enable && intel_crtc->overlay) {
3616                 struct drm_device *dev = intel_crtc->base.dev;
3617                 struct drm_i915_private *dev_priv = dev->dev_private;
3618
3619                 mutex_lock(&dev->struct_mutex);
3620                 dev_priv->mm.interruptible = false;
3621                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3622                 dev_priv->mm.interruptible = true;
3623                 mutex_unlock(&dev->struct_mutex);
3624         }
3625
3626         /* Let userspace switch the overlay on again. In most cases userspace
3627          * has to recompute where to put it anyway.
3628          */
3629 }
3630
3631 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3632 {
3633         struct drm_device *dev = crtc->dev;
3634         struct drm_i915_private *dev_priv = dev->dev_private;
3635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3636         struct intel_encoder *encoder;
3637         int pipe = intel_crtc->pipe;
3638         int plane = intel_crtc->plane;
3639
3640         WARN_ON(!crtc->enabled);
3641
3642         if (intel_crtc->active)
3643                 return;
3644
3645         intel_crtc->active = true;
3646         intel_update_watermarks(dev);
3647
3648         intel_enable_pll(dev_priv, pipe);
3649
3650         for_each_encoder_on_crtc(dev, crtc, encoder)
3651                 if (encoder->pre_enable)
3652                         encoder->pre_enable(encoder);
3653
3654         intel_enable_pipe(dev_priv, pipe, false);
3655         intel_enable_plane(dev_priv, plane, pipe);
3656
3657         intel_crtc_load_lut(crtc);
3658         intel_update_fbc(dev);
3659
3660         /* Give the overlay scaler a chance to enable if it's on this pipe */
3661         intel_crtc_dpms_overlay(intel_crtc, true);
3662         intel_crtc_update_cursor(crtc, true);
3663
3664         for_each_encoder_on_crtc(dev, crtc, encoder)
3665                 encoder->enable(encoder);
3666 }
3667
3668 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3669 {
3670         struct drm_device *dev = crtc->dev;
3671         struct drm_i915_private *dev_priv = dev->dev_private;
3672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3673         struct intel_encoder *encoder;
3674         int pipe = intel_crtc->pipe;
3675         int plane = intel_crtc->plane;
3676         u32 pctl;
3677
3678
3679         if (!intel_crtc->active)
3680                 return;
3681
3682         for_each_encoder_on_crtc(dev, crtc, encoder)
3683                 encoder->disable(encoder);
3684
3685         /* Give the overlay scaler a chance to disable if it's on this pipe */
3686         intel_crtc_wait_for_pending_flips(crtc);
3687         drm_vblank_off(dev, pipe);
3688         intel_crtc_dpms_overlay(intel_crtc, false);
3689         intel_crtc_update_cursor(crtc, false);
3690
3691         if (dev_priv->cfb_plane == plane)
3692                 intel_disable_fbc(dev);
3693
3694         intel_disable_plane(dev_priv, plane, pipe);
3695         intel_disable_pipe(dev_priv, pipe);
3696
3697         /* Disable pannel fitter if it is on this pipe. */
3698         pctl = I915_READ(PFIT_CONTROL);
3699         if ((pctl & PFIT_ENABLE) &&
3700             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3701                 I915_WRITE(PFIT_CONTROL, 0);
3702
3703         intel_disable_pll(dev_priv, pipe);
3704
3705         intel_crtc->active = false;
3706         intel_update_fbc(dev);
3707         intel_update_watermarks(dev);
3708 }
3709
3710 static void i9xx_crtc_off(struct drm_crtc *crtc)
3711 {
3712 }
3713
3714 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3715                                     bool enabled)
3716 {
3717         struct drm_device *dev = crtc->dev;
3718         struct drm_i915_master_private *master_priv;
3719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3720         int pipe = intel_crtc->pipe;
3721
3722         if (!dev->primary->master)
3723                 return;
3724
3725         master_priv = dev->primary->master->driver_priv;
3726         if (!master_priv->sarea_priv)
3727                 return;
3728
3729         switch (pipe) {
3730         case 0:
3731                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3732                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3733                 break;
3734         case 1:
3735                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3736                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3737                 break;
3738         default:
3739                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3740                 break;
3741         }
3742 }
3743
3744 /**
3745  * Sets the power management mode of the pipe and plane.
3746  */
3747 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3748 {
3749         struct drm_device *dev = crtc->dev;
3750         struct drm_i915_private *dev_priv = dev->dev_private;
3751         struct intel_encoder *intel_encoder;
3752         bool enable = false;
3753
3754         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3755                 enable |= intel_encoder->connectors_active;
3756
3757         if (enable)
3758                 dev_priv->display.crtc_enable(crtc);
3759         else
3760                 dev_priv->display.crtc_disable(crtc);
3761
3762         intel_crtc_update_sarea(crtc, enable);
3763 }
3764
3765 static void intel_crtc_noop(struct drm_crtc *crtc)
3766 {
3767 }
3768
3769 static void intel_crtc_disable(struct drm_crtc *crtc)
3770 {
3771         struct drm_device *dev = crtc->dev;
3772         struct drm_connector *connector;
3773         struct drm_i915_private *dev_priv = dev->dev_private;
3774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3775
3776         /* crtc should still be enabled when we disable it. */
3777         WARN_ON(!crtc->enabled);
3778
3779         intel_crtc->eld_vld = false;
3780         dev_priv->display.crtc_disable(crtc);
3781         intel_crtc_update_sarea(crtc, false);
3782         dev_priv->display.off(crtc);
3783
3784         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3785         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3786
3787         if (crtc->fb) {
3788                 mutex_lock(&dev->struct_mutex);
3789                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3790                 mutex_unlock(&dev->struct_mutex);
3791                 crtc->fb = NULL;
3792         }
3793
3794         /* Update computed state. */
3795         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3796                 if (!connector->encoder || !connector->encoder->crtc)
3797                         continue;
3798
3799                 if (connector->encoder->crtc != crtc)
3800                         continue;
3801
3802                 connector->dpms = DRM_MODE_DPMS_OFF;
3803                 to_intel_encoder(connector->encoder)->connectors_active = false;
3804         }
3805 }
3806
3807 void intel_modeset_disable(struct drm_device *dev)
3808 {
3809         struct drm_crtc *crtc;
3810
3811         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3812                 if (crtc->enabled)
3813                         intel_crtc_disable(crtc);
3814         }
3815 }
3816
3817 void intel_encoder_noop(struct drm_encoder *encoder)
3818 {
3819 }
3820
3821 void intel_encoder_destroy(struct drm_encoder *encoder)
3822 {
3823         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3824
3825         drm_encoder_cleanup(encoder);
3826         kfree(intel_encoder);
3827 }
3828
3829 /* Simple dpms helper for encodres with just one connector, no cloning and only
3830  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3831  * state of the entire output pipe. */
3832 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3833 {
3834         if (mode == DRM_MODE_DPMS_ON) {
3835                 encoder->connectors_active = true;
3836
3837                 intel_crtc_update_dpms(encoder->base.crtc);
3838         } else {
3839                 encoder->connectors_active = false;
3840
3841                 intel_crtc_update_dpms(encoder->base.crtc);
3842         }
3843 }
3844
3845 /* Cross check the actual hw state with our own modeset state tracking (and it's
3846  * internal consistency). */
3847 static void intel_connector_check_state(struct intel_connector *connector)
3848 {
3849         if (connector->get_hw_state(connector)) {
3850                 struct intel_encoder *encoder = connector->encoder;
3851                 struct drm_crtc *crtc;
3852                 bool encoder_enabled;
3853                 enum pipe pipe;
3854
3855                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3856                               connector->base.base.id,
3857                               drm_get_connector_name(&connector->base));
3858
3859                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3860                      "wrong connector dpms state\n");
3861                 WARN(connector->base.encoder != &encoder->base,
3862                      "active connector not linked to encoder\n");
3863                 WARN(!encoder->connectors_active,
3864                      "encoder->connectors_active not set\n");
3865
3866                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3867                 WARN(!encoder_enabled, "encoder not enabled\n");
3868                 if (WARN_ON(!encoder->base.crtc))
3869                         return;
3870
3871                 crtc = encoder->base.crtc;
3872
3873                 WARN(!crtc->enabled, "crtc not enabled\n");
3874                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3875                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3876                      "encoder active on the wrong pipe\n");
3877         }
3878 }
3879
3880 /* Even simpler default implementation, if there's really no special case to
3881  * consider. */
3882 void intel_connector_dpms(struct drm_connector *connector, int mode)
3883 {
3884         struct intel_encoder *encoder = intel_attached_encoder(connector);
3885
3886         /* All the simple cases only support two dpms states. */
3887         if (mode != DRM_MODE_DPMS_ON)
3888                 mode = DRM_MODE_DPMS_OFF;
3889
3890         if (mode == connector->dpms)
3891                 return;
3892
3893         connector->dpms = mode;
3894
3895         /* Only need to change hw state when actually enabled */
3896         if (encoder->base.crtc)
3897                 intel_encoder_dpms(encoder, mode);
3898         else
3899                 WARN_ON(encoder->connectors_active != false);
3900
3901         intel_modeset_check_state(connector->dev);
3902 }
3903
3904 /* Simple connector->get_hw_state implementation for encoders that support only
3905  * one connector and no cloning and hence the encoder state determines the state
3906  * of the connector. */
3907 bool intel_connector_get_hw_state(struct intel_connector *connector)
3908 {
3909         enum pipe pipe = 0;
3910         struct intel_encoder *encoder = connector->encoder;
3911
3912         return encoder->get_hw_state(encoder, &pipe);
3913 }
3914
3915 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3916                                   const struct drm_display_mode *mode,
3917                                   struct drm_display_mode *adjusted_mode)
3918 {
3919         struct drm_device *dev = crtc->dev;
3920
3921         if (HAS_PCH_SPLIT(dev)) {
3922                 /* FDI link clock is fixed at 2.7G */
3923                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3924                         return false;
3925         }
3926
3927         /* All interlaced capable intel hw wants timings in frames. Note though
3928          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3929          * timings, so we need to be careful not to clobber these.*/
3930         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3931                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3932
3933         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3934          * with a hsync front porch of 0.
3935          */
3936         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3937                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3938                 return false;
3939
3940         return true;
3941 }
3942
3943 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3944 {
3945         return 400000; /* FIXME */
3946 }
3947
3948 static int i945_get_display_clock_speed(struct drm_device *dev)
3949 {
3950         return 400000;
3951 }
3952
3953 static int i915_get_display_clock_speed(struct drm_device *dev)
3954 {
3955         return 333000;
3956 }
3957
3958 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3959 {
3960         return 200000;
3961 }
3962
3963 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3964 {
3965         u16 gcfgc = 0;
3966
3967         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3968
3969         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3970                 return 133000;
3971         else {
3972                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3973                 case GC_DISPLAY_CLOCK_333_MHZ:
3974                         return 333000;
3975                 default:
3976                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3977                         return 190000;
3978                 }
3979         }
3980 }
3981
3982 static int i865_get_display_clock_speed(struct drm_device *dev)
3983 {
3984         return 266000;
3985 }
3986
3987 static int i855_get_display_clock_speed(struct drm_device *dev)
3988 {
3989         u16 hpllcc = 0;
3990         /* Assume that the hardware is in the high speed state.  This
3991          * should be the default.
3992          */
3993         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3994         case GC_CLOCK_133_200:
3995         case GC_CLOCK_100_200:
3996                 return 200000;
3997         case GC_CLOCK_166_250:
3998                 return 250000;
3999         case GC_CLOCK_100_133:
4000                 return 133000;
4001         }
4002
4003         /* Shouldn't happen */
4004         return 0;
4005 }
4006
4007 static int i830_get_display_clock_speed(struct drm_device *dev)
4008 {
4009         return 133000;
4010 }
4011
4012 static void
4013 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4014 {
4015         while (*num > 0xffffff || *den > 0xffffff) {
4016                 *num >>= 1;
4017                 *den >>= 1;
4018         }
4019 }
4020
4021 void
4022 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4023                        int pixel_clock, int link_clock,
4024                        struct intel_link_m_n *m_n)
4025 {
4026         m_n->tu = 64;
4027         m_n->gmch_m = bits_per_pixel * pixel_clock;
4028         m_n->gmch_n = link_clock * nlanes * 8;
4029         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4030         m_n->link_m = pixel_clock;
4031         m_n->link_n = link_clock;
4032         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4033 }
4034
4035 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4036 {
4037         if (i915_panel_use_ssc >= 0)
4038                 return i915_panel_use_ssc != 0;
4039         return dev_priv->lvds_use_ssc
4040                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4041 }
4042
4043 /**
4044  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4045  * @crtc: CRTC structure
4046  * @mode: requested mode
4047  *
4048  * A pipe may be connected to one or more outputs.  Based on the depth of the
4049  * attached framebuffer, choose a good color depth to use on the pipe.
4050  *
4051  * If possible, match the pipe depth to the fb depth.  In some cases, this
4052  * isn't ideal, because the connected output supports a lesser or restricted
4053  * set of depths.  Resolve that here:
4054  *    LVDS typically supports only 6bpc, so clamp down in that case
4055  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4056  *    Displays may support a restricted set as well, check EDID and clamp as
4057  *      appropriate.
4058  *    DP may want to dither down to 6bpc to fit larger modes
4059  *
4060  * RETURNS:
4061  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4062  * true if they don't match).
4063  */
4064 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4065                                          struct drm_framebuffer *fb,
4066                                          unsigned int *pipe_bpp,
4067                                          struct drm_display_mode *mode)
4068 {
4069         struct drm_device *dev = crtc->dev;
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071         struct drm_connector *connector;
4072         struct intel_encoder *intel_encoder;
4073         unsigned int display_bpc = UINT_MAX, bpc;
4074
4075         /* Walk the encoders & connectors on this crtc, get min bpc */
4076         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4077
4078                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4079                         unsigned int lvds_bpc;
4080
4081                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4082                             LVDS_A3_POWER_UP)
4083                                 lvds_bpc = 8;
4084                         else
4085                                 lvds_bpc = 6;
4086
4087                         if (lvds_bpc < display_bpc) {
4088                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4089                                 display_bpc = lvds_bpc;
4090                         }
4091                         continue;
4092                 }
4093
4094                 /* Not one of the known troublemakers, check the EDID */
4095                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4096                                     head) {
4097                         if (connector->encoder != &intel_encoder->base)
4098                                 continue;
4099
4100                         /* Don't use an invalid EDID bpc value */
4101                         if (connector->display_info.bpc &&
4102                             connector->display_info.bpc < display_bpc) {
4103                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4104                                 display_bpc = connector->display_info.bpc;
4105                         }
4106                 }
4107
4108                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4109                         /* Use VBT settings if we have an eDP panel */
4110                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4111
4112                         if (edp_bpc && edp_bpc < display_bpc) {
4113                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4114                                 display_bpc = edp_bpc;
4115                         }
4116                         continue;
4117                 }
4118
4119                 /*
4120                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4121                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4122                  */
4123                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4124                         if (display_bpc > 8 && display_bpc < 12) {
4125                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4126                                 display_bpc = 12;
4127                         } else {
4128                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4129                                 display_bpc = 8;
4130                         }
4131                 }
4132         }
4133
4134         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4135                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4136                 display_bpc = 6;
4137         }
4138
4139         /*
4140          * We could just drive the pipe at the highest bpc all the time and
4141          * enable dithering as needed, but that costs bandwidth.  So choose
4142          * the minimum value that expresses the full color range of the fb but
4143          * also stays within the max display bpc discovered above.
4144          */
4145
4146         switch (fb->depth) {
4147         case 8:
4148                 bpc = 8; /* since we go through a colormap */
4149                 break;
4150         case 15:
4151         case 16:
4152                 bpc = 6; /* min is 18bpp */
4153                 break;
4154         case 24:
4155                 bpc = 8;
4156                 break;
4157         case 30:
4158                 bpc = 10;
4159                 break;
4160         case 48:
4161                 bpc = 12;
4162                 break;
4163         default:
4164                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4165                 bpc = min((unsigned int)8, display_bpc);
4166                 break;
4167         }
4168
4169         display_bpc = min(display_bpc, bpc);
4170
4171         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4172                       bpc, display_bpc);
4173
4174         *pipe_bpp = display_bpc * 3;
4175
4176         return display_bpc != bpc;
4177 }
4178
4179 static int vlv_get_refclk(struct drm_crtc *crtc)
4180 {
4181         struct drm_device *dev = crtc->dev;
4182         struct drm_i915_private *dev_priv = dev->dev_private;
4183         int refclk = 27000; /* for DP & HDMI */
4184
4185         return 100000; /* only one validated so far */
4186
4187         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4188                 refclk = 96000;
4189         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4190                 if (intel_panel_use_ssc(dev_priv))
4191                         refclk = 100000;
4192                 else
4193                         refclk = 96000;
4194         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4195                 refclk = 100000;
4196         }
4197
4198         return refclk;
4199 }
4200
4201 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4202 {
4203         struct drm_device *dev = crtc->dev;
4204         struct drm_i915_private *dev_priv = dev->dev_private;
4205         int refclk;
4206
4207         if (IS_VALLEYVIEW(dev)) {
4208                 refclk = vlv_get_refclk(crtc);
4209         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4210             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4211                 refclk = dev_priv->lvds_ssc_freq * 1000;
4212                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4213                               refclk / 1000);
4214         } else if (!IS_GEN2(dev)) {
4215                 refclk = 96000;
4216         } else {
4217                 refclk = 48000;
4218         }
4219
4220         return refclk;
4221 }
4222
4223 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4224                                       intel_clock_t *clock)
4225 {
4226         /* SDVO TV has fixed PLL values depend on its clock range,
4227            this mirrors vbios setting. */
4228         if (adjusted_mode->clock >= 100000
4229             && adjusted_mode->clock < 140500) {
4230                 clock->p1 = 2;
4231                 clock->p2 = 10;
4232                 clock->n = 3;
4233                 clock->m1 = 16;
4234                 clock->m2 = 8;
4235         } else if (adjusted_mode->clock >= 140500
4236                    && adjusted_mode->clock <= 200000) {
4237                 clock->p1 = 1;
4238                 clock->p2 = 10;
4239                 clock->n = 6;
4240                 clock->m1 = 12;
4241                 clock->m2 = 8;
4242         }
4243 }
4244
4245 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4246                                      intel_clock_t *clock,
4247                                      intel_clock_t *reduced_clock)
4248 {
4249         struct drm_device *dev = crtc->dev;
4250         struct drm_i915_private *dev_priv = dev->dev_private;
4251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4252         int pipe = intel_crtc->pipe;
4253         u32 fp, fp2 = 0;
4254
4255         if (IS_PINEVIEW(dev)) {
4256                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4257                 if (reduced_clock)
4258                         fp2 = (1 << reduced_clock->n) << 16 |
4259                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4260         } else {
4261                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4262                 if (reduced_clock)
4263                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4264                                 reduced_clock->m2;
4265         }
4266
4267         I915_WRITE(FP0(pipe), fp);
4268
4269         intel_crtc->lowfreq_avail = false;
4270         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4271             reduced_clock && i915_powersave) {
4272                 I915_WRITE(FP1(pipe), fp2);
4273                 intel_crtc->lowfreq_avail = true;
4274         } else {
4275                 I915_WRITE(FP1(pipe), fp);
4276         }
4277 }
4278
4279 static void vlv_update_pll(struct drm_crtc *crtc,
4280                            struct drm_display_mode *mode,
4281                            struct drm_display_mode *adjusted_mode,
4282                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4283                            int num_connectors)
4284 {
4285         struct drm_device *dev = crtc->dev;
4286         struct drm_i915_private *dev_priv = dev->dev_private;
4287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4288         int pipe = intel_crtc->pipe;
4289         u32 dpll, mdiv, pdiv;
4290         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4291         bool is_sdvo;
4292         u32 temp;
4293
4294         mutex_lock(&dev_priv->dpio_lock);
4295
4296         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4297                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4298
4299         dpll = DPLL_VGA_MODE_DIS;
4300         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4301         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4302         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4303
4304         I915_WRITE(DPLL(pipe), dpll);
4305         POSTING_READ(DPLL(pipe));
4306
4307         bestn = clock->n;
4308         bestm1 = clock->m1;
4309         bestm2 = clock->m2;
4310         bestp1 = clock->p1;
4311         bestp2 = clock->p2;
4312
4313         /*
4314          * In Valleyview PLL and program lane counter registers are exposed
4315          * through DPIO interface
4316          */
4317         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4318         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4319         mdiv |= ((bestn << DPIO_N_SHIFT));
4320         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4321         mdiv |= (1 << DPIO_K_SHIFT);
4322         mdiv |= DPIO_ENABLE_CALIBRATION;
4323         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4324
4325         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4326
4327         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4328                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4329                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4330                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4331         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4332
4333         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4334
4335         dpll |= DPLL_VCO_ENABLE;
4336         I915_WRITE(DPLL(pipe), dpll);
4337         POSTING_READ(DPLL(pipe));
4338         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4339                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4340
4341         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4342
4343         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4344                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4345
4346         I915_WRITE(DPLL(pipe), dpll);
4347
4348         /* Wait for the clocks to stabilize. */
4349         POSTING_READ(DPLL(pipe));
4350         udelay(150);
4351
4352         temp = 0;
4353         if (is_sdvo) {
4354                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4355                 if (temp > 1)
4356                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4357                 else
4358                         temp = 0;
4359         }
4360         I915_WRITE(DPLL_MD(pipe), temp);
4361         POSTING_READ(DPLL_MD(pipe));
4362
4363         /* Now program lane control registers */
4364         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4365                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4366         {
4367                 temp = 0x1000C4;
4368                 if(pipe == 1)
4369                         temp |= (1 << 21);
4370                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4371         }
4372         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4373         {
4374                 temp = 0x1000C4;
4375                 if(pipe == 1)
4376                         temp |= (1 << 21);
4377                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4378         }
4379
4380         mutex_unlock(&dev_priv->dpio_lock);
4381 }
4382
4383 static void i9xx_update_pll(struct drm_crtc *crtc,
4384                             struct drm_display_mode *mode,
4385                             struct drm_display_mode *adjusted_mode,
4386                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4387                             int num_connectors)
4388 {
4389         struct drm_device *dev = crtc->dev;
4390         struct drm_i915_private *dev_priv = dev->dev_private;
4391         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4392         struct intel_encoder *encoder;
4393         int pipe = intel_crtc->pipe;
4394         u32 dpll;
4395         bool is_sdvo;
4396
4397         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4398
4399         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4400                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4401
4402         dpll = DPLL_VGA_MODE_DIS;
4403
4404         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4405                 dpll |= DPLLB_MODE_LVDS;
4406         else
4407                 dpll |= DPLLB_MODE_DAC_SERIAL;
4408         if (is_sdvo) {
4409                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4410                 if (pixel_multiplier > 1) {
4411                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4412                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4413                 }
4414                 dpll |= DPLL_DVO_HIGH_SPEED;
4415         }
4416         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4417                 dpll |= DPLL_DVO_HIGH_SPEED;
4418
4419         /* compute bitmask from p1 value */
4420         if (IS_PINEVIEW(dev))
4421                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4422         else {
4423                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4424                 if (IS_G4X(dev) && reduced_clock)
4425                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4426         }
4427         switch (clock->p2) {
4428         case 5:
4429                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4430                 break;
4431         case 7:
4432                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4433                 break;
4434         case 10:
4435                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4436                 break;
4437         case 14:
4438                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4439                 break;
4440         }
4441         if (INTEL_INFO(dev)->gen >= 4)
4442                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4443
4444         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4445                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4446         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4447                 /* XXX: just matching BIOS for now */
4448                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4449                 dpll |= 3;
4450         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4451                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4452                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4453         else
4454                 dpll |= PLL_REF_INPUT_DREFCLK;
4455
4456         dpll |= DPLL_VCO_ENABLE;
4457         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4458         POSTING_READ(DPLL(pipe));
4459         udelay(150);
4460
4461         for_each_encoder_on_crtc(dev, crtc, encoder)
4462                 if (encoder->pre_pll_enable)
4463                         encoder->pre_pll_enable(encoder);
4464
4465         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4466                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4467
4468         I915_WRITE(DPLL(pipe), dpll);
4469
4470         /* Wait for the clocks to stabilize. */
4471         POSTING_READ(DPLL(pipe));
4472         udelay(150);
4473
4474         if (INTEL_INFO(dev)->gen >= 4) {
4475                 u32 temp = 0;
4476                 if (is_sdvo) {
4477                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4478                         if (temp > 1)
4479                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4480                         else
4481                                 temp = 0;
4482                 }
4483                 I915_WRITE(DPLL_MD(pipe), temp);
4484         } else {
4485                 /* The pixel multiplier can only be updated once the
4486                  * DPLL is enabled and the clocks are stable.
4487                  *
4488                  * So write it again.
4489                  */
4490                 I915_WRITE(DPLL(pipe), dpll);
4491         }
4492 }
4493
4494 static void i8xx_update_pll(struct drm_crtc *crtc,
4495                             struct drm_display_mode *adjusted_mode,
4496                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4497                             int num_connectors)
4498 {
4499         struct drm_device *dev = crtc->dev;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4502         struct intel_encoder *encoder;
4503         int pipe = intel_crtc->pipe;
4504         u32 dpll;
4505
4506         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4507
4508         dpll = DPLL_VGA_MODE_DIS;
4509
4510         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4511                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4512         } else {
4513                 if (clock->p1 == 2)
4514                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4515                 else
4516                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4517                 if (clock->p2 == 4)
4518                         dpll |= PLL_P2_DIVIDE_BY_4;
4519         }
4520
4521         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4522                 /* XXX: just matching BIOS for now */
4523                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4524                 dpll |= 3;
4525         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4526                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4527                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4528         else
4529                 dpll |= PLL_REF_INPUT_DREFCLK;
4530
4531         dpll |= DPLL_VCO_ENABLE;
4532         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4533         POSTING_READ(DPLL(pipe));
4534         udelay(150);
4535
4536         for_each_encoder_on_crtc(dev, crtc, encoder)
4537                 if (encoder->pre_pll_enable)
4538                         encoder->pre_pll_enable(encoder);
4539
4540         I915_WRITE(DPLL(pipe), dpll);
4541
4542         /* Wait for the clocks to stabilize. */
4543         POSTING_READ(DPLL(pipe));
4544         udelay(150);
4545
4546         /* The pixel multiplier can only be updated once the
4547          * DPLL is enabled and the clocks are stable.
4548          *
4549          * So write it again.
4550          */
4551         I915_WRITE(DPLL(pipe), dpll);
4552 }
4553
4554 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4555                                    struct drm_display_mode *mode,
4556                                    struct drm_display_mode *adjusted_mode)
4557 {
4558         struct drm_device *dev = intel_crtc->base.dev;
4559         struct drm_i915_private *dev_priv = dev->dev_private;
4560         enum pipe pipe = intel_crtc->pipe;
4561         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4562         uint32_t vsyncshift;
4563
4564         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4565                 /* the chip adds 2 halflines automatically */
4566                 adjusted_mode->crtc_vtotal -= 1;
4567                 adjusted_mode->crtc_vblank_end -= 1;
4568                 vsyncshift = adjusted_mode->crtc_hsync_start
4569                              - adjusted_mode->crtc_htotal / 2;
4570         } else {
4571                 vsyncshift = 0;
4572         }
4573
4574         if (INTEL_INFO(dev)->gen > 3)
4575                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4576
4577         I915_WRITE(HTOTAL(cpu_transcoder),
4578                    (adjusted_mode->crtc_hdisplay - 1) |
4579                    ((adjusted_mode->crtc_htotal - 1) << 16));
4580         I915_WRITE(HBLANK(cpu_transcoder),
4581                    (adjusted_mode->crtc_hblank_start - 1) |
4582                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4583         I915_WRITE(HSYNC(cpu_transcoder),
4584                    (adjusted_mode->crtc_hsync_start - 1) |
4585                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4586
4587         I915_WRITE(VTOTAL(cpu_transcoder),
4588                    (adjusted_mode->crtc_vdisplay - 1) |
4589                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4590         I915_WRITE(VBLANK(cpu_transcoder),
4591                    (adjusted_mode->crtc_vblank_start - 1) |
4592                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4593         I915_WRITE(VSYNC(cpu_transcoder),
4594                    (adjusted_mode->crtc_vsync_start - 1) |
4595                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4596
4597         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4598          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4599          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4600          * bits. */
4601         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4602             (pipe == PIPE_B || pipe == PIPE_C))
4603                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4604
4605         /* pipesrc controls the size that is scaled from, which should
4606          * always be the user's requested size.
4607          */
4608         I915_WRITE(PIPESRC(pipe),
4609                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4610 }
4611
4612 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4613                               struct drm_display_mode *mode,
4614                               struct drm_display_mode *adjusted_mode,
4615                               int x, int y,
4616                               struct drm_framebuffer *fb)
4617 {
4618         struct drm_device *dev = crtc->dev;
4619         struct drm_i915_private *dev_priv = dev->dev_private;
4620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4621         int pipe = intel_crtc->pipe;
4622         int plane = intel_crtc->plane;
4623         int refclk, num_connectors = 0;
4624         intel_clock_t clock, reduced_clock;
4625         u32 dspcntr, pipeconf;
4626         bool ok, has_reduced_clock = false, is_sdvo = false;
4627         bool is_lvds = false, is_tv = false, is_dp = false;
4628         struct intel_encoder *encoder;
4629         const intel_limit_t *limit;
4630         int ret;
4631
4632         for_each_encoder_on_crtc(dev, crtc, encoder) {
4633                 switch (encoder->type) {
4634                 case INTEL_OUTPUT_LVDS:
4635                         is_lvds = true;
4636                         break;
4637                 case INTEL_OUTPUT_SDVO:
4638                 case INTEL_OUTPUT_HDMI:
4639                         is_sdvo = true;
4640                         if (encoder->needs_tv_clock)
4641                                 is_tv = true;
4642                         break;
4643                 case INTEL_OUTPUT_TVOUT:
4644                         is_tv = true;
4645                         break;
4646                 case INTEL_OUTPUT_DISPLAYPORT:
4647                         is_dp = true;
4648                         break;
4649                 }
4650
4651                 num_connectors++;
4652         }
4653
4654         refclk = i9xx_get_refclk(crtc, num_connectors);
4655
4656         /*
4657          * Returns a set of divisors for the desired target clock with the given
4658          * refclk, or FALSE.  The returned values represent the clock equation:
4659          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4660          */
4661         limit = intel_limit(crtc, refclk);
4662         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4663                              &clock);
4664         if (!ok) {
4665                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4666                 return -EINVAL;
4667         }
4668
4669         /* Ensure that the cursor is valid for the new mode before changing... */
4670         intel_crtc_update_cursor(crtc, true);
4671
4672         if (is_lvds && dev_priv->lvds_downclock_avail) {
4673                 /*
4674                  * Ensure we match the reduced clock's P to the target clock.
4675                  * If the clocks don't match, we can't switch the display clock
4676                  * by using the FP0/FP1. In such case we will disable the LVDS
4677                  * downclock feature.
4678                 */
4679                 has_reduced_clock = limit->find_pll(limit, crtc,
4680                                                     dev_priv->lvds_downclock,
4681                                                     refclk,
4682                                                     &clock,
4683                                                     &reduced_clock);
4684         }
4685
4686         if (is_sdvo && is_tv)
4687                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4688
4689         if (IS_GEN2(dev))
4690                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4691                                 has_reduced_clock ? &reduced_clock : NULL,
4692                                 num_connectors);
4693         else if (IS_VALLEYVIEW(dev))
4694                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4695                                 has_reduced_clock ? &reduced_clock : NULL,
4696                                 num_connectors);
4697         else
4698                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4699                                 has_reduced_clock ? &reduced_clock : NULL,
4700                                 num_connectors);
4701
4702         /* setup pipeconf */
4703         pipeconf = I915_READ(PIPECONF(pipe));
4704
4705         /* Set up the display plane register */
4706         dspcntr = DISPPLANE_GAMMA_ENABLE;
4707
4708         if (pipe == 0)
4709                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4710         else
4711                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4712
4713         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4714                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4715                  * core speed.
4716                  *
4717                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4718                  * pipe == 0 check?
4719                  */
4720                 if (mode->clock >
4721                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4722                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4723                 else
4724                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4725         }
4726
4727         /* default to 8bpc */
4728         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4729         if (is_dp) {
4730                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4731                         pipeconf |= PIPECONF_6BPC |
4732                                     PIPECONF_DITHER_EN |
4733                                     PIPECONF_DITHER_TYPE_SP;
4734                 }
4735         }
4736
4737         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4738                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4739                         pipeconf |= PIPECONF_6BPC |
4740                                         PIPECONF_ENABLE |
4741                                         I965_PIPECONF_ACTIVE;
4742                 }
4743         }
4744
4745         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4746         drm_mode_debug_printmodeline(mode);
4747
4748         if (HAS_PIPE_CXSR(dev)) {
4749                 if (intel_crtc->lowfreq_avail) {
4750                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4751                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4752                 } else {
4753                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4754                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4755                 }
4756         }
4757
4758         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4759         if (!IS_GEN2(dev) &&
4760             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4761                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4762         else
4763                 pipeconf |= PIPECONF_PROGRESSIVE;
4764
4765         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4766
4767         /* pipesrc and dspsize control the size that is scaled from,
4768          * which should always be the user's requested size.
4769          */
4770         I915_WRITE(DSPSIZE(plane),
4771                    ((mode->vdisplay - 1) << 16) |
4772                    (mode->hdisplay - 1));
4773         I915_WRITE(DSPPOS(plane), 0);
4774
4775         I915_WRITE(PIPECONF(pipe), pipeconf);
4776         POSTING_READ(PIPECONF(pipe));
4777         intel_enable_pipe(dev_priv, pipe, false);
4778
4779         intel_wait_for_vblank(dev, pipe);
4780
4781         I915_WRITE(DSPCNTR(plane), dspcntr);
4782         POSTING_READ(DSPCNTR(plane));
4783
4784         ret = intel_pipe_set_base(crtc, x, y, fb);
4785
4786         intel_update_watermarks(dev);
4787
4788         return ret;
4789 }
4790
4791 static void ironlake_init_pch_refclk(struct drm_device *dev)
4792 {
4793         struct drm_i915_private *dev_priv = dev->dev_private;
4794         struct drm_mode_config *mode_config = &dev->mode_config;
4795         struct intel_encoder *encoder;
4796         u32 temp;
4797         bool has_lvds = false;
4798         bool has_cpu_edp = false;
4799         bool has_pch_edp = false;
4800         bool has_panel = false;
4801         bool has_ck505 = false;
4802         bool can_ssc = false;
4803
4804         /* We need to take the global config into account */
4805         list_for_each_entry(encoder, &mode_config->encoder_list,
4806                             base.head) {
4807                 switch (encoder->type) {
4808                 case INTEL_OUTPUT_LVDS:
4809                         has_panel = true;
4810                         has_lvds = true;
4811                         break;
4812                 case INTEL_OUTPUT_EDP:
4813                         has_panel = true;
4814                         if (intel_encoder_is_pch_edp(&encoder->base))
4815                                 has_pch_edp = true;
4816                         else
4817                                 has_cpu_edp = true;
4818                         break;
4819                 }
4820         }
4821
4822         if (HAS_PCH_IBX(dev)) {
4823                 has_ck505 = dev_priv->display_clock_mode;
4824                 can_ssc = has_ck505;
4825         } else {
4826                 has_ck505 = false;
4827                 can_ssc = true;
4828         }
4829
4830         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4831                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4832                       has_ck505);
4833
4834         /* Ironlake: try to setup display ref clock before DPLL
4835          * enabling. This is only under driver's control after
4836          * PCH B stepping, previous chipset stepping should be
4837          * ignoring this setting.
4838          */
4839         temp = I915_READ(PCH_DREF_CONTROL);
4840         /* Always enable nonspread source */
4841         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4842
4843         if (has_ck505)
4844                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4845         else
4846                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4847
4848         if (has_panel) {
4849                 temp &= ~DREF_SSC_SOURCE_MASK;
4850                 temp |= DREF_SSC_SOURCE_ENABLE;
4851
4852                 /* SSC must be turned on before enabling the CPU output  */
4853                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4854                         DRM_DEBUG_KMS("Using SSC on panel\n");
4855                         temp |= DREF_SSC1_ENABLE;
4856                 } else
4857                         temp &= ~DREF_SSC1_ENABLE;
4858
4859                 /* Get SSC going before enabling the outputs */
4860                 I915_WRITE(PCH_DREF_CONTROL, temp);
4861                 POSTING_READ(PCH_DREF_CONTROL);
4862                 udelay(200);
4863
4864                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4865
4866                 /* Enable CPU source on CPU attached eDP */
4867                 if (has_cpu_edp) {
4868                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4869                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4870                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4871                         }
4872                         else
4873                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4874                 } else
4875                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4876
4877                 I915_WRITE(PCH_DREF_CONTROL, temp);
4878                 POSTING_READ(PCH_DREF_CONTROL);
4879                 udelay(200);
4880         } else {
4881                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4882
4883                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4884
4885                 /* Turn off CPU output */
4886                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4887
4888                 I915_WRITE(PCH_DREF_CONTROL, temp);
4889                 POSTING_READ(PCH_DREF_CONTROL);
4890                 udelay(200);
4891
4892                 /* Turn off the SSC source */
4893                 temp &= ~DREF_SSC_SOURCE_MASK;
4894                 temp |= DREF_SSC_SOURCE_DISABLE;
4895
4896                 /* Turn off SSC1 */
4897                 temp &= ~ DREF_SSC1_ENABLE;
4898
4899                 I915_WRITE(PCH_DREF_CONTROL, temp);
4900                 POSTING_READ(PCH_DREF_CONTROL);
4901                 udelay(200);
4902         }
4903 }
4904
4905 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4906 static void lpt_init_pch_refclk(struct drm_device *dev)
4907 {
4908         struct drm_i915_private *dev_priv = dev->dev_private;
4909         struct drm_mode_config *mode_config = &dev->mode_config;
4910         struct intel_encoder *encoder;
4911         bool has_vga = false;
4912         bool is_sdv = false;
4913         u32 tmp;
4914
4915         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4916                 switch (encoder->type) {
4917                 case INTEL_OUTPUT_ANALOG:
4918                         has_vga = true;
4919                         break;
4920                 }
4921         }
4922
4923         if (!has_vga)
4924                 return;
4925
4926         mutex_lock(&dev_priv->dpio_lock);
4927
4928         /* XXX: Rip out SDV support once Haswell ships for real. */
4929         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4930                 is_sdv = true;
4931
4932         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4933         tmp &= ~SBI_SSCCTL_DISABLE;
4934         tmp |= SBI_SSCCTL_PATHALT;
4935         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4936
4937         udelay(24);
4938
4939         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4940         tmp &= ~SBI_SSCCTL_PATHALT;
4941         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4942
4943         if (!is_sdv) {
4944                 tmp = I915_READ(SOUTH_CHICKEN2);
4945                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4946                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4947
4948                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4949                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4950                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4951
4952                 tmp = I915_READ(SOUTH_CHICKEN2);
4953                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4954                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4955
4956                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4957                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4958                                        100))
4959                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4960         }
4961
4962         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4963         tmp &= ~(0xFF << 24);
4964         tmp |= (0x12 << 24);
4965         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4966
4967         if (!is_sdv) {
4968                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4969                 tmp &= ~(0x3 << 6);
4970                 tmp |= (1 << 6) | (1 << 0);
4971                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4972         }
4973
4974         if (is_sdv) {
4975                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4976                 tmp |= 0x7FFF;
4977                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4978         }
4979
4980         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4981         tmp |= (1 << 11);
4982         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4983
4984         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4985         tmp |= (1 << 11);
4986         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4987
4988         if (is_sdv) {
4989                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4990                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4991                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4992
4993                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4994                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4995                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4996
4997                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4998                 tmp |= (0x3F << 8);
4999                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5000
5001                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5002                 tmp |= (0x3F << 8);
5003                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5004         }
5005
5006         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5007         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5008         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5009
5010         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5011         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5012         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5013
5014         if (!is_sdv) {
5015                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5016                 tmp &= ~(7 << 13);
5017                 tmp |= (5 << 13);
5018                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5019
5020                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5021                 tmp &= ~(7 << 13);
5022                 tmp |= (5 << 13);
5023                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5024         }
5025
5026         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5027         tmp &= ~0xFF;
5028         tmp |= 0x1C;
5029         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5030
5031         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5032         tmp &= ~0xFF;
5033         tmp |= 0x1C;
5034         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5035
5036         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5037         tmp &= ~(0xFF << 16);
5038         tmp |= (0x1C << 16);
5039         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5040
5041         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5042         tmp &= ~(0xFF << 16);
5043         tmp |= (0x1C << 16);
5044         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5045
5046         if (!is_sdv) {
5047                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5048                 tmp |= (1 << 27);
5049                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5050
5051                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5052                 tmp |= (1 << 27);
5053                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5054
5055                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5056                 tmp &= ~(0xF << 28);
5057                 tmp |= (4 << 28);
5058                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5059
5060                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5061                 tmp &= ~(0xF << 28);
5062                 tmp |= (4 << 28);
5063                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5064         }
5065
5066         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5067         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5068         tmp |= SBI_DBUFF0_ENABLE;
5069         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5070
5071         mutex_unlock(&dev_priv->dpio_lock);
5072 }
5073
5074 /*
5075  * Initialize reference clocks when the driver loads
5076  */
5077 void intel_init_pch_refclk(struct drm_device *dev)
5078 {
5079         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5080                 ironlake_init_pch_refclk(dev);
5081         else if (HAS_PCH_LPT(dev))
5082                 lpt_init_pch_refclk(dev);
5083 }
5084
5085 static int ironlake_get_refclk(struct drm_crtc *crtc)
5086 {
5087         struct drm_device *dev = crtc->dev;
5088         struct drm_i915_private *dev_priv = dev->dev_private;
5089         struct intel_encoder *encoder;
5090         struct intel_encoder *edp_encoder = NULL;
5091         int num_connectors = 0;
5092         bool is_lvds = false;
5093
5094         for_each_encoder_on_crtc(dev, crtc, encoder) {
5095                 switch (encoder->type) {
5096                 case INTEL_OUTPUT_LVDS:
5097                         is_lvds = true;
5098                         break;
5099                 case INTEL_OUTPUT_EDP:
5100                         edp_encoder = encoder;
5101                         break;
5102                 }
5103                 num_connectors++;
5104         }
5105
5106         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5107                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5108                               dev_priv->lvds_ssc_freq);
5109                 return dev_priv->lvds_ssc_freq * 1000;
5110         }
5111
5112         return 120000;
5113 }
5114
5115 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5116                                   struct drm_display_mode *adjusted_mode,
5117                                   bool dither)
5118 {
5119         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5120         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5121         int pipe = intel_crtc->pipe;
5122         uint32_t val;
5123
5124         val = I915_READ(PIPECONF(pipe));
5125
5126         val &= ~PIPECONF_BPC_MASK;
5127         switch (intel_crtc->bpp) {
5128         case 18:
5129                 val |= PIPECONF_6BPC;
5130                 break;
5131         case 24:
5132                 val |= PIPECONF_8BPC;
5133                 break;
5134         case 30:
5135                 val |= PIPECONF_10BPC;
5136                 break;
5137         case 36:
5138                 val |= PIPECONF_12BPC;
5139                 break;
5140         default:
5141                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5142                 BUG();
5143         }
5144
5145         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5146         if (dither)
5147                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5148
5149         val &= ~PIPECONF_INTERLACE_MASK;
5150         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5151                 val |= PIPECONF_INTERLACED_ILK;
5152         else
5153                 val |= PIPECONF_PROGRESSIVE;
5154
5155         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5156                 val |= PIPECONF_COLOR_RANGE_SELECT;
5157         else
5158                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5159
5160         I915_WRITE(PIPECONF(pipe), val);
5161         POSTING_READ(PIPECONF(pipe));
5162 }
5163
5164 /*
5165  * Set up the pipe CSC unit.
5166  *
5167  * Currently only full range RGB to limited range RGB conversion
5168  * is supported, but eventually this should handle various
5169  * RGB<->YCbCr scenarios as well.
5170  */
5171 static void intel_set_pipe_csc(struct drm_crtc *crtc,
5172                                const struct drm_display_mode *adjusted_mode)
5173 {
5174         struct drm_device *dev = crtc->dev;
5175         struct drm_i915_private *dev_priv = dev->dev_private;
5176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5177         int pipe = intel_crtc->pipe;
5178         uint16_t coeff = 0x7800; /* 1.0 */
5179
5180         /*
5181          * TODO: Check what kind of values actually come out of the pipe
5182          * with these coeff/postoff values and adjust to get the best
5183          * accuracy. Perhaps we even need to take the bpc value into
5184          * consideration.
5185          */
5186
5187         if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5188                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5189
5190         /*
5191          * GY/GU and RY/RU should be the other way around according
5192          * to BSpec, but reality doesn't agree. Just set them up in
5193          * a way that results in the correct picture.
5194          */
5195         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5196         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5197
5198         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5199         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5200
5201         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5202         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5203
5204         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5205         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5206         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5207
5208         if (INTEL_INFO(dev)->gen > 6) {
5209                 uint16_t postoff = 0;
5210
5211                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5212                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5213
5214                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5215                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5216                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5217
5218                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5219         } else {
5220                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5221
5222                 if (adjusted_mode->private_flags & INTEL_MODE_LIMITED_COLOR_RANGE)
5223                         mode |= CSC_BLACK_SCREEN_OFFSET;
5224
5225                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5226         }
5227 }
5228
5229 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5230                                  struct drm_display_mode *adjusted_mode,
5231                                  bool dither)
5232 {
5233         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5234         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5235         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5236         uint32_t val;
5237
5238         val = I915_READ(PIPECONF(cpu_transcoder));
5239
5240         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5241         if (dither)
5242                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5243
5244         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5245         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5246                 val |= PIPECONF_INTERLACED_ILK;
5247         else
5248                 val |= PIPECONF_PROGRESSIVE;
5249
5250         I915_WRITE(PIPECONF(cpu_transcoder), val);
5251         POSTING_READ(PIPECONF(cpu_transcoder));
5252 }
5253
5254 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5255                                     struct drm_display_mode *adjusted_mode,
5256                                     intel_clock_t *clock,
5257                                     bool *has_reduced_clock,
5258                                     intel_clock_t *reduced_clock)
5259 {
5260         struct drm_device *dev = crtc->dev;
5261         struct drm_i915_private *dev_priv = dev->dev_private;
5262         struct intel_encoder *intel_encoder;
5263         int refclk;
5264         const intel_limit_t *limit;
5265         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5266
5267         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5268                 switch (intel_encoder->type) {
5269                 case INTEL_OUTPUT_LVDS:
5270                         is_lvds = true;
5271                         break;
5272                 case INTEL_OUTPUT_SDVO:
5273                 case INTEL_OUTPUT_HDMI:
5274                         is_sdvo = true;
5275                         if (intel_encoder->needs_tv_clock)
5276                                 is_tv = true;
5277                         break;
5278                 case INTEL_OUTPUT_TVOUT:
5279                         is_tv = true;
5280                         break;
5281                 }
5282         }
5283
5284         refclk = ironlake_get_refclk(crtc);
5285
5286         /*
5287          * Returns a set of divisors for the desired target clock with the given
5288          * refclk, or FALSE.  The returned values represent the clock equation:
5289          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5290          */
5291         limit = intel_limit(crtc, refclk);
5292         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5293                               clock);
5294         if (!ret)
5295                 return false;
5296
5297         if (is_lvds && dev_priv->lvds_downclock_avail) {
5298                 /*
5299                  * Ensure we match the reduced clock's P to the target clock.
5300                  * If the clocks don't match, we can't switch the display clock
5301                  * by using the FP0/FP1. In such case we will disable the LVDS
5302                  * downclock feature.
5303                 */
5304                 *has_reduced_clock = limit->find_pll(limit, crtc,
5305                                                      dev_priv->lvds_downclock,
5306                                                      refclk,
5307                                                      clock,
5308                                                      reduced_clock);
5309         }
5310
5311         if (is_sdvo && is_tv)
5312                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5313
5314         return true;
5315 }
5316
5317 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5318 {
5319         struct drm_i915_private *dev_priv = dev->dev_private;
5320         uint32_t temp;
5321
5322         temp = I915_READ(SOUTH_CHICKEN1);
5323         if (temp & FDI_BC_BIFURCATION_SELECT)
5324                 return;
5325
5326         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5327         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5328
5329         temp |= FDI_BC_BIFURCATION_SELECT;
5330         DRM_DEBUG_KMS("enabling fdi C rx\n");
5331         I915_WRITE(SOUTH_CHICKEN1, temp);
5332         POSTING_READ(SOUTH_CHICKEN1);
5333 }
5334
5335 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5336 {
5337         struct drm_device *dev = intel_crtc->base.dev;
5338         struct drm_i915_private *dev_priv = dev->dev_private;
5339         struct intel_crtc *pipe_B_crtc =
5340                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5341
5342         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5343                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5344         if (intel_crtc->fdi_lanes > 4) {
5345                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5346                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5347                 /* Clamp lanes to avoid programming the hw with bogus values. */
5348                 intel_crtc->fdi_lanes = 4;
5349
5350                 return false;
5351         }
5352
5353         if (dev_priv->num_pipe == 2)
5354                 return true;
5355
5356         switch (intel_crtc->pipe) {
5357         case PIPE_A:
5358                 return true;
5359         case PIPE_B:
5360                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5361                     intel_crtc->fdi_lanes > 2) {
5362                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5363                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5364                         /* Clamp lanes to avoid programming the hw with bogus values. */
5365                         intel_crtc->fdi_lanes = 2;
5366
5367                         return false;
5368                 }
5369
5370                 if (intel_crtc->fdi_lanes > 2)
5371                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5372                 else
5373                         cpt_enable_fdi_bc_bifurcation(dev);
5374
5375                 return true;
5376         case PIPE_C:
5377                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5378                         if (intel_crtc->fdi_lanes > 2) {
5379                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5380                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5381                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5382                                 intel_crtc->fdi_lanes = 2;
5383
5384                                 return false;
5385                         }
5386                 } else {
5387                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5388                         return false;
5389                 }
5390
5391                 cpt_enable_fdi_bc_bifurcation(dev);
5392
5393                 return true;
5394         default:
5395                 BUG();
5396         }
5397 }
5398
5399 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5400 {
5401         /*
5402          * Account for spread spectrum to avoid
5403          * oversubscribing the link. Max center spread
5404          * is 2.5%; use 5% for safety's sake.
5405          */
5406         u32 bps = target_clock * bpp * 21 / 20;
5407         return bps / (link_bw * 8) + 1;
5408 }
5409
5410 static void ironlake_set_m_n(struct drm_crtc *crtc,
5411                              struct drm_display_mode *mode,
5412                              struct drm_display_mode *adjusted_mode)
5413 {
5414         struct drm_device *dev = crtc->dev;
5415         struct drm_i915_private *dev_priv = dev->dev_private;
5416         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5417         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5418         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5419         struct intel_link_m_n m_n = {0};
5420         int target_clock, pixel_multiplier, lane, link_bw;
5421         bool is_dp = false, is_cpu_edp = false;
5422
5423         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5424                 switch (intel_encoder->type) {
5425                 case INTEL_OUTPUT_DISPLAYPORT:
5426                         is_dp = true;
5427                         break;
5428                 case INTEL_OUTPUT_EDP:
5429                         is_dp = true;
5430                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5431                                 is_cpu_edp = true;
5432                         edp_encoder = intel_encoder;
5433                         break;
5434                 }
5435         }
5436
5437         /* FDI link */
5438         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5439         lane = 0;
5440         /* CPU eDP doesn't require FDI link, so just set DP M/N
5441            according to current link config */
5442         if (is_cpu_edp) {
5443                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5444         } else {
5445                 /* FDI is a binary signal running at ~2.7GHz, encoding
5446                  * each output octet as 10 bits. The actual frequency
5447                  * is stored as a divider into a 100MHz clock, and the
5448                  * mode pixel clock is stored in units of 1KHz.
5449                  * Hence the bw of each lane in terms of the mode signal
5450                  * is:
5451                  */
5452                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5453         }
5454
5455         /* [e]DP over FDI requires target mode clock instead of link clock. */
5456         if (edp_encoder)
5457                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5458         else if (is_dp)
5459                 target_clock = mode->clock;
5460         else
5461                 target_clock = adjusted_mode->clock;
5462
5463         if (!lane)
5464                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5465                                                    intel_crtc->bpp);
5466
5467         intel_crtc->fdi_lanes = lane;
5468
5469         if (pixel_multiplier > 1)
5470                 link_bw *= pixel_multiplier;
5471         intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
5472
5473         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5474         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5475         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5476         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5477 }
5478
5479 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5480                                       struct drm_display_mode *adjusted_mode,
5481                                       intel_clock_t *clock, u32 fp)
5482 {
5483         struct drm_crtc *crtc = &intel_crtc->base;
5484         struct drm_device *dev = crtc->dev;
5485         struct drm_i915_private *dev_priv = dev->dev_private;
5486         struct intel_encoder *intel_encoder;
5487         uint32_t dpll;
5488         int factor, pixel_multiplier, num_connectors = 0;
5489         bool is_lvds = false, is_sdvo = false, is_tv = false;
5490         bool is_dp = false, is_cpu_edp = false;
5491
5492         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5493                 switch (intel_encoder->type) {
5494                 case INTEL_OUTPUT_LVDS:
5495                         is_lvds = true;
5496                         break;
5497                 case INTEL_OUTPUT_SDVO:
5498                 case INTEL_OUTPUT_HDMI:
5499                         is_sdvo = true;
5500                         if (intel_encoder->needs_tv_clock)
5501                                 is_tv = true;
5502                         break;
5503                 case INTEL_OUTPUT_TVOUT:
5504                         is_tv = true;
5505                         break;
5506                 case INTEL_OUTPUT_DISPLAYPORT:
5507                         is_dp = true;
5508                         break;
5509                 case INTEL_OUTPUT_EDP:
5510                         is_dp = true;
5511                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5512                                 is_cpu_edp = true;
5513                         break;
5514                 }
5515
5516                 num_connectors++;
5517         }
5518
5519         /* Enable autotuning of the PLL clock (if permissible) */
5520         factor = 21;
5521         if (is_lvds) {
5522                 if ((intel_panel_use_ssc(dev_priv) &&
5523                      dev_priv->lvds_ssc_freq == 100) ||
5524                     intel_is_dual_link_lvds(dev))
5525                         factor = 25;
5526         } else if (is_sdvo && is_tv)
5527                 factor = 20;
5528
5529         if (clock->m < factor * clock->n)
5530                 fp |= FP_CB_TUNE;
5531
5532         dpll = 0;
5533
5534         if (is_lvds)
5535                 dpll |= DPLLB_MODE_LVDS;
5536         else
5537                 dpll |= DPLLB_MODE_DAC_SERIAL;
5538         if (is_sdvo) {
5539                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5540                 if (pixel_multiplier > 1) {
5541                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5542                 }
5543                 dpll |= DPLL_DVO_HIGH_SPEED;
5544         }
5545         if (is_dp && !is_cpu_edp)
5546                 dpll |= DPLL_DVO_HIGH_SPEED;
5547
5548         /* compute bitmask from p1 value */
5549         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5550         /* also FPA1 */
5551         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5552
5553         switch (clock->p2) {
5554         case 5:
5555                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5556                 break;
5557         case 7:
5558                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5559                 break;
5560         case 10:
5561                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5562                 break;
5563         case 14:
5564                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5565                 break;
5566         }
5567
5568         if (is_sdvo && is_tv)
5569                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5570         else if (is_tv)
5571                 /* XXX: just matching BIOS for now */
5572                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5573                 dpll |= 3;
5574         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5575                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5576         else
5577                 dpll |= PLL_REF_INPUT_DREFCLK;
5578
5579         return dpll;
5580 }
5581
5582 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5583                                   struct drm_display_mode *mode,
5584                                   struct drm_display_mode *adjusted_mode,
5585                                   int x, int y,
5586                                   struct drm_framebuffer *fb)
5587 {
5588         struct drm_device *dev = crtc->dev;
5589         struct drm_i915_private *dev_priv = dev->dev_private;
5590         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5591         int pipe = intel_crtc->pipe;
5592         int plane = intel_crtc->plane;
5593         int num_connectors = 0;
5594         intel_clock_t clock, reduced_clock;
5595         u32 dpll, fp = 0, fp2 = 0;
5596         bool ok, has_reduced_clock = false;
5597         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5598         struct intel_encoder *encoder;
5599         int ret;
5600         bool dither, fdi_config_ok;
5601
5602         for_each_encoder_on_crtc(dev, crtc, encoder) {
5603                 switch (encoder->type) {
5604                 case INTEL_OUTPUT_LVDS:
5605                         is_lvds = true;
5606                         break;
5607                 case INTEL_OUTPUT_DISPLAYPORT:
5608                         is_dp = true;
5609                         break;
5610                 case INTEL_OUTPUT_EDP:
5611                         is_dp = true;
5612                         if (!intel_encoder_is_pch_edp(&encoder->base))
5613                                 is_cpu_edp = true;
5614                         break;
5615                 }
5616
5617                 num_connectors++;
5618         }
5619
5620         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5621              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5622
5623         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5624                                      &has_reduced_clock, &reduced_clock);
5625         if (!ok) {
5626                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5627                 return -EINVAL;
5628         }
5629
5630         /* Ensure that the cursor is valid for the new mode before changing... */
5631         intel_crtc_update_cursor(crtc, true);
5632
5633         /* determine panel color depth */
5634         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5635                                               adjusted_mode);
5636         if (is_lvds && dev_priv->lvds_dither)
5637                 dither = true;
5638
5639         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5640         if (has_reduced_clock)
5641                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5642                         reduced_clock.m2;
5643
5644         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5645
5646         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5647         drm_mode_debug_printmodeline(mode);
5648
5649         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5650         if (!is_cpu_edp) {
5651                 struct intel_pch_pll *pll;
5652
5653                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5654                 if (pll == NULL) {
5655                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5656                                          pipe);
5657                         return -EINVAL;
5658                 }
5659         } else
5660                 intel_put_pch_pll(intel_crtc);
5661
5662         if (is_dp && !is_cpu_edp)
5663                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5664
5665         for_each_encoder_on_crtc(dev, crtc, encoder)
5666                 if (encoder->pre_pll_enable)
5667                         encoder->pre_pll_enable(encoder);
5668
5669         if (intel_crtc->pch_pll) {
5670                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5671
5672                 /* Wait for the clocks to stabilize. */
5673                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5674                 udelay(150);
5675
5676                 /* The pixel multiplier can only be updated once the
5677                  * DPLL is enabled and the clocks are stable.
5678                  *
5679                  * So write it again.
5680                  */
5681                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5682         }
5683
5684         intel_crtc->lowfreq_avail = false;
5685         if (intel_crtc->pch_pll) {
5686                 if (is_lvds && has_reduced_clock && i915_powersave) {
5687                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5688                         intel_crtc->lowfreq_avail = true;
5689                 } else {
5690                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5691                 }
5692         }
5693
5694         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5695
5696         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5697          * ironlake_check_fdi_lanes. */
5698         ironlake_set_m_n(crtc, mode, adjusted_mode);
5699
5700         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5701
5702         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5703
5704         intel_wait_for_vblank(dev, pipe);
5705
5706         /* Set up the display plane register */
5707         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5708         POSTING_READ(DSPCNTR(plane));
5709
5710         ret = intel_pipe_set_base(crtc, x, y, fb);
5711
5712         intel_update_watermarks(dev);
5713
5714         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5715
5716         return fdi_config_ok ? ret : -EINVAL;
5717 }
5718
5719 static void haswell_modeset_global_resources(struct drm_device *dev)
5720 {
5721         struct drm_i915_private *dev_priv = dev->dev_private;
5722         bool enable = false;
5723         struct intel_crtc *crtc;
5724         struct intel_encoder *encoder;
5725
5726         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5727                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5728                         enable = true;
5729                 /* XXX: Should check for edp transcoder here, but thanks to init
5730                  * sequence that's not yet available. Just in case desktop eDP
5731                  * on PORT D is possible on haswell, too. */
5732         }
5733
5734         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5735                             base.head) {
5736                 if (encoder->type != INTEL_OUTPUT_EDP &&
5737                     encoder->connectors_active)
5738                         enable = true;
5739         }
5740
5741         /* Even the eDP panel fitter is outside the always-on well. */
5742         if (dev_priv->pch_pf_size)
5743                 enable = true;
5744
5745         intel_set_power_well(dev, enable);
5746 }
5747
5748 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5749                                  struct drm_display_mode *mode,
5750                                  struct drm_display_mode *adjusted_mode,
5751                                  int x, int y,
5752                                  struct drm_framebuffer *fb)
5753 {
5754         struct drm_device *dev = crtc->dev;
5755         struct drm_i915_private *dev_priv = dev->dev_private;
5756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5757         int pipe = intel_crtc->pipe;
5758         int plane = intel_crtc->plane;
5759         int num_connectors = 0;
5760         bool is_dp = false, is_cpu_edp = false;
5761         struct intel_encoder *encoder;
5762         int ret;
5763         bool dither;
5764
5765         for_each_encoder_on_crtc(dev, crtc, encoder) {
5766                 switch (encoder->type) {
5767                 case INTEL_OUTPUT_DISPLAYPORT:
5768                         is_dp = true;
5769                         break;
5770                 case INTEL_OUTPUT_EDP:
5771                         is_dp = true;
5772                         if (!intel_encoder_is_pch_edp(&encoder->base))
5773                                 is_cpu_edp = true;
5774                         break;
5775                 }
5776
5777                 num_connectors++;
5778         }
5779
5780         /* We are not sure yet this won't happen. */
5781         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5782              INTEL_PCH_TYPE(dev));
5783
5784         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5785              num_connectors, pipe_name(pipe));
5786
5787         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5788                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5789
5790         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5791
5792         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5793                 return -EINVAL;
5794
5795         /* Ensure that the cursor is valid for the new mode before changing... */
5796         intel_crtc_update_cursor(crtc, true);
5797
5798         /* determine panel color depth */
5799         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5800                                               adjusted_mode);
5801
5802         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5803         drm_mode_debug_printmodeline(mode);
5804
5805         if (is_dp && !is_cpu_edp)
5806                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5807
5808         intel_crtc->lowfreq_avail = false;
5809
5810         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5811
5812         if (!is_dp || is_cpu_edp)
5813                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5814
5815         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5816
5817         intel_set_pipe_csc(crtc, adjusted_mode);
5818
5819         /* Set up the display plane register */
5820         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5821         POSTING_READ(DSPCNTR(plane));
5822
5823         ret = intel_pipe_set_base(crtc, x, y, fb);
5824
5825         intel_update_watermarks(dev);
5826
5827         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5828
5829         return ret;
5830 }
5831
5832 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5833                                struct drm_display_mode *mode,
5834                                struct drm_display_mode *adjusted_mode,
5835                                int x, int y,
5836                                struct drm_framebuffer *fb)
5837 {
5838         struct drm_device *dev = crtc->dev;
5839         struct drm_i915_private *dev_priv = dev->dev_private;
5840         struct drm_encoder_helper_funcs *encoder_funcs;
5841         struct intel_encoder *encoder;
5842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5843         int pipe = intel_crtc->pipe;
5844         int ret;
5845
5846         if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5847                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5848         else
5849                 intel_crtc->cpu_transcoder = pipe;
5850
5851         drm_vblank_pre_modeset(dev, pipe);
5852
5853         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5854                                               x, y, fb);
5855         drm_vblank_post_modeset(dev, pipe);
5856
5857         if (ret != 0)
5858                 return ret;
5859
5860         for_each_encoder_on_crtc(dev, crtc, encoder) {
5861                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5862                         encoder->base.base.id,
5863                         drm_get_encoder_name(&encoder->base),
5864                         mode->base.id, mode->name);
5865                 encoder_funcs = encoder->base.helper_private;
5866                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5867         }
5868
5869         return 0;
5870 }
5871
5872 static bool intel_eld_uptodate(struct drm_connector *connector,
5873                                int reg_eldv, uint32_t bits_eldv,
5874                                int reg_elda, uint32_t bits_elda,
5875                                int reg_edid)
5876 {
5877         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5878         uint8_t *eld = connector->eld;
5879         uint32_t i;
5880
5881         i = I915_READ(reg_eldv);
5882         i &= bits_eldv;
5883
5884         if (!eld[0])
5885                 return !i;
5886
5887         if (!i)
5888                 return false;
5889
5890         i = I915_READ(reg_elda);
5891         i &= ~bits_elda;
5892         I915_WRITE(reg_elda, i);
5893
5894         for (i = 0; i < eld[2]; i++)
5895                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5896                         return false;
5897
5898         return true;
5899 }
5900
5901 static void g4x_write_eld(struct drm_connector *connector,
5902                           struct drm_crtc *crtc)
5903 {
5904         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5905         uint8_t *eld = connector->eld;
5906         uint32_t eldv;
5907         uint32_t len;
5908         uint32_t i;
5909
5910         i = I915_READ(G4X_AUD_VID_DID);
5911
5912         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5913                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5914         else
5915                 eldv = G4X_ELDV_DEVCTG;
5916
5917         if (intel_eld_uptodate(connector,
5918                                G4X_AUD_CNTL_ST, eldv,
5919                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5920                                G4X_HDMIW_HDMIEDID))
5921                 return;
5922
5923         i = I915_READ(G4X_AUD_CNTL_ST);
5924         i &= ~(eldv | G4X_ELD_ADDR);
5925         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5926         I915_WRITE(G4X_AUD_CNTL_ST, i);
5927
5928         if (!eld[0])
5929                 return;
5930
5931         len = min_t(uint8_t, eld[2], len);
5932         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5933         for (i = 0; i < len; i++)
5934                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5935
5936         i = I915_READ(G4X_AUD_CNTL_ST);
5937         i |= eldv;
5938         I915_WRITE(G4X_AUD_CNTL_ST, i);
5939 }
5940
5941 static void haswell_write_eld(struct drm_connector *connector,
5942                                      struct drm_crtc *crtc)
5943 {
5944         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5945         uint8_t *eld = connector->eld;
5946         struct drm_device *dev = crtc->dev;
5947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5948         uint32_t eldv;
5949         uint32_t i;
5950         int len;
5951         int pipe = to_intel_crtc(crtc)->pipe;
5952         int tmp;
5953
5954         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5955         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5956         int aud_config = HSW_AUD_CFG(pipe);
5957         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5958
5959
5960         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5961
5962         /* Audio output enable */
5963         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5964         tmp = I915_READ(aud_cntrl_st2);
5965         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5966         I915_WRITE(aud_cntrl_st2, tmp);
5967
5968         /* Wait for 1 vertical blank */
5969         intel_wait_for_vblank(dev, pipe);
5970
5971         /* Set ELD valid state */
5972         tmp = I915_READ(aud_cntrl_st2);
5973         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5974         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5975         I915_WRITE(aud_cntrl_st2, tmp);
5976         tmp = I915_READ(aud_cntrl_st2);
5977         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5978
5979         /* Enable HDMI mode */
5980         tmp = I915_READ(aud_config);
5981         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5982         /* clear N_programing_enable and N_value_index */
5983         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5984         I915_WRITE(aud_config, tmp);
5985
5986         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5987
5988         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5989         intel_crtc->eld_vld = true;
5990
5991         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5992                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5993                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5994                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5995         } else
5996                 I915_WRITE(aud_config, 0);
5997
5998         if (intel_eld_uptodate(connector,
5999                                aud_cntrl_st2, eldv,
6000                                aud_cntl_st, IBX_ELD_ADDRESS,
6001                                hdmiw_hdmiedid))
6002                 return;
6003
6004         i = I915_READ(aud_cntrl_st2);
6005         i &= ~eldv;
6006         I915_WRITE(aud_cntrl_st2, i);
6007
6008         if (!eld[0])
6009                 return;
6010
6011         i = I915_READ(aud_cntl_st);
6012         i &= ~IBX_ELD_ADDRESS;
6013         I915_WRITE(aud_cntl_st, i);
6014         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6015         DRM_DEBUG_DRIVER("port num:%d\n", i);
6016
6017         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6018         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6019         for (i = 0; i < len; i++)
6020                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6021
6022         i = I915_READ(aud_cntrl_st2);
6023         i |= eldv;
6024         I915_WRITE(aud_cntrl_st2, i);
6025
6026 }
6027
6028 static void ironlake_write_eld(struct drm_connector *connector,
6029                                      struct drm_crtc *crtc)
6030 {
6031         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6032         uint8_t *eld = connector->eld;
6033         uint32_t eldv;
6034         uint32_t i;
6035         int len;
6036         int hdmiw_hdmiedid;
6037         int aud_config;
6038         int aud_cntl_st;
6039         int aud_cntrl_st2;
6040         int pipe = to_intel_crtc(crtc)->pipe;
6041
6042         if (HAS_PCH_IBX(connector->dev)) {
6043                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6044                 aud_config = IBX_AUD_CFG(pipe);
6045                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6046                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6047         } else {
6048                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6049                 aud_config = CPT_AUD_CFG(pipe);
6050                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6051                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6052         }
6053
6054         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6055
6056         i = I915_READ(aud_cntl_st);
6057         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6058         if (!i) {
6059                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6060                 /* operate blindly on all ports */
6061                 eldv = IBX_ELD_VALIDB;
6062                 eldv |= IBX_ELD_VALIDB << 4;
6063                 eldv |= IBX_ELD_VALIDB << 8;
6064         } else {
6065                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6066                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6067         }
6068
6069         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6070                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6071                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6072                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6073         } else
6074                 I915_WRITE(aud_config, 0);
6075
6076         if (intel_eld_uptodate(connector,
6077                                aud_cntrl_st2, eldv,
6078                                aud_cntl_st, IBX_ELD_ADDRESS,
6079                                hdmiw_hdmiedid))
6080                 return;
6081
6082         i = I915_READ(aud_cntrl_st2);
6083         i &= ~eldv;
6084         I915_WRITE(aud_cntrl_st2, i);
6085
6086         if (!eld[0])
6087                 return;
6088
6089         i = I915_READ(aud_cntl_st);
6090         i &= ~IBX_ELD_ADDRESS;
6091         I915_WRITE(aud_cntl_st, i);
6092
6093         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6094         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6095         for (i = 0; i < len; i++)
6096                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6097
6098         i = I915_READ(aud_cntrl_st2);
6099         i |= eldv;
6100         I915_WRITE(aud_cntrl_st2, i);
6101 }
6102
6103 void intel_write_eld(struct drm_encoder *encoder,
6104                      struct drm_display_mode *mode)
6105 {
6106         struct drm_crtc *crtc = encoder->crtc;
6107         struct drm_connector *connector;
6108         struct drm_device *dev = encoder->dev;
6109         struct drm_i915_private *dev_priv = dev->dev_private;
6110
6111         connector = drm_select_eld(encoder, mode);
6112         if (!connector)
6113                 return;
6114
6115         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6116                          connector->base.id,
6117                          drm_get_connector_name(connector),
6118                          connector->encoder->base.id,
6119                          drm_get_encoder_name(connector->encoder));
6120
6121         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6122
6123         if (dev_priv->display.write_eld)
6124                 dev_priv->display.write_eld(connector, crtc);
6125 }
6126
6127 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6128 void intel_crtc_load_lut(struct drm_crtc *crtc)
6129 {
6130         struct drm_device *dev = crtc->dev;
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133         int palreg = PALETTE(intel_crtc->pipe);
6134         int i;
6135
6136         /* The clocks have to be on to load the palette. */
6137         if (!crtc->enabled || !intel_crtc->active)
6138                 return;
6139
6140         /* use legacy palette for Ironlake */
6141         if (HAS_PCH_SPLIT(dev))
6142                 palreg = LGC_PALETTE(intel_crtc->pipe);
6143
6144         for (i = 0; i < 256; i++) {
6145                 I915_WRITE(palreg + 4 * i,
6146                            (intel_crtc->lut_r[i] << 16) |
6147                            (intel_crtc->lut_g[i] << 8) |
6148                            intel_crtc->lut_b[i]);
6149         }
6150 }
6151
6152 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6153 {
6154         struct drm_device *dev = crtc->dev;
6155         struct drm_i915_private *dev_priv = dev->dev_private;
6156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157         bool visible = base != 0;
6158         u32 cntl;
6159
6160         if (intel_crtc->cursor_visible == visible)
6161                 return;
6162
6163         cntl = I915_READ(_CURACNTR);
6164         if (visible) {
6165                 /* On these chipsets we can only modify the base whilst
6166                  * the cursor is disabled.
6167                  */
6168                 I915_WRITE(_CURABASE, base);
6169
6170                 cntl &= ~(CURSOR_FORMAT_MASK);
6171                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6172                 cntl |= CURSOR_ENABLE |
6173                         CURSOR_GAMMA_ENABLE |
6174                         CURSOR_FORMAT_ARGB;
6175         } else
6176                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6177         I915_WRITE(_CURACNTR, cntl);
6178
6179         intel_crtc->cursor_visible = visible;
6180 }
6181
6182 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6183 {
6184         struct drm_device *dev = crtc->dev;
6185         struct drm_i915_private *dev_priv = dev->dev_private;
6186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6187         int pipe = intel_crtc->pipe;
6188         bool visible = base != 0;
6189
6190         if (intel_crtc->cursor_visible != visible) {
6191                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6192                 if (base) {
6193                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6194                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6195                         cntl |= pipe << 28; /* Connect to correct pipe */
6196                 } else {
6197                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6198                         cntl |= CURSOR_MODE_DISABLE;
6199                 }
6200                 I915_WRITE(CURCNTR(pipe), cntl);
6201
6202                 intel_crtc->cursor_visible = visible;
6203         }
6204         /* and commit changes on next vblank */
6205         I915_WRITE(CURBASE(pipe), base);
6206 }
6207
6208 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6209 {
6210         struct drm_device *dev = crtc->dev;
6211         struct drm_i915_private *dev_priv = dev->dev_private;
6212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6213         int pipe = intel_crtc->pipe;
6214         bool visible = base != 0;
6215
6216         if (intel_crtc->cursor_visible != visible) {
6217                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6218                 if (base) {
6219                         cntl &= ~CURSOR_MODE;
6220                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6221                 } else {
6222                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6223                         cntl |= CURSOR_MODE_DISABLE;
6224                 }
6225                 if (IS_HASWELL(dev))
6226                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6227                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6228
6229                 intel_crtc->cursor_visible = visible;
6230         }
6231         /* and commit changes on next vblank */
6232         I915_WRITE(CURBASE_IVB(pipe), base);
6233 }
6234
6235 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6236 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6237                                      bool on)
6238 {
6239         struct drm_device *dev = crtc->dev;
6240         struct drm_i915_private *dev_priv = dev->dev_private;
6241         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6242         int pipe = intel_crtc->pipe;
6243         int x = intel_crtc->cursor_x;
6244         int y = intel_crtc->cursor_y;
6245         u32 base, pos;
6246         bool visible;
6247
6248         pos = 0;
6249
6250         if (on && crtc->enabled && crtc->fb) {
6251                 base = intel_crtc->cursor_addr;
6252                 if (x > (int) crtc->fb->width)
6253                         base = 0;
6254
6255                 if (y > (int) crtc->fb->height)
6256                         base = 0;
6257         } else
6258                 base = 0;
6259
6260         if (x < 0) {
6261                 if (x + intel_crtc->cursor_width < 0)
6262                         base = 0;
6263
6264                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6265                 x = -x;
6266         }
6267         pos |= x << CURSOR_X_SHIFT;
6268
6269         if (y < 0) {
6270                 if (y + intel_crtc->cursor_height < 0)
6271                         base = 0;
6272
6273                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6274                 y = -y;
6275         }
6276         pos |= y << CURSOR_Y_SHIFT;
6277
6278         visible = base != 0;
6279         if (!visible && !intel_crtc->cursor_visible)
6280                 return;
6281
6282         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6283                 I915_WRITE(CURPOS_IVB(pipe), pos);
6284                 ivb_update_cursor(crtc, base);
6285         } else {
6286                 I915_WRITE(CURPOS(pipe), pos);
6287                 if (IS_845G(dev) || IS_I865G(dev))
6288                         i845_update_cursor(crtc, base);
6289                 else
6290                         i9xx_update_cursor(crtc, base);
6291         }
6292 }
6293
6294 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6295                                  struct drm_file *file,
6296                                  uint32_t handle,
6297                                  uint32_t width, uint32_t height)
6298 {
6299         struct drm_device *dev = crtc->dev;
6300         struct drm_i915_private *dev_priv = dev->dev_private;
6301         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6302         struct drm_i915_gem_object *obj;
6303         uint32_t addr;
6304         int ret;
6305
6306         /* if we want to turn off the cursor ignore width and height */
6307         if (!handle) {
6308                 DRM_DEBUG_KMS("cursor off\n");
6309                 addr = 0;
6310                 obj = NULL;
6311                 mutex_lock(&dev->struct_mutex);
6312                 goto finish;
6313         }
6314
6315         /* Currently we only support 64x64 cursors */
6316         if (width != 64 || height != 64) {
6317                 DRM_ERROR("we currently only support 64x64 cursors\n");
6318                 return -EINVAL;
6319         }
6320
6321         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6322         if (&obj->base == NULL)
6323                 return -ENOENT;
6324
6325         if (obj->base.size < width * height * 4) {
6326                 DRM_ERROR("buffer is to small\n");
6327                 ret = -ENOMEM;
6328                 goto fail;
6329         }
6330
6331         /* we only need to pin inside GTT if cursor is non-phy */
6332         mutex_lock(&dev->struct_mutex);
6333         if (!dev_priv->info->cursor_needs_physical) {
6334                 if (obj->tiling_mode) {
6335                         DRM_ERROR("cursor cannot be tiled\n");
6336                         ret = -EINVAL;
6337                         goto fail_locked;
6338                 }
6339
6340                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6341                 if (ret) {
6342                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6343                         goto fail_locked;
6344                 }
6345
6346                 ret = i915_gem_object_put_fence(obj);
6347                 if (ret) {
6348                         DRM_ERROR("failed to release fence for cursor");
6349                         goto fail_unpin;
6350                 }
6351
6352                 addr = obj->gtt_offset;
6353         } else {
6354                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6355                 ret = i915_gem_attach_phys_object(dev, obj,
6356                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6357                                                   align);
6358                 if (ret) {
6359                         DRM_ERROR("failed to attach phys object\n");
6360                         goto fail_locked;
6361                 }
6362                 addr = obj->phys_obj->handle->busaddr;
6363         }
6364
6365         if (IS_GEN2(dev))
6366                 I915_WRITE(CURSIZE, (height << 12) | width);
6367
6368  finish:
6369         if (intel_crtc->cursor_bo) {
6370                 if (dev_priv->info->cursor_needs_physical) {
6371                         if (intel_crtc->cursor_bo != obj)
6372                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6373                 } else
6374                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6375                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6376         }
6377
6378         mutex_unlock(&dev->struct_mutex);
6379
6380         intel_crtc->cursor_addr = addr;
6381         intel_crtc->cursor_bo = obj;
6382         intel_crtc->cursor_width = width;
6383         intel_crtc->cursor_height = height;
6384
6385         intel_crtc_update_cursor(crtc, true);
6386
6387         return 0;
6388 fail_unpin:
6389         i915_gem_object_unpin(obj);
6390 fail_locked:
6391         mutex_unlock(&dev->struct_mutex);
6392 fail:
6393         drm_gem_object_unreference_unlocked(&obj->base);
6394         return ret;
6395 }
6396
6397 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6398 {
6399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6400
6401         intel_crtc->cursor_x = x;
6402         intel_crtc->cursor_y = y;
6403
6404         intel_crtc_update_cursor(crtc, true);
6405
6406         return 0;
6407 }
6408
6409 /** Sets the color ramps on behalf of RandR */
6410 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6411                                  u16 blue, int regno)
6412 {
6413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6414
6415         intel_crtc->lut_r[regno] = red >> 8;
6416         intel_crtc->lut_g[regno] = green >> 8;
6417         intel_crtc->lut_b[regno] = blue >> 8;
6418 }
6419
6420 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6421                              u16 *blue, int regno)
6422 {
6423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6424
6425         *red = intel_crtc->lut_r[regno] << 8;
6426         *green = intel_crtc->lut_g[regno] << 8;
6427         *blue = intel_crtc->lut_b[regno] << 8;
6428 }
6429
6430 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6431                                  u16 *blue, uint32_t start, uint32_t size)
6432 {
6433         int end = (start + size > 256) ? 256 : start + size, i;
6434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6435
6436         for (i = start; i < end; i++) {
6437                 intel_crtc->lut_r[i] = red[i] >> 8;
6438                 intel_crtc->lut_g[i] = green[i] >> 8;
6439                 intel_crtc->lut_b[i] = blue[i] >> 8;
6440         }
6441
6442         intel_crtc_load_lut(crtc);
6443 }
6444
6445 /**
6446  * Get a pipe with a simple mode set on it for doing load-based monitor
6447  * detection.
6448  *
6449  * It will be up to the load-detect code to adjust the pipe as appropriate for
6450  * its requirements.  The pipe will be connected to no other encoders.
6451  *
6452  * Currently this code will only succeed if there is a pipe with no encoders
6453  * configured for it.  In the future, it could choose to temporarily disable
6454  * some outputs to free up a pipe for its use.
6455  *
6456  * \return crtc, or NULL if no pipes are available.
6457  */
6458
6459 /* VESA 640x480x72Hz mode to set on the pipe */
6460 static struct drm_display_mode load_detect_mode = {
6461         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6462                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6463 };
6464
6465 static struct drm_framebuffer *
6466 intel_framebuffer_create(struct drm_device *dev,
6467                          struct drm_mode_fb_cmd2 *mode_cmd,
6468                          struct drm_i915_gem_object *obj)
6469 {
6470         struct intel_framebuffer *intel_fb;
6471         int ret;
6472
6473         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6474         if (!intel_fb) {
6475                 drm_gem_object_unreference_unlocked(&obj->base);
6476                 return ERR_PTR(-ENOMEM);
6477         }
6478
6479         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6480         if (ret) {
6481                 drm_gem_object_unreference_unlocked(&obj->base);
6482                 kfree(intel_fb);
6483                 return ERR_PTR(ret);
6484         }
6485
6486         return &intel_fb->base;
6487 }
6488
6489 static u32
6490 intel_framebuffer_pitch_for_width(int width, int bpp)
6491 {
6492         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6493         return ALIGN(pitch, 64);
6494 }
6495
6496 static u32
6497 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6498 {
6499         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6500         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6501 }
6502
6503 static struct drm_framebuffer *
6504 intel_framebuffer_create_for_mode(struct drm_device *dev,
6505                                   struct drm_display_mode *mode,
6506                                   int depth, int bpp)
6507 {
6508         struct drm_i915_gem_object *obj;
6509         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6510
6511         obj = i915_gem_alloc_object(dev,
6512                                     intel_framebuffer_size_for_mode(mode, bpp));
6513         if (obj == NULL)
6514                 return ERR_PTR(-ENOMEM);
6515
6516         mode_cmd.width = mode->hdisplay;
6517         mode_cmd.height = mode->vdisplay;
6518         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6519                                                                 bpp);
6520         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6521
6522         return intel_framebuffer_create(dev, &mode_cmd, obj);
6523 }
6524
6525 static struct drm_framebuffer *
6526 mode_fits_in_fbdev(struct drm_device *dev,
6527                    struct drm_display_mode *mode)
6528 {
6529         struct drm_i915_private *dev_priv = dev->dev_private;
6530         struct drm_i915_gem_object *obj;
6531         struct drm_framebuffer *fb;
6532
6533         if (dev_priv->fbdev == NULL)
6534                 return NULL;
6535
6536         obj = dev_priv->fbdev->ifb.obj;
6537         if (obj == NULL)
6538                 return NULL;
6539
6540         fb = &dev_priv->fbdev->ifb.base;
6541         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6542                                                                fb->bits_per_pixel))
6543                 return NULL;
6544
6545         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6546                 return NULL;
6547
6548         return fb;
6549 }
6550
6551 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6552                                 struct drm_display_mode *mode,
6553                                 struct intel_load_detect_pipe *old)
6554 {
6555         struct intel_crtc *intel_crtc;
6556         struct intel_encoder *intel_encoder =
6557                 intel_attached_encoder(connector);
6558         struct drm_crtc *possible_crtc;
6559         struct drm_encoder *encoder = &intel_encoder->base;
6560         struct drm_crtc *crtc = NULL;
6561         struct drm_device *dev = encoder->dev;
6562         struct drm_framebuffer *fb;
6563         int i = -1;
6564
6565         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6566                       connector->base.id, drm_get_connector_name(connector),
6567                       encoder->base.id, drm_get_encoder_name(encoder));
6568
6569         /*
6570          * Algorithm gets a little messy:
6571          *
6572          *   - if the connector already has an assigned crtc, use it (but make
6573          *     sure it's on first)
6574          *
6575          *   - try to find the first unused crtc that can drive this connector,
6576          *     and use that if we find one
6577          */
6578
6579         /* See if we already have a CRTC for this connector */
6580         if (encoder->crtc) {
6581                 crtc = encoder->crtc;
6582
6583                 mutex_lock(&crtc->mutex);
6584
6585                 old->dpms_mode = connector->dpms;
6586                 old->load_detect_temp = false;
6587
6588                 /* Make sure the crtc and connector are running */
6589                 if (connector->dpms != DRM_MODE_DPMS_ON)
6590                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6591
6592                 return true;
6593         }
6594
6595         /* Find an unused one (if possible) */
6596         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6597                 i++;
6598                 if (!(encoder->possible_crtcs & (1 << i)))
6599                         continue;
6600                 if (!possible_crtc->enabled) {
6601                         crtc = possible_crtc;
6602                         break;
6603                 }
6604         }
6605
6606         /*
6607          * If we didn't find an unused CRTC, don't use any.
6608          */
6609         if (!crtc) {
6610                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6611                 return false;
6612         }
6613
6614         mutex_lock(&crtc->mutex);
6615         intel_encoder->new_crtc = to_intel_crtc(crtc);
6616         to_intel_connector(connector)->new_encoder = intel_encoder;
6617
6618         intel_crtc = to_intel_crtc(crtc);
6619         old->dpms_mode = connector->dpms;
6620         old->load_detect_temp = true;
6621         old->release_fb = NULL;
6622
6623         if (!mode)
6624                 mode = &load_detect_mode;
6625
6626         /* We need a framebuffer large enough to accommodate all accesses
6627          * that the plane may generate whilst we perform load detection.
6628          * We can not rely on the fbcon either being present (we get called
6629          * during its initialisation to detect all boot displays, or it may
6630          * not even exist) or that it is large enough to satisfy the
6631          * requested mode.
6632          */
6633         fb = mode_fits_in_fbdev(dev, mode);
6634         if (fb == NULL) {
6635                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6636                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6637                 old->release_fb = fb;
6638         } else
6639                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6640         if (IS_ERR(fb)) {
6641                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6642                 mutex_unlock(&crtc->mutex);
6643                 return false;
6644         }
6645
6646         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6647                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6648                 if (old->release_fb)
6649                         old->release_fb->funcs->destroy(old->release_fb);
6650                 mutex_unlock(&crtc->mutex);
6651                 return false;
6652         }
6653
6654         /* let the connector get through one full cycle before testing */
6655         intel_wait_for_vblank(dev, intel_crtc->pipe);
6656         return true;
6657 }
6658
6659 void intel_release_load_detect_pipe(struct drm_connector *connector,
6660                                     struct intel_load_detect_pipe *old)
6661 {
6662         struct intel_encoder *intel_encoder =
6663                 intel_attached_encoder(connector);
6664         struct drm_encoder *encoder = &intel_encoder->base;
6665         struct drm_crtc *crtc = encoder->crtc;
6666
6667         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6668                       connector->base.id, drm_get_connector_name(connector),
6669                       encoder->base.id, drm_get_encoder_name(encoder));
6670
6671         if (old->load_detect_temp) {
6672                 to_intel_connector(connector)->new_encoder = NULL;
6673                 intel_encoder->new_crtc = NULL;
6674                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6675
6676                 if (old->release_fb) {
6677                         drm_framebuffer_unregister_private(old->release_fb);
6678                         drm_framebuffer_unreference(old->release_fb);
6679                 }
6680
6681                 mutex_unlock(&crtc->mutex);
6682                 return;
6683         }
6684
6685         /* Switch crtc and encoder back off if necessary */
6686         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6687                 connector->funcs->dpms(connector, old->dpms_mode);
6688
6689         mutex_unlock(&crtc->mutex);
6690 }
6691
6692 /* Returns the clock of the currently programmed mode of the given pipe. */
6693 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6694 {
6695         struct drm_i915_private *dev_priv = dev->dev_private;
6696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6697         int pipe = intel_crtc->pipe;
6698         u32 dpll = I915_READ(DPLL(pipe));
6699         u32 fp;
6700         intel_clock_t clock;
6701
6702         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6703                 fp = I915_READ(FP0(pipe));
6704         else
6705                 fp = I915_READ(FP1(pipe));
6706
6707         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6708         if (IS_PINEVIEW(dev)) {
6709                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6710                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6711         } else {
6712                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6713                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6714         }
6715
6716         if (!IS_GEN2(dev)) {
6717                 if (IS_PINEVIEW(dev))
6718                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6719                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6720                 else
6721                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6722                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6723
6724                 switch (dpll & DPLL_MODE_MASK) {
6725                 case DPLLB_MODE_DAC_SERIAL:
6726                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6727                                 5 : 10;
6728                         break;
6729                 case DPLLB_MODE_LVDS:
6730                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6731                                 7 : 14;
6732                         break;
6733                 default:
6734                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6735                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6736                         return 0;
6737                 }
6738
6739                 /* XXX: Handle the 100Mhz refclk */
6740                 intel_clock(dev, 96000, &clock);
6741         } else {
6742                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6743
6744                 if (is_lvds) {
6745                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6746                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6747                         clock.p2 = 14;
6748
6749                         if ((dpll & PLL_REF_INPUT_MASK) ==
6750                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6751                                 /* XXX: might not be 66MHz */
6752                                 intel_clock(dev, 66000, &clock);
6753                         } else
6754                                 intel_clock(dev, 48000, &clock);
6755                 } else {
6756                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6757                                 clock.p1 = 2;
6758                         else {
6759                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6760                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6761                         }
6762                         if (dpll & PLL_P2_DIVIDE_BY_4)
6763                                 clock.p2 = 4;
6764                         else
6765                                 clock.p2 = 2;
6766
6767                         intel_clock(dev, 48000, &clock);
6768                 }
6769         }
6770
6771         /* XXX: It would be nice to validate the clocks, but we can't reuse
6772          * i830PllIsValid() because it relies on the xf86_config connector
6773          * configuration being accurate, which it isn't necessarily.
6774          */
6775
6776         return clock.dot;
6777 }
6778
6779 /** Returns the currently programmed mode of the given pipe. */
6780 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6781                                              struct drm_crtc *crtc)
6782 {
6783         struct drm_i915_private *dev_priv = dev->dev_private;
6784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6785         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6786         struct drm_display_mode *mode;
6787         int htot = I915_READ(HTOTAL(cpu_transcoder));
6788         int hsync = I915_READ(HSYNC(cpu_transcoder));
6789         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6790         int vsync = I915_READ(VSYNC(cpu_transcoder));
6791
6792         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6793         if (!mode)
6794                 return NULL;
6795
6796         mode->clock = intel_crtc_clock_get(dev, crtc);
6797         mode->hdisplay = (htot & 0xffff) + 1;
6798         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6799         mode->hsync_start = (hsync & 0xffff) + 1;
6800         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6801         mode->vdisplay = (vtot & 0xffff) + 1;
6802         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6803         mode->vsync_start = (vsync & 0xffff) + 1;
6804         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6805
6806         drm_mode_set_name(mode);
6807
6808         return mode;
6809 }
6810
6811 static void intel_increase_pllclock(struct drm_crtc *crtc)
6812 {
6813         struct drm_device *dev = crtc->dev;
6814         drm_i915_private_t *dev_priv = dev->dev_private;
6815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6816         int pipe = intel_crtc->pipe;
6817         int dpll_reg = DPLL(pipe);
6818         int dpll;
6819
6820         if (HAS_PCH_SPLIT(dev))
6821                 return;
6822
6823         if (!dev_priv->lvds_downclock_avail)
6824                 return;
6825
6826         dpll = I915_READ(dpll_reg);
6827         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6828                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6829
6830                 assert_panel_unlocked(dev_priv, pipe);
6831
6832                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6833                 I915_WRITE(dpll_reg, dpll);
6834                 intel_wait_for_vblank(dev, pipe);
6835
6836                 dpll = I915_READ(dpll_reg);
6837                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6838                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6839         }
6840 }
6841
6842 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6843 {
6844         struct drm_device *dev = crtc->dev;
6845         drm_i915_private_t *dev_priv = dev->dev_private;
6846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6847
6848         if (HAS_PCH_SPLIT(dev))
6849                 return;
6850
6851         if (!dev_priv->lvds_downclock_avail)
6852                 return;
6853
6854         /*
6855          * Since this is called by a timer, we should never get here in
6856          * the manual case.
6857          */
6858         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6859                 int pipe = intel_crtc->pipe;
6860                 int dpll_reg = DPLL(pipe);
6861                 int dpll;
6862
6863                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6864
6865                 assert_panel_unlocked(dev_priv, pipe);
6866
6867                 dpll = I915_READ(dpll_reg);
6868                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6869                 I915_WRITE(dpll_reg, dpll);
6870                 intel_wait_for_vblank(dev, pipe);
6871                 dpll = I915_READ(dpll_reg);
6872                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6873                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6874         }
6875
6876 }
6877
6878 void intel_mark_busy(struct drm_device *dev)
6879 {
6880         i915_update_gfx_val(dev->dev_private);
6881 }
6882
6883 void intel_mark_idle(struct drm_device *dev)
6884 {
6885         struct drm_crtc *crtc;
6886
6887         if (!i915_powersave)
6888                 return;
6889
6890         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6891                 if (!crtc->fb)
6892                         continue;
6893
6894                 intel_decrease_pllclock(crtc);
6895         }
6896 }
6897
6898 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6899 {
6900         struct drm_device *dev = obj->base.dev;
6901         struct drm_crtc *crtc;
6902
6903         if (!i915_powersave)
6904                 return;
6905
6906         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6907                 if (!crtc->fb)
6908                         continue;
6909
6910                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6911                         intel_increase_pllclock(crtc);
6912         }
6913 }
6914
6915 static void intel_crtc_destroy(struct drm_crtc *crtc)
6916 {
6917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6918         struct drm_device *dev = crtc->dev;
6919         struct intel_unpin_work *work;
6920         unsigned long flags;
6921
6922         spin_lock_irqsave(&dev->event_lock, flags);
6923         work = intel_crtc->unpin_work;
6924         intel_crtc->unpin_work = NULL;
6925         spin_unlock_irqrestore(&dev->event_lock, flags);
6926
6927         if (work) {
6928                 cancel_work_sync(&work->work);
6929                 kfree(work);
6930         }
6931
6932         drm_crtc_cleanup(crtc);
6933
6934         kfree(intel_crtc);
6935 }
6936
6937 static void intel_unpin_work_fn(struct work_struct *__work)
6938 {
6939         struct intel_unpin_work *work =
6940                 container_of(__work, struct intel_unpin_work, work);
6941         struct drm_device *dev = work->crtc->dev;
6942
6943         mutex_lock(&dev->struct_mutex);
6944         intel_unpin_fb_obj(work->old_fb_obj);
6945         drm_gem_object_unreference(&work->pending_flip_obj->base);
6946         drm_gem_object_unreference(&work->old_fb_obj->base);
6947
6948         intel_update_fbc(dev);
6949         mutex_unlock(&dev->struct_mutex);
6950
6951         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6952         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6953
6954         kfree(work);
6955 }
6956
6957 static void do_intel_finish_page_flip(struct drm_device *dev,
6958                                       struct drm_crtc *crtc)
6959 {
6960         drm_i915_private_t *dev_priv = dev->dev_private;
6961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6962         struct intel_unpin_work *work;
6963         struct drm_i915_gem_object *obj;
6964         unsigned long flags;
6965
6966         /* Ignore early vblank irqs */
6967         if (intel_crtc == NULL)
6968                 return;
6969
6970         spin_lock_irqsave(&dev->event_lock, flags);
6971         work = intel_crtc->unpin_work;
6972
6973         /* Ensure we don't miss a work->pending update ... */
6974         smp_rmb();
6975
6976         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6977                 spin_unlock_irqrestore(&dev->event_lock, flags);
6978                 return;
6979         }
6980
6981         /* and that the unpin work is consistent wrt ->pending. */
6982         smp_rmb();
6983
6984         intel_crtc->unpin_work = NULL;
6985
6986         if (work->event)
6987                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6988
6989         drm_vblank_put(dev, intel_crtc->pipe);
6990
6991         spin_unlock_irqrestore(&dev->event_lock, flags);
6992
6993         obj = work->old_fb_obj;
6994
6995         wake_up_all(&dev_priv->pending_flip_queue);
6996
6997         queue_work(dev_priv->wq, &work->work);
6998
6999         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7000 }
7001
7002 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7003 {
7004         drm_i915_private_t *dev_priv = dev->dev_private;
7005         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7006
7007         do_intel_finish_page_flip(dev, crtc);
7008 }
7009
7010 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7011 {
7012         drm_i915_private_t *dev_priv = dev->dev_private;
7013         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7014
7015         do_intel_finish_page_flip(dev, crtc);
7016 }
7017
7018 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7019 {
7020         drm_i915_private_t *dev_priv = dev->dev_private;
7021         struct intel_crtc *intel_crtc =
7022                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7023         unsigned long flags;
7024
7025         /* NB: An MMIO update of the plane base pointer will also
7026          * generate a page-flip completion irq, i.e. every modeset
7027          * is also accompanied by a spurious intel_prepare_page_flip().
7028          */
7029         spin_lock_irqsave(&dev->event_lock, flags);
7030         if (intel_crtc->unpin_work)
7031                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7032         spin_unlock_irqrestore(&dev->event_lock, flags);
7033 }
7034
7035 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7036 {
7037         /* Ensure that the work item is consistent when activating it ... */
7038         smp_wmb();
7039         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7040         /* and that it is marked active as soon as the irq could fire. */
7041         smp_wmb();
7042 }
7043
7044 static int intel_gen2_queue_flip(struct drm_device *dev,
7045                                  struct drm_crtc *crtc,
7046                                  struct drm_framebuffer *fb,
7047                                  struct drm_i915_gem_object *obj)
7048 {
7049         struct drm_i915_private *dev_priv = dev->dev_private;
7050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7051         u32 flip_mask;
7052         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7053         int ret;
7054
7055         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7056         if (ret)
7057                 goto err;
7058
7059         ret = intel_ring_begin(ring, 6);
7060         if (ret)
7061                 goto err_unpin;
7062
7063         /* Can't queue multiple flips, so wait for the previous
7064          * one to finish before executing the next.
7065          */
7066         if (intel_crtc->plane)
7067                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7068         else
7069                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7070         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7071         intel_ring_emit(ring, MI_NOOP);
7072         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7073                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7074         intel_ring_emit(ring, fb->pitches[0]);
7075         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7076         intel_ring_emit(ring, 0); /* aux display base address, unused */
7077
7078         intel_mark_page_flip_active(intel_crtc);
7079         intel_ring_advance(ring);
7080         return 0;
7081
7082 err_unpin:
7083         intel_unpin_fb_obj(obj);
7084 err:
7085         return ret;
7086 }
7087
7088 static int intel_gen3_queue_flip(struct drm_device *dev,
7089                                  struct drm_crtc *crtc,
7090                                  struct drm_framebuffer *fb,
7091                                  struct drm_i915_gem_object *obj)
7092 {
7093         struct drm_i915_private *dev_priv = dev->dev_private;
7094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7095         u32 flip_mask;
7096         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7097         int ret;
7098
7099         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7100         if (ret)
7101                 goto err;
7102
7103         ret = intel_ring_begin(ring, 6);
7104         if (ret)
7105                 goto err_unpin;
7106
7107         if (intel_crtc->plane)
7108                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7109         else
7110                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7111         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7112         intel_ring_emit(ring, MI_NOOP);
7113         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7114                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7115         intel_ring_emit(ring, fb->pitches[0]);
7116         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7117         intel_ring_emit(ring, MI_NOOP);
7118
7119         intel_mark_page_flip_active(intel_crtc);
7120         intel_ring_advance(ring);
7121         return 0;
7122
7123 err_unpin:
7124         intel_unpin_fb_obj(obj);
7125 err:
7126         return ret;
7127 }
7128
7129 static int intel_gen4_queue_flip(struct drm_device *dev,
7130                                  struct drm_crtc *crtc,
7131                                  struct drm_framebuffer *fb,
7132                                  struct drm_i915_gem_object *obj)
7133 {
7134         struct drm_i915_private *dev_priv = dev->dev_private;
7135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7136         uint32_t pf, pipesrc;
7137         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7138         int ret;
7139
7140         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7141         if (ret)
7142                 goto err;
7143
7144         ret = intel_ring_begin(ring, 4);
7145         if (ret)
7146                 goto err_unpin;
7147
7148         /* i965+ uses the linear or tiled offsets from the
7149          * Display Registers (which do not change across a page-flip)
7150          * so we need only reprogram the base address.
7151          */
7152         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7153                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7154         intel_ring_emit(ring, fb->pitches[0]);
7155         intel_ring_emit(ring,
7156                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7157                         obj->tiling_mode);
7158
7159         /* XXX Enabling the panel-fitter across page-flip is so far
7160          * untested on non-native modes, so ignore it for now.
7161          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7162          */
7163         pf = 0;
7164         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7165         intel_ring_emit(ring, pf | pipesrc);
7166
7167         intel_mark_page_flip_active(intel_crtc);
7168         intel_ring_advance(ring);
7169         return 0;
7170
7171 err_unpin:
7172         intel_unpin_fb_obj(obj);
7173 err:
7174         return ret;
7175 }
7176
7177 static int intel_gen6_queue_flip(struct drm_device *dev,
7178                                  struct drm_crtc *crtc,
7179                                  struct drm_framebuffer *fb,
7180                                  struct drm_i915_gem_object *obj)
7181 {
7182         struct drm_i915_private *dev_priv = dev->dev_private;
7183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7184         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7185         uint32_t pf, pipesrc;
7186         int ret;
7187
7188         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7189         if (ret)
7190                 goto err;
7191
7192         ret = intel_ring_begin(ring, 4);
7193         if (ret)
7194                 goto err_unpin;
7195
7196         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7197                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7198         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7199         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7200
7201         /* Contrary to the suggestions in the documentation,
7202          * "Enable Panel Fitter" does not seem to be required when page
7203          * flipping with a non-native mode, and worse causes a normal
7204          * modeset to fail.
7205          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7206          */
7207         pf = 0;
7208         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7209         intel_ring_emit(ring, pf | pipesrc);
7210
7211         intel_mark_page_flip_active(intel_crtc);
7212         intel_ring_advance(ring);
7213         return 0;
7214
7215 err_unpin:
7216         intel_unpin_fb_obj(obj);
7217 err:
7218         return ret;
7219 }
7220
7221 /*
7222  * On gen7 we currently use the blit ring because (in early silicon at least)
7223  * the render ring doesn't give us interrpts for page flip completion, which
7224  * means clients will hang after the first flip is queued.  Fortunately the
7225  * blit ring generates interrupts properly, so use it instead.
7226  */
7227 static int intel_gen7_queue_flip(struct drm_device *dev,
7228                                  struct drm_crtc *crtc,
7229                                  struct drm_framebuffer *fb,
7230                                  struct drm_i915_gem_object *obj)
7231 {
7232         struct drm_i915_private *dev_priv = dev->dev_private;
7233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7234         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7235         uint32_t plane_bit = 0;
7236         int ret;
7237
7238         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7239         if (ret)
7240                 goto err;
7241
7242         switch(intel_crtc->plane) {
7243         case PLANE_A:
7244                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7245                 break;
7246         case PLANE_B:
7247                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7248                 break;
7249         case PLANE_C:
7250                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7251                 break;
7252         default:
7253                 WARN_ONCE(1, "unknown plane in flip command\n");
7254                 ret = -ENODEV;
7255                 goto err_unpin;
7256         }
7257
7258         ret = intel_ring_begin(ring, 4);
7259         if (ret)
7260                 goto err_unpin;
7261
7262         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7263         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7264         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7265         intel_ring_emit(ring, (MI_NOOP));
7266
7267         intel_mark_page_flip_active(intel_crtc);
7268         intel_ring_advance(ring);
7269         return 0;
7270
7271 err_unpin:
7272         intel_unpin_fb_obj(obj);
7273 err:
7274         return ret;
7275 }
7276
7277 static int intel_default_queue_flip(struct drm_device *dev,
7278                                     struct drm_crtc *crtc,
7279                                     struct drm_framebuffer *fb,
7280                                     struct drm_i915_gem_object *obj)
7281 {
7282         return -ENODEV;
7283 }
7284
7285 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7286                                 struct drm_framebuffer *fb,
7287                                 struct drm_pending_vblank_event *event)
7288 {
7289         struct drm_device *dev = crtc->dev;
7290         struct drm_i915_private *dev_priv = dev->dev_private;
7291         struct intel_framebuffer *intel_fb;
7292         struct drm_i915_gem_object *obj;
7293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7294         struct intel_unpin_work *work;
7295         unsigned long flags;
7296         int ret;
7297
7298         /* Can't change pixel format via MI display flips. */
7299         if (fb->pixel_format != crtc->fb->pixel_format)
7300                 return -EINVAL;
7301
7302         /*
7303          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7304          * Note that pitch changes could also affect these register.
7305          */
7306         if (INTEL_INFO(dev)->gen > 3 &&
7307             (fb->offsets[0] != crtc->fb->offsets[0] ||
7308              fb->pitches[0] != crtc->fb->pitches[0]))
7309                 return -EINVAL;
7310
7311         work = kzalloc(sizeof *work, GFP_KERNEL);
7312         if (work == NULL)
7313                 return -ENOMEM;
7314
7315         work->event = event;
7316         work->crtc = crtc;
7317         intel_fb = to_intel_framebuffer(crtc->fb);
7318         work->old_fb_obj = intel_fb->obj;
7319         INIT_WORK(&work->work, intel_unpin_work_fn);
7320
7321         ret = drm_vblank_get(dev, intel_crtc->pipe);
7322         if (ret)
7323                 goto free_work;
7324
7325         /* We borrow the event spin lock for protecting unpin_work */
7326         spin_lock_irqsave(&dev->event_lock, flags);
7327         if (intel_crtc->unpin_work) {
7328                 spin_unlock_irqrestore(&dev->event_lock, flags);
7329                 kfree(work);
7330                 drm_vblank_put(dev, intel_crtc->pipe);
7331
7332                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7333                 return -EBUSY;
7334         }
7335         intel_crtc->unpin_work = work;
7336         spin_unlock_irqrestore(&dev->event_lock, flags);
7337
7338         intel_fb = to_intel_framebuffer(fb);
7339         obj = intel_fb->obj;
7340
7341         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7342                 flush_workqueue(dev_priv->wq);
7343
7344         ret = i915_mutex_lock_interruptible(dev);
7345         if (ret)
7346                 goto cleanup;
7347
7348         /* Reference the objects for the scheduled work. */
7349         drm_gem_object_reference(&work->old_fb_obj->base);
7350         drm_gem_object_reference(&obj->base);
7351
7352         crtc->fb = fb;
7353
7354         work->pending_flip_obj = obj;
7355
7356         work->enable_stall_check = true;
7357
7358         atomic_inc(&intel_crtc->unpin_work_count);
7359         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7360
7361         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7362         if (ret)
7363                 goto cleanup_pending;
7364
7365         intel_disable_fbc(dev);
7366         intel_mark_fb_busy(obj);
7367         mutex_unlock(&dev->struct_mutex);
7368
7369         trace_i915_flip_request(intel_crtc->plane, obj);
7370
7371         return 0;
7372
7373 cleanup_pending:
7374         atomic_dec(&intel_crtc->unpin_work_count);
7375         drm_gem_object_unreference(&work->old_fb_obj->base);
7376         drm_gem_object_unreference(&obj->base);
7377         mutex_unlock(&dev->struct_mutex);
7378
7379 cleanup:
7380         spin_lock_irqsave(&dev->event_lock, flags);
7381         intel_crtc->unpin_work = NULL;
7382         spin_unlock_irqrestore(&dev->event_lock, flags);
7383
7384         drm_vblank_put(dev, intel_crtc->pipe);
7385 free_work:
7386         kfree(work);
7387
7388         return ret;
7389 }
7390
7391 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7392         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7393         .load_lut = intel_crtc_load_lut,
7394         .disable = intel_crtc_noop,
7395 };
7396
7397 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7398 {
7399         struct intel_encoder *other_encoder;
7400         struct drm_crtc *crtc = &encoder->new_crtc->base;
7401
7402         if (WARN_ON(!crtc))
7403                 return false;
7404
7405         list_for_each_entry(other_encoder,
7406                             &crtc->dev->mode_config.encoder_list,
7407                             base.head) {
7408
7409                 if (&other_encoder->new_crtc->base != crtc ||
7410                     encoder == other_encoder)
7411                         continue;
7412                 else
7413                         return true;
7414         }
7415
7416         return false;
7417 }
7418
7419 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7420                                   struct drm_crtc *crtc)
7421 {
7422         struct drm_device *dev;
7423         struct drm_crtc *tmp;
7424         int crtc_mask = 1;
7425
7426         WARN(!crtc, "checking null crtc?\n");
7427
7428         dev = crtc->dev;
7429
7430         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7431                 if (tmp == crtc)
7432                         break;
7433                 crtc_mask <<= 1;
7434         }
7435
7436         if (encoder->possible_crtcs & crtc_mask)
7437                 return true;
7438         return false;
7439 }
7440
7441 /**
7442  * intel_modeset_update_staged_output_state
7443  *
7444  * Updates the staged output configuration state, e.g. after we've read out the
7445  * current hw state.
7446  */
7447 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7448 {
7449         struct intel_encoder *encoder;
7450         struct intel_connector *connector;
7451
7452         list_for_each_entry(connector, &dev->mode_config.connector_list,
7453                             base.head) {
7454                 connector->new_encoder =
7455                         to_intel_encoder(connector->base.encoder);
7456         }
7457
7458         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7459                             base.head) {
7460                 encoder->new_crtc =
7461                         to_intel_crtc(encoder->base.crtc);
7462         }
7463 }
7464
7465 /**
7466  * intel_modeset_commit_output_state
7467  *
7468  * This function copies the stage display pipe configuration to the real one.
7469  */
7470 static void intel_modeset_commit_output_state(struct drm_device *dev)
7471 {
7472         struct intel_encoder *encoder;
7473         struct intel_connector *connector;
7474
7475         list_for_each_entry(connector, &dev->mode_config.connector_list,
7476                             base.head) {
7477                 connector->base.encoder = &connector->new_encoder->base;
7478         }
7479
7480         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7481                             base.head) {
7482                 encoder->base.crtc = &encoder->new_crtc->base;
7483         }
7484 }
7485
7486 static struct drm_display_mode *
7487 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7488                             struct drm_display_mode *mode)
7489 {
7490         struct drm_device *dev = crtc->dev;
7491         struct drm_display_mode *adjusted_mode;
7492         struct drm_encoder_helper_funcs *encoder_funcs;
7493         struct intel_encoder *encoder;
7494
7495         adjusted_mode = drm_mode_duplicate(dev, mode);
7496         if (!adjusted_mode)
7497                 return ERR_PTR(-ENOMEM);
7498
7499         /* Pass our mode to the connectors and the CRTC to give them a chance to
7500          * adjust it according to limitations or connector properties, and also
7501          * a chance to reject the mode entirely.
7502          */
7503         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7504                             base.head) {
7505
7506                 if (&encoder->new_crtc->base != crtc)
7507                         continue;
7508                 encoder_funcs = encoder->base.helper_private;
7509                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7510                                                 adjusted_mode))) {
7511                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7512                         goto fail;
7513                 }
7514         }
7515
7516         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7517                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7518                 goto fail;
7519         }
7520         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7521
7522         return adjusted_mode;
7523 fail:
7524         drm_mode_destroy(dev, adjusted_mode);
7525         return ERR_PTR(-EINVAL);
7526 }
7527
7528 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7529  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7530 static void
7531 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7532                              unsigned *prepare_pipes, unsigned *disable_pipes)
7533 {
7534         struct intel_crtc *intel_crtc;
7535         struct drm_device *dev = crtc->dev;
7536         struct intel_encoder *encoder;
7537         struct intel_connector *connector;
7538         struct drm_crtc *tmp_crtc;
7539
7540         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7541
7542         /* Check which crtcs have changed outputs connected to them, these need
7543          * to be part of the prepare_pipes mask. We don't (yet) support global
7544          * modeset across multiple crtcs, so modeset_pipes will only have one
7545          * bit set at most. */
7546         list_for_each_entry(connector, &dev->mode_config.connector_list,
7547                             base.head) {
7548                 if (connector->base.encoder == &connector->new_encoder->base)
7549                         continue;
7550
7551                 if (connector->base.encoder) {
7552                         tmp_crtc = connector->base.encoder->crtc;
7553
7554                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7555                 }
7556
7557                 if (connector->new_encoder)
7558                         *prepare_pipes |=
7559                                 1 << connector->new_encoder->new_crtc->pipe;
7560         }
7561
7562         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7563                             base.head) {
7564                 if (encoder->base.crtc == &encoder->new_crtc->base)
7565                         continue;
7566
7567                 if (encoder->base.crtc) {
7568                         tmp_crtc = encoder->base.crtc;
7569
7570                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7571                 }
7572
7573                 if (encoder->new_crtc)
7574                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7575         }
7576
7577         /* Check for any pipes that will be fully disabled ... */
7578         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7579                             base.head) {
7580                 bool used = false;
7581
7582                 /* Don't try to disable disabled crtcs. */
7583                 if (!intel_crtc->base.enabled)
7584                         continue;
7585
7586                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7587                                     base.head) {
7588                         if (encoder->new_crtc == intel_crtc)
7589                                 used = true;
7590                 }
7591
7592                 if (!used)
7593                         *disable_pipes |= 1 << intel_crtc->pipe;
7594         }
7595
7596
7597         /* set_mode is also used to update properties on life display pipes. */
7598         intel_crtc = to_intel_crtc(crtc);
7599         if (crtc->enabled)
7600                 *prepare_pipes |= 1 << intel_crtc->pipe;
7601
7602         /* We only support modeset on one single crtc, hence we need to do that
7603          * only for the passed in crtc iff we change anything else than just
7604          * disable crtcs.
7605          *
7606          * This is actually not true, to be fully compatible with the old crtc
7607          * helper we automatically disable _any_ output (i.e. doesn't need to be
7608          * connected to the crtc we're modesetting on) if it's disconnected.
7609          * Which is a rather nutty api (since changed the output configuration
7610          * without userspace's explicit request can lead to confusion), but
7611          * alas. Hence we currently need to modeset on all pipes we prepare. */
7612         if (*prepare_pipes)
7613                 *modeset_pipes = *prepare_pipes;
7614
7615         /* ... and mask these out. */
7616         *modeset_pipes &= ~(*disable_pipes);
7617         *prepare_pipes &= ~(*disable_pipes);
7618 }
7619
7620 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7621 {
7622         struct drm_encoder *encoder;
7623         struct drm_device *dev = crtc->dev;
7624
7625         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7626                 if (encoder->crtc == crtc)
7627                         return true;
7628
7629         return false;
7630 }
7631
7632 static void
7633 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7634 {
7635         struct intel_encoder *intel_encoder;
7636         struct intel_crtc *intel_crtc;
7637         struct drm_connector *connector;
7638
7639         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7640                             base.head) {
7641                 if (!intel_encoder->base.crtc)
7642                         continue;
7643
7644                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7645
7646                 if (prepare_pipes & (1 << intel_crtc->pipe))
7647                         intel_encoder->connectors_active = false;
7648         }
7649
7650         intel_modeset_commit_output_state(dev);
7651
7652         /* Update computed state. */
7653         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7654                             base.head) {
7655                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7656         }
7657
7658         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7659                 if (!connector->encoder || !connector->encoder->crtc)
7660                         continue;
7661
7662                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7663
7664                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7665                         struct drm_property *dpms_property =
7666                                 dev->mode_config.dpms_property;
7667
7668                         connector->dpms = DRM_MODE_DPMS_ON;
7669                         drm_object_property_set_value(&connector->base,
7670                                                          dpms_property,
7671                                                          DRM_MODE_DPMS_ON);
7672
7673                         intel_encoder = to_intel_encoder(connector->encoder);
7674                         intel_encoder->connectors_active = true;
7675                 }
7676         }
7677
7678 }
7679
7680 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7681         list_for_each_entry((intel_crtc), \
7682                             &(dev)->mode_config.crtc_list, \
7683                             base.head) \
7684                 if (mask & (1 <<(intel_crtc)->pipe)) \
7685
7686 void
7687 intel_modeset_check_state(struct drm_device *dev)
7688 {
7689         struct intel_crtc *crtc;
7690         struct intel_encoder *encoder;
7691         struct intel_connector *connector;
7692
7693         list_for_each_entry(connector, &dev->mode_config.connector_list,
7694                             base.head) {
7695                 /* This also checks the encoder/connector hw state with the
7696                  * ->get_hw_state callbacks. */
7697                 intel_connector_check_state(connector);
7698
7699                 WARN(&connector->new_encoder->base != connector->base.encoder,
7700                      "connector's staged encoder doesn't match current encoder\n");
7701         }
7702
7703         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7704                             base.head) {
7705                 bool enabled = false;
7706                 bool active = false;
7707                 enum pipe pipe, tracked_pipe;
7708
7709                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7710                               encoder->base.base.id,
7711                               drm_get_encoder_name(&encoder->base));
7712
7713                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7714                      "encoder's stage crtc doesn't match current crtc\n");
7715                 WARN(encoder->connectors_active && !encoder->base.crtc,
7716                      "encoder's active_connectors set, but no crtc\n");
7717
7718                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7719                                     base.head) {
7720                         if (connector->base.encoder != &encoder->base)
7721                                 continue;
7722                         enabled = true;
7723                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7724                                 active = true;
7725                 }
7726                 WARN(!!encoder->base.crtc != enabled,
7727                      "encoder's enabled state mismatch "
7728                      "(expected %i, found %i)\n",
7729                      !!encoder->base.crtc, enabled);
7730                 WARN(active && !encoder->base.crtc,
7731                      "active encoder with no crtc\n");
7732
7733                 WARN(encoder->connectors_active != active,
7734                      "encoder's computed active state doesn't match tracked active state "
7735                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7736
7737                 active = encoder->get_hw_state(encoder, &pipe);
7738                 WARN(active != encoder->connectors_active,
7739                      "encoder's hw state doesn't match sw tracking "
7740                      "(expected %i, found %i)\n",
7741                      encoder->connectors_active, active);
7742
7743                 if (!encoder->base.crtc)
7744                         continue;
7745
7746                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7747                 WARN(active && pipe != tracked_pipe,
7748                      "active encoder's pipe doesn't match"
7749                      "(expected %i, found %i)\n",
7750                      tracked_pipe, pipe);
7751
7752         }
7753
7754         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7755                             base.head) {
7756                 bool enabled = false;
7757                 bool active = false;
7758
7759                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7760                               crtc->base.base.id);
7761
7762                 WARN(crtc->active && !crtc->base.enabled,
7763                      "active crtc, but not enabled in sw tracking\n");
7764
7765                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7766                                     base.head) {
7767                         if (encoder->base.crtc != &crtc->base)
7768                                 continue;
7769                         enabled = true;
7770                         if (encoder->connectors_active)
7771                                 active = true;
7772                 }
7773                 WARN(active != crtc->active,
7774                      "crtc's computed active state doesn't match tracked active state "
7775                      "(expected %i, found %i)\n", active, crtc->active);
7776                 WARN(enabled != crtc->base.enabled,
7777                      "crtc's computed enabled state doesn't match tracked enabled state "
7778                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7779
7780                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7781         }
7782 }
7783
7784 int intel_set_mode(struct drm_crtc *crtc,
7785                    struct drm_display_mode *mode,
7786                    int x, int y, struct drm_framebuffer *fb)
7787 {
7788         struct drm_device *dev = crtc->dev;
7789         drm_i915_private_t *dev_priv = dev->dev_private;
7790         struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
7791         struct intel_crtc *intel_crtc;
7792         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7793         int ret = 0;
7794
7795         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7796         if (!saved_mode)
7797                 return -ENOMEM;
7798         saved_hwmode = saved_mode + 1;
7799
7800         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7801                                      &prepare_pipes, &disable_pipes);
7802
7803         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7804                       modeset_pipes, prepare_pipes, disable_pipes);
7805
7806         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7807                 intel_crtc_disable(&intel_crtc->base);
7808
7809         *saved_hwmode = crtc->hwmode;
7810         *saved_mode = crtc->mode;
7811
7812         /* Hack: Because we don't (yet) support global modeset on multiple
7813          * crtcs, we don't keep track of the new mode for more than one crtc.
7814          * Hence simply check whether any bit is set in modeset_pipes in all the
7815          * pieces of code that are not yet converted to deal with mutliple crtcs
7816          * changing their mode at the same time. */
7817         adjusted_mode = NULL;
7818         if (modeset_pipes) {
7819                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7820                 if (IS_ERR(adjusted_mode)) {
7821                         ret = PTR_ERR(adjusted_mode);
7822                         goto out;
7823                 }
7824         }
7825
7826         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7827                 if (intel_crtc->base.enabled)
7828                         dev_priv->display.crtc_disable(&intel_crtc->base);
7829         }
7830
7831         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7832          * to set it here already despite that we pass it down the callchain.
7833          */
7834         if (modeset_pipes)
7835                 crtc->mode = *mode;
7836
7837         /* Only after disabling all output pipelines that will be changed can we
7838          * update the the output configuration. */
7839         intel_modeset_update_state(dev, prepare_pipes);
7840
7841         if (dev_priv->display.modeset_global_resources)
7842                 dev_priv->display.modeset_global_resources(dev);
7843
7844         /* Set up the DPLL and any encoders state that needs to adjust or depend
7845          * on the DPLL.
7846          */
7847         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7848                 ret = intel_crtc_mode_set(&intel_crtc->base,
7849                                           mode, adjusted_mode,
7850                                           x, y, fb);
7851                 if (ret)
7852                         goto done;
7853         }
7854
7855         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7856         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7857                 dev_priv->display.crtc_enable(&intel_crtc->base);
7858
7859         if (modeset_pipes) {
7860                 /* Store real post-adjustment hardware mode. */
7861                 crtc->hwmode = *adjusted_mode;
7862
7863                 /* Calculate and store various constants which
7864                  * are later needed by vblank and swap-completion
7865                  * timestamping. They are derived from true hwmode.
7866                  */
7867                 drm_calc_timestamping_constants(crtc);
7868         }
7869
7870         /* FIXME: add subpixel order */
7871 done:
7872         drm_mode_destroy(dev, adjusted_mode);
7873         if (ret && crtc->enabled) {
7874                 crtc->hwmode = *saved_hwmode;
7875                 crtc->mode = *saved_mode;
7876         } else {
7877                 intel_modeset_check_state(dev);
7878         }
7879
7880 out:
7881         kfree(saved_mode);
7882         return ret;
7883 }
7884
7885 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7886 {
7887         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7888 }
7889
7890 #undef for_each_intel_crtc_masked
7891
7892 static void intel_set_config_free(struct intel_set_config *config)
7893 {
7894         if (!config)
7895                 return;
7896
7897         kfree(config->save_connector_encoders);
7898         kfree(config->save_encoder_crtcs);
7899         kfree(config);
7900 }
7901
7902 static int intel_set_config_save_state(struct drm_device *dev,
7903                                        struct intel_set_config *config)
7904 {
7905         struct drm_encoder *encoder;
7906         struct drm_connector *connector;
7907         int count;
7908
7909         config->save_encoder_crtcs =
7910                 kcalloc(dev->mode_config.num_encoder,
7911                         sizeof(struct drm_crtc *), GFP_KERNEL);
7912         if (!config->save_encoder_crtcs)
7913                 return -ENOMEM;
7914
7915         config->save_connector_encoders =
7916                 kcalloc(dev->mode_config.num_connector,
7917                         sizeof(struct drm_encoder *), GFP_KERNEL);
7918         if (!config->save_connector_encoders)
7919                 return -ENOMEM;
7920
7921         /* Copy data. Note that driver private data is not affected.
7922          * Should anything bad happen only the expected state is
7923          * restored, not the drivers personal bookkeeping.
7924          */
7925         count = 0;
7926         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7927                 config->save_encoder_crtcs[count++] = encoder->crtc;
7928         }
7929
7930         count = 0;
7931         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7932                 config->save_connector_encoders[count++] = connector->encoder;
7933         }
7934
7935         return 0;
7936 }
7937
7938 static void intel_set_config_restore_state(struct drm_device *dev,
7939                                            struct intel_set_config *config)
7940 {
7941         struct intel_encoder *encoder;
7942         struct intel_connector *connector;
7943         int count;
7944
7945         count = 0;
7946         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7947                 encoder->new_crtc =
7948                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7949         }
7950
7951         count = 0;
7952         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7953                 connector->new_encoder =
7954                         to_intel_encoder(config->save_connector_encoders[count++]);
7955         }
7956 }
7957
7958 static void
7959 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7960                                       struct intel_set_config *config)
7961 {
7962
7963         /* We should be able to check here if the fb has the same properties
7964          * and then just flip_or_move it */
7965         if (set->crtc->fb != set->fb) {
7966                 /* If we have no fb then treat it as a full mode set */
7967                 if (set->crtc->fb == NULL) {
7968                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7969                         config->mode_changed = true;
7970                 } else if (set->fb == NULL) {
7971                         config->mode_changed = true;
7972                 } else if (set->fb->depth != set->crtc->fb->depth) {
7973                         config->mode_changed = true;
7974                 } else if (set->fb->bits_per_pixel !=
7975                            set->crtc->fb->bits_per_pixel) {
7976                         config->mode_changed = true;
7977                 } else
7978                         config->fb_changed = true;
7979         }
7980
7981         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7982                 config->fb_changed = true;
7983
7984         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7985                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7986                 drm_mode_debug_printmodeline(&set->crtc->mode);
7987                 drm_mode_debug_printmodeline(set->mode);
7988                 config->mode_changed = true;
7989         }
7990 }
7991
7992 static int
7993 intel_modeset_stage_output_state(struct drm_device *dev,
7994                                  struct drm_mode_set *set,
7995                                  struct intel_set_config *config)
7996 {
7997         struct drm_crtc *new_crtc;
7998         struct intel_connector *connector;
7999         struct intel_encoder *encoder;
8000         int count, ro;
8001
8002         /* The upper layers ensure that we either disable a crtc or have a list
8003          * of connectors. For paranoia, double-check this. */
8004         WARN_ON(!set->fb && (set->num_connectors != 0));
8005         WARN_ON(set->fb && (set->num_connectors == 0));
8006
8007         count = 0;
8008         list_for_each_entry(connector, &dev->mode_config.connector_list,
8009                             base.head) {
8010                 /* Otherwise traverse passed in connector list and get encoders
8011                  * for them. */
8012                 for (ro = 0; ro < set->num_connectors; ro++) {
8013                         if (set->connectors[ro] == &connector->base) {
8014                                 connector->new_encoder = connector->encoder;
8015                                 break;
8016                         }
8017                 }
8018
8019                 /* If we disable the crtc, disable all its connectors. Also, if
8020                  * the connector is on the changing crtc but not on the new
8021                  * connector list, disable it. */
8022                 if ((!set->fb || ro == set->num_connectors) &&
8023                     connector->base.encoder &&
8024                     connector->base.encoder->crtc == set->crtc) {
8025                         connector->new_encoder = NULL;
8026
8027                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8028                                 connector->base.base.id,
8029                                 drm_get_connector_name(&connector->base));
8030                 }
8031
8032
8033                 if (&connector->new_encoder->base != connector->base.encoder) {
8034                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8035                         config->mode_changed = true;
8036                 }
8037         }
8038         /* connector->new_encoder is now updated for all connectors. */
8039
8040         /* Update crtc of enabled connectors. */
8041         count = 0;
8042         list_for_each_entry(connector, &dev->mode_config.connector_list,
8043                             base.head) {
8044                 if (!connector->new_encoder)
8045                         continue;
8046
8047                 new_crtc = connector->new_encoder->base.crtc;
8048
8049                 for (ro = 0; ro < set->num_connectors; ro++) {
8050                         if (set->connectors[ro] == &connector->base)
8051                                 new_crtc = set->crtc;
8052                 }
8053
8054                 /* Make sure the new CRTC will work with the encoder */
8055                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8056                                            new_crtc)) {
8057                         return -EINVAL;
8058                 }
8059                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8060
8061                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8062                         connector->base.base.id,
8063                         drm_get_connector_name(&connector->base),
8064                         new_crtc->base.id);
8065         }
8066
8067         /* Check for any encoders that needs to be disabled. */
8068         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8069                             base.head) {
8070                 list_for_each_entry(connector,
8071                                     &dev->mode_config.connector_list,
8072                                     base.head) {
8073                         if (connector->new_encoder == encoder) {
8074                                 WARN_ON(!connector->new_encoder->new_crtc);
8075
8076                                 goto next_encoder;
8077                         }
8078                 }
8079                 encoder->new_crtc = NULL;
8080 next_encoder:
8081                 /* Only now check for crtc changes so we don't miss encoders
8082                  * that will be disabled. */
8083                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8084                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8085                         config->mode_changed = true;
8086                 }
8087         }
8088         /* Now we've also updated encoder->new_crtc for all encoders. */
8089
8090         return 0;
8091 }
8092
8093 static int intel_crtc_set_config(struct drm_mode_set *set)
8094 {
8095         struct drm_device *dev;
8096         struct drm_mode_set save_set;
8097         struct intel_set_config *config;
8098         int ret;
8099
8100         BUG_ON(!set);
8101         BUG_ON(!set->crtc);
8102         BUG_ON(!set->crtc->helper_private);
8103
8104         if (!set->mode)
8105                 set->fb = NULL;
8106
8107         /* The fb helper likes to play gross jokes with ->mode_set_config.
8108          * Unfortunately the crtc helper doesn't do much at all for this case,
8109          * so we have to cope with this madness until the fb helper is fixed up. */
8110         if (set->fb && set->num_connectors == 0)
8111                 return 0;
8112
8113         if (set->fb) {
8114                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8115                                 set->crtc->base.id, set->fb->base.id,
8116                                 (int)set->num_connectors, set->x, set->y);
8117         } else {
8118                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8119         }
8120
8121         dev = set->crtc->dev;
8122
8123         ret = -ENOMEM;
8124         config = kzalloc(sizeof(*config), GFP_KERNEL);
8125         if (!config)
8126                 goto out_config;
8127
8128         ret = intel_set_config_save_state(dev, config);
8129         if (ret)
8130                 goto out_config;
8131
8132         save_set.crtc = set->crtc;
8133         save_set.mode = &set->crtc->mode;
8134         save_set.x = set->crtc->x;
8135         save_set.y = set->crtc->y;
8136         save_set.fb = set->crtc->fb;
8137
8138         /* Compute whether we need a full modeset, only an fb base update or no
8139          * change at all. In the future we might also check whether only the
8140          * mode changed, e.g. for LVDS where we only change the panel fitter in
8141          * such cases. */
8142         intel_set_config_compute_mode_changes(set, config);
8143
8144         ret = intel_modeset_stage_output_state(dev, set, config);
8145         if (ret)
8146                 goto fail;
8147
8148         if (config->mode_changed) {
8149                 if (set->mode) {
8150                         DRM_DEBUG_KMS("attempting to set mode from"
8151                                         " userspace\n");
8152                         drm_mode_debug_printmodeline(set->mode);
8153                 }
8154
8155                 ret = intel_set_mode(set->crtc, set->mode,
8156                                      set->x, set->y, set->fb);
8157                 if (ret) {
8158                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8159                                   set->crtc->base.id, ret);
8160                         goto fail;
8161                 }
8162         } else if (config->fb_changed) {
8163                 intel_crtc_wait_for_pending_flips(set->crtc);
8164
8165                 ret = intel_pipe_set_base(set->crtc,
8166                                           set->x, set->y, set->fb);
8167         }
8168
8169         intel_set_config_free(config);
8170
8171         return 0;
8172
8173 fail:
8174         intel_set_config_restore_state(dev, config);
8175
8176         /* Try to restore the config */
8177         if (config->mode_changed &&
8178             intel_set_mode(save_set.crtc, save_set.mode,
8179                            save_set.x, save_set.y, save_set.fb))
8180                 DRM_ERROR("failed to restore config after modeset failure\n");
8181
8182 out_config:
8183         intel_set_config_free(config);
8184         return ret;
8185 }
8186
8187 static const struct drm_crtc_funcs intel_crtc_funcs = {
8188         .cursor_set = intel_crtc_cursor_set,
8189         .cursor_move = intel_crtc_cursor_move,
8190         .gamma_set = intel_crtc_gamma_set,
8191         .set_config = intel_crtc_set_config,
8192         .destroy = intel_crtc_destroy,
8193         .page_flip = intel_crtc_page_flip,
8194 };
8195
8196 static void intel_cpu_pll_init(struct drm_device *dev)
8197 {
8198         if (HAS_DDI(dev))
8199                 intel_ddi_pll_init(dev);
8200 }
8201
8202 static void intel_pch_pll_init(struct drm_device *dev)
8203 {
8204         drm_i915_private_t *dev_priv = dev->dev_private;
8205         int i;
8206
8207         if (dev_priv->num_pch_pll == 0) {
8208                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8209                 return;
8210         }
8211
8212         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8213                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8214                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8215                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8216         }
8217 }
8218
8219 static void intel_crtc_init(struct drm_device *dev, int pipe)
8220 {
8221         drm_i915_private_t *dev_priv = dev->dev_private;
8222         struct intel_crtc *intel_crtc;
8223         int i;
8224
8225         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8226         if (intel_crtc == NULL)
8227                 return;
8228
8229         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8230
8231         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8232         for (i = 0; i < 256; i++) {
8233                 intel_crtc->lut_r[i] = i;
8234                 intel_crtc->lut_g[i] = i;
8235                 intel_crtc->lut_b[i] = i;
8236         }
8237
8238         /* Swap pipes & planes for FBC on pre-965 */
8239         intel_crtc->pipe = pipe;
8240         intel_crtc->plane = pipe;
8241         intel_crtc->cpu_transcoder = pipe;
8242         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8243                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8244                 intel_crtc->plane = !pipe;
8245         }
8246
8247         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8248                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8249         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8250         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8251
8252         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8253
8254         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8255 }
8256
8257 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8258                                 struct drm_file *file)
8259 {
8260         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8261         struct drm_mode_object *drmmode_obj;
8262         struct intel_crtc *crtc;
8263
8264         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8265                 return -ENODEV;
8266
8267         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8268                         DRM_MODE_OBJECT_CRTC);
8269
8270         if (!drmmode_obj) {
8271                 DRM_ERROR("no such CRTC id\n");
8272                 return -EINVAL;
8273         }
8274
8275         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8276         pipe_from_crtc_id->pipe = crtc->pipe;
8277
8278         return 0;
8279 }
8280
8281 static int intel_encoder_clones(struct intel_encoder *encoder)
8282 {
8283         struct drm_device *dev = encoder->base.dev;
8284         struct intel_encoder *source_encoder;
8285         int index_mask = 0;
8286         int entry = 0;
8287
8288         list_for_each_entry(source_encoder,
8289                             &dev->mode_config.encoder_list, base.head) {
8290
8291                 if (encoder == source_encoder)
8292                         index_mask |= (1 << entry);
8293
8294                 /* Intel hw has only one MUX where enocoders could be cloned. */
8295                 if (encoder->cloneable && source_encoder->cloneable)
8296                         index_mask |= (1 << entry);
8297
8298                 entry++;
8299         }
8300
8301         return index_mask;
8302 }
8303
8304 static bool has_edp_a(struct drm_device *dev)
8305 {
8306         struct drm_i915_private *dev_priv = dev->dev_private;
8307
8308         if (!IS_MOBILE(dev))
8309                 return false;
8310
8311         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8312                 return false;
8313
8314         if (IS_GEN5(dev) &&
8315             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8316                 return false;
8317
8318         return true;
8319 }
8320
8321 static void intel_setup_outputs(struct drm_device *dev)
8322 {
8323         struct drm_i915_private *dev_priv = dev->dev_private;
8324         struct intel_encoder *encoder;
8325         bool dpd_is_edp = false;
8326         bool has_lvds;
8327
8328         has_lvds = intel_lvds_init(dev);
8329         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8330                 /* disable the panel fitter on everything but LVDS */
8331                 I915_WRITE(PFIT_CONTROL, 0);
8332         }
8333
8334         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8335                 intel_crt_init(dev);
8336
8337         if (HAS_DDI(dev)) {
8338                 int found;
8339
8340                 /* Haswell uses DDI functions to detect digital outputs */
8341                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8342                 /* DDI A only supports eDP */
8343                 if (found)
8344                         intel_ddi_init(dev, PORT_A);
8345
8346                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8347                  * register */
8348                 found = I915_READ(SFUSE_STRAP);
8349
8350                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8351                         intel_ddi_init(dev, PORT_B);
8352                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8353                         intel_ddi_init(dev, PORT_C);
8354                 if (found & SFUSE_STRAP_DDID_DETECTED)
8355                         intel_ddi_init(dev, PORT_D);
8356         } else if (HAS_PCH_SPLIT(dev)) {
8357                 int found;
8358                 dpd_is_edp = intel_dpd_is_edp(dev);
8359
8360                 if (has_edp_a(dev))
8361                         intel_dp_init(dev, DP_A, PORT_A);
8362
8363                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8364                         /* PCH SDVOB multiplex with HDMIB */
8365                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8366                         if (!found)
8367                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8368                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8369                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8370                 }
8371
8372                 if (I915_READ(HDMIC) & PORT_DETECTED)
8373                         intel_hdmi_init(dev, HDMIC, PORT_C);
8374
8375                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8376                         intel_hdmi_init(dev, HDMID, PORT_D);
8377
8378                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8379                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8380
8381                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8382                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8383         } else if (IS_VALLEYVIEW(dev)) {
8384                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8385                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8386                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8387
8388                 if (I915_READ(VLV_DISPLAY_BASE + SDVOB) & PORT_DETECTED) {
8389                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOB, PORT_B);
8390                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8391                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8392                 }
8393
8394                 if (I915_READ(VLV_DISPLAY_BASE + SDVOC) & PORT_DETECTED)
8395                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + SDVOC, PORT_C);
8396
8397         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8398                 bool found = false;
8399
8400                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8401                         DRM_DEBUG_KMS("probing SDVOB\n");
8402                         found = intel_sdvo_init(dev, SDVOB, true);
8403                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8404                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8405                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8406                         }
8407
8408                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8409                                 DRM_DEBUG_KMS("probing DP_B\n");
8410                                 intel_dp_init(dev, DP_B, PORT_B);
8411                         }
8412                 }
8413
8414                 /* Before G4X SDVOC doesn't have its own detect register */
8415
8416                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8417                         DRM_DEBUG_KMS("probing SDVOC\n");
8418                         found = intel_sdvo_init(dev, SDVOC, false);
8419                 }
8420
8421                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8422
8423                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8424                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8425                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8426                         }
8427                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8428                                 DRM_DEBUG_KMS("probing DP_C\n");
8429                                 intel_dp_init(dev, DP_C, PORT_C);
8430                         }
8431                 }
8432
8433                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8434                     (I915_READ(DP_D) & DP_DETECTED)) {
8435                         DRM_DEBUG_KMS("probing DP_D\n");
8436                         intel_dp_init(dev, DP_D, PORT_D);
8437                 }
8438         } else if (IS_GEN2(dev))
8439                 intel_dvo_init(dev);
8440
8441         if (SUPPORTS_TV(dev))
8442                 intel_tv_init(dev);
8443
8444         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8445                 encoder->base.possible_crtcs = encoder->crtc_mask;
8446                 encoder->base.possible_clones =
8447                         intel_encoder_clones(encoder);
8448         }
8449
8450         intel_init_pch_refclk(dev);
8451
8452         drm_helper_move_panel_connectors_to_head(dev);
8453 }
8454
8455 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8456 {
8457         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8458
8459         drm_framebuffer_cleanup(fb);
8460         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8461
8462         kfree(intel_fb);
8463 }
8464
8465 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8466                                                 struct drm_file *file,
8467                                                 unsigned int *handle)
8468 {
8469         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8470         struct drm_i915_gem_object *obj = intel_fb->obj;
8471
8472         return drm_gem_handle_create(file, &obj->base, handle);
8473 }
8474
8475 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8476         .destroy = intel_user_framebuffer_destroy,
8477         .create_handle = intel_user_framebuffer_create_handle,
8478 };
8479
8480 int intel_framebuffer_init(struct drm_device *dev,
8481                            struct intel_framebuffer *intel_fb,
8482                            struct drm_mode_fb_cmd2 *mode_cmd,
8483                            struct drm_i915_gem_object *obj)
8484 {
8485         int ret;
8486
8487         if (obj->tiling_mode == I915_TILING_Y) {
8488                 DRM_DEBUG("hardware does not support tiling Y\n");
8489                 return -EINVAL;
8490         }
8491
8492         if (mode_cmd->pitches[0] & 63) {
8493                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8494                           mode_cmd->pitches[0]);
8495                 return -EINVAL;
8496         }
8497
8498         /* FIXME <= Gen4 stride limits are bit unclear */
8499         if (mode_cmd->pitches[0] > 32768) {
8500                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8501                           mode_cmd->pitches[0]);
8502                 return -EINVAL;
8503         }
8504
8505         if (obj->tiling_mode != I915_TILING_NONE &&
8506             mode_cmd->pitches[0] != obj->stride) {
8507                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8508                           mode_cmd->pitches[0], obj->stride);
8509                 return -EINVAL;
8510         }
8511
8512         /* Reject formats not supported by any plane early. */
8513         switch (mode_cmd->pixel_format) {
8514         case DRM_FORMAT_C8:
8515         case DRM_FORMAT_RGB565:
8516         case DRM_FORMAT_XRGB8888:
8517         case DRM_FORMAT_ARGB8888:
8518                 break;
8519         case DRM_FORMAT_XRGB1555:
8520         case DRM_FORMAT_ARGB1555:
8521                 if (INTEL_INFO(dev)->gen > 3) {
8522                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8523                         return -EINVAL;
8524                 }
8525                 break;
8526         case DRM_FORMAT_XBGR8888:
8527         case DRM_FORMAT_ABGR8888:
8528         case DRM_FORMAT_XRGB2101010:
8529         case DRM_FORMAT_ARGB2101010:
8530         case DRM_FORMAT_XBGR2101010:
8531         case DRM_FORMAT_ABGR2101010:
8532                 if (INTEL_INFO(dev)->gen < 4) {
8533                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8534                         return -EINVAL;
8535                 }
8536                 break;
8537         case DRM_FORMAT_YUYV:
8538         case DRM_FORMAT_UYVY:
8539         case DRM_FORMAT_YVYU:
8540         case DRM_FORMAT_VYUY:
8541                 if (INTEL_INFO(dev)->gen < 5) {
8542                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8543                         return -EINVAL;
8544                 }
8545                 break;
8546         default:
8547                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8548                 return -EINVAL;
8549         }
8550
8551         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8552         if (mode_cmd->offsets[0] != 0)
8553                 return -EINVAL;
8554
8555         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8556         intel_fb->obj = obj;
8557
8558         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8559         if (ret) {
8560                 DRM_ERROR("framebuffer init failed %d\n", ret);
8561                 return ret;
8562         }
8563
8564         return 0;
8565 }
8566
8567 static struct drm_framebuffer *
8568 intel_user_framebuffer_create(struct drm_device *dev,
8569                               struct drm_file *filp,
8570                               struct drm_mode_fb_cmd2 *mode_cmd)
8571 {
8572         struct drm_i915_gem_object *obj;
8573
8574         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8575                                                 mode_cmd->handles[0]));
8576         if (&obj->base == NULL)
8577                 return ERR_PTR(-ENOENT);
8578
8579         return intel_framebuffer_create(dev, mode_cmd, obj);
8580 }
8581
8582 static const struct drm_mode_config_funcs intel_mode_funcs = {
8583         .fb_create = intel_user_framebuffer_create,
8584         .output_poll_changed = intel_fb_output_poll_changed,
8585 };
8586
8587 /* Set up chip specific display functions */
8588 static void intel_init_display(struct drm_device *dev)
8589 {
8590         struct drm_i915_private *dev_priv = dev->dev_private;
8591
8592         /* We always want a DPMS function */
8593         if (HAS_DDI(dev)) {
8594                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8595                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8596                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8597                 dev_priv->display.off = haswell_crtc_off;
8598                 dev_priv->display.update_plane = ironlake_update_plane;
8599         } else if (HAS_PCH_SPLIT(dev)) {
8600                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8601                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8602                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8603                 dev_priv->display.off = ironlake_crtc_off;
8604                 dev_priv->display.update_plane = ironlake_update_plane;
8605         } else {
8606                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8607                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8608                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8609                 dev_priv->display.off = i9xx_crtc_off;
8610                 dev_priv->display.update_plane = i9xx_update_plane;
8611         }
8612
8613         /* Returns the core display clock speed */
8614         if (IS_VALLEYVIEW(dev))
8615                 dev_priv->display.get_display_clock_speed =
8616                         valleyview_get_display_clock_speed;
8617         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8618                 dev_priv->display.get_display_clock_speed =
8619                         i945_get_display_clock_speed;
8620         else if (IS_I915G(dev))
8621                 dev_priv->display.get_display_clock_speed =
8622                         i915_get_display_clock_speed;
8623         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8624                 dev_priv->display.get_display_clock_speed =
8625                         i9xx_misc_get_display_clock_speed;
8626         else if (IS_I915GM(dev))
8627                 dev_priv->display.get_display_clock_speed =
8628                         i915gm_get_display_clock_speed;
8629         else if (IS_I865G(dev))
8630                 dev_priv->display.get_display_clock_speed =
8631                         i865_get_display_clock_speed;
8632         else if (IS_I85X(dev))
8633                 dev_priv->display.get_display_clock_speed =
8634                         i855_get_display_clock_speed;
8635         else /* 852, 830 */
8636                 dev_priv->display.get_display_clock_speed =
8637                         i830_get_display_clock_speed;
8638
8639         if (HAS_PCH_SPLIT(dev)) {
8640                 if (IS_GEN5(dev)) {
8641                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8642                         dev_priv->display.write_eld = ironlake_write_eld;
8643                 } else if (IS_GEN6(dev)) {
8644                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8645                         dev_priv->display.write_eld = ironlake_write_eld;
8646                 } else if (IS_IVYBRIDGE(dev)) {
8647                         /* FIXME: detect B0+ stepping and use auto training */
8648                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8649                         dev_priv->display.write_eld = ironlake_write_eld;
8650                         dev_priv->display.modeset_global_resources =
8651                                 ivb_modeset_global_resources;
8652                 } else if (IS_HASWELL(dev)) {
8653                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8654                         dev_priv->display.write_eld = haswell_write_eld;
8655                         dev_priv->display.modeset_global_resources =
8656                                 haswell_modeset_global_resources;
8657                 }
8658         } else if (IS_G4X(dev)) {
8659                 dev_priv->display.write_eld = g4x_write_eld;
8660         }
8661
8662         /* Default just returns -ENODEV to indicate unsupported */
8663         dev_priv->display.queue_flip = intel_default_queue_flip;
8664
8665         switch (INTEL_INFO(dev)->gen) {
8666         case 2:
8667                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8668                 break;
8669
8670         case 3:
8671                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8672                 break;
8673
8674         case 4:
8675         case 5:
8676                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8677                 break;
8678
8679         case 6:
8680                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8681                 break;
8682         case 7:
8683                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8684                 break;
8685         }
8686 }
8687
8688 /*
8689  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8690  * resume, or other times.  This quirk makes sure that's the case for
8691  * affected systems.
8692  */
8693 static void quirk_pipea_force(struct drm_device *dev)
8694 {
8695         struct drm_i915_private *dev_priv = dev->dev_private;
8696
8697         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8698         DRM_INFO("applying pipe a force quirk\n");
8699 }
8700
8701 /*
8702  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8703  */
8704 static void quirk_ssc_force_disable(struct drm_device *dev)
8705 {
8706         struct drm_i915_private *dev_priv = dev->dev_private;
8707         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8708         DRM_INFO("applying lvds SSC disable quirk\n");
8709 }
8710
8711 /*
8712  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8713  * brightness value
8714  */
8715 static void quirk_invert_brightness(struct drm_device *dev)
8716 {
8717         struct drm_i915_private *dev_priv = dev->dev_private;
8718         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8719         DRM_INFO("applying inverted panel brightness quirk\n");
8720 }
8721
8722 struct intel_quirk {
8723         int device;
8724         int subsystem_vendor;
8725         int subsystem_device;
8726         void (*hook)(struct drm_device *dev);
8727 };
8728
8729 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8730 struct intel_dmi_quirk {
8731         void (*hook)(struct drm_device *dev);
8732         const struct dmi_system_id (*dmi_id_list)[];
8733 };
8734
8735 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8736 {
8737         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8738         return 1;
8739 }
8740
8741 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8742         {
8743                 .dmi_id_list = &(const struct dmi_system_id[]) {
8744                         {
8745                                 .callback = intel_dmi_reverse_brightness,
8746                                 .ident = "NCR Corporation",
8747                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8748                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8749                                 },
8750                         },
8751                         { }  /* terminating entry */
8752                 },
8753                 .hook = quirk_invert_brightness,
8754         },
8755 };
8756
8757 static struct intel_quirk intel_quirks[] = {
8758         /* HP Mini needs pipe A force quirk (LP: #322104) */
8759         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8760
8761         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8762         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8763
8764         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8765         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8766
8767         /* 830/845 need to leave pipe A & dpll A up */
8768         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8769         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8770
8771         /* Lenovo U160 cannot use SSC on LVDS */
8772         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8773
8774         /* Sony Vaio Y cannot use SSC on LVDS */
8775         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8776
8777         /* Acer Aspire 5734Z must invert backlight brightness */
8778         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8779
8780         /* Acer/eMachines G725 */
8781         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8782
8783         /* Acer/eMachines e725 */
8784         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8785
8786         /* Acer/Packard Bell NCL20 */
8787         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8788
8789         /* Acer Aspire 4736Z */
8790         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8791 };
8792
8793 static void intel_init_quirks(struct drm_device *dev)
8794 {
8795         struct pci_dev *d = dev->pdev;
8796         int i;
8797
8798         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8799                 struct intel_quirk *q = &intel_quirks[i];
8800
8801                 if (d->device == q->device &&
8802                     (d->subsystem_vendor == q->subsystem_vendor ||
8803                      q->subsystem_vendor == PCI_ANY_ID) &&
8804                     (d->subsystem_device == q->subsystem_device ||
8805                      q->subsystem_device == PCI_ANY_ID))
8806                         q->hook(dev);
8807         }
8808         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8809                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8810                         intel_dmi_quirks[i].hook(dev);
8811         }
8812 }
8813
8814 /* Disable the VGA plane that we never use */
8815 static void i915_disable_vga(struct drm_device *dev)
8816 {
8817         struct drm_i915_private *dev_priv = dev->dev_private;
8818         u8 sr1;
8819         u32 vga_reg = i915_vgacntrl_reg(dev);
8820
8821         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8822         outb(SR01, VGA_SR_INDEX);
8823         sr1 = inb(VGA_SR_DATA);
8824         outb(sr1 | 1<<5, VGA_SR_DATA);
8825         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8826         udelay(300);
8827
8828         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8829         POSTING_READ(vga_reg);
8830 }
8831
8832 void intel_modeset_init_hw(struct drm_device *dev)
8833 {
8834         intel_init_power_well(dev);
8835
8836         intel_prepare_ddi(dev);
8837
8838         intel_init_clock_gating(dev);
8839
8840         mutex_lock(&dev->struct_mutex);
8841         intel_enable_gt_powersave(dev);
8842         mutex_unlock(&dev->struct_mutex);
8843 }
8844
8845 void intel_modeset_init(struct drm_device *dev)
8846 {
8847         struct drm_i915_private *dev_priv = dev->dev_private;
8848         int i, ret;
8849
8850         drm_mode_config_init(dev);
8851
8852         dev->mode_config.min_width = 0;
8853         dev->mode_config.min_height = 0;
8854
8855         dev->mode_config.preferred_depth = 24;
8856         dev->mode_config.prefer_shadow = 1;
8857
8858         dev->mode_config.funcs = &intel_mode_funcs;
8859
8860         intel_init_quirks(dev);
8861
8862         intel_init_pm(dev);
8863
8864         intel_init_display(dev);
8865
8866         if (IS_GEN2(dev)) {
8867                 dev->mode_config.max_width = 2048;
8868                 dev->mode_config.max_height = 2048;
8869         } else if (IS_GEN3(dev)) {
8870                 dev->mode_config.max_width = 4096;
8871                 dev->mode_config.max_height = 4096;
8872         } else {
8873                 dev->mode_config.max_width = 8192;
8874                 dev->mode_config.max_height = 8192;
8875         }
8876         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8877
8878         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8879                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8880
8881         for (i = 0; i < dev_priv->num_pipe; i++) {
8882                 intel_crtc_init(dev, i);
8883                 ret = intel_plane_init(dev, i);
8884                 if (ret)
8885                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8886         }
8887
8888         intel_cpu_pll_init(dev);
8889         intel_pch_pll_init(dev);
8890
8891         /* Just disable it once at startup */
8892         i915_disable_vga(dev);
8893         intel_setup_outputs(dev);
8894
8895         /* Just in case the BIOS is doing something questionable. */
8896         intel_disable_fbc(dev);
8897 }
8898
8899 static void
8900 intel_connector_break_all_links(struct intel_connector *connector)
8901 {
8902         connector->base.dpms = DRM_MODE_DPMS_OFF;
8903         connector->base.encoder = NULL;
8904         connector->encoder->connectors_active = false;
8905         connector->encoder->base.crtc = NULL;
8906 }
8907
8908 static void intel_enable_pipe_a(struct drm_device *dev)
8909 {
8910         struct intel_connector *connector;
8911         struct drm_connector *crt = NULL;
8912         struct intel_load_detect_pipe load_detect_temp;
8913
8914         /* We can't just switch on the pipe A, we need to set things up with a
8915          * proper mode and output configuration. As a gross hack, enable pipe A
8916          * by enabling the load detect pipe once. */
8917         list_for_each_entry(connector,
8918                             &dev->mode_config.connector_list,
8919                             base.head) {
8920                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8921                         crt = &connector->base;
8922                         break;
8923                 }
8924         }
8925
8926         if (!crt)
8927                 return;
8928
8929         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8930                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8931
8932
8933 }
8934
8935 static bool
8936 intel_check_plane_mapping(struct intel_crtc *crtc)
8937 {
8938         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8939         u32 reg, val;
8940
8941         if (dev_priv->num_pipe == 1)
8942                 return true;
8943
8944         reg = DSPCNTR(!crtc->plane);
8945         val = I915_READ(reg);
8946
8947         if ((val & DISPLAY_PLANE_ENABLE) &&
8948             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8949                 return false;
8950
8951         return true;
8952 }
8953
8954 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8955 {
8956         struct drm_device *dev = crtc->base.dev;
8957         struct drm_i915_private *dev_priv = dev->dev_private;
8958         u32 reg;
8959
8960         /* Clear any frame start delays used for debugging left by the BIOS */
8961         reg = PIPECONF(crtc->cpu_transcoder);
8962         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8963
8964         /* We need to sanitize the plane -> pipe mapping first because this will
8965          * disable the crtc (and hence change the state) if it is wrong. Note
8966          * that gen4+ has a fixed plane -> pipe mapping.  */
8967         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8968                 struct intel_connector *connector;
8969                 bool plane;
8970
8971                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8972                               crtc->base.base.id);
8973
8974                 /* Pipe has the wrong plane attached and the plane is active.
8975                  * Temporarily change the plane mapping and disable everything
8976                  * ...  */
8977                 plane = crtc->plane;
8978                 crtc->plane = !plane;
8979                 dev_priv->display.crtc_disable(&crtc->base);
8980                 crtc->plane = plane;
8981
8982                 /* ... and break all links. */
8983                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8984                                     base.head) {
8985                         if (connector->encoder->base.crtc != &crtc->base)
8986                                 continue;
8987
8988                         intel_connector_break_all_links(connector);
8989                 }
8990
8991                 WARN_ON(crtc->active);
8992                 crtc->base.enabled = false;
8993         }
8994
8995         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8996             crtc->pipe == PIPE_A && !crtc->active) {
8997                 /* BIOS forgot to enable pipe A, this mostly happens after
8998                  * resume. Force-enable the pipe to fix this, the update_dpms
8999                  * call below we restore the pipe to the right state, but leave
9000                  * the required bits on. */
9001                 intel_enable_pipe_a(dev);
9002         }
9003
9004         /* Adjust the state of the output pipe according to whether we
9005          * have active connectors/encoders. */
9006         intel_crtc_update_dpms(&crtc->base);
9007
9008         if (crtc->active != crtc->base.enabled) {
9009                 struct intel_encoder *encoder;
9010
9011                 /* This can happen either due to bugs in the get_hw_state
9012                  * functions or because the pipe is force-enabled due to the
9013                  * pipe A quirk. */
9014                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9015                               crtc->base.base.id,
9016                               crtc->base.enabled ? "enabled" : "disabled",
9017                               crtc->active ? "enabled" : "disabled");
9018
9019                 crtc->base.enabled = crtc->active;
9020
9021                 /* Because we only establish the connector -> encoder ->
9022                  * crtc links if something is active, this means the
9023                  * crtc is now deactivated. Break the links. connector
9024                  * -> encoder links are only establish when things are
9025                  *  actually up, hence no need to break them. */
9026                 WARN_ON(crtc->active);
9027
9028                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9029                         WARN_ON(encoder->connectors_active);
9030                         encoder->base.crtc = NULL;
9031                 }
9032         }
9033 }
9034
9035 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9036 {
9037         struct intel_connector *connector;
9038         struct drm_device *dev = encoder->base.dev;
9039
9040         /* We need to check both for a crtc link (meaning that the
9041          * encoder is active and trying to read from a pipe) and the
9042          * pipe itself being active. */
9043         bool has_active_crtc = encoder->base.crtc &&
9044                 to_intel_crtc(encoder->base.crtc)->active;
9045
9046         if (encoder->connectors_active && !has_active_crtc) {
9047                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9048                               encoder->base.base.id,
9049                               drm_get_encoder_name(&encoder->base));
9050
9051                 /* Connector is active, but has no active pipe. This is
9052                  * fallout from our resume register restoring. Disable
9053                  * the encoder manually again. */
9054                 if (encoder->base.crtc) {
9055                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9056                                       encoder->base.base.id,
9057                                       drm_get_encoder_name(&encoder->base));
9058                         encoder->disable(encoder);
9059                 }
9060
9061                 /* Inconsistent output/port/pipe state happens presumably due to
9062                  * a bug in one of the get_hw_state functions. Or someplace else
9063                  * in our code, like the register restore mess on resume. Clamp
9064                  * things to off as a safer default. */
9065                 list_for_each_entry(connector,
9066                                     &dev->mode_config.connector_list,
9067                                     base.head) {
9068                         if (connector->encoder != encoder)
9069                                 continue;
9070
9071                         intel_connector_break_all_links(connector);
9072                 }
9073         }
9074         /* Enabled encoders without active connectors will be fixed in
9075          * the crtc fixup. */
9076 }
9077
9078 void i915_redisable_vga(struct drm_device *dev)
9079 {
9080         struct drm_i915_private *dev_priv = dev->dev_private;
9081         u32 vga_reg = i915_vgacntrl_reg(dev);
9082
9083         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9084                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9085                 i915_disable_vga(dev);
9086         }
9087 }
9088
9089 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9090  * and i915 state tracking structures. */
9091 void intel_modeset_setup_hw_state(struct drm_device *dev,
9092                                   bool force_restore)
9093 {
9094         struct drm_i915_private *dev_priv = dev->dev_private;
9095         enum pipe pipe;
9096         u32 tmp;
9097         struct intel_crtc *crtc;
9098         struct intel_encoder *encoder;
9099         struct intel_connector *connector;
9100
9101         if (HAS_DDI(dev)) {
9102                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9103
9104                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9105                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9106                         case TRANS_DDI_EDP_INPUT_A_ON:
9107                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9108                                 pipe = PIPE_A;
9109                                 break;
9110                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9111                                 pipe = PIPE_B;
9112                                 break;
9113                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9114                                 pipe = PIPE_C;
9115                                 break;
9116                         }
9117
9118                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9119                         crtc->cpu_transcoder = TRANSCODER_EDP;
9120
9121                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9122                                       pipe_name(pipe));
9123                 }
9124         }
9125
9126         for_each_pipe(pipe) {
9127                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9128
9129                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9130                 if (tmp & PIPECONF_ENABLE)
9131                         crtc->active = true;
9132                 else
9133                         crtc->active = false;
9134
9135                 crtc->base.enabled = crtc->active;
9136
9137                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9138                               crtc->base.base.id,
9139                               crtc->active ? "enabled" : "disabled");
9140         }
9141
9142         if (HAS_DDI(dev))
9143                 intel_ddi_setup_hw_pll_state(dev);
9144
9145         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9146                             base.head) {
9147                 pipe = 0;
9148
9149                 if (encoder->get_hw_state(encoder, &pipe)) {
9150                         encoder->base.crtc =
9151                                 dev_priv->pipe_to_crtc_mapping[pipe];
9152                 } else {
9153                         encoder->base.crtc = NULL;
9154                 }
9155
9156                 encoder->connectors_active = false;
9157                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9158                               encoder->base.base.id,
9159                               drm_get_encoder_name(&encoder->base),
9160                               encoder->base.crtc ? "enabled" : "disabled",
9161                               pipe);
9162         }
9163
9164         list_for_each_entry(connector, &dev->mode_config.connector_list,
9165                             base.head) {
9166                 if (connector->get_hw_state(connector)) {
9167                         connector->base.dpms = DRM_MODE_DPMS_ON;
9168                         connector->encoder->connectors_active = true;
9169                         connector->base.encoder = &connector->encoder->base;
9170                 } else {
9171                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9172                         connector->base.encoder = NULL;
9173                 }
9174                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9175                               connector->base.base.id,
9176                               drm_get_connector_name(&connector->base),
9177                               connector->base.encoder ? "enabled" : "disabled");
9178         }
9179
9180         /* HW state is read out, now we need to sanitize this mess. */
9181         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9182                             base.head) {
9183                 intel_sanitize_encoder(encoder);
9184         }
9185
9186         for_each_pipe(pipe) {
9187                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9188                 intel_sanitize_crtc(crtc);
9189         }
9190
9191         if (force_restore) {
9192                 for_each_pipe(pipe) {
9193                         intel_crtc_restore_mode(dev_priv->pipe_to_crtc_mapping[pipe]);
9194                 }
9195
9196                 i915_redisable_vga(dev);
9197         } else {
9198                 intel_modeset_update_staged_output_state(dev);
9199         }
9200
9201         intel_modeset_check_state(dev);
9202
9203         drm_mode_config_reset(dev);
9204 }
9205
9206 void intel_modeset_gem_init(struct drm_device *dev)
9207 {
9208         intel_modeset_init_hw(dev);
9209
9210         intel_setup_overlay(dev);
9211
9212         intel_modeset_setup_hw_state(dev, false);
9213 }
9214
9215 void intel_modeset_cleanup(struct drm_device *dev)
9216 {
9217         struct drm_i915_private *dev_priv = dev->dev_private;
9218         struct drm_crtc *crtc;
9219         struct intel_crtc *intel_crtc;
9220
9221         drm_kms_helper_poll_fini(dev);
9222         mutex_lock(&dev->struct_mutex);
9223
9224         intel_unregister_dsm_handler();
9225
9226
9227         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9228                 /* Skip inactive CRTCs */
9229                 if (!crtc->fb)
9230                         continue;
9231
9232                 intel_crtc = to_intel_crtc(crtc);
9233                 intel_increase_pllclock(crtc);
9234         }
9235
9236         intel_disable_fbc(dev);
9237
9238         intel_disable_gt_powersave(dev);
9239
9240         ironlake_teardown_rc6(dev);
9241
9242         if (IS_VALLEYVIEW(dev))
9243                 vlv_init_dpio(dev);
9244
9245         mutex_unlock(&dev->struct_mutex);
9246
9247         /* Disable the irq before mode object teardown, for the irq might
9248          * enqueue unpin/hotplug work. */
9249         drm_irq_uninstall(dev);
9250         cancel_work_sync(&dev_priv->hotplug_work);
9251         cancel_work_sync(&dev_priv->rps.work);
9252
9253         /* flush any delayed tasks or pending work */
9254         flush_scheduled_work();
9255
9256         drm_mode_config_cleanup(dev);
9257
9258         intel_cleanup_overlay(dev);
9259 }
9260
9261 /*
9262  * Return which encoder is currently attached for connector.
9263  */
9264 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9265 {
9266         return &intel_attached_encoder(connector)->base;
9267 }
9268
9269 void intel_connector_attach_encoder(struct intel_connector *connector,
9270                                     struct intel_encoder *encoder)
9271 {
9272         connector->encoder = encoder;
9273         drm_mode_connector_attach_encoder(&connector->base,
9274                                           &encoder->base);
9275 }
9276
9277 /*
9278  * set vga decode state - true == enable VGA decode
9279  */
9280 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9281 {
9282         struct drm_i915_private *dev_priv = dev->dev_private;
9283         u16 gmch_ctrl;
9284
9285         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9286         if (state)
9287                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9288         else
9289                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9290         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9291         return 0;
9292 }
9293
9294 #ifdef CONFIG_DEBUG_FS
9295 #include <linux/seq_file.h>
9296
9297 struct intel_display_error_state {
9298         struct intel_cursor_error_state {
9299                 u32 control;
9300                 u32 position;
9301                 u32 base;
9302                 u32 size;
9303         } cursor[I915_MAX_PIPES];
9304
9305         struct intel_pipe_error_state {
9306                 u32 conf;
9307                 u32 source;
9308
9309                 u32 htotal;
9310                 u32 hblank;
9311                 u32 hsync;
9312                 u32 vtotal;
9313                 u32 vblank;
9314                 u32 vsync;
9315         } pipe[I915_MAX_PIPES];
9316
9317         struct intel_plane_error_state {
9318                 u32 control;
9319                 u32 stride;
9320                 u32 size;
9321                 u32 pos;
9322                 u32 addr;
9323                 u32 surface;
9324                 u32 tile_offset;
9325         } plane[I915_MAX_PIPES];
9326 };
9327
9328 struct intel_display_error_state *
9329 intel_display_capture_error_state(struct drm_device *dev)
9330 {
9331         drm_i915_private_t *dev_priv = dev->dev_private;
9332         struct intel_display_error_state *error;
9333         enum transcoder cpu_transcoder;
9334         int i;
9335
9336         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9337         if (error == NULL)
9338                 return NULL;
9339
9340         for_each_pipe(i) {
9341                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9342
9343                 error->cursor[i].control = I915_READ(CURCNTR(i));
9344                 error->cursor[i].position = I915_READ(CURPOS(i));
9345                 error->cursor[i].base = I915_READ(CURBASE(i));
9346
9347                 error->plane[i].control = I915_READ(DSPCNTR(i));
9348                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9349                 error->plane[i].size = I915_READ(DSPSIZE(i));
9350                 error->plane[i].pos = I915_READ(DSPPOS(i));
9351                 error->plane[i].addr = I915_READ(DSPADDR(i));
9352                 if (INTEL_INFO(dev)->gen >= 4) {
9353                         error->plane[i].surface = I915_READ(DSPSURF(i));
9354                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9355                 }
9356
9357                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9358                 error->pipe[i].source = I915_READ(PIPESRC(i));
9359                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9360                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9361                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9362                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9363                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9364                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9365         }
9366
9367         return error;
9368 }
9369
9370 void
9371 intel_display_print_error_state(struct seq_file *m,
9372                                 struct drm_device *dev,
9373                                 struct intel_display_error_state *error)
9374 {
9375         drm_i915_private_t *dev_priv = dev->dev_private;
9376         int i;
9377
9378         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9379         for_each_pipe(i) {
9380                 seq_printf(m, "Pipe [%d]:\n", i);
9381                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9382                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9383                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9384                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9385                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9386                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9387                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9388                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9389
9390                 seq_printf(m, "Plane [%d]:\n", i);
9391                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9392                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9393                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9394                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9395                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9396                 if (INTEL_INFO(dev)->gen >= 4) {
9397                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9398                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9399                 }
9400
9401                 seq_printf(m, "Cursor [%d]:\n", i);
9402                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9403                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9404                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9405         }
9406 }
9407 #endif