]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: gen3 page flipping fixes
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_connector *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
748             if (l_entry->encoder &&
749                 l_entry->encoder->crtc == crtc) {
750                     struct intel_encoder *intel_encoder = to_intel_encoder(l_entry);
751                     if (intel_encoder->type == type)
752                             return true;
753             }
754     }
755     return false;
756 }
757
758 static struct drm_connector *
759 intel_pipe_get_connector (struct drm_crtc *crtc)
760 {
761     struct drm_device *dev = crtc->dev;
762     struct drm_mode_config *mode_config = &dev->mode_config;
763     struct drm_connector *l_entry, *ret = NULL;
764
765     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
766             if (l_entry->encoder &&
767                 l_entry->encoder->crtc == crtc) {
768                     ret = l_entry;
769                     break;
770             }
771     }
772     return ret;
773 }
774
775 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
776 /**
777  * Returns whether the given set of divisors are valid for a given refclk with
778  * the given connectors.
779  */
780
781 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
782 {
783         const intel_limit_t *limit = intel_limit (crtc);
784         struct drm_device *dev = crtc->dev;
785
786         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
787                 INTELPllInvalid ("p1 out of range\n");
788         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
789                 INTELPllInvalid ("p out of range\n");
790         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
791                 INTELPllInvalid ("m2 out of range\n");
792         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
793                 INTELPllInvalid ("m1 out of range\n");
794         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
795                 INTELPllInvalid ("m1 <= m2\n");
796         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
797                 INTELPllInvalid ("m out of range\n");
798         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
799                 INTELPllInvalid ("n out of range\n");
800         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
801                 INTELPllInvalid ("vco out of range\n");
802         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
803          * connector, etc., rather than just a single range.
804          */
805         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
806                 INTELPllInvalid ("dot out of range\n");
807
808         return true;
809 }
810
811 static bool
812 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
813                     int target, int refclk, intel_clock_t *best_clock)
814
815 {
816         struct drm_device *dev = crtc->dev;
817         struct drm_i915_private *dev_priv = dev->dev_private;
818         intel_clock_t clock;
819         int err = target;
820
821         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
822             (I915_READ(LVDS)) != 0) {
823                 /*
824                  * For LVDS, if the panel is on, just rely on its current
825                  * settings for dual-channel.  We haven't figured out how to
826                  * reliably set up different single/dual channel state, if we
827                  * even can.
828                  */
829                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
830                     LVDS_CLKB_POWER_UP)
831                         clock.p2 = limit->p2.p2_fast;
832                 else
833                         clock.p2 = limit->p2.p2_slow;
834         } else {
835                 if (target < limit->p2.dot_limit)
836                         clock.p2 = limit->p2.p2_slow;
837                 else
838                         clock.p2 = limit->p2.p2_fast;
839         }
840
841         memset (best_clock, 0, sizeof (*best_clock));
842
843         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
844              clock.m1++) {
845                 for (clock.m2 = limit->m2.min;
846                      clock.m2 <= limit->m2.max; clock.m2++) {
847                         /* m1 is always 0 in Pineview */
848                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
849                                 break;
850                         for (clock.n = limit->n.min;
851                              clock.n <= limit->n.max; clock.n++) {
852                                 for (clock.p1 = limit->p1.min;
853                                         clock.p1 <= limit->p1.max; clock.p1++) {
854                                         int this_err;
855
856                                         intel_clock(dev, refclk, &clock);
857
858                                         if (!intel_PLL_is_valid(crtc, &clock))
859                                                 continue;
860
861                                         this_err = abs(clock.dot - target);
862                                         if (this_err < err) {
863                                                 *best_clock = clock;
864                                                 err = this_err;
865                                         }
866                                 }
867                         }
868                 }
869         }
870
871         return (err != target);
872 }
873
874 static bool
875 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
876                         int target, int refclk, intel_clock_t *best_clock)
877 {
878         struct drm_device *dev = crtc->dev;
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         intel_clock_t clock;
881         int max_n;
882         bool found;
883         /* approximately equals target * 0.00585 */
884         int err_most = (target >> 8) + (target >> 9);
885         found = false;
886
887         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
888                 int lvds_reg;
889
890                 if (HAS_PCH_SPLIT(dev))
891                         lvds_reg = PCH_LVDS;
892                 else
893                         lvds_reg = LVDS;
894                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
895                     LVDS_CLKB_POWER_UP)
896                         clock.p2 = limit->p2.p2_fast;
897                 else
898                         clock.p2 = limit->p2.p2_slow;
899         } else {
900                 if (target < limit->p2.dot_limit)
901                         clock.p2 = limit->p2.p2_slow;
902                 else
903                         clock.p2 = limit->p2.p2_fast;
904         }
905
906         memset(best_clock, 0, sizeof(*best_clock));
907         max_n = limit->n.max;
908         /* based on hardware requriment prefer smaller n to precision */
909         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
910                 /* based on hardware requirment prefere larger m1,m2 */
911                 for (clock.m1 = limit->m1.max;
912                      clock.m1 >= limit->m1.min; clock.m1--) {
913                         for (clock.m2 = limit->m2.max;
914                              clock.m2 >= limit->m2.min; clock.m2--) {
915                                 for (clock.p1 = limit->p1.max;
916                                      clock.p1 >= limit->p1.min; clock.p1--) {
917                                         int this_err;
918
919                                         intel_clock(dev, refclk, &clock);
920                                         if (!intel_PLL_is_valid(crtc, &clock))
921                                                 continue;
922                                         this_err = abs(clock.dot - target) ;
923                                         if (this_err < err_most) {
924                                                 *best_clock = clock;
925                                                 err_most = this_err;
926                                                 max_n = clock.n;
927                                                 found = true;
928                                         }
929                                 }
930                         }
931                 }
932         }
933         return found;
934 }
935
936 static bool
937 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
938                            int target, int refclk, intel_clock_t *best_clock)
939 {
940         struct drm_device *dev = crtc->dev;
941         intel_clock_t clock;
942
943         /* return directly when it is eDP */
944         if (HAS_eDP)
945                 return true;
946
947         if (target < 200000) {
948                 clock.n = 1;
949                 clock.p1 = 2;
950                 clock.p2 = 10;
951                 clock.m1 = 12;
952                 clock.m2 = 9;
953         } else {
954                 clock.n = 2;
955                 clock.p1 = 1;
956                 clock.p2 = 10;
957                 clock.m1 = 14;
958                 clock.m2 = 8;
959         }
960         intel_clock(dev, refclk, &clock);
961         memcpy(best_clock, &clock, sizeof(intel_clock_t));
962         return true;
963 }
964
965 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
966 static bool
967 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
968                       int target, int refclk, intel_clock_t *best_clock)
969 {
970     intel_clock_t clock;
971     if (target < 200000) {
972         clock.p1 = 2;
973         clock.p2 = 10;
974         clock.n = 2;
975         clock.m1 = 23;
976         clock.m2 = 8;
977     } else {
978         clock.p1 = 1;
979         clock.p2 = 10;
980         clock.n = 1;
981         clock.m1 = 14;
982         clock.m2 = 2;
983     }
984     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
985     clock.p = (clock.p1 * clock.p2);
986     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
987     clock.vco = 0;
988     memcpy(best_clock, &clock, sizeof(intel_clock_t));
989     return true;
990 }
991
992 void
993 intel_wait_for_vblank(struct drm_device *dev)
994 {
995         /* Wait for 20ms, i.e. one cycle at 50hz. */
996         msleep(20);
997 }
998
999 /* Parameters have changed, update FBC info */
1000 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1001 {
1002         struct drm_device *dev = crtc->dev;
1003         struct drm_i915_private *dev_priv = dev->dev_private;
1004         struct drm_framebuffer *fb = crtc->fb;
1005         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1006         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1008         int plane, i;
1009         u32 fbc_ctl, fbc_ctl2;
1010
1011         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1012
1013         if (fb->pitch < dev_priv->cfb_pitch)
1014                 dev_priv->cfb_pitch = fb->pitch;
1015
1016         /* FBC_CTL wants 64B units */
1017         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1018         dev_priv->cfb_fence = obj_priv->fence_reg;
1019         dev_priv->cfb_plane = intel_crtc->plane;
1020         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1021
1022         /* Clear old tags */
1023         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1024                 I915_WRITE(FBC_TAG + (i * 4), 0);
1025
1026         /* Set it up... */
1027         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1028         if (obj_priv->tiling_mode != I915_TILING_NONE)
1029                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1030         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1031         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1032
1033         /* enable it... */
1034         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1035         if (IS_I945GM(dev))
1036                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1037         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1038         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1039         if (obj_priv->tiling_mode != I915_TILING_NONE)
1040                 fbc_ctl |= dev_priv->cfb_fence;
1041         I915_WRITE(FBC_CONTROL, fbc_ctl);
1042
1043         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1044                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1045 }
1046
1047 void i8xx_disable_fbc(struct drm_device *dev)
1048 {
1049         struct drm_i915_private *dev_priv = dev->dev_private;
1050         u32 fbc_ctl;
1051
1052         if (!I915_HAS_FBC(dev))
1053                 return;
1054
1055         /* Disable compression */
1056         fbc_ctl = I915_READ(FBC_CONTROL);
1057         fbc_ctl &= ~FBC_CTL_EN;
1058         I915_WRITE(FBC_CONTROL, fbc_ctl);
1059
1060         /* Wait for compressing bit to clear */
1061         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1062                 ; /* nothing */
1063
1064         intel_wait_for_vblank(dev);
1065
1066         DRM_DEBUG_KMS("disabled FBC\n");
1067 }
1068
1069 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1070 {
1071         struct drm_device *dev = crtc->dev;
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073
1074         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1075 }
1076
1077 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1078 {
1079         struct drm_device *dev = crtc->dev;
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         struct drm_framebuffer *fb = crtc->fb;
1082         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1083         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1085         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1086                      DPFC_CTL_PLANEB);
1087         unsigned long stall_watermark = 200;
1088         u32 dpfc_ctl;
1089
1090         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1091         dev_priv->cfb_fence = obj_priv->fence_reg;
1092         dev_priv->cfb_plane = intel_crtc->plane;
1093
1094         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1095         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1096                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1097                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1098         } else {
1099                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1100         }
1101
1102         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1103         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1104                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1105                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1106         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1107
1108         /* enable it... */
1109         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1110
1111         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1112 }
1113
1114 void g4x_disable_fbc(struct drm_device *dev)
1115 {
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         u32 dpfc_ctl;
1118
1119         /* Disable compression */
1120         dpfc_ctl = I915_READ(DPFC_CONTROL);
1121         dpfc_ctl &= ~DPFC_CTL_EN;
1122         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1123         intel_wait_for_vblank(dev);
1124
1125         DRM_DEBUG_KMS("disabled FBC\n");
1126 }
1127
1128 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1129 {
1130         struct drm_device *dev = crtc->dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132
1133         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1134 }
1135
1136 /**
1137  * intel_update_fbc - enable/disable FBC as needed
1138  * @crtc: CRTC to point the compressor at
1139  * @mode: mode in use
1140  *
1141  * Set up the framebuffer compression hardware at mode set time.  We
1142  * enable it if possible:
1143  *   - plane A only (on pre-965)
1144  *   - no pixel mulitply/line duplication
1145  *   - no alpha buffer discard
1146  *   - no dual wide
1147  *   - framebuffer <= 2048 in width, 1536 in height
1148  *
1149  * We can't assume that any compression will take place (worst case),
1150  * so the compressed buffer has to be the same size as the uncompressed
1151  * one.  It also must reside (along with the line length buffer) in
1152  * stolen memory.
1153  *
1154  * We need to enable/disable FBC on a global basis.
1155  */
1156 static void intel_update_fbc(struct drm_crtc *crtc,
1157                              struct drm_display_mode *mode)
1158 {
1159         struct drm_device *dev = crtc->dev;
1160         struct drm_i915_private *dev_priv = dev->dev_private;
1161         struct drm_framebuffer *fb = crtc->fb;
1162         struct intel_framebuffer *intel_fb;
1163         struct drm_i915_gem_object *obj_priv;
1164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1165         int plane = intel_crtc->plane;
1166
1167         if (!i915_powersave)
1168                 return;
1169
1170         if (!dev_priv->display.fbc_enabled ||
1171             !dev_priv->display.enable_fbc ||
1172             !dev_priv->display.disable_fbc)
1173                 return;
1174
1175         if (!crtc->fb)
1176                 return;
1177
1178         intel_fb = to_intel_framebuffer(fb);
1179         obj_priv = to_intel_bo(intel_fb->obj);
1180
1181         /*
1182          * If FBC is already on, we just have to verify that we can
1183          * keep it that way...
1184          * Need to disable if:
1185          *   - changing FBC params (stride, fence, mode)
1186          *   - new fb is too large to fit in compressed buffer
1187          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1188          */
1189         if (intel_fb->obj->size > dev_priv->cfb_size) {
1190                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1191                                 "compression\n");
1192                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1193                 goto out_disable;
1194         }
1195         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1196             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1197                 DRM_DEBUG_KMS("mode incompatible with compression, "
1198                                 "disabling\n");
1199                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1200                 goto out_disable;
1201         }
1202         if ((mode->hdisplay > 2048) ||
1203             (mode->vdisplay > 1536)) {
1204                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1205                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1206                 goto out_disable;
1207         }
1208         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1209                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1210                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1211                 goto out_disable;
1212         }
1213         if (obj_priv->tiling_mode != I915_TILING_X) {
1214                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1215                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1216                 goto out_disable;
1217         }
1218
1219         if (dev_priv->display.fbc_enabled(crtc)) {
1220                 /* We can re-enable it in this case, but need to update pitch */
1221                 if (fb->pitch > dev_priv->cfb_pitch)
1222                         dev_priv->display.disable_fbc(dev);
1223                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1224                         dev_priv->display.disable_fbc(dev);
1225                 if (plane != dev_priv->cfb_plane)
1226                         dev_priv->display.disable_fbc(dev);
1227         }
1228
1229         if (!dev_priv->display.fbc_enabled(crtc)) {
1230                 /* Now try to turn it back on if possible */
1231                 dev_priv->display.enable_fbc(crtc, 500);
1232         }
1233
1234         return;
1235
1236 out_disable:
1237         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1238         /* Multiple disables should be harmless */
1239         if (dev_priv->display.fbc_enabled(crtc))
1240                 dev_priv->display.disable_fbc(dev);
1241 }
1242
1243 static int
1244 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1245 {
1246         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1247         u32 alignment;
1248         int ret;
1249
1250         switch (obj_priv->tiling_mode) {
1251         case I915_TILING_NONE:
1252                 alignment = 64 * 1024;
1253                 break;
1254         case I915_TILING_X:
1255                 /* pin() will align the object as required by fence */
1256                 alignment = 0;
1257                 break;
1258         case I915_TILING_Y:
1259                 /* FIXME: Is this true? */
1260                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1261                 return -EINVAL;
1262         default:
1263                 BUG();
1264         }
1265
1266         ret = i915_gem_object_pin(obj, alignment);
1267         if (ret != 0)
1268                 return ret;
1269
1270         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1271          * fence, whereas 965+ only requires a fence if using
1272          * framebuffer compression.  For simplicity, we always install
1273          * a fence as the cost is not that onerous.
1274          */
1275         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1276             obj_priv->tiling_mode != I915_TILING_NONE) {
1277                 ret = i915_gem_object_get_fence_reg(obj);
1278                 if (ret != 0) {
1279                         i915_gem_object_unpin(obj);
1280                         return ret;
1281                 }
1282         }
1283
1284         return 0;
1285 }
1286
1287 static int
1288 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1289                     struct drm_framebuffer *old_fb)
1290 {
1291         struct drm_device *dev = crtc->dev;
1292         struct drm_i915_private *dev_priv = dev->dev_private;
1293         struct drm_i915_master_private *master_priv;
1294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1295         struct intel_framebuffer *intel_fb;
1296         struct drm_i915_gem_object *obj_priv;
1297         struct drm_gem_object *obj;
1298         int pipe = intel_crtc->pipe;
1299         int plane = intel_crtc->plane;
1300         unsigned long Start, Offset;
1301         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1302         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1303         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1304         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1305         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1306         u32 dspcntr;
1307         int ret;
1308
1309         /* no fb bound */
1310         if (!crtc->fb) {
1311                 DRM_DEBUG_KMS("No FB bound\n");
1312                 return 0;
1313         }
1314
1315         switch (plane) {
1316         case 0:
1317         case 1:
1318                 break;
1319         default:
1320                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1321                 return -EINVAL;
1322         }
1323
1324         intel_fb = to_intel_framebuffer(crtc->fb);
1325         obj = intel_fb->obj;
1326         obj_priv = to_intel_bo(obj);
1327
1328         mutex_lock(&dev->struct_mutex);
1329         ret = intel_pin_and_fence_fb_obj(dev, obj);
1330         if (ret != 0) {
1331                 mutex_unlock(&dev->struct_mutex);
1332                 return ret;
1333         }
1334
1335         ret = i915_gem_object_set_to_display_plane(obj);
1336         if (ret != 0) {
1337                 i915_gem_object_unpin(obj);
1338                 mutex_unlock(&dev->struct_mutex);
1339                 return ret;
1340         }
1341
1342         dspcntr = I915_READ(dspcntr_reg);
1343         /* Mask out pixel format bits in case we change it */
1344         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1345         switch (crtc->fb->bits_per_pixel) {
1346         case 8:
1347                 dspcntr |= DISPPLANE_8BPP;
1348                 break;
1349         case 16:
1350                 if (crtc->fb->depth == 15)
1351                         dspcntr |= DISPPLANE_15_16BPP;
1352                 else
1353                         dspcntr |= DISPPLANE_16BPP;
1354                 break;
1355         case 24:
1356         case 32:
1357                 if (crtc->fb->depth == 30)
1358                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1359                 else
1360                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1361                 break;
1362         default:
1363                 DRM_ERROR("Unknown color depth\n");
1364                 i915_gem_object_unpin(obj);
1365                 mutex_unlock(&dev->struct_mutex);
1366                 return -EINVAL;
1367         }
1368         if (IS_I965G(dev)) {
1369                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1370                         dspcntr |= DISPPLANE_TILED;
1371                 else
1372                         dspcntr &= ~DISPPLANE_TILED;
1373         }
1374
1375         if (HAS_PCH_SPLIT(dev))
1376                 /* must disable */
1377                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1378
1379         I915_WRITE(dspcntr_reg, dspcntr);
1380
1381         Start = obj_priv->gtt_offset;
1382         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1383
1384         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1385         I915_WRITE(dspstride, crtc->fb->pitch);
1386         if (IS_I965G(dev)) {
1387                 I915_WRITE(dspbase, Offset);
1388                 I915_READ(dspbase);
1389                 I915_WRITE(dspsurf, Start);
1390                 I915_READ(dspsurf);
1391                 I915_WRITE(dsptileoff, (y << 16) | x);
1392         } else {
1393                 I915_WRITE(dspbase, Start + Offset);
1394                 I915_READ(dspbase);
1395         }
1396
1397         if ((IS_I965G(dev) || plane == 0))
1398                 intel_update_fbc(crtc, &crtc->mode);
1399
1400         intel_wait_for_vblank(dev);
1401
1402         if (old_fb) {
1403                 intel_fb = to_intel_framebuffer(old_fb);
1404                 obj_priv = to_intel_bo(intel_fb->obj);
1405                 i915_gem_object_unpin(intel_fb->obj);
1406         }
1407         intel_increase_pllclock(crtc, true);
1408
1409         mutex_unlock(&dev->struct_mutex);
1410
1411         if (!dev->primary->master)
1412                 return 0;
1413
1414         master_priv = dev->primary->master->driver_priv;
1415         if (!master_priv->sarea_priv)
1416                 return 0;
1417
1418         if (pipe) {
1419                 master_priv->sarea_priv->pipeB_x = x;
1420                 master_priv->sarea_priv->pipeB_y = y;
1421         } else {
1422                 master_priv->sarea_priv->pipeA_x = x;
1423                 master_priv->sarea_priv->pipeA_y = y;
1424         }
1425
1426         return 0;
1427 }
1428
1429 /* Disable the VGA plane that we never use */
1430 static void i915_disable_vga (struct drm_device *dev)
1431 {
1432         struct drm_i915_private *dev_priv = dev->dev_private;
1433         u8 sr1;
1434         u32 vga_reg;
1435
1436         if (HAS_PCH_SPLIT(dev))
1437                 vga_reg = CPU_VGACNTRL;
1438         else
1439                 vga_reg = VGACNTRL;
1440
1441         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1442                 return;
1443
1444         I915_WRITE8(VGA_SR_INDEX, 1);
1445         sr1 = I915_READ8(VGA_SR_DATA);
1446         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1447         udelay(100);
1448
1449         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1450 }
1451
1452 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1453 {
1454         struct drm_device *dev = crtc->dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         u32 dpa_ctl;
1457
1458         DRM_DEBUG_KMS("\n");
1459         dpa_ctl = I915_READ(DP_A);
1460         dpa_ctl &= ~DP_PLL_ENABLE;
1461         I915_WRITE(DP_A, dpa_ctl);
1462 }
1463
1464 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1465 {
1466         struct drm_device *dev = crtc->dev;
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468         u32 dpa_ctl;
1469
1470         dpa_ctl = I915_READ(DP_A);
1471         dpa_ctl |= DP_PLL_ENABLE;
1472         I915_WRITE(DP_A, dpa_ctl);
1473         udelay(200);
1474 }
1475
1476
1477 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1478 {
1479         struct drm_device *dev = crtc->dev;
1480         struct drm_i915_private *dev_priv = dev->dev_private;
1481         u32 dpa_ctl;
1482
1483         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1484         dpa_ctl = I915_READ(DP_A);
1485         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1486
1487         if (clock < 200000) {
1488                 u32 temp;
1489                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1490                 /* workaround for 160Mhz:
1491                    1) program 0x4600c bits 15:0 = 0x8124
1492                    2) program 0x46010 bit 0 = 1
1493                    3) program 0x46034 bit 24 = 1
1494                    4) program 0x64000 bit 14 = 1
1495                    */
1496                 temp = I915_READ(0x4600c);
1497                 temp &= 0xffff0000;
1498                 I915_WRITE(0x4600c, temp | 0x8124);
1499
1500                 temp = I915_READ(0x46010);
1501                 I915_WRITE(0x46010, temp | 1);
1502
1503                 temp = I915_READ(0x46034);
1504                 I915_WRITE(0x46034, temp | (1 << 24));
1505         } else {
1506                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1507         }
1508         I915_WRITE(DP_A, dpa_ctl);
1509
1510         udelay(500);
1511 }
1512
1513 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1514 {
1515         struct drm_device *dev = crtc->dev;
1516         struct drm_i915_private *dev_priv = dev->dev_private;
1517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1518         int pipe = intel_crtc->pipe;
1519         int plane = intel_crtc->plane;
1520         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1521         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1522         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1523         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1524         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1525         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1526         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1527         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1528         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1529         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1530         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1531         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1532         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1533         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1534         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1535         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1536         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1537         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1538         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1539         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1540         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1541         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1542         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1543         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1544         u32 temp;
1545         int tries = 5, j, n;
1546         u32 pipe_bpc;
1547
1548         temp = I915_READ(pipeconf_reg);
1549         pipe_bpc = temp & PIPE_BPC_MASK;
1550
1551         /* XXX: When our outputs are all unaware of DPMS modes other than off
1552          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1553          */
1554         switch (mode) {
1555         case DRM_MODE_DPMS_ON:
1556         case DRM_MODE_DPMS_STANDBY:
1557         case DRM_MODE_DPMS_SUSPEND:
1558                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1559
1560                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1561                         temp = I915_READ(PCH_LVDS);
1562                         if ((temp & LVDS_PORT_EN) == 0) {
1563                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1564                                 POSTING_READ(PCH_LVDS);
1565                         }
1566                 }
1567
1568                 if (HAS_eDP) {
1569                         /* enable eDP PLL */
1570                         ironlake_enable_pll_edp(crtc);
1571                 } else {
1572                         /* enable PCH DPLL */
1573                         temp = I915_READ(pch_dpll_reg);
1574                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1575                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1576                                 I915_READ(pch_dpll_reg);
1577                         }
1578
1579                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1580                         temp = I915_READ(fdi_rx_reg);
1581                         /*
1582                          * make the BPC in FDI Rx be consistent with that in
1583                          * pipeconf reg.
1584                          */
1585                         temp &= ~(0x7 << 16);
1586                         temp |= (pipe_bpc << 11);
1587                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1588                                         FDI_SEL_PCDCLK |
1589                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1590                         I915_READ(fdi_rx_reg);
1591                         udelay(200);
1592
1593                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1594                         temp = I915_READ(fdi_tx_reg);
1595                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1596                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1597                                 I915_READ(fdi_tx_reg);
1598                                 udelay(100);
1599                         }
1600                 }
1601
1602                 /* Enable panel fitting for LVDS */
1603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1604                         temp = I915_READ(pf_ctl_reg);
1605                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1606
1607                         /* currently full aspect */
1608                         I915_WRITE(pf_win_pos, 0);
1609
1610                         I915_WRITE(pf_win_size,
1611                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1612                                    (dev_priv->panel_fixed_mode->vdisplay));
1613                 }
1614
1615                 /* Enable CPU pipe */
1616                 temp = I915_READ(pipeconf_reg);
1617                 if ((temp & PIPEACONF_ENABLE) == 0) {
1618                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1619                         I915_READ(pipeconf_reg);
1620                         udelay(100);
1621                 }
1622
1623                 /* configure and enable CPU plane */
1624                 temp = I915_READ(dspcntr_reg);
1625                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1626                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1627                         /* Flush the plane changes */
1628                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1629                 }
1630
1631                 if (!HAS_eDP) {
1632                         /* enable CPU FDI TX and PCH FDI RX */
1633                         temp = I915_READ(fdi_tx_reg);
1634                         temp |= FDI_TX_ENABLE;
1635                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1636                         temp &= ~FDI_LINK_TRAIN_NONE;
1637                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1638                         I915_WRITE(fdi_tx_reg, temp);
1639                         I915_READ(fdi_tx_reg);
1640
1641                         temp = I915_READ(fdi_rx_reg);
1642                         temp &= ~FDI_LINK_TRAIN_NONE;
1643                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1644                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1645                         I915_READ(fdi_rx_reg);
1646
1647                         udelay(150);
1648
1649                         /* Train FDI. */
1650                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1651                            for train result */
1652                         temp = I915_READ(fdi_rx_imr_reg);
1653                         temp &= ~FDI_RX_SYMBOL_LOCK;
1654                         temp &= ~FDI_RX_BIT_LOCK;
1655                         I915_WRITE(fdi_rx_imr_reg, temp);
1656                         I915_READ(fdi_rx_imr_reg);
1657                         udelay(150);
1658
1659                         temp = I915_READ(fdi_rx_iir_reg);
1660                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1661
1662                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1663                                 for (j = 0; j < tries; j++) {
1664                                         temp = I915_READ(fdi_rx_iir_reg);
1665                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1666                                                                 temp);
1667                                         if (temp & FDI_RX_BIT_LOCK)
1668                                                 break;
1669                                         udelay(200);
1670                                 }
1671                                 if (j != tries)
1672                                         I915_WRITE(fdi_rx_iir_reg,
1673                                                         temp | FDI_RX_BIT_LOCK);
1674                                 else
1675                                         DRM_DEBUG_KMS("train 1 fail\n");
1676                         } else {
1677                                 I915_WRITE(fdi_rx_iir_reg,
1678                                                 temp | FDI_RX_BIT_LOCK);
1679                                 DRM_DEBUG_KMS("train 1 ok 2!\n");
1680                         }
1681                         temp = I915_READ(fdi_tx_reg);
1682                         temp &= ~FDI_LINK_TRAIN_NONE;
1683                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1684                         I915_WRITE(fdi_tx_reg, temp);
1685
1686                         temp = I915_READ(fdi_rx_reg);
1687                         temp &= ~FDI_LINK_TRAIN_NONE;
1688                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1689                         I915_WRITE(fdi_rx_reg, temp);
1690
1691                         udelay(150);
1692
1693                         temp = I915_READ(fdi_rx_iir_reg);
1694                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1695
1696                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1697                                 for (j = 0; j < tries; j++) {
1698                                         temp = I915_READ(fdi_rx_iir_reg);
1699                                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1700                                                                 temp);
1701                                         if (temp & FDI_RX_SYMBOL_LOCK)
1702                                                 break;
1703                                         udelay(200);
1704                                 }
1705                                 if (j != tries) {
1706                                         I915_WRITE(fdi_rx_iir_reg,
1707                                                         temp | FDI_RX_SYMBOL_LOCK);
1708                                         DRM_DEBUG_KMS("train 2 ok 1!\n");
1709                                 } else
1710                                         DRM_DEBUG_KMS("train 2 fail\n");
1711                         } else {
1712                                 I915_WRITE(fdi_rx_iir_reg,
1713                                                 temp | FDI_RX_SYMBOL_LOCK);
1714                                 DRM_DEBUG_KMS("train 2 ok 2!\n");
1715                         }
1716                         DRM_DEBUG_KMS("train done\n");
1717
1718                         /* set transcoder timing */
1719                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1720                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1721                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1722
1723                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1724                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1725                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1726
1727                         /* enable PCH transcoder */
1728                         temp = I915_READ(transconf_reg);
1729                         /*
1730                          * make the BPC in transcoder be consistent with
1731                          * that in pipeconf reg.
1732                          */
1733                         temp &= ~PIPE_BPC_MASK;
1734                         temp |= pipe_bpc;
1735                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1736                         I915_READ(transconf_reg);
1737
1738                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1739                                 ;
1740
1741                         /* enable normal */
1742
1743                         temp = I915_READ(fdi_tx_reg);
1744                         temp &= ~FDI_LINK_TRAIN_NONE;
1745                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1746                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1747                         I915_READ(fdi_tx_reg);
1748
1749                         temp = I915_READ(fdi_rx_reg);
1750                         temp &= ~FDI_LINK_TRAIN_NONE;
1751                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1752                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1753                         I915_READ(fdi_rx_reg);
1754
1755                         /* wait one idle pattern time */
1756                         udelay(100);
1757
1758                 }
1759
1760                 intel_crtc_load_lut(crtc);
1761
1762         break;
1763         case DRM_MODE_DPMS_OFF:
1764                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1765
1766                 drm_vblank_off(dev, pipe);
1767                 /* Disable display plane */
1768                 temp = I915_READ(dspcntr_reg);
1769                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1770                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1771                         /* Flush the plane changes */
1772                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1773                         I915_READ(dspbase_reg);
1774                 }
1775
1776                 i915_disable_vga(dev);
1777
1778                 /* disable cpu pipe, disable after all planes disabled */
1779                 temp = I915_READ(pipeconf_reg);
1780                 if ((temp & PIPEACONF_ENABLE) != 0) {
1781                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1782                         I915_READ(pipeconf_reg);
1783                         n = 0;
1784                         /* wait for cpu pipe off, pipe state */
1785                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1786                                 n++;
1787                                 if (n < 60) {
1788                                         udelay(500);
1789                                         continue;
1790                                 } else {
1791                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1792                                                                 pipe);
1793                                         break;
1794                                 }
1795                         }
1796                 } else
1797                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1798
1799                 udelay(100);
1800
1801                 /* Disable PF */
1802                 temp = I915_READ(pf_ctl_reg);
1803                 if ((temp & PF_ENABLE) != 0) {
1804                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1805                         I915_READ(pf_ctl_reg);
1806                 }
1807                 I915_WRITE(pf_win_size, 0);
1808
1809                 /* disable CPU FDI tx and PCH FDI rx */
1810                 temp = I915_READ(fdi_tx_reg);
1811                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1812                 I915_READ(fdi_tx_reg);
1813
1814                 temp = I915_READ(fdi_rx_reg);
1815                 /* BPC in FDI rx is consistent with that in pipeconf */
1816                 temp &= ~(0x07 << 16);
1817                 temp |= (pipe_bpc << 11);
1818                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1819                 I915_READ(fdi_rx_reg);
1820
1821                 udelay(100);
1822
1823                 /* still set train pattern 1 */
1824                 temp = I915_READ(fdi_tx_reg);
1825                 temp &= ~FDI_LINK_TRAIN_NONE;
1826                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1827                 I915_WRITE(fdi_tx_reg, temp);
1828
1829                 temp = I915_READ(fdi_rx_reg);
1830                 temp &= ~FDI_LINK_TRAIN_NONE;
1831                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1832                 I915_WRITE(fdi_rx_reg, temp);
1833
1834                 udelay(100);
1835
1836                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1837                         temp = I915_READ(PCH_LVDS);
1838                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1839                         I915_READ(PCH_LVDS);
1840                         udelay(100);
1841                 }
1842
1843                 /* disable PCH transcoder */
1844                 temp = I915_READ(transconf_reg);
1845                 if ((temp & TRANS_ENABLE) != 0) {
1846                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1847                         I915_READ(transconf_reg);
1848                         n = 0;
1849                         /* wait for PCH transcoder off, transcoder state */
1850                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1851                                 n++;
1852                                 if (n < 60) {
1853                                         udelay(500);
1854                                         continue;
1855                                 } else {
1856                                         DRM_DEBUG_KMS("transcoder %d off "
1857                                                         "delay\n", pipe);
1858                                         break;
1859                                 }
1860                         }
1861                 }
1862                 temp = I915_READ(transconf_reg);
1863                 /* BPC in transcoder is consistent with that in pipeconf */
1864                 temp &= ~PIPE_BPC_MASK;
1865                 temp |= pipe_bpc;
1866                 I915_WRITE(transconf_reg, temp);
1867                 I915_READ(transconf_reg);
1868                 udelay(100);
1869
1870                 /* disable PCH DPLL */
1871                 temp = I915_READ(pch_dpll_reg);
1872                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1873                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1874                         I915_READ(pch_dpll_reg);
1875                 }
1876
1877                 if (HAS_eDP) {
1878                         ironlake_disable_pll_edp(crtc);
1879                 }
1880
1881                 temp = I915_READ(fdi_rx_reg);
1882                 temp &= ~FDI_SEL_PCDCLK;
1883                 I915_WRITE(fdi_rx_reg, temp);
1884                 I915_READ(fdi_rx_reg);
1885
1886                 temp = I915_READ(fdi_rx_reg);
1887                 temp &= ~FDI_RX_PLL_ENABLE;
1888                 I915_WRITE(fdi_rx_reg, temp);
1889                 I915_READ(fdi_rx_reg);
1890
1891                 /* Disable CPU FDI TX PLL */
1892                 temp = I915_READ(fdi_tx_reg);
1893                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1894                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1895                         I915_READ(fdi_tx_reg);
1896                         udelay(100);
1897                 }
1898
1899                 /* Wait for the clocks to turn off. */
1900                 udelay(100);
1901                 break;
1902         }
1903 }
1904
1905 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1906 {
1907         struct intel_overlay *overlay;
1908         int ret;
1909
1910         if (!enable && intel_crtc->overlay) {
1911                 overlay = intel_crtc->overlay;
1912                 mutex_lock(&overlay->dev->struct_mutex);
1913                 for (;;) {
1914                         ret = intel_overlay_switch_off(overlay);
1915                         if (ret == 0)
1916                                 break;
1917
1918                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
1919                         if (ret != 0) {
1920                                 /* overlay doesn't react anymore. Usually
1921                                  * results in a black screen and an unkillable
1922                                  * X server. */
1923                                 BUG();
1924                                 overlay->hw_wedged = HW_WEDGED;
1925                                 break;
1926                         }
1927                 }
1928                 mutex_unlock(&overlay->dev->struct_mutex);
1929         }
1930         /* Let userspace switch the overlay on again. In most cases userspace
1931          * has to recompute where to put it anyway. */
1932
1933         return;
1934 }
1935
1936 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1937 {
1938         struct drm_device *dev = crtc->dev;
1939         struct drm_i915_private *dev_priv = dev->dev_private;
1940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1941         int pipe = intel_crtc->pipe;
1942         int plane = intel_crtc->plane;
1943         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1944         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1945         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1946         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1947         u32 temp;
1948
1949         /* XXX: When our outputs are all unaware of DPMS modes other than off
1950          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1951          */
1952         switch (mode) {
1953         case DRM_MODE_DPMS_ON:
1954         case DRM_MODE_DPMS_STANDBY:
1955         case DRM_MODE_DPMS_SUSPEND:
1956                 intel_update_watermarks(dev);
1957
1958                 /* Enable the DPLL */
1959                 temp = I915_READ(dpll_reg);
1960                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1961                         I915_WRITE(dpll_reg, temp);
1962                         I915_READ(dpll_reg);
1963                         /* Wait for the clocks to stabilize. */
1964                         udelay(150);
1965                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1966                         I915_READ(dpll_reg);
1967                         /* Wait for the clocks to stabilize. */
1968                         udelay(150);
1969                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1970                         I915_READ(dpll_reg);
1971                         /* Wait for the clocks to stabilize. */
1972                         udelay(150);
1973                 }
1974
1975                 /* Enable the pipe */
1976                 temp = I915_READ(pipeconf_reg);
1977                 if ((temp & PIPEACONF_ENABLE) == 0)
1978                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1979
1980                 /* Enable the plane */
1981                 temp = I915_READ(dspcntr_reg);
1982                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1983                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1984                         /* Flush the plane changes */
1985                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1986                 }
1987
1988                 intel_crtc_load_lut(crtc);
1989
1990                 if ((IS_I965G(dev) || plane == 0))
1991                         intel_update_fbc(crtc, &crtc->mode);
1992
1993                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1994                 intel_crtc_dpms_overlay(intel_crtc, true);
1995         break;
1996         case DRM_MODE_DPMS_OFF:
1997                 intel_update_watermarks(dev);
1998
1999                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2000                 intel_crtc_dpms_overlay(intel_crtc, false);
2001                 drm_vblank_off(dev, pipe);
2002
2003                 if (dev_priv->cfb_plane == plane &&
2004                     dev_priv->display.disable_fbc)
2005                         dev_priv->display.disable_fbc(dev);
2006
2007                 /* Disable the VGA plane that we never use */
2008                 i915_disable_vga(dev);
2009
2010                 /* Disable display plane */
2011                 temp = I915_READ(dspcntr_reg);
2012                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2013                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2014                         /* Flush the plane changes */
2015                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2016                         I915_READ(dspbase_reg);
2017                 }
2018
2019                 if (!IS_I9XX(dev)) {
2020                         /* Wait for vblank for the disable to take effect */
2021                         intel_wait_for_vblank(dev);
2022                 }
2023
2024                 /* Next, disable display pipes */
2025                 temp = I915_READ(pipeconf_reg);
2026                 if ((temp & PIPEACONF_ENABLE) != 0) {
2027                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2028                         I915_READ(pipeconf_reg);
2029                 }
2030
2031                 /* Wait for vblank for the disable to take effect. */
2032                 intel_wait_for_vblank(dev);
2033
2034                 temp = I915_READ(dpll_reg);
2035                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2036                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2037                         I915_READ(dpll_reg);
2038                 }
2039
2040                 /* Wait for the clocks to turn off. */
2041                 udelay(150);
2042                 break;
2043         }
2044 }
2045
2046 /**
2047  * Sets the power management mode of the pipe and plane.
2048  *
2049  * This code should probably grow support for turning the cursor off and back
2050  * on appropriately at the same time as we're turning the pipe off/on.
2051  */
2052 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2053 {
2054         struct drm_device *dev = crtc->dev;
2055         struct drm_i915_private *dev_priv = dev->dev_private;
2056         struct drm_i915_master_private *master_priv;
2057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2058         int pipe = intel_crtc->pipe;
2059         bool enabled;
2060
2061         dev_priv->display.dpms(crtc, mode);
2062
2063         intel_crtc->dpms_mode = mode;
2064
2065         if (!dev->primary->master)
2066                 return;
2067
2068         master_priv = dev->primary->master->driver_priv;
2069         if (!master_priv->sarea_priv)
2070                 return;
2071
2072         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2073
2074         switch (pipe) {
2075         case 0:
2076                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2077                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2078                 break;
2079         case 1:
2080                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2081                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2082                 break;
2083         default:
2084                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2085                 break;
2086         }
2087 }
2088
2089 static void intel_crtc_prepare (struct drm_crtc *crtc)
2090 {
2091         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2092         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2093 }
2094
2095 static void intel_crtc_commit (struct drm_crtc *crtc)
2096 {
2097         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2098         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2099 }
2100
2101 void intel_encoder_prepare (struct drm_encoder *encoder)
2102 {
2103         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2104         /* lvds has its own version of prepare see intel_lvds_prepare */
2105         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2106 }
2107
2108 void intel_encoder_commit (struct drm_encoder *encoder)
2109 {
2110         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2111         /* lvds has its own version of commit see intel_lvds_commit */
2112         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2113 }
2114
2115 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2116                                   struct drm_display_mode *mode,
2117                                   struct drm_display_mode *adjusted_mode)
2118 {
2119         struct drm_device *dev = crtc->dev;
2120         if (HAS_PCH_SPLIT(dev)) {
2121                 /* FDI link clock is fixed at 2.7G */
2122                 if (mode->clock * 3 > 27000 * 4)
2123                         return MODE_CLOCK_HIGH;
2124         }
2125         return true;
2126 }
2127
2128 static int i945_get_display_clock_speed(struct drm_device *dev)
2129 {
2130         return 400000;
2131 }
2132
2133 static int i915_get_display_clock_speed(struct drm_device *dev)
2134 {
2135         return 333000;
2136 }
2137
2138 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2139 {
2140         return 200000;
2141 }
2142
2143 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2144 {
2145         u16 gcfgc = 0;
2146
2147         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2148
2149         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2150                 return 133000;
2151         else {
2152                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2153                 case GC_DISPLAY_CLOCK_333_MHZ:
2154                         return 333000;
2155                 default:
2156                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2157                         return 190000;
2158                 }
2159         }
2160 }
2161
2162 static int i865_get_display_clock_speed(struct drm_device *dev)
2163 {
2164         return 266000;
2165 }
2166
2167 static int i855_get_display_clock_speed(struct drm_device *dev)
2168 {
2169         u16 hpllcc = 0;
2170         /* Assume that the hardware is in the high speed state.  This
2171          * should be the default.
2172          */
2173         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2174         case GC_CLOCK_133_200:
2175         case GC_CLOCK_100_200:
2176                 return 200000;
2177         case GC_CLOCK_166_250:
2178                 return 250000;
2179         case GC_CLOCK_100_133:
2180                 return 133000;
2181         }
2182
2183         /* Shouldn't happen */
2184         return 0;
2185 }
2186
2187 static int i830_get_display_clock_speed(struct drm_device *dev)
2188 {
2189         return 133000;
2190 }
2191
2192 /**
2193  * Return the pipe currently connected to the panel fitter,
2194  * or -1 if the panel fitter is not present or not in use
2195  */
2196 int intel_panel_fitter_pipe (struct drm_device *dev)
2197 {
2198         struct drm_i915_private *dev_priv = dev->dev_private;
2199         u32  pfit_control;
2200
2201         /* i830 doesn't have a panel fitter */
2202         if (IS_I830(dev))
2203                 return -1;
2204
2205         pfit_control = I915_READ(PFIT_CONTROL);
2206
2207         /* See if the panel fitter is in use */
2208         if ((pfit_control & PFIT_ENABLE) == 0)
2209                 return -1;
2210
2211         /* 965 can place panel fitter on either pipe */
2212         if (IS_I965G(dev))
2213                 return (pfit_control >> 29) & 0x3;
2214
2215         /* older chips can only use pipe 1 */
2216         return 1;
2217 }
2218
2219 struct fdi_m_n {
2220         u32        tu;
2221         u32        gmch_m;
2222         u32        gmch_n;
2223         u32        link_m;
2224         u32        link_n;
2225 };
2226
2227 static void
2228 fdi_reduce_ratio(u32 *num, u32 *den)
2229 {
2230         while (*num > 0xffffff || *den > 0xffffff) {
2231                 *num >>= 1;
2232                 *den >>= 1;
2233         }
2234 }
2235
2236 #define DATA_N 0x800000
2237 #define LINK_N 0x80000
2238
2239 static void
2240 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2241                      int link_clock, struct fdi_m_n *m_n)
2242 {
2243         u64 temp;
2244
2245         m_n->tu = 64; /* default size */
2246
2247         temp = (u64) DATA_N * pixel_clock;
2248         temp = div_u64(temp, link_clock);
2249         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2250         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2251         m_n->gmch_n = DATA_N;
2252         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2253
2254         temp = (u64) LINK_N * pixel_clock;
2255         m_n->link_m = div_u64(temp, link_clock);
2256         m_n->link_n = LINK_N;
2257         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2258 }
2259
2260
2261 struct intel_watermark_params {
2262         unsigned long fifo_size;
2263         unsigned long max_wm;
2264         unsigned long default_wm;
2265         unsigned long guard_size;
2266         unsigned long cacheline_size;
2267 };
2268
2269 /* Pineview has different values for various configs */
2270 static struct intel_watermark_params pineview_display_wm = {
2271         PINEVIEW_DISPLAY_FIFO,
2272         PINEVIEW_MAX_WM,
2273         PINEVIEW_DFT_WM,
2274         PINEVIEW_GUARD_WM,
2275         PINEVIEW_FIFO_LINE_SIZE
2276 };
2277 static struct intel_watermark_params pineview_display_hplloff_wm = {
2278         PINEVIEW_DISPLAY_FIFO,
2279         PINEVIEW_MAX_WM,
2280         PINEVIEW_DFT_HPLLOFF_WM,
2281         PINEVIEW_GUARD_WM,
2282         PINEVIEW_FIFO_LINE_SIZE
2283 };
2284 static struct intel_watermark_params pineview_cursor_wm = {
2285         PINEVIEW_CURSOR_FIFO,
2286         PINEVIEW_CURSOR_MAX_WM,
2287         PINEVIEW_CURSOR_DFT_WM,
2288         PINEVIEW_CURSOR_GUARD_WM,
2289         PINEVIEW_FIFO_LINE_SIZE,
2290 };
2291 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2292         PINEVIEW_CURSOR_FIFO,
2293         PINEVIEW_CURSOR_MAX_WM,
2294         PINEVIEW_CURSOR_DFT_WM,
2295         PINEVIEW_CURSOR_GUARD_WM,
2296         PINEVIEW_FIFO_LINE_SIZE
2297 };
2298 static struct intel_watermark_params g4x_wm_info = {
2299         G4X_FIFO_SIZE,
2300         G4X_MAX_WM,
2301         G4X_MAX_WM,
2302         2,
2303         G4X_FIFO_LINE_SIZE,
2304 };
2305 static struct intel_watermark_params i945_wm_info = {
2306         I945_FIFO_SIZE,
2307         I915_MAX_WM,
2308         1,
2309         2,
2310         I915_FIFO_LINE_SIZE
2311 };
2312 static struct intel_watermark_params i915_wm_info = {
2313         I915_FIFO_SIZE,
2314         I915_MAX_WM,
2315         1,
2316         2,
2317         I915_FIFO_LINE_SIZE
2318 };
2319 static struct intel_watermark_params i855_wm_info = {
2320         I855GM_FIFO_SIZE,
2321         I915_MAX_WM,
2322         1,
2323         2,
2324         I830_FIFO_LINE_SIZE
2325 };
2326 static struct intel_watermark_params i830_wm_info = {
2327         I830_FIFO_SIZE,
2328         I915_MAX_WM,
2329         1,
2330         2,
2331         I830_FIFO_LINE_SIZE
2332 };
2333
2334 /**
2335  * intel_calculate_wm - calculate watermark level
2336  * @clock_in_khz: pixel clock
2337  * @wm: chip FIFO params
2338  * @pixel_size: display pixel size
2339  * @latency_ns: memory latency for the platform
2340  *
2341  * Calculate the watermark level (the level at which the display plane will
2342  * start fetching from memory again).  Each chip has a different display
2343  * FIFO size and allocation, so the caller needs to figure that out and pass
2344  * in the correct intel_watermark_params structure.
2345  *
2346  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2347  * on the pixel size.  When it reaches the watermark level, it'll start
2348  * fetching FIFO line sized based chunks from memory until the FIFO fills
2349  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2350  * will occur, and a display engine hang could result.
2351  */
2352 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2353                                         struct intel_watermark_params *wm,
2354                                         int pixel_size,
2355                                         unsigned long latency_ns)
2356 {
2357         long entries_required, wm_size;
2358
2359         /*
2360          * Note: we need to make sure we don't overflow for various clock &
2361          * latency values.
2362          * clocks go from a few thousand to several hundred thousand.
2363          * latency is usually a few thousand
2364          */
2365         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2366                 1000;
2367         entries_required /= wm->cacheline_size;
2368
2369         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2370
2371         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2372
2373         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2374
2375         /* Don't promote wm_size to unsigned... */
2376         if (wm_size > (long)wm->max_wm)
2377                 wm_size = wm->max_wm;
2378         if (wm_size <= 0)
2379                 wm_size = wm->default_wm;
2380         return wm_size;
2381 }
2382
2383 struct cxsr_latency {
2384         int is_desktop;
2385         unsigned long fsb_freq;
2386         unsigned long mem_freq;
2387         unsigned long display_sr;
2388         unsigned long display_hpll_disable;
2389         unsigned long cursor_sr;
2390         unsigned long cursor_hpll_disable;
2391 };
2392
2393 static struct cxsr_latency cxsr_latency_table[] = {
2394         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2395         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2396         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2397
2398         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2399         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2400         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2401
2402         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2403         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2404         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2405
2406         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2407         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2408         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2409
2410         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2411         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2412         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2413
2414         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2415         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2416         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2417 };
2418
2419 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2420                                                    int mem)
2421 {
2422         int i;
2423         struct cxsr_latency *latency;
2424
2425         if (fsb == 0 || mem == 0)
2426                 return NULL;
2427
2428         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2429                 latency = &cxsr_latency_table[i];
2430                 if (is_desktop == latency->is_desktop &&
2431                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2432                         return latency;
2433         }
2434
2435         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2436
2437         return NULL;
2438 }
2439
2440 static void pineview_disable_cxsr(struct drm_device *dev)
2441 {
2442         struct drm_i915_private *dev_priv = dev->dev_private;
2443         u32 reg;
2444
2445         /* deactivate cxsr */
2446         reg = I915_READ(DSPFW3);
2447         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2448         I915_WRITE(DSPFW3, reg);
2449         DRM_INFO("Big FIFO is disabled\n");
2450 }
2451
2452 static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
2453                                  int pixel_size)
2454 {
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         u32 reg;
2457         unsigned long wm;
2458         struct cxsr_latency *latency;
2459
2460         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2461                 dev_priv->mem_freq);
2462         if (!latency) {
2463                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2464                 pineview_disable_cxsr(dev);
2465                 return;
2466         }
2467
2468         /* Display SR */
2469         wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
2470                                 latency->display_sr);
2471         reg = I915_READ(DSPFW1);
2472         reg &= 0x7fffff;
2473         reg |= wm << 23;
2474         I915_WRITE(DSPFW1, reg);
2475         DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2476
2477         /* cursor SR */
2478         wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
2479                                 latency->cursor_sr);
2480         reg = I915_READ(DSPFW3);
2481         reg &= ~(0x3f << 24);
2482         reg |= (wm & 0x3f) << 24;
2483         I915_WRITE(DSPFW3, reg);
2484
2485         /* Display HPLL off SR */
2486         wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
2487                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2488         reg = I915_READ(DSPFW3);
2489         reg &= 0xfffffe00;
2490         reg |= wm & 0x1ff;
2491         I915_WRITE(DSPFW3, reg);
2492
2493         /* cursor HPLL off SR */
2494         wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
2495                                 latency->cursor_hpll_disable);
2496         reg = I915_READ(DSPFW3);
2497         reg &= ~(0x3f << 16);
2498         reg |= (wm & 0x3f) << 16;
2499         I915_WRITE(DSPFW3, reg);
2500         DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2501
2502         /* activate cxsr */
2503         reg = I915_READ(DSPFW3);
2504         reg |= PINEVIEW_SELF_REFRESH_EN;
2505         I915_WRITE(DSPFW3, reg);
2506
2507         DRM_INFO("Big FIFO is enabled\n");
2508
2509         return;
2510 }
2511
2512 /*
2513  * Latency for FIFO fetches is dependent on several factors:
2514  *   - memory configuration (speed, channels)
2515  *   - chipset
2516  *   - current MCH state
2517  * It can be fairly high in some situations, so here we assume a fairly
2518  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2519  * set this value too high, the FIFO will fetch frequently to stay full)
2520  * and power consumption (set it too low to save power and we might see
2521  * FIFO underruns and display "flicker").
2522  *
2523  * A value of 5us seems to be a good balance; safe for very low end
2524  * platforms but not overly aggressive on lower latency configs.
2525  */
2526 static const int latency_ns = 5000;
2527
2528 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2529 {
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         uint32_t dsparb = I915_READ(DSPARB);
2532         int size;
2533
2534         if (plane == 0)
2535                 size = dsparb & 0x7f;
2536         else
2537                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2538                         (dsparb & 0x7f);
2539
2540         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2541                         plane ? "B" : "A", size);
2542
2543         return size;
2544 }
2545
2546 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2547 {
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549         uint32_t dsparb = I915_READ(DSPARB);
2550         int size;
2551
2552         if (plane == 0)
2553                 size = dsparb & 0x1ff;
2554         else
2555                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2556                         (dsparb & 0x1ff);
2557         size >>= 1; /* Convert to cachelines */
2558
2559         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2560                         plane ? "B" : "A", size);
2561
2562         return size;
2563 }
2564
2565 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2566 {
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568         uint32_t dsparb = I915_READ(DSPARB);
2569         int size;
2570
2571         size = dsparb & 0x7f;
2572         size >>= 2; /* Convert to cachelines */
2573
2574         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2575                         plane ? "B" : "A",
2576                   size);
2577
2578         return size;
2579 }
2580
2581 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2582 {
2583         struct drm_i915_private *dev_priv = dev->dev_private;
2584         uint32_t dsparb = I915_READ(DSPARB);
2585         int size;
2586
2587         size = dsparb & 0x7f;
2588         size >>= 1; /* Convert to cachelines */
2589
2590         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2591                         plane ? "B" : "A", size);
2592
2593         return size;
2594 }
2595
2596 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2597                           int planeb_clock, int sr_hdisplay, int pixel_size)
2598 {
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         int total_size, cacheline_size;
2601         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2602         struct intel_watermark_params planea_params, planeb_params;
2603         unsigned long line_time_us;
2604         int sr_clock, sr_entries = 0, entries_required;
2605
2606         /* Create copies of the base settings for each pipe */
2607         planea_params = planeb_params = g4x_wm_info;
2608
2609         /* Grab a couple of global values before we overwrite them */
2610         total_size = planea_params.fifo_size;
2611         cacheline_size = planea_params.cacheline_size;
2612
2613         /*
2614          * Note: we need to make sure we don't overflow for various clock &
2615          * latency values.
2616          * clocks go from a few thousand to several hundred thousand.
2617          * latency is usually a few thousand
2618          */
2619         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2620                 1000;
2621         entries_required /= G4X_FIFO_LINE_SIZE;
2622         planea_wm = entries_required + planea_params.guard_size;
2623
2624         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2625                 1000;
2626         entries_required /= G4X_FIFO_LINE_SIZE;
2627         planeb_wm = entries_required + planeb_params.guard_size;
2628
2629         cursora_wm = cursorb_wm = 16;
2630         cursor_sr = 32;
2631
2632         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2633
2634         /* Calc sr entries for one plane configs */
2635         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2636                 /* self-refresh has much higher latency */
2637                 static const int sr_latency_ns = 12000;
2638
2639                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2640                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2641
2642                 /* Use ns/us then divide to preserve precision */
2643                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2644                               pixel_size * sr_hdisplay) / 1000;
2645                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2646                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2647                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2648         } else {
2649                 /* Turn off self refresh if both pipes are enabled */
2650                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2651                                         & ~FW_BLC_SELF_EN);
2652         }
2653
2654         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2655                   planea_wm, planeb_wm, sr_entries);
2656
2657         planea_wm &= 0x3f;
2658         planeb_wm &= 0x3f;
2659
2660         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2661                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2662                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2663         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2664                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2665         /* HPLL off in SR has some issues on G4x... disable it */
2666         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2667                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2668 }
2669
2670 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2671                            int planeb_clock, int sr_hdisplay, int pixel_size)
2672 {
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         unsigned long line_time_us;
2675         int sr_clock, sr_entries, srwm = 1;
2676
2677         /* Calc sr entries for one plane configs */
2678         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2679                 /* self-refresh has much higher latency */
2680                 static const int sr_latency_ns = 12000;
2681
2682                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2683                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2684
2685                 /* Use ns/us then divide to preserve precision */
2686                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2687                               pixel_size * sr_hdisplay) / 1000;
2688                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2689                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2690                 srwm = I945_FIFO_SIZE - sr_entries;
2691                 if (srwm < 0)
2692                         srwm = 1;
2693                 srwm &= 0x3f;
2694                 if (IS_I965GM(dev))
2695                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2696         } else {
2697                 /* Turn off self refresh if both pipes are enabled */
2698                 if (IS_I965GM(dev))
2699                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2700                                    & ~FW_BLC_SELF_EN);
2701         }
2702
2703         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2704                       srwm);
2705
2706         /* 965 has limitations... */
2707         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2708                    (8 << 0));
2709         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2710 }
2711
2712 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2713                            int planeb_clock, int sr_hdisplay, int pixel_size)
2714 {
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         uint32_t fwater_lo;
2717         uint32_t fwater_hi;
2718         int total_size, cacheline_size, cwm, srwm = 1;
2719         int planea_wm, planeb_wm;
2720         struct intel_watermark_params planea_params, planeb_params;
2721         unsigned long line_time_us;
2722         int sr_clock, sr_entries = 0;
2723
2724         /* Create copies of the base settings for each pipe */
2725         if (IS_I965GM(dev) || IS_I945GM(dev))
2726                 planea_params = planeb_params = i945_wm_info;
2727         else if (IS_I9XX(dev))
2728                 planea_params = planeb_params = i915_wm_info;
2729         else
2730                 planea_params = planeb_params = i855_wm_info;
2731
2732         /* Grab a couple of global values before we overwrite them */
2733         total_size = planea_params.fifo_size;
2734         cacheline_size = planea_params.cacheline_size;
2735
2736         /* Update per-plane FIFO sizes */
2737         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2738         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2739
2740         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2741                                        pixel_size, latency_ns);
2742         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2743                                        pixel_size, latency_ns);
2744         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2745
2746         /*
2747          * Overlay gets an aggressive default since video jitter is bad.
2748          */
2749         cwm = 2;
2750
2751         /* Calc sr entries for one plane configs */
2752         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2753             (!planea_clock || !planeb_clock)) {
2754                 /* self-refresh has much higher latency */
2755                 static const int sr_latency_ns = 6000;
2756
2757                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2758                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2759
2760                 /* Use ns/us then divide to preserve precision */
2761                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2762                               pixel_size * sr_hdisplay) / 1000;
2763                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2764                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2765                 srwm = total_size - sr_entries;
2766                 if (srwm < 0)
2767                         srwm = 1;
2768
2769                 if (IS_I945G(dev) || IS_I945GM(dev))
2770                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2771                 else if (IS_I915GM(dev)) {
2772                         /* 915M has a smaller SRWM field */
2773                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2774                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
2775                 }
2776         } else {
2777                 /* Turn off self refresh if both pipes are enabled */
2778                 if (IS_I945G(dev) || IS_I945GM(dev)) {
2779                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2780                                    & ~FW_BLC_SELF_EN);
2781                 } else if (IS_I915GM(dev)) {
2782                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
2783                 }
2784         }
2785
2786         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2787                   planea_wm, planeb_wm, cwm, srwm);
2788
2789         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2790         fwater_hi = (cwm & 0x1f);
2791
2792         /* Set request length to 8 cachelines per fetch */
2793         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2794         fwater_hi = fwater_hi | (1 << 8);
2795
2796         I915_WRITE(FW_BLC, fwater_lo);
2797         I915_WRITE(FW_BLC2, fwater_hi);
2798 }
2799
2800 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2801                            int unused2, int pixel_size)
2802 {
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2805         int planea_wm;
2806
2807         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2808
2809         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2810                                        pixel_size, latency_ns);
2811         fwater_lo |= (3<<8) | planea_wm;
2812
2813         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2814
2815         I915_WRITE(FW_BLC, fwater_lo);
2816 }
2817
2818 /**
2819  * intel_update_watermarks - update FIFO watermark values based on current modes
2820  *
2821  * Calculate watermark values for the various WM regs based on current mode
2822  * and plane configuration.
2823  *
2824  * There are several cases to deal with here:
2825  *   - normal (i.e. non-self-refresh)
2826  *   - self-refresh (SR) mode
2827  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2828  *   - lines are small relative to FIFO size (buffer can hold more than 2
2829  *     lines), so need to account for TLB latency
2830  *
2831  *   The normal calculation is:
2832  *     watermark = dotclock * bytes per pixel * latency
2833  *   where latency is platform & configuration dependent (we assume pessimal
2834  *   values here).
2835  *
2836  *   The SR calculation is:
2837  *     watermark = (trunc(latency/line time)+1) * surface width *
2838  *       bytes per pixel
2839  *   where
2840  *     line time = htotal / dotclock
2841  *   and latency is assumed to be high, as above.
2842  *
2843  * The final value programmed to the register should always be rounded up,
2844  * and include an extra 2 entries to account for clock crossings.
2845  *
2846  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2847  * to set the non-SR watermarks to 8.
2848   */
2849 static void intel_update_watermarks(struct drm_device *dev)
2850 {
2851         struct drm_i915_private *dev_priv = dev->dev_private;
2852         struct drm_crtc *crtc;
2853         struct intel_crtc *intel_crtc;
2854         int sr_hdisplay = 0;
2855         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2856         int enabled = 0, pixel_size = 0;
2857
2858         if (!dev_priv->display.update_wm)
2859                 return;
2860
2861         /* Get the clock config from both planes */
2862         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2863                 intel_crtc = to_intel_crtc(crtc);
2864                 if (crtc->enabled) {
2865                         enabled++;
2866                         if (intel_crtc->plane == 0) {
2867                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2868                                           intel_crtc->pipe, crtc->mode.clock);
2869                                 planea_clock = crtc->mode.clock;
2870                         } else {
2871                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2872                                           intel_crtc->pipe, crtc->mode.clock);
2873                                 planeb_clock = crtc->mode.clock;
2874                         }
2875                         sr_hdisplay = crtc->mode.hdisplay;
2876                         sr_clock = crtc->mode.clock;
2877                         if (crtc->fb)
2878                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2879                         else
2880                                 pixel_size = 4; /* by default */
2881                 }
2882         }
2883
2884         if (enabled <= 0)
2885                 return;
2886
2887         /* Single plane configs can enable self refresh */
2888         if (enabled == 1 && IS_PINEVIEW(dev))
2889                 pineview_enable_cxsr(dev, sr_clock, pixel_size);
2890         else if (IS_PINEVIEW(dev))
2891                 pineview_disable_cxsr(dev);
2892
2893         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2894                                     sr_hdisplay, pixel_size);
2895 }
2896
2897 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2898                                struct drm_display_mode *mode,
2899                                struct drm_display_mode *adjusted_mode,
2900                                int x, int y,
2901                                struct drm_framebuffer *old_fb)
2902 {
2903         struct drm_device *dev = crtc->dev;
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906         int pipe = intel_crtc->pipe;
2907         int plane = intel_crtc->plane;
2908         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2909         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2910         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2911         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2912         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2913         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2914         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2915         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2916         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2917         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2918         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2919         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2920         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2921         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2922         int refclk, num_connectors = 0;
2923         intel_clock_t clock, reduced_clock;
2924         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2925         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2926         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2927         bool is_edp = false;
2928         struct drm_mode_config *mode_config = &dev->mode_config;
2929         struct drm_connector *connector;
2930         const intel_limit_t *limit;
2931         int ret;
2932         struct fdi_m_n m_n = {0};
2933         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2934         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2935         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2936         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2937         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2938         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2939         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2940         int lvds_reg = LVDS;
2941         u32 temp;
2942         int sdvo_pixel_multiply;
2943         int target_clock;
2944
2945         drm_vblank_pre_modeset(dev, pipe);
2946
2947         list_for_each_entry(connector, &mode_config->connector_list, head) {
2948                 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
2949
2950                 if (!connector->encoder || connector->encoder->crtc != crtc)
2951                         continue;
2952
2953                 switch (intel_encoder->type) {
2954                 case INTEL_OUTPUT_LVDS:
2955                         is_lvds = true;
2956                         break;
2957                 case INTEL_OUTPUT_SDVO:
2958                 case INTEL_OUTPUT_HDMI:
2959                         is_sdvo = true;
2960                         if (intel_encoder->needs_tv_clock)
2961                                 is_tv = true;
2962                         break;
2963                 case INTEL_OUTPUT_DVO:
2964                         is_dvo = true;
2965                         break;
2966                 case INTEL_OUTPUT_TVOUT:
2967                         is_tv = true;
2968                         break;
2969                 case INTEL_OUTPUT_ANALOG:
2970                         is_crt = true;
2971                         break;
2972                 case INTEL_OUTPUT_DISPLAYPORT:
2973                         is_dp = true;
2974                         break;
2975                 case INTEL_OUTPUT_EDP:
2976                         is_edp = true;
2977                         break;
2978                 }
2979
2980                 num_connectors++;
2981         }
2982
2983         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
2984                 refclk = dev_priv->lvds_ssc_freq * 1000;
2985                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2986                                         refclk / 1000);
2987         } else if (IS_I9XX(dev)) {
2988                 refclk = 96000;
2989                 if (HAS_PCH_SPLIT(dev))
2990                         refclk = 120000; /* 120Mhz refclk */
2991         } else {
2992                 refclk = 48000;
2993         }
2994         
2995
2996         /*
2997          * Returns a set of divisors for the desired target clock with the given
2998          * refclk, or FALSE.  The returned values represent the clock equation:
2999          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3000          */
3001         limit = intel_limit(crtc);
3002         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3003         if (!ok) {
3004                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3005                 drm_vblank_post_modeset(dev, pipe);
3006                 return -EINVAL;
3007         }
3008
3009         if (is_lvds && dev_priv->lvds_downclock_avail) {
3010                 has_reduced_clock = limit->find_pll(limit, crtc,
3011                                                             dev_priv->lvds_downclock,
3012                                                             refclk,
3013                                                             &reduced_clock);
3014                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3015                         /*
3016                          * If the different P is found, it means that we can't
3017                          * switch the display clock by using the FP0/FP1.
3018                          * In such case we will disable the LVDS downclock
3019                          * feature.
3020                          */
3021                         DRM_DEBUG_KMS("Different P is found for "
3022                                                 "LVDS clock/downclock\n");
3023                         has_reduced_clock = 0;
3024                 }
3025         }
3026         /* SDVO TV has fixed PLL values depend on its clock range,
3027            this mirrors vbios setting. */
3028         if (is_sdvo && is_tv) {
3029                 if (adjusted_mode->clock >= 100000
3030                                 && adjusted_mode->clock < 140500) {
3031                         clock.p1 = 2;
3032                         clock.p2 = 10;
3033                         clock.n = 3;
3034                         clock.m1 = 16;
3035                         clock.m2 = 8;
3036                 } else if (adjusted_mode->clock >= 140500
3037                                 && adjusted_mode->clock <= 200000) {
3038                         clock.p1 = 1;
3039                         clock.p2 = 10;
3040                         clock.n = 6;
3041                         clock.m1 = 12;
3042                         clock.m2 = 8;
3043                 }
3044         }
3045
3046         /* FDI link */
3047         if (HAS_PCH_SPLIT(dev)) {
3048                 int lane, link_bw, bpp;
3049                 /* eDP doesn't require FDI link, so just set DP M/N
3050                    according to current link config */
3051                 if (is_edp) {
3052                         struct drm_connector *edp;
3053                         target_clock = mode->clock;
3054                         edp = intel_pipe_get_connector(crtc);
3055                         intel_edp_link_config(to_intel_encoder(edp),
3056                                         &lane, &link_bw);
3057                 } else {
3058                         /* DP over FDI requires target mode clock
3059                            instead of link clock */
3060                         if (is_dp)
3061                                 target_clock = mode->clock;
3062                         else
3063                                 target_clock = adjusted_mode->clock;
3064                         lane = 4;
3065                         link_bw = 270000;
3066                 }
3067
3068                 /* determine panel color depth */
3069                 temp = I915_READ(pipeconf_reg);
3070                 temp &= ~PIPE_BPC_MASK;
3071                 if (is_lvds) {
3072                         int lvds_reg = I915_READ(PCH_LVDS);
3073                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3074                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3075                                 temp |= PIPE_8BPC;
3076                         else
3077                                 temp |= PIPE_6BPC;
3078                 } else if (is_edp) {
3079                         switch (dev_priv->edp_bpp/3) {
3080                         case 8:
3081                                 temp |= PIPE_8BPC;
3082                                 break;
3083                         case 10:
3084                                 temp |= PIPE_10BPC;
3085                                 break;
3086                         case 6:
3087                                 temp |= PIPE_6BPC;
3088                                 break;
3089                         case 12:
3090                                 temp |= PIPE_12BPC;
3091                                 break;
3092                         }
3093                 } else
3094                         temp |= PIPE_8BPC;
3095                 I915_WRITE(pipeconf_reg, temp);
3096                 I915_READ(pipeconf_reg);
3097
3098                 switch (temp & PIPE_BPC_MASK) {
3099                 case PIPE_8BPC:
3100                         bpp = 24;
3101                         break;
3102                 case PIPE_10BPC:
3103                         bpp = 30;
3104                         break;
3105                 case PIPE_6BPC:
3106                         bpp = 18;
3107                         break;
3108                 case PIPE_12BPC:
3109                         bpp = 36;
3110                         break;
3111                 default:
3112                         DRM_ERROR("unknown pipe bpc value\n");
3113                         bpp = 24;
3114                 }
3115
3116                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3117         }
3118
3119         /* Ironlake: try to setup display ref clock before DPLL
3120          * enabling. This is only under driver's control after
3121          * PCH B stepping, previous chipset stepping should be
3122          * ignoring this setting.
3123          */
3124         if (HAS_PCH_SPLIT(dev)) {
3125                 temp = I915_READ(PCH_DREF_CONTROL);
3126                 /* Always enable nonspread source */
3127                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3128                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3129                 I915_WRITE(PCH_DREF_CONTROL, temp);
3130                 POSTING_READ(PCH_DREF_CONTROL);
3131
3132                 temp &= ~DREF_SSC_SOURCE_MASK;
3133                 temp |= DREF_SSC_SOURCE_ENABLE;
3134                 I915_WRITE(PCH_DREF_CONTROL, temp);
3135                 POSTING_READ(PCH_DREF_CONTROL);
3136
3137                 udelay(200);
3138
3139                 if (is_edp) {
3140                         if (dev_priv->lvds_use_ssc) {
3141                                 temp |= DREF_SSC1_ENABLE;
3142                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3143                                 POSTING_READ(PCH_DREF_CONTROL);
3144
3145                                 udelay(200);
3146
3147                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3148                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3149                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3150                                 POSTING_READ(PCH_DREF_CONTROL);
3151                         } else {
3152                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3153                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3154                                 POSTING_READ(PCH_DREF_CONTROL);
3155                         }
3156                 }
3157         }
3158
3159         if (IS_PINEVIEW(dev)) {
3160                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3161                 if (has_reduced_clock)
3162                         fp2 = (1 << reduced_clock.n) << 16 |
3163                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3164         } else {
3165                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3166                 if (has_reduced_clock)
3167                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3168                                 reduced_clock.m2;
3169         }
3170
3171         if (!HAS_PCH_SPLIT(dev))
3172                 dpll = DPLL_VGA_MODE_DIS;
3173
3174         if (IS_I9XX(dev)) {
3175                 if (is_lvds)
3176                         dpll |= DPLLB_MODE_LVDS;
3177                 else
3178                         dpll |= DPLLB_MODE_DAC_SERIAL;
3179                 if (is_sdvo) {
3180                         dpll |= DPLL_DVO_HIGH_SPEED;
3181                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3182                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3183                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3184                         else if (HAS_PCH_SPLIT(dev))
3185                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3186                 }
3187                 if (is_dp)
3188                         dpll |= DPLL_DVO_HIGH_SPEED;
3189
3190                 /* compute bitmask from p1 value */
3191                 if (IS_PINEVIEW(dev))
3192                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3193                 else {
3194                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3195                         /* also FPA1 */
3196                         if (HAS_PCH_SPLIT(dev))
3197                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3198                         if (IS_G4X(dev) && has_reduced_clock)
3199                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3200                 }
3201                 switch (clock.p2) {
3202                 case 5:
3203                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3204                         break;
3205                 case 7:
3206                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3207                         break;
3208                 case 10:
3209                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3210                         break;
3211                 case 14:
3212                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3213                         break;
3214                 }
3215                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3216                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3217         } else {
3218                 if (is_lvds) {
3219                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3220                 } else {
3221                         if (clock.p1 == 2)
3222                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3223                         else
3224                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3225                         if (clock.p2 == 4)
3226                                 dpll |= PLL_P2_DIVIDE_BY_4;
3227                 }
3228         }
3229
3230         if (is_sdvo && is_tv)
3231                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3232         else if (is_tv)
3233                 /* XXX: just matching BIOS for now */
3234                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3235                 dpll |= 3;
3236         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3237                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3238         else
3239                 dpll |= PLL_REF_INPUT_DREFCLK;
3240
3241         /* setup pipeconf */
3242         pipeconf = I915_READ(pipeconf_reg);
3243
3244         /* Set up the display plane register */
3245         dspcntr = DISPPLANE_GAMMA_ENABLE;
3246
3247         /* Ironlake's plane is forced to pipe, bit 24 is to
3248            enable color space conversion */
3249         if (!HAS_PCH_SPLIT(dev)) {
3250                 if (pipe == 0)
3251                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3252                 else
3253                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3254         }
3255
3256         if (pipe == 0 && !IS_I965G(dev)) {
3257                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3258                  * core speed.
3259                  *
3260                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3261                  * pipe == 0 check?
3262                  */
3263                 if (mode->clock >
3264                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3265                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3266                 else
3267                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3268         }
3269
3270         dspcntr |= DISPLAY_PLANE_ENABLE;
3271         pipeconf |= PIPEACONF_ENABLE;
3272         dpll |= DPLL_VCO_ENABLE;
3273
3274
3275         /* Disable the panel fitter if it was on our pipe */
3276         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3277                 I915_WRITE(PFIT_CONTROL, 0);
3278
3279         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3280         drm_mode_debug_printmodeline(mode);
3281
3282         /* assign to Ironlake registers */
3283         if (HAS_PCH_SPLIT(dev)) {
3284                 fp_reg = pch_fp_reg;
3285                 dpll_reg = pch_dpll_reg;
3286         }
3287
3288         if (is_edp) {
3289                 ironlake_disable_pll_edp(crtc);
3290         } else if ((dpll & DPLL_VCO_ENABLE)) {
3291                 I915_WRITE(fp_reg, fp);
3292                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3293                 I915_READ(dpll_reg);
3294                 udelay(150);
3295         }
3296
3297         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3298          * This is an exception to the general rule that mode_set doesn't turn
3299          * things on.
3300          */
3301         if (is_lvds) {
3302                 u32 lvds;
3303
3304                 if (HAS_PCH_SPLIT(dev))
3305                         lvds_reg = PCH_LVDS;
3306
3307                 lvds = I915_READ(lvds_reg);
3308                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3309                 /* set the corresponsding LVDS_BORDER bit */
3310                 lvds |= dev_priv->lvds_border_bits;
3311                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3312                  * set the DPLLs for dual-channel mode or not.
3313                  */
3314                 if (clock.p2 == 7)
3315                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3316                 else
3317                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3318
3319                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3320                  * appropriately here, but we need to look more thoroughly into how
3321                  * panels behave in the two modes.
3322                  */
3323                 /* set the dithering flag */
3324                 if (IS_I965G(dev)) {
3325                         if (dev_priv->lvds_dither) {
3326                                 if (HAS_PCH_SPLIT(dev))
3327                                         pipeconf |= PIPE_ENABLE_DITHER;
3328                                 else
3329                                         lvds |= LVDS_ENABLE_DITHER;
3330                         } else {
3331                                 if (HAS_PCH_SPLIT(dev))
3332                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3333                                 else
3334                                         lvds &= ~LVDS_ENABLE_DITHER;
3335                         }
3336                 }
3337                 I915_WRITE(lvds_reg, lvds);
3338                 I915_READ(lvds_reg);
3339         }
3340         if (is_dp)
3341                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3342
3343         if (!is_edp) {
3344                 I915_WRITE(fp_reg, fp);
3345                 I915_WRITE(dpll_reg, dpll);
3346                 I915_READ(dpll_reg);
3347                 /* Wait for the clocks to stabilize. */
3348                 udelay(150);
3349
3350                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3351                         if (is_sdvo) {
3352                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3353                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3354                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3355                         } else
3356                                 I915_WRITE(dpll_md_reg, 0);
3357                 } else {
3358                         /* write it again -- the BIOS does, after all */
3359                         I915_WRITE(dpll_reg, dpll);
3360                 }
3361                 I915_READ(dpll_reg);
3362                 /* Wait for the clocks to stabilize. */
3363                 udelay(150);
3364         }
3365
3366         if (is_lvds && has_reduced_clock && i915_powersave) {
3367                 I915_WRITE(fp_reg + 4, fp2);
3368                 intel_crtc->lowfreq_avail = true;
3369                 if (HAS_PIPE_CXSR(dev)) {
3370                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3371                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3372                 }
3373         } else {
3374                 I915_WRITE(fp_reg + 4, fp);
3375                 intel_crtc->lowfreq_avail = false;
3376                 if (HAS_PIPE_CXSR(dev)) {
3377                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3378                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3379                 }
3380         }
3381
3382         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3383                    ((adjusted_mode->crtc_htotal - 1) << 16));
3384         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3385                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3386         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3387                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3388         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3389                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3390         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3391                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3392         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3393                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3394         /* pipesrc and dspsize control the size that is scaled from, which should
3395          * always be the user's requested size.
3396          */
3397         if (!HAS_PCH_SPLIT(dev)) {
3398                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3399                                 (mode->hdisplay - 1));
3400                 I915_WRITE(dsppos_reg, 0);
3401         }
3402         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3403
3404         if (HAS_PCH_SPLIT(dev)) {
3405                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3406                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3407                 I915_WRITE(link_m1_reg, m_n.link_m);
3408                 I915_WRITE(link_n1_reg, m_n.link_n);
3409
3410                 if (is_edp) {
3411                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3412                 } else {
3413                         /* enable FDI RX PLL too */
3414                         temp = I915_READ(fdi_rx_reg);
3415                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3416                         udelay(200);
3417                 }
3418         }
3419
3420         I915_WRITE(pipeconf_reg, pipeconf);
3421         I915_READ(pipeconf_reg);
3422
3423         intel_wait_for_vblank(dev);
3424
3425         if (IS_IRONLAKE(dev)) {
3426                 /* enable address swizzle for tiling buffer */
3427                 temp = I915_READ(DISP_ARB_CTL);
3428                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3429         }
3430
3431         I915_WRITE(dspcntr_reg, dspcntr);
3432
3433         /* Flush the plane changes */
3434         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3435
3436         if ((IS_I965G(dev) || plane == 0))
3437                 intel_update_fbc(crtc, &crtc->mode);
3438
3439         intel_update_watermarks(dev);
3440
3441         drm_vblank_post_modeset(dev, pipe);
3442
3443         return ret;
3444 }
3445
3446 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3447 void intel_crtc_load_lut(struct drm_crtc *crtc)
3448 {
3449         struct drm_device *dev = crtc->dev;
3450         struct drm_i915_private *dev_priv = dev->dev_private;
3451         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3453         int i;
3454
3455         /* The clocks have to be on to load the palette. */
3456         if (!crtc->enabled)
3457                 return;
3458
3459         /* use legacy palette for Ironlake */
3460         if (HAS_PCH_SPLIT(dev))
3461                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3462                                                    LGC_PALETTE_B;
3463
3464         for (i = 0; i < 256; i++) {
3465                 I915_WRITE(palreg + 4 * i,
3466                            (intel_crtc->lut_r[i] << 16) |
3467                            (intel_crtc->lut_g[i] << 8) |
3468                            intel_crtc->lut_b[i]);
3469         }
3470 }
3471
3472 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3473                                  struct drm_file *file_priv,
3474                                  uint32_t handle,
3475                                  uint32_t width, uint32_t height)
3476 {
3477         struct drm_device *dev = crtc->dev;
3478         struct drm_i915_private *dev_priv = dev->dev_private;
3479         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3480         struct drm_gem_object *bo;
3481         struct drm_i915_gem_object *obj_priv;
3482         int pipe = intel_crtc->pipe;
3483         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3484         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3485         uint32_t temp = I915_READ(control);
3486         size_t addr;
3487         int ret;
3488
3489         DRM_DEBUG_KMS("\n");
3490
3491         /* if we want to turn off the cursor ignore width and height */
3492         if (!handle) {
3493                 DRM_DEBUG_KMS("cursor off\n");
3494                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3495                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3496                         temp |= CURSOR_MODE_DISABLE;
3497                 } else {
3498                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3499                 }
3500                 addr = 0;
3501                 bo = NULL;
3502                 mutex_lock(&dev->struct_mutex);
3503                 goto finish;
3504         }
3505
3506         /* Currently we only support 64x64 cursors */
3507         if (width != 64 || height != 64) {
3508                 DRM_ERROR("we currently only support 64x64 cursors\n");
3509                 return -EINVAL;
3510         }
3511
3512         bo = drm_gem_object_lookup(dev, file_priv, handle);
3513         if (!bo)
3514                 return -ENOENT;
3515
3516         obj_priv = to_intel_bo(bo);
3517
3518         if (bo->size < width * height * 4) {
3519                 DRM_ERROR("buffer is to small\n");
3520                 ret = -ENOMEM;
3521                 goto fail;
3522         }
3523
3524         /* we only need to pin inside GTT if cursor is non-phy */
3525         mutex_lock(&dev->struct_mutex);
3526         if (!dev_priv->info->cursor_needs_physical) {
3527                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3528                 if (ret) {
3529                         DRM_ERROR("failed to pin cursor bo\n");
3530                         goto fail_locked;
3531                 }
3532                 addr = obj_priv->gtt_offset;
3533         } else {
3534                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3535                 if (ret) {
3536                         DRM_ERROR("failed to attach phys object\n");
3537                         goto fail_locked;
3538                 }
3539                 addr = obj_priv->phys_obj->handle->busaddr;
3540         }
3541
3542         if (!IS_I9XX(dev))
3543                 I915_WRITE(CURSIZE, (height << 12) | width);
3544
3545         /* Hooray for CUR*CNTR differences */
3546         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3547                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3548                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3549                 temp |= (pipe << 28); /* Connect to correct pipe */
3550         } else {
3551                 temp &= ~(CURSOR_FORMAT_MASK);
3552                 temp |= CURSOR_ENABLE;
3553                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3554         }
3555
3556  finish:
3557         I915_WRITE(control, temp);
3558         I915_WRITE(base, addr);
3559
3560         if (intel_crtc->cursor_bo) {
3561                 if (dev_priv->info->cursor_needs_physical) {
3562                         if (intel_crtc->cursor_bo != bo)
3563                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3564                 } else
3565                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3566                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3567         }
3568
3569         mutex_unlock(&dev->struct_mutex);
3570
3571         intel_crtc->cursor_addr = addr;
3572         intel_crtc->cursor_bo = bo;
3573
3574         return 0;
3575 fail_locked:
3576         mutex_unlock(&dev->struct_mutex);
3577 fail:
3578         drm_gem_object_unreference_unlocked(bo);
3579         return ret;
3580 }
3581
3582 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3583 {
3584         struct drm_device *dev = crtc->dev;
3585         struct drm_i915_private *dev_priv = dev->dev_private;
3586         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3587         struct intel_framebuffer *intel_fb;
3588         int pipe = intel_crtc->pipe;
3589         uint32_t temp = 0;
3590         uint32_t adder;
3591
3592         if (crtc->fb) {
3593                 intel_fb = to_intel_framebuffer(crtc->fb);
3594                 intel_mark_busy(dev, intel_fb->obj);
3595         }
3596
3597         if (x < 0) {
3598                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3599                 x = -x;
3600         }
3601         if (y < 0) {
3602                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3603                 y = -y;
3604         }
3605
3606         temp |= x << CURSOR_X_SHIFT;
3607         temp |= y << CURSOR_Y_SHIFT;
3608
3609         adder = intel_crtc->cursor_addr;
3610         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3611         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3612
3613         return 0;
3614 }
3615
3616 /** Sets the color ramps on behalf of RandR */
3617 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3618                                  u16 blue, int regno)
3619 {
3620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
3622         intel_crtc->lut_r[regno] = red >> 8;
3623         intel_crtc->lut_g[regno] = green >> 8;
3624         intel_crtc->lut_b[regno] = blue >> 8;
3625 }
3626
3627 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3628                              u16 *blue, int regno)
3629 {
3630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631
3632         *red = intel_crtc->lut_r[regno] << 8;
3633         *green = intel_crtc->lut_g[regno] << 8;
3634         *blue = intel_crtc->lut_b[regno] << 8;
3635 }
3636
3637 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3638                                  u16 *blue, uint32_t size)
3639 {
3640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3641         int i;
3642
3643         if (size != 256)
3644                 return;
3645
3646         for (i = 0; i < 256; i++) {
3647                 intel_crtc->lut_r[i] = red[i] >> 8;
3648                 intel_crtc->lut_g[i] = green[i] >> 8;
3649                 intel_crtc->lut_b[i] = blue[i] >> 8;
3650         }
3651
3652         intel_crtc_load_lut(crtc);
3653 }
3654
3655 /**
3656  * Get a pipe with a simple mode set on it for doing load-based monitor
3657  * detection.
3658  *
3659  * It will be up to the load-detect code to adjust the pipe as appropriate for
3660  * its requirements.  The pipe will be connected to no other encoders.
3661  *
3662  * Currently this code will only succeed if there is a pipe with no encoders
3663  * configured for it.  In the future, it could choose to temporarily disable
3664  * some outputs to free up a pipe for its use.
3665  *
3666  * \return crtc, or NULL if no pipes are available.
3667  */
3668
3669 /* VESA 640x480x72Hz mode to set on the pipe */
3670 static struct drm_display_mode load_detect_mode = {
3671         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3672                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3673 };
3674
3675 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
3676                                             struct drm_display_mode *mode,
3677                                             int *dpms_mode)
3678 {
3679         struct intel_crtc *intel_crtc;
3680         struct drm_crtc *possible_crtc;
3681         struct drm_crtc *supported_crtc =NULL;
3682         struct drm_encoder *encoder = &intel_encoder->enc;
3683         struct drm_crtc *crtc = NULL;
3684         struct drm_device *dev = encoder->dev;
3685         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3686         struct drm_crtc_helper_funcs *crtc_funcs;
3687         int i = -1;
3688
3689         /*
3690          * Algorithm gets a little messy:
3691          *   - if the connector already has an assigned crtc, use it (but make
3692          *     sure it's on first)
3693          *   - try to find the first unused crtc that can drive this connector,
3694          *     and use that if we find one
3695          *   - if there are no unused crtcs available, try to use the first
3696          *     one we found that supports the connector
3697          */
3698
3699         /* See if we already have a CRTC for this connector */
3700         if (encoder->crtc) {
3701                 crtc = encoder->crtc;
3702                 /* Make sure the crtc and connector are running */
3703                 intel_crtc = to_intel_crtc(crtc);
3704                 *dpms_mode = intel_crtc->dpms_mode;
3705                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3706                         crtc_funcs = crtc->helper_private;
3707                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3708                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3709                 }
3710                 return crtc;
3711         }
3712
3713         /* Find an unused one (if possible) */
3714         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3715                 i++;
3716                 if (!(encoder->possible_crtcs & (1 << i)))
3717                         continue;
3718                 if (!possible_crtc->enabled) {
3719                         crtc = possible_crtc;
3720                         break;
3721                 }
3722                 if (!supported_crtc)
3723                         supported_crtc = possible_crtc;
3724         }
3725
3726         /*
3727          * If we didn't find an unused CRTC, don't use any.
3728          */
3729         if (!crtc) {
3730                 return NULL;
3731         }
3732
3733         encoder->crtc = crtc;
3734         intel_encoder->base.encoder = encoder;
3735         intel_encoder->load_detect_temp = true;
3736
3737         intel_crtc = to_intel_crtc(crtc);
3738         *dpms_mode = intel_crtc->dpms_mode;
3739
3740         if (!crtc->enabled) {
3741                 if (!mode)
3742                         mode = &load_detect_mode;
3743                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3744         } else {
3745                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3746                         crtc_funcs = crtc->helper_private;
3747                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3748                 }
3749
3750                 /* Add this connector to the crtc */
3751                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3752                 encoder_funcs->commit(encoder);
3753         }
3754         /* let the connector get through one full cycle before testing */
3755         intel_wait_for_vblank(dev);
3756
3757         return crtc;
3758 }
3759
3760 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder, int dpms_mode)
3761 {
3762         struct drm_encoder *encoder = &intel_encoder->enc;
3763         struct drm_device *dev = encoder->dev;
3764         struct drm_crtc *crtc = encoder->crtc;
3765         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3766         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3767
3768         if (intel_encoder->load_detect_temp) {
3769                 encoder->crtc = NULL;
3770                 intel_encoder->base.encoder = NULL;
3771                 intel_encoder->load_detect_temp = false;
3772                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3773                 drm_helper_disable_unused_functions(dev);
3774         }
3775
3776         /* Switch crtc and encoder back off if necessary */
3777         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3778                 if (encoder->crtc == crtc)
3779                         encoder_funcs->dpms(encoder, dpms_mode);
3780                 crtc_funcs->dpms(crtc, dpms_mode);
3781         }
3782 }
3783
3784 /* Returns the clock of the currently programmed mode of the given pipe. */
3785 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3786 {
3787         struct drm_i915_private *dev_priv = dev->dev_private;
3788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3789         int pipe = intel_crtc->pipe;
3790         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3791         u32 fp;
3792         intel_clock_t clock;
3793
3794         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3795                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3796         else
3797                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3798
3799         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3800         if (IS_PINEVIEW(dev)) {
3801                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3802                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
3803         } else {
3804                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3805                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3806         }
3807
3808         if (IS_I9XX(dev)) {
3809                 if (IS_PINEVIEW(dev))
3810                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
3811                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
3812                 else
3813                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3814                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3815
3816                 switch (dpll & DPLL_MODE_MASK) {
3817                 case DPLLB_MODE_DAC_SERIAL:
3818                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3819                                 5 : 10;
3820                         break;
3821                 case DPLLB_MODE_LVDS:
3822                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3823                                 7 : 14;
3824                         break;
3825                 default:
3826                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3827                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3828                         return 0;
3829                 }
3830
3831                 /* XXX: Handle the 100Mhz refclk */
3832                 intel_clock(dev, 96000, &clock);
3833         } else {
3834                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3835
3836                 if (is_lvds) {
3837                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3838                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3839                         clock.p2 = 14;
3840
3841                         if ((dpll & PLL_REF_INPUT_MASK) ==
3842                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3843                                 /* XXX: might not be 66MHz */
3844                                 intel_clock(dev, 66000, &clock);
3845                         } else
3846                                 intel_clock(dev, 48000, &clock);
3847                 } else {
3848                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3849                                 clock.p1 = 2;
3850                         else {
3851                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3852                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3853                         }
3854                         if (dpll & PLL_P2_DIVIDE_BY_4)
3855                                 clock.p2 = 4;
3856                         else
3857                                 clock.p2 = 2;
3858
3859                         intel_clock(dev, 48000, &clock);
3860                 }
3861         }
3862
3863         /* XXX: It would be nice to validate the clocks, but we can't reuse
3864          * i830PllIsValid() because it relies on the xf86_config connector
3865          * configuration being accurate, which it isn't necessarily.
3866          */
3867
3868         return clock.dot;
3869 }
3870
3871 /** Returns the currently programmed mode of the given pipe. */
3872 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3873                                              struct drm_crtc *crtc)
3874 {
3875         struct drm_i915_private *dev_priv = dev->dev_private;
3876         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3877         int pipe = intel_crtc->pipe;
3878         struct drm_display_mode *mode;
3879         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3880         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3881         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3882         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3883
3884         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3885         if (!mode)
3886                 return NULL;
3887
3888         mode->clock = intel_crtc_clock_get(dev, crtc);
3889         mode->hdisplay = (htot & 0xffff) + 1;
3890         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3891         mode->hsync_start = (hsync & 0xffff) + 1;
3892         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3893         mode->vdisplay = (vtot & 0xffff) + 1;
3894         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3895         mode->vsync_start = (vsync & 0xffff) + 1;
3896         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3897
3898         drm_mode_set_name(mode);
3899         drm_mode_set_crtcinfo(mode, 0);
3900
3901         return mode;
3902 }
3903
3904 #define GPU_IDLE_TIMEOUT 500 /* ms */
3905
3906 /* When this timer fires, we've been idle for awhile */
3907 static void intel_gpu_idle_timer(unsigned long arg)
3908 {
3909         struct drm_device *dev = (struct drm_device *)arg;
3910         drm_i915_private_t *dev_priv = dev->dev_private;
3911
3912         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3913
3914         dev_priv->busy = false;
3915
3916         queue_work(dev_priv->wq, &dev_priv->idle_work);
3917 }
3918
3919 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3920
3921 static void intel_crtc_idle_timer(unsigned long arg)
3922 {
3923         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3924         struct drm_crtc *crtc = &intel_crtc->base;
3925         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3926
3927         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3928
3929         intel_crtc->busy = false;
3930
3931         queue_work(dev_priv->wq, &dev_priv->idle_work);
3932 }
3933
3934 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3935 {
3936         struct drm_device *dev = crtc->dev;
3937         drm_i915_private_t *dev_priv = dev->dev_private;
3938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3939         int pipe = intel_crtc->pipe;
3940         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3941         int dpll = I915_READ(dpll_reg);
3942
3943         if (HAS_PCH_SPLIT(dev))
3944                 return;
3945
3946         if (!dev_priv->lvds_downclock_avail)
3947                 return;
3948
3949         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3950                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3951
3952                 /* Unlock panel regs */
3953                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3954
3955                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3956                 I915_WRITE(dpll_reg, dpll);
3957                 dpll = I915_READ(dpll_reg);
3958                 intel_wait_for_vblank(dev);
3959                 dpll = I915_READ(dpll_reg);
3960                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3961                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3962
3963                 /* ...and lock them again */
3964                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3965         }
3966
3967         /* Schedule downclock */
3968         if (schedule)
3969                 mod_timer(&intel_crtc->idle_timer, jiffies +
3970                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3971 }
3972
3973 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3974 {
3975         struct drm_device *dev = crtc->dev;
3976         drm_i915_private_t *dev_priv = dev->dev_private;
3977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3978         int pipe = intel_crtc->pipe;
3979         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3980         int dpll = I915_READ(dpll_reg);
3981
3982         if (HAS_PCH_SPLIT(dev))
3983                 return;
3984
3985         if (!dev_priv->lvds_downclock_avail)
3986                 return;
3987
3988         /*
3989          * Since this is called by a timer, we should never get here in
3990          * the manual case.
3991          */
3992         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3993                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3994
3995                 /* Unlock panel regs */
3996                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3997
3998                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3999                 I915_WRITE(dpll_reg, dpll);
4000                 dpll = I915_READ(dpll_reg);
4001                 intel_wait_for_vblank(dev);
4002                 dpll = I915_READ(dpll_reg);
4003                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4004                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4005
4006                 /* ...and lock them again */
4007                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4008         }
4009
4010 }
4011
4012 /**
4013  * intel_idle_update - adjust clocks for idleness
4014  * @work: work struct
4015  *
4016  * Either the GPU or display (or both) went idle.  Check the busy status
4017  * here and adjust the CRTC and GPU clocks as necessary.
4018  */
4019 static void intel_idle_update(struct work_struct *work)
4020 {
4021         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4022                                                     idle_work);
4023         struct drm_device *dev = dev_priv->dev;
4024         struct drm_crtc *crtc;
4025         struct intel_crtc *intel_crtc;
4026
4027         if (!i915_powersave)
4028                 return;
4029
4030         mutex_lock(&dev->struct_mutex);
4031
4032         if (IS_I945G(dev) || IS_I945GM(dev)) {
4033                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4034                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4035         }
4036
4037         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4038                 /* Skip inactive CRTCs */
4039                 if (!crtc->fb)
4040                         continue;
4041
4042                 intel_crtc = to_intel_crtc(crtc);
4043                 if (!intel_crtc->busy)
4044                         intel_decrease_pllclock(crtc);
4045         }
4046
4047         mutex_unlock(&dev->struct_mutex);
4048 }
4049
4050 /**
4051  * intel_mark_busy - mark the GPU and possibly the display busy
4052  * @dev: drm device
4053  * @obj: object we're operating on
4054  *
4055  * Callers can use this function to indicate that the GPU is busy processing
4056  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4057  * buffer), we'll also mark the display as busy, so we know to increase its
4058  * clock frequency.
4059  */
4060 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4061 {
4062         drm_i915_private_t *dev_priv = dev->dev_private;
4063         struct drm_crtc *crtc = NULL;
4064         struct intel_framebuffer *intel_fb;
4065         struct intel_crtc *intel_crtc;
4066
4067         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4068                 return;
4069
4070         if (!dev_priv->busy) {
4071                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4072                         u32 fw_blc_self;
4073
4074                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4075                         fw_blc_self = I915_READ(FW_BLC_SELF);
4076                         fw_blc_self &= ~FW_BLC_SELF_EN;
4077                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4078                 }
4079                 dev_priv->busy = true;
4080         } else
4081                 mod_timer(&dev_priv->idle_timer, jiffies +
4082                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4083
4084         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4085                 if (!crtc->fb)
4086                         continue;
4087
4088                 intel_crtc = to_intel_crtc(crtc);
4089                 intel_fb = to_intel_framebuffer(crtc->fb);
4090                 if (intel_fb->obj == obj) {
4091                         if (!intel_crtc->busy) {
4092                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4093                                         u32 fw_blc_self;
4094
4095                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4096                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4097                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4098                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4099                                 }
4100                                 /* Non-busy -> busy, upclock */
4101                                 intel_increase_pllclock(crtc, true);
4102                                 intel_crtc->busy = true;
4103                         } else {
4104                                 /* Busy -> busy, put off timer */
4105                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4106                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4107                         }
4108                 }
4109         }
4110 }
4111
4112 static void intel_crtc_destroy(struct drm_crtc *crtc)
4113 {
4114         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4115
4116         drm_crtc_cleanup(crtc);
4117         kfree(intel_crtc);
4118 }
4119
4120 struct intel_unpin_work {
4121         struct work_struct work;
4122         struct drm_device *dev;
4123         struct drm_gem_object *old_fb_obj;
4124         struct drm_gem_object *pending_flip_obj;
4125         struct drm_pending_vblank_event *event;
4126         int pending;
4127 };
4128
4129 static void intel_unpin_work_fn(struct work_struct *__work)
4130 {
4131         struct intel_unpin_work *work =
4132                 container_of(__work, struct intel_unpin_work, work);
4133
4134         mutex_lock(&work->dev->struct_mutex);
4135         i915_gem_object_unpin(work->old_fb_obj);
4136         drm_gem_object_unreference(work->pending_flip_obj);
4137         drm_gem_object_unreference(work->old_fb_obj);
4138         mutex_unlock(&work->dev->struct_mutex);
4139         kfree(work);
4140 }
4141
4142 static void do_intel_finish_page_flip(struct drm_device *dev,
4143                                       struct drm_crtc *crtc)
4144 {
4145         drm_i915_private_t *dev_priv = dev->dev_private;
4146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4147         struct intel_unpin_work *work;
4148         struct drm_i915_gem_object *obj_priv;
4149         struct drm_pending_vblank_event *e;
4150         struct timeval now;
4151         unsigned long flags;
4152
4153         /* Ignore early vblank irqs */
4154         if (intel_crtc == NULL)
4155                 return;
4156
4157         spin_lock_irqsave(&dev->event_lock, flags);
4158         work = intel_crtc->unpin_work;
4159         if (work == NULL || !work->pending) {
4160                 spin_unlock_irqrestore(&dev->event_lock, flags);
4161                 return;
4162         }
4163
4164         intel_crtc->unpin_work = NULL;
4165         drm_vblank_put(dev, intel_crtc->pipe);
4166
4167         if (work->event) {
4168                 e = work->event;
4169                 do_gettimeofday(&now);
4170                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4171                 e->event.tv_sec = now.tv_sec;
4172                 e->event.tv_usec = now.tv_usec;
4173                 list_add_tail(&e->base.link,
4174                               &e->base.file_priv->event_list);
4175                 wake_up_interruptible(&e->base.file_priv->event_wait);
4176         }
4177
4178         spin_unlock_irqrestore(&dev->event_lock, flags);
4179
4180         obj_priv = to_intel_bo(work->pending_flip_obj);
4181
4182         /* Initial scanout buffer will have a 0 pending flip count */
4183         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4184             atomic_dec_and_test(&obj_priv->pending_flip))
4185                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4186         schedule_work(&work->work);
4187 }
4188
4189 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4190 {
4191         drm_i915_private_t *dev_priv = dev->dev_private;
4192         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4193
4194         do_intel_finish_page_flip(dev, crtc);
4195 }
4196
4197 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4198 {
4199         drm_i915_private_t *dev_priv = dev->dev_private;
4200         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4201
4202         do_intel_finish_page_flip(dev, crtc);
4203 }
4204
4205 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4206 {
4207         drm_i915_private_t *dev_priv = dev->dev_private;
4208         struct intel_crtc *intel_crtc =
4209                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4210         unsigned long flags;
4211
4212         spin_lock_irqsave(&dev->event_lock, flags);
4213         if (intel_crtc->unpin_work) {
4214                 intel_crtc->unpin_work->pending = 1;
4215         } else {
4216                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4217         }
4218         spin_unlock_irqrestore(&dev->event_lock, flags);
4219 }
4220
4221 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4222                                 struct drm_framebuffer *fb,
4223                                 struct drm_pending_vblank_event *event)
4224 {
4225         struct drm_device *dev = crtc->dev;
4226         struct drm_i915_private *dev_priv = dev->dev_private;
4227         struct intel_framebuffer *intel_fb;
4228         struct drm_i915_gem_object *obj_priv;
4229         struct drm_gem_object *obj;
4230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4231         struct intel_unpin_work *work;
4232         unsigned long flags;
4233         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4234         int ret, pipesrc;
4235         RING_LOCALS;
4236
4237         work = kzalloc(sizeof *work, GFP_KERNEL);
4238         if (work == NULL)
4239                 return -ENOMEM;
4240
4241         mutex_lock(&dev->struct_mutex);
4242
4243         work->event = event;
4244         work->dev = crtc->dev;
4245         intel_fb = to_intel_framebuffer(crtc->fb);
4246         work->old_fb_obj = intel_fb->obj;
4247         INIT_WORK(&work->work, intel_unpin_work_fn);
4248
4249         /* We borrow the event spin lock for protecting unpin_work */
4250         spin_lock_irqsave(&dev->event_lock, flags);
4251         if (intel_crtc->unpin_work) {
4252                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4253                 spin_unlock_irqrestore(&dev->event_lock, flags);
4254                 kfree(work);
4255                 mutex_unlock(&dev->struct_mutex);
4256                 return -EBUSY;
4257         }
4258         intel_crtc->unpin_work = work;
4259         spin_unlock_irqrestore(&dev->event_lock, flags);
4260
4261         intel_fb = to_intel_framebuffer(fb);
4262         obj = intel_fb->obj;
4263
4264         ret = intel_pin_and_fence_fb_obj(dev, obj);
4265         if (ret != 0) {
4266                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4267                           to_intel_bo(obj));
4268                 kfree(work);
4269                 intel_crtc->unpin_work = NULL;
4270                 mutex_unlock(&dev->struct_mutex);
4271                 return ret;
4272         }
4273
4274         /* Reference the objects for the scheduled work. */
4275         drm_gem_object_reference(work->old_fb_obj);
4276         drm_gem_object_reference(obj);
4277
4278         crtc->fb = fb;
4279         i915_gem_object_flush_write_domain(obj);
4280         drm_vblank_get(dev, intel_crtc->pipe);
4281         obj_priv = to_intel_bo(obj);
4282         atomic_inc(&obj_priv->pending_flip);
4283         work->pending_flip_obj = obj;
4284
4285         BEGIN_LP_RING(4);
4286         if (IS_I965G(dev)) {
4287                 OUT_RING(MI_DISPLAY_FLIP |
4288                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4289                 OUT_RING(fb->pitch);
4290                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4291                 pipesrc = I915_READ(pipesrc_reg); 
4292                 OUT_RING(pipesrc & 0x0fff0fff);
4293         } else {
4294                 OUT_RING(MI_DISPLAY_FLIP_I915 |
4295                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4296                 OUT_RING(fb->pitch);
4297                 OUT_RING(obj_priv->gtt_offset);
4298                 OUT_RING(MI_NOOP);
4299         }
4300         ADVANCE_LP_RING();
4301
4302         mutex_unlock(&dev->struct_mutex);
4303
4304         return 0;
4305 }
4306
4307 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4308         .dpms = intel_crtc_dpms,
4309         .mode_fixup = intel_crtc_mode_fixup,
4310         .mode_set = intel_crtc_mode_set,
4311         .mode_set_base = intel_pipe_set_base,
4312         .prepare = intel_crtc_prepare,
4313         .commit = intel_crtc_commit,
4314         .load_lut = intel_crtc_load_lut,
4315 };
4316
4317 static const struct drm_crtc_funcs intel_crtc_funcs = {
4318         .cursor_set = intel_crtc_cursor_set,
4319         .cursor_move = intel_crtc_cursor_move,
4320         .gamma_set = intel_crtc_gamma_set,
4321         .set_config = drm_crtc_helper_set_config,
4322         .destroy = intel_crtc_destroy,
4323         .page_flip = intel_crtc_page_flip,
4324 };
4325
4326
4327 static void intel_crtc_init(struct drm_device *dev, int pipe)
4328 {
4329         drm_i915_private_t *dev_priv = dev->dev_private;
4330         struct intel_crtc *intel_crtc;
4331         int i;
4332
4333         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4334         if (intel_crtc == NULL)
4335                 return;
4336
4337         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4338
4339         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4340         intel_crtc->pipe = pipe;
4341         intel_crtc->plane = pipe;
4342         for (i = 0; i < 256; i++) {
4343                 intel_crtc->lut_r[i] = i;
4344                 intel_crtc->lut_g[i] = i;
4345                 intel_crtc->lut_b[i] = i;
4346         }
4347
4348         /* Swap pipes & planes for FBC on pre-965 */
4349         intel_crtc->pipe = pipe;
4350         intel_crtc->plane = pipe;
4351         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4352                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4353                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4354         }
4355
4356         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4357                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4358         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4359         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4360
4361         intel_crtc->cursor_addr = 0;
4362         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4363         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4364
4365         intel_crtc->busy = false;
4366
4367         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4368                     (unsigned long)intel_crtc);
4369 }
4370
4371 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4372                                 struct drm_file *file_priv)
4373 {
4374         drm_i915_private_t *dev_priv = dev->dev_private;
4375         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4376         struct drm_mode_object *drmmode_obj;
4377         struct intel_crtc *crtc;
4378
4379         if (!dev_priv) {
4380                 DRM_ERROR("called with no initialization\n");
4381                 return -EINVAL;
4382         }
4383
4384         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4385                         DRM_MODE_OBJECT_CRTC);
4386
4387         if (!drmmode_obj) {
4388                 DRM_ERROR("no such CRTC id\n");
4389                 return -EINVAL;
4390         }
4391
4392         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4393         pipe_from_crtc_id->pipe = crtc->pipe;
4394
4395         return 0;
4396 }
4397
4398 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4399 {
4400         struct drm_crtc *crtc = NULL;
4401
4402         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4403                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4404                 if (intel_crtc->pipe == pipe)
4405                         break;
4406         }
4407         return crtc;
4408 }
4409
4410 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4411 {
4412         int index_mask = 0;
4413         struct drm_connector *connector;
4414         int entry = 0;
4415
4416         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4417                 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4418                 if (type_mask & intel_encoder->clone_mask)
4419                         index_mask |= (1 << entry);
4420                 entry++;
4421         }
4422         return index_mask;
4423 }
4424
4425
4426 static void intel_setup_outputs(struct drm_device *dev)
4427 {
4428         struct drm_i915_private *dev_priv = dev->dev_private;
4429         struct drm_connector *connector;
4430
4431         intel_crt_init(dev);
4432
4433         /* Set up integrated LVDS */
4434         if (IS_MOBILE(dev) && !IS_I830(dev))
4435                 intel_lvds_init(dev);
4436
4437         if (HAS_PCH_SPLIT(dev)) {
4438                 int found;
4439
4440                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4441                         intel_dp_init(dev, DP_A);
4442
4443                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4444                         /* check SDVOB */
4445                         /* found = intel_sdvo_init(dev, HDMIB); */
4446                         found = 0;
4447                         if (!found)
4448                                 intel_hdmi_init(dev, HDMIB);
4449                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4450                                 intel_dp_init(dev, PCH_DP_B);
4451                 }
4452
4453                 if (I915_READ(HDMIC) & PORT_DETECTED)
4454                         intel_hdmi_init(dev, HDMIC);
4455
4456                 if (I915_READ(HDMID) & PORT_DETECTED)
4457                         intel_hdmi_init(dev, HDMID);
4458
4459                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4460                         intel_dp_init(dev, PCH_DP_C);
4461
4462                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4463                         intel_dp_init(dev, PCH_DP_D);
4464
4465         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4466                 bool found = false;
4467
4468                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4469                         DRM_DEBUG_KMS("probing SDVOB\n");
4470                         found = intel_sdvo_init(dev, SDVOB);
4471                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4472                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4473                                 intel_hdmi_init(dev, SDVOB);
4474                         }
4475
4476                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4477                                 DRM_DEBUG_KMS("probing DP_B\n");
4478                                 intel_dp_init(dev, DP_B);
4479                         }
4480                 }
4481
4482                 /* Before G4X SDVOC doesn't have its own detect register */
4483
4484                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4485                         DRM_DEBUG_KMS("probing SDVOC\n");
4486                         found = intel_sdvo_init(dev, SDVOC);
4487                 }
4488
4489                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4490
4491                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4492                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4493                                 intel_hdmi_init(dev, SDVOC);
4494                         }
4495                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4496                                 DRM_DEBUG_KMS("probing DP_C\n");
4497                                 intel_dp_init(dev, DP_C);
4498                         }
4499                 }
4500
4501                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4502                     (I915_READ(DP_D) & DP_DETECTED)) {
4503                         DRM_DEBUG_KMS("probing DP_D\n");
4504                         intel_dp_init(dev, DP_D);
4505                 }
4506         } else if (IS_GEN2(dev))
4507                 intel_dvo_init(dev);
4508
4509         if (SUPPORTS_TV(dev))
4510                 intel_tv_init(dev);
4511
4512         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4513                 struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4514                 struct drm_encoder *encoder = &intel_encoder->enc;
4515
4516                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4517                 encoder->possible_clones = intel_connector_clones(dev,
4518                                                 intel_encoder->clone_mask);
4519         }
4520 }
4521
4522 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4523 {
4524         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4525         struct drm_device *dev = fb->dev;
4526
4527         if (fb->fbdev)
4528                 intelfb_remove(dev, fb);
4529
4530         drm_framebuffer_cleanup(fb);
4531         drm_gem_object_unreference_unlocked(intel_fb->obj);
4532
4533         kfree(intel_fb);
4534 }
4535
4536 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4537                                                 struct drm_file *file_priv,
4538                                                 unsigned int *handle)
4539 {
4540         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4541         struct drm_gem_object *object = intel_fb->obj;
4542
4543         return drm_gem_handle_create(file_priv, object, handle);
4544 }
4545
4546 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4547         .destroy = intel_user_framebuffer_destroy,
4548         .create_handle = intel_user_framebuffer_create_handle,
4549 };
4550
4551 int intel_framebuffer_create(struct drm_device *dev,
4552                              struct drm_mode_fb_cmd *mode_cmd,
4553                              struct drm_framebuffer **fb,
4554                              struct drm_gem_object *obj)
4555 {
4556         struct intel_framebuffer *intel_fb;
4557         int ret;
4558
4559         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4560         if (!intel_fb)
4561                 return -ENOMEM;
4562
4563         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4564         if (ret) {
4565                 DRM_ERROR("framebuffer init failed %d\n", ret);
4566                 return ret;
4567         }
4568
4569         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4570
4571         intel_fb->obj = obj;
4572
4573         *fb = &intel_fb->base;
4574
4575         return 0;
4576 }
4577
4578
4579 static struct drm_framebuffer *
4580 intel_user_framebuffer_create(struct drm_device *dev,
4581                               struct drm_file *filp,
4582                               struct drm_mode_fb_cmd *mode_cmd)
4583 {
4584         struct drm_gem_object *obj;
4585         struct drm_framebuffer *fb;
4586         int ret;
4587
4588         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4589         if (!obj)
4590                 return NULL;
4591
4592         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4593         if (ret) {
4594                 drm_gem_object_unreference_unlocked(obj);
4595                 return NULL;
4596         }
4597
4598         return fb;
4599 }
4600
4601 static const struct drm_mode_config_funcs intel_mode_funcs = {
4602         .fb_create = intel_user_framebuffer_create,
4603         .fb_changed = intelfb_probe,
4604 };
4605
4606 static struct drm_gem_object *
4607 intel_alloc_power_context(struct drm_device *dev)
4608 {
4609         struct drm_gem_object *pwrctx;
4610         int ret;
4611
4612         pwrctx = drm_gem_object_alloc(dev, 4096);
4613         if (!pwrctx) {
4614                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4615                 return NULL;
4616         }
4617
4618         mutex_lock(&dev->struct_mutex);
4619         ret = i915_gem_object_pin(pwrctx, 4096);
4620         if (ret) {
4621                 DRM_ERROR("failed to pin power context: %d\n", ret);
4622                 goto err_unref;
4623         }
4624
4625         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4626         if (ret) {
4627                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4628                 goto err_unpin;
4629         }
4630         mutex_unlock(&dev->struct_mutex);
4631
4632         return pwrctx;
4633
4634 err_unpin:
4635         i915_gem_object_unpin(pwrctx);
4636 err_unref:
4637         drm_gem_object_unreference(pwrctx);
4638         mutex_unlock(&dev->struct_mutex);
4639         return NULL;
4640 }
4641
4642 void ironlake_enable_drps(struct drm_device *dev)
4643 {
4644         struct drm_i915_private *dev_priv = dev->dev_private;
4645         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
4646         u8 fmax, fmin, fstart, vstart;
4647         int i = 0;
4648
4649         /* 100ms RC evaluation intervals */
4650         I915_WRITE(RCUPEI, 100000);
4651         I915_WRITE(RCDNEI, 100000);
4652
4653         /* Set max/min thresholds to 90ms and 80ms respectively */
4654         I915_WRITE(RCBMAXAVG, 90000);
4655         I915_WRITE(RCBMINAVG, 80000);
4656
4657         I915_WRITE(MEMIHYST, 1);
4658
4659         /* Set up min, max, and cur for interrupt handling */
4660         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4661         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4662         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4663                 MEMMODE_FSTART_SHIFT;
4664         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4665                 PXVFREQ_PX_SHIFT;
4666
4667         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
4668         dev_priv->min_delay = fmin;
4669         dev_priv->cur_delay = fstart;
4670
4671         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4672
4673         /*
4674          * Interrupts will be enabled in ironlake_irq_postinstall
4675          */
4676
4677         I915_WRITE(VIDSTART, vstart);
4678         POSTING_READ(VIDSTART);
4679
4680         rgvmodectl |= MEMMODE_SWMODE_EN;
4681         I915_WRITE(MEMMODECTL, rgvmodectl);
4682
4683         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
4684                 if (i++ > 100) {
4685                         DRM_ERROR("stuck trying to change perf mode\n");
4686                         break;
4687                 }
4688                 msleep(1);
4689         }
4690         msleep(1);
4691
4692         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4693                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4694         I915_WRITE(MEMSWCTL, rgvswctl);
4695         POSTING_READ(MEMSWCTL);
4696
4697         rgvswctl |= MEMCTL_CMD_STS;
4698         I915_WRITE(MEMSWCTL, rgvswctl);
4699 }
4700
4701 void ironlake_disable_drps(struct drm_device *dev)
4702 {
4703         struct drm_i915_private *dev_priv = dev->dev_private;
4704         u32 rgvswctl;
4705         u8 fstart;
4706
4707         /* Ack interrupts, disable EFC interrupt */
4708         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4709         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4710         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4711         I915_WRITE(DEIIR, DE_PCU_EVENT);
4712         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4713
4714         /* Go back to the starting frequency */
4715         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
4716                 MEMMODE_FSTART_SHIFT;
4717         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4718                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4719         I915_WRITE(MEMSWCTL, rgvswctl);
4720         msleep(1);
4721         rgvswctl |= MEMCTL_CMD_STS;
4722         I915_WRITE(MEMSWCTL, rgvswctl);
4723         msleep(1);
4724
4725 }
4726
4727 void intel_init_clock_gating(struct drm_device *dev)
4728 {
4729         struct drm_i915_private *dev_priv = dev->dev_private;
4730
4731         /*
4732          * Disable clock gating reported to work incorrectly according to the
4733          * specs, but enable as much else as we can.
4734          */
4735         if (HAS_PCH_SPLIT(dev)) {
4736                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
4737
4738                 if (IS_IRONLAKE(dev)) {
4739                         /* Required for FBC */
4740                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
4741                         /* Required for CxSR */
4742                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
4743
4744                         I915_WRITE(PCH_3DCGDIS0,
4745                                    MARIUNIT_CLOCK_GATE_DISABLE |
4746                                    SVSMUNIT_CLOCK_GATE_DISABLE);
4747                 }
4748
4749                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
4750                 return;
4751         } else if (IS_G4X(dev)) {
4752                 uint32_t dspclk_gate;
4753                 I915_WRITE(RENCLK_GATE_D1, 0);
4754                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4755                        GS_UNIT_CLOCK_GATE_DISABLE |
4756                        CL_UNIT_CLOCK_GATE_DISABLE);
4757                 I915_WRITE(RAMCLK_GATE_D, 0);
4758                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4759                         OVRUNIT_CLOCK_GATE_DISABLE |
4760                         OVCUNIT_CLOCK_GATE_DISABLE;
4761                 if (IS_GM45(dev))
4762                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4763                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4764         } else if (IS_I965GM(dev)) {
4765                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4766                 I915_WRITE(RENCLK_GATE_D2, 0);
4767                 I915_WRITE(DSPCLK_GATE_D, 0);
4768                 I915_WRITE(RAMCLK_GATE_D, 0);
4769                 I915_WRITE16(DEUC, 0);
4770         } else if (IS_I965G(dev)) {
4771                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4772                        I965_RCC_CLOCK_GATE_DISABLE |
4773                        I965_RCPB_CLOCK_GATE_DISABLE |
4774                        I965_ISC_CLOCK_GATE_DISABLE |
4775                        I965_FBC_CLOCK_GATE_DISABLE);
4776                 I915_WRITE(RENCLK_GATE_D2, 0);
4777         } else if (IS_I9XX(dev)) {
4778                 u32 dstate = I915_READ(D_STATE);
4779
4780                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4781                         DSTATE_DOT_CLOCK_GATING;
4782                 I915_WRITE(D_STATE, dstate);
4783         } else if (IS_I85X(dev) || IS_I865G(dev)) {
4784                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4785         } else if (IS_I830(dev)) {
4786                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4787         }
4788
4789         /*
4790          * GPU can automatically power down the render unit if given a page
4791          * to save state.
4792          */
4793         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
4794                 struct drm_i915_gem_object *obj_priv = NULL;
4795
4796                 if (dev_priv->pwrctx) {
4797                         obj_priv = to_intel_bo(dev_priv->pwrctx);
4798                 } else {
4799                         struct drm_gem_object *pwrctx;
4800
4801                         pwrctx = intel_alloc_power_context(dev);
4802                         if (pwrctx) {
4803                                 dev_priv->pwrctx = pwrctx;
4804                                 obj_priv = to_intel_bo(pwrctx);
4805                         }
4806                 }
4807
4808                 if (obj_priv) {
4809                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4810                         I915_WRITE(MCHBAR_RENDER_STANDBY,
4811                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4812                 }
4813         }
4814 }
4815
4816 /* Set up chip specific display functions */
4817 static void intel_init_display(struct drm_device *dev)
4818 {
4819         struct drm_i915_private *dev_priv = dev->dev_private;
4820
4821         /* We always want a DPMS function */
4822         if (HAS_PCH_SPLIT(dev))
4823                 dev_priv->display.dpms = ironlake_crtc_dpms;
4824         else
4825                 dev_priv->display.dpms = i9xx_crtc_dpms;
4826
4827         /* Only mobile has FBC, leave pointers NULL for other chips */
4828         if (IS_MOBILE(dev)) {
4829                 if (IS_GM45(dev)) {
4830                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4831                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4832                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4833                 } else if (IS_I965GM(dev)) {
4834                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4835                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4836                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4837                 }
4838                 /* 855GM needs testing */
4839         }
4840
4841         /* Returns the core display clock speed */
4842         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
4843                 dev_priv->display.get_display_clock_speed =
4844                         i945_get_display_clock_speed;
4845         else if (IS_I915G(dev))
4846                 dev_priv->display.get_display_clock_speed =
4847                         i915_get_display_clock_speed;
4848         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
4849                 dev_priv->display.get_display_clock_speed =
4850                         i9xx_misc_get_display_clock_speed;
4851         else if (IS_I915GM(dev))
4852                 dev_priv->display.get_display_clock_speed =
4853                         i915gm_get_display_clock_speed;
4854         else if (IS_I865G(dev))
4855                 dev_priv->display.get_display_clock_speed =
4856                         i865_get_display_clock_speed;
4857         else if (IS_I85X(dev))
4858                 dev_priv->display.get_display_clock_speed =
4859                         i855_get_display_clock_speed;
4860         else /* 852, 830 */
4861                 dev_priv->display.get_display_clock_speed =
4862                         i830_get_display_clock_speed;
4863
4864         /* For FIFO watermark updates */
4865         if (HAS_PCH_SPLIT(dev))
4866                 dev_priv->display.update_wm = NULL;
4867         else if (IS_G4X(dev))
4868                 dev_priv->display.update_wm = g4x_update_wm;
4869         else if (IS_I965G(dev))
4870                 dev_priv->display.update_wm = i965_update_wm;
4871         else if (IS_I9XX(dev)) {
4872                 dev_priv->display.update_wm = i9xx_update_wm;
4873                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4874         } else if (IS_I85X(dev)) {
4875                 dev_priv->display.update_wm = i9xx_update_wm;
4876                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4877         } else {
4878                 dev_priv->display.update_wm = i830_update_wm;
4879                 if (IS_845G(dev))
4880                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4881                 else
4882                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4883         }
4884 }
4885
4886 void intel_modeset_init(struct drm_device *dev)
4887 {
4888         struct drm_i915_private *dev_priv = dev->dev_private;
4889         int num_pipe;
4890         int i;
4891
4892         drm_mode_config_init(dev);
4893
4894         dev->mode_config.min_width = 0;
4895         dev->mode_config.min_height = 0;
4896
4897         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4898
4899         intel_init_display(dev);
4900
4901         if (IS_I965G(dev)) {
4902                 dev->mode_config.max_width = 8192;
4903                 dev->mode_config.max_height = 8192;
4904         } else if (IS_I9XX(dev)) {
4905                 dev->mode_config.max_width = 4096;
4906                 dev->mode_config.max_height = 4096;
4907         } else {
4908                 dev->mode_config.max_width = 2048;
4909                 dev->mode_config.max_height = 2048;
4910         }
4911
4912         /* set memory base */
4913         if (IS_I9XX(dev))
4914                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4915         else
4916                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4917
4918         if (IS_MOBILE(dev) || IS_I9XX(dev))
4919                 num_pipe = 2;
4920         else
4921                 num_pipe = 1;
4922         DRM_DEBUG_KMS("%d display pipe%s available.\n",
4923                   num_pipe, num_pipe > 1 ? "s" : "");
4924
4925         for (i = 0; i < num_pipe; i++) {
4926                 intel_crtc_init(dev, i);
4927         }
4928
4929         intel_setup_outputs(dev);
4930
4931         intel_init_clock_gating(dev);
4932
4933         if (IS_IRONLAKE_M(dev))
4934                 ironlake_enable_drps(dev);
4935
4936         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4937         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4938                     (unsigned long)dev);
4939
4940         intel_setup_overlay(dev);
4941
4942         if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4943                                                         dev_priv->fsb_freq,
4944                                                         dev_priv->mem_freq))
4945                 DRM_INFO("failed to find known CxSR latency "
4946                          "(found fsb freq %d, mem freq %d), disabling CxSR\n",
4947                          dev_priv->fsb_freq, dev_priv->mem_freq);
4948 }
4949
4950 void intel_modeset_cleanup(struct drm_device *dev)
4951 {
4952         struct drm_i915_private *dev_priv = dev->dev_private;
4953         struct drm_crtc *crtc;
4954         struct intel_crtc *intel_crtc;
4955
4956         mutex_lock(&dev->struct_mutex);
4957
4958         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4959                 /* Skip inactive CRTCs */
4960                 if (!crtc->fb)
4961                         continue;
4962
4963                 intel_crtc = to_intel_crtc(crtc);
4964                 intel_increase_pllclock(crtc, false);
4965                 del_timer_sync(&intel_crtc->idle_timer);
4966         }
4967
4968         del_timer_sync(&dev_priv->idle_timer);
4969
4970         if (dev_priv->display.disable_fbc)
4971                 dev_priv->display.disable_fbc(dev);
4972
4973         if (dev_priv->pwrctx) {
4974                 struct drm_i915_gem_object *obj_priv;
4975
4976                 obj_priv = to_intel_bo(dev_priv->pwrctx);
4977                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4978                 I915_READ(PWRCTXA);
4979                 i915_gem_object_unpin(dev_priv->pwrctx);
4980                 drm_gem_object_unreference(dev_priv->pwrctx);
4981         }
4982
4983         if (IS_IRONLAKE_M(dev))
4984                 ironlake_disable_drps(dev);
4985
4986         mutex_unlock(&dev->struct_mutex);
4987
4988         drm_mode_config_cleanup(dev);
4989 }
4990
4991
4992 /* current intel driver doesn't take advantage of encoders
4993    always give back the encoder for the connector
4994 */
4995 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4996 {
4997         struct intel_encoder *intel_encoder = to_intel_encoder(connector);
4998
4999         return &intel_encoder->enc;
5000 }
5001
5002 /*
5003  * set vga decode state - true == enable VGA decode
5004  */
5005 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5006 {
5007         struct drm_i915_private *dev_priv = dev->dev_private;
5008         u16 gmch_ctrl;
5009
5010         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5011         if (state)
5012                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5013         else
5014                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5015         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5016         return 0;
5017 }