]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: kill i915.powersave
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50         DRM_FORMAT_C8, \
51         DRM_FORMAT_RGB565, \
52         DRM_FORMAT_XRGB8888, \
53         DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57         COMMON_PRIMARY_FORMATS,
58         DRM_FORMAT_XRGB1555,
59         DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64         COMMON_PRIMARY_FORMATS, \
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_ABGR8888,
67         DRM_FORMAT_XRGB2101010,
68         DRM_FORMAT_ARGB2101010,
69         DRM_FORMAT_XBGR2101010,
70         DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75         DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86                           int x, int y, struct drm_framebuffer *old_fb);
87 static int intel_framebuffer_init(struct drm_device *dev,
88                                   struct intel_framebuffer *ifb,
89                                   struct drm_mode_fb_cmd2 *mode_cmd,
90                                   struct drm_i915_gem_object *obj);
91 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
93 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
94                                          struct intel_link_m_n *m_n,
95                                          struct intel_link_m_n *m2_n2);
96 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
97 static void haswell_set_pipeconf(struct drm_crtc *crtc);
98 static void intel_set_pipe_csc(struct drm_crtc *crtc);
99 static void vlv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_state *pipe_config);
101 static void chv_prepare_pll(struct intel_crtc *crtc,
102                             const struct intel_crtc_state *pipe_config);
103 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
105
106 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
107 {
108         if (!connector->mst_port)
109                 return connector->encoder;
110         else
111                 return &connector->mst_port->mst_encoders[pipe]->base;
112 }
113
114 typedef struct {
115         int     min, max;
116 } intel_range_t;
117
118 typedef struct {
119         int     dot_limit;
120         int     p2_slow, p2_fast;
121 } intel_p2_t;
122
123 typedef struct intel_limit intel_limit_t;
124 struct intel_limit {
125         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
126         intel_p2_t          p2;
127 };
128
129 int
130 intel_pch_rawclk(struct drm_device *dev)
131 {
132         struct drm_i915_private *dev_priv = dev->dev_private;
133
134         WARN_ON(!HAS_PCH_SPLIT(dev));
135
136         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
137 }
138
139 static inline u32 /* units of 100MHz */
140 intel_fdi_link_freq(struct drm_device *dev)
141 {
142         if (IS_GEN5(dev)) {
143                 struct drm_i915_private *dev_priv = dev->dev_private;
144                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
145         } else
146                 return 27;
147 }
148
149 static const intel_limit_t intel_limits_i8xx_dac = {
150         .dot = { .min = 25000, .max = 350000 },
151         .vco = { .min = 908000, .max = 1512000 },
152         .n = { .min = 2, .max = 16 },
153         .m = { .min = 96, .max = 140 },
154         .m1 = { .min = 18, .max = 26 },
155         .m2 = { .min = 6, .max = 16 },
156         .p = { .min = 4, .max = 128 },
157         .p1 = { .min = 2, .max = 33 },
158         .p2 = { .dot_limit = 165000,
159                 .p2_slow = 4, .p2_fast = 2 },
160 };
161
162 static const intel_limit_t intel_limits_i8xx_dvo = {
163         .dot = { .min = 25000, .max = 350000 },
164         .vco = { .min = 908000, .max = 1512000 },
165         .n = { .min = 2, .max = 16 },
166         .m = { .min = 96, .max = 140 },
167         .m1 = { .min = 18, .max = 26 },
168         .m2 = { .min = 6, .max = 16 },
169         .p = { .min = 4, .max = 128 },
170         .p1 = { .min = 2, .max = 33 },
171         .p2 = { .dot_limit = 165000,
172                 .p2_slow = 4, .p2_fast = 4 },
173 };
174
175 static const intel_limit_t intel_limits_i8xx_lvds = {
176         .dot = { .min = 25000, .max = 350000 },
177         .vco = { .min = 908000, .max = 1512000 },
178         .n = { .min = 2, .max = 16 },
179         .m = { .min = 96, .max = 140 },
180         .m1 = { .min = 18, .max = 26 },
181         .m2 = { .min = 6, .max = 16 },
182         .p = { .min = 4, .max = 128 },
183         .p1 = { .min = 1, .max = 6 },
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 14, .p2_fast = 7 },
186 };
187
188 static const intel_limit_t intel_limits_i9xx_sdvo = {
189         .dot = { .min = 20000, .max = 400000 },
190         .vco = { .min = 1400000, .max = 2800000 },
191         .n = { .min = 1, .max = 6 },
192         .m = { .min = 70, .max = 120 },
193         .m1 = { .min = 8, .max = 18 },
194         .m2 = { .min = 3, .max = 7 },
195         .p = { .min = 5, .max = 80 },
196         .p1 = { .min = 1, .max = 8 },
197         .p2 = { .dot_limit = 200000,
198                 .p2_slow = 10, .p2_fast = 5 },
199 };
200
201 static const intel_limit_t intel_limits_i9xx_lvds = {
202         .dot = { .min = 20000, .max = 400000 },
203         .vco = { .min = 1400000, .max = 2800000 },
204         .n = { .min = 1, .max = 6 },
205         .m = { .min = 70, .max = 120 },
206         .m1 = { .min = 8, .max = 18 },
207         .m2 = { .min = 3, .max = 7 },
208         .p = { .min = 7, .max = 98 },
209         .p1 = { .min = 1, .max = 8 },
210         .p2 = { .dot_limit = 112000,
211                 .p2_slow = 14, .p2_fast = 7 },
212 };
213
214
215 static const intel_limit_t intel_limits_g4x_sdvo = {
216         .dot = { .min = 25000, .max = 270000 },
217         .vco = { .min = 1750000, .max = 3500000},
218         .n = { .min = 1, .max = 4 },
219         .m = { .min = 104, .max = 138 },
220         .m1 = { .min = 17, .max = 23 },
221         .m2 = { .min = 5, .max = 11 },
222         .p = { .min = 10, .max = 30 },
223         .p1 = { .min = 1, .max = 3},
224         .p2 = { .dot_limit = 270000,
225                 .p2_slow = 10,
226                 .p2_fast = 10
227         },
228 };
229
230 static const intel_limit_t intel_limits_g4x_hdmi = {
231         .dot = { .min = 22000, .max = 400000 },
232         .vco = { .min = 1750000, .max = 3500000},
233         .n = { .min = 1, .max = 4 },
234         .m = { .min = 104, .max = 138 },
235         .m1 = { .min = 16, .max = 23 },
236         .m2 = { .min = 5, .max = 11 },
237         .p = { .min = 5, .max = 80 },
238         .p1 = { .min = 1, .max = 8},
239         .p2 = { .dot_limit = 165000,
240                 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
244         .dot = { .min = 20000, .max = 115000 },
245         .vco = { .min = 1750000, .max = 3500000 },
246         .n = { .min = 1, .max = 3 },
247         .m = { .min = 104, .max = 138 },
248         .m1 = { .min = 17, .max = 23 },
249         .m2 = { .min = 5, .max = 11 },
250         .p = { .min = 28, .max = 112 },
251         .p1 = { .min = 2, .max = 8 },
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 14, .p2_fast = 14
254         },
255 };
256
257 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
258         .dot = { .min = 80000, .max = 224000 },
259         .vco = { .min = 1750000, .max = 3500000 },
260         .n = { .min = 1, .max = 3 },
261         .m = { .min = 104, .max = 138 },
262         .m1 = { .min = 17, .max = 23 },
263         .m2 = { .min = 5, .max = 11 },
264         .p = { .min = 14, .max = 42 },
265         .p1 = { .min = 2, .max = 6 },
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 7, .p2_fast = 7
268         },
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284 };
285
286 static const intel_limit_t intel_limits_pineview_lvds = {
287         .dot = { .min = 20000, .max = 400000 },
288         .vco = { .min = 1700000, .max = 3500000 },
289         .n = { .min = 3, .max = 6 },
290         .m = { .min = 2, .max = 256 },
291         .m1 = { .min = 0, .max = 0 },
292         .m2 = { .min = 0, .max = 254 },
293         .p = { .min = 7, .max = 112 },
294         .p1 = { .min = 1, .max = 8 },
295         .p2 = { .dot_limit = 112000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 /* Ironlake / Sandybridge
300  *
301  * We calculate clock using (register_value + 2) for N/M1/M2, so here
302  * the range value for them is (actual_value - 2).
303  */
304 static const intel_limit_t intel_limits_ironlake_dac = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 5 },
308         .m = { .min = 79, .max = 127 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 5, .max = 80 },
312         .p1 = { .min = 1, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 10, .p2_fast = 5 },
315 };
316
317 static const intel_limit_t intel_limits_ironlake_single_lvds = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 3 },
321         .m = { .min = 79, .max = 118 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
331         .dot = { .min = 25000, .max = 350000 },
332         .vco = { .min = 1760000, .max = 3510000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 79, .max = 127 },
335         .m1 = { .min = 12, .max = 22 },
336         .m2 = { .min = 5, .max = 9 },
337         .p = { .min = 14, .max = 56 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 225000,
340                 .p2_slow = 7, .p2_fast = 7 },
341 };
342
343 /* LVDS 100mhz refclk limits. */
344 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
345         .dot = { .min = 25000, .max = 350000 },
346         .vco = { .min = 1760000, .max = 3510000 },
347         .n = { .min = 1, .max = 2 },
348         .m = { .min = 79, .max = 126 },
349         .m1 = { .min = 12, .max = 22 },
350         .m2 = { .min = 5, .max = 9 },
351         .p = { .min = 28, .max = 112 },
352         .p1 = { .min = 2, .max = 8 },
353         .p2 = { .dot_limit = 225000,
354                 .p2_slow = 14, .p2_fast = 14 },
355 };
356
357 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
358         .dot = { .min = 25000, .max = 350000 },
359         .vco = { .min = 1760000, .max = 3510000 },
360         .n = { .min = 1, .max = 3 },
361         .m = { .min = 79, .max = 126 },
362         .m1 = { .min = 12, .max = 22 },
363         .m2 = { .min = 5, .max = 9 },
364         .p = { .min = 14, .max = 42 },
365         .p1 = { .min = 2, .max = 6 },
366         .p2 = { .dot_limit = 225000,
367                 .p2_slow = 7, .p2_fast = 7 },
368 };
369
370 static const intel_limit_t intel_limits_vlv = {
371          /*
372           * These are the data rate limits (measured in fast clocks)
373           * since those are the strictest limits we have. The fast
374           * clock and actual rate limits are more relaxed, so checking
375           * them would make no difference.
376           */
377         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
378         .vco = { .min = 4000000, .max = 6000000 },
379         .n = { .min = 1, .max = 7 },
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p1 = { .min = 2, .max = 3 },
383         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
384 };
385
386 static const intel_limit_t intel_limits_chv = {
387         /*
388          * These are the data rate limits (measured in fast clocks)
389          * since those are the strictest limits we have.  The fast
390          * clock and actual rate limits are more relaxed, so checking
391          * them would make no difference.
392          */
393         .dot = { .min = 25000 * 5, .max = 540000 * 5},
394         .vco = { .min = 4800000, .max = 6480000 },
395         .n = { .min = 1, .max = 1 },
396         .m1 = { .min = 2, .max = 2 },
397         .m2 = { .min = 24 << 22, .max = 175 << 22 },
398         .p1 = { .min = 2, .max = 4 },
399         .p2 = { .p2_slow = 1, .p2_fast = 14 },
400 };
401
402 static void vlv_clock(int refclk, intel_clock_t *clock)
403 {
404         clock->m = clock->m1 * clock->m2;
405         clock->p = clock->p1 * clock->p2;
406         if (WARN_ON(clock->n == 0 || clock->p == 0))
407                 return;
408         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
409         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
410 }
411
412 /**
413  * Returns whether any output on the specified pipe is of the specified type
414  */
415 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
416 {
417         struct drm_device *dev = crtc->base.dev;
418         struct intel_encoder *encoder;
419
420         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
421                 if (encoder->type == type)
422                         return true;
423
424         return false;
425 }
426
427 /**
428  * Returns whether any output on the specified pipe will have the specified
429  * type after a staged modeset is complete, i.e., the same as
430  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
431  * encoder->crtc.
432  */
433 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
434 {
435         struct drm_device *dev = crtc->base.dev;
436         struct intel_encoder *encoder;
437
438         for_each_intel_encoder(dev, encoder)
439                 if (encoder->new_crtc == crtc && encoder->type == type)
440                         return true;
441
442         return false;
443 }
444
445 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
446                                                 int refclk)
447 {
448         struct drm_device *dev = crtc->base.dev;
449         const intel_limit_t *limit;
450
451         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
452                 if (intel_is_dual_link_lvds(dev)) {
453                         if (refclk == 100000)
454                                 limit = &intel_limits_ironlake_dual_lvds_100m;
455                         else
456                                 limit = &intel_limits_ironlake_dual_lvds;
457                 } else {
458                         if (refclk == 100000)
459                                 limit = &intel_limits_ironlake_single_lvds_100m;
460                         else
461                                 limit = &intel_limits_ironlake_single_lvds;
462                 }
463         } else
464                 limit = &intel_limits_ironlake_dac;
465
466         return limit;
467 }
468
469 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
470 {
471         struct drm_device *dev = crtc->base.dev;
472         const intel_limit_t *limit;
473
474         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
475                 if (intel_is_dual_link_lvds(dev))
476                         limit = &intel_limits_g4x_dual_channel_lvds;
477                 else
478                         limit = &intel_limits_g4x_single_channel_lvds;
479         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
480                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
481                 limit = &intel_limits_g4x_hdmi;
482         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
483                 limit = &intel_limits_g4x_sdvo;
484         } else /* The option is for other outputs */
485                 limit = &intel_limits_i9xx_sdvo;
486
487         return limit;
488 }
489
490 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
491 {
492         struct drm_device *dev = crtc->base.dev;
493         const intel_limit_t *limit;
494
495         if (HAS_PCH_SPLIT(dev))
496                 limit = intel_ironlake_limit(crtc, refclk);
497         else if (IS_G4X(dev)) {
498                 limit = intel_g4x_limit(crtc);
499         } else if (IS_PINEVIEW(dev)) {
500                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
501                         limit = &intel_limits_pineview_lvds;
502                 else
503                         limit = &intel_limits_pineview_sdvo;
504         } else if (IS_CHERRYVIEW(dev)) {
505                 limit = &intel_limits_chv;
506         } else if (IS_VALLEYVIEW(dev)) {
507                 limit = &intel_limits_vlv;
508         } else if (!IS_GEN2(dev)) {
509                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
510                         limit = &intel_limits_i9xx_lvds;
511                 else
512                         limit = &intel_limits_i9xx_sdvo;
513         } else {
514                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
515                         limit = &intel_limits_i8xx_lvds;
516                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
517                         limit = &intel_limits_i8xx_dvo;
518                 else
519                         limit = &intel_limits_i8xx_dac;
520         }
521         return limit;
522 }
523
524 /* m1 is reserved as 0 in Pineview, n is a ring counter */
525 static void pineview_clock(int refclk, intel_clock_t *clock)
526 {
527         clock->m = clock->m2 + 2;
528         clock->p = clock->p1 * clock->p2;
529         if (WARN_ON(clock->n == 0 || clock->p == 0))
530                 return;
531         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
532         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533 }
534
535 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
536 {
537         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
538 }
539
540 static void i9xx_clock(int refclk, intel_clock_t *clock)
541 {
542         clock->m = i9xx_dpll_compute_m(clock);
543         clock->p = clock->p1 * clock->p2;
544         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
545                 return;
546         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
547         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
548 }
549
550 static void chv_clock(int refclk, intel_clock_t *clock)
551 {
552         clock->m = clock->m1 * clock->m2;
553         clock->p = clock->p1 * clock->p2;
554         if (WARN_ON(clock->n == 0 || clock->p == 0))
555                 return;
556         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
557                         clock->n << 22);
558         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
559 }
560
561 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
562 /**
563  * Returns whether the given set of divisors are valid for a given refclk with
564  * the given connectors.
565  */
566
567 static bool intel_PLL_is_valid(struct drm_device *dev,
568                                const intel_limit_t *limit,
569                                const intel_clock_t *clock)
570 {
571         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
572                 INTELPllInvalid("n out of range\n");
573         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
574                 INTELPllInvalid("p1 out of range\n");
575         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
576                 INTELPllInvalid("m2 out of range\n");
577         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
578                 INTELPllInvalid("m1 out of range\n");
579
580         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
581                 if (clock->m1 <= clock->m2)
582                         INTELPllInvalid("m1 <= m2\n");
583
584         if (!IS_VALLEYVIEW(dev)) {
585                 if (clock->p < limit->p.min || limit->p.max < clock->p)
586                         INTELPllInvalid("p out of range\n");
587                 if (clock->m < limit->m.min || limit->m.max < clock->m)
588                         INTELPllInvalid("m out of range\n");
589         }
590
591         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
592                 INTELPllInvalid("vco out of range\n");
593         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
594          * connector, etc., rather than just a single range.
595          */
596         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
597                 INTELPllInvalid("dot out of range\n");
598
599         return true;
600 }
601
602 static bool
603 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
604                     int target, int refclk, intel_clock_t *match_clock,
605                     intel_clock_t *best_clock)
606 {
607         struct drm_device *dev = crtc->base.dev;
608         intel_clock_t clock;
609         int err = target;
610
611         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
612                 /*
613                  * For LVDS just rely on its current settings for dual-channel.
614                  * We haven't figured out how to reliably set up different
615                  * single/dual channel state, if we even can.
616                  */
617                 if (intel_is_dual_link_lvds(dev))
618                         clock.p2 = limit->p2.p2_fast;
619                 else
620                         clock.p2 = limit->p2.p2_slow;
621         } else {
622                 if (target < limit->p2.dot_limit)
623                         clock.p2 = limit->p2.p2_slow;
624                 else
625                         clock.p2 = limit->p2.p2_fast;
626         }
627
628         memset(best_clock, 0, sizeof(*best_clock));
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         if (clock.m2 >= clock.m1)
635                                 break;
636                         for (clock.n = limit->n.min;
637                              clock.n <= limit->n.max; clock.n++) {
638                                 for (clock.p1 = limit->p1.min;
639                                         clock.p1 <= limit->p1.max; clock.p1++) {
640                                         int this_err;
641
642                                         i9xx_clock(refclk, &clock);
643                                         if (!intel_PLL_is_valid(dev, limit,
644                                                                 &clock))
645                                                 continue;
646                                         if (match_clock &&
647                                             clock.p != match_clock->p)
648                                                 continue;
649
650                                         this_err = abs(clock.dot - target);
651                                         if (this_err < err) {
652                                                 *best_clock = clock;
653                                                 err = this_err;
654                                         }
655                                 }
656                         }
657                 }
658         }
659
660         return (err != target);
661 }
662
663 static bool
664 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
665                    int target, int refclk, intel_clock_t *match_clock,
666                    intel_clock_t *best_clock)
667 {
668         struct drm_device *dev = crtc->base.dev;
669         intel_clock_t clock;
670         int err = target;
671
672         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
673                 /*
674                  * For LVDS just rely on its current settings for dual-channel.
675                  * We haven't figured out how to reliably set up different
676                  * single/dual channel state, if we even can.
677                  */
678                 if (intel_is_dual_link_lvds(dev))
679                         clock.p2 = limit->p2.p2_fast;
680                 else
681                         clock.p2 = limit->p2.p2_slow;
682         } else {
683                 if (target < limit->p2.dot_limit)
684                         clock.p2 = limit->p2.p2_slow;
685                 else
686                         clock.p2 = limit->p2.p2_fast;
687         }
688
689         memset(best_clock, 0, sizeof(*best_clock));
690
691         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692              clock.m1++) {
693                 for (clock.m2 = limit->m2.min;
694                      clock.m2 <= limit->m2.max; clock.m2++) {
695                         for (clock.n = limit->n.min;
696                              clock.n <= limit->n.max; clock.n++) {
697                                 for (clock.p1 = limit->p1.min;
698                                         clock.p1 <= limit->p1.max; clock.p1++) {
699                                         int this_err;
700
701                                         pineview_clock(refclk, &clock);
702                                         if (!intel_PLL_is_valid(dev, limit,
703                                                                 &clock))
704                                                 continue;
705                                         if (match_clock &&
706                                             clock.p != match_clock->p)
707                                                 continue;
708
709                                         this_err = abs(clock.dot - target);
710                                         if (this_err < err) {
711                                                 *best_clock = clock;
712                                                 err = this_err;
713                                         }
714                                 }
715                         }
716                 }
717         }
718
719         return (err != target);
720 }
721
722 static bool
723 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
724                    int target, int refclk, intel_clock_t *match_clock,
725                    intel_clock_t *best_clock)
726 {
727         struct drm_device *dev = crtc->base.dev;
728         intel_clock_t clock;
729         int max_n;
730         bool found;
731         /* approximately equals target * 0.00585 */
732         int err_most = (target >> 8) + (target >> 9);
733         found = false;
734
735         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
736                 if (intel_is_dual_link_lvds(dev))
737                         clock.p2 = limit->p2.p2_fast;
738                 else
739                         clock.p2 = limit->p2.p2_slow;
740         } else {
741                 if (target < limit->p2.dot_limit)
742                         clock.p2 = limit->p2.p2_slow;
743                 else
744                         clock.p2 = limit->p2.p2_fast;
745         }
746
747         memset(best_clock, 0, sizeof(*best_clock));
748         max_n = limit->n.max;
749         /* based on hardware requirement, prefer smaller n to precision */
750         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
751                 /* based on hardware requirement, prefere larger m1,m2 */
752                 for (clock.m1 = limit->m1.max;
753                      clock.m1 >= limit->m1.min; clock.m1--) {
754                         for (clock.m2 = limit->m2.max;
755                              clock.m2 >= limit->m2.min; clock.m2--) {
756                                 for (clock.p1 = limit->p1.max;
757                                      clock.p1 >= limit->p1.min; clock.p1--) {
758                                         int this_err;
759
760                                         i9xx_clock(refclk, &clock);
761                                         if (!intel_PLL_is_valid(dev, limit,
762                                                                 &clock))
763                                                 continue;
764
765                                         this_err = abs(clock.dot - target);
766                                         if (this_err < err_most) {
767                                                 *best_clock = clock;
768                                                 err_most = this_err;
769                                                 max_n = clock.n;
770                                                 found = true;
771                                         }
772                                 }
773                         }
774                 }
775         }
776         return found;
777 }
778
779 /*
780  * Check if the calculated PLL configuration is more optimal compared to the
781  * best configuration and error found so far. Return the calculated error.
782  */
783 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784                                const intel_clock_t *calculated_clock,
785                                const intel_clock_t *best_clock,
786                                unsigned int best_error_ppm,
787                                unsigned int *error_ppm)
788 {
789         /*
790          * For CHV ignore the error and consider only the P value.
791          * Prefer a bigger P value based on HW requirements.
792          */
793         if (IS_CHERRYVIEW(dev)) {
794                 *error_ppm = 0;
795
796                 return calculated_clock->p > best_clock->p;
797         }
798
799         if (WARN_ON_ONCE(!target_freq))
800                 return false;
801
802         *error_ppm = div_u64(1000000ULL *
803                                 abs(target_freq - calculated_clock->dot),
804                              target_freq);
805         /*
806          * Prefer a better P value over a better (smaller) error if the error
807          * is small. Ensure this preference for future configurations too by
808          * setting the error to 0.
809          */
810         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811                 *error_ppm = 0;
812
813                 return true;
814         }
815
816         return *error_ppm + 10 < best_error_ppm;
817 }
818
819 static bool
820 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
821                    int target, int refclk, intel_clock_t *match_clock,
822                    intel_clock_t *best_clock)
823 {
824         struct drm_device *dev = crtc->base.dev;
825         intel_clock_t clock;
826         unsigned int bestppm = 1000000;
827         /* min update 19.2 MHz */
828         int max_n = min(limit->n.max, refclk / 19200);
829         bool found = false;
830
831         target *= 5; /* fast clock */
832
833         memset(best_clock, 0, sizeof(*best_clock));
834
835         /* based on hardware requirement, prefer smaller n to precision */
836         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
837                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
839                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840                                 clock.p = clock.p1 * clock.p2;
841                                 /* based on hardware requirement, prefer bigger m1,m2 values */
842                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
843                                         unsigned int ppm;
844
845                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
846                                                                      refclk * clock.m1);
847
848                                         vlv_clock(refclk, &clock);
849
850                                         if (!intel_PLL_is_valid(dev, limit,
851                                                                 &clock))
852                                                 continue;
853
854                                         if (!vlv_PLL_is_optimal(dev, target,
855                                                                 &clock,
856                                                                 best_clock,
857                                                                 bestppm, &ppm))
858                                                 continue;
859
860                                         *best_clock = clock;
861                                         bestppm = ppm;
862                                         found = true;
863                                 }
864                         }
865                 }
866         }
867
868         return found;
869 }
870
871 static bool
872 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
873                    int target, int refclk, intel_clock_t *match_clock,
874                    intel_clock_t *best_clock)
875 {
876         struct drm_device *dev = crtc->base.dev;
877         unsigned int best_error_ppm;
878         intel_clock_t clock;
879         uint64_t m2;
880         int found = false;
881
882         memset(best_clock, 0, sizeof(*best_clock));
883         best_error_ppm = 1000000;
884
885         /*
886          * Based on hardware doc, the n always set to 1, and m1 always
887          * set to 2.  If requires to support 200Mhz refclk, we need to
888          * revisit this because n may not 1 anymore.
889          */
890         clock.n = 1, clock.m1 = 2;
891         target *= 5;    /* fast clock */
892
893         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
894                 for (clock.p2 = limit->p2.p2_fast;
895                                 clock.p2 >= limit->p2.p2_slow;
896                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
897                         unsigned int error_ppm;
898
899                         clock.p = clock.p1 * clock.p2;
900
901                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
902                                         clock.n) << 22, refclk * clock.m1);
903
904                         if (m2 > INT_MAX/clock.m1)
905                                 continue;
906
907                         clock.m2 = m2;
908
909                         chv_clock(refclk, &clock);
910
911                         if (!intel_PLL_is_valid(dev, limit, &clock))
912                                 continue;
913
914                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
915                                                 best_error_ppm, &error_ppm))
916                                 continue;
917
918                         *best_clock = clock;
919                         best_error_ppm = error_ppm;
920                         found = true;
921                 }
922         }
923
924         return found;
925 }
926
927 bool intel_crtc_active(struct drm_crtc *crtc)
928 {
929         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
930
931         /* Be paranoid as we can arrive here with only partial
932          * state retrieved from the hardware during setup.
933          *
934          * We can ditch the adjusted_mode.crtc_clock check as soon
935          * as Haswell has gained clock readout/fastboot support.
936          *
937          * We can ditch the crtc->primary->fb check as soon as we can
938          * properly reconstruct framebuffers.
939          *
940          * FIXME: The intel_crtc->active here should be switched to
941          * crtc->state->active once we have proper CRTC states wired up
942          * for atomic.
943          */
944         return intel_crtc->active && crtc->primary->state->fb &&
945                 intel_crtc->config->base.adjusted_mode.crtc_clock;
946 }
947
948 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
949                                              enum pipe pipe)
950 {
951         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
952         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
953
954         return intel_crtc->config->cpu_transcoder;
955 }
956
957 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
958 {
959         struct drm_i915_private *dev_priv = dev->dev_private;
960         u32 reg = PIPEDSL(pipe);
961         u32 line1, line2;
962         u32 line_mask;
963
964         if (IS_GEN2(dev))
965                 line_mask = DSL_LINEMASK_GEN2;
966         else
967                 line_mask = DSL_LINEMASK_GEN3;
968
969         line1 = I915_READ(reg) & line_mask;
970         mdelay(5);
971         line2 = I915_READ(reg) & line_mask;
972
973         return line1 == line2;
974 }
975
976 /*
977  * intel_wait_for_pipe_off - wait for pipe to turn off
978  * @crtc: crtc whose pipe to wait for
979  *
980  * After disabling a pipe, we can't wait for vblank in the usual way,
981  * spinning on the vblank interrupt status bit, since we won't actually
982  * see an interrupt when the pipe is disabled.
983  *
984  * On Gen4 and above:
985  *   wait for the pipe register state bit to turn off
986  *
987  * Otherwise:
988  *   wait for the display line value to settle (it usually
989  *   ends up stopping at the start of the next frame).
990  *
991  */
992 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
993 {
994         struct drm_device *dev = crtc->base.dev;
995         struct drm_i915_private *dev_priv = dev->dev_private;
996         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
997         enum pipe pipe = crtc->pipe;
998
999         if (INTEL_INFO(dev)->gen >= 4) {
1000                 int reg = PIPECONF(cpu_transcoder);
1001
1002                 /* Wait for the Pipe State to go off */
1003                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1004                              100))
1005                         WARN(1, "pipe_off wait timed out\n");
1006         } else {
1007                 /* Wait for the display line to settle */
1008                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1009                         WARN(1, "pipe_off wait timed out\n");
1010         }
1011 }
1012
1013 /*
1014  * ibx_digital_port_connected - is the specified port connected?
1015  * @dev_priv: i915 private structure
1016  * @port: the port to test
1017  *
1018  * Returns true if @port is connected, false otherwise.
1019  */
1020 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1021                                 struct intel_digital_port *port)
1022 {
1023         u32 bit;
1024
1025         if (HAS_PCH_IBX(dev_priv->dev)) {
1026                 switch (port->port) {
1027                 case PORT_B:
1028                         bit = SDE_PORTB_HOTPLUG;
1029                         break;
1030                 case PORT_C:
1031                         bit = SDE_PORTC_HOTPLUG;
1032                         break;
1033                 case PORT_D:
1034                         bit = SDE_PORTD_HOTPLUG;
1035                         break;
1036                 default:
1037                         return true;
1038                 }
1039         } else {
1040                 switch (port->port) {
1041                 case PORT_B:
1042                         bit = SDE_PORTB_HOTPLUG_CPT;
1043                         break;
1044                 case PORT_C:
1045                         bit = SDE_PORTC_HOTPLUG_CPT;
1046                         break;
1047                 case PORT_D:
1048                         bit = SDE_PORTD_HOTPLUG_CPT;
1049                         break;
1050                 default:
1051                         return true;
1052                 }
1053         }
1054
1055         return I915_READ(SDEISR) & bit;
1056 }
1057
1058 static const char *state_string(bool enabled)
1059 {
1060         return enabled ? "on" : "off";
1061 }
1062
1063 /* Only for pre-ILK configs */
1064 void assert_pll(struct drm_i915_private *dev_priv,
1065                 enum pipe pipe, bool state)
1066 {
1067         int reg;
1068         u32 val;
1069         bool cur_state;
1070
1071         reg = DPLL(pipe);
1072         val = I915_READ(reg);
1073         cur_state = !!(val & DPLL_VCO_ENABLE);
1074         I915_STATE_WARN(cur_state != state,
1075              "PLL state assertion failure (expected %s, current %s)\n",
1076              state_string(state), state_string(cur_state));
1077 }
1078
1079 /* XXX: the dsi pll is shared between MIPI DSI ports */
1080 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1081 {
1082         u32 val;
1083         bool cur_state;
1084
1085         mutex_lock(&dev_priv->dpio_lock);
1086         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1087         mutex_unlock(&dev_priv->dpio_lock);
1088
1089         cur_state = val & DSI_PLL_VCO_EN;
1090         I915_STATE_WARN(cur_state != state,
1091              "DSI PLL state assertion failure (expected %s, current %s)\n",
1092              state_string(state), state_string(cur_state));
1093 }
1094 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1095 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1096
1097 struct intel_shared_dpll *
1098 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1099 {
1100         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1101
1102         if (crtc->config->shared_dpll < 0)
1103                 return NULL;
1104
1105         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1106 }
1107
1108 /* For ILK+ */
1109 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1110                         struct intel_shared_dpll *pll,
1111                         bool state)
1112 {
1113         bool cur_state;
1114         struct intel_dpll_hw_state hw_state;
1115
1116         if (WARN (!pll,
1117                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1118                 return;
1119
1120         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1121         I915_STATE_WARN(cur_state != state,
1122              "%s assertion failure (expected %s, current %s)\n",
1123              pll->name, state_string(state), state_string(cur_state));
1124 }
1125
1126 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1127                           enum pipe pipe, bool state)
1128 {
1129         int reg;
1130         u32 val;
1131         bool cur_state;
1132         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1133                                                                       pipe);
1134
1135         if (HAS_DDI(dev_priv->dev)) {
1136                 /* DDI does not have a specific FDI_TX register */
1137                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1138                 val = I915_READ(reg);
1139                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1140         } else {
1141                 reg = FDI_TX_CTL(pipe);
1142                 val = I915_READ(reg);
1143                 cur_state = !!(val & FDI_TX_ENABLE);
1144         }
1145         I915_STATE_WARN(cur_state != state,
1146              "FDI TX state assertion failure (expected %s, current %s)\n",
1147              state_string(state), state_string(cur_state));
1148 }
1149 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1150 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1151
1152 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1153                           enum pipe pipe, bool state)
1154 {
1155         int reg;
1156         u32 val;
1157         bool cur_state;
1158
1159         reg = FDI_RX_CTL(pipe);
1160         val = I915_READ(reg);
1161         cur_state = !!(val & FDI_RX_ENABLE);
1162         I915_STATE_WARN(cur_state != state,
1163              "FDI RX state assertion failure (expected %s, current %s)\n",
1164              state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170                                       enum pipe pipe)
1171 {
1172         int reg;
1173         u32 val;
1174
1175         /* ILK FDI PLL is always enabled */
1176         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1177                 return;
1178
1179         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180         if (HAS_DDI(dev_priv->dev))
1181                 return;
1182
1183         reg = FDI_TX_CTL(pipe);
1184         val = I915_READ(reg);
1185         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1189                        enum pipe pipe, bool state)
1190 {
1191         int reg;
1192         u32 val;
1193         bool cur_state;
1194
1195         reg = FDI_RX_CTL(pipe);
1196         val = I915_READ(reg);
1197         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1198         I915_STATE_WARN(cur_state != state,
1199              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1200              state_string(state), state_string(cur_state));
1201 }
1202
1203 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204                            enum pipe pipe)
1205 {
1206         struct drm_device *dev = dev_priv->dev;
1207         int pp_reg;
1208         u32 val;
1209         enum pipe panel_pipe = PIPE_A;
1210         bool locked = true;
1211
1212         if (WARN_ON(HAS_DDI(dev)))
1213                 return;
1214
1215         if (HAS_PCH_SPLIT(dev)) {
1216                 u32 port_sel;
1217
1218                 pp_reg = PCH_PP_CONTROL;
1219                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1220
1221                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1222                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1223                         panel_pipe = PIPE_B;
1224                 /* XXX: else fix for eDP */
1225         } else if (IS_VALLEYVIEW(dev)) {
1226                 /* presumably write lock depends on pipe, not port select */
1227                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1228                 panel_pipe = pipe;
1229         } else {
1230                 pp_reg = PP_CONTROL;
1231                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1232                         panel_pipe = PIPE_B;
1233         }
1234
1235         val = I915_READ(pp_reg);
1236         if (!(val & PANEL_POWER_ON) ||
1237             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1238                 locked = false;
1239
1240         I915_STATE_WARN(panel_pipe == pipe && locked,
1241              "panel assertion failure, pipe %c regs locked\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static void assert_cursor(struct drm_i915_private *dev_priv,
1246                           enum pipe pipe, bool state)
1247 {
1248         struct drm_device *dev = dev_priv->dev;
1249         bool cur_state;
1250
1251         if (IS_845G(dev) || IS_I865G(dev))
1252                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1253         else
1254                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1255
1256         I915_STATE_WARN(cur_state != state,
1257              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1258              pipe_name(pipe), state_string(state), state_string(cur_state));
1259 }
1260 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1261 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1262
1263 void assert_pipe(struct drm_i915_private *dev_priv,
1264                  enum pipe pipe, bool state)
1265 {
1266         int reg;
1267         u32 val;
1268         bool cur_state;
1269         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1270                                                                       pipe);
1271
1272         /* if we need the pipe quirk it must be always on */
1273         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1274             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1275                 state = true;
1276
1277         if (!intel_display_power_is_enabled(dev_priv,
1278                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1279                 cur_state = false;
1280         } else {
1281                 reg = PIPECONF(cpu_transcoder);
1282                 val = I915_READ(reg);
1283                 cur_state = !!(val & PIPECONF_ENABLE);
1284         }
1285
1286         I915_STATE_WARN(cur_state != state,
1287              "pipe %c assertion failure (expected %s, current %s)\n",
1288              pipe_name(pipe), state_string(state), state_string(cur_state));
1289 }
1290
1291 static void assert_plane(struct drm_i915_private *dev_priv,
1292                          enum plane plane, bool state)
1293 {
1294         int reg;
1295         u32 val;
1296         bool cur_state;
1297
1298         reg = DSPCNTR(plane);
1299         val = I915_READ(reg);
1300         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1301         I915_STATE_WARN(cur_state != state,
1302              "plane %c assertion failure (expected %s, current %s)\n",
1303              plane_name(plane), state_string(state), state_string(cur_state));
1304 }
1305
1306 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1307 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1308
1309 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1310                                    enum pipe pipe)
1311 {
1312         struct drm_device *dev = dev_priv->dev;
1313         int reg, i;
1314         u32 val;
1315         int cur_pipe;
1316
1317         /* Primary planes are fixed to pipes on gen4+ */
1318         if (INTEL_INFO(dev)->gen >= 4) {
1319                 reg = DSPCNTR(pipe);
1320                 val = I915_READ(reg);
1321                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1322                      "plane %c assertion failure, should be disabled but not\n",
1323                      plane_name(pipe));
1324                 return;
1325         }
1326
1327         /* Need to check both planes against the pipe */
1328         for_each_pipe(dev_priv, i) {
1329                 reg = DSPCNTR(i);
1330                 val = I915_READ(reg);
1331                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1332                         DISPPLANE_SEL_PIPE_SHIFT;
1333                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1334                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1335                      plane_name(i), pipe_name(pipe));
1336         }
1337 }
1338
1339 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1340                                     enum pipe pipe)
1341 {
1342         struct drm_device *dev = dev_priv->dev;
1343         int reg, sprite;
1344         u32 val;
1345
1346         if (INTEL_INFO(dev)->gen >= 9) {
1347                 for_each_sprite(dev_priv, pipe, sprite) {
1348                         val = I915_READ(PLANE_CTL(pipe, sprite));
1349                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1350                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1351                              sprite, pipe_name(pipe));
1352                 }
1353         } else if (IS_VALLEYVIEW(dev)) {
1354                 for_each_sprite(dev_priv, pipe, sprite) {
1355                         reg = SPCNTR(pipe, sprite);
1356                         val = I915_READ(reg);
1357                         I915_STATE_WARN(val & SP_ENABLE,
1358                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1359                              sprite_name(pipe, sprite), pipe_name(pipe));
1360                 }
1361         } else if (INTEL_INFO(dev)->gen >= 7) {
1362                 reg = SPRCTL(pipe);
1363                 val = I915_READ(reg);
1364                 I915_STATE_WARN(val & SPRITE_ENABLE,
1365                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1366                      plane_name(pipe), pipe_name(pipe));
1367         } else if (INTEL_INFO(dev)->gen >= 5) {
1368                 reg = DVSCNTR(pipe);
1369                 val = I915_READ(reg);
1370                 I915_STATE_WARN(val & DVS_ENABLE,
1371                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1372                      plane_name(pipe), pipe_name(pipe));
1373         }
1374 }
1375
1376 static void assert_vblank_disabled(struct drm_crtc *crtc)
1377 {
1378         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1379                 drm_crtc_vblank_put(crtc);
1380 }
1381
1382 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1383 {
1384         u32 val;
1385         bool enabled;
1386
1387         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1388
1389         val = I915_READ(PCH_DREF_CONTROL);
1390         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1391                             DREF_SUPERSPREAD_SOURCE_MASK));
1392         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1393 }
1394
1395 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1396                                            enum pipe pipe)
1397 {
1398         int reg;
1399         u32 val;
1400         bool enabled;
1401
1402         reg = PCH_TRANSCONF(pipe);
1403         val = I915_READ(reg);
1404         enabled = !!(val & TRANS_ENABLE);
1405         I915_STATE_WARN(enabled,
1406              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1407              pipe_name(pipe));
1408 }
1409
1410 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1411                             enum pipe pipe, u32 port_sel, u32 val)
1412 {
1413         if ((val & DP_PORT_EN) == 0)
1414                 return false;
1415
1416         if (HAS_PCH_CPT(dev_priv->dev)) {
1417                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1418                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1419                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1420                         return false;
1421         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1422                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1423                         return false;
1424         } else {
1425                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1426                         return false;
1427         }
1428         return true;
1429 }
1430
1431 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1432                               enum pipe pipe, u32 val)
1433 {
1434         if ((val & SDVO_ENABLE) == 0)
1435                 return false;
1436
1437         if (HAS_PCH_CPT(dev_priv->dev)) {
1438                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1439                         return false;
1440         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1441                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1442                         return false;
1443         } else {
1444                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1445                         return false;
1446         }
1447         return true;
1448 }
1449
1450 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1451                               enum pipe pipe, u32 val)
1452 {
1453         if ((val & LVDS_PORT_EN) == 0)
1454                 return false;
1455
1456         if (HAS_PCH_CPT(dev_priv->dev)) {
1457                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458                         return false;
1459         } else {
1460                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1461                         return false;
1462         }
1463         return true;
1464 }
1465
1466 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1467                               enum pipe pipe, u32 val)
1468 {
1469         if ((val & ADPA_DAC_ENABLE) == 0)
1470                 return false;
1471         if (HAS_PCH_CPT(dev_priv->dev)) {
1472                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1473                         return false;
1474         } else {
1475                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1476                         return false;
1477         }
1478         return true;
1479 }
1480
1481 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1482                                    enum pipe pipe, int reg, u32 port_sel)
1483 {
1484         u32 val = I915_READ(reg);
1485         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1486              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1487              reg, pipe_name(pipe));
1488
1489         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1490              && (val & DP_PIPEB_SELECT),
1491              "IBX PCH dp port still using transcoder B\n");
1492 }
1493
1494 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1495                                      enum pipe pipe, int reg)
1496 {
1497         u32 val = I915_READ(reg);
1498         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1499              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1500              reg, pipe_name(pipe));
1501
1502         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1503              && (val & SDVO_PIPE_B_SELECT),
1504              "IBX PCH hdmi port still using transcoder B\n");
1505 }
1506
1507 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1508                                       enum pipe pipe)
1509 {
1510         int reg;
1511         u32 val;
1512
1513         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1514         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1516
1517         reg = PCH_ADPA;
1518         val = I915_READ(reg);
1519         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1520              "PCH VGA enabled on transcoder %c, should be disabled\n",
1521              pipe_name(pipe));
1522
1523         reg = PCH_LVDS;
1524         val = I915_READ(reg);
1525         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1526              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1527              pipe_name(pipe));
1528
1529         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1531         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1532 }
1533
1534 static void intel_init_dpio(struct drm_device *dev)
1535 {
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538         if (!IS_VALLEYVIEW(dev))
1539                 return;
1540
1541         /*
1542          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1543          * CHV x1 PHY (DP/HDMI D)
1544          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1545          */
1546         if (IS_CHERRYVIEW(dev)) {
1547                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1548                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1549         } else {
1550                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1551         }
1552 }
1553
1554 static void vlv_enable_pll(struct intel_crtc *crtc,
1555                            const struct intel_crtc_state *pipe_config)
1556 {
1557         struct drm_device *dev = crtc->base.dev;
1558         struct drm_i915_private *dev_priv = dev->dev_private;
1559         int reg = DPLL(crtc->pipe);
1560         u32 dpll = pipe_config->dpll_hw_state.dpll;
1561
1562         assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564         /* No really, not for ILK+ */
1565         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1566
1567         /* PLL is protected by panel, make sure we can write it */
1568         if (IS_MOBILE(dev_priv->dev))
1569                 assert_panel_unlocked(dev_priv, crtc->pipe);
1570
1571         I915_WRITE(reg, dpll);
1572         POSTING_READ(reg);
1573         udelay(150);
1574
1575         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1577
1578         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1579         POSTING_READ(DPLL_MD(crtc->pipe));
1580
1581         /* We do this three times for luck */
1582         I915_WRITE(reg, dpll);
1583         POSTING_READ(reg);
1584         udelay(150); /* wait for warmup */
1585         I915_WRITE(reg, dpll);
1586         POSTING_READ(reg);
1587         udelay(150); /* wait for warmup */
1588         I915_WRITE(reg, dpll);
1589         POSTING_READ(reg);
1590         udelay(150); /* wait for warmup */
1591 }
1592
1593 static void chv_enable_pll(struct intel_crtc *crtc,
1594                            const struct intel_crtc_state *pipe_config)
1595 {
1596         struct drm_device *dev = crtc->base.dev;
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598         int pipe = crtc->pipe;
1599         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1600         u32 tmp;
1601
1602         assert_pipe_disabled(dev_priv, crtc->pipe);
1603
1604         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1605
1606         mutex_lock(&dev_priv->dpio_lock);
1607
1608         /* Enable back the 10bit clock to display controller */
1609         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610         tmp |= DPIO_DCLKP_EN;
1611         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1612
1613         /*
1614          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1615          */
1616         udelay(1);
1617
1618         /* Enable PLL */
1619         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1620
1621         /* Check PLL is locked */
1622         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1623                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1624
1625         /* not sure when this should be written */
1626         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1627         POSTING_READ(DPLL_MD(pipe));
1628
1629         mutex_unlock(&dev_priv->dpio_lock);
1630 }
1631
1632 static int intel_num_dvo_pipes(struct drm_device *dev)
1633 {
1634         struct intel_crtc *crtc;
1635         int count = 0;
1636
1637         for_each_intel_crtc(dev, crtc)
1638                 count += crtc->active &&
1639                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1640
1641         return count;
1642 }
1643
1644 static void i9xx_enable_pll(struct intel_crtc *crtc)
1645 {
1646         struct drm_device *dev = crtc->base.dev;
1647         struct drm_i915_private *dev_priv = dev->dev_private;
1648         int reg = DPLL(crtc->pipe);
1649         u32 dpll = crtc->config->dpll_hw_state.dpll;
1650
1651         assert_pipe_disabled(dev_priv, crtc->pipe);
1652
1653         /* No really, not for ILK+ */
1654         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1655
1656         /* PLL is protected by panel, make sure we can write it */
1657         if (IS_MOBILE(dev) && !IS_I830(dev))
1658                 assert_panel_unlocked(dev_priv, crtc->pipe);
1659
1660         /* Enable DVO 2x clock on both PLLs if necessary */
1661         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1662                 /*
1663                  * It appears to be important that we don't enable this
1664                  * for the current pipe before otherwise configuring the
1665                  * PLL. No idea how this should be handled if multiple
1666                  * DVO outputs are enabled simultaneosly.
1667                  */
1668                 dpll |= DPLL_DVO_2X_MODE;
1669                 I915_WRITE(DPLL(!crtc->pipe),
1670                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1671         }
1672
1673         /* Wait for the clocks to stabilize. */
1674         POSTING_READ(reg);
1675         udelay(150);
1676
1677         if (INTEL_INFO(dev)->gen >= 4) {
1678                 I915_WRITE(DPLL_MD(crtc->pipe),
1679                            crtc->config->dpll_hw_state.dpll_md);
1680         } else {
1681                 /* The pixel multiplier can only be updated once the
1682                  * DPLL is enabled and the clocks are stable.
1683                  *
1684                  * So write it again.
1685                  */
1686                 I915_WRITE(reg, dpll);
1687         }
1688
1689         /* We do this three times for luck */
1690         I915_WRITE(reg, dpll);
1691         POSTING_READ(reg);
1692         udelay(150); /* wait for warmup */
1693         I915_WRITE(reg, dpll);
1694         POSTING_READ(reg);
1695         udelay(150); /* wait for warmup */
1696         I915_WRITE(reg, dpll);
1697         POSTING_READ(reg);
1698         udelay(150); /* wait for warmup */
1699 }
1700
1701 /**
1702  * i9xx_disable_pll - disable a PLL
1703  * @dev_priv: i915 private structure
1704  * @pipe: pipe PLL to disable
1705  *
1706  * Disable the PLL for @pipe, making sure the pipe is off first.
1707  *
1708  * Note!  This is for pre-ILK only.
1709  */
1710 static void i9xx_disable_pll(struct intel_crtc *crtc)
1711 {
1712         struct drm_device *dev = crtc->base.dev;
1713         struct drm_i915_private *dev_priv = dev->dev_private;
1714         enum pipe pipe = crtc->pipe;
1715
1716         /* Disable DVO 2x clock on both PLLs if necessary */
1717         if (IS_I830(dev) &&
1718             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1719             intel_num_dvo_pipes(dev) == 1) {
1720                 I915_WRITE(DPLL(PIPE_B),
1721                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1722                 I915_WRITE(DPLL(PIPE_A),
1723                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1724         }
1725
1726         /* Don't disable pipe or pipe PLLs if needed */
1727         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1728             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1729                 return;
1730
1731         /* Make sure the pipe isn't still relying on us */
1732         assert_pipe_disabled(dev_priv, pipe);
1733
1734         I915_WRITE(DPLL(pipe), 0);
1735         POSTING_READ(DPLL(pipe));
1736 }
1737
1738 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1739 {
1740         u32 val = 0;
1741
1742         /* Make sure the pipe isn't still relying on us */
1743         assert_pipe_disabled(dev_priv, pipe);
1744
1745         /*
1746          * Leave integrated clock source and reference clock enabled for pipe B.
1747          * The latter is needed for VGA hotplug / manual detection.
1748          */
1749         if (pipe == PIPE_B)
1750                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1751         I915_WRITE(DPLL(pipe), val);
1752         POSTING_READ(DPLL(pipe));
1753
1754 }
1755
1756 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1757 {
1758         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1759         u32 val;
1760
1761         /* Make sure the pipe isn't still relying on us */
1762         assert_pipe_disabled(dev_priv, pipe);
1763
1764         /* Set PLL en = 0 */
1765         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1766         if (pipe != PIPE_A)
1767                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1768         I915_WRITE(DPLL(pipe), val);
1769         POSTING_READ(DPLL(pipe));
1770
1771         mutex_lock(&dev_priv->dpio_lock);
1772
1773         /* Disable 10bit clock to display controller */
1774         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1775         val &= ~DPIO_DCLKP_EN;
1776         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1777
1778         /* disable left/right clock distribution */
1779         if (pipe != PIPE_B) {
1780                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1781                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1782                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1783         } else {
1784                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1785                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1786                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1787         }
1788
1789         mutex_unlock(&dev_priv->dpio_lock);
1790 }
1791
1792 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1793                 struct intel_digital_port *dport)
1794 {
1795         u32 port_mask;
1796         int dpll_reg;
1797
1798         switch (dport->port) {
1799         case PORT_B:
1800                 port_mask = DPLL_PORTB_READY_MASK;
1801                 dpll_reg = DPLL(0);
1802                 break;
1803         case PORT_C:
1804                 port_mask = DPLL_PORTC_READY_MASK;
1805                 dpll_reg = DPLL(0);
1806                 break;
1807         case PORT_D:
1808                 port_mask = DPLL_PORTD_READY_MASK;
1809                 dpll_reg = DPIO_PHY_STATUS;
1810                 break;
1811         default:
1812                 BUG();
1813         }
1814
1815         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1816                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1817                      port_name(dport->port), I915_READ(dpll_reg));
1818 }
1819
1820 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1821 {
1822         struct drm_device *dev = crtc->base.dev;
1823         struct drm_i915_private *dev_priv = dev->dev_private;
1824         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1825
1826         if (WARN_ON(pll == NULL))
1827                 return;
1828
1829         WARN_ON(!pll->config.crtc_mask);
1830         if (pll->active == 0) {
1831                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1832                 WARN_ON(pll->on);
1833                 assert_shared_dpll_disabled(dev_priv, pll);
1834
1835                 pll->mode_set(dev_priv, pll);
1836         }
1837 }
1838
1839 /**
1840  * intel_enable_shared_dpll - enable PCH PLL
1841  * @dev_priv: i915 private structure
1842  * @pipe: pipe PLL to enable
1843  *
1844  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1845  * drives the transcoder clock.
1846  */
1847 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1848 {
1849         struct drm_device *dev = crtc->base.dev;
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1852
1853         if (WARN_ON(pll == NULL))
1854                 return;
1855
1856         if (WARN_ON(pll->config.crtc_mask == 0))
1857                 return;
1858
1859         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1860                       pll->name, pll->active, pll->on,
1861                       crtc->base.base.id);
1862
1863         if (pll->active++) {
1864                 WARN_ON(!pll->on);
1865                 assert_shared_dpll_enabled(dev_priv, pll);
1866                 return;
1867         }
1868         WARN_ON(pll->on);
1869
1870         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1871
1872         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1873         pll->enable(dev_priv, pll);
1874         pll->on = true;
1875 }
1876
1877 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1878 {
1879         struct drm_device *dev = crtc->base.dev;
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1882
1883         /* PCH only available on ILK+ */
1884         BUG_ON(INTEL_INFO(dev)->gen < 5);
1885         if (WARN_ON(pll == NULL))
1886                return;
1887
1888         if (WARN_ON(pll->config.crtc_mask == 0))
1889                 return;
1890
1891         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1892                       pll->name, pll->active, pll->on,
1893                       crtc->base.base.id);
1894
1895         if (WARN_ON(pll->active == 0)) {
1896                 assert_shared_dpll_disabled(dev_priv, pll);
1897                 return;
1898         }
1899
1900         assert_shared_dpll_enabled(dev_priv, pll);
1901         WARN_ON(!pll->on);
1902         if (--pll->active)
1903                 return;
1904
1905         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1906         pll->disable(dev_priv, pll);
1907         pll->on = false;
1908
1909         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1910 }
1911
1912 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1913                                            enum pipe pipe)
1914 {
1915         struct drm_device *dev = dev_priv->dev;
1916         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1918         uint32_t reg, val, pipeconf_val;
1919
1920         /* PCH only available on ILK+ */
1921         BUG_ON(!HAS_PCH_SPLIT(dev));
1922
1923         /* Make sure PCH DPLL is enabled */
1924         assert_shared_dpll_enabled(dev_priv,
1925                                    intel_crtc_to_shared_dpll(intel_crtc));
1926
1927         /* FDI must be feeding us bits for PCH ports */
1928         assert_fdi_tx_enabled(dev_priv, pipe);
1929         assert_fdi_rx_enabled(dev_priv, pipe);
1930
1931         if (HAS_PCH_CPT(dev)) {
1932                 /* Workaround: Set the timing override bit before enabling the
1933                  * pch transcoder. */
1934                 reg = TRANS_CHICKEN2(pipe);
1935                 val = I915_READ(reg);
1936                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1937                 I915_WRITE(reg, val);
1938         }
1939
1940         reg = PCH_TRANSCONF(pipe);
1941         val = I915_READ(reg);
1942         pipeconf_val = I915_READ(PIPECONF(pipe));
1943
1944         if (HAS_PCH_IBX(dev_priv->dev)) {
1945                 /*
1946                  * make the BPC in transcoder be consistent with
1947                  * that in pipeconf reg.
1948                  */
1949                 val &= ~PIPECONF_BPC_MASK;
1950                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1951         }
1952
1953         val &= ~TRANS_INTERLACE_MASK;
1954         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1955                 if (HAS_PCH_IBX(dev_priv->dev) &&
1956                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1957                         val |= TRANS_LEGACY_INTERLACED_ILK;
1958                 else
1959                         val |= TRANS_INTERLACED;
1960         else
1961                 val |= TRANS_PROGRESSIVE;
1962
1963         I915_WRITE(reg, val | TRANS_ENABLE);
1964         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1965                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1966 }
1967
1968 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1969                                       enum transcoder cpu_transcoder)
1970 {
1971         u32 val, pipeconf_val;
1972
1973         /* PCH only available on ILK+ */
1974         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1975
1976         /* FDI must be feeding us bits for PCH ports */
1977         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1978         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1979
1980         /* Workaround: set timing override bit. */
1981         val = I915_READ(_TRANSA_CHICKEN2);
1982         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1983         I915_WRITE(_TRANSA_CHICKEN2, val);
1984
1985         val = TRANS_ENABLE;
1986         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1987
1988         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1989             PIPECONF_INTERLACED_ILK)
1990                 val |= TRANS_INTERLACED;
1991         else
1992                 val |= TRANS_PROGRESSIVE;
1993
1994         I915_WRITE(LPT_TRANSCONF, val);
1995         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1996                 DRM_ERROR("Failed to enable PCH transcoder\n");
1997 }
1998
1999 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2000                                             enum pipe pipe)
2001 {
2002         struct drm_device *dev = dev_priv->dev;
2003         uint32_t reg, val;
2004
2005         /* FDI relies on the transcoder */
2006         assert_fdi_tx_disabled(dev_priv, pipe);
2007         assert_fdi_rx_disabled(dev_priv, pipe);
2008
2009         /* Ports must be off as well */
2010         assert_pch_ports_disabled(dev_priv, pipe);
2011
2012         reg = PCH_TRANSCONF(pipe);
2013         val = I915_READ(reg);
2014         val &= ~TRANS_ENABLE;
2015         I915_WRITE(reg, val);
2016         /* wait for PCH transcoder off, transcoder state */
2017         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2018                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2019
2020         if (!HAS_PCH_IBX(dev)) {
2021                 /* Workaround: Clear the timing override chicken bit again. */
2022                 reg = TRANS_CHICKEN2(pipe);
2023                 val = I915_READ(reg);
2024                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2025                 I915_WRITE(reg, val);
2026         }
2027 }
2028
2029 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2030 {
2031         u32 val;
2032
2033         val = I915_READ(LPT_TRANSCONF);
2034         val &= ~TRANS_ENABLE;
2035         I915_WRITE(LPT_TRANSCONF, val);
2036         /* wait for PCH transcoder off, transcoder state */
2037         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2038                 DRM_ERROR("Failed to disable PCH transcoder\n");
2039
2040         /* Workaround: clear timing override bit. */
2041         val = I915_READ(_TRANSA_CHICKEN2);
2042         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2043         I915_WRITE(_TRANSA_CHICKEN2, val);
2044 }
2045
2046 /**
2047  * intel_enable_pipe - enable a pipe, asserting requirements
2048  * @crtc: crtc responsible for the pipe
2049  *
2050  * Enable @crtc's pipe, making sure that various hardware specific requirements
2051  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2052  */
2053 static void intel_enable_pipe(struct intel_crtc *crtc)
2054 {
2055         struct drm_device *dev = crtc->base.dev;
2056         struct drm_i915_private *dev_priv = dev->dev_private;
2057         enum pipe pipe = crtc->pipe;
2058         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2059                                                                       pipe);
2060         enum pipe pch_transcoder;
2061         int reg;
2062         u32 val;
2063
2064         assert_planes_disabled(dev_priv, pipe);
2065         assert_cursor_disabled(dev_priv, pipe);
2066         assert_sprites_disabled(dev_priv, pipe);
2067
2068         if (HAS_PCH_LPT(dev_priv->dev))
2069                 pch_transcoder = TRANSCODER_A;
2070         else
2071                 pch_transcoder = pipe;
2072
2073         /*
2074          * A pipe without a PLL won't actually be able to drive bits from
2075          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2076          * need the check.
2077          */
2078         if (!HAS_PCH_SPLIT(dev_priv->dev))
2079                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2080                         assert_dsi_pll_enabled(dev_priv);
2081                 else
2082                         assert_pll_enabled(dev_priv, pipe);
2083         else {
2084                 if (crtc->config->has_pch_encoder) {
2085                         /* if driving the PCH, we need FDI enabled */
2086                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2087                         assert_fdi_tx_pll_enabled(dev_priv,
2088                                                   (enum pipe) cpu_transcoder);
2089                 }
2090                 /* FIXME: assert CPU port conditions for SNB+ */
2091         }
2092
2093         reg = PIPECONF(cpu_transcoder);
2094         val = I915_READ(reg);
2095         if (val & PIPECONF_ENABLE) {
2096                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2097                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2098                 return;
2099         }
2100
2101         I915_WRITE(reg, val | PIPECONF_ENABLE);
2102         POSTING_READ(reg);
2103 }
2104
2105 /**
2106  * intel_disable_pipe - disable a pipe, asserting requirements
2107  * @crtc: crtc whose pipes is to be disabled
2108  *
2109  * Disable the pipe of @crtc, making sure that various hardware
2110  * specific requirements are met, if applicable, e.g. plane
2111  * disabled, panel fitter off, etc.
2112  *
2113  * Will wait until the pipe has shut down before returning.
2114  */
2115 static void intel_disable_pipe(struct intel_crtc *crtc)
2116 {
2117         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2118         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2119         enum pipe pipe = crtc->pipe;
2120         int reg;
2121         u32 val;
2122
2123         /*
2124          * Make sure planes won't keep trying to pump pixels to us,
2125          * or we might hang the display.
2126          */
2127         assert_planes_disabled(dev_priv, pipe);
2128         assert_cursor_disabled(dev_priv, pipe);
2129         assert_sprites_disabled(dev_priv, pipe);
2130
2131         reg = PIPECONF(cpu_transcoder);
2132         val = I915_READ(reg);
2133         if ((val & PIPECONF_ENABLE) == 0)
2134                 return;
2135
2136         /*
2137          * Double wide has implications for planes
2138          * so best keep it disabled when not needed.
2139          */
2140         if (crtc->config->double_wide)
2141                 val &= ~PIPECONF_DOUBLE_WIDE;
2142
2143         /* Don't disable pipe or pipe PLLs if needed */
2144         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2145             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2146                 val &= ~PIPECONF_ENABLE;
2147
2148         I915_WRITE(reg, val);
2149         if ((val & PIPECONF_ENABLE) == 0)
2150                 intel_wait_for_pipe_off(crtc);
2151 }
2152
2153 /*
2154  * Plane regs are double buffered, going from enabled->disabled needs a
2155  * trigger in order to latch.  The display address reg provides this.
2156  */
2157 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2158                                enum plane plane)
2159 {
2160         struct drm_device *dev = dev_priv->dev;
2161         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2162
2163         I915_WRITE(reg, I915_READ(reg));
2164         POSTING_READ(reg);
2165 }
2166
2167 /**
2168  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2169  * @plane:  plane to be enabled
2170  * @crtc: crtc for the plane
2171  *
2172  * Enable @plane on @crtc, making sure that the pipe is running first.
2173  */
2174 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2175                                           struct drm_crtc *crtc)
2176 {
2177         struct drm_device *dev = plane->dev;
2178         struct drm_i915_private *dev_priv = dev->dev_private;
2179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2180
2181         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2182         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2183
2184         if (intel_crtc->primary_enabled)
2185                 return;
2186
2187         intel_crtc->primary_enabled = true;
2188
2189         dev_priv->display.update_primary_plane(crtc, plane->fb,
2190                                                crtc->x, crtc->y);
2191
2192         /*
2193          * BDW signals flip done immediately if the plane
2194          * is disabled, even if the plane enable is already
2195          * armed to occur at the next vblank :(
2196          */
2197         if (IS_BROADWELL(dev))
2198                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2199 }
2200
2201 /**
2202  * intel_disable_primary_hw_plane - disable the primary hardware plane
2203  * @plane: plane to be disabled
2204  * @crtc: crtc for the plane
2205  *
2206  * Disable @plane on @crtc, making sure that the pipe is running first.
2207  */
2208 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2209                                            struct drm_crtc *crtc)
2210 {
2211         struct drm_device *dev = plane->dev;
2212         struct drm_i915_private *dev_priv = dev->dev_private;
2213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214
2215         if (WARN_ON(!intel_crtc->active))
2216                 return;
2217
2218         if (!intel_crtc->primary_enabled)
2219                 return;
2220
2221         intel_crtc->primary_enabled = false;
2222
2223         dev_priv->display.update_primary_plane(crtc, plane->fb,
2224                                                crtc->x, crtc->y);
2225 }
2226
2227 static bool need_vtd_wa(struct drm_device *dev)
2228 {
2229 #ifdef CONFIG_INTEL_IOMMU
2230         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2231                 return true;
2232 #endif
2233         return false;
2234 }
2235
2236 unsigned int
2237 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2238                   uint64_t fb_format_modifier)
2239 {
2240         unsigned int tile_height;
2241         uint32_t pixel_bytes;
2242
2243         switch (fb_format_modifier) {
2244         case DRM_FORMAT_MOD_NONE:
2245                 tile_height = 1;
2246                 break;
2247         case I915_FORMAT_MOD_X_TILED:
2248                 tile_height = IS_GEN2(dev) ? 16 : 8;
2249                 break;
2250         case I915_FORMAT_MOD_Y_TILED:
2251                 tile_height = 32;
2252                 break;
2253         case I915_FORMAT_MOD_Yf_TILED:
2254                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2255                 switch (pixel_bytes) {
2256                 default:
2257                 case 1:
2258                         tile_height = 64;
2259                         break;
2260                 case 2:
2261                 case 4:
2262                         tile_height = 32;
2263                         break;
2264                 case 8:
2265                         tile_height = 16;
2266                         break;
2267                 case 16:
2268                         WARN_ONCE(1,
2269                                   "128-bit pixels are not supported for display!");
2270                         tile_height = 16;
2271                         break;
2272                 }
2273                 break;
2274         default:
2275                 MISSING_CASE(fb_format_modifier);
2276                 tile_height = 1;
2277                 break;
2278         }
2279
2280         return tile_height;
2281 }
2282
2283 unsigned int
2284 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2285                       uint32_t pixel_format, uint64_t fb_format_modifier)
2286 {
2287         return ALIGN(height, intel_tile_height(dev, pixel_format,
2288                                                fb_format_modifier));
2289 }
2290
2291 static int
2292 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2293                         const struct drm_plane_state *plane_state)
2294 {
2295         struct intel_rotation_info *info = &view->rotation_info;
2296         static const struct i915_ggtt_view rotated_view =
2297                                 { .type = I915_GGTT_VIEW_ROTATED };
2298
2299         *view = i915_ggtt_view_normal;
2300
2301         if (!plane_state)
2302                 return 0;
2303
2304         if (!intel_rotation_90_or_270(plane_state->rotation))
2305                 return 0;
2306
2307         *view = rotated_view;
2308
2309         info->height = fb->height;
2310         info->pixel_format = fb->pixel_format;
2311         info->pitch = fb->pitches[0];
2312         info->fb_modifier = fb->modifier[0];
2313
2314         if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2315               info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2316                 DRM_DEBUG_KMS(
2317                               "Y or Yf tiling is needed for 90/270 rotation!\n");
2318                 return -EINVAL;
2319         }
2320
2321         return 0;
2322 }
2323
2324 int
2325 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326                            struct drm_framebuffer *fb,
2327                            const struct drm_plane_state *plane_state,
2328                            struct intel_engine_cs *pipelined)
2329 {
2330         struct drm_device *dev = fb->dev;
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2333         struct i915_ggtt_view view;
2334         u32 alignment;
2335         int ret;
2336
2337         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
2339         switch (fb->modifier[0]) {
2340         case DRM_FORMAT_MOD_NONE:
2341                 if (INTEL_INFO(dev)->gen >= 9)
2342                         alignment = 256 * 1024;
2343                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2344                         alignment = 128 * 1024;
2345                 else if (INTEL_INFO(dev)->gen >= 4)
2346                         alignment = 4 * 1024;
2347                 else
2348                         alignment = 64 * 1024;
2349                 break;
2350         case I915_FORMAT_MOD_X_TILED:
2351                 if (INTEL_INFO(dev)->gen >= 9)
2352                         alignment = 256 * 1024;
2353                 else {
2354                         /* pin() will align the object as required by fence */
2355                         alignment = 0;
2356                 }
2357                 break;
2358         case I915_FORMAT_MOD_Y_TILED:
2359         case I915_FORMAT_MOD_Yf_TILED:
2360                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361                           "Y tiling bo slipped through, driver bug!\n"))
2362                         return -EINVAL;
2363                 alignment = 1 * 1024 * 1024;
2364                 break;
2365         default:
2366                 MISSING_CASE(fb->modifier[0]);
2367                 return -EINVAL;
2368         }
2369
2370         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371         if (ret)
2372                 return ret;
2373
2374         /* Note that the w/a also requires 64 PTE of padding following the
2375          * bo. We currently fill all unused PTE with the shadow page and so
2376          * we should always have valid PTE following the scanout preventing
2377          * the VT-d warning.
2378          */
2379         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380                 alignment = 256 * 1024;
2381
2382         /*
2383          * Global gtt pte registers are special registers which actually forward
2384          * writes to a chunk of system memory. Which means that there is no risk
2385          * that the register values disappear as soon as we call
2386          * intel_runtime_pm_put(), so it is correct to wrap only the
2387          * pin/unpin/fence and not more.
2388          */
2389         intel_runtime_pm_get(dev_priv);
2390
2391         dev_priv->mm.interruptible = false;
2392         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393                                                    &view);
2394         if (ret)
2395                 goto err_interruptible;
2396
2397         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398          * fence, whereas 965+ only requires a fence if using
2399          * framebuffer compression.  For simplicity, we always install
2400          * a fence as the cost is not that onerous.
2401          */
2402         ret = i915_gem_object_get_fence(obj);
2403         if (ret)
2404                 goto err_unpin;
2405
2406         i915_gem_object_pin_fence(obj);
2407
2408         dev_priv->mm.interruptible = true;
2409         intel_runtime_pm_put(dev_priv);
2410         return 0;
2411
2412 err_unpin:
2413         i915_gem_object_unpin_from_display_plane(obj, &view);
2414 err_interruptible:
2415         dev_priv->mm.interruptible = true;
2416         intel_runtime_pm_put(dev_priv);
2417         return ret;
2418 }
2419
2420 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421                                const struct drm_plane_state *plane_state)
2422 {
2423         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2424         struct i915_ggtt_view view;
2425         int ret;
2426
2427         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
2429         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430         WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
2432         i915_gem_object_unpin_fence(obj);
2433         i915_gem_object_unpin_from_display_plane(obj, &view);
2434 }
2435
2436 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437  * is assumed to be a power-of-two. */
2438 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439                                              unsigned int tiling_mode,
2440                                              unsigned int cpp,
2441                                              unsigned int pitch)
2442 {
2443         if (tiling_mode != I915_TILING_NONE) {
2444                 unsigned int tile_rows, tiles;
2445
2446                 tile_rows = *y / 8;
2447                 *y %= 8;
2448
2449                 tiles = *x / (512/cpp);
2450                 *x %= 512/cpp;
2451
2452                 return tile_rows * pitch * 8 + tiles * 4096;
2453         } else {
2454                 unsigned int offset;
2455
2456                 offset = *y * pitch + *x * cpp;
2457                 *y = 0;
2458                 *x = (offset & 4095) / cpp;
2459                 return offset & -4096;
2460         }
2461 }
2462
2463 static int i9xx_format_to_fourcc(int format)
2464 {
2465         switch (format) {
2466         case DISPPLANE_8BPP:
2467                 return DRM_FORMAT_C8;
2468         case DISPPLANE_BGRX555:
2469                 return DRM_FORMAT_XRGB1555;
2470         case DISPPLANE_BGRX565:
2471                 return DRM_FORMAT_RGB565;
2472         default:
2473         case DISPPLANE_BGRX888:
2474                 return DRM_FORMAT_XRGB8888;
2475         case DISPPLANE_RGBX888:
2476                 return DRM_FORMAT_XBGR8888;
2477         case DISPPLANE_BGRX101010:
2478                 return DRM_FORMAT_XRGB2101010;
2479         case DISPPLANE_RGBX101010:
2480                 return DRM_FORMAT_XBGR2101010;
2481         }
2482 }
2483
2484 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485 {
2486         switch (format) {
2487         case PLANE_CTL_FORMAT_RGB_565:
2488                 return DRM_FORMAT_RGB565;
2489         default:
2490         case PLANE_CTL_FORMAT_XRGB_8888:
2491                 if (rgb_order) {
2492                         if (alpha)
2493                                 return DRM_FORMAT_ABGR8888;
2494                         else
2495                                 return DRM_FORMAT_XBGR8888;
2496                 } else {
2497                         if (alpha)
2498                                 return DRM_FORMAT_ARGB8888;
2499                         else
2500                                 return DRM_FORMAT_XRGB8888;
2501                 }
2502         case PLANE_CTL_FORMAT_XRGB_2101010:
2503                 if (rgb_order)
2504                         return DRM_FORMAT_XBGR2101010;
2505                 else
2506                         return DRM_FORMAT_XRGB2101010;
2507         }
2508 }
2509
2510 static bool
2511 intel_alloc_plane_obj(struct intel_crtc *crtc,
2512                       struct intel_initial_plane_config *plane_config)
2513 {
2514         struct drm_device *dev = crtc->base.dev;
2515         struct drm_i915_gem_object *obj = NULL;
2516         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2517         struct drm_framebuffer *fb = &plane_config->fb->base;
2518         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520                                     PAGE_SIZE);
2521
2522         size_aligned -= base_aligned;
2523
2524         if (plane_config->size == 0)
2525                 return false;
2526
2527         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528                                                              base_aligned,
2529                                                              base_aligned,
2530                                                              size_aligned);
2531         if (!obj)
2532                 return false;
2533
2534         obj->tiling_mode = plane_config->tiling;
2535         if (obj->tiling_mode == I915_TILING_X)
2536                 obj->stride = fb->pitches[0];
2537
2538         mode_cmd.pixel_format = fb->pixel_format;
2539         mode_cmd.width = fb->width;
2540         mode_cmd.height = fb->height;
2541         mode_cmd.pitches[0] = fb->pitches[0];
2542         mode_cmd.modifier[0] = fb->modifier[0];
2543         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2544
2545         mutex_lock(&dev->struct_mutex);
2546
2547         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2548                                    &mode_cmd, obj)) {
2549                 DRM_DEBUG_KMS("intel fb init failed\n");
2550                 goto out_unref_obj;
2551         }
2552
2553         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2554         mutex_unlock(&dev->struct_mutex);
2555
2556         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2557         return true;
2558
2559 out_unref_obj:
2560         drm_gem_object_unreference(&obj->base);
2561         mutex_unlock(&dev->struct_mutex);
2562         return false;
2563 }
2564
2565 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2566 static void
2567 update_state_fb(struct drm_plane *plane)
2568 {
2569         if (plane->fb == plane->state->fb)
2570                 return;
2571
2572         if (plane->state->fb)
2573                 drm_framebuffer_unreference(plane->state->fb);
2574         plane->state->fb = plane->fb;
2575         if (plane->state->fb)
2576                 drm_framebuffer_reference(plane->state->fb);
2577 }
2578
2579 static void
2580 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2581                      struct intel_initial_plane_config *plane_config)
2582 {
2583         struct drm_device *dev = intel_crtc->base.dev;
2584         struct drm_i915_private *dev_priv = dev->dev_private;
2585         struct drm_crtc *c;
2586         struct intel_crtc *i;
2587         struct drm_i915_gem_object *obj;
2588
2589         if (!plane_config->fb)
2590                 return;
2591
2592         if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
2593                 struct drm_plane *primary = intel_crtc->base.primary;
2594
2595                 primary->fb = &plane_config->fb->base;
2596                 primary->state->crtc = &intel_crtc->base;
2597                 update_state_fb(primary);
2598
2599                 return;
2600         }
2601
2602         kfree(plane_config->fb);
2603
2604         /*
2605          * Failed to alloc the obj, check to see if we should share
2606          * an fb with another CRTC instead
2607          */
2608         for_each_crtc(dev, c) {
2609                 i = to_intel_crtc(c);
2610
2611                 if (c == &intel_crtc->base)
2612                         continue;
2613
2614                 if (!i->active)
2615                         continue;
2616
2617                 obj = intel_fb_obj(c->primary->fb);
2618                 if (obj == NULL)
2619                         continue;
2620
2621                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2622                         struct drm_plane *primary = intel_crtc->base.primary;
2623
2624                         if (obj->tiling_mode != I915_TILING_NONE)
2625                                 dev_priv->preserve_bios_swizzle = true;
2626
2627                         drm_framebuffer_reference(c->primary->fb);
2628                         primary->fb = c->primary->fb;
2629                         primary->state->crtc = &intel_crtc->base;
2630                         update_state_fb(intel_crtc->base.primary);
2631                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2632                         break;
2633                 }
2634         }
2635 }
2636
2637 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2638                                       struct drm_framebuffer *fb,
2639                                       int x, int y)
2640 {
2641         struct drm_device *dev = crtc->dev;
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2644         struct drm_i915_gem_object *obj;
2645         int plane = intel_crtc->plane;
2646         unsigned long linear_offset;
2647         u32 dspcntr;
2648         u32 reg = DSPCNTR(plane);
2649         int pixel_size;
2650
2651         if (!intel_crtc->primary_enabled) {
2652                 I915_WRITE(reg, 0);
2653                 if (INTEL_INFO(dev)->gen >= 4)
2654                         I915_WRITE(DSPSURF(plane), 0);
2655                 else
2656                         I915_WRITE(DSPADDR(plane), 0);
2657                 POSTING_READ(reg);
2658                 return;
2659         }
2660
2661         obj = intel_fb_obj(fb);
2662         if (WARN_ON(obj == NULL))
2663                 return;
2664
2665         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
2667         dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
2669         dspcntr |= DISPLAY_PLANE_ENABLE;
2670
2671         if (INTEL_INFO(dev)->gen < 4) {
2672                 if (intel_crtc->pipe == PIPE_B)
2673                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675                 /* pipesrc and dspsize control the size that is scaled from,
2676                  * which should always be the user's requested size.
2677                  */
2678                 I915_WRITE(DSPSIZE(plane),
2679                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680                            (intel_crtc->config->pipe_src_w - 1));
2681                 I915_WRITE(DSPPOS(plane), 0);
2682         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683                 I915_WRITE(PRIMSIZE(plane),
2684                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685                            (intel_crtc->config->pipe_src_w - 1));
2686                 I915_WRITE(PRIMPOS(plane), 0);
2687                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2688         }
2689
2690         switch (fb->pixel_format) {
2691         case DRM_FORMAT_C8:
2692                 dspcntr |= DISPPLANE_8BPP;
2693                 break;
2694         case DRM_FORMAT_XRGB1555:
2695         case DRM_FORMAT_ARGB1555:
2696                 dspcntr |= DISPPLANE_BGRX555;
2697                 break;
2698         case DRM_FORMAT_RGB565:
2699                 dspcntr |= DISPPLANE_BGRX565;
2700                 break;
2701         case DRM_FORMAT_XRGB8888:
2702         case DRM_FORMAT_ARGB8888:
2703                 dspcntr |= DISPPLANE_BGRX888;
2704                 break;
2705         case DRM_FORMAT_XBGR8888:
2706         case DRM_FORMAT_ABGR8888:
2707                 dspcntr |= DISPPLANE_RGBX888;
2708                 break;
2709         case DRM_FORMAT_XRGB2101010:
2710         case DRM_FORMAT_ARGB2101010:
2711                 dspcntr |= DISPPLANE_BGRX101010;
2712                 break;
2713         case DRM_FORMAT_XBGR2101010:
2714         case DRM_FORMAT_ABGR2101010:
2715                 dspcntr |= DISPPLANE_RGBX101010;
2716                 break;
2717         default:
2718                 BUG();
2719         }
2720
2721         if (INTEL_INFO(dev)->gen >= 4 &&
2722             obj->tiling_mode != I915_TILING_NONE)
2723                 dspcntr |= DISPPLANE_TILED;
2724
2725         if (IS_G4X(dev))
2726                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2727
2728         linear_offset = y * fb->pitches[0] + x * pixel_size;
2729
2730         if (INTEL_INFO(dev)->gen >= 4) {
2731                 intel_crtc->dspaddr_offset =
2732                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2733                                                        pixel_size,
2734                                                        fb->pitches[0]);
2735                 linear_offset -= intel_crtc->dspaddr_offset;
2736         } else {
2737                 intel_crtc->dspaddr_offset = linear_offset;
2738         }
2739
2740         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2741                 dspcntr |= DISPPLANE_ROTATE_180;
2742
2743                 x += (intel_crtc->config->pipe_src_w - 1);
2744                 y += (intel_crtc->config->pipe_src_h - 1);
2745
2746                 /* Finding the last pixel of the last line of the display
2747                 data and adding to linear_offset*/
2748                 linear_offset +=
2749                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2751         }
2752
2753         I915_WRITE(reg, dspcntr);
2754
2755         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2756         if (INTEL_INFO(dev)->gen >= 4) {
2757                 I915_WRITE(DSPSURF(plane),
2758                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2759                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2760                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2761         } else
2762                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2763         POSTING_READ(reg);
2764 }
2765
2766 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767                                           struct drm_framebuffer *fb,
2768                                           int x, int y)
2769 {
2770         struct drm_device *dev = crtc->dev;
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773         struct drm_i915_gem_object *obj;
2774         int plane = intel_crtc->plane;
2775         unsigned long linear_offset;
2776         u32 dspcntr;
2777         u32 reg = DSPCNTR(plane);
2778         int pixel_size;
2779
2780         if (!intel_crtc->primary_enabled) {
2781                 I915_WRITE(reg, 0);
2782                 I915_WRITE(DSPSURF(plane), 0);
2783                 POSTING_READ(reg);
2784                 return;
2785         }
2786
2787         obj = intel_fb_obj(fb);
2788         if (WARN_ON(obj == NULL))
2789                 return;
2790
2791         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2792
2793         dspcntr = DISPPLANE_GAMMA_ENABLE;
2794
2795         dspcntr |= DISPLAY_PLANE_ENABLE;
2796
2797         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2798                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2799
2800         switch (fb->pixel_format) {
2801         case DRM_FORMAT_C8:
2802                 dspcntr |= DISPPLANE_8BPP;
2803                 break;
2804         case DRM_FORMAT_RGB565:
2805                 dspcntr |= DISPPLANE_BGRX565;
2806                 break;
2807         case DRM_FORMAT_XRGB8888:
2808         case DRM_FORMAT_ARGB8888:
2809                 dspcntr |= DISPPLANE_BGRX888;
2810                 break;
2811         case DRM_FORMAT_XBGR8888:
2812         case DRM_FORMAT_ABGR8888:
2813                 dspcntr |= DISPPLANE_RGBX888;
2814                 break;
2815         case DRM_FORMAT_XRGB2101010:
2816         case DRM_FORMAT_ARGB2101010:
2817                 dspcntr |= DISPPLANE_BGRX101010;
2818                 break;
2819         case DRM_FORMAT_XBGR2101010:
2820         case DRM_FORMAT_ABGR2101010:
2821                 dspcntr |= DISPPLANE_RGBX101010;
2822                 break;
2823         default:
2824                 BUG();
2825         }
2826
2827         if (obj->tiling_mode != I915_TILING_NONE)
2828                 dspcntr |= DISPPLANE_TILED;
2829
2830         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2831                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2832
2833         linear_offset = y * fb->pitches[0] + x * pixel_size;
2834         intel_crtc->dspaddr_offset =
2835                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2836                                                pixel_size,
2837                                                fb->pitches[0]);
2838         linear_offset -= intel_crtc->dspaddr_offset;
2839         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2840                 dspcntr |= DISPPLANE_ROTATE_180;
2841
2842                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2843                         x += (intel_crtc->config->pipe_src_w - 1);
2844                         y += (intel_crtc->config->pipe_src_h - 1);
2845
2846                         /* Finding the last pixel of the last line of the display
2847                         data and adding to linear_offset*/
2848                         linear_offset +=
2849                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2850                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2851                 }
2852         }
2853
2854         I915_WRITE(reg, dspcntr);
2855
2856         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2857         I915_WRITE(DSPSURF(plane),
2858                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2859         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2860                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2861         } else {
2862                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2863                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2864         }
2865         POSTING_READ(reg);
2866 }
2867
2868 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2869                               uint32_t pixel_format)
2870 {
2871         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2872
2873         /*
2874          * The stride is either expressed as a multiple of 64 bytes
2875          * chunks for linear buffers or in number of tiles for tiled
2876          * buffers.
2877          */
2878         switch (fb_modifier) {
2879         case DRM_FORMAT_MOD_NONE:
2880                 return 64;
2881         case I915_FORMAT_MOD_X_TILED:
2882                 if (INTEL_INFO(dev)->gen == 2)
2883                         return 128;
2884                 return 512;
2885         case I915_FORMAT_MOD_Y_TILED:
2886                 /* No need to check for old gens and Y tiling since this is
2887                  * about the display engine and those will be blocked before
2888                  * we get here.
2889                  */
2890                 return 128;
2891         case I915_FORMAT_MOD_Yf_TILED:
2892                 if (bits_per_pixel == 8)
2893                         return 64;
2894                 else
2895                         return 128;
2896         default:
2897                 MISSING_CASE(fb_modifier);
2898                 return 64;
2899         }
2900 }
2901
2902 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2903                                      struct drm_i915_gem_object *obj)
2904 {
2905         enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2906
2907         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908                 view = I915_GGTT_VIEW_ROTATED;
2909
2910         return i915_gem_obj_ggtt_offset_view(obj, view);
2911 }
2912
2913 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2914                                          struct drm_framebuffer *fb,
2915                                          int x, int y)
2916 {
2917         struct drm_device *dev = crtc->dev;
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2920         struct drm_i915_gem_object *obj;
2921         int pipe = intel_crtc->pipe;
2922         u32 plane_ctl, stride_div;
2923         unsigned long surf_addr;
2924
2925         if (!intel_crtc->primary_enabled) {
2926                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2927                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2928                 POSTING_READ(PLANE_CTL(pipe, 0));
2929                 return;
2930         }
2931
2932         plane_ctl = PLANE_CTL_ENABLE |
2933                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2934                     PLANE_CTL_PIPE_CSC_ENABLE;
2935
2936         switch (fb->pixel_format) {
2937         case DRM_FORMAT_RGB565:
2938                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2939                 break;
2940         case DRM_FORMAT_XRGB8888:
2941                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2942                 break;
2943         case DRM_FORMAT_ARGB8888:
2944                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2945                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946                 break;
2947         case DRM_FORMAT_XBGR8888:
2948                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2949                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2950                 break;
2951         case DRM_FORMAT_ABGR8888:
2952                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2953                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2954                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955                 break;
2956         case DRM_FORMAT_XRGB2101010:
2957                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2958                 break;
2959         case DRM_FORMAT_XBGR2101010:
2960                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2961                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2962                 break;
2963         default:
2964                 BUG();
2965         }
2966
2967         switch (fb->modifier[0]) {
2968         case DRM_FORMAT_MOD_NONE:
2969                 break;
2970         case I915_FORMAT_MOD_X_TILED:
2971                 plane_ctl |= PLANE_CTL_TILED_X;
2972                 break;
2973         case I915_FORMAT_MOD_Y_TILED:
2974                 plane_ctl |= PLANE_CTL_TILED_Y;
2975                 break;
2976         case I915_FORMAT_MOD_Yf_TILED:
2977                 plane_ctl |= PLANE_CTL_TILED_YF;
2978                 break;
2979         default:
2980                 MISSING_CASE(fb->modifier[0]);
2981         }
2982
2983         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2984         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2985                 plane_ctl |= PLANE_CTL_ROTATE_180;
2986
2987         obj = intel_fb_obj(fb);
2988         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2989                                                fb->pixel_format);
2990         surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
2991
2992         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2993         I915_WRITE(PLANE_POS(pipe, 0), 0);
2994         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2995         I915_WRITE(PLANE_SIZE(pipe, 0),
2996                    (intel_crtc->config->pipe_src_h - 1) << 16 |
2997                    (intel_crtc->config->pipe_src_w - 1));
2998         I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
2999         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3000
3001         POSTING_READ(PLANE_SURF(pipe, 0));
3002 }
3003
3004 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3005 static int
3006 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3007                            int x, int y, enum mode_set_atomic state)
3008 {
3009         struct drm_device *dev = crtc->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011
3012         if (dev_priv->display.disable_fbc)
3013                 dev_priv->display.disable_fbc(dev);
3014
3015         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3016
3017         return 0;
3018 }
3019
3020 static void intel_complete_page_flips(struct drm_device *dev)
3021 {
3022         struct drm_crtc *crtc;
3023
3024         for_each_crtc(dev, crtc) {
3025                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026                 enum plane plane = intel_crtc->plane;
3027
3028                 intel_prepare_page_flip(dev, plane);
3029                 intel_finish_page_flip_plane(dev, plane);
3030         }
3031 }
3032
3033 static void intel_update_primary_planes(struct drm_device *dev)
3034 {
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         struct drm_crtc *crtc;
3037
3038         for_each_crtc(dev, crtc) {
3039                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
3041                 drm_modeset_lock(&crtc->mutex, NULL);
3042                 /*
3043                  * FIXME: Once we have proper support for primary planes (and
3044                  * disabling them without disabling the entire crtc) allow again
3045                  * a NULL crtc->primary->fb.
3046                  */
3047                 if (intel_crtc->active && crtc->primary->fb)
3048                         dev_priv->display.update_primary_plane(crtc,
3049                                                                crtc->primary->fb,
3050                                                                crtc->x,
3051                                                                crtc->y);
3052                 drm_modeset_unlock(&crtc->mutex);
3053         }
3054 }
3055
3056 void intel_prepare_reset(struct drm_device *dev)
3057 {
3058         struct drm_i915_private *dev_priv = to_i915(dev);
3059         struct intel_crtc *crtc;
3060
3061         /* no reset support for gen2 */
3062         if (IS_GEN2(dev))
3063                 return;
3064
3065         /* reset doesn't touch the display */
3066         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3067                 return;
3068
3069         drm_modeset_lock_all(dev);
3070
3071         /*
3072          * Disabling the crtcs gracefully seems nicer. Also the
3073          * g33 docs say we should at least disable all the planes.
3074          */
3075         for_each_intel_crtc(dev, crtc) {
3076                 if (crtc->active)
3077                         dev_priv->display.crtc_disable(&crtc->base);
3078         }
3079 }
3080
3081 void intel_finish_reset(struct drm_device *dev)
3082 {
3083         struct drm_i915_private *dev_priv = to_i915(dev);
3084
3085         /*
3086          * Flips in the rings will be nuked by the reset,
3087          * so complete all pending flips so that user space
3088          * will get its events and not get stuck.
3089          */
3090         intel_complete_page_flips(dev);
3091
3092         /* no reset support for gen2 */
3093         if (IS_GEN2(dev))
3094                 return;
3095
3096         /* reset doesn't touch the display */
3097         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3098                 /*
3099                  * Flips in the rings have been nuked by the reset,
3100                  * so update the base address of all primary
3101                  * planes to the the last fb to make sure we're
3102                  * showing the correct fb after a reset.
3103                  */
3104                 intel_update_primary_planes(dev);
3105                 return;
3106         }
3107
3108         /*
3109          * The display has been reset as well,
3110          * so need a full re-initialization.
3111          */
3112         intel_runtime_pm_disable_interrupts(dev_priv);
3113         intel_runtime_pm_enable_interrupts(dev_priv);
3114
3115         intel_modeset_init_hw(dev);
3116
3117         spin_lock_irq(&dev_priv->irq_lock);
3118         if (dev_priv->display.hpd_irq_setup)
3119                 dev_priv->display.hpd_irq_setup(dev);
3120         spin_unlock_irq(&dev_priv->irq_lock);
3121
3122         intel_modeset_setup_hw_state(dev, true);
3123
3124         intel_hpd_init(dev_priv);
3125
3126         drm_modeset_unlock_all(dev);
3127 }
3128
3129 static int
3130 intel_finish_fb(struct drm_framebuffer *old_fb)
3131 {
3132         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3133         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134         bool was_interruptible = dev_priv->mm.interruptible;
3135         int ret;
3136
3137         /* Big Hammer, we also need to ensure that any pending
3138          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3139          * current scanout is retired before unpinning the old
3140          * framebuffer.
3141          *
3142          * This should only fail upon a hung GPU, in which case we
3143          * can safely continue.
3144          */
3145         dev_priv->mm.interruptible = false;
3146         ret = i915_gem_object_finish_gpu(obj);
3147         dev_priv->mm.interruptible = was_interruptible;
3148
3149         return ret;
3150 }
3151
3152 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3153 {
3154         struct drm_device *dev = crtc->dev;
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157         bool pending;
3158
3159         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3160             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3161                 return false;
3162
3163         spin_lock_irq(&dev->event_lock);
3164         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3165         spin_unlock_irq(&dev->event_lock);
3166
3167         return pending;
3168 }
3169
3170 static void intel_update_pipe_size(struct intel_crtc *crtc)
3171 {
3172         struct drm_device *dev = crtc->base.dev;
3173         struct drm_i915_private *dev_priv = dev->dev_private;
3174         const struct drm_display_mode *adjusted_mode;
3175
3176         if (!i915.fastboot)
3177                 return;
3178
3179         /*
3180          * Update pipe size and adjust fitter if needed: the reason for this is
3181          * that in compute_mode_changes we check the native mode (not the pfit
3182          * mode) to see if we can flip rather than do a full mode set. In the
3183          * fastboot case, we'll flip, but if we don't update the pipesrc and
3184          * pfit state, we'll end up with a big fb scanned out into the wrong
3185          * sized surface.
3186          *
3187          * To fix this properly, we need to hoist the checks up into
3188          * compute_mode_changes (or above), check the actual pfit state and
3189          * whether the platform allows pfit disable with pipe active, and only
3190          * then update the pipesrc and pfit state, even on the flip path.
3191          */
3192
3193         adjusted_mode = &crtc->config->base.adjusted_mode;
3194
3195         I915_WRITE(PIPESRC(crtc->pipe),
3196                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3197                    (adjusted_mode->crtc_vdisplay - 1));
3198         if (!crtc->config->pch_pfit.enabled &&
3199             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3200              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3201                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3202                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3203                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3204         }
3205         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3206         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3207 }
3208
3209 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3210 {
3211         struct drm_device *dev = crtc->dev;
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214         int pipe = intel_crtc->pipe;
3215         u32 reg, temp;
3216
3217         /* enable normal train */
3218         reg = FDI_TX_CTL(pipe);
3219         temp = I915_READ(reg);
3220         if (IS_IVYBRIDGE(dev)) {
3221                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3222                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3223         } else {
3224                 temp &= ~FDI_LINK_TRAIN_NONE;
3225                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3226         }
3227         I915_WRITE(reg, temp);
3228
3229         reg = FDI_RX_CTL(pipe);
3230         temp = I915_READ(reg);
3231         if (HAS_PCH_CPT(dev)) {
3232                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3233                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3234         } else {
3235                 temp &= ~FDI_LINK_TRAIN_NONE;
3236                 temp |= FDI_LINK_TRAIN_NONE;
3237         }
3238         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3239
3240         /* wait one idle pattern time */
3241         POSTING_READ(reg);
3242         udelay(1000);
3243
3244         /* IVB wants error correction enabled */
3245         if (IS_IVYBRIDGE(dev))
3246                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3247                            FDI_FE_ERRC_ENABLE);
3248 }
3249
3250 /* The FDI link training functions for ILK/Ibexpeak. */
3251 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3252 {
3253         struct drm_device *dev = crtc->dev;
3254         struct drm_i915_private *dev_priv = dev->dev_private;
3255         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256         int pipe = intel_crtc->pipe;
3257         u32 reg, temp, tries;
3258
3259         /* FDI needs bits from pipe first */
3260         assert_pipe_enabled(dev_priv, pipe);
3261
3262         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3263            for train result */
3264         reg = FDI_RX_IMR(pipe);
3265         temp = I915_READ(reg);
3266         temp &= ~FDI_RX_SYMBOL_LOCK;
3267         temp &= ~FDI_RX_BIT_LOCK;
3268         I915_WRITE(reg, temp);
3269         I915_READ(reg);
3270         udelay(150);
3271
3272         /* enable CPU FDI TX and PCH FDI RX */
3273         reg = FDI_TX_CTL(pipe);
3274         temp = I915_READ(reg);
3275         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3276         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3277         temp &= ~FDI_LINK_TRAIN_NONE;
3278         temp |= FDI_LINK_TRAIN_PATTERN_1;
3279         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3280
3281         reg = FDI_RX_CTL(pipe);
3282         temp = I915_READ(reg);
3283         temp &= ~FDI_LINK_TRAIN_NONE;
3284         temp |= FDI_LINK_TRAIN_PATTERN_1;
3285         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3286
3287         POSTING_READ(reg);
3288         udelay(150);
3289
3290         /* Ironlake workaround, enable clock pointer after FDI enable*/
3291         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3292         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3293                    FDI_RX_PHASE_SYNC_POINTER_EN);
3294
3295         reg = FDI_RX_IIR(pipe);
3296         for (tries = 0; tries < 5; tries++) {
3297                 temp = I915_READ(reg);
3298                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3299
3300                 if ((temp & FDI_RX_BIT_LOCK)) {
3301                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3302                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3303                         break;
3304                 }
3305         }
3306         if (tries == 5)
3307                 DRM_ERROR("FDI train 1 fail!\n");
3308
3309         /* Train 2 */
3310         reg = FDI_TX_CTL(pipe);
3311         temp = I915_READ(reg);
3312         temp &= ~FDI_LINK_TRAIN_NONE;
3313         temp |= FDI_LINK_TRAIN_PATTERN_2;
3314         I915_WRITE(reg, temp);
3315
3316         reg = FDI_RX_CTL(pipe);
3317         temp = I915_READ(reg);
3318         temp &= ~FDI_LINK_TRAIN_NONE;
3319         temp |= FDI_LINK_TRAIN_PATTERN_2;
3320         I915_WRITE(reg, temp);
3321
3322         POSTING_READ(reg);
3323         udelay(150);
3324
3325         reg = FDI_RX_IIR(pipe);
3326         for (tries = 0; tries < 5; tries++) {
3327                 temp = I915_READ(reg);
3328                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330                 if (temp & FDI_RX_SYMBOL_LOCK) {
3331                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3332                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3333                         break;
3334                 }
3335         }
3336         if (tries == 5)
3337                 DRM_ERROR("FDI train 2 fail!\n");
3338
3339         DRM_DEBUG_KMS("FDI train done\n");
3340
3341 }
3342
3343 static const int snb_b_fdi_train_param[] = {
3344         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3345         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3346         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3347         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3348 };
3349
3350 /* The FDI link training functions for SNB/Cougarpoint. */
3351 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3352 {
3353         struct drm_device *dev = crtc->dev;
3354         struct drm_i915_private *dev_priv = dev->dev_private;
3355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356         int pipe = intel_crtc->pipe;
3357         u32 reg, temp, i, retry;
3358
3359         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3360            for train result */
3361         reg = FDI_RX_IMR(pipe);
3362         temp = I915_READ(reg);
3363         temp &= ~FDI_RX_SYMBOL_LOCK;
3364         temp &= ~FDI_RX_BIT_LOCK;
3365         I915_WRITE(reg, temp);
3366
3367         POSTING_READ(reg);
3368         udelay(150);
3369
3370         /* enable CPU FDI TX and PCH FDI RX */
3371         reg = FDI_TX_CTL(pipe);
3372         temp = I915_READ(reg);
3373         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3374         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3375         temp &= ~FDI_LINK_TRAIN_NONE;
3376         temp |= FDI_LINK_TRAIN_PATTERN_1;
3377         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3378         /* SNB-B */
3379         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3380         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3381
3382         I915_WRITE(FDI_RX_MISC(pipe),
3383                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3384
3385         reg = FDI_RX_CTL(pipe);
3386         temp = I915_READ(reg);
3387         if (HAS_PCH_CPT(dev)) {
3388                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3389                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3390         } else {
3391                 temp &= ~FDI_LINK_TRAIN_NONE;
3392                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3393         }
3394         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3395
3396         POSTING_READ(reg);
3397         udelay(150);
3398
3399         for (i = 0; i < 4; i++) {
3400                 reg = FDI_TX_CTL(pipe);
3401                 temp = I915_READ(reg);
3402                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3403                 temp |= snb_b_fdi_train_param[i];
3404                 I915_WRITE(reg, temp);
3405
3406                 POSTING_READ(reg);
3407                 udelay(500);
3408
3409                 for (retry = 0; retry < 5; retry++) {
3410                         reg = FDI_RX_IIR(pipe);
3411                         temp = I915_READ(reg);
3412                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413                         if (temp & FDI_RX_BIT_LOCK) {
3414                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3415                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3416                                 break;
3417                         }
3418                         udelay(50);
3419                 }
3420                 if (retry < 5)
3421                         break;
3422         }
3423         if (i == 4)
3424                 DRM_ERROR("FDI train 1 fail!\n");
3425
3426         /* Train 2 */
3427         reg = FDI_TX_CTL(pipe);
3428         temp = I915_READ(reg);
3429         temp &= ~FDI_LINK_TRAIN_NONE;
3430         temp |= FDI_LINK_TRAIN_PATTERN_2;
3431         if (IS_GEN6(dev)) {
3432                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3433                 /* SNB-B */
3434                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3435         }
3436         I915_WRITE(reg, temp);
3437
3438         reg = FDI_RX_CTL(pipe);
3439         temp = I915_READ(reg);
3440         if (HAS_PCH_CPT(dev)) {
3441                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3442                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3443         } else {
3444                 temp &= ~FDI_LINK_TRAIN_NONE;
3445                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3446         }
3447         I915_WRITE(reg, temp);
3448
3449         POSTING_READ(reg);
3450         udelay(150);
3451
3452         for (i = 0; i < 4; i++) {
3453                 reg = FDI_TX_CTL(pipe);
3454                 temp = I915_READ(reg);
3455                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3456                 temp |= snb_b_fdi_train_param[i];
3457                 I915_WRITE(reg, temp);
3458
3459                 POSTING_READ(reg);
3460                 udelay(500);
3461
3462                 for (retry = 0; retry < 5; retry++) {
3463                         reg = FDI_RX_IIR(pipe);
3464                         temp = I915_READ(reg);
3465                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466                         if (temp & FDI_RX_SYMBOL_LOCK) {
3467                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3468                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3469                                 break;
3470                         }
3471                         udelay(50);
3472                 }
3473                 if (retry < 5)
3474                         break;
3475         }
3476         if (i == 4)
3477                 DRM_ERROR("FDI train 2 fail!\n");
3478
3479         DRM_DEBUG_KMS("FDI train done.\n");
3480 }
3481
3482 /* Manual link training for Ivy Bridge A0 parts */
3483 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3484 {
3485         struct drm_device *dev = crtc->dev;
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488         int pipe = intel_crtc->pipe;
3489         u32 reg, temp, i, j;
3490
3491         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3492            for train result */
3493         reg = FDI_RX_IMR(pipe);
3494         temp = I915_READ(reg);
3495         temp &= ~FDI_RX_SYMBOL_LOCK;
3496         temp &= ~FDI_RX_BIT_LOCK;
3497         I915_WRITE(reg, temp);
3498
3499         POSTING_READ(reg);
3500         udelay(150);
3501
3502         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3503                       I915_READ(FDI_RX_IIR(pipe)));
3504
3505         /* Try each vswing and preemphasis setting twice before moving on */
3506         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3507                 /* disable first in case we need to retry */
3508                 reg = FDI_TX_CTL(pipe);
3509                 temp = I915_READ(reg);
3510                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3511                 temp &= ~FDI_TX_ENABLE;
3512                 I915_WRITE(reg, temp);
3513
3514                 reg = FDI_RX_CTL(pipe);
3515                 temp = I915_READ(reg);
3516                 temp &= ~FDI_LINK_TRAIN_AUTO;
3517                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518                 temp &= ~FDI_RX_ENABLE;
3519                 I915_WRITE(reg, temp);
3520
3521                 /* enable CPU FDI TX and PCH FDI RX */
3522                 reg = FDI_TX_CTL(pipe);
3523                 temp = I915_READ(reg);
3524                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3525                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3526                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3527                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3528                 temp |= snb_b_fdi_train_param[j/2];
3529                 temp |= FDI_COMPOSITE_SYNC;
3530                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3531
3532                 I915_WRITE(FDI_RX_MISC(pipe),
3533                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3534
3535                 reg = FDI_RX_CTL(pipe);
3536                 temp = I915_READ(reg);
3537                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3538                 temp |= FDI_COMPOSITE_SYNC;
3539                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3540
3541                 POSTING_READ(reg);
3542                 udelay(1); /* should be 0.5us */
3543
3544                 for (i = 0; i < 4; i++) {
3545                         reg = FDI_RX_IIR(pipe);
3546                         temp = I915_READ(reg);
3547                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3548
3549                         if (temp & FDI_RX_BIT_LOCK ||
3550                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3551                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3553                                               i);
3554                                 break;
3555                         }
3556                         udelay(1); /* should be 0.5us */
3557                 }
3558                 if (i == 4) {
3559                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3560                         continue;
3561                 }
3562
3563                 /* Train 2 */
3564                 reg = FDI_TX_CTL(pipe);
3565                 temp = I915_READ(reg);
3566                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3567                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3568                 I915_WRITE(reg, temp);
3569
3570                 reg = FDI_RX_CTL(pipe);
3571                 temp = I915_READ(reg);
3572                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3573                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3574                 I915_WRITE(reg, temp);
3575
3576                 POSTING_READ(reg);
3577                 udelay(2); /* should be 1.5us */
3578
3579                 for (i = 0; i < 4; i++) {
3580                         reg = FDI_RX_IIR(pipe);
3581                         temp = I915_READ(reg);
3582                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3583
3584                         if (temp & FDI_RX_SYMBOL_LOCK ||
3585                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3586                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3587                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3588                                               i);
3589                                 goto train_done;
3590                         }
3591                         udelay(2); /* should be 1.5us */
3592                 }
3593                 if (i == 4)
3594                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3595         }
3596
3597 train_done:
3598         DRM_DEBUG_KMS("FDI train done.\n");
3599 }
3600
3601 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3602 {
3603         struct drm_device *dev = intel_crtc->base.dev;
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         int pipe = intel_crtc->pipe;
3606         u32 reg, temp;
3607
3608
3609         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3610         reg = FDI_RX_CTL(pipe);
3611         temp = I915_READ(reg);
3612         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3613         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3614         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3615         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3616
3617         POSTING_READ(reg);
3618         udelay(200);
3619
3620         /* Switch from Rawclk to PCDclk */
3621         temp = I915_READ(reg);
3622         I915_WRITE(reg, temp | FDI_PCDCLK);
3623
3624         POSTING_READ(reg);
3625         udelay(200);
3626
3627         /* Enable CPU FDI TX PLL, always on for Ironlake */
3628         reg = FDI_TX_CTL(pipe);
3629         temp = I915_READ(reg);
3630         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3631                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3632
3633                 POSTING_READ(reg);
3634                 udelay(100);
3635         }
3636 }
3637
3638 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3639 {
3640         struct drm_device *dev = intel_crtc->base.dev;
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         int pipe = intel_crtc->pipe;
3643         u32 reg, temp;
3644
3645         /* Switch from PCDclk to Rawclk */
3646         reg = FDI_RX_CTL(pipe);
3647         temp = I915_READ(reg);
3648         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3649
3650         /* Disable CPU FDI TX PLL */
3651         reg = FDI_TX_CTL(pipe);
3652         temp = I915_READ(reg);
3653         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3654
3655         POSTING_READ(reg);
3656         udelay(100);
3657
3658         reg = FDI_RX_CTL(pipe);
3659         temp = I915_READ(reg);
3660         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3661
3662         /* Wait for the clocks to turn off. */
3663         POSTING_READ(reg);
3664         udelay(100);
3665 }
3666
3667 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3668 {
3669         struct drm_device *dev = crtc->dev;
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3672         int pipe = intel_crtc->pipe;
3673         u32 reg, temp;
3674
3675         /* disable CPU FDI tx and PCH FDI rx */
3676         reg = FDI_TX_CTL(pipe);
3677         temp = I915_READ(reg);
3678         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3679         POSTING_READ(reg);
3680
3681         reg = FDI_RX_CTL(pipe);
3682         temp = I915_READ(reg);
3683         temp &= ~(0x7 << 16);
3684         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3685         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3686
3687         POSTING_READ(reg);
3688         udelay(100);
3689
3690         /* Ironlake workaround, disable clock pointer after downing FDI */
3691         if (HAS_PCH_IBX(dev))
3692                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3693
3694         /* still set train pattern 1 */
3695         reg = FDI_TX_CTL(pipe);
3696         temp = I915_READ(reg);
3697         temp &= ~FDI_LINK_TRAIN_NONE;
3698         temp |= FDI_LINK_TRAIN_PATTERN_1;
3699         I915_WRITE(reg, temp);
3700
3701         reg = FDI_RX_CTL(pipe);
3702         temp = I915_READ(reg);
3703         if (HAS_PCH_CPT(dev)) {
3704                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3705                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3706         } else {
3707                 temp &= ~FDI_LINK_TRAIN_NONE;
3708                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3709         }
3710         /* BPC in FDI rx is consistent with that in PIPECONF */
3711         temp &= ~(0x07 << 16);
3712         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3713         I915_WRITE(reg, temp);
3714
3715         POSTING_READ(reg);
3716         udelay(100);
3717 }
3718
3719 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3720 {
3721         struct intel_crtc *crtc;
3722
3723         /* Note that we don't need to be called with mode_config.lock here
3724          * as our list of CRTC objects is static for the lifetime of the
3725          * device and so cannot disappear as we iterate. Similarly, we can
3726          * happily treat the predicates as racy, atomic checks as userspace
3727          * cannot claim and pin a new fb without at least acquring the
3728          * struct_mutex and so serialising with us.
3729          */
3730         for_each_intel_crtc(dev, crtc) {
3731                 if (atomic_read(&crtc->unpin_work_count) == 0)
3732                         continue;
3733
3734                 if (crtc->unpin_work)
3735                         intel_wait_for_vblank(dev, crtc->pipe);
3736
3737                 return true;
3738         }
3739
3740         return false;
3741 }
3742
3743 static void page_flip_completed(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3746         struct intel_unpin_work *work = intel_crtc->unpin_work;
3747
3748         /* ensure that the unpin work is consistent wrt ->pending. */
3749         smp_rmb();
3750         intel_crtc->unpin_work = NULL;
3751
3752         if (work->event)
3753                 drm_send_vblank_event(intel_crtc->base.dev,
3754                                       intel_crtc->pipe,
3755                                       work->event);
3756
3757         drm_crtc_vblank_put(&intel_crtc->base);
3758
3759         wake_up_all(&dev_priv->pending_flip_queue);
3760         queue_work(dev_priv->wq, &work->work);
3761
3762         trace_i915_flip_complete(intel_crtc->plane,
3763                                  work->pending_flip_obj);
3764 }
3765
3766 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3767 {
3768         struct drm_device *dev = crtc->dev;
3769         struct drm_i915_private *dev_priv = dev->dev_private;
3770
3771         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3772         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3773                                        !intel_crtc_has_pending_flip(crtc),
3774                                        60*HZ) == 0)) {
3775                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3776
3777                 spin_lock_irq(&dev->event_lock);
3778                 if (intel_crtc->unpin_work) {
3779                         WARN_ONCE(1, "Removing stuck page flip\n");
3780                         page_flip_completed(intel_crtc);
3781                 }
3782                 spin_unlock_irq(&dev->event_lock);
3783         }
3784
3785         if (crtc->primary->fb) {
3786                 mutex_lock(&dev->struct_mutex);
3787                 intel_finish_fb(crtc->primary->fb);
3788                 mutex_unlock(&dev->struct_mutex);
3789         }
3790 }
3791
3792 /* Program iCLKIP clock to the desired frequency */
3793 static void lpt_program_iclkip(struct drm_crtc *crtc)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_i915_private *dev_priv = dev->dev_private;
3797         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3798         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3799         u32 temp;
3800
3801         mutex_lock(&dev_priv->dpio_lock);
3802
3803         /* It is necessary to ungate the pixclk gate prior to programming
3804          * the divisors, and gate it back when it is done.
3805          */
3806         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3807
3808         /* Disable SSCCTL */
3809         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3810                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3811                                 SBI_SSCCTL_DISABLE,
3812                         SBI_ICLK);
3813
3814         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3815         if (clock == 20000) {
3816                 auxdiv = 1;
3817                 divsel = 0x41;
3818                 phaseinc = 0x20;
3819         } else {
3820                 /* The iCLK virtual clock root frequency is in MHz,
3821                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3822                  * divisors, it is necessary to divide one by another, so we
3823                  * convert the virtual clock precision to KHz here for higher
3824                  * precision.
3825                  */
3826                 u32 iclk_virtual_root_freq = 172800 * 1000;
3827                 u32 iclk_pi_range = 64;
3828                 u32 desired_divisor, msb_divisor_value, pi_value;
3829
3830                 desired_divisor = (iclk_virtual_root_freq / clock);
3831                 msb_divisor_value = desired_divisor / iclk_pi_range;
3832                 pi_value = desired_divisor % iclk_pi_range;
3833
3834                 auxdiv = 0;
3835                 divsel = msb_divisor_value - 2;
3836                 phaseinc = pi_value;
3837         }
3838
3839         /* This should not happen with any sane values */
3840         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3841                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3842         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3843                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3844
3845         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3846                         clock,
3847                         auxdiv,
3848                         divsel,
3849                         phasedir,
3850                         phaseinc);
3851
3852         /* Program SSCDIVINTPHASE6 */
3853         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3854         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3855         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3856         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3857         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3858         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3859         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3860         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3861
3862         /* Program SSCAUXDIV */
3863         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3864         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3865         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3866         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3867
3868         /* Enable modulator and associated divider */
3869         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3870         temp &= ~SBI_SSCCTL_DISABLE;
3871         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3872
3873         /* Wait for initialization time */
3874         udelay(24);
3875
3876         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3877
3878         mutex_unlock(&dev_priv->dpio_lock);
3879 }
3880
3881 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3882                                                 enum pipe pch_transcoder)
3883 {
3884         struct drm_device *dev = crtc->base.dev;
3885         struct drm_i915_private *dev_priv = dev->dev_private;
3886         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3887
3888         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3889                    I915_READ(HTOTAL(cpu_transcoder)));
3890         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3891                    I915_READ(HBLANK(cpu_transcoder)));
3892         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3893                    I915_READ(HSYNC(cpu_transcoder)));
3894
3895         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3896                    I915_READ(VTOTAL(cpu_transcoder)));
3897         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3898                    I915_READ(VBLANK(cpu_transcoder)));
3899         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3900                    I915_READ(VSYNC(cpu_transcoder)));
3901         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3902                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3903 }
3904
3905 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3906 {
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         uint32_t temp;
3909
3910         temp = I915_READ(SOUTH_CHICKEN1);
3911         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3912                 return;
3913
3914         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3915         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3916
3917         temp &= ~FDI_BC_BIFURCATION_SELECT;
3918         if (enable)
3919                 temp |= FDI_BC_BIFURCATION_SELECT;
3920
3921         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3922         I915_WRITE(SOUTH_CHICKEN1, temp);
3923         POSTING_READ(SOUTH_CHICKEN1);
3924 }
3925
3926 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3927 {
3928         struct drm_device *dev = intel_crtc->base.dev;
3929
3930         switch (intel_crtc->pipe) {
3931         case PIPE_A:
3932                 break;
3933         case PIPE_B:
3934                 if (intel_crtc->config->fdi_lanes > 2)
3935                         cpt_set_fdi_bc_bifurcation(dev, false);
3936                 else
3937                         cpt_set_fdi_bc_bifurcation(dev, true);
3938
3939                 break;
3940         case PIPE_C:
3941                 cpt_set_fdi_bc_bifurcation(dev, true);
3942
3943                 break;
3944         default:
3945                 BUG();
3946         }
3947 }
3948
3949 /*
3950  * Enable PCH resources required for PCH ports:
3951  *   - PCH PLLs
3952  *   - FDI training & RX/TX
3953  *   - update transcoder timings
3954  *   - DP transcoding bits
3955  *   - transcoder
3956  */
3957 static void ironlake_pch_enable(struct drm_crtc *crtc)
3958 {
3959         struct drm_device *dev = crtc->dev;
3960         struct drm_i915_private *dev_priv = dev->dev_private;
3961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3962         int pipe = intel_crtc->pipe;
3963         u32 reg, temp;
3964
3965         assert_pch_transcoder_disabled(dev_priv, pipe);
3966
3967         if (IS_IVYBRIDGE(dev))
3968                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3969
3970         /* Write the TU size bits before fdi link training, so that error
3971          * detection works. */
3972         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3973                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3974
3975         /* For PCH output, training FDI link */
3976         dev_priv->display.fdi_link_train(crtc);
3977
3978         /* We need to program the right clock selection before writing the pixel
3979          * mutliplier into the DPLL. */
3980         if (HAS_PCH_CPT(dev)) {
3981                 u32 sel;
3982
3983                 temp = I915_READ(PCH_DPLL_SEL);
3984                 temp |= TRANS_DPLL_ENABLE(pipe);
3985                 sel = TRANS_DPLLB_SEL(pipe);
3986                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3987                         temp |= sel;
3988                 else
3989                         temp &= ~sel;
3990                 I915_WRITE(PCH_DPLL_SEL, temp);
3991         }
3992
3993         /* XXX: pch pll's can be enabled any time before we enable the PCH
3994          * transcoder, and we actually should do this to not upset any PCH
3995          * transcoder that already use the clock when we share it.
3996          *
3997          * Note that enable_shared_dpll tries to do the right thing, but
3998          * get_shared_dpll unconditionally resets the pll - we need that to have
3999          * the right LVDS enable sequence. */
4000         intel_enable_shared_dpll(intel_crtc);
4001
4002         /* set transcoder timing, panel must allow it */
4003         assert_panel_unlocked(dev_priv, pipe);
4004         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4005
4006         intel_fdi_normal_train(crtc);
4007
4008         /* For PCH DP, enable TRANS_DP_CTL */
4009         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4010                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4011                 reg = TRANS_DP_CTL(pipe);
4012                 temp = I915_READ(reg);
4013                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4014                           TRANS_DP_SYNC_MASK |
4015                           TRANS_DP_BPC_MASK);
4016                 temp |= (TRANS_DP_OUTPUT_ENABLE |
4017                          TRANS_DP_ENH_FRAMING);
4018                 temp |= bpc << 9; /* same format but at 11:9 */
4019
4020                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4021                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4022                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4023                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4024
4025                 switch (intel_trans_dp_port_sel(crtc)) {
4026                 case PCH_DP_B:
4027                         temp |= TRANS_DP_PORT_SEL_B;
4028                         break;
4029                 case PCH_DP_C:
4030                         temp |= TRANS_DP_PORT_SEL_C;
4031                         break;
4032                 case PCH_DP_D:
4033                         temp |= TRANS_DP_PORT_SEL_D;
4034                         break;
4035                 default:
4036                         BUG();
4037                 }
4038
4039                 I915_WRITE(reg, temp);
4040         }
4041
4042         ironlake_enable_pch_transcoder(dev_priv, pipe);
4043 }
4044
4045 static void lpt_pch_enable(struct drm_crtc *crtc)
4046 {
4047         struct drm_device *dev = crtc->dev;
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4050         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4051
4052         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4053
4054         lpt_program_iclkip(crtc);
4055
4056         /* Set transcoder timing. */
4057         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4058
4059         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4060 }
4061
4062 void intel_put_shared_dpll(struct intel_crtc *crtc)
4063 {
4064         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4065
4066         if (pll == NULL)
4067                 return;
4068
4069         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4070                 WARN(1, "bad %s crtc mask\n", pll->name);
4071                 return;
4072         }
4073
4074         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4075         if (pll->config.crtc_mask == 0) {
4076                 WARN_ON(pll->on);
4077                 WARN_ON(pll->active);
4078         }
4079
4080         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4081 }
4082
4083 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4084                                                 struct intel_crtc_state *crtc_state)
4085 {
4086         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4087         struct intel_shared_dpll *pll;
4088         enum intel_dpll_id i;
4089
4090         if (HAS_PCH_IBX(dev_priv->dev)) {
4091                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4092                 i = (enum intel_dpll_id) crtc->pipe;
4093                 pll = &dev_priv->shared_dplls[i];
4094
4095                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4096                               crtc->base.base.id, pll->name);
4097
4098                 WARN_ON(pll->new_config->crtc_mask);
4099
4100                 goto found;
4101         }
4102
4103         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4104                 pll = &dev_priv->shared_dplls[i];
4105
4106                 /* Only want to check enabled timings first */
4107                 if (pll->new_config->crtc_mask == 0)
4108                         continue;
4109
4110                 if (memcmp(&crtc_state->dpll_hw_state,
4111                            &pll->new_config->hw_state,
4112                            sizeof(pll->new_config->hw_state)) == 0) {
4113                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4114                                       crtc->base.base.id, pll->name,
4115                                       pll->new_config->crtc_mask,
4116                                       pll->active);
4117                         goto found;
4118                 }
4119         }
4120
4121         /* Ok no matching timings, maybe there's a free one? */
4122         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4123                 pll = &dev_priv->shared_dplls[i];
4124                 if (pll->new_config->crtc_mask == 0) {
4125                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4126                                       crtc->base.base.id, pll->name);
4127                         goto found;
4128                 }
4129         }
4130
4131         return NULL;
4132
4133 found:
4134         if (pll->new_config->crtc_mask == 0)
4135                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4136
4137         crtc_state->shared_dpll = i;
4138         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4139                          pipe_name(crtc->pipe));
4140
4141         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4142
4143         return pll;
4144 }
4145
4146 /**
4147  * intel_shared_dpll_start_config - start a new PLL staged config
4148  * @dev_priv: DRM device
4149  * @clear_pipes: mask of pipes that will have their PLLs freed
4150  *
4151  * Starts a new PLL staged config, copying the current config but
4152  * releasing the references of pipes specified in clear_pipes.
4153  */
4154 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4155                                           unsigned clear_pipes)
4156 {
4157         struct intel_shared_dpll *pll;
4158         enum intel_dpll_id i;
4159
4160         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4161                 pll = &dev_priv->shared_dplls[i];
4162
4163                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4164                                           GFP_KERNEL);
4165                 if (!pll->new_config)
4166                         goto cleanup;
4167
4168                 pll->new_config->crtc_mask &= ~clear_pipes;
4169         }
4170
4171         return 0;
4172
4173 cleanup:
4174         while (--i >= 0) {
4175                 pll = &dev_priv->shared_dplls[i];
4176                 kfree(pll->new_config);
4177                 pll->new_config = NULL;
4178         }
4179
4180         return -ENOMEM;
4181 }
4182
4183 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4184 {
4185         struct intel_shared_dpll *pll;
4186         enum intel_dpll_id i;
4187
4188         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4189                 pll = &dev_priv->shared_dplls[i];
4190
4191                 WARN_ON(pll->new_config == &pll->config);
4192
4193                 pll->config = *pll->new_config;
4194                 kfree(pll->new_config);
4195                 pll->new_config = NULL;
4196         }
4197 }
4198
4199 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4200 {
4201         struct intel_shared_dpll *pll;
4202         enum intel_dpll_id i;
4203
4204         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4205                 pll = &dev_priv->shared_dplls[i];
4206
4207                 WARN_ON(pll->new_config == &pll->config);
4208
4209                 kfree(pll->new_config);
4210                 pll->new_config = NULL;
4211         }
4212 }
4213
4214 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4215 {
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         int dslreg = PIPEDSL(pipe);
4218         u32 temp;
4219
4220         temp = I915_READ(dslreg);
4221         udelay(500);
4222         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4223                 if (wait_for(I915_READ(dslreg) != temp, 5))
4224                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4225         }
4226 }
4227
4228 static void skylake_pfit_enable(struct intel_crtc *crtc)
4229 {
4230         struct drm_device *dev = crtc->base.dev;
4231         struct drm_i915_private *dev_priv = dev->dev_private;
4232         int pipe = crtc->pipe;
4233
4234         if (crtc->config->pch_pfit.enabled) {
4235                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4236                 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4237                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4238         }
4239 }
4240
4241 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4242 {
4243         struct drm_device *dev = crtc->base.dev;
4244         struct drm_i915_private *dev_priv = dev->dev_private;
4245         int pipe = crtc->pipe;
4246
4247         if (crtc->config->pch_pfit.enabled) {
4248                 /* Force use of hard-coded filter coefficients
4249                  * as some pre-programmed values are broken,
4250                  * e.g. x201.
4251                  */
4252                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4253                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4254                                                  PF_PIPE_SEL_IVB(pipe));
4255                 else
4256                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4257                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4258                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4259         }
4260 }
4261
4262 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4263 {
4264         struct drm_device *dev = crtc->dev;
4265         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4266         struct drm_plane *plane;
4267         struct intel_plane *intel_plane;
4268
4269         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4270                 intel_plane = to_intel_plane(plane);
4271                 if (intel_plane->pipe == pipe)
4272                         intel_plane_restore(&intel_plane->base);
4273         }
4274 }
4275
4276 /*
4277  * Disable a plane internally without actually modifying the plane's state.
4278  * This will allow us to easily restore the plane later by just reprogramming
4279  * its state.
4280  */
4281 static void disable_plane_internal(struct drm_plane *plane)
4282 {
4283         struct intel_plane *intel_plane = to_intel_plane(plane);
4284         struct drm_plane_state *state =
4285                 plane->funcs->atomic_duplicate_state(plane);
4286         struct intel_plane_state *intel_state = to_intel_plane_state(state);
4287
4288         intel_state->visible = false;
4289         intel_plane->commit_plane(plane, intel_state);
4290
4291         intel_plane_destroy_state(plane, state);
4292 }
4293
4294 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4295 {
4296         struct drm_device *dev = crtc->dev;
4297         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4298         struct drm_plane *plane;
4299         struct intel_plane *intel_plane;
4300
4301         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4302                 intel_plane = to_intel_plane(plane);
4303                 if (plane->fb && intel_plane->pipe == pipe)
4304                         disable_plane_internal(plane);
4305         }
4306 }
4307
4308 void hsw_enable_ips(struct intel_crtc *crtc)
4309 {
4310         struct drm_device *dev = crtc->base.dev;
4311         struct drm_i915_private *dev_priv = dev->dev_private;
4312
4313         if (!crtc->config->ips_enabled)
4314                 return;
4315
4316         /* We can only enable IPS after we enable a plane and wait for a vblank */
4317         intel_wait_for_vblank(dev, crtc->pipe);
4318
4319         assert_plane_enabled(dev_priv, crtc->plane);
4320         if (IS_BROADWELL(dev)) {
4321                 mutex_lock(&dev_priv->rps.hw_lock);
4322                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4323                 mutex_unlock(&dev_priv->rps.hw_lock);
4324                 /* Quoting Art Runyan: "its not safe to expect any particular
4325                  * value in IPS_CTL bit 31 after enabling IPS through the
4326                  * mailbox." Moreover, the mailbox may return a bogus state,
4327                  * so we need to just enable it and continue on.
4328                  */
4329         } else {
4330                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4331                 /* The bit only becomes 1 in the next vblank, so this wait here
4332                  * is essentially intel_wait_for_vblank. If we don't have this
4333                  * and don't wait for vblanks until the end of crtc_enable, then
4334                  * the HW state readout code will complain that the expected
4335                  * IPS_CTL value is not the one we read. */
4336                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4337                         DRM_ERROR("Timed out waiting for IPS enable\n");
4338         }
4339 }
4340
4341 void hsw_disable_ips(struct intel_crtc *crtc)
4342 {
4343         struct drm_device *dev = crtc->base.dev;
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345
4346         if (!crtc->config->ips_enabled)
4347                 return;
4348
4349         assert_plane_enabled(dev_priv, crtc->plane);
4350         if (IS_BROADWELL(dev)) {
4351                 mutex_lock(&dev_priv->rps.hw_lock);
4352                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4353                 mutex_unlock(&dev_priv->rps.hw_lock);
4354                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4355                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4356                         DRM_ERROR("Timed out waiting for IPS disable\n");
4357         } else {
4358                 I915_WRITE(IPS_CTL, 0);
4359                 POSTING_READ(IPS_CTL);
4360         }
4361
4362         /* We need to wait for a vblank before we can disable the plane. */
4363         intel_wait_for_vblank(dev, crtc->pipe);
4364 }
4365
4366 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4367 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4368 {
4369         struct drm_device *dev = crtc->dev;
4370         struct drm_i915_private *dev_priv = dev->dev_private;
4371         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372         enum pipe pipe = intel_crtc->pipe;
4373         int palreg = PALETTE(pipe);
4374         int i;
4375         bool reenable_ips = false;
4376
4377         /* The clocks have to be on to load the palette. */
4378         if (!crtc->state->enable || !intel_crtc->active)
4379                 return;
4380
4381         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4382                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4383                         assert_dsi_pll_enabled(dev_priv);
4384                 else
4385                         assert_pll_enabled(dev_priv, pipe);
4386         }
4387
4388         /* use legacy palette for Ironlake */
4389         if (!HAS_GMCH_DISPLAY(dev))
4390                 palreg = LGC_PALETTE(pipe);
4391
4392         /* Workaround : Do not read or write the pipe palette/gamma data while
4393          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4394          */
4395         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4396             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4397              GAMMA_MODE_MODE_SPLIT)) {
4398                 hsw_disable_ips(intel_crtc);
4399                 reenable_ips = true;
4400         }
4401
4402         for (i = 0; i < 256; i++) {
4403                 I915_WRITE(palreg + 4 * i,
4404                            (intel_crtc->lut_r[i] << 16) |
4405                            (intel_crtc->lut_g[i] << 8) |
4406                            intel_crtc->lut_b[i]);
4407         }
4408
4409         if (reenable_ips)
4410                 hsw_enable_ips(intel_crtc);
4411 }
4412
4413 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4414 {
4415         if (!enable && intel_crtc->overlay) {
4416                 struct drm_device *dev = intel_crtc->base.dev;
4417                 struct drm_i915_private *dev_priv = dev->dev_private;
4418
4419                 mutex_lock(&dev->struct_mutex);
4420                 dev_priv->mm.interruptible = false;
4421                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4422                 dev_priv->mm.interruptible = true;
4423                 mutex_unlock(&dev->struct_mutex);
4424         }
4425
4426         /* Let userspace switch the overlay on again. In most cases userspace
4427          * has to recompute where to put it anyway.
4428          */
4429 }
4430
4431 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4432 {
4433         struct drm_device *dev = crtc->dev;
4434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435         int pipe = intel_crtc->pipe;
4436
4437         intel_enable_primary_hw_plane(crtc->primary, crtc);
4438         intel_enable_sprite_planes(crtc);
4439         intel_crtc_update_cursor(crtc, true);
4440         intel_crtc_dpms_overlay(intel_crtc, true);
4441
4442         hsw_enable_ips(intel_crtc);
4443
4444         mutex_lock(&dev->struct_mutex);
4445         intel_fbc_update(dev);
4446         mutex_unlock(&dev->struct_mutex);
4447
4448         /*
4449          * FIXME: Once we grow proper nuclear flip support out of this we need
4450          * to compute the mask of flip planes precisely. For the time being
4451          * consider this a flip from a NULL plane.
4452          */
4453         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4454 }
4455
4456 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4457 {
4458         struct drm_device *dev = crtc->dev;
4459         struct drm_i915_private *dev_priv = dev->dev_private;
4460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461         int pipe = intel_crtc->pipe;
4462
4463         intel_crtc_wait_for_pending_flips(crtc);
4464
4465         if (dev_priv->fbc.crtc == intel_crtc)
4466                 intel_fbc_disable(dev);
4467
4468         hsw_disable_ips(intel_crtc);
4469
4470         intel_crtc_dpms_overlay(intel_crtc, false);
4471         intel_crtc_update_cursor(crtc, false);
4472         intel_disable_sprite_planes(crtc);
4473         intel_disable_primary_hw_plane(crtc->primary, crtc);
4474
4475         /*
4476          * FIXME: Once we grow proper nuclear flip support out of this we need
4477          * to compute the mask of flip planes precisely. For the time being
4478          * consider this a flip to a NULL plane.
4479          */
4480         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4481 }
4482
4483 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4484 {
4485         struct drm_device *dev = crtc->dev;
4486         struct drm_i915_private *dev_priv = dev->dev_private;
4487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4488         struct intel_encoder *encoder;
4489         int pipe = intel_crtc->pipe;
4490
4491         WARN_ON(!crtc->state->enable);
4492
4493         if (intel_crtc->active)
4494                 return;
4495
4496         if (intel_crtc->config->has_pch_encoder)
4497                 intel_prepare_shared_dpll(intel_crtc);
4498
4499         if (intel_crtc->config->has_dp_encoder)
4500                 intel_dp_set_m_n(intel_crtc, M1_N1);
4501
4502         intel_set_pipe_timings(intel_crtc);
4503
4504         if (intel_crtc->config->has_pch_encoder) {
4505                 intel_cpu_transcoder_set_m_n(intel_crtc,
4506                                      &intel_crtc->config->fdi_m_n, NULL);
4507         }
4508
4509         ironlake_set_pipeconf(crtc);
4510
4511         intel_crtc->active = true;
4512
4513         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4514         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4515
4516         for_each_encoder_on_crtc(dev, crtc, encoder)
4517                 if (encoder->pre_enable)
4518                         encoder->pre_enable(encoder);
4519
4520         if (intel_crtc->config->has_pch_encoder) {
4521                 /* Note: FDI PLL enabling _must_ be done before we enable the
4522                  * cpu pipes, hence this is separate from all the other fdi/pch
4523                  * enabling. */
4524                 ironlake_fdi_pll_enable(intel_crtc);
4525         } else {
4526                 assert_fdi_tx_disabled(dev_priv, pipe);
4527                 assert_fdi_rx_disabled(dev_priv, pipe);
4528         }
4529
4530         ironlake_pfit_enable(intel_crtc);
4531
4532         /*
4533          * On ILK+ LUT must be loaded before the pipe is running but with
4534          * clocks enabled
4535          */
4536         intel_crtc_load_lut(crtc);
4537
4538         intel_update_watermarks(crtc);
4539         intel_enable_pipe(intel_crtc);
4540
4541         if (intel_crtc->config->has_pch_encoder)
4542                 ironlake_pch_enable(crtc);
4543
4544         assert_vblank_disabled(crtc);
4545         drm_crtc_vblank_on(crtc);
4546
4547         for_each_encoder_on_crtc(dev, crtc, encoder)
4548                 encoder->enable(encoder);
4549
4550         if (HAS_PCH_CPT(dev))
4551                 cpt_verify_modeset(dev, intel_crtc->pipe);
4552
4553         intel_crtc_enable_planes(crtc);
4554 }
4555
4556 /* IPS only exists on ULT machines and is tied to pipe A. */
4557 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4558 {
4559         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4560 }
4561
4562 /*
4563  * This implements the workaround described in the "notes" section of the mode
4564  * set sequence documentation. When going from no pipes or single pipe to
4565  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4566  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4567  */
4568 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4569 {
4570         struct drm_device *dev = crtc->base.dev;
4571         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4572
4573         /* We want to get the other_active_crtc only if there's only 1 other
4574          * active crtc. */
4575         for_each_intel_crtc(dev, crtc_it) {
4576                 if (!crtc_it->active || crtc_it == crtc)
4577                         continue;
4578
4579                 if (other_active_crtc)
4580                         return;
4581
4582                 other_active_crtc = crtc_it;
4583         }
4584         if (!other_active_crtc)
4585                 return;
4586
4587         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4588         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4589 }
4590
4591 static void haswell_crtc_enable(struct drm_crtc *crtc)
4592 {
4593         struct drm_device *dev = crtc->dev;
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4596         struct intel_encoder *encoder;
4597         int pipe = intel_crtc->pipe;
4598
4599         WARN_ON(!crtc->state->enable);
4600
4601         if (intel_crtc->active)
4602                 return;
4603
4604         if (intel_crtc_to_shared_dpll(intel_crtc))
4605                 intel_enable_shared_dpll(intel_crtc);
4606
4607         if (intel_crtc->config->has_dp_encoder)
4608                 intel_dp_set_m_n(intel_crtc, M1_N1);
4609
4610         intel_set_pipe_timings(intel_crtc);
4611
4612         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4613                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4614                            intel_crtc->config->pixel_multiplier - 1);
4615         }
4616
4617         if (intel_crtc->config->has_pch_encoder) {
4618                 intel_cpu_transcoder_set_m_n(intel_crtc,
4619                                      &intel_crtc->config->fdi_m_n, NULL);
4620         }
4621
4622         haswell_set_pipeconf(crtc);
4623
4624         intel_set_pipe_csc(crtc);
4625
4626         intel_crtc->active = true;
4627
4628         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4629         for_each_encoder_on_crtc(dev, crtc, encoder)
4630                 if (encoder->pre_enable)
4631                         encoder->pre_enable(encoder);
4632
4633         if (intel_crtc->config->has_pch_encoder) {
4634                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4635                                                       true);
4636                 dev_priv->display.fdi_link_train(crtc);
4637         }
4638
4639         intel_ddi_enable_pipe_clock(intel_crtc);
4640
4641         if (IS_SKYLAKE(dev))
4642                 skylake_pfit_enable(intel_crtc);
4643         else
4644                 ironlake_pfit_enable(intel_crtc);
4645
4646         /*
4647          * On ILK+ LUT must be loaded before the pipe is running but with
4648          * clocks enabled
4649          */
4650         intel_crtc_load_lut(crtc);
4651
4652         intel_ddi_set_pipe_settings(crtc);
4653         intel_ddi_enable_transcoder_func(crtc);
4654
4655         intel_update_watermarks(crtc);
4656         intel_enable_pipe(intel_crtc);
4657
4658         if (intel_crtc->config->has_pch_encoder)
4659                 lpt_pch_enable(crtc);
4660
4661         if (intel_crtc->config->dp_encoder_is_mst)
4662                 intel_ddi_set_vc_payload_alloc(crtc, true);
4663
4664         assert_vblank_disabled(crtc);
4665         drm_crtc_vblank_on(crtc);
4666
4667         for_each_encoder_on_crtc(dev, crtc, encoder) {
4668                 encoder->enable(encoder);
4669                 intel_opregion_notify_encoder(encoder, true);
4670         }
4671
4672         /* If we change the relative order between pipe/planes enabling, we need
4673          * to change the workaround. */
4674         haswell_mode_set_planes_workaround(intel_crtc);
4675         intel_crtc_enable_planes(crtc);
4676 }
4677
4678 static void skylake_pfit_disable(struct intel_crtc *crtc)
4679 {
4680         struct drm_device *dev = crtc->base.dev;
4681         struct drm_i915_private *dev_priv = dev->dev_private;
4682         int pipe = crtc->pipe;
4683
4684         /* To avoid upsetting the power well on haswell only disable the pfit if
4685          * it's in use. The hw state code will make sure we get this right. */
4686         if (crtc->config->pch_pfit.enabled) {
4687                 I915_WRITE(PS_CTL(pipe), 0);
4688                 I915_WRITE(PS_WIN_POS(pipe), 0);
4689                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4690         }
4691 }
4692
4693 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4694 {
4695         struct drm_device *dev = crtc->base.dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         int pipe = crtc->pipe;
4698
4699         /* To avoid upsetting the power well on haswell only disable the pfit if
4700          * it's in use. The hw state code will make sure we get this right. */
4701         if (crtc->config->pch_pfit.enabled) {
4702                 I915_WRITE(PF_CTL(pipe), 0);
4703                 I915_WRITE(PF_WIN_POS(pipe), 0);
4704                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4705         }
4706 }
4707
4708 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4709 {
4710         struct drm_device *dev = crtc->dev;
4711         struct drm_i915_private *dev_priv = dev->dev_private;
4712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713         struct intel_encoder *encoder;
4714         int pipe = intel_crtc->pipe;
4715         u32 reg, temp;
4716
4717         if (!intel_crtc->active)
4718                 return;
4719
4720         intel_crtc_disable_planes(crtc);
4721
4722         for_each_encoder_on_crtc(dev, crtc, encoder)
4723                 encoder->disable(encoder);
4724
4725         drm_crtc_vblank_off(crtc);
4726         assert_vblank_disabled(crtc);
4727
4728         if (intel_crtc->config->has_pch_encoder)
4729                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4730
4731         intel_disable_pipe(intel_crtc);
4732
4733         ironlake_pfit_disable(intel_crtc);
4734
4735         for_each_encoder_on_crtc(dev, crtc, encoder)
4736                 if (encoder->post_disable)
4737                         encoder->post_disable(encoder);
4738
4739         if (intel_crtc->config->has_pch_encoder) {
4740                 ironlake_fdi_disable(crtc);
4741
4742                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4743
4744                 if (HAS_PCH_CPT(dev)) {
4745                         /* disable TRANS_DP_CTL */
4746                         reg = TRANS_DP_CTL(pipe);
4747                         temp = I915_READ(reg);
4748                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4749                                   TRANS_DP_PORT_SEL_MASK);
4750                         temp |= TRANS_DP_PORT_SEL_NONE;
4751                         I915_WRITE(reg, temp);
4752
4753                         /* disable DPLL_SEL */
4754                         temp = I915_READ(PCH_DPLL_SEL);
4755                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4756                         I915_WRITE(PCH_DPLL_SEL, temp);
4757                 }
4758
4759                 /* disable PCH DPLL */
4760                 intel_disable_shared_dpll(intel_crtc);
4761
4762                 ironlake_fdi_pll_disable(intel_crtc);
4763         }
4764
4765         intel_crtc->active = false;
4766         intel_update_watermarks(crtc);
4767
4768         mutex_lock(&dev->struct_mutex);
4769         intel_fbc_update(dev);
4770         mutex_unlock(&dev->struct_mutex);
4771 }
4772
4773 static void haswell_crtc_disable(struct drm_crtc *crtc)
4774 {
4775         struct drm_device *dev = crtc->dev;
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4778         struct intel_encoder *encoder;
4779         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4780
4781         if (!intel_crtc->active)
4782                 return;
4783
4784         intel_crtc_disable_planes(crtc);
4785
4786         for_each_encoder_on_crtc(dev, crtc, encoder) {
4787                 intel_opregion_notify_encoder(encoder, false);
4788                 encoder->disable(encoder);
4789         }
4790
4791         drm_crtc_vblank_off(crtc);
4792         assert_vblank_disabled(crtc);
4793
4794         if (intel_crtc->config->has_pch_encoder)
4795                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4796                                                       false);
4797         intel_disable_pipe(intel_crtc);
4798
4799         if (intel_crtc->config->dp_encoder_is_mst)
4800                 intel_ddi_set_vc_payload_alloc(crtc, false);
4801
4802         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4803
4804         if (IS_SKYLAKE(dev))
4805                 skylake_pfit_disable(intel_crtc);
4806         else
4807                 ironlake_pfit_disable(intel_crtc);
4808
4809         intel_ddi_disable_pipe_clock(intel_crtc);
4810
4811         if (intel_crtc->config->has_pch_encoder) {
4812                 lpt_disable_pch_transcoder(dev_priv);
4813                 intel_ddi_fdi_disable(crtc);
4814         }
4815
4816         for_each_encoder_on_crtc(dev, crtc, encoder)
4817                 if (encoder->post_disable)
4818                         encoder->post_disable(encoder);
4819
4820         intel_crtc->active = false;
4821         intel_update_watermarks(crtc);
4822
4823         mutex_lock(&dev->struct_mutex);
4824         intel_fbc_update(dev);
4825         mutex_unlock(&dev->struct_mutex);
4826
4827         if (intel_crtc_to_shared_dpll(intel_crtc))
4828                 intel_disable_shared_dpll(intel_crtc);
4829 }
4830
4831 static void ironlake_crtc_off(struct drm_crtc *crtc)
4832 {
4833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834         intel_put_shared_dpll(intel_crtc);
4835 }
4836
4837
4838 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4839 {
4840         struct drm_device *dev = crtc->base.dev;
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         struct intel_crtc_state *pipe_config = crtc->config;
4843
4844         if (!pipe_config->gmch_pfit.control)
4845                 return;
4846
4847         /*
4848          * The panel fitter should only be adjusted whilst the pipe is disabled,
4849          * according to register description and PRM.
4850          */
4851         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4852         assert_pipe_disabled(dev_priv, crtc->pipe);
4853
4854         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4855         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4856
4857         /* Border color in case we don't scale up to the full screen. Black by
4858          * default, change to something else for debugging. */
4859         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4860 }
4861
4862 static enum intel_display_power_domain port_to_power_domain(enum port port)
4863 {
4864         switch (port) {
4865         case PORT_A:
4866                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4867         case PORT_B:
4868                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4869         case PORT_C:
4870                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4871         case PORT_D:
4872                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4873         default:
4874                 WARN_ON_ONCE(1);
4875                 return POWER_DOMAIN_PORT_OTHER;
4876         }
4877 }
4878
4879 #define for_each_power_domain(domain, mask)                             \
4880         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4881                 if ((1 << (domain)) & (mask))
4882
4883 enum intel_display_power_domain
4884 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4885 {
4886         struct drm_device *dev = intel_encoder->base.dev;
4887         struct intel_digital_port *intel_dig_port;
4888
4889         switch (intel_encoder->type) {
4890         case INTEL_OUTPUT_UNKNOWN:
4891                 /* Only DDI platforms should ever use this output type */
4892                 WARN_ON_ONCE(!HAS_DDI(dev));
4893         case INTEL_OUTPUT_DISPLAYPORT:
4894         case INTEL_OUTPUT_HDMI:
4895         case INTEL_OUTPUT_EDP:
4896                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4897                 return port_to_power_domain(intel_dig_port->port);
4898         case INTEL_OUTPUT_DP_MST:
4899                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4900                 return port_to_power_domain(intel_dig_port->port);
4901         case INTEL_OUTPUT_ANALOG:
4902                 return POWER_DOMAIN_PORT_CRT;
4903         case INTEL_OUTPUT_DSI:
4904                 return POWER_DOMAIN_PORT_DSI;
4905         default:
4906                 return POWER_DOMAIN_PORT_OTHER;
4907         }
4908 }
4909
4910 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4911 {
4912         struct drm_device *dev = crtc->dev;
4913         struct intel_encoder *intel_encoder;
4914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915         enum pipe pipe = intel_crtc->pipe;
4916         unsigned long mask;
4917         enum transcoder transcoder;
4918
4919         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4920
4921         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4922         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4923         if (intel_crtc->config->pch_pfit.enabled ||
4924             intel_crtc->config->pch_pfit.force_thru)
4925                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4926
4927         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4928                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4929
4930         return mask;
4931 }
4932
4933 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4934 {
4935         struct drm_i915_private *dev_priv = dev->dev_private;
4936         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4937         struct intel_crtc *crtc;
4938
4939         /*
4940          * First get all needed power domains, then put all unneeded, to avoid
4941          * any unnecessary toggling of the power wells.
4942          */
4943         for_each_intel_crtc(dev, crtc) {
4944                 enum intel_display_power_domain domain;
4945
4946                 if (!crtc->base.state->enable)
4947                         continue;
4948
4949                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4950
4951                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4952                         intel_display_power_get(dev_priv, domain);
4953         }
4954
4955         if (dev_priv->display.modeset_global_resources)
4956                 dev_priv->display.modeset_global_resources(dev);
4957
4958         for_each_intel_crtc(dev, crtc) {
4959                 enum intel_display_power_domain domain;
4960
4961                 for_each_power_domain(domain, crtc->enabled_power_domains)
4962                         intel_display_power_put(dev_priv, domain);
4963
4964                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4965         }
4966
4967         intel_display_set_init_power(dev_priv, false);
4968 }
4969
4970 /* returns HPLL frequency in kHz */
4971 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4972 {
4973         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4974
4975         /* Obtain SKU information */
4976         mutex_lock(&dev_priv->dpio_lock);
4977         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4978                 CCK_FUSE_HPLL_FREQ_MASK;
4979         mutex_unlock(&dev_priv->dpio_lock);
4980
4981         return vco_freq[hpll_freq] * 1000;
4982 }
4983
4984 static void vlv_update_cdclk(struct drm_device *dev)
4985 {
4986         struct drm_i915_private *dev_priv = dev->dev_private;
4987
4988         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4989         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4990                          dev_priv->vlv_cdclk_freq);
4991
4992         /*
4993          * Program the gmbus_freq based on the cdclk frequency.
4994          * BSpec erroneously claims we should aim for 4MHz, but
4995          * in fact 1MHz is the correct frequency.
4996          */
4997         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4998 }
4999
5000 /* Adjust CDclk dividers to allow high res or save power if possible */
5001 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5002 {
5003         struct drm_i915_private *dev_priv = dev->dev_private;
5004         u32 val, cmd;
5005
5006         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5007
5008         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5009                 cmd = 2;
5010         else if (cdclk == 266667)
5011                 cmd = 1;
5012         else
5013                 cmd = 0;
5014
5015         mutex_lock(&dev_priv->rps.hw_lock);
5016         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5017         val &= ~DSPFREQGUAR_MASK;
5018         val |= (cmd << DSPFREQGUAR_SHIFT);
5019         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5020         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5021                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5022                      50)) {
5023                 DRM_ERROR("timed out waiting for CDclk change\n");
5024         }
5025         mutex_unlock(&dev_priv->rps.hw_lock);
5026
5027         if (cdclk == 400000) {
5028                 u32 divider;
5029
5030                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5031
5032                 mutex_lock(&dev_priv->dpio_lock);
5033                 /* adjust cdclk divider */
5034                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5035                 val &= ~DISPLAY_FREQUENCY_VALUES;
5036                 val |= divider;
5037                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5038
5039                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5040                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5041                              50))
5042                         DRM_ERROR("timed out waiting for CDclk change\n");
5043                 mutex_unlock(&dev_priv->dpio_lock);
5044         }
5045
5046         mutex_lock(&dev_priv->dpio_lock);
5047         /* adjust self-refresh exit latency value */
5048         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5049         val &= ~0x7f;
5050
5051         /*
5052          * For high bandwidth configs, we set a higher latency in the bunit
5053          * so that the core display fetch happens in time to avoid underruns.
5054          */
5055         if (cdclk == 400000)
5056                 val |= 4500 / 250; /* 4.5 usec */
5057         else
5058                 val |= 3000 / 250; /* 3.0 usec */
5059         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5060         mutex_unlock(&dev_priv->dpio_lock);
5061
5062         vlv_update_cdclk(dev);
5063 }
5064
5065 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5066 {
5067         struct drm_i915_private *dev_priv = dev->dev_private;
5068         u32 val, cmd;
5069
5070         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5071
5072         switch (cdclk) {
5073         case 333333:
5074         case 320000:
5075         case 266667:
5076         case 200000:
5077                 break;
5078         default:
5079                 MISSING_CASE(cdclk);
5080                 return;
5081         }
5082
5083         /*
5084          * Specs are full of misinformation, but testing on actual
5085          * hardware has shown that we just need to write the desired
5086          * CCK divider into the Punit register.
5087          */
5088         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5089
5090         mutex_lock(&dev_priv->rps.hw_lock);
5091         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5092         val &= ~DSPFREQGUAR_MASK_CHV;
5093         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5094         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5095         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5096                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5097                      50)) {
5098                 DRM_ERROR("timed out waiting for CDclk change\n");
5099         }
5100         mutex_unlock(&dev_priv->rps.hw_lock);
5101
5102         vlv_update_cdclk(dev);
5103 }
5104
5105 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5106                                  int max_pixclk)
5107 {
5108         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5109         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5110
5111         /*
5112          * Really only a few cases to deal with, as only 4 CDclks are supported:
5113          *   200MHz
5114          *   267MHz
5115          *   320/333MHz (depends on HPLL freq)
5116          *   400MHz (VLV only)
5117          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5118          * of the lower bin and adjust if needed.
5119          *
5120          * We seem to get an unstable or solid color picture at 200MHz.
5121          * Not sure what's wrong. For now use 200MHz only when all pipes
5122          * are off.
5123          */
5124         if (!IS_CHERRYVIEW(dev_priv) &&
5125             max_pixclk > freq_320*limit/100)
5126                 return 400000;
5127         else if (max_pixclk > 266667*limit/100)
5128                 return freq_320;
5129         else if (max_pixclk > 0)
5130                 return 266667;
5131         else
5132                 return 200000;
5133 }
5134
5135 /* compute the max pixel clock for new configuration */
5136 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5137 {
5138         struct drm_device *dev = dev_priv->dev;
5139         struct intel_crtc *intel_crtc;
5140         int max_pixclk = 0;
5141
5142         for_each_intel_crtc(dev, intel_crtc) {
5143                 if (intel_crtc->new_enabled)
5144                         max_pixclk = max(max_pixclk,
5145                                          intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5146         }
5147
5148         return max_pixclk;
5149 }
5150
5151 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5152                                             unsigned *prepare_pipes)
5153 {
5154         struct drm_i915_private *dev_priv = dev->dev_private;
5155         struct intel_crtc *intel_crtc;
5156         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5157
5158         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5159             dev_priv->vlv_cdclk_freq)
5160                 return;
5161
5162         /* disable/enable all currently active pipes while we change cdclk */
5163         for_each_intel_crtc(dev, intel_crtc)
5164                 if (intel_crtc->base.state->enable)
5165                         *prepare_pipes |= (1 << intel_crtc->pipe);
5166 }
5167
5168 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5169 {
5170         unsigned int credits, default_credits;
5171
5172         if (IS_CHERRYVIEW(dev_priv))
5173                 default_credits = PFI_CREDIT(12);
5174         else
5175                 default_credits = PFI_CREDIT(8);
5176
5177         if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5178                 /* CHV suggested value is 31 or 63 */
5179                 if (IS_CHERRYVIEW(dev_priv))
5180                         credits = PFI_CREDIT_31;
5181                 else
5182                         credits = PFI_CREDIT(15);
5183         } else {
5184                 credits = default_credits;
5185         }
5186
5187         /*
5188          * WA - write default credits before re-programming
5189          * FIXME: should we also set the resend bit here?
5190          */
5191         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5192                    default_credits);
5193
5194         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5195                    credits | PFI_CREDIT_RESEND);
5196
5197         /*
5198          * FIXME is this guaranteed to clear
5199          * immediately or should we poll for it?
5200          */
5201         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5202 }
5203
5204 static void valleyview_modeset_global_resources(struct drm_device *dev)
5205 {
5206         struct drm_i915_private *dev_priv = dev->dev_private;
5207         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5208         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5209
5210         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5211                 /*
5212                  * FIXME: We can end up here with all power domains off, yet
5213                  * with a CDCLK frequency other than the minimum. To account
5214                  * for this take the PIPE-A power domain, which covers the HW
5215                  * blocks needed for the following programming. This can be
5216                  * removed once it's guaranteed that we get here either with
5217                  * the minimum CDCLK set, or the required power domains
5218                  * enabled.
5219                  */
5220                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5221
5222                 if (IS_CHERRYVIEW(dev))
5223                         cherryview_set_cdclk(dev, req_cdclk);
5224                 else
5225                         valleyview_set_cdclk(dev, req_cdclk);
5226
5227                 vlv_program_pfi_credits(dev_priv);
5228
5229                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5230         }
5231 }
5232
5233 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5234 {
5235         struct drm_device *dev = crtc->dev;
5236         struct drm_i915_private *dev_priv = to_i915(dev);
5237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238         struct intel_encoder *encoder;
5239         int pipe = intel_crtc->pipe;
5240         bool is_dsi;
5241
5242         WARN_ON(!crtc->state->enable);
5243
5244         if (intel_crtc->active)
5245                 return;
5246
5247         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5248
5249         if (!is_dsi) {
5250                 if (IS_CHERRYVIEW(dev))
5251                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5252                 else
5253                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5254         }
5255
5256         if (intel_crtc->config->has_dp_encoder)
5257                 intel_dp_set_m_n(intel_crtc, M1_N1);
5258
5259         intel_set_pipe_timings(intel_crtc);
5260
5261         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5262                 struct drm_i915_private *dev_priv = dev->dev_private;
5263
5264                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5265                 I915_WRITE(CHV_CANVAS(pipe), 0);
5266         }
5267
5268         i9xx_set_pipeconf(intel_crtc);
5269
5270         intel_crtc->active = true;
5271
5272         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5273
5274         for_each_encoder_on_crtc(dev, crtc, encoder)
5275                 if (encoder->pre_pll_enable)
5276                         encoder->pre_pll_enable(encoder);
5277
5278         if (!is_dsi) {
5279                 if (IS_CHERRYVIEW(dev))
5280                         chv_enable_pll(intel_crtc, intel_crtc->config);
5281                 else
5282                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5283         }
5284
5285         for_each_encoder_on_crtc(dev, crtc, encoder)
5286                 if (encoder->pre_enable)
5287                         encoder->pre_enable(encoder);
5288
5289         i9xx_pfit_enable(intel_crtc);
5290
5291         intel_crtc_load_lut(crtc);
5292
5293         intel_update_watermarks(crtc);
5294         intel_enable_pipe(intel_crtc);
5295
5296         assert_vblank_disabled(crtc);
5297         drm_crtc_vblank_on(crtc);
5298
5299         for_each_encoder_on_crtc(dev, crtc, encoder)
5300                 encoder->enable(encoder);
5301
5302         intel_crtc_enable_planes(crtc);
5303
5304         /* Underruns don't raise interrupts, so check manually. */
5305         i9xx_check_fifo_underruns(dev_priv);
5306 }
5307
5308 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5309 {
5310         struct drm_device *dev = crtc->base.dev;
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312
5313         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5314         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5315 }
5316
5317 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5318 {
5319         struct drm_device *dev = crtc->dev;
5320         struct drm_i915_private *dev_priv = to_i915(dev);
5321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5322         struct intel_encoder *encoder;
5323         int pipe = intel_crtc->pipe;
5324
5325         WARN_ON(!crtc->state->enable);
5326
5327         if (intel_crtc->active)
5328                 return;
5329
5330         i9xx_set_pll_dividers(intel_crtc);
5331
5332         if (intel_crtc->config->has_dp_encoder)
5333                 intel_dp_set_m_n(intel_crtc, M1_N1);
5334
5335         intel_set_pipe_timings(intel_crtc);
5336
5337         i9xx_set_pipeconf(intel_crtc);
5338
5339         intel_crtc->active = true;
5340
5341         if (!IS_GEN2(dev))
5342                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5343
5344         for_each_encoder_on_crtc(dev, crtc, encoder)
5345                 if (encoder->pre_enable)
5346                         encoder->pre_enable(encoder);
5347
5348         i9xx_enable_pll(intel_crtc);
5349
5350         i9xx_pfit_enable(intel_crtc);
5351
5352         intel_crtc_load_lut(crtc);
5353
5354         intel_update_watermarks(crtc);
5355         intel_enable_pipe(intel_crtc);
5356
5357         assert_vblank_disabled(crtc);
5358         drm_crtc_vblank_on(crtc);
5359
5360         for_each_encoder_on_crtc(dev, crtc, encoder)
5361                 encoder->enable(encoder);
5362
5363         intel_crtc_enable_planes(crtc);
5364
5365         /*
5366          * Gen2 reports pipe underruns whenever all planes are disabled.
5367          * So don't enable underrun reporting before at least some planes
5368          * are enabled.
5369          * FIXME: Need to fix the logic to work when we turn off all planes
5370          * but leave the pipe running.
5371          */
5372         if (IS_GEN2(dev))
5373                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5374
5375         /* Underruns don't raise interrupts, so check manually. */
5376         i9xx_check_fifo_underruns(dev_priv);
5377 }
5378
5379 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5380 {
5381         struct drm_device *dev = crtc->base.dev;
5382         struct drm_i915_private *dev_priv = dev->dev_private;
5383
5384         if (!crtc->config->gmch_pfit.control)
5385                 return;
5386
5387         assert_pipe_disabled(dev_priv, crtc->pipe);
5388
5389         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5390                          I915_READ(PFIT_CONTROL));
5391         I915_WRITE(PFIT_CONTROL, 0);
5392 }
5393
5394 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5395 {
5396         struct drm_device *dev = crtc->dev;
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5399         struct intel_encoder *encoder;
5400         int pipe = intel_crtc->pipe;
5401
5402         if (!intel_crtc->active)
5403                 return;
5404
5405         /*
5406          * Gen2 reports pipe underruns whenever all planes are disabled.
5407          * So diasble underrun reporting before all the planes get disabled.
5408          * FIXME: Need to fix the logic to work when we turn off all planes
5409          * but leave the pipe running.
5410          */
5411         if (IS_GEN2(dev))
5412                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5413
5414         /*
5415          * Vblank time updates from the shadow to live plane control register
5416          * are blocked if the memory self-refresh mode is active at that
5417          * moment. So to make sure the plane gets truly disabled, disable
5418          * first the self-refresh mode. The self-refresh enable bit in turn
5419          * will be checked/applied by the HW only at the next frame start
5420          * event which is after the vblank start event, so we need to have a
5421          * wait-for-vblank between disabling the plane and the pipe.
5422          */
5423         intel_set_memory_cxsr(dev_priv, false);
5424         intel_crtc_disable_planes(crtc);
5425
5426         /*
5427          * On gen2 planes are double buffered but the pipe isn't, so we must
5428          * wait for planes to fully turn off before disabling the pipe.
5429          * We also need to wait on all gmch platforms because of the
5430          * self-refresh mode constraint explained above.
5431          */
5432         intel_wait_for_vblank(dev, pipe);
5433
5434         for_each_encoder_on_crtc(dev, crtc, encoder)
5435                 encoder->disable(encoder);
5436
5437         drm_crtc_vblank_off(crtc);
5438         assert_vblank_disabled(crtc);
5439
5440         intel_disable_pipe(intel_crtc);
5441
5442         i9xx_pfit_disable(intel_crtc);
5443
5444         for_each_encoder_on_crtc(dev, crtc, encoder)
5445                 if (encoder->post_disable)
5446                         encoder->post_disable(encoder);
5447
5448         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5449                 if (IS_CHERRYVIEW(dev))
5450                         chv_disable_pll(dev_priv, pipe);
5451                 else if (IS_VALLEYVIEW(dev))
5452                         vlv_disable_pll(dev_priv, pipe);
5453                 else
5454                         i9xx_disable_pll(intel_crtc);
5455         }
5456
5457         if (!IS_GEN2(dev))
5458                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5459
5460         intel_crtc->active = false;
5461         intel_update_watermarks(crtc);
5462
5463         mutex_lock(&dev->struct_mutex);
5464         intel_fbc_update(dev);
5465         mutex_unlock(&dev->struct_mutex);
5466 }
5467
5468 static void i9xx_crtc_off(struct drm_crtc *crtc)
5469 {
5470 }
5471
5472 /* Master function to enable/disable CRTC and corresponding power wells */
5473 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5474 {
5475         struct drm_device *dev = crtc->dev;
5476         struct drm_i915_private *dev_priv = dev->dev_private;
5477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5478         enum intel_display_power_domain domain;
5479         unsigned long domains;
5480
5481         if (enable) {
5482                 if (!intel_crtc->active) {
5483                         domains = get_crtc_power_domains(crtc);
5484                         for_each_power_domain(domain, domains)
5485                                 intel_display_power_get(dev_priv, domain);
5486                         intel_crtc->enabled_power_domains = domains;
5487
5488                         dev_priv->display.crtc_enable(crtc);
5489                 }
5490         } else {
5491                 if (intel_crtc->active) {
5492                         dev_priv->display.crtc_disable(crtc);
5493
5494                         domains = intel_crtc->enabled_power_domains;
5495                         for_each_power_domain(domain, domains)
5496                                 intel_display_power_put(dev_priv, domain);
5497                         intel_crtc->enabled_power_domains = 0;
5498                 }
5499         }
5500 }
5501
5502 /**
5503  * Sets the power management mode of the pipe and plane.
5504  */
5505 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5506 {
5507         struct drm_device *dev = crtc->dev;
5508         struct intel_encoder *intel_encoder;
5509         bool enable = false;
5510
5511         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5512                 enable |= intel_encoder->connectors_active;
5513
5514         intel_crtc_control(crtc, enable);
5515 }
5516
5517 static void intel_crtc_disable(struct drm_crtc *crtc)
5518 {
5519         struct drm_device *dev = crtc->dev;
5520         struct drm_connector *connector;
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523         /* crtc should still be enabled when we disable it. */
5524         WARN_ON(!crtc->state->enable);
5525
5526         dev_priv->display.crtc_disable(crtc);
5527         dev_priv->display.off(crtc);
5528
5529         crtc->primary->funcs->disable_plane(crtc->primary);
5530
5531         /* Update computed state. */
5532         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5533                 if (!connector->encoder || !connector->encoder->crtc)
5534                         continue;
5535
5536                 if (connector->encoder->crtc != crtc)
5537                         continue;
5538
5539                 connector->dpms = DRM_MODE_DPMS_OFF;
5540                 to_intel_encoder(connector->encoder)->connectors_active = false;
5541         }
5542 }
5543
5544 void intel_encoder_destroy(struct drm_encoder *encoder)
5545 {
5546         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5547
5548         drm_encoder_cleanup(encoder);
5549         kfree(intel_encoder);
5550 }
5551
5552 /* Simple dpms helper for encoders with just one connector, no cloning and only
5553  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5554  * state of the entire output pipe. */
5555 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5556 {
5557         if (mode == DRM_MODE_DPMS_ON) {
5558                 encoder->connectors_active = true;
5559
5560                 intel_crtc_update_dpms(encoder->base.crtc);
5561         } else {
5562                 encoder->connectors_active = false;
5563
5564                 intel_crtc_update_dpms(encoder->base.crtc);
5565         }
5566 }
5567
5568 /* Cross check the actual hw state with our own modeset state tracking (and it's
5569  * internal consistency). */
5570 static void intel_connector_check_state(struct intel_connector *connector)
5571 {
5572         if (connector->get_hw_state(connector)) {
5573                 struct intel_encoder *encoder = connector->encoder;
5574                 struct drm_crtc *crtc;
5575                 bool encoder_enabled;
5576                 enum pipe pipe;
5577
5578                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5579                               connector->base.base.id,
5580                               connector->base.name);
5581
5582                 /* there is no real hw state for MST connectors */
5583                 if (connector->mst_port)
5584                         return;
5585
5586                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5587                      "wrong connector dpms state\n");
5588                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5589                      "active connector not linked to encoder\n");
5590
5591                 if (encoder) {
5592                         I915_STATE_WARN(!encoder->connectors_active,
5593                              "encoder->connectors_active not set\n");
5594
5595                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5596                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5597                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5598                                 return;
5599
5600                         crtc = encoder->base.crtc;
5601
5602                         I915_STATE_WARN(!crtc->state->enable,
5603                                         "crtc not enabled\n");
5604                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5605                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5606                              "encoder active on the wrong pipe\n");
5607                 }
5608         }
5609 }
5610
5611 /* Even simpler default implementation, if there's really no special case to
5612  * consider. */
5613 void intel_connector_dpms(struct drm_connector *connector, int mode)
5614 {
5615         /* All the simple cases only support two dpms states. */
5616         if (mode != DRM_MODE_DPMS_ON)
5617                 mode = DRM_MODE_DPMS_OFF;
5618
5619         if (mode == connector->dpms)
5620                 return;
5621
5622         connector->dpms = mode;
5623
5624         /* Only need to change hw state when actually enabled */
5625         if (connector->encoder)
5626                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5627
5628         intel_modeset_check_state(connector->dev);
5629 }
5630
5631 /* Simple connector->get_hw_state implementation for encoders that support only
5632  * one connector and no cloning and hence the encoder state determines the state
5633  * of the connector. */
5634 bool intel_connector_get_hw_state(struct intel_connector *connector)
5635 {
5636         enum pipe pipe = 0;
5637         struct intel_encoder *encoder = connector->encoder;
5638
5639         return encoder->get_hw_state(encoder, &pipe);
5640 }
5641
5642 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5643 {
5644         struct intel_crtc *crtc =
5645                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5646
5647         if (crtc->base.state->enable &&
5648             crtc->config->has_pch_encoder)
5649                 return crtc->config->fdi_lanes;
5650
5651         return 0;
5652 }
5653
5654 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5655                                      struct intel_crtc_state *pipe_config)
5656 {
5657         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5658                       pipe_name(pipe), pipe_config->fdi_lanes);
5659         if (pipe_config->fdi_lanes > 4) {
5660                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5661                               pipe_name(pipe), pipe_config->fdi_lanes);
5662                 return false;
5663         }
5664
5665         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5666                 if (pipe_config->fdi_lanes > 2) {
5667                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5668                                       pipe_config->fdi_lanes);
5669                         return false;
5670                 } else {
5671                         return true;
5672                 }
5673         }
5674
5675         if (INTEL_INFO(dev)->num_pipes == 2)
5676                 return true;
5677
5678         /* Ivybridge 3 pipe is really complicated */
5679         switch (pipe) {
5680         case PIPE_A:
5681                 return true;
5682         case PIPE_B:
5683                 if (pipe_config->fdi_lanes > 2 &&
5684                     pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5685                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5686                                       pipe_name(pipe), pipe_config->fdi_lanes);
5687                         return false;
5688                 }
5689                 return true;
5690         case PIPE_C:
5691                 if (pipe_config->fdi_lanes > 2) {
5692                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5693                                       pipe_name(pipe), pipe_config->fdi_lanes);
5694                         return false;
5695                 }
5696                 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5697                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5698                         return false;
5699                 }
5700                 return true;
5701         default:
5702                 BUG();
5703         }
5704 }
5705
5706 #define RETRY 1
5707 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5708                                        struct intel_crtc_state *pipe_config)
5709 {
5710         struct drm_device *dev = intel_crtc->base.dev;
5711         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5712         int lane, link_bw, fdi_dotclock;
5713         bool setup_ok, needs_recompute = false;
5714
5715 retry:
5716         /* FDI is a binary signal running at ~2.7GHz, encoding
5717          * each output octet as 10 bits. The actual frequency
5718          * is stored as a divider into a 100MHz clock, and the
5719          * mode pixel clock is stored in units of 1KHz.
5720          * Hence the bw of each lane in terms of the mode signal
5721          * is:
5722          */
5723         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5724
5725         fdi_dotclock = adjusted_mode->crtc_clock;
5726
5727         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5728                                            pipe_config->pipe_bpp);
5729
5730         pipe_config->fdi_lanes = lane;
5731
5732         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5733                                link_bw, &pipe_config->fdi_m_n);
5734
5735         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5736                                             intel_crtc->pipe, pipe_config);
5737         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5738                 pipe_config->pipe_bpp -= 2*3;
5739                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5740                               pipe_config->pipe_bpp);
5741                 needs_recompute = true;
5742                 pipe_config->bw_constrained = true;
5743
5744                 goto retry;
5745         }
5746
5747         if (needs_recompute)
5748                 return RETRY;
5749
5750         return setup_ok ? 0 : -EINVAL;
5751 }
5752
5753 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5754                                    struct intel_crtc_state *pipe_config)
5755 {
5756         pipe_config->ips_enabled = i915.enable_ips &&
5757                                    hsw_crtc_supports_ips(crtc) &&
5758                                    pipe_config->pipe_bpp <= 24;
5759 }
5760
5761 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5762                                      struct intel_crtc_state *pipe_config)
5763 {
5764         struct drm_device *dev = crtc->base.dev;
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5767
5768         /* FIXME should check pixel clock limits on all platforms */
5769         if (INTEL_INFO(dev)->gen < 4) {
5770                 int clock_limit =
5771                         dev_priv->display.get_display_clock_speed(dev);
5772
5773                 /*
5774                  * Enable pixel doubling when the dot clock
5775                  * is > 90% of the (display) core speed.
5776                  *
5777                  * GDG double wide on either pipe,
5778                  * otherwise pipe A only.
5779                  */
5780                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5781                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5782                         clock_limit *= 2;
5783                         pipe_config->double_wide = true;
5784                 }
5785
5786                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5787                         return -EINVAL;
5788         }
5789
5790         /*
5791          * Pipe horizontal size must be even in:
5792          * - DVO ganged mode
5793          * - LVDS dual channel mode
5794          * - Double wide pipe
5795          */
5796         if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5797              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5798                 pipe_config->pipe_src_w &= ~1;
5799
5800         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5801          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5802          */
5803         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5804                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5805                 return -EINVAL;
5806
5807         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5808                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5809         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5810                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5811                  * for lvds. */
5812                 pipe_config->pipe_bpp = 8*3;
5813         }
5814
5815         if (HAS_IPS(dev))
5816                 hsw_compute_ips_config(crtc, pipe_config);
5817
5818         if (pipe_config->has_pch_encoder)
5819                 return ironlake_fdi_compute_config(crtc, pipe_config);
5820
5821         return 0;
5822 }
5823
5824 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5825 {
5826         struct drm_i915_private *dev_priv = dev->dev_private;
5827         u32 val;
5828         int divider;
5829
5830         if (dev_priv->hpll_freq == 0)
5831                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5832
5833         mutex_lock(&dev_priv->dpio_lock);
5834         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5835         mutex_unlock(&dev_priv->dpio_lock);
5836
5837         divider = val & DISPLAY_FREQUENCY_VALUES;
5838
5839         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5840              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5841              "cdclk change in progress\n");
5842
5843         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5844 }
5845
5846 static int i945_get_display_clock_speed(struct drm_device *dev)
5847 {
5848         return 400000;
5849 }
5850
5851 static int i915_get_display_clock_speed(struct drm_device *dev)
5852 {
5853         return 333000;
5854 }
5855
5856 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5857 {
5858         return 200000;
5859 }
5860
5861 static int pnv_get_display_clock_speed(struct drm_device *dev)
5862 {
5863         u16 gcfgc = 0;
5864
5865         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5866
5867         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5868         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5869                 return 267000;
5870         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5871                 return 333000;
5872         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5873                 return 444000;
5874         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5875                 return 200000;
5876         default:
5877                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5878         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5879                 return 133000;
5880         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5881                 return 167000;
5882         }
5883 }
5884
5885 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5886 {
5887         u16 gcfgc = 0;
5888
5889         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5890
5891         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5892                 return 133000;
5893         else {
5894                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5895                 case GC_DISPLAY_CLOCK_333_MHZ:
5896                         return 333000;
5897                 default:
5898                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5899                         return 190000;
5900                 }
5901         }
5902 }
5903
5904 static int i865_get_display_clock_speed(struct drm_device *dev)
5905 {
5906         return 266000;
5907 }
5908
5909 static int i855_get_display_clock_speed(struct drm_device *dev)
5910 {
5911         u16 hpllcc = 0;
5912         /* Assume that the hardware is in the high speed state.  This
5913          * should be the default.
5914          */
5915         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5916         case GC_CLOCK_133_200:
5917         case GC_CLOCK_100_200:
5918                 return 200000;
5919         case GC_CLOCK_166_250:
5920                 return 250000;
5921         case GC_CLOCK_100_133:
5922                 return 133000;
5923         }
5924
5925         /* Shouldn't happen */
5926         return 0;
5927 }
5928
5929 static int i830_get_display_clock_speed(struct drm_device *dev)
5930 {
5931         return 133000;
5932 }
5933
5934 static void
5935 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5936 {
5937         while (*num > DATA_LINK_M_N_MASK ||
5938                *den > DATA_LINK_M_N_MASK) {
5939                 *num >>= 1;
5940                 *den >>= 1;
5941         }
5942 }
5943
5944 static void compute_m_n(unsigned int m, unsigned int n,
5945                         uint32_t *ret_m, uint32_t *ret_n)
5946 {
5947         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5948         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5949         intel_reduce_m_n_ratio(ret_m, ret_n);
5950 }
5951
5952 void
5953 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5954                        int pixel_clock, int link_clock,
5955                        struct intel_link_m_n *m_n)
5956 {
5957         m_n->tu = 64;
5958
5959         compute_m_n(bits_per_pixel * pixel_clock,
5960                     link_clock * nlanes * 8,
5961                     &m_n->gmch_m, &m_n->gmch_n);
5962
5963         compute_m_n(pixel_clock, link_clock,
5964                     &m_n->link_m, &m_n->link_n);
5965 }
5966
5967 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5968 {
5969         if (i915.panel_use_ssc >= 0)
5970                 return i915.panel_use_ssc != 0;
5971         return dev_priv->vbt.lvds_use_ssc
5972                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5973 }
5974
5975 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5976 {
5977         struct drm_device *dev = crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         int refclk;
5980
5981         if (IS_VALLEYVIEW(dev)) {
5982                 refclk = 100000;
5983         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5984             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5985                 refclk = dev_priv->vbt.lvds_ssc_freq;
5986                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5987         } else if (!IS_GEN2(dev)) {
5988                 refclk = 96000;
5989         } else {
5990                 refclk = 48000;
5991         }
5992
5993         return refclk;
5994 }
5995
5996 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5997 {
5998         return (1 << dpll->n) << 16 | dpll->m2;
5999 }
6000
6001 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6002 {
6003         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6004 }
6005
6006 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6007                                      struct intel_crtc_state *crtc_state,
6008                                      intel_clock_t *reduced_clock)
6009 {
6010         struct drm_device *dev = crtc->base.dev;
6011         u32 fp, fp2 = 0;
6012
6013         if (IS_PINEVIEW(dev)) {
6014                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6015                 if (reduced_clock)
6016                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6017         } else {
6018                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6019                 if (reduced_clock)
6020                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6021         }
6022
6023         crtc_state->dpll_hw_state.fp0 = fp;
6024
6025         crtc->lowfreq_avail = false;
6026         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6027             reduced_clock) {
6028                 crtc_state->dpll_hw_state.fp1 = fp2;
6029                 crtc->lowfreq_avail = true;
6030         } else {
6031                 crtc_state->dpll_hw_state.fp1 = fp;
6032         }
6033 }
6034
6035 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6036                 pipe)
6037 {
6038         u32 reg_val;
6039
6040         /*
6041          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6042          * and set it to a reasonable value instead.
6043          */
6044         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6045         reg_val &= 0xffffff00;
6046         reg_val |= 0x00000030;
6047         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6048
6049         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6050         reg_val &= 0x8cffffff;
6051         reg_val = 0x8c000000;
6052         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6053
6054         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6055         reg_val &= 0xffffff00;
6056         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6057
6058         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6059         reg_val &= 0x00ffffff;
6060         reg_val |= 0xb0000000;
6061         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6062 }
6063
6064 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6065                                          struct intel_link_m_n *m_n)
6066 {
6067         struct drm_device *dev = crtc->base.dev;
6068         struct drm_i915_private *dev_priv = dev->dev_private;
6069         int pipe = crtc->pipe;
6070
6071         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6072         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6073         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6074         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6075 }
6076
6077 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6078                                          struct intel_link_m_n *m_n,
6079                                          struct intel_link_m_n *m2_n2)
6080 {
6081         struct drm_device *dev = crtc->base.dev;
6082         struct drm_i915_private *dev_priv = dev->dev_private;
6083         int pipe = crtc->pipe;
6084         enum transcoder transcoder = crtc->config->cpu_transcoder;
6085
6086         if (INTEL_INFO(dev)->gen >= 5) {
6087                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6088                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6089                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6090                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6091                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6092                  * for gen < 8) and if DRRS is supported (to make sure the
6093                  * registers are not unnecessarily accessed).
6094                  */
6095                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6096                         crtc->config->has_drrs) {
6097                         I915_WRITE(PIPE_DATA_M2(transcoder),
6098                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6099                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6100                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6101                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6102                 }
6103         } else {
6104                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6105                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6106                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6107                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6108         }
6109 }
6110
6111 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6112 {
6113         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6114
6115         if (m_n == M1_N1) {
6116                 dp_m_n = &crtc->config->dp_m_n;
6117                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6118         } else if (m_n == M2_N2) {
6119
6120                 /*
6121                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6122                  * needs to be programmed into M1_N1.
6123                  */
6124                 dp_m_n = &crtc->config->dp_m2_n2;
6125         } else {
6126                 DRM_ERROR("Unsupported divider value\n");
6127                 return;
6128         }
6129
6130         if (crtc->config->has_pch_encoder)
6131                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6132         else
6133                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6134 }
6135
6136 static void vlv_update_pll(struct intel_crtc *crtc,
6137                            struct intel_crtc_state *pipe_config)
6138 {
6139         u32 dpll, dpll_md;
6140
6141         /*
6142          * Enable DPIO clock input. We should never disable the reference
6143          * clock for pipe B, since VGA hotplug / manual detection depends
6144          * on it.
6145          */
6146         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6147                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6148         /* We should never disable this, set it here for state tracking */
6149         if (crtc->pipe == PIPE_B)
6150                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6151         dpll |= DPLL_VCO_ENABLE;
6152         pipe_config->dpll_hw_state.dpll = dpll;
6153
6154         dpll_md = (pipe_config->pixel_multiplier - 1)
6155                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6156         pipe_config->dpll_hw_state.dpll_md = dpll_md;
6157 }
6158
6159 static void vlv_prepare_pll(struct intel_crtc *crtc,
6160                             const struct intel_crtc_state *pipe_config)
6161 {
6162         struct drm_device *dev = crtc->base.dev;
6163         struct drm_i915_private *dev_priv = dev->dev_private;
6164         int pipe = crtc->pipe;
6165         u32 mdiv;
6166         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6167         u32 coreclk, reg_val;
6168
6169         mutex_lock(&dev_priv->dpio_lock);
6170
6171         bestn = pipe_config->dpll.n;
6172         bestm1 = pipe_config->dpll.m1;
6173         bestm2 = pipe_config->dpll.m2;
6174         bestp1 = pipe_config->dpll.p1;
6175         bestp2 = pipe_config->dpll.p2;
6176
6177         /* See eDP HDMI DPIO driver vbios notes doc */
6178
6179         /* PLL B needs special handling */
6180         if (pipe == PIPE_B)
6181                 vlv_pllb_recal_opamp(dev_priv, pipe);
6182
6183         /* Set up Tx target for periodic Rcomp update */
6184         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6185
6186         /* Disable target IRef on PLL */
6187         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6188         reg_val &= 0x00ffffff;
6189         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6190
6191         /* Disable fast lock */
6192         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6193
6194         /* Set idtafcrecal before PLL is enabled */
6195         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6196         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6197         mdiv |= ((bestn << DPIO_N_SHIFT));
6198         mdiv |= (1 << DPIO_K_SHIFT);
6199
6200         /*
6201          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6202          * but we don't support that).
6203          * Note: don't use the DAC post divider as it seems unstable.
6204          */
6205         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6206         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6207
6208         mdiv |= DPIO_ENABLE_CALIBRATION;
6209         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6210
6211         /* Set HBR and RBR LPF coefficients */
6212         if (pipe_config->port_clock == 162000 ||
6213             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6214             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6215                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6216                                  0x009f0003);
6217         else
6218                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6219                                  0x00d0000f);
6220
6221         if (pipe_config->has_dp_encoder) {
6222                 /* Use SSC source */
6223                 if (pipe == PIPE_A)
6224                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6225                                          0x0df40000);
6226                 else
6227                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6228                                          0x0df70000);
6229         } else { /* HDMI or VGA */
6230                 /* Use bend source */
6231                 if (pipe == PIPE_A)
6232                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6233                                          0x0df70000);
6234                 else
6235                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6236                                          0x0df40000);
6237         }
6238
6239         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6240         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6241         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6242             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6243                 coreclk |= 0x01000000;
6244         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6245
6246         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6247         mutex_unlock(&dev_priv->dpio_lock);
6248 }
6249
6250 static void chv_update_pll(struct intel_crtc *crtc,
6251                            struct intel_crtc_state *pipe_config)
6252 {
6253         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6254                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6255                 DPLL_VCO_ENABLE;
6256         if (crtc->pipe != PIPE_A)
6257                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6258
6259         pipe_config->dpll_hw_state.dpll_md =
6260                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6261 }
6262
6263 static void chv_prepare_pll(struct intel_crtc *crtc,
6264                             const struct intel_crtc_state *pipe_config)
6265 {
6266         struct drm_device *dev = crtc->base.dev;
6267         struct drm_i915_private *dev_priv = dev->dev_private;
6268         int pipe = crtc->pipe;
6269         int dpll_reg = DPLL(crtc->pipe);
6270         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6271         u32 loopfilter, tribuf_calcntr;
6272         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6273         u32 dpio_val;
6274         int vco;
6275
6276         bestn = pipe_config->dpll.n;
6277         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6278         bestm1 = pipe_config->dpll.m1;
6279         bestm2 = pipe_config->dpll.m2 >> 22;
6280         bestp1 = pipe_config->dpll.p1;
6281         bestp2 = pipe_config->dpll.p2;
6282         vco = pipe_config->dpll.vco;
6283         dpio_val = 0;
6284         loopfilter = 0;
6285
6286         /*
6287          * Enable Refclk and SSC
6288          */
6289         I915_WRITE(dpll_reg,
6290                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6291
6292         mutex_lock(&dev_priv->dpio_lock);
6293
6294         /* p1 and p2 divider */
6295         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6296                         5 << DPIO_CHV_S1_DIV_SHIFT |
6297                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6298                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6299                         1 << DPIO_CHV_K_DIV_SHIFT);
6300
6301         /* Feedback post-divider - m2 */
6302         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6303
6304         /* Feedback refclk divider - n and m1 */
6305         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6306                         DPIO_CHV_M1_DIV_BY_2 |
6307                         1 << DPIO_CHV_N_DIV_SHIFT);
6308
6309         /* M2 fraction division */
6310         if (bestm2_frac)
6311                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6312
6313         /* M2 fraction division enable */
6314         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6315         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6316         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6317         if (bestm2_frac)
6318                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6319         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6320
6321         /* Program digital lock detect threshold */
6322         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6323         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6324                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6325         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6326         if (!bestm2_frac)
6327                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6328         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6329
6330         /* Loop filter */
6331         if (vco == 5400000) {
6332                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6333                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6334                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6335                 tribuf_calcntr = 0x9;
6336         } else if (vco <= 6200000) {
6337                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6338                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6339                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6340                 tribuf_calcntr = 0x9;
6341         } else if (vco <= 6480000) {
6342                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6343                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6344                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6345                 tribuf_calcntr = 0x8;
6346         } else {
6347                 /* Not supported. Apply the same limits as in the max case */
6348                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6349                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6350                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6351                 tribuf_calcntr = 0;
6352         }
6353         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6354
6355         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6356         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6357         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6358         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6359
6360         /* AFC Recal */
6361         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6362                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6363                         DPIO_AFC_RECAL);
6364
6365         mutex_unlock(&dev_priv->dpio_lock);
6366 }
6367
6368 /**
6369  * vlv_force_pll_on - forcibly enable just the PLL
6370  * @dev_priv: i915 private structure
6371  * @pipe: pipe PLL to enable
6372  * @dpll: PLL configuration
6373  *
6374  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6375  * in cases where we need the PLL enabled even when @pipe is not going to
6376  * be enabled.
6377  */
6378 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6379                       const struct dpll *dpll)
6380 {
6381         struct intel_crtc *crtc =
6382                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6383         struct intel_crtc_state pipe_config = {
6384                 .pixel_multiplier = 1,
6385                 .dpll = *dpll,
6386         };
6387
6388         if (IS_CHERRYVIEW(dev)) {
6389                 chv_update_pll(crtc, &pipe_config);
6390                 chv_prepare_pll(crtc, &pipe_config);
6391                 chv_enable_pll(crtc, &pipe_config);
6392         } else {
6393                 vlv_update_pll(crtc, &pipe_config);
6394                 vlv_prepare_pll(crtc, &pipe_config);
6395                 vlv_enable_pll(crtc, &pipe_config);
6396         }
6397 }
6398
6399 /**
6400  * vlv_force_pll_off - forcibly disable just the PLL
6401  * @dev_priv: i915 private structure
6402  * @pipe: pipe PLL to disable
6403  *
6404  * Disable the PLL for @pipe. To be used in cases where we need
6405  * the PLL enabled even when @pipe is not going to be enabled.
6406  */
6407 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6408 {
6409         if (IS_CHERRYVIEW(dev))
6410                 chv_disable_pll(to_i915(dev), pipe);
6411         else
6412                 vlv_disable_pll(to_i915(dev), pipe);
6413 }
6414
6415 static void i9xx_update_pll(struct intel_crtc *crtc,
6416                             struct intel_crtc_state *crtc_state,
6417                             intel_clock_t *reduced_clock,
6418                             int num_connectors)
6419 {
6420         struct drm_device *dev = crtc->base.dev;
6421         struct drm_i915_private *dev_priv = dev->dev_private;
6422         u32 dpll;
6423         bool is_sdvo;
6424         struct dpll *clock = &crtc_state->dpll;
6425
6426         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6427
6428         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6429                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6430
6431         dpll = DPLL_VGA_MODE_DIS;
6432
6433         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6434                 dpll |= DPLLB_MODE_LVDS;
6435         else
6436                 dpll |= DPLLB_MODE_DAC_SERIAL;
6437
6438         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6439                 dpll |= (crtc_state->pixel_multiplier - 1)
6440                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6441         }
6442
6443         if (is_sdvo)
6444                 dpll |= DPLL_SDVO_HIGH_SPEED;
6445
6446         if (crtc_state->has_dp_encoder)
6447                 dpll |= DPLL_SDVO_HIGH_SPEED;
6448
6449         /* compute bitmask from p1 value */
6450         if (IS_PINEVIEW(dev))
6451                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6452         else {
6453                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6454                 if (IS_G4X(dev) && reduced_clock)
6455                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6456         }
6457         switch (clock->p2) {
6458         case 5:
6459                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6460                 break;
6461         case 7:
6462                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6463                 break;
6464         case 10:
6465                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6466                 break;
6467         case 14:
6468                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6469                 break;
6470         }
6471         if (INTEL_INFO(dev)->gen >= 4)
6472                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6473
6474         if (crtc_state->sdvo_tv_clock)
6475                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6476         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6477                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6478                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6479         else
6480                 dpll |= PLL_REF_INPUT_DREFCLK;
6481
6482         dpll |= DPLL_VCO_ENABLE;
6483         crtc_state->dpll_hw_state.dpll = dpll;
6484
6485         if (INTEL_INFO(dev)->gen >= 4) {
6486                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6487                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6488                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6489         }
6490 }
6491
6492 static void i8xx_update_pll(struct intel_crtc *crtc,
6493                             struct intel_crtc_state *crtc_state,
6494                             intel_clock_t *reduced_clock,
6495                             int num_connectors)
6496 {
6497         struct drm_device *dev = crtc->base.dev;
6498         struct drm_i915_private *dev_priv = dev->dev_private;
6499         u32 dpll;
6500         struct dpll *clock = &crtc_state->dpll;
6501
6502         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6503
6504         dpll = DPLL_VGA_MODE_DIS;
6505
6506         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6507                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6508         } else {
6509                 if (clock->p1 == 2)
6510                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6511                 else
6512                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6513                 if (clock->p2 == 4)
6514                         dpll |= PLL_P2_DIVIDE_BY_4;
6515         }
6516
6517         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6518                 dpll |= DPLL_DVO_2X_MODE;
6519
6520         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6521                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6522                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6523         else
6524                 dpll |= PLL_REF_INPUT_DREFCLK;
6525
6526         dpll |= DPLL_VCO_ENABLE;
6527         crtc_state->dpll_hw_state.dpll = dpll;
6528 }
6529
6530 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6531 {
6532         struct drm_device *dev = intel_crtc->base.dev;
6533         struct drm_i915_private *dev_priv = dev->dev_private;
6534         enum pipe pipe = intel_crtc->pipe;
6535         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6536         struct drm_display_mode *adjusted_mode =
6537                 &intel_crtc->config->base.adjusted_mode;
6538         uint32_t crtc_vtotal, crtc_vblank_end;
6539         int vsyncshift = 0;
6540
6541         /* We need to be careful not to changed the adjusted mode, for otherwise
6542          * the hw state checker will get angry at the mismatch. */
6543         crtc_vtotal = adjusted_mode->crtc_vtotal;
6544         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6545
6546         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6547                 /* the chip adds 2 halflines automatically */
6548                 crtc_vtotal -= 1;
6549                 crtc_vblank_end -= 1;
6550
6551                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6552                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6553                 else
6554                         vsyncshift = adjusted_mode->crtc_hsync_start -
6555                                 adjusted_mode->crtc_htotal / 2;
6556                 if (vsyncshift < 0)
6557                         vsyncshift += adjusted_mode->crtc_htotal;
6558         }
6559
6560         if (INTEL_INFO(dev)->gen > 3)
6561                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6562
6563         I915_WRITE(HTOTAL(cpu_transcoder),
6564                    (adjusted_mode->crtc_hdisplay - 1) |
6565                    ((adjusted_mode->crtc_htotal - 1) << 16));
6566         I915_WRITE(HBLANK(cpu_transcoder),
6567                    (adjusted_mode->crtc_hblank_start - 1) |
6568                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6569         I915_WRITE(HSYNC(cpu_transcoder),
6570                    (adjusted_mode->crtc_hsync_start - 1) |
6571                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6572
6573         I915_WRITE(VTOTAL(cpu_transcoder),
6574                    (adjusted_mode->crtc_vdisplay - 1) |
6575                    ((crtc_vtotal - 1) << 16));
6576         I915_WRITE(VBLANK(cpu_transcoder),
6577                    (adjusted_mode->crtc_vblank_start - 1) |
6578                    ((crtc_vblank_end - 1) << 16));
6579         I915_WRITE(VSYNC(cpu_transcoder),
6580                    (adjusted_mode->crtc_vsync_start - 1) |
6581                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6582
6583         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6584          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6585          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6586          * bits. */
6587         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6588             (pipe == PIPE_B || pipe == PIPE_C))
6589                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6590
6591         /* pipesrc controls the size that is scaled from, which should
6592          * always be the user's requested size.
6593          */
6594         I915_WRITE(PIPESRC(pipe),
6595                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6596                    (intel_crtc->config->pipe_src_h - 1));
6597 }
6598
6599 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6600                                    struct intel_crtc_state *pipe_config)
6601 {
6602         struct drm_device *dev = crtc->base.dev;
6603         struct drm_i915_private *dev_priv = dev->dev_private;
6604         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6605         uint32_t tmp;
6606
6607         tmp = I915_READ(HTOTAL(cpu_transcoder));
6608         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6609         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6610         tmp = I915_READ(HBLANK(cpu_transcoder));
6611         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6612         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6613         tmp = I915_READ(HSYNC(cpu_transcoder));
6614         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6615         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6616
6617         tmp = I915_READ(VTOTAL(cpu_transcoder));
6618         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6619         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6620         tmp = I915_READ(VBLANK(cpu_transcoder));
6621         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6622         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6623         tmp = I915_READ(VSYNC(cpu_transcoder));
6624         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6625         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6626
6627         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6628                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6629                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6630                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6631         }
6632
6633         tmp = I915_READ(PIPESRC(crtc->pipe));
6634         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6635         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6636
6637         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6638         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6639 }
6640
6641 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6642                                  struct intel_crtc_state *pipe_config)
6643 {
6644         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6645         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6646         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6647         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6648
6649         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6650         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6651         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6652         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6653
6654         mode->flags = pipe_config->base.adjusted_mode.flags;
6655
6656         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6657         mode->flags |= pipe_config->base.adjusted_mode.flags;
6658 }
6659
6660 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6661 {
6662         struct drm_device *dev = intel_crtc->base.dev;
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664         uint32_t pipeconf;
6665
6666         pipeconf = 0;
6667
6668         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6669             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6670                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6671
6672         if (intel_crtc->config->double_wide)
6673                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6674
6675         /* only g4x and later have fancy bpc/dither controls */
6676         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6677                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6678                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6679                         pipeconf |= PIPECONF_DITHER_EN |
6680                                     PIPECONF_DITHER_TYPE_SP;
6681
6682                 switch (intel_crtc->config->pipe_bpp) {
6683                 case 18:
6684                         pipeconf |= PIPECONF_6BPC;
6685                         break;
6686                 case 24:
6687                         pipeconf |= PIPECONF_8BPC;
6688                         break;
6689                 case 30:
6690                         pipeconf |= PIPECONF_10BPC;
6691                         break;
6692                 default:
6693                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6694                         BUG();
6695                 }
6696         }
6697
6698         if (HAS_PIPE_CXSR(dev)) {
6699                 if (intel_crtc->lowfreq_avail) {
6700                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6701                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6702                 } else {
6703                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6704                 }
6705         }
6706
6707         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6708                 if (INTEL_INFO(dev)->gen < 4 ||
6709                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6710                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6711                 else
6712                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6713         } else
6714                 pipeconf |= PIPECONF_PROGRESSIVE;
6715
6716         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6717                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6718
6719         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6720         POSTING_READ(PIPECONF(intel_crtc->pipe));
6721 }
6722
6723 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6724                                    struct intel_crtc_state *crtc_state)
6725 {
6726         struct drm_device *dev = crtc->base.dev;
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728         int refclk, num_connectors = 0;
6729         intel_clock_t clock, reduced_clock;
6730         bool ok, has_reduced_clock = false;
6731         bool is_lvds = false, is_dsi = false;
6732         struct intel_encoder *encoder;
6733         const intel_limit_t *limit;
6734
6735         for_each_intel_encoder(dev, encoder) {
6736                 if (encoder->new_crtc != crtc)
6737                         continue;
6738
6739                 switch (encoder->type) {
6740                 case INTEL_OUTPUT_LVDS:
6741                         is_lvds = true;
6742                         break;
6743                 case INTEL_OUTPUT_DSI:
6744                         is_dsi = true;
6745                         break;
6746                 default:
6747                         break;
6748                 }
6749
6750                 num_connectors++;
6751         }
6752
6753         if (is_dsi)
6754                 return 0;
6755
6756         if (!crtc_state->clock_set) {
6757                 refclk = i9xx_get_refclk(crtc, num_connectors);
6758
6759                 /*
6760                  * Returns a set of divisors for the desired target clock with
6761                  * the given refclk, or FALSE.  The returned values represent
6762                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6763                  * 2) / p1 / p2.
6764                  */
6765                 limit = intel_limit(crtc, refclk);
6766                 ok = dev_priv->display.find_dpll(limit, crtc,
6767                                                  crtc_state->port_clock,
6768                                                  refclk, NULL, &clock);
6769                 if (!ok) {
6770                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6771                         return -EINVAL;
6772                 }
6773
6774                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6775                         /*
6776                          * Ensure we match the reduced clock's P to the target
6777                          * clock.  If the clocks don't match, we can't switch
6778                          * the display clock by using the FP0/FP1. In such case
6779                          * we will disable the LVDS downclock feature.
6780                          */
6781                         has_reduced_clock =
6782                                 dev_priv->display.find_dpll(limit, crtc,
6783                                                             dev_priv->lvds_downclock,
6784                                                             refclk, &clock,
6785                                                             &reduced_clock);
6786                 }
6787                 /* Compat-code for transition, will disappear. */
6788                 crtc_state->dpll.n = clock.n;
6789                 crtc_state->dpll.m1 = clock.m1;
6790                 crtc_state->dpll.m2 = clock.m2;
6791                 crtc_state->dpll.p1 = clock.p1;
6792                 crtc_state->dpll.p2 = clock.p2;
6793         }
6794
6795         if (IS_GEN2(dev)) {
6796                 i8xx_update_pll(crtc, crtc_state,
6797                                 has_reduced_clock ? &reduced_clock : NULL,
6798                                 num_connectors);
6799         } else if (IS_CHERRYVIEW(dev)) {
6800                 chv_update_pll(crtc, crtc_state);
6801         } else if (IS_VALLEYVIEW(dev)) {
6802                 vlv_update_pll(crtc, crtc_state);
6803         } else {
6804                 i9xx_update_pll(crtc, crtc_state,
6805                                 has_reduced_clock ? &reduced_clock : NULL,
6806                                 num_connectors);
6807         }
6808
6809         return 0;
6810 }
6811
6812 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6813                                  struct intel_crtc_state *pipe_config)
6814 {
6815         struct drm_device *dev = crtc->base.dev;
6816         struct drm_i915_private *dev_priv = dev->dev_private;
6817         uint32_t tmp;
6818
6819         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6820                 return;
6821
6822         tmp = I915_READ(PFIT_CONTROL);
6823         if (!(tmp & PFIT_ENABLE))
6824                 return;
6825
6826         /* Check whether the pfit is attached to our pipe. */
6827         if (INTEL_INFO(dev)->gen < 4) {
6828                 if (crtc->pipe != PIPE_B)
6829                         return;
6830         } else {
6831                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6832                         return;
6833         }
6834
6835         pipe_config->gmch_pfit.control = tmp;
6836         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6837         if (INTEL_INFO(dev)->gen < 5)
6838                 pipe_config->gmch_pfit.lvds_border_bits =
6839                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6840 }
6841
6842 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6843                                struct intel_crtc_state *pipe_config)
6844 {
6845         struct drm_device *dev = crtc->base.dev;
6846         struct drm_i915_private *dev_priv = dev->dev_private;
6847         int pipe = pipe_config->cpu_transcoder;
6848         intel_clock_t clock;
6849         u32 mdiv;
6850         int refclk = 100000;
6851
6852         /* In case of MIPI DPLL will not even be used */
6853         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6854                 return;
6855
6856         mutex_lock(&dev_priv->dpio_lock);
6857         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6858         mutex_unlock(&dev_priv->dpio_lock);
6859
6860         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6861         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6862         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6863         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6864         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6865
6866         vlv_clock(refclk, &clock);
6867
6868         /* clock.dot is the fast clock */
6869         pipe_config->port_clock = clock.dot / 5;
6870 }
6871
6872 static void
6873 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6874                               struct intel_initial_plane_config *plane_config)
6875 {
6876         struct drm_device *dev = crtc->base.dev;
6877         struct drm_i915_private *dev_priv = dev->dev_private;
6878         u32 val, base, offset;
6879         int pipe = crtc->pipe, plane = crtc->plane;
6880         int fourcc, pixel_format;
6881         unsigned int aligned_height;
6882         struct drm_framebuffer *fb;
6883         struct intel_framebuffer *intel_fb;
6884
6885         val = I915_READ(DSPCNTR(plane));
6886         if (!(val & DISPLAY_PLANE_ENABLE))
6887                 return;
6888
6889         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6890         if (!intel_fb) {
6891                 DRM_DEBUG_KMS("failed to alloc fb\n");
6892                 return;
6893         }
6894
6895         fb = &intel_fb->base;
6896
6897         if (INTEL_INFO(dev)->gen >= 4) {
6898                 if (val & DISPPLANE_TILED) {
6899                         plane_config->tiling = I915_TILING_X;
6900                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6901                 }
6902         }
6903
6904         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6905         fourcc = i9xx_format_to_fourcc(pixel_format);
6906         fb->pixel_format = fourcc;
6907         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6908
6909         if (INTEL_INFO(dev)->gen >= 4) {
6910                 if (plane_config->tiling)
6911                         offset = I915_READ(DSPTILEOFF(plane));
6912                 else
6913                         offset = I915_READ(DSPLINOFF(plane));
6914                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6915         } else {
6916                 base = I915_READ(DSPADDR(plane));
6917         }
6918         plane_config->base = base;
6919
6920         val = I915_READ(PIPESRC(pipe));
6921         fb->width = ((val >> 16) & 0xfff) + 1;
6922         fb->height = ((val >> 0) & 0xfff) + 1;
6923
6924         val = I915_READ(DSPSTRIDE(pipe));
6925         fb->pitches[0] = val & 0xffffffc0;
6926
6927         aligned_height = intel_fb_align_height(dev, fb->height,
6928                                                fb->pixel_format,
6929                                                fb->modifier[0]);
6930
6931         plane_config->size = fb->pitches[0] * aligned_height;
6932
6933         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6934                       pipe_name(pipe), plane, fb->width, fb->height,
6935                       fb->bits_per_pixel, base, fb->pitches[0],
6936                       plane_config->size);
6937
6938         plane_config->fb = intel_fb;
6939 }
6940
6941 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6942                                struct intel_crtc_state *pipe_config)
6943 {
6944         struct drm_device *dev = crtc->base.dev;
6945         struct drm_i915_private *dev_priv = dev->dev_private;
6946         int pipe = pipe_config->cpu_transcoder;
6947         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6948         intel_clock_t clock;
6949         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6950         int refclk = 100000;
6951
6952         mutex_lock(&dev_priv->dpio_lock);
6953         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6954         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6955         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6956         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6957         mutex_unlock(&dev_priv->dpio_lock);
6958
6959         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6960         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6961         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6962         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6963         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6964
6965         chv_clock(refclk, &clock);
6966
6967         /* clock.dot is the fast clock */
6968         pipe_config->port_clock = clock.dot / 5;
6969 }
6970
6971 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6972                                  struct intel_crtc_state *pipe_config)
6973 {
6974         struct drm_device *dev = crtc->base.dev;
6975         struct drm_i915_private *dev_priv = dev->dev_private;
6976         uint32_t tmp;
6977
6978         if (!intel_display_power_is_enabled(dev_priv,
6979                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6980                 return false;
6981
6982         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6983         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6984
6985         tmp = I915_READ(PIPECONF(crtc->pipe));
6986         if (!(tmp & PIPECONF_ENABLE))
6987                 return false;
6988
6989         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6990                 switch (tmp & PIPECONF_BPC_MASK) {
6991                 case PIPECONF_6BPC:
6992                         pipe_config->pipe_bpp = 18;
6993                         break;
6994                 case PIPECONF_8BPC:
6995                         pipe_config->pipe_bpp = 24;
6996                         break;
6997                 case PIPECONF_10BPC:
6998                         pipe_config->pipe_bpp = 30;
6999                         break;
7000                 default:
7001                         break;
7002                 }
7003         }
7004
7005         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7006                 pipe_config->limited_color_range = true;
7007
7008         if (INTEL_INFO(dev)->gen < 4)
7009                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7010
7011         intel_get_pipe_timings(crtc, pipe_config);
7012
7013         i9xx_get_pfit_config(crtc, pipe_config);
7014
7015         if (INTEL_INFO(dev)->gen >= 4) {
7016                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7017                 pipe_config->pixel_multiplier =
7018                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7019                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7020                 pipe_config->dpll_hw_state.dpll_md = tmp;
7021         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7022                 tmp = I915_READ(DPLL(crtc->pipe));
7023                 pipe_config->pixel_multiplier =
7024                         ((tmp & SDVO_MULTIPLIER_MASK)
7025                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7026         } else {
7027                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7028                  * port and will be fixed up in the encoder->get_config
7029                  * function. */
7030                 pipe_config->pixel_multiplier = 1;
7031         }
7032         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7033         if (!IS_VALLEYVIEW(dev)) {
7034                 /*
7035                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7036                  * on 830. Filter it out here so that we don't
7037                  * report errors due to that.
7038                  */
7039                 if (IS_I830(dev))
7040                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7041
7042                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7043                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7044         } else {
7045                 /* Mask out read-only status bits. */
7046                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7047                                                      DPLL_PORTC_READY_MASK |
7048                                                      DPLL_PORTB_READY_MASK);
7049         }
7050
7051         if (IS_CHERRYVIEW(dev))
7052                 chv_crtc_clock_get(crtc, pipe_config);
7053         else if (IS_VALLEYVIEW(dev))
7054                 vlv_crtc_clock_get(crtc, pipe_config);
7055         else
7056                 i9xx_crtc_clock_get(crtc, pipe_config);
7057
7058         return true;
7059 }
7060
7061 static void ironlake_init_pch_refclk(struct drm_device *dev)
7062 {
7063         struct drm_i915_private *dev_priv = dev->dev_private;
7064         struct intel_encoder *encoder;
7065         u32 val, final;
7066         bool has_lvds = false;
7067         bool has_cpu_edp = false;
7068         bool has_panel = false;
7069         bool has_ck505 = false;
7070         bool can_ssc = false;
7071
7072         /* We need to take the global config into account */
7073         for_each_intel_encoder(dev, encoder) {
7074                 switch (encoder->type) {
7075                 case INTEL_OUTPUT_LVDS:
7076                         has_panel = true;
7077                         has_lvds = true;
7078                         break;
7079                 case INTEL_OUTPUT_EDP:
7080                         has_panel = true;
7081                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7082                                 has_cpu_edp = true;
7083                         break;
7084                 default:
7085                         break;
7086                 }
7087         }
7088
7089         if (HAS_PCH_IBX(dev)) {
7090                 has_ck505 = dev_priv->vbt.display_clock_mode;
7091                 can_ssc = has_ck505;
7092         } else {
7093                 has_ck505 = false;
7094                 can_ssc = true;
7095         }
7096
7097         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7098                       has_panel, has_lvds, has_ck505);
7099
7100         /* Ironlake: try to setup display ref clock before DPLL
7101          * enabling. This is only under driver's control after
7102          * PCH B stepping, previous chipset stepping should be
7103          * ignoring this setting.
7104          */
7105         val = I915_READ(PCH_DREF_CONTROL);
7106
7107         /* As we must carefully and slowly disable/enable each source in turn,
7108          * compute the final state we want first and check if we need to
7109          * make any changes at all.
7110          */
7111         final = val;
7112         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7113         if (has_ck505)
7114                 final |= DREF_NONSPREAD_CK505_ENABLE;
7115         else
7116                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7117
7118         final &= ~DREF_SSC_SOURCE_MASK;
7119         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7120         final &= ~DREF_SSC1_ENABLE;
7121
7122         if (has_panel) {
7123                 final |= DREF_SSC_SOURCE_ENABLE;
7124
7125                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7126                         final |= DREF_SSC1_ENABLE;
7127
7128                 if (has_cpu_edp) {
7129                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7130                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7131                         else
7132                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7133                 } else
7134                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7135         } else {
7136                 final |= DREF_SSC_SOURCE_DISABLE;
7137                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7138         }
7139
7140         if (final == val)
7141                 return;
7142
7143         /* Always enable nonspread source */
7144         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7145
7146         if (has_ck505)
7147                 val |= DREF_NONSPREAD_CK505_ENABLE;
7148         else
7149                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7150
7151         if (has_panel) {
7152                 val &= ~DREF_SSC_SOURCE_MASK;
7153                 val |= DREF_SSC_SOURCE_ENABLE;
7154
7155                 /* SSC must be turned on before enabling the CPU output  */
7156                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7157                         DRM_DEBUG_KMS("Using SSC on panel\n");
7158                         val |= DREF_SSC1_ENABLE;
7159                 } else
7160                         val &= ~DREF_SSC1_ENABLE;
7161
7162                 /* Get SSC going before enabling the outputs */
7163                 I915_WRITE(PCH_DREF_CONTROL, val);
7164                 POSTING_READ(PCH_DREF_CONTROL);
7165                 udelay(200);
7166
7167                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7168
7169                 /* Enable CPU source on CPU attached eDP */
7170                 if (has_cpu_edp) {
7171                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7172                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7173                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7174                         } else
7175                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7176                 } else
7177                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7178
7179                 I915_WRITE(PCH_DREF_CONTROL, val);
7180                 POSTING_READ(PCH_DREF_CONTROL);
7181                 udelay(200);
7182         } else {
7183                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7184
7185                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7186
7187                 /* Turn off CPU output */
7188                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7189
7190                 I915_WRITE(PCH_DREF_CONTROL, val);
7191                 POSTING_READ(PCH_DREF_CONTROL);
7192                 udelay(200);
7193
7194                 /* Turn off the SSC source */
7195                 val &= ~DREF_SSC_SOURCE_MASK;
7196                 val |= DREF_SSC_SOURCE_DISABLE;
7197
7198                 /* Turn off SSC1 */
7199                 val &= ~DREF_SSC1_ENABLE;
7200
7201                 I915_WRITE(PCH_DREF_CONTROL, val);
7202                 POSTING_READ(PCH_DREF_CONTROL);
7203                 udelay(200);
7204         }
7205
7206         BUG_ON(val != final);
7207 }
7208
7209 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7210 {
7211         uint32_t tmp;
7212
7213         tmp = I915_READ(SOUTH_CHICKEN2);
7214         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7215         I915_WRITE(SOUTH_CHICKEN2, tmp);
7216
7217         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7218                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7219                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7220
7221         tmp = I915_READ(SOUTH_CHICKEN2);
7222         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7223         I915_WRITE(SOUTH_CHICKEN2, tmp);
7224
7225         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7226                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7227                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7228 }
7229
7230 /* WaMPhyProgramming:hsw */
7231 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7232 {
7233         uint32_t tmp;
7234
7235         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7236         tmp &= ~(0xFF << 24);
7237         tmp |= (0x12 << 24);
7238         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7239
7240         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7241         tmp |= (1 << 11);
7242         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7243
7244         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7245         tmp |= (1 << 11);
7246         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7247
7248         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7249         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7250         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7251
7252         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7253         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7254         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7255
7256         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7257         tmp &= ~(7 << 13);
7258         tmp |= (5 << 13);
7259         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7260
7261         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7262         tmp &= ~(7 << 13);
7263         tmp |= (5 << 13);
7264         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7265
7266         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7267         tmp &= ~0xFF;
7268         tmp |= 0x1C;
7269         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7270
7271         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7272         tmp &= ~0xFF;
7273         tmp |= 0x1C;
7274         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7275
7276         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7277         tmp &= ~(0xFF << 16);
7278         tmp |= (0x1C << 16);
7279         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7280
7281         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7282         tmp &= ~(0xFF << 16);
7283         tmp |= (0x1C << 16);
7284         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7285
7286         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7287         tmp |= (1 << 27);
7288         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7289
7290         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7291         tmp |= (1 << 27);
7292         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7293
7294         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7295         tmp &= ~(0xF << 28);
7296         tmp |= (4 << 28);
7297         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7298
7299         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7300         tmp &= ~(0xF << 28);
7301         tmp |= (4 << 28);
7302         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7303 }
7304
7305 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7306  * Programming" based on the parameters passed:
7307  * - Sequence to enable CLKOUT_DP
7308  * - Sequence to enable CLKOUT_DP without spread
7309  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7310  */
7311 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7312                                  bool with_fdi)
7313 {
7314         struct drm_i915_private *dev_priv = dev->dev_private;
7315         uint32_t reg, tmp;
7316
7317         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7318                 with_spread = true;
7319         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7320                  with_fdi, "LP PCH doesn't have FDI\n"))
7321                 with_fdi = false;
7322
7323         mutex_lock(&dev_priv->dpio_lock);
7324
7325         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7326         tmp &= ~SBI_SSCCTL_DISABLE;
7327         tmp |= SBI_SSCCTL_PATHALT;
7328         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7329
7330         udelay(24);
7331
7332         if (with_spread) {
7333                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7334                 tmp &= ~SBI_SSCCTL_PATHALT;
7335                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7336
7337                 if (with_fdi) {
7338                         lpt_reset_fdi_mphy(dev_priv);
7339                         lpt_program_fdi_mphy(dev_priv);
7340                 }
7341         }
7342
7343         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7344                SBI_GEN0 : SBI_DBUFF0;
7345         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7346         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7347         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7348
7349         mutex_unlock(&dev_priv->dpio_lock);
7350 }
7351
7352 /* Sequence to disable CLKOUT_DP */
7353 static void lpt_disable_clkout_dp(struct drm_device *dev)
7354 {
7355         struct drm_i915_private *dev_priv = dev->dev_private;
7356         uint32_t reg, tmp;
7357
7358         mutex_lock(&dev_priv->dpio_lock);
7359
7360         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7361                SBI_GEN0 : SBI_DBUFF0;
7362         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7363         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7364         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7365
7366         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7367         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7368                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7369                         tmp |= SBI_SSCCTL_PATHALT;
7370                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7371                         udelay(32);
7372                 }
7373                 tmp |= SBI_SSCCTL_DISABLE;
7374                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7375         }
7376
7377         mutex_unlock(&dev_priv->dpio_lock);
7378 }
7379
7380 static void lpt_init_pch_refclk(struct drm_device *dev)
7381 {
7382         struct intel_encoder *encoder;
7383         bool has_vga = false;
7384
7385         for_each_intel_encoder(dev, encoder) {
7386                 switch (encoder->type) {
7387                 case INTEL_OUTPUT_ANALOG:
7388                         has_vga = true;
7389                         break;
7390                 default:
7391                         break;
7392                 }
7393         }
7394
7395         if (has_vga)
7396                 lpt_enable_clkout_dp(dev, true, true);
7397         else
7398                 lpt_disable_clkout_dp(dev);
7399 }
7400
7401 /*
7402  * Initialize reference clocks when the driver loads
7403  */
7404 void intel_init_pch_refclk(struct drm_device *dev)
7405 {
7406         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7407                 ironlake_init_pch_refclk(dev);
7408         else if (HAS_PCH_LPT(dev))
7409                 lpt_init_pch_refclk(dev);
7410 }
7411
7412 static int ironlake_get_refclk(struct drm_crtc *crtc)
7413 {
7414         struct drm_device *dev = crtc->dev;
7415         struct drm_i915_private *dev_priv = dev->dev_private;
7416         struct intel_encoder *encoder;
7417         int num_connectors = 0;
7418         bool is_lvds = false;
7419
7420         for_each_intel_encoder(dev, encoder) {
7421                 if (encoder->new_crtc != to_intel_crtc(crtc))
7422                         continue;
7423
7424                 switch (encoder->type) {
7425                 case INTEL_OUTPUT_LVDS:
7426                         is_lvds = true;
7427                         break;
7428                 default:
7429                         break;
7430                 }
7431                 num_connectors++;
7432         }
7433
7434         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7435                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7436                               dev_priv->vbt.lvds_ssc_freq);
7437                 return dev_priv->vbt.lvds_ssc_freq;
7438         }
7439
7440         return 120000;
7441 }
7442
7443 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7444 {
7445         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7447         int pipe = intel_crtc->pipe;
7448         uint32_t val;
7449
7450         val = 0;
7451
7452         switch (intel_crtc->config->pipe_bpp) {
7453         case 18:
7454                 val |= PIPECONF_6BPC;
7455                 break;
7456         case 24:
7457                 val |= PIPECONF_8BPC;
7458                 break;
7459         case 30:
7460                 val |= PIPECONF_10BPC;
7461                 break;
7462         case 36:
7463                 val |= PIPECONF_12BPC;
7464                 break;
7465         default:
7466                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7467                 BUG();
7468         }
7469
7470         if (intel_crtc->config->dither)
7471                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7472
7473         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7474                 val |= PIPECONF_INTERLACED_ILK;
7475         else
7476                 val |= PIPECONF_PROGRESSIVE;
7477
7478         if (intel_crtc->config->limited_color_range)
7479                 val |= PIPECONF_COLOR_RANGE_SELECT;
7480
7481         I915_WRITE(PIPECONF(pipe), val);
7482         POSTING_READ(PIPECONF(pipe));
7483 }
7484
7485 /*
7486  * Set up the pipe CSC unit.
7487  *
7488  * Currently only full range RGB to limited range RGB conversion
7489  * is supported, but eventually this should handle various
7490  * RGB<->YCbCr scenarios as well.
7491  */
7492 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7493 {
7494         struct drm_device *dev = crtc->dev;
7495         struct drm_i915_private *dev_priv = dev->dev_private;
7496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7497         int pipe = intel_crtc->pipe;
7498         uint16_t coeff = 0x7800; /* 1.0 */
7499
7500         /*
7501          * TODO: Check what kind of values actually come out of the pipe
7502          * with these coeff/postoff values and adjust to get the best
7503          * accuracy. Perhaps we even need to take the bpc value into
7504          * consideration.
7505          */
7506
7507         if (intel_crtc->config->limited_color_range)
7508                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7509
7510         /*
7511          * GY/GU and RY/RU should be the other way around according
7512          * to BSpec, but reality doesn't agree. Just set them up in
7513          * a way that results in the correct picture.
7514          */
7515         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7516         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7517
7518         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7519         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7520
7521         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7522         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7523
7524         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7525         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7526         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7527
7528         if (INTEL_INFO(dev)->gen > 6) {
7529                 uint16_t postoff = 0;
7530
7531                 if (intel_crtc->config->limited_color_range)
7532                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7533
7534                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7535                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7536                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7537
7538                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7539         } else {
7540                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7541
7542                 if (intel_crtc->config->limited_color_range)
7543                         mode |= CSC_BLACK_SCREEN_OFFSET;
7544
7545                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7546         }
7547 }
7548
7549 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7550 {
7551         struct drm_device *dev = crtc->dev;
7552         struct drm_i915_private *dev_priv = dev->dev_private;
7553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7554         enum pipe pipe = intel_crtc->pipe;
7555         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7556         uint32_t val;
7557
7558         val = 0;
7559
7560         if (IS_HASWELL(dev) && intel_crtc->config->dither)
7561                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7562
7563         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7564                 val |= PIPECONF_INTERLACED_ILK;
7565         else
7566                 val |= PIPECONF_PROGRESSIVE;
7567
7568         I915_WRITE(PIPECONF(cpu_transcoder), val);
7569         POSTING_READ(PIPECONF(cpu_transcoder));
7570
7571         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7572         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7573
7574         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7575                 val = 0;
7576
7577                 switch (intel_crtc->config->pipe_bpp) {
7578                 case 18:
7579                         val |= PIPEMISC_DITHER_6_BPC;
7580                         break;
7581                 case 24:
7582                         val |= PIPEMISC_DITHER_8_BPC;
7583                         break;
7584                 case 30:
7585                         val |= PIPEMISC_DITHER_10_BPC;
7586                         break;
7587                 case 36:
7588                         val |= PIPEMISC_DITHER_12_BPC;
7589                         break;
7590                 default:
7591                         /* Case prevented by pipe_config_set_bpp. */
7592                         BUG();
7593                 }
7594
7595                 if (intel_crtc->config->dither)
7596                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7597
7598                 I915_WRITE(PIPEMISC(pipe), val);
7599         }
7600 }
7601
7602 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7603                                     struct intel_crtc_state *crtc_state,
7604                                     intel_clock_t *clock,
7605                                     bool *has_reduced_clock,
7606                                     intel_clock_t *reduced_clock)
7607 {
7608         struct drm_device *dev = crtc->dev;
7609         struct drm_i915_private *dev_priv = dev->dev_private;
7610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7611         int refclk;
7612         const intel_limit_t *limit;
7613         bool ret, is_lvds = false;
7614
7615         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7616
7617         refclk = ironlake_get_refclk(crtc);
7618
7619         /*
7620          * Returns a set of divisors for the desired target clock with the given
7621          * refclk, or FALSE.  The returned values represent the clock equation:
7622          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7623          */
7624         limit = intel_limit(intel_crtc, refclk);
7625         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7626                                           crtc_state->port_clock,
7627                                           refclk, NULL, clock);
7628         if (!ret)
7629                 return false;
7630
7631         if (is_lvds && dev_priv->lvds_downclock_avail) {
7632                 /*
7633                  * Ensure we match the reduced clock's P to the target clock.
7634                  * If the clocks don't match, we can't switch the display clock
7635                  * by using the FP0/FP1. In such case we will disable the LVDS
7636                  * downclock feature.
7637                 */
7638                 *has_reduced_clock =
7639                         dev_priv->display.find_dpll(limit, intel_crtc,
7640                                                     dev_priv->lvds_downclock,
7641                                                     refclk, clock,
7642                                                     reduced_clock);
7643         }
7644
7645         return true;
7646 }
7647
7648 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7649 {
7650         /*
7651          * Account for spread spectrum to avoid
7652          * oversubscribing the link. Max center spread
7653          * is 2.5%; use 5% for safety's sake.
7654          */
7655         u32 bps = target_clock * bpp * 21 / 20;
7656         return DIV_ROUND_UP(bps, link_bw * 8);
7657 }
7658
7659 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7660 {
7661         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7662 }
7663
7664 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7665                                       struct intel_crtc_state *crtc_state,
7666                                       u32 *fp,
7667                                       intel_clock_t *reduced_clock, u32 *fp2)
7668 {
7669         struct drm_crtc *crtc = &intel_crtc->base;
7670         struct drm_device *dev = crtc->dev;
7671         struct drm_i915_private *dev_priv = dev->dev_private;
7672         struct intel_encoder *intel_encoder;
7673         uint32_t dpll;
7674         int factor, num_connectors = 0;
7675         bool is_lvds = false, is_sdvo = false;
7676
7677         for_each_intel_encoder(dev, intel_encoder) {
7678                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7679                         continue;
7680
7681                 switch (intel_encoder->type) {
7682                 case INTEL_OUTPUT_LVDS:
7683                         is_lvds = true;
7684                         break;
7685                 case INTEL_OUTPUT_SDVO:
7686                 case INTEL_OUTPUT_HDMI:
7687                         is_sdvo = true;
7688                         break;
7689                 default:
7690                         break;
7691                 }
7692
7693                 num_connectors++;
7694         }
7695
7696         /* Enable autotuning of the PLL clock (if permissible) */
7697         factor = 21;
7698         if (is_lvds) {
7699                 if ((intel_panel_use_ssc(dev_priv) &&
7700                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7701                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7702                         factor = 25;
7703         } else if (crtc_state->sdvo_tv_clock)
7704                 factor = 20;
7705
7706         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7707                 *fp |= FP_CB_TUNE;
7708
7709         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7710                 *fp2 |= FP_CB_TUNE;
7711
7712         dpll = 0;
7713
7714         if (is_lvds)
7715                 dpll |= DPLLB_MODE_LVDS;
7716         else
7717                 dpll |= DPLLB_MODE_DAC_SERIAL;
7718
7719         dpll |= (crtc_state->pixel_multiplier - 1)
7720                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7721
7722         if (is_sdvo)
7723                 dpll |= DPLL_SDVO_HIGH_SPEED;
7724         if (crtc_state->has_dp_encoder)
7725                 dpll |= DPLL_SDVO_HIGH_SPEED;
7726
7727         /* compute bitmask from p1 value */
7728         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7729         /* also FPA1 */
7730         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7731
7732         switch (crtc_state->dpll.p2) {
7733         case 5:
7734                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7735                 break;
7736         case 7:
7737                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7738                 break;
7739         case 10:
7740                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7741                 break;
7742         case 14:
7743                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7744                 break;
7745         }
7746
7747         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7748                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7749         else
7750                 dpll |= PLL_REF_INPUT_DREFCLK;
7751
7752         return dpll | DPLL_VCO_ENABLE;
7753 }
7754
7755 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7756                                        struct intel_crtc_state *crtc_state)
7757 {
7758         struct drm_device *dev = crtc->base.dev;
7759         intel_clock_t clock, reduced_clock;
7760         u32 dpll = 0, fp = 0, fp2 = 0;
7761         bool ok, has_reduced_clock = false;
7762         bool is_lvds = false;
7763         struct intel_shared_dpll *pll;
7764
7765         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7766
7767         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7768              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7769
7770         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7771                                      &has_reduced_clock, &reduced_clock);
7772         if (!ok && !crtc_state->clock_set) {
7773                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7774                 return -EINVAL;
7775         }
7776         /* Compat-code for transition, will disappear. */
7777         if (!crtc_state->clock_set) {
7778                 crtc_state->dpll.n = clock.n;
7779                 crtc_state->dpll.m1 = clock.m1;
7780                 crtc_state->dpll.m2 = clock.m2;
7781                 crtc_state->dpll.p1 = clock.p1;
7782                 crtc_state->dpll.p2 = clock.p2;
7783         }
7784
7785         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7786         if (crtc_state->has_pch_encoder) {
7787                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7788                 if (has_reduced_clock)
7789                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7790
7791                 dpll = ironlake_compute_dpll(crtc, crtc_state,
7792                                              &fp, &reduced_clock,
7793                                              has_reduced_clock ? &fp2 : NULL);
7794
7795                 crtc_state->dpll_hw_state.dpll = dpll;
7796                 crtc_state->dpll_hw_state.fp0 = fp;
7797                 if (has_reduced_clock)
7798                         crtc_state->dpll_hw_state.fp1 = fp2;
7799                 else
7800                         crtc_state->dpll_hw_state.fp1 = fp;
7801
7802                 pll = intel_get_shared_dpll(crtc, crtc_state);
7803                 if (pll == NULL) {
7804                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7805                                          pipe_name(crtc->pipe));
7806                         return -EINVAL;
7807                 }
7808         }
7809
7810         if (is_lvds && has_reduced_clock)
7811                 crtc->lowfreq_avail = true;
7812         else
7813                 crtc->lowfreq_avail = false;
7814
7815         return 0;
7816 }
7817
7818 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7819                                          struct intel_link_m_n *m_n)
7820 {
7821         struct drm_device *dev = crtc->base.dev;
7822         struct drm_i915_private *dev_priv = dev->dev_private;
7823         enum pipe pipe = crtc->pipe;
7824
7825         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7826         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7827         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7828                 & ~TU_SIZE_MASK;
7829         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7830         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7831                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7832 }
7833
7834 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7835                                          enum transcoder transcoder,
7836                                          struct intel_link_m_n *m_n,
7837                                          struct intel_link_m_n *m2_n2)
7838 {
7839         struct drm_device *dev = crtc->base.dev;
7840         struct drm_i915_private *dev_priv = dev->dev_private;
7841         enum pipe pipe = crtc->pipe;
7842
7843         if (INTEL_INFO(dev)->gen >= 5) {
7844                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7845                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7846                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7847                         & ~TU_SIZE_MASK;
7848                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7849                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7850                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7851                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7852                  * gen < 8) and if DRRS is supported (to make sure the
7853                  * registers are not unnecessarily read).
7854                  */
7855                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7856                         crtc->config->has_drrs) {
7857                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7858                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7859                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7860                                         & ~TU_SIZE_MASK;
7861                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7862                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7863                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7864                 }
7865         } else {
7866                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7867                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7868                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7869                         & ~TU_SIZE_MASK;
7870                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7871                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7872                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7873         }
7874 }
7875
7876 void intel_dp_get_m_n(struct intel_crtc *crtc,
7877                       struct intel_crtc_state *pipe_config)
7878 {
7879         if (pipe_config->has_pch_encoder)
7880                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7881         else
7882                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7883                                              &pipe_config->dp_m_n,
7884                                              &pipe_config->dp_m2_n2);
7885 }
7886
7887 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7888                                         struct intel_crtc_state *pipe_config)
7889 {
7890         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7891                                      &pipe_config->fdi_m_n, NULL);
7892 }
7893
7894 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7895                                     struct intel_crtc_state *pipe_config)
7896 {
7897         struct drm_device *dev = crtc->base.dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         uint32_t tmp;
7900
7901         tmp = I915_READ(PS_CTL(crtc->pipe));
7902
7903         if (tmp & PS_ENABLE) {
7904                 pipe_config->pch_pfit.enabled = true;
7905                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7906                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7907         }
7908 }
7909
7910 static void
7911 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7912                                  struct intel_initial_plane_config *plane_config)
7913 {
7914         struct drm_device *dev = crtc->base.dev;
7915         struct drm_i915_private *dev_priv = dev->dev_private;
7916         u32 val, base, offset, stride_mult, tiling;
7917         int pipe = crtc->pipe;
7918         int fourcc, pixel_format;
7919         unsigned int aligned_height;
7920         struct drm_framebuffer *fb;
7921         struct intel_framebuffer *intel_fb;
7922
7923         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7924         if (!intel_fb) {
7925                 DRM_DEBUG_KMS("failed to alloc fb\n");
7926                 return;
7927         }
7928
7929         fb = &intel_fb->base;
7930
7931         val = I915_READ(PLANE_CTL(pipe, 0));
7932         if (!(val & PLANE_CTL_ENABLE))
7933                 goto error;
7934
7935         pixel_format = val & PLANE_CTL_FORMAT_MASK;
7936         fourcc = skl_format_to_fourcc(pixel_format,
7937                                       val & PLANE_CTL_ORDER_RGBX,
7938                                       val & PLANE_CTL_ALPHA_MASK);
7939         fb->pixel_format = fourcc;
7940         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7941
7942         tiling = val & PLANE_CTL_TILED_MASK;
7943         switch (tiling) {
7944         case PLANE_CTL_TILED_LINEAR:
7945                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7946                 break;
7947         case PLANE_CTL_TILED_X:
7948                 plane_config->tiling = I915_TILING_X;
7949                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7950                 break;
7951         case PLANE_CTL_TILED_Y:
7952                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7953                 break;
7954         case PLANE_CTL_TILED_YF:
7955                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7956                 break;
7957         default:
7958                 MISSING_CASE(tiling);
7959                 goto error;
7960         }
7961
7962         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7963         plane_config->base = base;
7964
7965         offset = I915_READ(PLANE_OFFSET(pipe, 0));
7966
7967         val = I915_READ(PLANE_SIZE(pipe, 0));
7968         fb->height = ((val >> 16) & 0xfff) + 1;
7969         fb->width = ((val >> 0) & 0x1fff) + 1;
7970
7971         val = I915_READ(PLANE_STRIDE(pipe, 0));
7972         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7973                                                 fb->pixel_format);
7974         fb->pitches[0] = (val & 0x3ff) * stride_mult;
7975
7976         aligned_height = intel_fb_align_height(dev, fb->height,
7977                                                fb->pixel_format,
7978                                                fb->modifier[0]);
7979
7980         plane_config->size = fb->pitches[0] * aligned_height;
7981
7982         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7983                       pipe_name(pipe), fb->width, fb->height,
7984                       fb->bits_per_pixel, base, fb->pitches[0],
7985                       plane_config->size);
7986
7987         plane_config->fb = intel_fb;
7988         return;
7989
7990 error:
7991         kfree(fb);
7992 }
7993
7994 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7995                                      struct intel_crtc_state *pipe_config)
7996 {
7997         struct drm_device *dev = crtc->base.dev;
7998         struct drm_i915_private *dev_priv = dev->dev_private;
7999         uint32_t tmp;
8000
8001         tmp = I915_READ(PF_CTL(crtc->pipe));
8002
8003         if (tmp & PF_ENABLE) {
8004                 pipe_config->pch_pfit.enabled = true;
8005                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8006                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8007
8008                 /* We currently do not free assignements of panel fitters on
8009                  * ivb/hsw (since we don't use the higher upscaling modes which
8010                  * differentiates them) so just WARN about this case for now. */
8011                 if (IS_GEN7(dev)) {
8012                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8013                                 PF_PIPE_SEL_IVB(crtc->pipe));
8014                 }
8015         }
8016 }
8017
8018 static void
8019 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8020                                   struct intel_initial_plane_config *plane_config)
8021 {
8022         struct drm_device *dev = crtc->base.dev;
8023         struct drm_i915_private *dev_priv = dev->dev_private;
8024         u32 val, base, offset;
8025         int pipe = crtc->pipe;
8026         int fourcc, pixel_format;
8027         unsigned int aligned_height;
8028         struct drm_framebuffer *fb;
8029         struct intel_framebuffer *intel_fb;
8030
8031         val = I915_READ(DSPCNTR(pipe));
8032         if (!(val & DISPLAY_PLANE_ENABLE))
8033                 return;
8034
8035         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8036         if (!intel_fb) {
8037                 DRM_DEBUG_KMS("failed to alloc fb\n");
8038                 return;
8039         }
8040
8041         fb = &intel_fb->base;
8042
8043         if (INTEL_INFO(dev)->gen >= 4) {
8044                 if (val & DISPPLANE_TILED) {
8045                         plane_config->tiling = I915_TILING_X;
8046                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8047                 }
8048         }
8049
8050         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8051         fourcc = i9xx_format_to_fourcc(pixel_format);
8052         fb->pixel_format = fourcc;
8053         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8054
8055         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8056         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8057                 offset = I915_READ(DSPOFFSET(pipe));
8058         } else {
8059                 if (plane_config->tiling)
8060                         offset = I915_READ(DSPTILEOFF(pipe));
8061                 else
8062                         offset = I915_READ(DSPLINOFF(pipe));
8063         }
8064         plane_config->base = base;
8065
8066         val = I915_READ(PIPESRC(pipe));
8067         fb->width = ((val >> 16) & 0xfff) + 1;
8068         fb->height = ((val >> 0) & 0xfff) + 1;
8069
8070         val = I915_READ(DSPSTRIDE(pipe));
8071         fb->pitches[0] = val & 0xffffffc0;
8072
8073         aligned_height = intel_fb_align_height(dev, fb->height,
8074                                                fb->pixel_format,
8075                                                fb->modifier[0]);
8076
8077         plane_config->size = fb->pitches[0] * aligned_height;
8078
8079         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8080                       pipe_name(pipe), fb->width, fb->height,
8081                       fb->bits_per_pixel, base, fb->pitches[0],
8082                       plane_config->size);
8083
8084         plane_config->fb = intel_fb;
8085 }
8086
8087 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8088                                      struct intel_crtc_state *pipe_config)
8089 {
8090         struct drm_device *dev = crtc->base.dev;
8091         struct drm_i915_private *dev_priv = dev->dev_private;
8092         uint32_t tmp;
8093
8094         if (!intel_display_power_is_enabled(dev_priv,
8095                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8096                 return false;
8097
8098         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8099         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8100
8101         tmp = I915_READ(PIPECONF(crtc->pipe));
8102         if (!(tmp & PIPECONF_ENABLE))
8103                 return false;
8104
8105         switch (tmp & PIPECONF_BPC_MASK) {
8106         case PIPECONF_6BPC:
8107                 pipe_config->pipe_bpp = 18;
8108                 break;
8109         case PIPECONF_8BPC:
8110                 pipe_config->pipe_bpp = 24;
8111                 break;
8112         case PIPECONF_10BPC:
8113                 pipe_config->pipe_bpp = 30;
8114                 break;
8115         case PIPECONF_12BPC:
8116                 pipe_config->pipe_bpp = 36;
8117                 break;
8118         default:
8119                 break;
8120         }
8121
8122         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8123                 pipe_config->limited_color_range = true;
8124
8125         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8126                 struct intel_shared_dpll *pll;
8127
8128                 pipe_config->has_pch_encoder = true;
8129
8130                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8131                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8132                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8133
8134                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8135
8136                 if (HAS_PCH_IBX(dev_priv->dev)) {
8137                         pipe_config->shared_dpll =
8138                                 (enum intel_dpll_id) crtc->pipe;
8139                 } else {
8140                         tmp = I915_READ(PCH_DPLL_SEL);
8141                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8142                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8143                         else
8144                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8145                 }
8146
8147                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8148
8149                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8150                                            &pipe_config->dpll_hw_state));
8151
8152                 tmp = pipe_config->dpll_hw_state.dpll;
8153                 pipe_config->pixel_multiplier =
8154                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8155                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8156
8157                 ironlake_pch_clock_get(crtc, pipe_config);
8158         } else {
8159                 pipe_config->pixel_multiplier = 1;
8160         }
8161
8162         intel_get_pipe_timings(crtc, pipe_config);
8163
8164         ironlake_get_pfit_config(crtc, pipe_config);
8165
8166         return true;
8167 }
8168
8169 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8170 {
8171         struct drm_device *dev = dev_priv->dev;
8172         struct intel_crtc *crtc;
8173
8174         for_each_intel_crtc(dev, crtc)
8175                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8176                      pipe_name(crtc->pipe));
8177
8178         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8179         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8180         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8181         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8182         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8183         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8184              "CPU PWM1 enabled\n");
8185         if (IS_HASWELL(dev))
8186                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8187                      "CPU PWM2 enabled\n");
8188         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8189              "PCH PWM1 enabled\n");
8190         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8191              "Utility pin enabled\n");
8192         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8193
8194         /*
8195          * In theory we can still leave IRQs enabled, as long as only the HPD
8196          * interrupts remain enabled. We used to check for that, but since it's
8197          * gen-specific and since we only disable LCPLL after we fully disable
8198          * the interrupts, the check below should be enough.
8199          */
8200         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8201 }
8202
8203 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8204 {
8205         struct drm_device *dev = dev_priv->dev;
8206
8207         if (IS_HASWELL(dev))
8208                 return I915_READ(D_COMP_HSW);
8209         else
8210                 return I915_READ(D_COMP_BDW);
8211 }
8212
8213 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8214 {
8215         struct drm_device *dev = dev_priv->dev;
8216
8217         if (IS_HASWELL(dev)) {
8218                 mutex_lock(&dev_priv->rps.hw_lock);
8219                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8220                                             val))
8221                         DRM_ERROR("Failed to write to D_COMP\n");
8222                 mutex_unlock(&dev_priv->rps.hw_lock);
8223         } else {
8224                 I915_WRITE(D_COMP_BDW, val);
8225                 POSTING_READ(D_COMP_BDW);
8226         }
8227 }
8228
8229 /*
8230  * This function implements pieces of two sequences from BSpec:
8231  * - Sequence for display software to disable LCPLL
8232  * - Sequence for display software to allow package C8+
8233  * The steps implemented here are just the steps that actually touch the LCPLL
8234  * register. Callers should take care of disabling all the display engine
8235  * functions, doing the mode unset, fixing interrupts, etc.
8236  */
8237 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8238                               bool switch_to_fclk, bool allow_power_down)
8239 {
8240         uint32_t val;
8241
8242         assert_can_disable_lcpll(dev_priv);
8243
8244         val = I915_READ(LCPLL_CTL);
8245
8246         if (switch_to_fclk) {
8247                 val |= LCPLL_CD_SOURCE_FCLK;
8248                 I915_WRITE(LCPLL_CTL, val);
8249
8250                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8251                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
8252                         DRM_ERROR("Switching to FCLK failed\n");
8253
8254                 val = I915_READ(LCPLL_CTL);
8255         }
8256
8257         val |= LCPLL_PLL_DISABLE;
8258         I915_WRITE(LCPLL_CTL, val);
8259         POSTING_READ(LCPLL_CTL);
8260
8261         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8262                 DRM_ERROR("LCPLL still locked\n");
8263
8264         val = hsw_read_dcomp(dev_priv);
8265         val |= D_COMP_COMP_DISABLE;
8266         hsw_write_dcomp(dev_priv, val);
8267         ndelay(100);
8268
8269         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8270                      1))
8271                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8272
8273         if (allow_power_down) {
8274                 val = I915_READ(LCPLL_CTL);
8275                 val |= LCPLL_POWER_DOWN_ALLOW;
8276                 I915_WRITE(LCPLL_CTL, val);
8277                 POSTING_READ(LCPLL_CTL);
8278         }
8279 }
8280
8281 /*
8282  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8283  * source.
8284  */
8285 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8286 {
8287         uint32_t val;
8288
8289         val = I915_READ(LCPLL_CTL);
8290
8291         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8292                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8293                 return;
8294
8295         /*
8296          * Make sure we're not on PC8 state before disabling PC8, otherwise
8297          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8298          */
8299         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8300
8301         if (val & LCPLL_POWER_DOWN_ALLOW) {
8302                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8303                 I915_WRITE(LCPLL_CTL, val);
8304                 POSTING_READ(LCPLL_CTL);
8305         }
8306
8307         val = hsw_read_dcomp(dev_priv);
8308         val |= D_COMP_COMP_FORCE;
8309         val &= ~D_COMP_COMP_DISABLE;
8310         hsw_write_dcomp(dev_priv, val);
8311
8312         val = I915_READ(LCPLL_CTL);
8313         val &= ~LCPLL_PLL_DISABLE;
8314         I915_WRITE(LCPLL_CTL, val);
8315
8316         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8317                 DRM_ERROR("LCPLL not locked yet\n");
8318
8319         if (val & LCPLL_CD_SOURCE_FCLK) {
8320                 val = I915_READ(LCPLL_CTL);
8321                 val &= ~LCPLL_CD_SOURCE_FCLK;
8322                 I915_WRITE(LCPLL_CTL, val);
8323
8324                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8325                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8326                         DRM_ERROR("Switching back to LCPLL failed\n");
8327         }
8328
8329         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8330 }
8331
8332 /*
8333  * Package states C8 and deeper are really deep PC states that can only be
8334  * reached when all the devices on the system allow it, so even if the graphics
8335  * device allows PC8+, it doesn't mean the system will actually get to these
8336  * states. Our driver only allows PC8+ when going into runtime PM.
8337  *
8338  * The requirements for PC8+ are that all the outputs are disabled, the power
8339  * well is disabled and most interrupts are disabled, and these are also
8340  * requirements for runtime PM. When these conditions are met, we manually do
8341  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8342  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8343  * hang the machine.
8344  *
8345  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8346  * the state of some registers, so when we come back from PC8+ we need to
8347  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8348  * need to take care of the registers kept by RC6. Notice that this happens even
8349  * if we don't put the device in PCI D3 state (which is what currently happens
8350  * because of the runtime PM support).
8351  *
8352  * For more, read "Display Sequences for Package C8" on the hardware
8353  * documentation.
8354  */
8355 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8356 {
8357         struct drm_device *dev = dev_priv->dev;
8358         uint32_t val;
8359
8360         DRM_DEBUG_KMS("Enabling package C8+\n");
8361
8362         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8363                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8364                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8365                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8366         }
8367
8368         lpt_disable_clkout_dp(dev);
8369         hsw_disable_lcpll(dev_priv, true, true);
8370 }
8371
8372 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8373 {
8374         struct drm_device *dev = dev_priv->dev;
8375         uint32_t val;
8376
8377         DRM_DEBUG_KMS("Disabling package C8+\n");
8378
8379         hsw_restore_lcpll(dev_priv);
8380         lpt_init_pch_refclk(dev);
8381
8382         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8383                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8384                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8385                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8386         }
8387
8388         intel_prepare_ddi(dev);
8389 }
8390
8391 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8392                                       struct intel_crtc_state *crtc_state)
8393 {
8394         if (!intel_ddi_pll_select(crtc, crtc_state))
8395                 return -EINVAL;
8396
8397         crtc->lowfreq_avail = false;
8398
8399         return 0;
8400 }
8401
8402 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8403                                 enum port port,
8404                                 struct intel_crtc_state *pipe_config)
8405 {
8406         u32 temp, dpll_ctl1;
8407
8408         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8409         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8410
8411         switch (pipe_config->ddi_pll_sel) {
8412         case SKL_DPLL0:
8413                 /*
8414                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8415                  * of the shared DPLL framework and thus needs to be read out
8416                  * separately
8417                  */
8418                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8419                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8420                 break;
8421         case SKL_DPLL1:
8422                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8423                 break;
8424         case SKL_DPLL2:
8425                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8426                 break;
8427         case SKL_DPLL3:
8428                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8429                 break;
8430         }
8431 }
8432
8433 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8434                                 enum port port,
8435                                 struct intel_crtc_state *pipe_config)
8436 {
8437         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8438
8439         switch (pipe_config->ddi_pll_sel) {
8440         case PORT_CLK_SEL_WRPLL1:
8441                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8442                 break;
8443         case PORT_CLK_SEL_WRPLL2:
8444                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8445                 break;
8446         }
8447 }
8448
8449 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8450                                        struct intel_crtc_state *pipe_config)
8451 {
8452         struct drm_device *dev = crtc->base.dev;
8453         struct drm_i915_private *dev_priv = dev->dev_private;
8454         struct intel_shared_dpll *pll;
8455         enum port port;
8456         uint32_t tmp;
8457
8458         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8459
8460         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8461
8462         if (IS_SKYLAKE(dev))
8463                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8464         else
8465                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8466
8467         if (pipe_config->shared_dpll >= 0) {
8468                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8469
8470                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8471                                            &pipe_config->dpll_hw_state));
8472         }
8473
8474         /*
8475          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8476          * DDI E. So just check whether this pipe is wired to DDI E and whether
8477          * the PCH transcoder is on.
8478          */
8479         if (INTEL_INFO(dev)->gen < 9 &&
8480             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8481                 pipe_config->has_pch_encoder = true;
8482
8483                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8484                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8485                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8486
8487                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8488         }
8489 }
8490
8491 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8492                                     struct intel_crtc_state *pipe_config)
8493 {
8494         struct drm_device *dev = crtc->base.dev;
8495         struct drm_i915_private *dev_priv = dev->dev_private;
8496         enum intel_display_power_domain pfit_domain;
8497         uint32_t tmp;
8498
8499         if (!intel_display_power_is_enabled(dev_priv,
8500                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8501                 return false;
8502
8503         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8504         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8505
8506         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8507         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8508                 enum pipe trans_edp_pipe;
8509                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8510                 default:
8511                         WARN(1, "unknown pipe linked to edp transcoder\n");
8512                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8513                 case TRANS_DDI_EDP_INPUT_A_ON:
8514                         trans_edp_pipe = PIPE_A;
8515                         break;
8516                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8517                         trans_edp_pipe = PIPE_B;
8518                         break;
8519                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8520                         trans_edp_pipe = PIPE_C;
8521                         break;
8522                 }
8523
8524                 if (trans_edp_pipe == crtc->pipe)
8525                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8526         }
8527
8528         if (!intel_display_power_is_enabled(dev_priv,
8529                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8530                 return false;
8531
8532         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8533         if (!(tmp & PIPECONF_ENABLE))
8534                 return false;
8535
8536         haswell_get_ddi_port_state(crtc, pipe_config);
8537
8538         intel_get_pipe_timings(crtc, pipe_config);
8539
8540         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8541         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8542                 if (IS_SKYLAKE(dev))
8543                         skylake_get_pfit_config(crtc, pipe_config);
8544                 else
8545                         ironlake_get_pfit_config(crtc, pipe_config);
8546         }
8547
8548         if (IS_HASWELL(dev))
8549                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8550                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8551
8552         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8553                 pipe_config->pixel_multiplier =
8554                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8555         } else {
8556                 pipe_config->pixel_multiplier = 1;
8557         }
8558
8559         return true;
8560 }
8561
8562 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8563 {
8564         struct drm_device *dev = crtc->dev;
8565         struct drm_i915_private *dev_priv = dev->dev_private;
8566         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8567         uint32_t cntl = 0, size = 0;
8568
8569         if (base) {
8570                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8571                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8572                 unsigned int stride = roundup_pow_of_two(width) * 4;
8573
8574                 switch (stride) {
8575                 default:
8576                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8577                                   width, stride);
8578                         stride = 256;
8579                         /* fallthrough */
8580                 case 256:
8581                 case 512:
8582                 case 1024:
8583                 case 2048:
8584                         break;
8585                 }
8586
8587                 cntl |= CURSOR_ENABLE |
8588                         CURSOR_GAMMA_ENABLE |
8589                         CURSOR_FORMAT_ARGB |
8590                         CURSOR_STRIDE(stride);
8591
8592                 size = (height << 12) | width;
8593         }
8594
8595         if (intel_crtc->cursor_cntl != 0 &&
8596             (intel_crtc->cursor_base != base ||
8597              intel_crtc->cursor_size != size ||
8598              intel_crtc->cursor_cntl != cntl)) {
8599                 /* On these chipsets we can only modify the base/size/stride
8600                  * whilst the cursor is disabled.
8601                  */
8602                 I915_WRITE(_CURACNTR, 0);
8603                 POSTING_READ(_CURACNTR);
8604                 intel_crtc->cursor_cntl = 0;
8605         }
8606
8607         if (intel_crtc->cursor_base != base) {
8608                 I915_WRITE(_CURABASE, base);
8609                 intel_crtc->cursor_base = base;
8610         }
8611
8612         if (intel_crtc->cursor_size != size) {
8613                 I915_WRITE(CURSIZE, size);
8614                 intel_crtc->cursor_size = size;
8615         }
8616
8617         if (intel_crtc->cursor_cntl != cntl) {
8618                 I915_WRITE(_CURACNTR, cntl);
8619                 POSTING_READ(_CURACNTR);
8620                 intel_crtc->cursor_cntl = cntl;
8621         }
8622 }
8623
8624 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8625 {
8626         struct drm_device *dev = crtc->dev;
8627         struct drm_i915_private *dev_priv = dev->dev_private;
8628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629         int pipe = intel_crtc->pipe;
8630         uint32_t cntl;
8631
8632         cntl = 0;
8633         if (base) {
8634                 cntl = MCURSOR_GAMMA_ENABLE;
8635                 switch (intel_crtc->base.cursor->state->crtc_w) {
8636                         case 64:
8637                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8638                                 break;
8639                         case 128:
8640                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8641                                 break;
8642                         case 256:
8643                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8644                                 break;
8645                         default:
8646                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8647                                 return;
8648                 }
8649                 cntl |= pipe << 28; /* Connect to correct pipe */
8650
8651                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8652                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8653         }
8654
8655         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8656                 cntl |= CURSOR_ROTATE_180;
8657
8658         if (intel_crtc->cursor_cntl != cntl) {
8659                 I915_WRITE(CURCNTR(pipe), cntl);
8660                 POSTING_READ(CURCNTR(pipe));
8661                 intel_crtc->cursor_cntl = cntl;
8662         }
8663
8664         /* and commit changes on next vblank */
8665         I915_WRITE(CURBASE(pipe), base);
8666         POSTING_READ(CURBASE(pipe));
8667
8668         intel_crtc->cursor_base = base;
8669 }
8670
8671 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8672 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8673                                      bool on)
8674 {
8675         struct drm_device *dev = crtc->dev;
8676         struct drm_i915_private *dev_priv = dev->dev_private;
8677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8678         int pipe = intel_crtc->pipe;
8679         int x = crtc->cursor_x;
8680         int y = crtc->cursor_y;
8681         u32 base = 0, pos = 0;
8682
8683         if (on)
8684                 base = intel_crtc->cursor_addr;
8685
8686         if (x >= intel_crtc->config->pipe_src_w)
8687                 base = 0;
8688
8689         if (y >= intel_crtc->config->pipe_src_h)
8690                 base = 0;
8691
8692         if (x < 0) {
8693                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8694                         base = 0;
8695
8696                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8697                 x = -x;
8698         }
8699         pos |= x << CURSOR_X_SHIFT;
8700
8701         if (y < 0) {
8702                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8703                         base = 0;
8704
8705                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8706                 y = -y;
8707         }
8708         pos |= y << CURSOR_Y_SHIFT;
8709
8710         if (base == 0 && intel_crtc->cursor_base == 0)
8711                 return;
8712
8713         I915_WRITE(CURPOS(pipe), pos);
8714
8715         /* ILK+ do this automagically */
8716         if (HAS_GMCH_DISPLAY(dev) &&
8717             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8718                 base += (intel_crtc->base.cursor->state->crtc_h *
8719                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8720         }
8721
8722         if (IS_845G(dev) || IS_I865G(dev))
8723                 i845_update_cursor(crtc, base);
8724         else
8725                 i9xx_update_cursor(crtc, base);
8726 }
8727
8728 static bool cursor_size_ok(struct drm_device *dev,
8729                            uint32_t width, uint32_t height)
8730 {
8731         if (width == 0 || height == 0)
8732                 return false;
8733
8734         /*
8735          * 845g/865g are special in that they are only limited by
8736          * the width of their cursors, the height is arbitrary up to
8737          * the precision of the register. Everything else requires
8738          * square cursors, limited to a few power-of-two sizes.
8739          */
8740         if (IS_845G(dev) || IS_I865G(dev)) {
8741                 if ((width & 63) != 0)
8742                         return false;
8743
8744                 if (width > (IS_845G(dev) ? 64 : 512))
8745                         return false;
8746
8747                 if (height > 1023)
8748                         return false;
8749         } else {
8750                 switch (width | height) {
8751                 case 256:
8752                 case 128:
8753                         if (IS_GEN2(dev))
8754                                 return false;
8755                 case 64:
8756                         break;
8757                 default:
8758                         return false;
8759                 }
8760         }
8761
8762         return true;
8763 }
8764
8765 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8766                                  u16 *blue, uint32_t start, uint32_t size)
8767 {
8768         int end = (start + size > 256) ? 256 : start + size, i;
8769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8770
8771         for (i = start; i < end; i++) {
8772                 intel_crtc->lut_r[i] = red[i] >> 8;
8773                 intel_crtc->lut_g[i] = green[i] >> 8;
8774                 intel_crtc->lut_b[i] = blue[i] >> 8;
8775         }
8776
8777         intel_crtc_load_lut(crtc);
8778 }
8779
8780 /* VESA 640x480x72Hz mode to set on the pipe */
8781 static struct drm_display_mode load_detect_mode = {
8782         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8783                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8784 };
8785
8786 struct drm_framebuffer *
8787 __intel_framebuffer_create(struct drm_device *dev,
8788                            struct drm_mode_fb_cmd2 *mode_cmd,
8789                            struct drm_i915_gem_object *obj)
8790 {
8791         struct intel_framebuffer *intel_fb;
8792         int ret;
8793
8794         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8795         if (!intel_fb) {
8796                 drm_gem_object_unreference(&obj->base);
8797                 return ERR_PTR(-ENOMEM);
8798         }
8799
8800         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8801         if (ret)
8802                 goto err;
8803
8804         return &intel_fb->base;
8805 err:
8806         drm_gem_object_unreference(&obj->base);
8807         kfree(intel_fb);
8808
8809         return ERR_PTR(ret);
8810 }
8811
8812 static struct drm_framebuffer *
8813 intel_framebuffer_create(struct drm_device *dev,
8814                          struct drm_mode_fb_cmd2 *mode_cmd,
8815                          struct drm_i915_gem_object *obj)
8816 {
8817         struct drm_framebuffer *fb;
8818         int ret;
8819
8820         ret = i915_mutex_lock_interruptible(dev);
8821         if (ret)
8822                 return ERR_PTR(ret);
8823         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8824         mutex_unlock(&dev->struct_mutex);
8825
8826         return fb;
8827 }
8828
8829 static u32
8830 intel_framebuffer_pitch_for_width(int width, int bpp)
8831 {
8832         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8833         return ALIGN(pitch, 64);
8834 }
8835
8836 static u32
8837 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8838 {
8839         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8840         return PAGE_ALIGN(pitch * mode->vdisplay);
8841 }
8842
8843 static struct drm_framebuffer *
8844 intel_framebuffer_create_for_mode(struct drm_device *dev,
8845                                   struct drm_display_mode *mode,
8846                                   int depth, int bpp)
8847 {
8848         struct drm_i915_gem_object *obj;
8849         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8850
8851         obj = i915_gem_alloc_object(dev,
8852                                     intel_framebuffer_size_for_mode(mode, bpp));
8853         if (obj == NULL)
8854                 return ERR_PTR(-ENOMEM);
8855
8856         mode_cmd.width = mode->hdisplay;
8857         mode_cmd.height = mode->vdisplay;
8858         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8859                                                                 bpp);
8860         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8861
8862         return intel_framebuffer_create(dev, &mode_cmd, obj);
8863 }
8864
8865 static struct drm_framebuffer *
8866 mode_fits_in_fbdev(struct drm_device *dev,
8867                    struct drm_display_mode *mode)
8868 {
8869 #ifdef CONFIG_DRM_I915_FBDEV
8870         struct drm_i915_private *dev_priv = dev->dev_private;
8871         struct drm_i915_gem_object *obj;
8872         struct drm_framebuffer *fb;
8873
8874         if (!dev_priv->fbdev)
8875                 return NULL;
8876
8877         if (!dev_priv->fbdev->fb)
8878                 return NULL;
8879
8880         obj = dev_priv->fbdev->fb->obj;
8881         BUG_ON(!obj);
8882
8883         fb = &dev_priv->fbdev->fb->base;
8884         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8885                                                                fb->bits_per_pixel))
8886                 return NULL;
8887
8888         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8889                 return NULL;
8890
8891         return fb;
8892 #else
8893         return NULL;
8894 #endif
8895 }
8896
8897 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8898                                 struct drm_display_mode *mode,
8899                                 struct intel_load_detect_pipe *old,
8900                                 struct drm_modeset_acquire_ctx *ctx)
8901 {
8902         struct intel_crtc *intel_crtc;
8903         struct intel_encoder *intel_encoder =
8904                 intel_attached_encoder(connector);
8905         struct drm_crtc *possible_crtc;
8906         struct drm_encoder *encoder = &intel_encoder->base;
8907         struct drm_crtc *crtc = NULL;
8908         struct drm_device *dev = encoder->dev;
8909         struct drm_framebuffer *fb;
8910         struct drm_mode_config *config = &dev->mode_config;
8911         int ret, i = -1;
8912
8913         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8914                       connector->base.id, connector->name,
8915                       encoder->base.id, encoder->name);
8916
8917 retry:
8918         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8919         if (ret)
8920                 goto fail_unlock;
8921
8922         /*
8923          * Algorithm gets a little messy:
8924          *
8925          *   - if the connector already has an assigned crtc, use it (but make
8926          *     sure it's on first)
8927          *
8928          *   - try to find the first unused crtc that can drive this connector,
8929          *     and use that if we find one
8930          */
8931
8932         /* See if we already have a CRTC for this connector */
8933         if (encoder->crtc) {
8934                 crtc = encoder->crtc;
8935
8936                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8937                 if (ret)
8938                         goto fail_unlock;
8939                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8940                 if (ret)
8941                         goto fail_unlock;
8942
8943                 old->dpms_mode = connector->dpms;
8944                 old->load_detect_temp = false;
8945
8946                 /* Make sure the crtc and connector are running */
8947                 if (connector->dpms != DRM_MODE_DPMS_ON)
8948                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8949
8950                 return true;
8951         }
8952
8953         /* Find an unused one (if possible) */
8954         for_each_crtc(dev, possible_crtc) {
8955                 i++;
8956                 if (!(encoder->possible_crtcs & (1 << i)))
8957                         continue;
8958                 if (possible_crtc->state->enable)
8959                         continue;
8960                 /* This can occur when applying the pipe A quirk on resume. */
8961                 if (to_intel_crtc(possible_crtc)->new_enabled)
8962                         continue;
8963
8964                 crtc = possible_crtc;
8965                 break;
8966         }
8967
8968         /*
8969          * If we didn't find an unused CRTC, don't use any.
8970          */
8971         if (!crtc) {
8972                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8973                 goto fail_unlock;
8974         }
8975
8976         ret = drm_modeset_lock(&crtc->mutex, ctx);
8977         if (ret)
8978                 goto fail_unlock;
8979         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8980         if (ret)
8981                 goto fail_unlock;
8982         intel_encoder->new_crtc = to_intel_crtc(crtc);
8983         to_intel_connector(connector)->new_encoder = intel_encoder;
8984
8985         intel_crtc = to_intel_crtc(crtc);
8986         intel_crtc->new_enabled = true;
8987         intel_crtc->new_config = intel_crtc->config;
8988         old->dpms_mode = connector->dpms;
8989         old->load_detect_temp = true;
8990         old->release_fb = NULL;
8991
8992         if (!mode)
8993                 mode = &load_detect_mode;
8994
8995         /* We need a framebuffer large enough to accommodate all accesses
8996          * that the plane may generate whilst we perform load detection.
8997          * We can not rely on the fbcon either being present (we get called
8998          * during its initialisation to detect all boot displays, or it may
8999          * not even exist) or that it is large enough to satisfy the
9000          * requested mode.
9001          */
9002         fb = mode_fits_in_fbdev(dev, mode);
9003         if (fb == NULL) {
9004                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9005                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9006                 old->release_fb = fb;
9007         } else
9008                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9009         if (IS_ERR(fb)) {
9010                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9011                 goto fail;
9012         }
9013
9014         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
9015                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9016                 if (old->release_fb)
9017                         old->release_fb->funcs->destroy(old->release_fb);
9018                 goto fail;
9019         }
9020         crtc->primary->crtc = crtc;
9021
9022         /* let the connector get through one full cycle before testing */
9023         intel_wait_for_vblank(dev, intel_crtc->pipe);
9024         return true;
9025
9026  fail:
9027         intel_crtc->new_enabled = crtc->state->enable;
9028         if (intel_crtc->new_enabled)
9029                 intel_crtc->new_config = intel_crtc->config;
9030         else
9031                 intel_crtc->new_config = NULL;
9032 fail_unlock:
9033         if (ret == -EDEADLK) {
9034                 drm_modeset_backoff(ctx);
9035                 goto retry;
9036         }
9037
9038         return false;
9039 }
9040
9041 void intel_release_load_detect_pipe(struct drm_connector *connector,
9042                                     struct intel_load_detect_pipe *old)
9043 {
9044         struct intel_encoder *intel_encoder =
9045                 intel_attached_encoder(connector);
9046         struct drm_encoder *encoder = &intel_encoder->base;
9047         struct drm_crtc *crtc = encoder->crtc;
9048         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9049
9050         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9051                       connector->base.id, connector->name,
9052                       encoder->base.id, encoder->name);
9053
9054         if (old->load_detect_temp) {
9055                 to_intel_connector(connector)->new_encoder = NULL;
9056                 intel_encoder->new_crtc = NULL;
9057                 intel_crtc->new_enabled = false;
9058                 intel_crtc->new_config = NULL;
9059                 intel_set_mode(crtc, NULL, 0, 0, NULL);
9060
9061                 if (old->release_fb) {
9062                         drm_framebuffer_unregister_private(old->release_fb);
9063                         drm_framebuffer_unreference(old->release_fb);
9064                 }
9065
9066                 return;
9067         }
9068
9069         /* Switch crtc and encoder back off if necessary */
9070         if (old->dpms_mode != DRM_MODE_DPMS_ON)
9071                 connector->funcs->dpms(connector, old->dpms_mode);
9072 }
9073
9074 static int i9xx_pll_refclk(struct drm_device *dev,
9075                            const struct intel_crtc_state *pipe_config)
9076 {
9077         struct drm_i915_private *dev_priv = dev->dev_private;
9078         u32 dpll = pipe_config->dpll_hw_state.dpll;
9079
9080         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9081                 return dev_priv->vbt.lvds_ssc_freq;
9082         else if (HAS_PCH_SPLIT(dev))
9083                 return 120000;
9084         else if (!IS_GEN2(dev))
9085                 return 96000;
9086         else
9087                 return 48000;
9088 }
9089
9090 /* Returns the clock of the currently programmed mode of the given pipe. */
9091 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9092                                 struct intel_crtc_state *pipe_config)
9093 {
9094         struct drm_device *dev = crtc->base.dev;
9095         struct drm_i915_private *dev_priv = dev->dev_private;
9096         int pipe = pipe_config->cpu_transcoder;
9097         u32 dpll = pipe_config->dpll_hw_state.dpll;
9098         u32 fp;
9099         intel_clock_t clock;
9100         int refclk = i9xx_pll_refclk(dev, pipe_config);
9101
9102         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9103                 fp = pipe_config->dpll_hw_state.fp0;
9104         else
9105                 fp = pipe_config->dpll_hw_state.fp1;
9106
9107         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9108         if (IS_PINEVIEW(dev)) {
9109                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9110                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9111         } else {
9112                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9113                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9114         }
9115
9116         if (!IS_GEN2(dev)) {
9117                 if (IS_PINEVIEW(dev))
9118                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9119                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9120                 else
9121                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9122                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9123
9124                 switch (dpll & DPLL_MODE_MASK) {
9125                 case DPLLB_MODE_DAC_SERIAL:
9126                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9127                                 5 : 10;
9128                         break;
9129                 case DPLLB_MODE_LVDS:
9130                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9131                                 7 : 14;
9132                         break;
9133                 default:
9134                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9135                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9136                         return;
9137                 }
9138
9139                 if (IS_PINEVIEW(dev))
9140                         pineview_clock(refclk, &clock);
9141                 else
9142                         i9xx_clock(refclk, &clock);
9143         } else {
9144                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9145                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9146
9147                 if (is_lvds) {
9148                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9149                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9150
9151                         if (lvds & LVDS_CLKB_POWER_UP)
9152                                 clock.p2 = 7;
9153                         else
9154                                 clock.p2 = 14;
9155                 } else {
9156                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9157                                 clock.p1 = 2;
9158                         else {
9159                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9160                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9161                         }
9162                         if (dpll & PLL_P2_DIVIDE_BY_4)
9163                                 clock.p2 = 4;
9164                         else
9165                                 clock.p2 = 2;
9166                 }
9167
9168                 i9xx_clock(refclk, &clock);
9169         }
9170
9171         /*
9172          * This value includes pixel_multiplier. We will use
9173          * port_clock to compute adjusted_mode.crtc_clock in the
9174          * encoder's get_config() function.
9175          */
9176         pipe_config->port_clock = clock.dot;
9177 }
9178
9179 int intel_dotclock_calculate(int link_freq,
9180                              const struct intel_link_m_n *m_n)
9181 {
9182         /*
9183          * The calculation for the data clock is:
9184          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9185          * But we want to avoid losing precison if possible, so:
9186          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9187          *
9188          * and the link clock is simpler:
9189          * link_clock = (m * link_clock) / n
9190          */
9191
9192         if (!m_n->link_n)
9193                 return 0;
9194
9195         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9196 }
9197
9198 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9199                                    struct intel_crtc_state *pipe_config)
9200 {
9201         struct drm_device *dev = crtc->base.dev;
9202
9203         /* read out port_clock from the DPLL */
9204         i9xx_crtc_clock_get(crtc, pipe_config);
9205
9206         /*
9207          * This value does not include pixel_multiplier.
9208          * We will check that port_clock and adjusted_mode.crtc_clock
9209          * agree once we know their relationship in the encoder's
9210          * get_config() function.
9211          */
9212         pipe_config->base.adjusted_mode.crtc_clock =
9213                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9214                                          &pipe_config->fdi_m_n);
9215 }
9216
9217 /** Returns the currently programmed mode of the given pipe. */
9218 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9219                                              struct drm_crtc *crtc)
9220 {
9221         struct drm_i915_private *dev_priv = dev->dev_private;
9222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9223         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9224         struct drm_display_mode *mode;
9225         struct intel_crtc_state pipe_config;
9226         int htot = I915_READ(HTOTAL(cpu_transcoder));
9227         int hsync = I915_READ(HSYNC(cpu_transcoder));
9228         int vtot = I915_READ(VTOTAL(cpu_transcoder));
9229         int vsync = I915_READ(VSYNC(cpu_transcoder));
9230         enum pipe pipe = intel_crtc->pipe;
9231
9232         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9233         if (!mode)
9234                 return NULL;
9235
9236         /*
9237          * Construct a pipe_config sufficient for getting the clock info
9238          * back out of crtc_clock_get.
9239          *
9240          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9241          * to use a real value here instead.
9242          */
9243         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9244         pipe_config.pixel_multiplier = 1;
9245         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9246         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9247         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9248         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9249
9250         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9251         mode->hdisplay = (htot & 0xffff) + 1;
9252         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9253         mode->hsync_start = (hsync & 0xffff) + 1;
9254         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9255         mode->vdisplay = (vtot & 0xffff) + 1;
9256         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9257         mode->vsync_start = (vsync & 0xffff) + 1;
9258         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9259
9260         drm_mode_set_name(mode);
9261
9262         return mode;
9263 }
9264
9265 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9266 {
9267         struct drm_device *dev = crtc->dev;
9268         struct drm_i915_private *dev_priv = dev->dev_private;
9269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9270
9271         if (!HAS_GMCH_DISPLAY(dev))
9272                 return;
9273
9274         if (!dev_priv->lvds_downclock_avail)
9275                 return;
9276
9277         /*
9278          * Since this is called by a timer, we should never get here in
9279          * the manual case.
9280          */
9281         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9282                 int pipe = intel_crtc->pipe;
9283                 int dpll_reg = DPLL(pipe);
9284                 int dpll;
9285
9286                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9287
9288                 assert_panel_unlocked(dev_priv, pipe);
9289
9290                 dpll = I915_READ(dpll_reg);
9291                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9292                 I915_WRITE(dpll_reg, dpll);
9293                 intel_wait_for_vblank(dev, pipe);
9294                 dpll = I915_READ(dpll_reg);
9295                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9296                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9297         }
9298
9299 }
9300
9301 void intel_mark_busy(struct drm_device *dev)
9302 {
9303         struct drm_i915_private *dev_priv = dev->dev_private;
9304
9305         if (dev_priv->mm.busy)
9306                 return;
9307
9308         intel_runtime_pm_get(dev_priv);
9309         i915_update_gfx_val(dev_priv);
9310         if (INTEL_INFO(dev)->gen >= 6)
9311                 gen6_rps_busy(dev_priv);
9312         dev_priv->mm.busy = true;
9313 }
9314
9315 void intel_mark_idle(struct drm_device *dev)
9316 {
9317         struct drm_i915_private *dev_priv = dev->dev_private;
9318         struct drm_crtc *crtc;
9319
9320         if (!dev_priv->mm.busy)
9321                 return;
9322
9323         dev_priv->mm.busy = false;
9324
9325         for_each_crtc(dev, crtc) {
9326                 if (!crtc->primary->fb)
9327                         continue;
9328
9329                 intel_decrease_pllclock(crtc);
9330         }
9331
9332         if (INTEL_INFO(dev)->gen >= 6)
9333                 gen6_rps_idle(dev->dev_private);
9334
9335         intel_runtime_pm_put(dev_priv);
9336 }
9337
9338 static void intel_crtc_set_state(struct intel_crtc *crtc,
9339                                  struct intel_crtc_state *crtc_state)
9340 {
9341         kfree(crtc->config);
9342         crtc->config = crtc_state;
9343         crtc->base.state = &crtc_state->base;
9344 }
9345
9346 static void intel_crtc_destroy(struct drm_crtc *crtc)
9347 {
9348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9349         struct drm_device *dev = crtc->dev;
9350         struct intel_unpin_work *work;
9351
9352         spin_lock_irq(&dev->event_lock);
9353         work = intel_crtc->unpin_work;
9354         intel_crtc->unpin_work = NULL;
9355         spin_unlock_irq(&dev->event_lock);
9356
9357         if (work) {
9358                 cancel_work_sync(&work->work);
9359                 kfree(work);
9360         }
9361
9362         intel_crtc_set_state(intel_crtc, NULL);
9363         drm_crtc_cleanup(crtc);
9364
9365         kfree(intel_crtc);
9366 }
9367
9368 static void intel_unpin_work_fn(struct work_struct *__work)
9369 {
9370         struct intel_unpin_work *work =
9371                 container_of(__work, struct intel_unpin_work, work);
9372         struct drm_device *dev = work->crtc->dev;
9373         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9374
9375         mutex_lock(&dev->struct_mutex);
9376         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9377         drm_gem_object_unreference(&work->pending_flip_obj->base);
9378
9379         intel_fbc_update(dev);
9380
9381         if (work->flip_queued_req)
9382                 i915_gem_request_assign(&work->flip_queued_req, NULL);
9383         mutex_unlock(&dev->struct_mutex);
9384
9385         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9386         drm_framebuffer_unreference(work->old_fb);
9387
9388         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9389         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9390
9391         kfree(work);
9392 }
9393
9394 static void do_intel_finish_page_flip(struct drm_device *dev,
9395                                       struct drm_crtc *crtc)
9396 {
9397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9398         struct intel_unpin_work *work;
9399         unsigned long flags;
9400
9401         /* Ignore early vblank irqs */
9402         if (intel_crtc == NULL)
9403                 return;
9404
9405         /*
9406          * This is called both by irq handlers and the reset code (to complete
9407          * lost pageflips) so needs the full irqsave spinlocks.
9408          */
9409         spin_lock_irqsave(&dev->event_lock, flags);
9410         work = intel_crtc->unpin_work;
9411
9412         /* Ensure we don't miss a work->pending update ... */
9413         smp_rmb();
9414
9415         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9416                 spin_unlock_irqrestore(&dev->event_lock, flags);
9417                 return;
9418         }
9419
9420         page_flip_completed(intel_crtc);
9421
9422         spin_unlock_irqrestore(&dev->event_lock, flags);
9423 }
9424
9425 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9426 {
9427         struct drm_i915_private *dev_priv = dev->dev_private;
9428         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9429
9430         do_intel_finish_page_flip(dev, crtc);
9431 }
9432
9433 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9434 {
9435         struct drm_i915_private *dev_priv = dev->dev_private;
9436         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9437
9438         do_intel_finish_page_flip(dev, crtc);
9439 }
9440
9441 /* Is 'a' after or equal to 'b'? */
9442 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9443 {
9444         return !((a - b) & 0x80000000);
9445 }
9446
9447 static bool page_flip_finished(struct intel_crtc *crtc)
9448 {
9449         struct drm_device *dev = crtc->base.dev;
9450         struct drm_i915_private *dev_priv = dev->dev_private;
9451
9452         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9453             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9454                 return true;
9455
9456         /*
9457          * The relevant registers doen't exist on pre-ctg.
9458          * As the flip done interrupt doesn't trigger for mmio
9459          * flips on gmch platforms, a flip count check isn't
9460          * really needed there. But since ctg has the registers,
9461          * include it in the check anyway.
9462          */
9463         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9464                 return true;
9465
9466         /*
9467          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9468          * used the same base address. In that case the mmio flip might
9469          * have completed, but the CS hasn't even executed the flip yet.
9470          *
9471          * A flip count check isn't enough as the CS might have updated
9472          * the base address just after start of vblank, but before we
9473          * managed to process the interrupt. This means we'd complete the
9474          * CS flip too soon.
9475          *
9476          * Combining both checks should get us a good enough result. It may
9477          * still happen that the CS flip has been executed, but has not
9478          * yet actually completed. But in case the base address is the same
9479          * anyway, we don't really care.
9480          */
9481         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9482                 crtc->unpin_work->gtt_offset &&
9483                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9484                                     crtc->unpin_work->flip_count);
9485 }
9486
9487 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9488 {
9489         struct drm_i915_private *dev_priv = dev->dev_private;
9490         struct intel_crtc *intel_crtc =
9491                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9492         unsigned long flags;
9493
9494
9495         /*
9496          * This is called both by irq handlers and the reset code (to complete
9497          * lost pageflips) so needs the full irqsave spinlocks.
9498          *
9499          * NB: An MMIO update of the plane base pointer will also
9500          * generate a page-flip completion irq, i.e. every modeset
9501          * is also accompanied by a spurious intel_prepare_page_flip().
9502          */
9503         spin_lock_irqsave(&dev->event_lock, flags);
9504         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9505                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9506         spin_unlock_irqrestore(&dev->event_lock, flags);
9507 }
9508
9509 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9510 {
9511         /* Ensure that the work item is consistent when activating it ... */
9512         smp_wmb();
9513         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9514         /* and that it is marked active as soon as the irq could fire. */
9515         smp_wmb();
9516 }
9517
9518 static int intel_gen2_queue_flip(struct drm_device *dev,
9519                                  struct drm_crtc *crtc,
9520                                  struct drm_framebuffer *fb,
9521                                  struct drm_i915_gem_object *obj,
9522                                  struct intel_engine_cs *ring,
9523                                  uint32_t flags)
9524 {
9525         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9526         u32 flip_mask;
9527         int ret;
9528
9529         ret = intel_ring_begin(ring, 6);
9530         if (ret)
9531                 return ret;
9532
9533         /* Can't queue multiple flips, so wait for the previous
9534          * one to finish before executing the next.
9535          */
9536         if (intel_crtc->plane)
9537                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9538         else
9539                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9540         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9541         intel_ring_emit(ring, MI_NOOP);
9542         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9543                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9544         intel_ring_emit(ring, fb->pitches[0]);
9545         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9546         intel_ring_emit(ring, 0); /* aux display base address, unused */
9547
9548         intel_mark_page_flip_active(intel_crtc);
9549         __intel_ring_advance(ring);
9550         return 0;
9551 }
9552
9553 static int intel_gen3_queue_flip(struct drm_device *dev,
9554                                  struct drm_crtc *crtc,
9555                                  struct drm_framebuffer *fb,
9556                                  struct drm_i915_gem_object *obj,
9557                                  struct intel_engine_cs *ring,
9558                                  uint32_t flags)
9559 {
9560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9561         u32 flip_mask;
9562         int ret;
9563
9564         ret = intel_ring_begin(ring, 6);
9565         if (ret)
9566                 return ret;
9567
9568         if (intel_crtc->plane)
9569                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9570         else
9571                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9572         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9573         intel_ring_emit(ring, MI_NOOP);
9574         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9575                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9576         intel_ring_emit(ring, fb->pitches[0]);
9577         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9578         intel_ring_emit(ring, MI_NOOP);
9579
9580         intel_mark_page_flip_active(intel_crtc);
9581         __intel_ring_advance(ring);
9582         return 0;
9583 }
9584
9585 static int intel_gen4_queue_flip(struct drm_device *dev,
9586                                  struct drm_crtc *crtc,
9587                                  struct drm_framebuffer *fb,
9588                                  struct drm_i915_gem_object *obj,
9589                                  struct intel_engine_cs *ring,
9590                                  uint32_t flags)
9591 {
9592         struct drm_i915_private *dev_priv = dev->dev_private;
9593         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9594         uint32_t pf, pipesrc;
9595         int ret;
9596
9597         ret = intel_ring_begin(ring, 4);
9598         if (ret)
9599                 return ret;
9600
9601         /* i965+ uses the linear or tiled offsets from the
9602          * Display Registers (which do not change across a page-flip)
9603          * so we need only reprogram the base address.
9604          */
9605         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9606                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9607         intel_ring_emit(ring, fb->pitches[0]);
9608         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9609                         obj->tiling_mode);
9610
9611         /* XXX Enabling the panel-fitter across page-flip is so far
9612          * untested on non-native modes, so ignore it for now.
9613          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9614          */
9615         pf = 0;
9616         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9617         intel_ring_emit(ring, pf | pipesrc);
9618
9619         intel_mark_page_flip_active(intel_crtc);
9620         __intel_ring_advance(ring);
9621         return 0;
9622 }
9623
9624 static int intel_gen6_queue_flip(struct drm_device *dev,
9625                                  struct drm_crtc *crtc,
9626                                  struct drm_framebuffer *fb,
9627                                  struct drm_i915_gem_object *obj,
9628                                  struct intel_engine_cs *ring,
9629                                  uint32_t flags)
9630 {
9631         struct drm_i915_private *dev_priv = dev->dev_private;
9632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9633         uint32_t pf, pipesrc;
9634         int ret;
9635
9636         ret = intel_ring_begin(ring, 4);
9637         if (ret)
9638                 return ret;
9639
9640         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9641                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9642         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9643         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9644
9645         /* Contrary to the suggestions in the documentation,
9646          * "Enable Panel Fitter" does not seem to be required when page
9647          * flipping with a non-native mode, and worse causes a normal
9648          * modeset to fail.
9649          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9650          */
9651         pf = 0;
9652         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9653         intel_ring_emit(ring, pf | pipesrc);
9654
9655         intel_mark_page_flip_active(intel_crtc);
9656         __intel_ring_advance(ring);
9657         return 0;
9658 }
9659
9660 static int intel_gen7_queue_flip(struct drm_device *dev,
9661                                  struct drm_crtc *crtc,
9662                                  struct drm_framebuffer *fb,
9663                                  struct drm_i915_gem_object *obj,
9664                                  struct intel_engine_cs *ring,
9665                                  uint32_t flags)
9666 {
9667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9668         uint32_t plane_bit = 0;
9669         int len, ret;
9670
9671         switch (intel_crtc->plane) {
9672         case PLANE_A:
9673                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9674                 break;
9675         case PLANE_B:
9676                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9677                 break;
9678         case PLANE_C:
9679                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9680                 break;
9681         default:
9682                 WARN_ONCE(1, "unknown plane in flip command\n");
9683                 return -ENODEV;
9684         }
9685
9686         len = 4;
9687         if (ring->id == RCS) {
9688                 len += 6;
9689                 /*
9690                  * On Gen 8, SRM is now taking an extra dword to accommodate
9691                  * 48bits addresses, and we need a NOOP for the batch size to
9692                  * stay even.
9693                  */
9694                 if (IS_GEN8(dev))
9695                         len += 2;
9696         }
9697
9698         /*
9699          * BSpec MI_DISPLAY_FLIP for IVB:
9700          * "The full packet must be contained within the same cache line."
9701          *
9702          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9703          * cacheline, if we ever start emitting more commands before
9704          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9705          * then do the cacheline alignment, and finally emit the
9706          * MI_DISPLAY_FLIP.
9707          */
9708         ret = intel_ring_cacheline_align(ring);
9709         if (ret)
9710                 return ret;
9711
9712         ret = intel_ring_begin(ring, len);
9713         if (ret)
9714                 return ret;
9715
9716         /* Unmask the flip-done completion message. Note that the bspec says that
9717          * we should do this for both the BCS and RCS, and that we must not unmask
9718          * more than one flip event at any time (or ensure that one flip message
9719          * can be sent by waiting for flip-done prior to queueing new flips).
9720          * Experimentation says that BCS works despite DERRMR masking all
9721          * flip-done completion events and that unmasking all planes at once
9722          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9723          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9724          */
9725         if (ring->id == RCS) {
9726                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9727                 intel_ring_emit(ring, DERRMR);
9728                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9729                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9730                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9731                 if (IS_GEN8(dev))
9732                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9733                                               MI_SRM_LRM_GLOBAL_GTT);
9734                 else
9735                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9736                                               MI_SRM_LRM_GLOBAL_GTT);
9737                 intel_ring_emit(ring, DERRMR);
9738                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9739                 if (IS_GEN8(dev)) {
9740                         intel_ring_emit(ring, 0);
9741                         intel_ring_emit(ring, MI_NOOP);
9742                 }
9743         }
9744
9745         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9746         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9747         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9748         intel_ring_emit(ring, (MI_NOOP));
9749
9750         intel_mark_page_flip_active(intel_crtc);
9751         __intel_ring_advance(ring);
9752         return 0;
9753 }
9754
9755 static bool use_mmio_flip(struct intel_engine_cs *ring,
9756                           struct drm_i915_gem_object *obj)
9757 {
9758         /*
9759          * This is not being used for older platforms, because
9760          * non-availability of flip done interrupt forces us to use
9761          * CS flips. Older platforms derive flip done using some clever
9762          * tricks involving the flip_pending status bits and vblank irqs.
9763          * So using MMIO flips there would disrupt this mechanism.
9764          */
9765
9766         if (ring == NULL)
9767                 return true;
9768
9769         if (INTEL_INFO(ring->dev)->gen < 5)
9770                 return false;
9771
9772         if (i915.use_mmio_flip < 0)
9773                 return false;
9774         else if (i915.use_mmio_flip > 0)
9775                 return true;
9776         else if (i915.enable_execlists)
9777                 return true;
9778         else
9779                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9780 }
9781
9782 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9783 {
9784         struct drm_device *dev = intel_crtc->base.dev;
9785         struct drm_i915_private *dev_priv = dev->dev_private;
9786         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9787         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9788         struct drm_i915_gem_object *obj = intel_fb->obj;
9789         const enum pipe pipe = intel_crtc->pipe;
9790         u32 ctl, stride;
9791
9792         ctl = I915_READ(PLANE_CTL(pipe, 0));
9793         ctl &= ~PLANE_CTL_TILED_MASK;
9794         if (obj->tiling_mode == I915_TILING_X)
9795                 ctl |= PLANE_CTL_TILED_X;
9796
9797         /*
9798          * The stride is either expressed as a multiple of 64 bytes chunks for
9799          * linear buffers or in number of tiles for tiled buffers.
9800          */
9801         stride = fb->pitches[0] >> 6;
9802         if (obj->tiling_mode == I915_TILING_X)
9803                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9804
9805         /*
9806          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9807          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9808          */
9809         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9810         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9811
9812         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9813         POSTING_READ(PLANE_SURF(pipe, 0));
9814 }
9815
9816 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9817 {
9818         struct drm_device *dev = intel_crtc->base.dev;
9819         struct drm_i915_private *dev_priv = dev->dev_private;
9820         struct intel_framebuffer *intel_fb =
9821                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9822         struct drm_i915_gem_object *obj = intel_fb->obj;
9823         u32 dspcntr;
9824         u32 reg;
9825
9826         reg = DSPCNTR(intel_crtc->plane);
9827         dspcntr = I915_READ(reg);
9828
9829         if (obj->tiling_mode != I915_TILING_NONE)
9830                 dspcntr |= DISPPLANE_TILED;
9831         else
9832                 dspcntr &= ~DISPPLANE_TILED;
9833
9834         I915_WRITE(reg, dspcntr);
9835
9836         I915_WRITE(DSPSURF(intel_crtc->plane),
9837                    intel_crtc->unpin_work->gtt_offset);
9838         POSTING_READ(DSPSURF(intel_crtc->plane));
9839
9840 }
9841
9842 /*
9843  * XXX: This is the temporary way to update the plane registers until we get
9844  * around to using the usual plane update functions for MMIO flips
9845  */
9846 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9847 {
9848         struct drm_device *dev = intel_crtc->base.dev;
9849         bool atomic_update;
9850         u32 start_vbl_count;
9851
9852         intel_mark_page_flip_active(intel_crtc);
9853
9854         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9855
9856         if (INTEL_INFO(dev)->gen >= 9)
9857                 skl_do_mmio_flip(intel_crtc);
9858         else
9859                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9860                 ilk_do_mmio_flip(intel_crtc);
9861
9862         if (atomic_update)
9863                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9864 }
9865
9866 static void intel_mmio_flip_work_func(struct work_struct *work)
9867 {
9868         struct intel_crtc *crtc =
9869                 container_of(work, struct intel_crtc, mmio_flip.work);
9870         struct intel_mmio_flip *mmio_flip;
9871
9872         mmio_flip = &crtc->mmio_flip;
9873         if (mmio_flip->req)
9874                 WARN_ON(__i915_wait_request(mmio_flip->req,
9875                                             crtc->reset_counter,
9876                                             false, NULL, NULL) != 0);
9877
9878         intel_do_mmio_flip(crtc);
9879         if (mmio_flip->req) {
9880                 mutex_lock(&crtc->base.dev->struct_mutex);
9881                 i915_gem_request_assign(&mmio_flip->req, NULL);
9882                 mutex_unlock(&crtc->base.dev->struct_mutex);
9883         }
9884 }
9885
9886 static int intel_queue_mmio_flip(struct drm_device *dev,
9887                                  struct drm_crtc *crtc,
9888                                  struct drm_framebuffer *fb,
9889                                  struct drm_i915_gem_object *obj,
9890                                  struct intel_engine_cs *ring,
9891                                  uint32_t flags)
9892 {
9893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9894
9895         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9896                                 obj->last_write_req);
9897
9898         schedule_work(&intel_crtc->mmio_flip.work);
9899
9900         return 0;
9901 }
9902
9903 static int intel_default_queue_flip(struct drm_device *dev,
9904                                     struct drm_crtc *crtc,
9905                                     struct drm_framebuffer *fb,
9906                                     struct drm_i915_gem_object *obj,
9907                                     struct intel_engine_cs *ring,
9908                                     uint32_t flags)
9909 {
9910         return -ENODEV;
9911 }
9912
9913 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9914                                          struct drm_crtc *crtc)
9915 {
9916         struct drm_i915_private *dev_priv = dev->dev_private;
9917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9918         struct intel_unpin_work *work = intel_crtc->unpin_work;
9919         u32 addr;
9920
9921         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9922                 return true;
9923
9924         if (!work->enable_stall_check)
9925                 return false;
9926
9927         if (work->flip_ready_vblank == 0) {
9928                 if (work->flip_queued_req &&
9929                     !i915_gem_request_completed(work->flip_queued_req, true))
9930                         return false;
9931
9932                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9933         }
9934
9935         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9936                 return false;
9937
9938         /* Potential stall - if we see that the flip has happened,
9939          * assume a missed interrupt. */
9940         if (INTEL_INFO(dev)->gen >= 4)
9941                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9942         else
9943                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9944
9945         /* There is a potential issue here with a false positive after a flip
9946          * to the same address. We could address this by checking for a
9947          * non-incrementing frame counter.
9948          */
9949         return addr == work->gtt_offset;
9950 }
9951
9952 void intel_check_page_flip(struct drm_device *dev, int pipe)
9953 {
9954         struct drm_i915_private *dev_priv = dev->dev_private;
9955         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9957
9958         WARN_ON(!in_interrupt());
9959
9960         if (crtc == NULL)
9961                 return;
9962
9963         spin_lock(&dev->event_lock);
9964         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9965                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9966                          intel_crtc->unpin_work->flip_queued_vblank,
9967                          drm_vblank_count(dev, pipe));
9968                 page_flip_completed(intel_crtc);
9969         }
9970         spin_unlock(&dev->event_lock);
9971 }
9972
9973 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9974                                 struct drm_framebuffer *fb,
9975                                 struct drm_pending_vblank_event *event,
9976                                 uint32_t page_flip_flags)
9977 {
9978         struct drm_device *dev = crtc->dev;
9979         struct drm_i915_private *dev_priv = dev->dev_private;
9980         struct drm_framebuffer *old_fb = crtc->primary->fb;
9981         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9983         struct drm_plane *primary = crtc->primary;
9984         enum pipe pipe = intel_crtc->pipe;
9985         struct intel_unpin_work *work;
9986         struct intel_engine_cs *ring;
9987         int ret;
9988
9989         /*
9990          * drm_mode_page_flip_ioctl() should already catch this, but double
9991          * check to be safe.  In the future we may enable pageflipping from
9992          * a disabled primary plane.
9993          */
9994         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9995                 return -EBUSY;
9996
9997         /* Can't change pixel format via MI display flips. */
9998         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9999                 return -EINVAL;
10000
10001         /*
10002          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10003          * Note that pitch changes could also affect these register.
10004          */
10005         if (INTEL_INFO(dev)->gen > 3 &&
10006             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10007              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10008                 return -EINVAL;
10009
10010         if (i915_terminally_wedged(&dev_priv->gpu_error))
10011                 goto out_hang;
10012
10013         work = kzalloc(sizeof(*work), GFP_KERNEL);
10014         if (work == NULL)
10015                 return -ENOMEM;
10016
10017         work->event = event;
10018         work->crtc = crtc;
10019         work->old_fb = old_fb;
10020         INIT_WORK(&work->work, intel_unpin_work_fn);
10021
10022         ret = drm_crtc_vblank_get(crtc);
10023         if (ret)
10024                 goto free_work;
10025
10026         /* We borrow the event spin lock for protecting unpin_work */
10027         spin_lock_irq(&dev->event_lock);
10028         if (intel_crtc->unpin_work) {
10029                 /* Before declaring the flip queue wedged, check if
10030                  * the hardware completed the operation behind our backs.
10031                  */
10032                 if (__intel_pageflip_stall_check(dev, crtc)) {
10033                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10034                         page_flip_completed(intel_crtc);
10035                 } else {
10036                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10037                         spin_unlock_irq(&dev->event_lock);
10038
10039                         drm_crtc_vblank_put(crtc);
10040                         kfree(work);
10041                         return -EBUSY;
10042                 }
10043         }
10044         intel_crtc->unpin_work = work;
10045         spin_unlock_irq(&dev->event_lock);
10046
10047         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10048                 flush_workqueue(dev_priv->wq);
10049
10050         /* Reference the objects for the scheduled work. */
10051         drm_framebuffer_reference(work->old_fb);
10052         drm_gem_object_reference(&obj->base);
10053
10054         crtc->primary->fb = fb;
10055         update_state_fb(crtc->primary);
10056
10057         work->pending_flip_obj = obj;
10058
10059         ret = i915_mutex_lock_interruptible(dev);
10060         if (ret)
10061                 goto cleanup;
10062
10063         atomic_inc(&intel_crtc->unpin_work_count);
10064         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10065
10066         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10067                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10068
10069         if (IS_VALLEYVIEW(dev)) {
10070                 ring = &dev_priv->ring[BCS];
10071                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10072                         /* vlv: DISPLAY_FLIP fails to change tiling */
10073                         ring = NULL;
10074         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10075                 ring = &dev_priv->ring[BCS];
10076         } else if (INTEL_INFO(dev)->gen >= 7) {
10077                 ring = i915_gem_request_get_ring(obj->last_read_req);
10078                 if (ring == NULL || ring->id != RCS)
10079                         ring = &dev_priv->ring[BCS];
10080         } else {
10081                 ring = &dev_priv->ring[RCS];
10082         }
10083
10084         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10085                                          crtc->primary->state, ring);
10086         if (ret)
10087                 goto cleanup_pending;
10088
10089         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10090                                                   + intel_crtc->dspaddr_offset;
10091
10092         if (use_mmio_flip(ring, obj)) {
10093                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10094                                             page_flip_flags);
10095                 if (ret)
10096                         goto cleanup_unpin;
10097
10098                 i915_gem_request_assign(&work->flip_queued_req,
10099                                         obj->last_write_req);
10100         } else {
10101                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10102                                                    page_flip_flags);
10103                 if (ret)
10104                         goto cleanup_unpin;
10105
10106                 i915_gem_request_assign(&work->flip_queued_req,
10107                                         intel_ring_get_request(ring));
10108         }
10109
10110         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10111         work->enable_stall_check = true;
10112
10113         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10114                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10115
10116         intel_fbc_disable(dev);
10117         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10118         mutex_unlock(&dev->struct_mutex);
10119
10120         trace_i915_flip_request(intel_crtc->plane, obj);
10121
10122         return 0;
10123
10124 cleanup_unpin:
10125         intel_unpin_fb_obj(fb, crtc->primary->state);
10126 cleanup_pending:
10127         atomic_dec(&intel_crtc->unpin_work_count);
10128         mutex_unlock(&dev->struct_mutex);
10129 cleanup:
10130         crtc->primary->fb = old_fb;
10131         update_state_fb(crtc->primary);
10132
10133         drm_gem_object_unreference_unlocked(&obj->base);
10134         drm_framebuffer_unreference(work->old_fb);
10135
10136         spin_lock_irq(&dev->event_lock);
10137         intel_crtc->unpin_work = NULL;
10138         spin_unlock_irq(&dev->event_lock);
10139
10140         drm_crtc_vblank_put(crtc);
10141 free_work:
10142         kfree(work);
10143
10144         if (ret == -EIO) {
10145 out_hang:
10146                 ret = intel_plane_restore(primary);
10147                 if (ret == 0 && event) {
10148                         spin_lock_irq(&dev->event_lock);
10149                         drm_send_vblank_event(dev, pipe, event);
10150                         spin_unlock_irq(&dev->event_lock);
10151                 }
10152         }
10153         return ret;
10154 }
10155
10156 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10157         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10158         .load_lut = intel_crtc_load_lut,
10159         .atomic_begin = intel_begin_crtc_commit,
10160         .atomic_flush = intel_finish_crtc_commit,
10161 };
10162
10163 /**
10164  * intel_modeset_update_staged_output_state
10165  *
10166  * Updates the staged output configuration state, e.g. after we've read out the
10167  * current hw state.
10168  */
10169 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10170 {
10171         struct intel_crtc *crtc;
10172         struct intel_encoder *encoder;
10173         struct intel_connector *connector;
10174
10175         for_each_intel_connector(dev, connector) {
10176                 connector->new_encoder =
10177                         to_intel_encoder(connector->base.encoder);
10178         }
10179
10180         for_each_intel_encoder(dev, encoder) {
10181                 encoder->new_crtc =
10182                         to_intel_crtc(encoder->base.crtc);
10183         }
10184
10185         for_each_intel_crtc(dev, crtc) {
10186                 crtc->new_enabled = crtc->base.state->enable;
10187
10188                 if (crtc->new_enabled)
10189                         crtc->new_config = crtc->config;
10190                 else
10191                         crtc->new_config = NULL;
10192         }
10193 }
10194
10195 /**
10196  * intel_modeset_commit_output_state
10197  *
10198  * This function copies the stage display pipe configuration to the real one.
10199  */
10200 static void intel_modeset_commit_output_state(struct drm_device *dev)
10201 {
10202         struct intel_crtc *crtc;
10203         struct intel_encoder *encoder;
10204         struct intel_connector *connector;
10205
10206         for_each_intel_connector(dev, connector) {
10207                 connector->base.encoder = &connector->new_encoder->base;
10208         }
10209
10210         for_each_intel_encoder(dev, encoder) {
10211                 encoder->base.crtc = &encoder->new_crtc->base;
10212         }
10213
10214         for_each_intel_crtc(dev, crtc) {
10215                 crtc->base.state->enable = crtc->new_enabled;
10216                 crtc->base.enabled = crtc->new_enabled;
10217         }
10218 }
10219
10220 static void
10221 connected_sink_compute_bpp(struct intel_connector *connector,
10222                            struct intel_crtc_state *pipe_config)
10223 {
10224         int bpp = pipe_config->pipe_bpp;
10225
10226         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10227                 connector->base.base.id,
10228                 connector->base.name);
10229
10230         /* Don't use an invalid EDID bpc value */
10231         if (connector->base.display_info.bpc &&
10232             connector->base.display_info.bpc * 3 < bpp) {
10233                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10234                               bpp, connector->base.display_info.bpc*3);
10235                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10236         }
10237
10238         /* Clamp bpp to 8 on screens without EDID 1.4 */
10239         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10240                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10241                               bpp);
10242                 pipe_config->pipe_bpp = 24;
10243         }
10244 }
10245
10246 static int
10247 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10248                           struct drm_framebuffer *fb,
10249                           struct intel_crtc_state *pipe_config)
10250 {
10251         struct drm_device *dev = crtc->base.dev;
10252         struct intel_connector *connector;
10253         int bpp;
10254
10255         switch (fb->pixel_format) {
10256         case DRM_FORMAT_C8:
10257                 bpp = 8*3; /* since we go through a colormap */
10258                 break;
10259         case DRM_FORMAT_XRGB1555:
10260         case DRM_FORMAT_ARGB1555:
10261                 /* checked in intel_framebuffer_init already */
10262                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10263                         return -EINVAL;
10264         case DRM_FORMAT_RGB565:
10265                 bpp = 6*3; /* min is 18bpp */
10266                 break;
10267         case DRM_FORMAT_XBGR8888:
10268         case DRM_FORMAT_ABGR8888:
10269                 /* checked in intel_framebuffer_init already */
10270                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10271                         return -EINVAL;
10272         case DRM_FORMAT_XRGB8888:
10273         case DRM_FORMAT_ARGB8888:
10274                 bpp = 8*3;
10275                 break;
10276         case DRM_FORMAT_XRGB2101010:
10277         case DRM_FORMAT_ARGB2101010:
10278         case DRM_FORMAT_XBGR2101010:
10279         case DRM_FORMAT_ABGR2101010:
10280                 /* checked in intel_framebuffer_init already */
10281                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10282                         return -EINVAL;
10283                 bpp = 10*3;
10284                 break;
10285         /* TODO: gen4+ supports 16 bpc floating point, too. */
10286         default:
10287                 DRM_DEBUG_KMS("unsupported depth\n");
10288                 return -EINVAL;
10289         }
10290
10291         pipe_config->pipe_bpp = bpp;
10292
10293         /* Clamp display bpp to EDID value */
10294         for_each_intel_connector(dev, connector) {
10295                 if (!connector->new_encoder ||
10296                     connector->new_encoder->new_crtc != crtc)
10297                         continue;
10298
10299                 connected_sink_compute_bpp(connector, pipe_config);
10300         }
10301
10302         return bpp;
10303 }
10304
10305 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10306 {
10307         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10308                         "type: 0x%x flags: 0x%x\n",
10309                 mode->crtc_clock,
10310                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10311                 mode->crtc_hsync_end, mode->crtc_htotal,
10312                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10313                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10314 }
10315
10316 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10317                                    struct intel_crtc_state *pipe_config,
10318                                    const char *context)
10319 {
10320         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10321                       context, pipe_name(crtc->pipe));
10322
10323         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10324         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10325                       pipe_config->pipe_bpp, pipe_config->dither);
10326         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10327                       pipe_config->has_pch_encoder,
10328                       pipe_config->fdi_lanes,
10329                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10330                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10331                       pipe_config->fdi_m_n.tu);
10332         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10333                       pipe_config->has_dp_encoder,
10334                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10335                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10336                       pipe_config->dp_m_n.tu);
10337
10338         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10339                       pipe_config->has_dp_encoder,
10340                       pipe_config->dp_m2_n2.gmch_m,
10341                       pipe_config->dp_m2_n2.gmch_n,
10342                       pipe_config->dp_m2_n2.link_m,
10343                       pipe_config->dp_m2_n2.link_n,
10344                       pipe_config->dp_m2_n2.tu);
10345
10346         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10347                       pipe_config->has_audio,
10348                       pipe_config->has_infoframe);
10349
10350         DRM_DEBUG_KMS("requested mode:\n");
10351         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10352         DRM_DEBUG_KMS("adjusted mode:\n");
10353         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10354         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10355         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10356         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10357                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10358         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10359                       pipe_config->gmch_pfit.control,
10360                       pipe_config->gmch_pfit.pgm_ratios,
10361                       pipe_config->gmch_pfit.lvds_border_bits);
10362         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10363                       pipe_config->pch_pfit.pos,
10364                       pipe_config->pch_pfit.size,
10365                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10366         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10367         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10368 }
10369
10370 static bool encoders_cloneable(const struct intel_encoder *a,
10371                                const struct intel_encoder *b)
10372 {
10373         /* masks could be asymmetric, so check both ways */
10374         return a == b || (a->cloneable & (1 << b->type) &&
10375                           b->cloneable & (1 << a->type));
10376 }
10377
10378 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10379                                          struct intel_encoder *encoder)
10380 {
10381         struct drm_device *dev = crtc->base.dev;
10382         struct intel_encoder *source_encoder;
10383
10384         for_each_intel_encoder(dev, source_encoder) {
10385                 if (source_encoder->new_crtc != crtc)
10386                         continue;
10387
10388                 if (!encoders_cloneable(encoder, source_encoder))
10389                         return false;
10390         }
10391
10392         return true;
10393 }
10394
10395 static bool check_encoder_cloning(struct intel_crtc *crtc)
10396 {
10397         struct drm_device *dev = crtc->base.dev;
10398         struct intel_encoder *encoder;
10399
10400         for_each_intel_encoder(dev, encoder) {
10401                 if (encoder->new_crtc != crtc)
10402                         continue;
10403
10404                 if (!check_single_encoder_cloning(crtc, encoder))
10405                         return false;
10406         }
10407
10408         return true;
10409 }
10410
10411 static bool check_digital_port_conflicts(struct drm_device *dev)
10412 {
10413         struct intel_connector *connector;
10414         unsigned int used_ports = 0;
10415
10416         /*
10417          * Walk the connector list instead of the encoder
10418          * list to detect the problem on ddi platforms
10419          * where there's just one encoder per digital port.
10420          */
10421         for_each_intel_connector(dev, connector) {
10422                 struct intel_encoder *encoder = connector->new_encoder;
10423
10424                 if (!encoder)
10425                         continue;
10426
10427                 WARN_ON(!encoder->new_crtc);
10428
10429                 switch (encoder->type) {
10430                         unsigned int port_mask;
10431                 case INTEL_OUTPUT_UNKNOWN:
10432                         if (WARN_ON(!HAS_DDI(dev)))
10433                                 break;
10434                 case INTEL_OUTPUT_DISPLAYPORT:
10435                 case INTEL_OUTPUT_HDMI:
10436                 case INTEL_OUTPUT_EDP:
10437                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10438
10439                         /* the same port mustn't appear more than once */
10440                         if (used_ports & port_mask)
10441                                 return false;
10442
10443                         used_ports |= port_mask;
10444                 default:
10445                         break;
10446                 }
10447         }
10448
10449         return true;
10450 }
10451
10452 static struct intel_crtc_state *
10453 intel_modeset_pipe_config(struct drm_crtc *crtc,
10454                           struct drm_framebuffer *fb,
10455                           struct drm_display_mode *mode)
10456 {
10457         struct drm_device *dev = crtc->dev;
10458         struct intel_encoder *encoder;
10459         struct intel_crtc_state *pipe_config;
10460         int plane_bpp, ret = -EINVAL;
10461         bool retry = true;
10462
10463         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10464                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10465                 return ERR_PTR(-EINVAL);
10466         }
10467
10468         if (!check_digital_port_conflicts(dev)) {
10469                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10470                 return ERR_PTR(-EINVAL);
10471         }
10472
10473         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10474         if (!pipe_config)
10475                 return ERR_PTR(-ENOMEM);
10476
10477         pipe_config->base.crtc = crtc;
10478         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10479         drm_mode_copy(&pipe_config->base.mode, mode);
10480
10481         pipe_config->cpu_transcoder =
10482                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10483         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10484
10485         /*
10486          * Sanitize sync polarity flags based on requested ones. If neither
10487          * positive or negative polarity is requested, treat this as meaning
10488          * negative polarity.
10489          */
10490         if (!(pipe_config->base.adjusted_mode.flags &
10491               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10492                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10493
10494         if (!(pipe_config->base.adjusted_mode.flags &
10495               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10496                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10497
10498         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10499          * plane pixel format and any sink constraints into account. Returns the
10500          * source plane bpp so that dithering can be selected on mismatches
10501          * after encoders and crtc also have had their say. */
10502         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10503                                               fb, pipe_config);
10504         if (plane_bpp < 0)
10505                 goto fail;
10506
10507         /*
10508          * Determine the real pipe dimensions. Note that stereo modes can
10509          * increase the actual pipe size due to the frame doubling and
10510          * insertion of additional space for blanks between the frame. This
10511          * is stored in the crtc timings. We use the requested mode to do this
10512          * computation to clearly distinguish it from the adjusted mode, which
10513          * can be changed by the connectors in the below retry loop.
10514          */
10515         drm_crtc_get_hv_timing(&pipe_config->base.mode,
10516                                &pipe_config->pipe_src_w,
10517                                &pipe_config->pipe_src_h);
10518
10519 encoder_retry:
10520         /* Ensure the port clock defaults are reset when retrying. */
10521         pipe_config->port_clock = 0;
10522         pipe_config->pixel_multiplier = 1;
10523
10524         /* Fill in default crtc timings, allow encoders to overwrite them. */
10525         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10526                               CRTC_STEREO_DOUBLE);
10527
10528         /* Pass our mode to the connectors and the CRTC to give them a chance to
10529          * adjust it according to limitations or connector properties, and also
10530          * a chance to reject the mode entirely.
10531          */
10532         for_each_intel_encoder(dev, encoder) {
10533
10534                 if (&encoder->new_crtc->base != crtc)
10535                         continue;
10536
10537                 if (!(encoder->compute_config(encoder, pipe_config))) {
10538                         DRM_DEBUG_KMS("Encoder config failure\n");
10539                         goto fail;
10540                 }
10541         }
10542
10543         /* Set default port clock if not overwritten by the encoder. Needs to be
10544          * done afterwards in case the encoder adjusts the mode. */
10545         if (!pipe_config->port_clock)
10546                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10547                         * pipe_config->pixel_multiplier;
10548
10549         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10550         if (ret < 0) {
10551                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10552                 goto fail;
10553         }
10554
10555         if (ret == RETRY) {
10556                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10557                         ret = -EINVAL;
10558                         goto fail;
10559                 }
10560
10561                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10562                 retry = false;
10563                 goto encoder_retry;
10564         }
10565
10566         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10567         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10568                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10569
10570         return pipe_config;
10571 fail:
10572         kfree(pipe_config);
10573         return ERR_PTR(ret);
10574 }
10575
10576 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10577  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10578 static void
10579 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10580                              unsigned *prepare_pipes, unsigned *disable_pipes)
10581 {
10582         struct intel_crtc *intel_crtc;
10583         struct drm_device *dev = crtc->dev;
10584         struct intel_encoder *encoder;
10585         struct intel_connector *connector;
10586         struct drm_crtc *tmp_crtc;
10587
10588         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10589
10590         /* Check which crtcs have changed outputs connected to them, these need
10591          * to be part of the prepare_pipes mask. We don't (yet) support global
10592          * modeset across multiple crtcs, so modeset_pipes will only have one
10593          * bit set at most. */
10594         for_each_intel_connector(dev, connector) {
10595                 if (connector->base.encoder == &connector->new_encoder->base)
10596                         continue;
10597
10598                 if (connector->base.encoder) {
10599                         tmp_crtc = connector->base.encoder->crtc;
10600
10601                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10602                 }
10603
10604                 if (connector->new_encoder)
10605                         *prepare_pipes |=
10606                                 1 << connector->new_encoder->new_crtc->pipe;
10607         }
10608
10609         for_each_intel_encoder(dev, encoder) {
10610                 if (encoder->base.crtc == &encoder->new_crtc->base)
10611                         continue;
10612
10613                 if (encoder->base.crtc) {
10614                         tmp_crtc = encoder->base.crtc;
10615
10616                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10617                 }
10618
10619                 if (encoder->new_crtc)
10620                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10621         }
10622
10623         /* Check for pipes that will be enabled/disabled ... */
10624         for_each_intel_crtc(dev, intel_crtc) {
10625                 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10626                         continue;
10627
10628                 if (!intel_crtc->new_enabled)
10629                         *disable_pipes |= 1 << intel_crtc->pipe;
10630                 else
10631                         *prepare_pipes |= 1 << intel_crtc->pipe;
10632         }
10633
10634
10635         /* set_mode is also used to update properties on life display pipes. */
10636         intel_crtc = to_intel_crtc(crtc);
10637         if (intel_crtc->new_enabled)
10638                 *prepare_pipes |= 1 << intel_crtc->pipe;
10639
10640         /*
10641          * For simplicity do a full modeset on any pipe where the output routing
10642          * changed. We could be more clever, but that would require us to be
10643          * more careful with calling the relevant encoder->mode_set functions.
10644          */
10645         if (*prepare_pipes)
10646                 *modeset_pipes = *prepare_pipes;
10647
10648         /* ... and mask these out. */
10649         *modeset_pipes &= ~(*disable_pipes);
10650         *prepare_pipes &= ~(*disable_pipes);
10651
10652         /*
10653          * HACK: We don't (yet) fully support global modesets. intel_set_config
10654          * obies this rule, but the modeset restore mode of
10655          * intel_modeset_setup_hw_state does not.
10656          */
10657         *modeset_pipes &= 1 << intel_crtc->pipe;
10658         *prepare_pipes &= 1 << intel_crtc->pipe;
10659
10660         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10661                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10662 }
10663
10664 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10665 {
10666         struct drm_encoder *encoder;
10667         struct drm_device *dev = crtc->dev;
10668
10669         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10670                 if (encoder->crtc == crtc)
10671                         return true;
10672
10673         return false;
10674 }
10675
10676 static void
10677 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10678 {
10679         struct drm_i915_private *dev_priv = dev->dev_private;
10680         struct intel_encoder *intel_encoder;
10681         struct intel_crtc *intel_crtc;
10682         struct drm_connector *connector;
10683
10684         intel_shared_dpll_commit(dev_priv);
10685
10686         for_each_intel_encoder(dev, intel_encoder) {
10687                 if (!intel_encoder->base.crtc)
10688                         continue;
10689
10690                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10691
10692                 if (prepare_pipes & (1 << intel_crtc->pipe))
10693                         intel_encoder->connectors_active = false;
10694         }
10695
10696         intel_modeset_commit_output_state(dev);
10697
10698         /* Double check state. */
10699         for_each_intel_crtc(dev, intel_crtc) {
10700                 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10701                 WARN_ON(intel_crtc->new_config &&
10702                         intel_crtc->new_config != intel_crtc->config);
10703                 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10704         }
10705
10706         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10707                 if (!connector->encoder || !connector->encoder->crtc)
10708                         continue;
10709
10710                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10711
10712                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10713                         struct drm_property *dpms_property =
10714                                 dev->mode_config.dpms_property;
10715
10716                         connector->dpms = DRM_MODE_DPMS_ON;
10717                         drm_object_property_set_value(&connector->base,
10718                                                          dpms_property,
10719                                                          DRM_MODE_DPMS_ON);
10720
10721                         intel_encoder = to_intel_encoder(connector->encoder);
10722                         intel_encoder->connectors_active = true;
10723                 }
10724         }
10725
10726 }
10727
10728 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10729 {
10730         int diff;
10731
10732         if (clock1 == clock2)
10733                 return true;
10734
10735         if (!clock1 || !clock2)
10736                 return false;
10737
10738         diff = abs(clock1 - clock2);
10739
10740         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10741                 return true;
10742
10743         return false;
10744 }
10745
10746 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10747         list_for_each_entry((intel_crtc), \
10748                             &(dev)->mode_config.crtc_list, \
10749                             base.head) \
10750                 if (mask & (1 <<(intel_crtc)->pipe))
10751
10752 static bool
10753 intel_pipe_config_compare(struct drm_device *dev,
10754                           struct intel_crtc_state *current_config,
10755                           struct intel_crtc_state *pipe_config)
10756 {
10757 #define PIPE_CONF_CHECK_X(name) \
10758         if (current_config->name != pipe_config->name) { \
10759                 DRM_ERROR("mismatch in " #name " " \
10760                           "(expected 0x%08x, found 0x%08x)\n", \
10761                           current_config->name, \
10762                           pipe_config->name); \
10763                 return false; \
10764         }
10765
10766 #define PIPE_CONF_CHECK_I(name) \
10767         if (current_config->name != pipe_config->name) { \
10768                 DRM_ERROR("mismatch in " #name " " \
10769                           "(expected %i, found %i)\n", \
10770                           current_config->name, \
10771                           pipe_config->name); \
10772                 return false; \
10773         }
10774
10775 /* This is required for BDW+ where there is only one set of registers for
10776  * switching between high and low RR.
10777  * This macro can be used whenever a comparison has to be made between one
10778  * hw state and multiple sw state variables.
10779  */
10780 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10781         if ((current_config->name != pipe_config->name) && \
10782                 (current_config->alt_name != pipe_config->name)) { \
10783                         DRM_ERROR("mismatch in " #name " " \
10784                                   "(expected %i or %i, found %i)\n", \
10785                                   current_config->name, \
10786                                   current_config->alt_name, \
10787                                   pipe_config->name); \
10788                         return false; \
10789         }
10790
10791 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10792         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10793                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10794                           "(expected %i, found %i)\n", \
10795                           current_config->name & (mask), \
10796                           pipe_config->name & (mask)); \
10797                 return false; \
10798         }
10799
10800 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10801         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10802                 DRM_ERROR("mismatch in " #name " " \
10803                           "(expected %i, found %i)\n", \
10804                           current_config->name, \
10805                           pipe_config->name); \
10806                 return false; \
10807         }
10808
10809 #define PIPE_CONF_QUIRK(quirk)  \
10810         ((current_config->quirks | pipe_config->quirks) & (quirk))
10811
10812         PIPE_CONF_CHECK_I(cpu_transcoder);
10813
10814         PIPE_CONF_CHECK_I(has_pch_encoder);
10815         PIPE_CONF_CHECK_I(fdi_lanes);
10816         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10817         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10818         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10819         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10820         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10821
10822         PIPE_CONF_CHECK_I(has_dp_encoder);
10823
10824         if (INTEL_INFO(dev)->gen < 8) {
10825                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10826                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10827                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10828                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10829                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10830
10831                 if (current_config->has_drrs) {
10832                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10833                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10834                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10835                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10836                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10837                 }
10838         } else {
10839                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10840                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10841                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10842                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10843                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10844         }
10845
10846         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10847         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10848         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10849         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10850         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10851         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10852
10853         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10854         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10855         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10856         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10857         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10858         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10859
10860         PIPE_CONF_CHECK_I(pixel_multiplier);
10861         PIPE_CONF_CHECK_I(has_hdmi_sink);
10862         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10863             IS_VALLEYVIEW(dev))
10864                 PIPE_CONF_CHECK_I(limited_color_range);
10865         PIPE_CONF_CHECK_I(has_infoframe);
10866
10867         PIPE_CONF_CHECK_I(has_audio);
10868
10869         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10870                               DRM_MODE_FLAG_INTERLACE);
10871
10872         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10873                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10874                                       DRM_MODE_FLAG_PHSYNC);
10875                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10876                                       DRM_MODE_FLAG_NHSYNC);
10877                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10878                                       DRM_MODE_FLAG_PVSYNC);
10879                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10880                                       DRM_MODE_FLAG_NVSYNC);
10881         }
10882
10883         PIPE_CONF_CHECK_I(pipe_src_w);
10884         PIPE_CONF_CHECK_I(pipe_src_h);
10885
10886         /*
10887          * FIXME: BIOS likes to set up a cloned config with lvds+external
10888          * screen. Since we don't yet re-compute the pipe config when moving
10889          * just the lvds port away to another pipe the sw tracking won't match.
10890          *
10891          * Proper atomic modesets with recomputed global state will fix this.
10892          * Until then just don't check gmch state for inherited modes.
10893          */
10894         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10895                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10896                 /* pfit ratios are autocomputed by the hw on gen4+ */
10897                 if (INTEL_INFO(dev)->gen < 4)
10898                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10899                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10900         }
10901
10902         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10903         if (current_config->pch_pfit.enabled) {
10904                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10905                 PIPE_CONF_CHECK_I(pch_pfit.size);
10906         }
10907
10908         /* BDW+ don't expose a synchronous way to read the state */
10909         if (IS_HASWELL(dev))
10910                 PIPE_CONF_CHECK_I(ips_enabled);
10911
10912         PIPE_CONF_CHECK_I(double_wide);
10913
10914         PIPE_CONF_CHECK_X(ddi_pll_sel);
10915
10916         PIPE_CONF_CHECK_I(shared_dpll);
10917         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10918         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10919         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10920         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10921         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10922         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10923         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10924         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10925
10926         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10927                 PIPE_CONF_CHECK_I(pipe_bpp);
10928
10929         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10930         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10931
10932 #undef PIPE_CONF_CHECK_X
10933 #undef PIPE_CONF_CHECK_I
10934 #undef PIPE_CONF_CHECK_I_ALT
10935 #undef PIPE_CONF_CHECK_FLAGS
10936 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10937 #undef PIPE_CONF_QUIRK
10938
10939         return true;
10940 }
10941
10942 static void check_wm_state(struct drm_device *dev)
10943 {
10944         struct drm_i915_private *dev_priv = dev->dev_private;
10945         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10946         struct intel_crtc *intel_crtc;
10947         int plane;
10948
10949         if (INTEL_INFO(dev)->gen < 9)
10950                 return;
10951
10952         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10953         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10954
10955         for_each_intel_crtc(dev, intel_crtc) {
10956                 struct skl_ddb_entry *hw_entry, *sw_entry;
10957                 const enum pipe pipe = intel_crtc->pipe;
10958
10959                 if (!intel_crtc->active)
10960                         continue;
10961
10962                 /* planes */
10963                 for_each_plane(dev_priv, pipe, plane) {
10964                         hw_entry = &hw_ddb.plane[pipe][plane];
10965                         sw_entry = &sw_ddb->plane[pipe][plane];
10966
10967                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10968                                 continue;
10969
10970                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10971                                   "(expected (%u,%u), found (%u,%u))\n",
10972                                   pipe_name(pipe), plane + 1,
10973                                   sw_entry->start, sw_entry->end,
10974                                   hw_entry->start, hw_entry->end);
10975                 }
10976
10977                 /* cursor */
10978                 hw_entry = &hw_ddb.cursor[pipe];
10979                 sw_entry = &sw_ddb->cursor[pipe];
10980
10981                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10982                         continue;
10983
10984                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10985                           "(expected (%u,%u), found (%u,%u))\n",
10986                           pipe_name(pipe),
10987                           sw_entry->start, sw_entry->end,
10988                           hw_entry->start, hw_entry->end);
10989         }
10990 }
10991
10992 static void
10993 check_connector_state(struct drm_device *dev)
10994 {
10995         struct intel_connector *connector;
10996
10997         for_each_intel_connector(dev, connector) {
10998                 /* This also checks the encoder/connector hw state with the
10999                  * ->get_hw_state callbacks. */
11000                 intel_connector_check_state(connector);
11001
11002                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11003                      "connector's staged encoder doesn't match current encoder\n");
11004         }
11005 }
11006
11007 static void
11008 check_encoder_state(struct drm_device *dev)
11009 {
11010         struct intel_encoder *encoder;
11011         struct intel_connector *connector;
11012
11013         for_each_intel_encoder(dev, encoder) {
11014                 bool enabled = false;
11015                 bool active = false;
11016                 enum pipe pipe, tracked_pipe;
11017
11018                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11019                               encoder->base.base.id,
11020                               encoder->base.name);
11021
11022                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11023                      "encoder's stage crtc doesn't match current crtc\n");
11024                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11025                      "encoder's active_connectors set, but no crtc\n");
11026
11027                 for_each_intel_connector(dev, connector) {
11028                         if (connector->base.encoder != &encoder->base)
11029                                 continue;
11030                         enabled = true;
11031                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11032                                 active = true;
11033                 }
11034                 /*
11035                  * for MST connectors if we unplug the connector is gone
11036                  * away but the encoder is still connected to a crtc
11037                  * until a modeset happens in response to the hotplug.
11038                  */
11039                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11040                         continue;
11041
11042                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11043                      "encoder's enabled state mismatch "
11044                      "(expected %i, found %i)\n",
11045                      !!encoder->base.crtc, enabled);
11046                 I915_STATE_WARN(active && !encoder->base.crtc,
11047                      "active encoder with no crtc\n");
11048
11049                 I915_STATE_WARN(encoder->connectors_active != active,
11050                      "encoder's computed active state doesn't match tracked active state "
11051                      "(expected %i, found %i)\n", active, encoder->connectors_active);
11052
11053                 active = encoder->get_hw_state(encoder, &pipe);
11054                 I915_STATE_WARN(active != encoder->connectors_active,
11055                      "encoder's hw state doesn't match sw tracking "
11056                      "(expected %i, found %i)\n",
11057                      encoder->connectors_active, active);
11058
11059                 if (!encoder->base.crtc)
11060                         continue;
11061
11062                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11063                 I915_STATE_WARN(active && pipe != tracked_pipe,
11064                      "active encoder's pipe doesn't match"
11065                      "(expected %i, found %i)\n",
11066                      tracked_pipe, pipe);
11067
11068         }
11069 }
11070
11071 static void
11072 check_crtc_state(struct drm_device *dev)
11073 {
11074         struct drm_i915_private *dev_priv = dev->dev_private;
11075         struct intel_crtc *crtc;
11076         struct intel_encoder *encoder;
11077         struct intel_crtc_state pipe_config;
11078
11079         for_each_intel_crtc(dev, crtc) {
11080                 bool enabled = false;
11081                 bool active = false;
11082
11083                 memset(&pipe_config, 0, sizeof(pipe_config));
11084
11085                 DRM_DEBUG_KMS("[CRTC:%d]\n",
11086                               crtc->base.base.id);
11087
11088                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11089                      "active crtc, but not enabled in sw tracking\n");
11090
11091                 for_each_intel_encoder(dev, encoder) {
11092                         if (encoder->base.crtc != &crtc->base)
11093                                 continue;
11094                         enabled = true;
11095                         if (encoder->connectors_active)
11096                                 active = true;
11097                 }
11098
11099                 I915_STATE_WARN(active != crtc->active,
11100                      "crtc's computed active state doesn't match tracked active state "
11101                      "(expected %i, found %i)\n", active, crtc->active);
11102                 I915_STATE_WARN(enabled != crtc->base.state->enable,
11103                      "crtc's computed enabled state doesn't match tracked enabled state "
11104                      "(expected %i, found %i)\n", enabled,
11105                                 crtc->base.state->enable);
11106
11107                 active = dev_priv->display.get_pipe_config(crtc,
11108                                                            &pipe_config);
11109
11110                 /* hw state is inconsistent with the pipe quirk */
11111                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11112                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11113                         active = crtc->active;
11114
11115                 for_each_intel_encoder(dev, encoder) {
11116                         enum pipe pipe;
11117                         if (encoder->base.crtc != &crtc->base)
11118                                 continue;
11119                         if (encoder->get_hw_state(encoder, &pipe))
11120                                 encoder->get_config(encoder, &pipe_config);
11121                 }
11122
11123                 I915_STATE_WARN(crtc->active != active,
11124                      "crtc active state doesn't match with hw state "
11125                      "(expected %i, found %i)\n", crtc->active, active);
11126
11127                 if (active &&
11128                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11129                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
11130                         intel_dump_pipe_config(crtc, &pipe_config,
11131                                                "[hw state]");
11132                         intel_dump_pipe_config(crtc, crtc->config,
11133                                                "[sw state]");
11134                 }
11135         }
11136 }
11137
11138 static void
11139 check_shared_dpll_state(struct drm_device *dev)
11140 {
11141         struct drm_i915_private *dev_priv = dev->dev_private;
11142         struct intel_crtc *crtc;
11143         struct intel_dpll_hw_state dpll_hw_state;
11144         int i;
11145
11146         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11147                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11148                 int enabled_crtcs = 0, active_crtcs = 0;
11149                 bool active;
11150
11151                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11152
11153                 DRM_DEBUG_KMS("%s\n", pll->name);
11154
11155                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11156
11157                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11158                      "more active pll users than references: %i vs %i\n",
11159                      pll->active, hweight32(pll->config.crtc_mask));
11160                 I915_STATE_WARN(pll->active && !pll->on,
11161                      "pll in active use but not on in sw tracking\n");
11162                 I915_STATE_WARN(pll->on && !pll->active,
11163                      "pll in on but not on in use in sw tracking\n");
11164                 I915_STATE_WARN(pll->on != active,
11165                      "pll on state mismatch (expected %i, found %i)\n",
11166                      pll->on, active);
11167
11168                 for_each_intel_crtc(dev, crtc) {
11169                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11170                                 enabled_crtcs++;
11171                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11172                                 active_crtcs++;
11173                 }
11174                 I915_STATE_WARN(pll->active != active_crtcs,
11175                      "pll active crtcs mismatch (expected %i, found %i)\n",
11176                      pll->active, active_crtcs);
11177                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11178                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11179                      hweight32(pll->config.crtc_mask), enabled_crtcs);
11180
11181                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11182                                        sizeof(dpll_hw_state)),
11183                      "pll hw state mismatch\n");
11184         }
11185 }
11186
11187 void
11188 intel_modeset_check_state(struct drm_device *dev)
11189 {
11190         check_wm_state(dev);
11191         check_connector_state(dev);
11192         check_encoder_state(dev);
11193         check_crtc_state(dev);
11194         check_shared_dpll_state(dev);
11195 }
11196
11197 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11198                                      int dotclock)
11199 {
11200         /*
11201          * FDI already provided one idea for the dotclock.
11202          * Yell if the encoder disagrees.
11203          */
11204         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11205              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11206              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11207 }
11208
11209 static void update_scanline_offset(struct intel_crtc *crtc)
11210 {
11211         struct drm_device *dev = crtc->base.dev;
11212
11213         /*
11214          * The scanline counter increments at the leading edge of hsync.
11215          *
11216          * On most platforms it starts counting from vtotal-1 on the
11217          * first active line. That means the scanline counter value is
11218          * always one less than what we would expect. Ie. just after
11219          * start of vblank, which also occurs at start of hsync (on the
11220          * last active line), the scanline counter will read vblank_start-1.
11221          *
11222          * On gen2 the scanline counter starts counting from 1 instead
11223          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11224          * to keep the value positive), instead of adding one.
11225          *
11226          * On HSW+ the behaviour of the scanline counter depends on the output
11227          * type. For DP ports it behaves like most other platforms, but on HDMI
11228          * there's an extra 1 line difference. So we need to add two instead of
11229          * one to the value.
11230          */
11231         if (IS_GEN2(dev)) {
11232                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11233                 int vtotal;
11234
11235                 vtotal = mode->crtc_vtotal;
11236                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11237                         vtotal /= 2;
11238
11239                 crtc->scanline_offset = vtotal - 1;
11240         } else if (HAS_DDI(dev) &&
11241                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11242                 crtc->scanline_offset = 2;
11243         } else
11244                 crtc->scanline_offset = 1;
11245 }
11246
11247 static struct intel_crtc_state *
11248 intel_modeset_compute_config(struct drm_crtc *crtc,
11249                              struct drm_display_mode *mode,
11250                              struct drm_framebuffer *fb,
11251                              unsigned *modeset_pipes,
11252                              unsigned *prepare_pipes,
11253                              unsigned *disable_pipes)
11254 {
11255         struct intel_crtc_state *pipe_config = NULL;
11256
11257         intel_modeset_affected_pipes(crtc, modeset_pipes,
11258                                      prepare_pipes, disable_pipes);
11259
11260         if ((*modeset_pipes) == 0)
11261                 goto out;
11262
11263         /*
11264          * Note this needs changes when we start tracking multiple modes
11265          * and crtcs.  At that point we'll need to compute the whole config
11266          * (i.e. one pipe_config for each crtc) rather than just the one
11267          * for this crtc.
11268          */
11269         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11270         if (IS_ERR(pipe_config)) {
11271                 goto out;
11272         }
11273         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11274                                "[modeset]");
11275
11276 out:
11277         return pipe_config;
11278 }
11279
11280 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11281                                        unsigned modeset_pipes,
11282                                        unsigned disable_pipes)
11283 {
11284         struct drm_i915_private *dev_priv = to_i915(dev);
11285         unsigned clear_pipes = modeset_pipes | disable_pipes;
11286         struct intel_crtc *intel_crtc;
11287         int ret = 0;
11288
11289         if (!dev_priv->display.crtc_compute_clock)
11290                 return 0;
11291
11292         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11293         if (ret)
11294                 goto done;
11295
11296         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11297                 struct intel_crtc_state *state = intel_crtc->new_config;
11298                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11299                                                            state);
11300                 if (ret) {
11301                         intel_shared_dpll_abort_config(dev_priv);
11302                         goto done;
11303                 }
11304         }
11305
11306 done:
11307         return ret;
11308 }
11309
11310 static int __intel_set_mode(struct drm_crtc *crtc,
11311                             struct drm_display_mode *mode,
11312                             int x, int y, struct drm_framebuffer *fb,
11313                             struct intel_crtc_state *pipe_config,
11314                             unsigned modeset_pipes,
11315                             unsigned prepare_pipes,
11316                             unsigned disable_pipes)
11317 {
11318         struct drm_device *dev = crtc->dev;
11319         struct drm_i915_private *dev_priv = dev->dev_private;
11320         struct drm_display_mode *saved_mode;
11321         struct intel_crtc *intel_crtc;
11322         int ret = 0;
11323
11324         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11325         if (!saved_mode)
11326                 return -ENOMEM;
11327
11328         *saved_mode = crtc->mode;
11329
11330         if (modeset_pipes)
11331                 to_intel_crtc(crtc)->new_config = pipe_config;
11332
11333         /*
11334          * See if the config requires any additional preparation, e.g.
11335          * to adjust global state with pipes off.  We need to do this
11336          * here so we can get the modeset_pipe updated config for the new
11337          * mode set on this crtc.  For other crtcs we need to use the
11338          * adjusted_mode bits in the crtc directly.
11339          */
11340         if (IS_VALLEYVIEW(dev)) {
11341                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11342
11343                 /* may have added more to prepare_pipes than we should */
11344                 prepare_pipes &= ~disable_pipes;
11345         }
11346
11347         ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11348         if (ret)
11349                 goto done;
11350
11351         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11352                 intel_crtc_disable(&intel_crtc->base);
11353
11354         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11355                 if (intel_crtc->base.state->enable)
11356                         dev_priv->display.crtc_disable(&intel_crtc->base);
11357         }
11358
11359         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11360          * to set it here already despite that we pass it down the callchain.
11361          *
11362          * Note we'll need to fix this up when we start tracking multiple
11363          * pipes; here we assume a single modeset_pipe and only track the
11364          * single crtc and mode.
11365          */
11366         if (modeset_pipes) {
11367                 crtc->mode = *mode;
11368                 /* mode_set/enable/disable functions rely on a correct pipe
11369                  * config. */
11370                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11371
11372                 /*
11373                  * Calculate and store various constants which
11374                  * are later needed by vblank and swap-completion
11375                  * timestamping. They are derived from true hwmode.
11376                  */
11377                 drm_calc_timestamping_constants(crtc,
11378                                                 &pipe_config->base.adjusted_mode);
11379         }
11380
11381         /* Only after disabling all output pipelines that will be changed can we
11382          * update the the output configuration. */
11383         intel_modeset_update_state(dev, prepare_pipes);
11384
11385         modeset_update_crtc_power_domains(dev);
11386
11387         /* Set up the DPLL and any encoders state that needs to adjust or depend
11388          * on the DPLL.
11389          */
11390         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11391                 struct drm_plane *primary = intel_crtc->base.primary;
11392                 int vdisplay, hdisplay;
11393
11394                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11395                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11396                                                    fb, 0, 0,
11397                                                    hdisplay, vdisplay,
11398                                                    x << 16, y << 16,
11399                                                    hdisplay << 16, vdisplay << 16);
11400         }
11401
11402         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11403         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11404                 update_scanline_offset(intel_crtc);
11405
11406                 dev_priv->display.crtc_enable(&intel_crtc->base);
11407         }
11408
11409         /* FIXME: add subpixel order */
11410 done:
11411         if (ret && crtc->state->enable)
11412                 crtc->mode = *saved_mode;
11413
11414         kfree(saved_mode);
11415         return ret;
11416 }
11417
11418 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11419                                 struct drm_display_mode *mode,
11420                                 int x, int y, struct drm_framebuffer *fb,
11421                                 struct intel_crtc_state *pipe_config,
11422                                 unsigned modeset_pipes,
11423                                 unsigned prepare_pipes,
11424                                 unsigned disable_pipes)
11425 {
11426         int ret;
11427
11428         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11429                                prepare_pipes, disable_pipes);
11430
11431         if (ret == 0)
11432                 intel_modeset_check_state(crtc->dev);
11433
11434         return ret;
11435 }
11436
11437 static int intel_set_mode(struct drm_crtc *crtc,
11438                           struct drm_display_mode *mode,
11439                           int x, int y, struct drm_framebuffer *fb)
11440 {
11441         struct intel_crtc_state *pipe_config;
11442         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11443
11444         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11445                                                    &modeset_pipes,
11446                                                    &prepare_pipes,
11447                                                    &disable_pipes);
11448
11449         if (IS_ERR(pipe_config))
11450                 return PTR_ERR(pipe_config);
11451
11452         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11453                                     modeset_pipes, prepare_pipes,
11454                                     disable_pipes);
11455 }
11456
11457 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11458 {
11459         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11460 }
11461
11462 #undef for_each_intel_crtc_masked
11463
11464 static void intel_set_config_free(struct intel_set_config *config)
11465 {
11466         if (!config)
11467                 return;
11468
11469         kfree(config->save_connector_encoders);
11470         kfree(config->save_encoder_crtcs);
11471         kfree(config->save_crtc_enabled);
11472         kfree(config);
11473 }
11474
11475 static int intel_set_config_save_state(struct drm_device *dev,
11476                                        struct intel_set_config *config)
11477 {
11478         struct drm_crtc *crtc;
11479         struct drm_encoder *encoder;
11480         struct drm_connector *connector;
11481         int count;
11482
11483         config->save_crtc_enabled =
11484                 kcalloc(dev->mode_config.num_crtc,
11485                         sizeof(bool), GFP_KERNEL);
11486         if (!config->save_crtc_enabled)
11487                 return -ENOMEM;
11488
11489         config->save_encoder_crtcs =
11490                 kcalloc(dev->mode_config.num_encoder,
11491                         sizeof(struct drm_crtc *), GFP_KERNEL);
11492         if (!config->save_encoder_crtcs)
11493                 return -ENOMEM;
11494
11495         config->save_connector_encoders =
11496                 kcalloc(dev->mode_config.num_connector,
11497                         sizeof(struct drm_encoder *), GFP_KERNEL);
11498         if (!config->save_connector_encoders)
11499                 return -ENOMEM;
11500
11501         /* Copy data. Note that driver private data is not affected.
11502          * Should anything bad happen only the expected state is
11503          * restored, not the drivers personal bookkeeping.
11504          */
11505         count = 0;
11506         for_each_crtc(dev, crtc) {
11507                 config->save_crtc_enabled[count++] = crtc->state->enable;
11508         }
11509
11510         count = 0;
11511         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11512                 config->save_encoder_crtcs[count++] = encoder->crtc;
11513         }
11514
11515         count = 0;
11516         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11517                 config->save_connector_encoders[count++] = connector->encoder;
11518         }
11519
11520         return 0;
11521 }
11522
11523 static void intel_set_config_restore_state(struct drm_device *dev,
11524                                            struct intel_set_config *config)
11525 {
11526         struct intel_crtc *crtc;
11527         struct intel_encoder *encoder;
11528         struct intel_connector *connector;
11529         int count;
11530
11531         count = 0;
11532         for_each_intel_crtc(dev, crtc) {
11533                 crtc->new_enabled = config->save_crtc_enabled[count++];
11534
11535                 if (crtc->new_enabled)
11536                         crtc->new_config = crtc->config;
11537                 else
11538                         crtc->new_config = NULL;
11539         }
11540
11541         count = 0;
11542         for_each_intel_encoder(dev, encoder) {
11543                 encoder->new_crtc =
11544                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11545         }
11546
11547         count = 0;
11548         for_each_intel_connector(dev, connector) {
11549                 connector->new_encoder =
11550                         to_intel_encoder(config->save_connector_encoders[count++]);
11551         }
11552 }
11553
11554 static bool
11555 is_crtc_connector_off(struct drm_mode_set *set)
11556 {
11557         int i;
11558
11559         if (set->num_connectors == 0)
11560                 return false;
11561
11562         if (WARN_ON(set->connectors == NULL))
11563                 return false;
11564
11565         for (i = 0; i < set->num_connectors; i++)
11566                 if (set->connectors[i]->encoder &&
11567                     set->connectors[i]->encoder->crtc == set->crtc &&
11568                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11569                         return true;
11570
11571         return false;
11572 }
11573
11574 static void
11575 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11576                                       struct intel_set_config *config)
11577 {
11578
11579         /* We should be able to check here if the fb has the same properties
11580          * and then just flip_or_move it */
11581         if (is_crtc_connector_off(set)) {
11582                 config->mode_changed = true;
11583         } else if (set->crtc->primary->fb != set->fb) {
11584                 /*
11585                  * If we have no fb, we can only flip as long as the crtc is
11586                  * active, otherwise we need a full mode set.  The crtc may
11587                  * be active if we've only disabled the primary plane, or
11588                  * in fastboot situations.
11589                  */
11590                 if (set->crtc->primary->fb == NULL) {
11591                         struct intel_crtc *intel_crtc =
11592                                 to_intel_crtc(set->crtc);
11593
11594                         if (intel_crtc->active) {
11595                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11596                                 config->fb_changed = true;
11597                         } else {
11598                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11599                                 config->mode_changed = true;
11600                         }
11601                 } else if (set->fb == NULL) {
11602                         config->mode_changed = true;
11603                 } else if (set->fb->pixel_format !=
11604                            set->crtc->primary->fb->pixel_format) {
11605                         config->mode_changed = true;
11606                 } else {
11607                         config->fb_changed = true;
11608                 }
11609         }
11610
11611         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11612                 config->fb_changed = true;
11613
11614         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11615                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11616                 drm_mode_debug_printmodeline(&set->crtc->mode);
11617                 drm_mode_debug_printmodeline(set->mode);
11618                 config->mode_changed = true;
11619         }
11620
11621         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11622                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11623 }
11624
11625 static int
11626 intel_modeset_stage_output_state(struct drm_device *dev,
11627                                  struct drm_mode_set *set,
11628                                  struct intel_set_config *config)
11629 {
11630         struct intel_connector *connector;
11631         struct intel_encoder *encoder;
11632         struct intel_crtc *crtc;
11633         int ro;
11634
11635         /* The upper layers ensure that we either disable a crtc or have a list
11636          * of connectors. For paranoia, double-check this. */
11637         WARN_ON(!set->fb && (set->num_connectors != 0));
11638         WARN_ON(set->fb && (set->num_connectors == 0));
11639
11640         for_each_intel_connector(dev, connector) {
11641                 /* Otherwise traverse passed in connector list and get encoders
11642                  * for them. */
11643                 for (ro = 0; ro < set->num_connectors; ro++) {
11644                         if (set->connectors[ro] == &connector->base) {
11645                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11646                                 break;
11647                         }
11648                 }
11649
11650                 /* If we disable the crtc, disable all its connectors. Also, if
11651                  * the connector is on the changing crtc but not on the new
11652                  * connector list, disable it. */
11653                 if ((!set->fb || ro == set->num_connectors) &&
11654                     connector->base.encoder &&
11655                     connector->base.encoder->crtc == set->crtc) {
11656                         connector->new_encoder = NULL;
11657
11658                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11659                                 connector->base.base.id,
11660                                 connector->base.name);
11661                 }
11662
11663
11664                 if (&connector->new_encoder->base != connector->base.encoder) {
11665                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11666                                       connector->base.base.id,
11667                                       connector->base.name);
11668                         config->mode_changed = true;
11669                 }
11670         }
11671         /* connector->new_encoder is now updated for all connectors. */
11672
11673         /* Update crtc of enabled connectors. */
11674         for_each_intel_connector(dev, connector) {
11675                 struct drm_crtc *new_crtc;
11676
11677                 if (!connector->new_encoder)
11678                         continue;
11679
11680                 new_crtc = connector->new_encoder->base.crtc;
11681
11682                 for (ro = 0; ro < set->num_connectors; ro++) {
11683                         if (set->connectors[ro] == &connector->base)
11684                                 new_crtc = set->crtc;
11685                 }
11686
11687                 /* Make sure the new CRTC will work with the encoder */
11688                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11689                                          new_crtc)) {
11690                         return -EINVAL;
11691                 }
11692                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11693
11694                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11695                         connector->base.base.id,
11696                         connector->base.name,
11697                         new_crtc->base.id);
11698         }
11699
11700         /* Check for any encoders that needs to be disabled. */
11701         for_each_intel_encoder(dev, encoder) {
11702                 int num_connectors = 0;
11703                 for_each_intel_connector(dev, connector) {
11704                         if (connector->new_encoder == encoder) {
11705                                 WARN_ON(!connector->new_encoder->new_crtc);
11706                                 num_connectors++;
11707                         }
11708                 }
11709
11710                 if (num_connectors == 0)
11711                         encoder->new_crtc = NULL;
11712                 else if (num_connectors > 1)
11713                         return -EINVAL;
11714
11715                 /* Only now check for crtc changes so we don't miss encoders
11716                  * that will be disabled. */
11717                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11718                         DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11719                                       encoder->base.base.id,
11720                                       encoder->base.name);
11721                         config->mode_changed = true;
11722                 }
11723         }
11724         /* Now we've also updated encoder->new_crtc for all encoders. */
11725         for_each_intel_connector(dev, connector) {
11726                 if (connector->new_encoder)
11727                         if (connector->new_encoder != connector->encoder)
11728                                 connector->encoder = connector->new_encoder;
11729         }
11730         for_each_intel_crtc(dev, crtc) {
11731                 crtc->new_enabled = false;
11732
11733                 for_each_intel_encoder(dev, encoder) {
11734                         if (encoder->new_crtc == crtc) {
11735                                 crtc->new_enabled = true;
11736                                 break;
11737                         }
11738                 }
11739
11740                 if (crtc->new_enabled != crtc->base.state->enable) {
11741                         DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11742                                       crtc->base.base.id,
11743                                       crtc->new_enabled ? "en" : "dis");
11744                         config->mode_changed = true;
11745                 }
11746
11747                 if (crtc->new_enabled)
11748                         crtc->new_config = crtc->config;
11749                 else
11750                         crtc->new_config = NULL;
11751         }
11752
11753         return 0;
11754 }
11755
11756 static void disable_crtc_nofb(struct intel_crtc *crtc)
11757 {
11758         struct drm_device *dev = crtc->base.dev;
11759         struct intel_encoder *encoder;
11760         struct intel_connector *connector;
11761
11762         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11763                       pipe_name(crtc->pipe));
11764
11765         for_each_intel_connector(dev, connector) {
11766                 if (connector->new_encoder &&
11767                     connector->new_encoder->new_crtc == crtc)
11768                         connector->new_encoder = NULL;
11769         }
11770
11771         for_each_intel_encoder(dev, encoder) {
11772                 if (encoder->new_crtc == crtc)
11773                         encoder->new_crtc = NULL;
11774         }
11775
11776         crtc->new_enabled = false;
11777         crtc->new_config = NULL;
11778 }
11779
11780 static int intel_crtc_set_config(struct drm_mode_set *set)
11781 {
11782         struct drm_device *dev;
11783         struct drm_mode_set save_set;
11784         struct intel_set_config *config;
11785         struct intel_crtc_state *pipe_config;
11786         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11787         int ret;
11788
11789         BUG_ON(!set);
11790         BUG_ON(!set->crtc);
11791         BUG_ON(!set->crtc->helper_private);
11792
11793         /* Enforce sane interface api - has been abused by the fb helper. */
11794         BUG_ON(!set->mode && set->fb);
11795         BUG_ON(set->fb && set->num_connectors == 0);
11796
11797         if (set->fb) {
11798                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11799                                 set->crtc->base.id, set->fb->base.id,
11800                                 (int)set->num_connectors, set->x, set->y);
11801         } else {
11802                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11803         }
11804
11805         dev = set->crtc->dev;
11806
11807         ret = -ENOMEM;
11808         config = kzalloc(sizeof(*config), GFP_KERNEL);
11809         if (!config)
11810                 goto out_config;
11811
11812         ret = intel_set_config_save_state(dev, config);
11813         if (ret)
11814                 goto out_config;
11815
11816         save_set.crtc = set->crtc;
11817         save_set.mode = &set->crtc->mode;
11818         save_set.x = set->crtc->x;
11819         save_set.y = set->crtc->y;
11820         save_set.fb = set->crtc->primary->fb;
11821
11822         /* Compute whether we need a full modeset, only an fb base update or no
11823          * change at all. In the future we might also check whether only the
11824          * mode changed, e.g. for LVDS where we only change the panel fitter in
11825          * such cases. */
11826         intel_set_config_compute_mode_changes(set, config);
11827
11828         ret = intel_modeset_stage_output_state(dev, set, config);
11829         if (ret)
11830                 goto fail;
11831
11832         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11833                                                    set->fb,
11834                                                    &modeset_pipes,
11835                                                    &prepare_pipes,
11836                                                    &disable_pipes);
11837         if (IS_ERR(pipe_config)) {
11838                 ret = PTR_ERR(pipe_config);
11839                 goto fail;
11840         } else if (pipe_config) {
11841                 if (pipe_config->has_audio !=
11842                     to_intel_crtc(set->crtc)->config->has_audio)
11843                         config->mode_changed = true;
11844
11845                 /*
11846                  * Note we have an issue here with infoframes: current code
11847                  * only updates them on the full mode set path per hw
11848                  * requirements.  So here we should be checking for any
11849                  * required changes and forcing a mode set.
11850                  */
11851         }
11852
11853         /* set_mode will free it in the mode_changed case */
11854         if (!config->mode_changed)
11855                 kfree(pipe_config);
11856
11857         intel_update_pipe_size(to_intel_crtc(set->crtc));
11858
11859         if (config->mode_changed) {
11860                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11861                                            set->x, set->y, set->fb, pipe_config,
11862                                            modeset_pipes, prepare_pipes,
11863                                            disable_pipes);
11864         } else if (config->fb_changed) {
11865                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11866                 struct drm_plane *primary = set->crtc->primary;
11867                 int vdisplay, hdisplay;
11868
11869                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11870                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11871                                                    0, 0, hdisplay, vdisplay,
11872                                                    set->x << 16, set->y << 16,
11873                                                    hdisplay << 16, vdisplay << 16);
11874
11875                 /*
11876                  * We need to make sure the primary plane is re-enabled if it
11877                  * has previously been turned off.
11878                  */
11879                 if (!intel_crtc->primary_enabled && ret == 0) {
11880                         WARN_ON(!intel_crtc->active);
11881                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11882                 }
11883
11884                 /*
11885                  * In the fastboot case this may be our only check of the
11886                  * state after boot.  It would be better to only do it on
11887                  * the first update, but we don't have a nice way of doing that
11888                  * (and really, set_config isn't used much for high freq page
11889                  * flipping, so increasing its cost here shouldn't be a big
11890                  * deal).
11891                  */
11892                 if (i915.fastboot && ret == 0)
11893                         intel_modeset_check_state(set->crtc->dev);
11894         }
11895
11896         if (ret) {
11897                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11898                               set->crtc->base.id, ret);
11899 fail:
11900                 intel_set_config_restore_state(dev, config);
11901
11902                 /*
11903                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11904                  * force the pipe off to avoid oopsing in the modeset code
11905                  * due to fb==NULL. This should only happen during boot since
11906                  * we don't yet reconstruct the FB from the hardware state.
11907                  */
11908                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11909                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11910
11911                 /* Try to restore the config */
11912                 if (config->mode_changed &&
11913                     intel_set_mode(save_set.crtc, save_set.mode,
11914                                    save_set.x, save_set.y, save_set.fb))
11915                         DRM_ERROR("failed to restore config after modeset failure\n");
11916         }
11917
11918 out_config:
11919         intel_set_config_free(config);
11920         return ret;
11921 }
11922
11923 static const struct drm_crtc_funcs intel_crtc_funcs = {
11924         .gamma_set = intel_crtc_gamma_set,
11925         .set_config = intel_crtc_set_config,
11926         .destroy = intel_crtc_destroy,
11927         .page_flip = intel_crtc_page_flip,
11928         .atomic_duplicate_state = intel_crtc_duplicate_state,
11929         .atomic_destroy_state = intel_crtc_destroy_state,
11930 };
11931
11932 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11933                                       struct intel_shared_dpll *pll,
11934                                       struct intel_dpll_hw_state *hw_state)
11935 {
11936         uint32_t val;
11937
11938         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11939                 return false;
11940
11941         val = I915_READ(PCH_DPLL(pll->id));
11942         hw_state->dpll = val;
11943         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11944         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11945
11946         return val & DPLL_VCO_ENABLE;
11947 }
11948
11949 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11950                                   struct intel_shared_dpll *pll)
11951 {
11952         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11953         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11954 }
11955
11956 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11957                                 struct intel_shared_dpll *pll)
11958 {
11959         /* PCH refclock must be enabled first */
11960         ibx_assert_pch_refclk_enabled(dev_priv);
11961
11962         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11963
11964         /* Wait for the clocks to stabilize. */
11965         POSTING_READ(PCH_DPLL(pll->id));
11966         udelay(150);
11967
11968         /* The pixel multiplier can only be updated once the
11969          * DPLL is enabled and the clocks are stable.
11970          *
11971          * So write it again.
11972          */
11973         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11974         POSTING_READ(PCH_DPLL(pll->id));
11975         udelay(200);
11976 }
11977
11978 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11979                                  struct intel_shared_dpll *pll)
11980 {
11981         struct drm_device *dev = dev_priv->dev;
11982         struct intel_crtc *crtc;
11983
11984         /* Make sure no transcoder isn't still depending on us. */
11985         for_each_intel_crtc(dev, crtc) {
11986                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11987                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11988         }
11989
11990         I915_WRITE(PCH_DPLL(pll->id), 0);
11991         POSTING_READ(PCH_DPLL(pll->id));
11992         udelay(200);
11993 }
11994
11995 static char *ibx_pch_dpll_names[] = {
11996         "PCH DPLL A",
11997         "PCH DPLL B",
11998 };
11999
12000 static void ibx_pch_dpll_init(struct drm_device *dev)
12001 {
12002         struct drm_i915_private *dev_priv = dev->dev_private;
12003         int i;
12004
12005         dev_priv->num_shared_dpll = 2;
12006
12007         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12008                 dev_priv->shared_dplls[i].id = i;
12009                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12010                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12011                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12012                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12013                 dev_priv->shared_dplls[i].get_hw_state =
12014                         ibx_pch_dpll_get_hw_state;
12015         }
12016 }
12017
12018 static void intel_shared_dpll_init(struct drm_device *dev)
12019 {
12020         struct drm_i915_private *dev_priv = dev->dev_private;
12021
12022         if (HAS_DDI(dev))
12023                 intel_ddi_pll_init(dev);
12024         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12025                 ibx_pch_dpll_init(dev);
12026         else
12027                 dev_priv->num_shared_dpll = 0;
12028
12029         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12030 }
12031
12032 /**
12033  * intel_wm_need_update - Check whether watermarks need updating
12034  * @plane: drm plane
12035  * @state: new plane state
12036  *
12037  * Check current plane state versus the new one to determine whether
12038  * watermarks need to be recalculated.
12039  *
12040  * Returns true or false.
12041  */
12042 bool intel_wm_need_update(struct drm_plane *plane,
12043                           struct drm_plane_state *state)
12044 {
12045         /* Update watermarks on tiling changes. */
12046         if (!plane->state->fb || !state->fb ||
12047             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12048             plane->state->rotation != state->rotation)
12049                 return true;
12050
12051         return false;
12052 }
12053
12054 /**
12055  * intel_prepare_plane_fb - Prepare fb for usage on plane
12056  * @plane: drm plane to prepare for
12057  * @fb: framebuffer to prepare for presentation
12058  *
12059  * Prepares a framebuffer for usage on a display plane.  Generally this
12060  * involves pinning the underlying object and updating the frontbuffer tracking
12061  * bits.  Some older platforms need special physical address handling for
12062  * cursor planes.
12063  *
12064  * Returns 0 on success, negative error code on failure.
12065  */
12066 int
12067 intel_prepare_plane_fb(struct drm_plane *plane,
12068                        struct drm_framebuffer *fb,
12069                        const struct drm_plane_state *new_state)
12070 {
12071         struct drm_device *dev = plane->dev;
12072         struct intel_plane *intel_plane = to_intel_plane(plane);
12073         enum pipe pipe = intel_plane->pipe;
12074         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12075         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12076         unsigned frontbuffer_bits = 0;
12077         int ret = 0;
12078
12079         if (!obj)
12080                 return 0;
12081
12082         switch (plane->type) {
12083         case DRM_PLANE_TYPE_PRIMARY:
12084                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12085                 break;
12086         case DRM_PLANE_TYPE_CURSOR:
12087                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12088                 break;
12089         case DRM_PLANE_TYPE_OVERLAY:
12090                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12091                 break;
12092         }
12093
12094         mutex_lock(&dev->struct_mutex);
12095
12096         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12097             INTEL_INFO(dev)->cursor_needs_physical) {
12098                 int align = IS_I830(dev) ? 16 * 1024 : 256;
12099                 ret = i915_gem_object_attach_phys(obj, align);
12100                 if (ret)
12101                         DRM_DEBUG_KMS("failed to attach phys object\n");
12102         } else {
12103                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12104         }
12105
12106         if (ret == 0)
12107                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12108
12109         mutex_unlock(&dev->struct_mutex);
12110
12111         return ret;
12112 }
12113
12114 /**
12115  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12116  * @plane: drm plane to clean up for
12117  * @fb: old framebuffer that was on plane
12118  *
12119  * Cleans up a framebuffer that has just been removed from a plane.
12120  */
12121 void
12122 intel_cleanup_plane_fb(struct drm_plane *plane,
12123                        struct drm_framebuffer *fb,
12124                        const struct drm_plane_state *old_state)
12125 {
12126         struct drm_device *dev = plane->dev;
12127         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12128
12129         if (WARN_ON(!obj))
12130                 return;
12131
12132         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12133             !INTEL_INFO(dev)->cursor_needs_physical) {
12134                 mutex_lock(&dev->struct_mutex);
12135                 intel_unpin_fb_obj(fb, old_state);
12136                 mutex_unlock(&dev->struct_mutex);
12137         }
12138 }
12139
12140 static int
12141 intel_check_primary_plane(struct drm_plane *plane,
12142                           struct intel_plane_state *state)
12143 {
12144         struct drm_device *dev = plane->dev;
12145         struct drm_i915_private *dev_priv = dev->dev_private;
12146         struct drm_crtc *crtc = state->base.crtc;
12147         struct intel_crtc *intel_crtc;
12148         struct drm_framebuffer *fb = state->base.fb;
12149         struct drm_rect *dest = &state->dst;
12150         struct drm_rect *src = &state->src;
12151         const struct drm_rect *clip = &state->clip;
12152         int ret;
12153
12154         crtc = crtc ? crtc : plane->crtc;
12155         intel_crtc = to_intel_crtc(crtc);
12156
12157         ret = drm_plane_helper_check_update(plane, crtc, fb,
12158                                             src, dest, clip,
12159                                             DRM_PLANE_HELPER_NO_SCALING,
12160                                             DRM_PLANE_HELPER_NO_SCALING,
12161                                             false, true, &state->visible);
12162         if (ret)
12163                 return ret;
12164
12165         if (intel_crtc->active) {
12166                 intel_crtc->atomic.wait_for_flips = true;
12167
12168                 /*
12169                  * FBC does not work on some platforms for rotated
12170                  * planes, so disable it when rotation is not 0 and
12171                  * update it when rotation is set back to 0.
12172                  *
12173                  * FIXME: This is redundant with the fbc update done in
12174                  * the primary plane enable function except that that
12175                  * one is done too late. We eventually need to unify
12176                  * this.
12177                  */
12178                 if (intel_crtc->primary_enabled &&
12179                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12180                     dev_priv->fbc.crtc == intel_crtc &&
12181                     state->base.rotation != BIT(DRM_ROTATE_0)) {
12182                         intel_crtc->atomic.disable_fbc = true;
12183                 }
12184
12185                 if (state->visible) {
12186                         /*
12187                          * BDW signals flip done immediately if the plane
12188                          * is disabled, even if the plane enable is already
12189                          * armed to occur at the next vblank :(
12190                          */
12191                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12192                                 intel_crtc->atomic.wait_vblank = true;
12193                 }
12194
12195                 intel_crtc->atomic.fb_bits |=
12196                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12197
12198                 intel_crtc->atomic.update_fbc = true;
12199
12200                 if (intel_wm_need_update(plane, &state->base))
12201                         intel_crtc->atomic.update_wm = true;
12202         }
12203
12204         return 0;
12205 }
12206
12207 static void
12208 intel_commit_primary_plane(struct drm_plane *plane,
12209                            struct intel_plane_state *state)
12210 {
12211         struct drm_crtc *crtc = state->base.crtc;
12212         struct drm_framebuffer *fb = state->base.fb;
12213         struct drm_device *dev = plane->dev;
12214         struct drm_i915_private *dev_priv = dev->dev_private;
12215         struct intel_crtc *intel_crtc;
12216         struct drm_rect *src = &state->src;
12217
12218         crtc = crtc ? crtc : plane->crtc;
12219         intel_crtc = to_intel_crtc(crtc);
12220
12221         plane->fb = fb;
12222         crtc->x = src->x1 >> 16;
12223         crtc->y = src->y1 >> 16;
12224
12225         if (intel_crtc->active) {
12226                 if (state->visible) {
12227                         /* FIXME: kill this fastboot hack */
12228                         intel_update_pipe_size(intel_crtc);
12229
12230                         intel_crtc->primary_enabled = true;
12231
12232                         dev_priv->display.update_primary_plane(crtc, plane->fb,
12233                                         crtc->x, crtc->y);
12234                 } else {
12235                         /*
12236                          * If clipping results in a non-visible primary plane,
12237                          * we'll disable the primary plane.  Note that this is
12238                          * a bit different than what happens if userspace
12239                          * explicitly disables the plane by passing fb=0
12240                          * because plane->fb still gets set and pinned.
12241                          */
12242                         intel_disable_primary_hw_plane(plane, crtc);
12243                 }
12244         }
12245 }
12246
12247 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12248 {
12249         struct drm_device *dev = crtc->dev;
12250         struct drm_i915_private *dev_priv = dev->dev_private;
12251         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12252         struct intel_plane *intel_plane;
12253         struct drm_plane *p;
12254         unsigned fb_bits = 0;
12255
12256         /* Track fb's for any planes being disabled */
12257         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12258                 intel_plane = to_intel_plane(p);
12259
12260                 if (intel_crtc->atomic.disabled_planes &
12261                     (1 << drm_plane_index(p))) {
12262                         switch (p->type) {
12263                         case DRM_PLANE_TYPE_PRIMARY:
12264                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12265                                 break;
12266                         case DRM_PLANE_TYPE_CURSOR:
12267                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12268                                 break;
12269                         case DRM_PLANE_TYPE_OVERLAY:
12270                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12271                                 break;
12272                         }
12273
12274                         mutex_lock(&dev->struct_mutex);
12275                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12276                         mutex_unlock(&dev->struct_mutex);
12277                 }
12278         }
12279
12280         if (intel_crtc->atomic.wait_for_flips)
12281                 intel_crtc_wait_for_pending_flips(crtc);
12282
12283         if (intel_crtc->atomic.disable_fbc)
12284                 intel_fbc_disable(dev);
12285
12286         if (intel_crtc->atomic.pre_disable_primary)
12287                 intel_pre_disable_primary(crtc);
12288
12289         if (intel_crtc->atomic.update_wm)
12290                 intel_update_watermarks(crtc);
12291
12292         intel_runtime_pm_get(dev_priv);
12293
12294         /* Perform vblank evasion around commit operation */
12295         if (intel_crtc->active)
12296                 intel_crtc->atomic.evade =
12297                         intel_pipe_update_start(intel_crtc,
12298                                                 &intel_crtc->atomic.start_vbl_count);
12299 }
12300
12301 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12302 {
12303         struct drm_device *dev = crtc->dev;
12304         struct drm_i915_private *dev_priv = dev->dev_private;
12305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12306         struct drm_plane *p;
12307
12308         if (intel_crtc->atomic.evade)
12309                 intel_pipe_update_end(intel_crtc,
12310                                       intel_crtc->atomic.start_vbl_count);
12311
12312         intel_runtime_pm_put(dev_priv);
12313
12314         if (intel_crtc->atomic.wait_vblank)
12315                 intel_wait_for_vblank(dev, intel_crtc->pipe);
12316
12317         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12318
12319         if (intel_crtc->atomic.update_fbc) {
12320                 mutex_lock(&dev->struct_mutex);
12321                 intel_fbc_update(dev);
12322                 mutex_unlock(&dev->struct_mutex);
12323         }
12324
12325         if (intel_crtc->atomic.post_enable_primary)
12326                 intel_post_enable_primary(crtc);
12327
12328         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12329                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12330                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12331                                                        false, false);
12332
12333         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12334 }
12335
12336 /**
12337  * intel_plane_destroy - destroy a plane
12338  * @plane: plane to destroy
12339  *
12340  * Common destruction function for all types of planes (primary, cursor,
12341  * sprite).
12342  */
12343 void intel_plane_destroy(struct drm_plane *plane)
12344 {
12345         struct intel_plane *intel_plane = to_intel_plane(plane);
12346         drm_plane_cleanup(plane);
12347         kfree(intel_plane);
12348 }
12349
12350 const struct drm_plane_funcs intel_plane_funcs = {
12351         .update_plane = drm_plane_helper_update,
12352         .disable_plane = drm_plane_helper_disable,
12353         .destroy = intel_plane_destroy,
12354         .set_property = drm_atomic_helper_plane_set_property,
12355         .atomic_get_property = intel_plane_atomic_get_property,
12356         .atomic_set_property = intel_plane_atomic_set_property,
12357         .atomic_duplicate_state = intel_plane_duplicate_state,
12358         .atomic_destroy_state = intel_plane_destroy_state,
12359
12360 };
12361
12362 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12363                                                     int pipe)
12364 {
12365         struct intel_plane *primary;
12366         struct intel_plane_state *state;
12367         const uint32_t *intel_primary_formats;
12368         int num_formats;
12369
12370         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12371         if (primary == NULL)
12372                 return NULL;
12373
12374         state = intel_create_plane_state(&primary->base);
12375         if (!state) {
12376                 kfree(primary);
12377                 return NULL;
12378         }
12379         primary->base.state = &state->base;
12380
12381         primary->can_scale = false;
12382         primary->max_downscale = 1;
12383         primary->pipe = pipe;
12384         primary->plane = pipe;
12385         primary->check_plane = intel_check_primary_plane;
12386         primary->commit_plane = intel_commit_primary_plane;
12387         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12388                 primary->plane = !pipe;
12389
12390         if (INTEL_INFO(dev)->gen <= 3) {
12391                 intel_primary_formats = intel_primary_formats_gen2;
12392                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12393         } else {
12394                 intel_primary_formats = intel_primary_formats_gen4;
12395                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12396         }
12397
12398         drm_universal_plane_init(dev, &primary->base, 0,
12399                                  &intel_plane_funcs,
12400                                  intel_primary_formats, num_formats,
12401                                  DRM_PLANE_TYPE_PRIMARY);
12402
12403         if (INTEL_INFO(dev)->gen >= 4) {
12404                 if (!dev->mode_config.rotation_property)
12405                         dev->mode_config.rotation_property =
12406                                 drm_mode_create_rotation_property(dev,
12407                                                         BIT(DRM_ROTATE_0) |
12408                                                         BIT(DRM_ROTATE_180));
12409                 if (dev->mode_config.rotation_property)
12410                         drm_object_attach_property(&primary->base.base,
12411                                 dev->mode_config.rotation_property,
12412                                 state->base.rotation);
12413         }
12414
12415         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12416
12417         return &primary->base;
12418 }
12419
12420 static int
12421 intel_check_cursor_plane(struct drm_plane *plane,
12422                          struct intel_plane_state *state)
12423 {
12424         struct drm_crtc *crtc = state->base.crtc;
12425         struct drm_device *dev = plane->dev;
12426         struct drm_framebuffer *fb = state->base.fb;
12427         struct drm_rect *dest = &state->dst;
12428         struct drm_rect *src = &state->src;
12429         const struct drm_rect *clip = &state->clip;
12430         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12431         struct intel_crtc *intel_crtc;
12432         unsigned stride;
12433         int ret;
12434
12435         crtc = crtc ? crtc : plane->crtc;
12436         intel_crtc = to_intel_crtc(crtc);
12437
12438         ret = drm_plane_helper_check_update(plane, crtc, fb,
12439                                             src, dest, clip,
12440                                             DRM_PLANE_HELPER_NO_SCALING,
12441                                             DRM_PLANE_HELPER_NO_SCALING,
12442                                             true, true, &state->visible);
12443         if (ret)
12444                 return ret;
12445
12446
12447         /* if we want to turn off the cursor ignore width and height */
12448         if (!obj)
12449                 goto finish;
12450
12451         /* Check for which cursor types we support */
12452         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12453                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12454                           state->base.crtc_w, state->base.crtc_h);
12455                 return -EINVAL;
12456         }
12457
12458         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12459         if (obj->base.size < stride * state->base.crtc_h) {
12460                 DRM_DEBUG_KMS("buffer is too small\n");
12461                 return -ENOMEM;
12462         }
12463
12464         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12465                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12466                 ret = -EINVAL;
12467         }
12468
12469 finish:
12470         if (intel_crtc->active) {
12471                 if (plane->state->crtc_w != state->base.crtc_w)
12472                         intel_crtc->atomic.update_wm = true;
12473
12474                 intel_crtc->atomic.fb_bits |=
12475                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12476         }
12477
12478         return ret;
12479 }
12480
12481 static void
12482 intel_commit_cursor_plane(struct drm_plane *plane,
12483                           struct intel_plane_state *state)
12484 {
12485         struct drm_crtc *crtc = state->base.crtc;
12486         struct drm_device *dev = plane->dev;
12487         struct intel_crtc *intel_crtc;
12488         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12489         uint32_t addr;
12490
12491         crtc = crtc ? crtc : plane->crtc;
12492         intel_crtc = to_intel_crtc(crtc);
12493
12494         plane->fb = state->base.fb;
12495         crtc->cursor_x = state->base.crtc_x;
12496         crtc->cursor_y = state->base.crtc_y;
12497
12498         if (intel_crtc->cursor_bo == obj)
12499                 goto update;
12500
12501         if (!obj)
12502                 addr = 0;
12503         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12504                 addr = i915_gem_obj_ggtt_offset(obj);
12505         else
12506                 addr = obj->phys_handle->busaddr;
12507
12508         intel_crtc->cursor_addr = addr;
12509         intel_crtc->cursor_bo = obj;
12510 update:
12511
12512         if (intel_crtc->active)
12513                 intel_crtc_update_cursor(crtc, state->visible);
12514 }
12515
12516 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12517                                                    int pipe)
12518 {
12519         struct intel_plane *cursor;
12520         struct intel_plane_state *state;
12521
12522         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12523         if (cursor == NULL)
12524                 return NULL;
12525
12526         state = intel_create_plane_state(&cursor->base);
12527         if (!state) {
12528                 kfree(cursor);
12529                 return NULL;
12530         }
12531         cursor->base.state = &state->base;
12532
12533         cursor->can_scale = false;
12534         cursor->max_downscale = 1;
12535         cursor->pipe = pipe;
12536         cursor->plane = pipe;
12537         cursor->check_plane = intel_check_cursor_plane;
12538         cursor->commit_plane = intel_commit_cursor_plane;
12539
12540         drm_universal_plane_init(dev, &cursor->base, 0,
12541                                  &intel_plane_funcs,
12542                                  intel_cursor_formats,
12543                                  ARRAY_SIZE(intel_cursor_formats),
12544                                  DRM_PLANE_TYPE_CURSOR);
12545
12546         if (INTEL_INFO(dev)->gen >= 4) {
12547                 if (!dev->mode_config.rotation_property)
12548                         dev->mode_config.rotation_property =
12549                                 drm_mode_create_rotation_property(dev,
12550                                                         BIT(DRM_ROTATE_0) |
12551                                                         BIT(DRM_ROTATE_180));
12552                 if (dev->mode_config.rotation_property)
12553                         drm_object_attach_property(&cursor->base.base,
12554                                 dev->mode_config.rotation_property,
12555                                 state->base.rotation);
12556         }
12557
12558         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12559
12560         return &cursor->base;
12561 }
12562
12563 static void intel_crtc_init(struct drm_device *dev, int pipe)
12564 {
12565         struct drm_i915_private *dev_priv = dev->dev_private;
12566         struct intel_crtc *intel_crtc;
12567         struct intel_crtc_state *crtc_state = NULL;
12568         struct drm_plane *primary = NULL;
12569         struct drm_plane *cursor = NULL;
12570         int i, ret;
12571
12572         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12573         if (intel_crtc == NULL)
12574                 return;
12575
12576         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12577         if (!crtc_state)
12578                 goto fail;
12579         intel_crtc_set_state(intel_crtc, crtc_state);
12580         crtc_state->base.crtc = &intel_crtc->base;
12581
12582         primary = intel_primary_plane_create(dev, pipe);
12583         if (!primary)
12584                 goto fail;
12585
12586         cursor = intel_cursor_plane_create(dev, pipe);
12587         if (!cursor)
12588                 goto fail;
12589
12590         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12591                                         cursor, &intel_crtc_funcs);
12592         if (ret)
12593                 goto fail;
12594
12595         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12596         for (i = 0; i < 256; i++) {
12597                 intel_crtc->lut_r[i] = i;
12598                 intel_crtc->lut_g[i] = i;
12599                 intel_crtc->lut_b[i] = i;
12600         }
12601
12602         /*
12603          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12604          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12605          */
12606         intel_crtc->pipe = pipe;
12607         intel_crtc->plane = pipe;
12608         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12609                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12610                 intel_crtc->plane = !pipe;
12611         }
12612
12613         intel_crtc->cursor_base = ~0;
12614         intel_crtc->cursor_cntl = ~0;
12615         intel_crtc->cursor_size = ~0;
12616
12617         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12618                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12619         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12620         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12621
12622         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12623
12624         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12625
12626         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12627         return;
12628
12629 fail:
12630         if (primary)
12631                 drm_plane_cleanup(primary);
12632         if (cursor)
12633                 drm_plane_cleanup(cursor);
12634         kfree(crtc_state);
12635         kfree(intel_crtc);
12636 }
12637
12638 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12639 {
12640         struct drm_encoder *encoder = connector->base.encoder;
12641         struct drm_device *dev = connector->base.dev;
12642
12643         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12644
12645         if (!encoder || WARN_ON(!encoder->crtc))
12646                 return INVALID_PIPE;
12647
12648         return to_intel_crtc(encoder->crtc)->pipe;
12649 }
12650
12651 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12652                                 struct drm_file *file)
12653 {
12654         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12655         struct drm_crtc *drmmode_crtc;
12656         struct intel_crtc *crtc;
12657
12658         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12659
12660         if (!drmmode_crtc) {
12661                 DRM_ERROR("no such CRTC id\n");
12662                 return -ENOENT;
12663         }
12664
12665         crtc = to_intel_crtc(drmmode_crtc);
12666         pipe_from_crtc_id->pipe = crtc->pipe;
12667
12668         return 0;
12669 }
12670
12671 static int intel_encoder_clones(struct intel_encoder *encoder)
12672 {
12673         struct drm_device *dev = encoder->base.dev;
12674         struct intel_encoder *source_encoder;
12675         int index_mask = 0;
12676         int entry = 0;
12677
12678         for_each_intel_encoder(dev, source_encoder) {
12679                 if (encoders_cloneable(encoder, source_encoder))
12680                         index_mask |= (1 << entry);
12681
12682                 entry++;
12683         }
12684
12685         return index_mask;
12686 }
12687
12688 static bool has_edp_a(struct drm_device *dev)
12689 {
12690         struct drm_i915_private *dev_priv = dev->dev_private;
12691
12692         if (!IS_MOBILE(dev))
12693                 return false;
12694
12695         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12696                 return false;
12697
12698         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12699                 return false;
12700
12701         return true;
12702 }
12703
12704 static bool intel_crt_present(struct drm_device *dev)
12705 {
12706         struct drm_i915_private *dev_priv = dev->dev_private;
12707
12708         if (INTEL_INFO(dev)->gen >= 9)
12709                 return false;
12710
12711         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12712                 return false;
12713
12714         if (IS_CHERRYVIEW(dev))
12715                 return false;
12716
12717         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12718                 return false;
12719
12720         return true;
12721 }
12722
12723 static void intel_setup_outputs(struct drm_device *dev)
12724 {
12725         struct drm_i915_private *dev_priv = dev->dev_private;
12726         struct intel_encoder *encoder;
12727         struct drm_connector *connector;
12728         bool dpd_is_edp = false;
12729
12730         intel_lvds_init(dev);
12731
12732         if (intel_crt_present(dev))
12733                 intel_crt_init(dev);
12734
12735         if (HAS_DDI(dev)) {
12736                 int found;
12737
12738                 /*
12739                  * Haswell uses DDI functions to detect digital outputs.
12740                  * On SKL pre-D0 the strap isn't connected, so we assume
12741                  * it's there.
12742                  */
12743                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12744                 /* WaIgnoreDDIAStrap: skl */
12745                 if (found ||
12746                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
12747                         intel_ddi_init(dev, PORT_A);
12748
12749                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12750                  * register */
12751                 found = I915_READ(SFUSE_STRAP);
12752
12753                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12754                         intel_ddi_init(dev, PORT_B);
12755                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12756                         intel_ddi_init(dev, PORT_C);
12757                 if (found & SFUSE_STRAP_DDID_DETECTED)
12758                         intel_ddi_init(dev, PORT_D);
12759         } else if (HAS_PCH_SPLIT(dev)) {
12760                 int found;
12761                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12762
12763                 if (has_edp_a(dev))
12764                         intel_dp_init(dev, DP_A, PORT_A);
12765
12766                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12767                         /* PCH SDVOB multiplex with HDMIB */
12768                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12769                         if (!found)
12770                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12771                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12772                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12773                 }
12774
12775                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12776                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12777
12778                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12779                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12780
12781                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12782                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12783
12784                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12785                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12786         } else if (IS_VALLEYVIEW(dev)) {
12787                 /*
12788                  * The DP_DETECTED bit is the latched state of the DDC
12789                  * SDA pin at boot. However since eDP doesn't require DDC
12790                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12791                  * eDP ports may have been muxed to an alternate function.
12792                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12793                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12794                  * detect eDP ports.
12795                  */
12796                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12797                     !intel_dp_is_edp(dev, PORT_B))
12798                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12799                                         PORT_B);
12800                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12801                     intel_dp_is_edp(dev, PORT_B))
12802                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12803
12804                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12805                     !intel_dp_is_edp(dev, PORT_C))
12806                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12807                                         PORT_C);
12808                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12809                     intel_dp_is_edp(dev, PORT_C))
12810                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12811
12812                 if (IS_CHERRYVIEW(dev)) {
12813                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12814                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12815                                                 PORT_D);
12816                         /* eDP not supported on port D, so don't check VBT */
12817                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12818                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12819                 }
12820
12821                 intel_dsi_init(dev);
12822         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12823                 bool found = false;
12824
12825                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12826                         DRM_DEBUG_KMS("probing SDVOB\n");
12827                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12828                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12829                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12830                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12831                         }
12832
12833                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12834                                 intel_dp_init(dev, DP_B, PORT_B);
12835                 }
12836
12837                 /* Before G4X SDVOC doesn't have its own detect register */
12838
12839                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12840                         DRM_DEBUG_KMS("probing SDVOC\n");
12841                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12842                 }
12843
12844                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12845
12846                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12847                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12848                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12849                         }
12850                         if (SUPPORTS_INTEGRATED_DP(dev))
12851                                 intel_dp_init(dev, DP_C, PORT_C);
12852                 }
12853
12854                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12855                     (I915_READ(DP_D) & DP_DETECTED))
12856                         intel_dp_init(dev, DP_D, PORT_D);
12857         } else if (IS_GEN2(dev))
12858                 intel_dvo_init(dev);
12859
12860         if (SUPPORTS_TV(dev))
12861                 intel_tv_init(dev);
12862
12863         /*
12864          * FIXME:  We don't have full atomic support yet, but we want to be
12865          * able to enable/test plane updates via the atomic interface in the
12866          * meantime.  However as soon as we flip DRIVER_ATOMIC on, the DRM core
12867          * will take some atomic codepaths to lookup properties during
12868          * drmModeGetConnector() that unconditionally dereference
12869          * connector->state.
12870          *
12871          * We create a dummy connector state here for each connector to ensure
12872          * the DRM core doesn't try to dereference a NULL connector->state.
12873          * The actual connector properties will never be updated or contain
12874          * useful information, but since we're doing this specifically for
12875          * testing/debug of the plane operations (and only when a specific
12876          * kernel module option is given), that shouldn't really matter.
12877          *
12878          * Once atomic support for crtc's + connectors lands, this loop should
12879          * be removed since we'll be setting up real connector state, which
12880          * will contain Intel-specific properties.
12881          */
12882         if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12883                 list_for_each_entry(connector,
12884                                     &dev->mode_config.connector_list,
12885                                     head) {
12886                         if (!WARN_ON(connector->state)) {
12887                                 connector->state =
12888                                         kzalloc(sizeof(*connector->state),
12889                                                 GFP_KERNEL);
12890                         }
12891                 }
12892         }
12893
12894         intel_psr_init(dev);
12895
12896         for_each_intel_encoder(dev, encoder) {
12897                 encoder->base.possible_crtcs = encoder->crtc_mask;
12898                 encoder->base.possible_clones =
12899                         intel_encoder_clones(encoder);
12900         }
12901
12902         intel_init_pch_refclk(dev);
12903
12904         drm_helper_move_panel_connectors_to_head(dev);
12905 }
12906
12907 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12908 {
12909         struct drm_device *dev = fb->dev;
12910         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12911
12912         drm_framebuffer_cleanup(fb);
12913         mutex_lock(&dev->struct_mutex);
12914         WARN_ON(!intel_fb->obj->framebuffer_references--);
12915         drm_gem_object_unreference(&intel_fb->obj->base);
12916         mutex_unlock(&dev->struct_mutex);
12917         kfree(intel_fb);
12918 }
12919
12920 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12921                                                 struct drm_file *file,
12922                                                 unsigned int *handle)
12923 {
12924         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12925         struct drm_i915_gem_object *obj = intel_fb->obj;
12926
12927         return drm_gem_handle_create(file, &obj->base, handle);
12928 }
12929
12930 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12931         .destroy = intel_user_framebuffer_destroy,
12932         .create_handle = intel_user_framebuffer_create_handle,
12933 };
12934
12935 static
12936 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
12937                          uint32_t pixel_format)
12938 {
12939         u32 gen = INTEL_INFO(dev)->gen;
12940
12941         if (gen >= 9) {
12942                 /* "The stride in bytes must not exceed the of the size of 8K
12943                  *  pixels and 32K bytes."
12944                  */
12945                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
12946         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
12947                 return 32*1024;
12948         } else if (gen >= 4) {
12949                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12950                         return 16*1024;
12951                 else
12952                         return 32*1024;
12953         } else if (gen >= 3) {
12954                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12955                         return 8*1024;
12956                 else
12957                         return 16*1024;
12958         } else {
12959                 /* XXX DSPC is limited to 4k tiled */
12960                 return 8*1024;
12961         }
12962 }
12963
12964 static int intel_framebuffer_init(struct drm_device *dev,
12965                                   struct intel_framebuffer *intel_fb,
12966                                   struct drm_mode_fb_cmd2 *mode_cmd,
12967                                   struct drm_i915_gem_object *obj)
12968 {
12969         unsigned int aligned_height;
12970         int ret;
12971         u32 pitch_limit, stride_alignment;
12972
12973         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12974
12975         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12976                 /* Enforce that fb modifier and tiling mode match, but only for
12977                  * X-tiled. This is needed for FBC. */
12978                 if (!!(obj->tiling_mode == I915_TILING_X) !=
12979                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12980                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12981                         return -EINVAL;
12982                 }
12983         } else {
12984                 if (obj->tiling_mode == I915_TILING_X)
12985                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12986                 else if (obj->tiling_mode == I915_TILING_Y) {
12987                         DRM_DEBUG("No Y tiling for legacy addfb\n");
12988                         return -EINVAL;
12989                 }
12990         }
12991
12992         /* Passed in modifier sanity checking. */
12993         switch (mode_cmd->modifier[0]) {
12994         case I915_FORMAT_MOD_Y_TILED:
12995         case I915_FORMAT_MOD_Yf_TILED:
12996                 if (INTEL_INFO(dev)->gen < 9) {
12997                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
12998                                   mode_cmd->modifier[0]);
12999                         return -EINVAL;
13000                 }
13001         case DRM_FORMAT_MOD_NONE:
13002         case I915_FORMAT_MOD_X_TILED:
13003                 break;
13004         default:
13005                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13006                           mode_cmd->modifier[0]);
13007                 return -EINVAL;
13008         }
13009
13010         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13011                                                      mode_cmd->pixel_format);
13012         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13013                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13014                           mode_cmd->pitches[0], stride_alignment);
13015                 return -EINVAL;
13016         }
13017
13018         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13019                                            mode_cmd->pixel_format);
13020         if (mode_cmd->pitches[0] > pitch_limit) {
13021                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13022                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13023                           "tiled" : "linear",
13024                           mode_cmd->pitches[0], pitch_limit);
13025                 return -EINVAL;
13026         }
13027
13028         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13029             mode_cmd->pitches[0] != obj->stride) {
13030                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13031                           mode_cmd->pitches[0], obj->stride);
13032                 return -EINVAL;
13033         }
13034
13035         /* Reject formats not supported by any plane early. */
13036         switch (mode_cmd->pixel_format) {
13037         case DRM_FORMAT_C8:
13038         case DRM_FORMAT_RGB565:
13039         case DRM_FORMAT_XRGB8888:
13040         case DRM_FORMAT_ARGB8888:
13041                 break;
13042         case DRM_FORMAT_XRGB1555:
13043         case DRM_FORMAT_ARGB1555:
13044                 if (INTEL_INFO(dev)->gen > 3) {
13045                         DRM_DEBUG("unsupported pixel format: %s\n",
13046                                   drm_get_format_name(mode_cmd->pixel_format));
13047                         return -EINVAL;
13048                 }
13049                 break;
13050         case DRM_FORMAT_XBGR8888:
13051         case DRM_FORMAT_ABGR8888:
13052         case DRM_FORMAT_XRGB2101010:
13053         case DRM_FORMAT_ARGB2101010:
13054         case DRM_FORMAT_XBGR2101010:
13055         case DRM_FORMAT_ABGR2101010:
13056                 if (INTEL_INFO(dev)->gen < 4) {
13057                         DRM_DEBUG("unsupported pixel format: %s\n",
13058                                   drm_get_format_name(mode_cmd->pixel_format));
13059                         return -EINVAL;
13060                 }
13061                 break;
13062         case DRM_FORMAT_YUYV:
13063         case DRM_FORMAT_UYVY:
13064         case DRM_FORMAT_YVYU:
13065         case DRM_FORMAT_VYUY:
13066                 if (INTEL_INFO(dev)->gen < 5) {
13067                         DRM_DEBUG("unsupported pixel format: %s\n",
13068                                   drm_get_format_name(mode_cmd->pixel_format));
13069                         return -EINVAL;
13070                 }
13071                 break;
13072         default:
13073                 DRM_DEBUG("unsupported pixel format: %s\n",
13074                           drm_get_format_name(mode_cmd->pixel_format));
13075                 return -EINVAL;
13076         }
13077
13078         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13079         if (mode_cmd->offsets[0] != 0)
13080                 return -EINVAL;
13081
13082         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13083                                                mode_cmd->pixel_format,
13084                                                mode_cmd->modifier[0]);
13085         /* FIXME drm helper for size checks (especially planar formats)? */
13086         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13087                 return -EINVAL;
13088
13089         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13090         intel_fb->obj = obj;
13091         intel_fb->obj->framebuffer_references++;
13092
13093         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13094         if (ret) {
13095                 DRM_ERROR("framebuffer init failed %d\n", ret);
13096                 return ret;
13097         }
13098
13099         return 0;
13100 }
13101
13102 static struct drm_framebuffer *
13103 intel_user_framebuffer_create(struct drm_device *dev,
13104                               struct drm_file *filp,
13105                               struct drm_mode_fb_cmd2 *mode_cmd)
13106 {
13107         struct drm_i915_gem_object *obj;
13108
13109         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13110                                                 mode_cmd->handles[0]));
13111         if (&obj->base == NULL)
13112                 return ERR_PTR(-ENOENT);
13113
13114         return intel_framebuffer_create(dev, mode_cmd, obj);
13115 }
13116
13117 #ifndef CONFIG_DRM_I915_FBDEV
13118 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13119 {
13120 }
13121 #endif
13122
13123 static const struct drm_mode_config_funcs intel_mode_funcs = {
13124         .fb_create = intel_user_framebuffer_create,
13125         .output_poll_changed = intel_fbdev_output_poll_changed,
13126         .atomic_check = intel_atomic_check,
13127         .atomic_commit = intel_atomic_commit,
13128 };
13129
13130 /* Set up chip specific display functions */
13131 static void intel_init_display(struct drm_device *dev)
13132 {
13133         struct drm_i915_private *dev_priv = dev->dev_private;
13134
13135         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13136                 dev_priv->display.find_dpll = g4x_find_best_dpll;
13137         else if (IS_CHERRYVIEW(dev))
13138                 dev_priv->display.find_dpll = chv_find_best_dpll;
13139         else if (IS_VALLEYVIEW(dev))
13140                 dev_priv->display.find_dpll = vlv_find_best_dpll;
13141         else if (IS_PINEVIEW(dev))
13142                 dev_priv->display.find_dpll = pnv_find_best_dpll;
13143         else
13144                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13145
13146         if (INTEL_INFO(dev)->gen >= 9) {
13147                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13148                 dev_priv->display.get_initial_plane_config =
13149                         skylake_get_initial_plane_config;
13150                 dev_priv->display.crtc_compute_clock =
13151                         haswell_crtc_compute_clock;
13152                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13153                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13154                 dev_priv->display.off = ironlake_crtc_off;
13155                 dev_priv->display.update_primary_plane =
13156                         skylake_update_primary_plane;
13157         } else if (HAS_DDI(dev)) {
13158                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13159                 dev_priv->display.get_initial_plane_config =
13160                         ironlake_get_initial_plane_config;
13161                 dev_priv->display.crtc_compute_clock =
13162                         haswell_crtc_compute_clock;
13163                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13164                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13165                 dev_priv->display.off = ironlake_crtc_off;
13166                 dev_priv->display.update_primary_plane =
13167                         ironlake_update_primary_plane;
13168         } else if (HAS_PCH_SPLIT(dev)) {
13169                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13170                 dev_priv->display.get_initial_plane_config =
13171                         ironlake_get_initial_plane_config;
13172                 dev_priv->display.crtc_compute_clock =
13173                         ironlake_crtc_compute_clock;
13174                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13175                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13176                 dev_priv->display.off = ironlake_crtc_off;
13177                 dev_priv->display.update_primary_plane =
13178                         ironlake_update_primary_plane;
13179         } else if (IS_VALLEYVIEW(dev)) {
13180                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13181                 dev_priv->display.get_initial_plane_config =
13182                         i9xx_get_initial_plane_config;
13183                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13184                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13185                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13186                 dev_priv->display.off = i9xx_crtc_off;
13187                 dev_priv->display.update_primary_plane =
13188                         i9xx_update_primary_plane;
13189         } else {
13190                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13191                 dev_priv->display.get_initial_plane_config =
13192                         i9xx_get_initial_plane_config;
13193                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13194                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13195                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13196                 dev_priv->display.off = i9xx_crtc_off;
13197                 dev_priv->display.update_primary_plane =
13198                         i9xx_update_primary_plane;
13199         }
13200
13201         /* Returns the core display clock speed */
13202         if (IS_VALLEYVIEW(dev))
13203                 dev_priv->display.get_display_clock_speed =
13204                         valleyview_get_display_clock_speed;
13205         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13206                 dev_priv->display.get_display_clock_speed =
13207                         i945_get_display_clock_speed;
13208         else if (IS_I915G(dev))
13209                 dev_priv->display.get_display_clock_speed =
13210                         i915_get_display_clock_speed;
13211         else if (IS_I945GM(dev) || IS_845G(dev))
13212                 dev_priv->display.get_display_clock_speed =
13213                         i9xx_misc_get_display_clock_speed;
13214         else if (IS_PINEVIEW(dev))
13215                 dev_priv->display.get_display_clock_speed =
13216                         pnv_get_display_clock_speed;
13217         else if (IS_I915GM(dev))
13218                 dev_priv->display.get_display_clock_speed =
13219                         i915gm_get_display_clock_speed;
13220         else if (IS_I865G(dev))
13221                 dev_priv->display.get_display_clock_speed =
13222                         i865_get_display_clock_speed;
13223         else if (IS_I85X(dev))
13224                 dev_priv->display.get_display_clock_speed =
13225                         i855_get_display_clock_speed;
13226         else /* 852, 830 */
13227                 dev_priv->display.get_display_clock_speed =
13228                         i830_get_display_clock_speed;
13229
13230         if (IS_GEN5(dev)) {
13231                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13232         } else if (IS_GEN6(dev)) {
13233                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13234         } else if (IS_IVYBRIDGE(dev)) {
13235                 /* FIXME: detect B0+ stepping and use auto training */
13236                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13237         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13238                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13239         } else if (IS_VALLEYVIEW(dev)) {
13240                 dev_priv->display.modeset_global_resources =
13241                         valleyview_modeset_global_resources;
13242         }
13243
13244         switch (INTEL_INFO(dev)->gen) {
13245         case 2:
13246                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13247                 break;
13248
13249         case 3:
13250                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13251                 break;
13252
13253         case 4:
13254         case 5:
13255                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13256                 break;
13257
13258         case 6:
13259                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13260                 break;
13261         case 7:
13262         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13263                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13264                 break;
13265         case 9:
13266                 /* Drop through - unsupported since execlist only. */
13267         default:
13268                 /* Default just returns -ENODEV to indicate unsupported */
13269                 dev_priv->display.queue_flip = intel_default_queue_flip;
13270         }
13271
13272         intel_panel_init_backlight_funcs(dev);
13273
13274         mutex_init(&dev_priv->pps_mutex);
13275 }
13276
13277 /*
13278  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13279  * resume, or other times.  This quirk makes sure that's the case for
13280  * affected systems.
13281  */
13282 static void quirk_pipea_force(struct drm_device *dev)
13283 {
13284         struct drm_i915_private *dev_priv = dev->dev_private;
13285
13286         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13287         DRM_INFO("applying pipe a force quirk\n");
13288 }
13289
13290 static void quirk_pipeb_force(struct drm_device *dev)
13291 {
13292         struct drm_i915_private *dev_priv = dev->dev_private;
13293
13294         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13295         DRM_INFO("applying pipe b force quirk\n");
13296 }
13297
13298 /*
13299  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13300  */
13301 static void quirk_ssc_force_disable(struct drm_device *dev)
13302 {
13303         struct drm_i915_private *dev_priv = dev->dev_private;
13304         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13305         DRM_INFO("applying lvds SSC disable quirk\n");
13306 }
13307
13308 /*
13309  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13310  * brightness value
13311  */
13312 static void quirk_invert_brightness(struct drm_device *dev)
13313 {
13314         struct drm_i915_private *dev_priv = dev->dev_private;
13315         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13316         DRM_INFO("applying inverted panel brightness quirk\n");
13317 }
13318
13319 /* Some VBT's incorrectly indicate no backlight is present */
13320 static void quirk_backlight_present(struct drm_device *dev)
13321 {
13322         struct drm_i915_private *dev_priv = dev->dev_private;
13323         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13324         DRM_INFO("applying backlight present quirk\n");
13325 }
13326
13327 struct intel_quirk {
13328         int device;
13329         int subsystem_vendor;
13330         int subsystem_device;
13331         void (*hook)(struct drm_device *dev);
13332 };
13333
13334 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13335 struct intel_dmi_quirk {
13336         void (*hook)(struct drm_device *dev);
13337         const struct dmi_system_id (*dmi_id_list)[];
13338 };
13339
13340 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13341 {
13342         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13343         return 1;
13344 }
13345
13346 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13347         {
13348                 .dmi_id_list = &(const struct dmi_system_id[]) {
13349                         {
13350                                 .callback = intel_dmi_reverse_brightness,
13351                                 .ident = "NCR Corporation",
13352                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13353                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13354                                 },
13355                         },
13356                         { }  /* terminating entry */
13357                 },
13358                 .hook = quirk_invert_brightness,
13359         },
13360 };
13361
13362 static struct intel_quirk intel_quirks[] = {
13363         /* HP Mini needs pipe A force quirk (LP: #322104) */
13364         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13365
13366         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13367         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13368
13369         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13370         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13371
13372         /* 830 needs to leave pipe A & dpll A up */
13373         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13374
13375         /* 830 needs to leave pipe B & dpll B up */
13376         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13377
13378         /* Lenovo U160 cannot use SSC on LVDS */
13379         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13380
13381         /* Sony Vaio Y cannot use SSC on LVDS */
13382         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13383
13384         /* Acer Aspire 5734Z must invert backlight brightness */
13385         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13386
13387         /* Acer/eMachines G725 */
13388         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13389
13390         /* Acer/eMachines e725 */
13391         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13392
13393         /* Acer/Packard Bell NCL20 */
13394         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13395
13396         /* Acer Aspire 4736Z */
13397         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13398
13399         /* Acer Aspire 5336 */
13400         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13401
13402         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13403         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13404
13405         /* Acer C720 Chromebook (Core i3 4005U) */
13406         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13407
13408         /* Apple Macbook 2,1 (Core 2 T7400) */
13409         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13410
13411         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13412         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13413
13414         /* HP Chromebook 14 (Celeron 2955U) */
13415         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13416
13417         /* Dell Chromebook 11 */
13418         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13419 };
13420
13421 static void intel_init_quirks(struct drm_device *dev)
13422 {
13423         struct pci_dev *d = dev->pdev;
13424         int i;
13425
13426         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13427                 struct intel_quirk *q = &intel_quirks[i];
13428
13429                 if (d->device == q->device &&
13430                     (d->subsystem_vendor == q->subsystem_vendor ||
13431                      q->subsystem_vendor == PCI_ANY_ID) &&
13432                     (d->subsystem_device == q->subsystem_device ||
13433                      q->subsystem_device == PCI_ANY_ID))
13434                         q->hook(dev);
13435         }
13436         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13437                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13438                         intel_dmi_quirks[i].hook(dev);
13439         }
13440 }
13441
13442 /* Disable the VGA plane that we never use */
13443 static void i915_disable_vga(struct drm_device *dev)
13444 {
13445         struct drm_i915_private *dev_priv = dev->dev_private;
13446         u8 sr1;
13447         u32 vga_reg = i915_vgacntrl_reg(dev);
13448
13449         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13450         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13451         outb(SR01, VGA_SR_INDEX);
13452         sr1 = inb(VGA_SR_DATA);
13453         outb(sr1 | 1<<5, VGA_SR_DATA);
13454         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13455         udelay(300);
13456
13457         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13458         POSTING_READ(vga_reg);
13459 }
13460
13461 void intel_modeset_init_hw(struct drm_device *dev)
13462 {
13463         intel_prepare_ddi(dev);
13464
13465         if (IS_VALLEYVIEW(dev))
13466                 vlv_update_cdclk(dev);
13467
13468         intel_init_clock_gating(dev);
13469
13470         intel_enable_gt_powersave(dev);
13471 }
13472
13473 void intel_modeset_init(struct drm_device *dev)
13474 {
13475         struct drm_i915_private *dev_priv = dev->dev_private;
13476         int sprite, ret;
13477         enum pipe pipe;
13478         struct intel_crtc *crtc;
13479
13480         drm_mode_config_init(dev);
13481
13482         dev->mode_config.min_width = 0;
13483         dev->mode_config.min_height = 0;
13484
13485         dev->mode_config.preferred_depth = 24;
13486         dev->mode_config.prefer_shadow = 1;
13487
13488         dev->mode_config.allow_fb_modifiers = true;
13489
13490         dev->mode_config.funcs = &intel_mode_funcs;
13491
13492         intel_init_quirks(dev);
13493
13494         intel_init_pm(dev);
13495
13496         if (INTEL_INFO(dev)->num_pipes == 0)
13497                 return;
13498
13499         intel_init_display(dev);
13500         intel_init_audio(dev);
13501
13502         if (IS_GEN2(dev)) {
13503                 dev->mode_config.max_width = 2048;
13504                 dev->mode_config.max_height = 2048;
13505         } else if (IS_GEN3(dev)) {
13506                 dev->mode_config.max_width = 4096;
13507                 dev->mode_config.max_height = 4096;
13508         } else {
13509                 dev->mode_config.max_width = 8192;
13510                 dev->mode_config.max_height = 8192;
13511         }
13512
13513         if (IS_845G(dev) || IS_I865G(dev)) {
13514                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13515                 dev->mode_config.cursor_height = 1023;
13516         } else if (IS_GEN2(dev)) {
13517                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13518                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13519         } else {
13520                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13521                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13522         }
13523
13524         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13525
13526         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13527                       INTEL_INFO(dev)->num_pipes,
13528                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13529
13530         for_each_pipe(dev_priv, pipe) {
13531                 intel_crtc_init(dev, pipe);
13532                 for_each_sprite(dev_priv, pipe, sprite) {
13533                         ret = intel_plane_init(dev, pipe, sprite);
13534                         if (ret)
13535                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13536                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13537                 }
13538         }
13539
13540         intel_init_dpio(dev);
13541
13542         intel_shared_dpll_init(dev);
13543
13544         /* Just disable it once at startup */
13545         i915_disable_vga(dev);
13546         intel_setup_outputs(dev);
13547
13548         /* Just in case the BIOS is doing something questionable. */
13549         intel_fbc_disable(dev);
13550
13551         drm_modeset_lock_all(dev);
13552         intel_modeset_setup_hw_state(dev, false);
13553         drm_modeset_unlock_all(dev);
13554
13555         for_each_intel_crtc(dev, crtc) {
13556                 if (!crtc->active)
13557                         continue;
13558
13559                 /*
13560                  * Note that reserving the BIOS fb up front prevents us
13561                  * from stuffing other stolen allocations like the ring
13562                  * on top.  This prevents some ugliness at boot time, and
13563                  * can even allow for smooth boot transitions if the BIOS
13564                  * fb is large enough for the active pipe configuration.
13565                  */
13566                 if (dev_priv->display.get_initial_plane_config) {
13567                         dev_priv->display.get_initial_plane_config(crtc,
13568                                                            &crtc->plane_config);
13569                         /*
13570                          * If the fb is shared between multiple heads, we'll
13571                          * just get the first one.
13572                          */
13573                         intel_find_plane_obj(crtc, &crtc->plane_config);
13574                 }
13575         }
13576 }
13577
13578 static void intel_enable_pipe_a(struct drm_device *dev)
13579 {
13580         struct intel_connector *connector;
13581         struct drm_connector *crt = NULL;
13582         struct intel_load_detect_pipe load_detect_temp;
13583         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13584
13585         /* We can't just switch on the pipe A, we need to set things up with a
13586          * proper mode and output configuration. As a gross hack, enable pipe A
13587          * by enabling the load detect pipe once. */
13588         for_each_intel_connector(dev, connector) {
13589                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13590                         crt = &connector->base;
13591                         break;
13592                 }
13593         }
13594
13595         if (!crt)
13596                 return;
13597
13598         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13599                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13600 }
13601
13602 static bool
13603 intel_check_plane_mapping(struct intel_crtc *crtc)
13604 {
13605         struct drm_device *dev = crtc->base.dev;
13606         struct drm_i915_private *dev_priv = dev->dev_private;
13607         u32 reg, val;
13608
13609         if (INTEL_INFO(dev)->num_pipes == 1)
13610                 return true;
13611
13612         reg = DSPCNTR(!crtc->plane);
13613         val = I915_READ(reg);
13614
13615         if ((val & DISPLAY_PLANE_ENABLE) &&
13616             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13617                 return false;
13618
13619         return true;
13620 }
13621
13622 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13623 {
13624         struct drm_device *dev = crtc->base.dev;
13625         struct drm_i915_private *dev_priv = dev->dev_private;
13626         u32 reg;
13627
13628         /* Clear any frame start delays used for debugging left by the BIOS */
13629         reg = PIPECONF(crtc->config->cpu_transcoder);
13630         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13631
13632         /* restore vblank interrupts to correct state */
13633         drm_crtc_vblank_reset(&crtc->base);
13634         if (crtc->active) {
13635                 update_scanline_offset(crtc);
13636                 drm_crtc_vblank_on(&crtc->base);
13637         }
13638
13639         /* We need to sanitize the plane -> pipe mapping first because this will
13640          * disable the crtc (and hence change the state) if it is wrong. Note
13641          * that gen4+ has a fixed plane -> pipe mapping.  */
13642         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13643                 struct intel_connector *connector;
13644                 bool plane;
13645
13646                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13647                               crtc->base.base.id);
13648
13649                 /* Pipe has the wrong plane attached and the plane is active.
13650                  * Temporarily change the plane mapping and disable everything
13651                  * ...  */
13652                 plane = crtc->plane;
13653                 crtc->plane = !plane;
13654                 crtc->primary_enabled = true;
13655                 dev_priv->display.crtc_disable(&crtc->base);
13656                 crtc->plane = plane;
13657
13658                 /* ... and break all links. */
13659                 for_each_intel_connector(dev, connector) {
13660                         if (connector->encoder->base.crtc != &crtc->base)
13661                                 continue;
13662
13663                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13664                         connector->base.encoder = NULL;
13665                 }
13666                 /* multiple connectors may have the same encoder:
13667                  *  handle them and break crtc link separately */
13668                 for_each_intel_connector(dev, connector)
13669                         if (connector->encoder->base.crtc == &crtc->base) {
13670                                 connector->encoder->base.crtc = NULL;
13671                                 connector->encoder->connectors_active = false;
13672                         }
13673
13674                 WARN_ON(crtc->active);
13675                 crtc->base.state->enable = false;
13676                 crtc->base.enabled = false;
13677         }
13678
13679         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13680             crtc->pipe == PIPE_A && !crtc->active) {
13681                 /* BIOS forgot to enable pipe A, this mostly happens after
13682                  * resume. Force-enable the pipe to fix this, the update_dpms
13683                  * call below we restore the pipe to the right state, but leave
13684                  * the required bits on. */
13685                 intel_enable_pipe_a(dev);
13686         }
13687
13688         /* Adjust the state of the output pipe according to whether we
13689          * have active connectors/encoders. */
13690         intel_crtc_update_dpms(&crtc->base);
13691
13692         if (crtc->active != crtc->base.state->enable) {
13693                 struct intel_encoder *encoder;
13694
13695                 /* This can happen either due to bugs in the get_hw_state
13696                  * functions or because the pipe is force-enabled due to the
13697                  * pipe A quirk. */
13698                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13699                               crtc->base.base.id,
13700                               crtc->base.state->enable ? "enabled" : "disabled",
13701                               crtc->active ? "enabled" : "disabled");
13702
13703                 crtc->base.state->enable = crtc->active;
13704                 crtc->base.enabled = crtc->active;
13705
13706                 /* Because we only establish the connector -> encoder ->
13707                  * crtc links if something is active, this means the
13708                  * crtc is now deactivated. Break the links. connector
13709                  * -> encoder links are only establish when things are
13710                  *  actually up, hence no need to break them. */
13711                 WARN_ON(crtc->active);
13712
13713                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13714                         WARN_ON(encoder->connectors_active);
13715                         encoder->base.crtc = NULL;
13716                 }
13717         }
13718
13719         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13720                 /*
13721                  * We start out with underrun reporting disabled to avoid races.
13722                  * For correct bookkeeping mark this on active crtcs.
13723                  *
13724                  * Also on gmch platforms we dont have any hardware bits to
13725                  * disable the underrun reporting. Which means we need to start
13726                  * out with underrun reporting disabled also on inactive pipes,
13727                  * since otherwise we'll complain about the garbage we read when
13728                  * e.g. coming up after runtime pm.
13729                  *
13730                  * No protection against concurrent access is required - at
13731                  * worst a fifo underrun happens which also sets this to false.
13732                  */
13733                 crtc->cpu_fifo_underrun_disabled = true;
13734                 crtc->pch_fifo_underrun_disabled = true;
13735         }
13736 }
13737
13738 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13739 {
13740         struct intel_connector *connector;
13741         struct drm_device *dev = encoder->base.dev;
13742
13743         /* We need to check both for a crtc link (meaning that the
13744          * encoder is active and trying to read from a pipe) and the
13745          * pipe itself being active. */
13746         bool has_active_crtc = encoder->base.crtc &&
13747                 to_intel_crtc(encoder->base.crtc)->active;
13748
13749         if (encoder->connectors_active && !has_active_crtc) {
13750                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13751                               encoder->base.base.id,
13752                               encoder->base.name);
13753
13754                 /* Connector is active, but has no active pipe. This is
13755                  * fallout from our resume register restoring. Disable
13756                  * the encoder manually again. */
13757                 if (encoder->base.crtc) {
13758                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13759                                       encoder->base.base.id,
13760                                       encoder->base.name);
13761                         encoder->disable(encoder);
13762                         if (encoder->post_disable)
13763                                 encoder->post_disable(encoder);
13764                 }
13765                 encoder->base.crtc = NULL;
13766                 encoder->connectors_active = false;
13767
13768                 /* Inconsistent output/port/pipe state happens presumably due to
13769                  * a bug in one of the get_hw_state functions. Or someplace else
13770                  * in our code, like the register restore mess on resume. Clamp
13771                  * things to off as a safer default. */
13772                 for_each_intel_connector(dev, connector) {
13773                         if (connector->encoder != encoder)
13774                                 continue;
13775                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13776                         connector->base.encoder = NULL;
13777                 }
13778         }
13779         /* Enabled encoders without active connectors will be fixed in
13780          * the crtc fixup. */
13781 }
13782
13783 void i915_redisable_vga_power_on(struct drm_device *dev)
13784 {
13785         struct drm_i915_private *dev_priv = dev->dev_private;
13786         u32 vga_reg = i915_vgacntrl_reg(dev);
13787
13788         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13789                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13790                 i915_disable_vga(dev);
13791         }
13792 }
13793
13794 void i915_redisable_vga(struct drm_device *dev)
13795 {
13796         struct drm_i915_private *dev_priv = dev->dev_private;
13797
13798         /* This function can be called both from intel_modeset_setup_hw_state or
13799          * at a very early point in our resume sequence, where the power well
13800          * structures are not yet restored. Since this function is at a very
13801          * paranoid "someone might have enabled VGA while we were not looking"
13802          * level, just check if the power well is enabled instead of trying to
13803          * follow the "don't touch the power well if we don't need it" policy
13804          * the rest of the driver uses. */
13805         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13806                 return;
13807
13808         i915_redisable_vga_power_on(dev);
13809 }
13810
13811 static bool primary_get_hw_state(struct intel_crtc *crtc)
13812 {
13813         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13814
13815         if (!crtc->active)
13816                 return false;
13817
13818         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13819 }
13820
13821 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13822 {
13823         struct drm_i915_private *dev_priv = dev->dev_private;
13824         enum pipe pipe;
13825         struct intel_crtc *crtc;
13826         struct intel_encoder *encoder;
13827         struct intel_connector *connector;
13828         int i;
13829
13830         for_each_intel_crtc(dev, crtc) {
13831                 memset(crtc->config, 0, sizeof(*crtc->config));
13832
13833                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13834
13835                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13836                                                                  crtc->config);
13837
13838                 crtc->base.state->enable = crtc->active;
13839                 crtc->base.enabled = crtc->active;
13840                 crtc->primary_enabled = primary_get_hw_state(crtc);
13841
13842                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13843                               crtc->base.base.id,
13844                               crtc->active ? "enabled" : "disabled");
13845         }
13846
13847         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13848                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13849
13850                 pll->on = pll->get_hw_state(dev_priv, pll,
13851                                             &pll->config.hw_state);
13852                 pll->active = 0;
13853                 pll->config.crtc_mask = 0;
13854                 for_each_intel_crtc(dev, crtc) {
13855                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13856                                 pll->active++;
13857                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13858                         }
13859                 }
13860
13861                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13862                               pll->name, pll->config.crtc_mask, pll->on);
13863
13864                 if (pll->config.crtc_mask)
13865                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13866         }
13867
13868         for_each_intel_encoder(dev, encoder) {
13869                 pipe = 0;
13870
13871                 if (encoder->get_hw_state(encoder, &pipe)) {
13872                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13873                         encoder->base.crtc = &crtc->base;
13874                         encoder->get_config(encoder, crtc->config);
13875                 } else {
13876                         encoder->base.crtc = NULL;
13877                 }
13878
13879                 encoder->connectors_active = false;
13880                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13881                               encoder->base.base.id,
13882                               encoder->base.name,
13883                               encoder->base.crtc ? "enabled" : "disabled",
13884                               pipe_name(pipe));
13885         }
13886
13887         for_each_intel_connector(dev, connector) {
13888                 if (connector->get_hw_state(connector)) {
13889                         connector->base.dpms = DRM_MODE_DPMS_ON;
13890                         connector->encoder->connectors_active = true;
13891                         connector->base.encoder = &connector->encoder->base;
13892                 } else {
13893                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13894                         connector->base.encoder = NULL;
13895                 }
13896                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13897                               connector->base.base.id,
13898                               connector->base.name,
13899                               connector->base.encoder ? "enabled" : "disabled");
13900         }
13901 }
13902
13903 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13904  * and i915 state tracking structures. */
13905 void intel_modeset_setup_hw_state(struct drm_device *dev,
13906                                   bool force_restore)
13907 {
13908         struct drm_i915_private *dev_priv = dev->dev_private;
13909         enum pipe pipe;
13910         struct intel_crtc *crtc;
13911         struct intel_encoder *encoder;
13912         int i;
13913
13914         intel_modeset_readout_hw_state(dev);
13915
13916         /*
13917          * Now that we have the config, copy it to each CRTC struct
13918          * Note that this could go away if we move to using crtc_config
13919          * checking everywhere.
13920          */
13921         for_each_intel_crtc(dev, crtc) {
13922                 if (crtc->active && i915.fastboot) {
13923                         intel_mode_from_pipe_config(&crtc->base.mode,
13924                                                     crtc->config);
13925                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13926                                       crtc->base.base.id);
13927                         drm_mode_debug_printmodeline(&crtc->base.mode);
13928                 }
13929         }
13930
13931         /* HW state is read out, now we need to sanitize this mess. */
13932         for_each_intel_encoder(dev, encoder) {
13933                 intel_sanitize_encoder(encoder);
13934         }
13935
13936         for_each_pipe(dev_priv, pipe) {
13937                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13938                 intel_sanitize_crtc(crtc);
13939                 intel_dump_pipe_config(crtc, crtc->config,
13940                                        "[setup_hw_state]");
13941         }
13942
13943         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13944                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13945
13946                 if (!pll->on || pll->active)
13947                         continue;
13948
13949                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13950
13951                 pll->disable(dev_priv, pll);
13952                 pll->on = false;
13953         }
13954
13955         if (IS_GEN9(dev))
13956                 skl_wm_get_hw_state(dev);
13957         else if (HAS_PCH_SPLIT(dev))
13958                 ilk_wm_get_hw_state(dev);
13959
13960         if (force_restore) {
13961                 i915_redisable_vga(dev);
13962
13963                 /*
13964                  * We need to use raw interfaces for restoring state to avoid
13965                  * checking (bogus) intermediate states.
13966                  */
13967                 for_each_pipe(dev_priv, pipe) {
13968                         struct drm_crtc *crtc =
13969                                 dev_priv->pipe_to_crtc_mapping[pipe];
13970
13971                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13972                                        crtc->primary->fb);
13973                 }
13974         } else {
13975                 intel_modeset_update_staged_output_state(dev);
13976         }
13977
13978         intel_modeset_check_state(dev);
13979 }
13980
13981 void intel_modeset_gem_init(struct drm_device *dev)
13982 {
13983         struct drm_i915_private *dev_priv = dev->dev_private;
13984         struct drm_crtc *c;
13985         struct drm_i915_gem_object *obj;
13986
13987         mutex_lock(&dev->struct_mutex);
13988         intel_init_gt_powersave(dev);
13989         mutex_unlock(&dev->struct_mutex);
13990
13991         /*
13992          * There may be no VBT; and if the BIOS enabled SSC we can
13993          * just keep using it to avoid unnecessary flicker.  Whereas if the
13994          * BIOS isn't using it, don't assume it will work even if the VBT
13995          * indicates as much.
13996          */
13997         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13998                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13999                                                 DREF_SSC1_ENABLE);
14000
14001         intel_modeset_init_hw(dev);
14002
14003         intel_setup_overlay(dev);
14004
14005         /*
14006          * Make sure any fbs we allocated at startup are properly
14007          * pinned & fenced.  When we do the allocation it's too early
14008          * for this.
14009          */
14010         mutex_lock(&dev->struct_mutex);
14011         for_each_crtc(dev, c) {
14012                 obj = intel_fb_obj(c->primary->fb);
14013                 if (obj == NULL)
14014                         continue;
14015
14016                 if (intel_pin_and_fence_fb_obj(c->primary,
14017                                                c->primary->fb,
14018                                                c->primary->state,
14019                                                NULL)) {
14020                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
14021                                   to_intel_crtc(c)->pipe);
14022                         drm_framebuffer_unreference(c->primary->fb);
14023                         c->primary->fb = NULL;
14024                         update_state_fb(c->primary);
14025                 }
14026         }
14027         mutex_unlock(&dev->struct_mutex);
14028
14029         intel_backlight_register(dev);
14030 }
14031
14032 void intel_connector_unregister(struct intel_connector *intel_connector)
14033 {
14034         struct drm_connector *connector = &intel_connector->base;
14035
14036         intel_panel_destroy_backlight(connector);
14037         drm_connector_unregister(connector);
14038 }
14039
14040 void intel_modeset_cleanup(struct drm_device *dev)
14041 {
14042         struct drm_i915_private *dev_priv = dev->dev_private;
14043         struct drm_connector *connector;
14044
14045         intel_disable_gt_powersave(dev);
14046
14047         intel_backlight_unregister(dev);
14048
14049         /*
14050          * Interrupts and polling as the first thing to avoid creating havoc.
14051          * Too much stuff here (turning of connectors, ...) would
14052          * experience fancy races otherwise.
14053          */
14054         intel_irq_uninstall(dev_priv);
14055
14056         /*
14057          * Due to the hpd irq storm handling the hotplug work can re-arm the
14058          * poll handlers. Hence disable polling after hpd handling is shut down.
14059          */
14060         drm_kms_helper_poll_fini(dev);
14061
14062         mutex_lock(&dev->struct_mutex);
14063
14064         intel_unregister_dsm_handler();
14065
14066         intel_fbc_disable(dev);
14067
14068         mutex_unlock(&dev->struct_mutex);
14069
14070         /* flush any delayed tasks or pending work */
14071         flush_scheduled_work();
14072
14073         /* destroy the backlight and sysfs files before encoders/connectors */
14074         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14075                 struct intel_connector *intel_connector;
14076
14077                 intel_connector = to_intel_connector(connector);
14078                 intel_connector->unregister(intel_connector);
14079         }
14080
14081         drm_mode_config_cleanup(dev);
14082
14083         intel_cleanup_overlay(dev);
14084
14085         mutex_lock(&dev->struct_mutex);
14086         intel_cleanup_gt_powersave(dev);
14087         mutex_unlock(&dev->struct_mutex);
14088 }
14089
14090 /*
14091  * Return which encoder is currently attached for connector.
14092  */
14093 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14094 {
14095         return &intel_attached_encoder(connector)->base;
14096 }
14097
14098 void intel_connector_attach_encoder(struct intel_connector *connector,
14099                                     struct intel_encoder *encoder)
14100 {
14101         connector->encoder = encoder;
14102         drm_mode_connector_attach_encoder(&connector->base,
14103                                           &encoder->base);
14104 }
14105
14106 /*
14107  * set vga decode state - true == enable VGA decode
14108  */
14109 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14110 {
14111         struct drm_i915_private *dev_priv = dev->dev_private;
14112         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14113         u16 gmch_ctrl;
14114
14115         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14116                 DRM_ERROR("failed to read control word\n");
14117                 return -EIO;
14118         }
14119
14120         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14121                 return 0;
14122
14123         if (state)
14124                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14125         else
14126                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14127
14128         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14129                 DRM_ERROR("failed to write control word\n");
14130                 return -EIO;
14131         }
14132
14133         return 0;
14134 }
14135
14136 struct intel_display_error_state {
14137
14138         u32 power_well_driver;
14139
14140         int num_transcoders;
14141
14142         struct intel_cursor_error_state {
14143                 u32 control;
14144                 u32 position;
14145                 u32 base;
14146                 u32 size;
14147         } cursor[I915_MAX_PIPES];
14148
14149         struct intel_pipe_error_state {
14150                 bool power_domain_on;
14151                 u32 source;
14152                 u32 stat;
14153         } pipe[I915_MAX_PIPES];
14154
14155         struct intel_plane_error_state {
14156                 u32 control;
14157                 u32 stride;
14158                 u32 size;
14159                 u32 pos;
14160                 u32 addr;
14161                 u32 surface;
14162                 u32 tile_offset;
14163         } plane[I915_MAX_PIPES];
14164
14165         struct intel_transcoder_error_state {
14166                 bool power_domain_on;
14167                 enum transcoder cpu_transcoder;
14168
14169                 u32 conf;
14170
14171                 u32 htotal;
14172                 u32 hblank;
14173                 u32 hsync;
14174                 u32 vtotal;
14175                 u32 vblank;
14176                 u32 vsync;
14177         } transcoder[4];
14178 };
14179
14180 struct intel_display_error_state *
14181 intel_display_capture_error_state(struct drm_device *dev)
14182 {
14183         struct drm_i915_private *dev_priv = dev->dev_private;
14184         struct intel_display_error_state *error;
14185         int transcoders[] = {
14186                 TRANSCODER_A,
14187                 TRANSCODER_B,
14188                 TRANSCODER_C,
14189                 TRANSCODER_EDP,
14190         };
14191         int i;
14192
14193         if (INTEL_INFO(dev)->num_pipes == 0)
14194                 return NULL;
14195
14196         error = kzalloc(sizeof(*error), GFP_ATOMIC);
14197         if (error == NULL)
14198                 return NULL;
14199
14200         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14201                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14202
14203         for_each_pipe(dev_priv, i) {
14204                 error->pipe[i].power_domain_on =
14205                         __intel_display_power_is_enabled(dev_priv,
14206                                                          POWER_DOMAIN_PIPE(i));
14207                 if (!error->pipe[i].power_domain_on)
14208                         continue;
14209
14210                 error->cursor[i].control = I915_READ(CURCNTR(i));
14211                 error->cursor[i].position = I915_READ(CURPOS(i));
14212                 error->cursor[i].base = I915_READ(CURBASE(i));
14213
14214                 error->plane[i].control = I915_READ(DSPCNTR(i));
14215                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14216                 if (INTEL_INFO(dev)->gen <= 3) {
14217                         error->plane[i].size = I915_READ(DSPSIZE(i));
14218                         error->plane[i].pos = I915_READ(DSPPOS(i));
14219                 }
14220                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14221                         error->plane[i].addr = I915_READ(DSPADDR(i));
14222                 if (INTEL_INFO(dev)->gen >= 4) {
14223                         error->plane[i].surface = I915_READ(DSPSURF(i));
14224                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14225                 }
14226
14227                 error->pipe[i].source = I915_READ(PIPESRC(i));
14228
14229                 if (HAS_GMCH_DISPLAY(dev))
14230                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
14231         }
14232
14233         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14234         if (HAS_DDI(dev_priv->dev))
14235                 error->num_transcoders++; /* Account for eDP. */
14236
14237         for (i = 0; i < error->num_transcoders; i++) {
14238                 enum transcoder cpu_transcoder = transcoders[i];
14239
14240                 error->transcoder[i].power_domain_on =
14241                         __intel_display_power_is_enabled(dev_priv,
14242                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14243                 if (!error->transcoder[i].power_domain_on)
14244                         continue;
14245
14246                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14247
14248                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14249                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14250                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14251                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14252                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14253                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14254                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14255         }
14256
14257         return error;
14258 }
14259
14260 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14261
14262 void
14263 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14264                                 struct drm_device *dev,
14265                                 struct intel_display_error_state *error)
14266 {
14267         struct drm_i915_private *dev_priv = dev->dev_private;
14268         int i;
14269
14270         if (!error)
14271                 return;
14272
14273         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14274         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14275                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14276                            error->power_well_driver);
14277         for_each_pipe(dev_priv, i) {
14278                 err_printf(m, "Pipe [%d]:\n", i);
14279                 err_printf(m, "  Power: %s\n",
14280                            error->pipe[i].power_domain_on ? "on" : "off");
14281                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
14282                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
14283
14284                 err_printf(m, "Plane [%d]:\n", i);
14285                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
14286                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
14287                 if (INTEL_INFO(dev)->gen <= 3) {
14288                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
14289                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
14290                 }
14291                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14292                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
14293                 if (INTEL_INFO(dev)->gen >= 4) {
14294                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
14295                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
14296                 }
14297
14298                 err_printf(m, "Cursor [%d]:\n", i);
14299                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
14300                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
14301                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
14302         }
14303
14304         for (i = 0; i < error->num_transcoders; i++) {
14305                 err_printf(m, "CPU transcoder: %c\n",
14306                            transcoder_name(error->transcoder[i].cpu_transcoder));
14307                 err_printf(m, "  Power: %s\n",
14308                            error->transcoder[i].power_domain_on ? "on" : "off");
14309                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
14310                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
14311                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
14312                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
14313                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
14314                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
14315                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
14316         }
14317 }
14318
14319 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14320 {
14321         struct intel_crtc *crtc;
14322
14323         for_each_intel_crtc(dev, crtc) {
14324                 struct intel_unpin_work *work;
14325
14326                 spin_lock_irq(&dev->event_lock);
14327
14328                 work = crtc->unpin_work;
14329
14330                 if (work && work->event &&
14331                     work->event->base.file_priv == file) {
14332                         kfree(work->event);
14333                         work->event = NULL;
14334                 }
14335
14336                 spin_unlock_irq(&dev->event_lock);
14337         }
14338 }