]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Pass clock limits down to PLL matcher
[mv-sheeva.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN              25000
80 #define I8XX_DOT_MAX             350000
81 #define I8XX_VCO_MIN             930000
82 #define I8XX_VCO_MAX            1400000
83 #define I8XX_N_MIN                    3
84 #define I8XX_N_MAX                   16
85 #define I8XX_M_MIN                   96
86 #define I8XX_M_MAX                  140
87 #define I8XX_M1_MIN                  18
88 #define I8XX_M1_MAX                  26
89 #define I8XX_M2_MIN                   6
90 #define I8XX_M2_MAX                  16
91 #define I8XX_P_MIN                    4
92 #define I8XX_P_MAX                  128
93 #define I8XX_P1_MIN                   2
94 #define I8XX_P1_MAX                  33
95 #define I8XX_P1_LVDS_MIN              1
96 #define I8XX_P1_LVDS_MAX              6
97 #define I8XX_P2_SLOW                  4
98 #define I8XX_P2_FAST                  2
99 #define I8XX_P2_LVDS_SLOW             14
100 #define I8XX_P2_LVDS_FAST             7
101 #define I8XX_P2_SLOW_LIMIT       165000
102
103 #define I9XX_DOT_MIN              20000
104 #define I9XX_DOT_MAX             400000
105 #define I9XX_VCO_MIN            1400000
106 #define I9XX_VCO_MAX            2800000
107 #define PINEVIEW_VCO_MIN                1700000
108 #define PINEVIEW_VCO_MAX                3500000
109 #define I9XX_N_MIN                    1
110 #define I9XX_N_MAX                    6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN                3
113 #define PINEVIEW_N_MAX                6
114 #define I9XX_M_MIN                   70
115 #define I9XX_M_MAX                  120
116 #define PINEVIEW_M_MIN                2
117 #define PINEVIEW_M_MAX              256
118 #define I9XX_M1_MIN                  10
119 #define I9XX_M1_MAX                  22
120 #define I9XX_M2_MIN                   5
121 #define I9XX_M2_MAX                   9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN               0
124 #define PINEVIEW_M1_MAX               0
125 #define PINEVIEW_M2_MIN               0
126 #define PINEVIEW_M2_MAX               254
127 #define I9XX_P_SDVO_DAC_MIN           5
128 #define I9XX_P_SDVO_DAC_MAX          80
129 #define I9XX_P_LVDS_MIN               7
130 #define I9XX_P_LVDS_MAX              98
131 #define PINEVIEW_P_LVDS_MIN                   7
132 #define PINEVIEW_P_LVDS_MAX                  112
133 #define I9XX_P1_MIN                   1
134 #define I9XX_P1_MAX                   8
135 #define I9XX_P2_SDVO_DAC_SLOW                10
136 #define I9XX_P2_SDVO_DAC_FAST                 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
138 #define I9XX_P2_LVDS_SLOW                    14
139 #define I9XX_P2_LVDS_FAST                     7
140 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN           25000
144 #define G4X_DOT_SDVO_MAX           270000
145 #define G4X_VCO_MIN                1750000
146 #define G4X_VCO_MAX                3500000
147 #define G4X_N_SDVO_MIN             1
148 #define G4X_N_SDVO_MAX             4
149 #define G4X_M_SDVO_MIN             104
150 #define G4X_M_SDVO_MAX             138
151 #define G4X_M1_SDVO_MIN            17
152 #define G4X_M1_SDVO_MAX            23
153 #define G4X_M2_SDVO_MIN            5
154 #define G4X_M2_SDVO_MAX            11
155 #define G4X_P_SDVO_MIN             10
156 #define G4X_P_SDVO_MAX             30
157 #define G4X_P1_SDVO_MIN            1
158 #define G4X_P1_SDVO_MAX            3
159 #define G4X_P2_SDVO_SLOW           10
160 #define G4X_P2_SDVO_FAST           10
161 #define G4X_P2_SDVO_LIMIT          270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN           22000
165 #define G4X_DOT_HDMI_DAC_MAX           400000
166 #define G4X_N_HDMI_DAC_MIN             1
167 #define G4X_N_HDMI_DAC_MAX             4
168 #define G4X_M_HDMI_DAC_MIN             104
169 #define G4X_M_HDMI_DAC_MAX             138
170 #define G4X_M1_HDMI_DAC_MIN            16
171 #define G4X_M1_HDMI_DAC_MAX            23
172 #define G4X_M2_HDMI_DAC_MIN            5
173 #define G4X_M2_HDMI_DAC_MAX            11
174 #define G4X_P_HDMI_DAC_MIN             5
175 #define G4X_P_HDMI_DAC_MAX             80
176 #define G4X_P1_HDMI_DAC_MIN            1
177 #define G4X_P1_HDMI_DAC_MAX            8
178 #define G4X_P2_HDMI_DAC_SLOW           10
179 #define G4X_P2_HDMI_DAC_FAST           5
180 #define G4X_P2_HDMI_DAC_LIMIT          165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN           161670
222 #define G4X_DOT_DISPLAY_PORT_MAX           227000
223 #define G4X_N_DISPLAY_PORT_MIN             1
224 #define G4X_N_DISPLAY_PORT_MAX             2
225 #define G4X_M_DISPLAY_PORT_MIN             97
226 #define G4X_M_DISPLAY_PORT_MAX             108
227 #define G4X_M1_DISPLAY_PORT_MIN            0x10
228 #define G4X_M1_DISPLAY_PORT_MAX            0x12
229 #define G4X_M2_DISPLAY_PORT_MIN            0x05
230 #define G4X_M2_DISPLAY_PORT_MAX            0x06
231 #define G4X_P_DISPLAY_PORT_MIN             10
232 #define G4X_P_DISPLAY_PORT_MAX             20
233 #define G4X_P1_DISPLAY_PORT_MIN            1
234 #define G4X_P1_DISPLAY_PORT_MAX            2
235 #define G4X_P2_DISPLAY_PORT_SLOW           10
236 #define G4X_P2_DISPLAY_PORT_FAST           10
237 #define G4X_P2_DISPLAY_PORT_LIMIT          0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241    N/M1/M2, so here the range value for them is (actual_value-2).
242  */
243 #define IRONLAKE_DOT_MIN         25000
244 #define IRONLAKE_DOT_MAX         350000
245 #define IRONLAKE_VCO_MIN         1760000
246 #define IRONLAKE_VCO_MAX         3510000
247 #define IRONLAKE_M1_MIN          12
248 #define IRONLAKE_M1_MAX          22
249 #define IRONLAKE_M2_MIN          5
250 #define IRONLAKE_M2_MAX          9
251 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN      1
257 #define IRONLAKE_DAC_N_MAX      5
258 #define IRONLAKE_DAC_M_MIN      79
259 #define IRONLAKE_DAC_M_MAX      127
260 #define IRONLAKE_DAC_P_MIN      5
261 #define IRONLAKE_DAC_P_MAX      80
262 #define IRONLAKE_DAC_P1_MIN     1
263 #define IRONLAKE_DAC_P1_MAX     8
264 #define IRONLAKE_DAC_P2_SLOW    10
265 #define IRONLAKE_DAC_P2_FAST    5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN   1
269 #define IRONLAKE_LVDS_S_N_MAX   3
270 #define IRONLAKE_LVDS_S_M_MIN   79
271 #define IRONLAKE_LVDS_S_M_MAX   118
272 #define IRONLAKE_LVDS_S_P_MIN   28
273 #define IRONLAKE_LVDS_S_P_MAX   112
274 #define IRONLAKE_LVDS_S_P1_MIN  2
275 #define IRONLAKE_LVDS_S_P1_MAX  8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN   1
281 #define IRONLAKE_LVDS_D_N_MAX   3
282 #define IRONLAKE_LVDS_D_M_MIN   79
283 #define IRONLAKE_LVDS_D_M_MAX   127
284 #define IRONLAKE_LVDS_D_P_MIN   14
285 #define IRONLAKE_LVDS_D_P_MAX   56
286 #define IRONLAKE_LVDS_D_P1_MIN  2
287 #define IRONLAKE_LVDS_D_P1_MAX  8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN               1
317 #define IRONLAKE_DP_N_MAX               2
318 #define IRONLAKE_DP_M_MIN               81
319 #define IRONLAKE_DP_M_MAX               90
320 #define IRONLAKE_DP_P_MIN               10
321 #define IRONLAKE_DP_P_MAX               20
322 #define IRONLAKE_DP_P2_FAST             10
323 #define IRONLAKE_DP_P2_SLOW             10
324 #define IRONLAKE_DP_P2_LIMIT            0
325 #define IRONLAKE_DP_P1_MIN              1
326 #define IRONLAKE_DP_P1_MAX              2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333                     int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336                         int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340                       int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343                            int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348         if (IS_GEN5(dev)) {
349                 struct drm_i915_private *dev_priv = dev->dev_private;
350                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351         } else
352                 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
357         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
358         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
359         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
360         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
361         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
362         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
363         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
364         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
366         .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
371         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
372         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
373         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
374         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
375         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
376         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
377         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
378         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
380         .find_pll = intel_find_best_PLL,
381 };
382         
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
385         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
386         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
387         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
388         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
389         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
390         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
391         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
392         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
399         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
400         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
401         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
402         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
403         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
404         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
405         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
406         /* The single-channel range is 25-112Mhz, and dual-channel
407          * is 80-224Mhz.  Prefer single channel as much as possible.
408          */
409         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
411         .find_pll = intel_find_best_PLL,
412 };
413
414     /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
419         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
420         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
421         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
422         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
423         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
424         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
425                  .p2_slow = G4X_P2_SDVO_SLOW,
426                  .p2_fast = G4X_P2_SDVO_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
433         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
434         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
435         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
436         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
437         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
438         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
439         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
440         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442                  .p2_fast = G4X_P2_HDMI_DAC_FAST
443         },
444         .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450         .vco = { .min = G4X_VCO_MIN,
451                  .max = G4X_VCO_MAX },
452         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467         },
468         .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474         .vco = { .min = G4X_VCO_MIN,
475                  .max = G4X_VCO_MAX },
476         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491         },
492         .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497                  .max = G4X_DOT_DISPLAY_PORT_MAX },
498         .vco = { .min = G4X_VCO_MIN,
499                  .max = G4X_VCO_MAX},
500         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
501                  .max = G4X_N_DISPLAY_PORT_MAX },
502         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
503                  .max = G4X_M_DISPLAY_PORT_MAX },
504         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
505                  .max = G4X_M1_DISPLAY_PORT_MAX },
506         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
507                  .max = G4X_M2_DISPLAY_PORT_MAX },
508         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
509                  .max = G4X_P_DISPLAY_PORT_MAX },
510         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
511                  .max = G4X_P1_DISPLAY_PORT_MAX},
512         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515         .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
520         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
521         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
522         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
523         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
524         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
525         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
526         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
527         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529         .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
534         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
535         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
536         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
537         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
538         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
539         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
540         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
541         /* Pineview only supports single-channel mode. */
542         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
544         .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
549         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
550         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
551         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
552         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
553         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
554         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
555         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
556         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
558                  .p2_fast = IRONLAKE_DAC_P2_FAST },
559         .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
564         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
565         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
566         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
567         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
568         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
569         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
570         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
571         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574         .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
579         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
580         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
581         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
582         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
583         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
584         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
585         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
586         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589         .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
594         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
595         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
598         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
599         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604         .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
610         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
613         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
614         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619         .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623         .dot = { .min = IRONLAKE_DOT_MIN,
624                  .max = IRONLAKE_DOT_MAX },
625         .vco = { .min = IRONLAKE_VCO_MIN,
626                  .max = IRONLAKE_VCO_MAX},
627         .n   = { .min = IRONLAKE_DP_N_MIN,
628                  .max = IRONLAKE_DP_N_MAX },
629         .m   = { .min = IRONLAKE_DP_M_MIN,
630                  .max = IRONLAKE_DP_M_MAX },
631         .m1  = { .min = IRONLAKE_M1_MIN,
632                  .max = IRONLAKE_M1_MAX },
633         .m2  = { .min = IRONLAKE_M2_MIN,
634                  .max = IRONLAKE_M2_MAX },
635         .p   = { .min = IRONLAKE_DP_P_MIN,
636                  .max = IRONLAKE_DP_P_MAX },
637         .p1  = { .min = IRONLAKE_DP_P1_MIN,
638                  .max = IRONLAKE_DP_P1_MAX},
639         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640                  .p2_slow = IRONLAKE_DP_P2_SLOW,
641                  .p2_fast = IRONLAKE_DP_P2_FAST },
642         .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646                                                 int refclk)
647 {
648         struct drm_device *dev = crtc->dev;
649         struct drm_i915_private *dev_priv = dev->dev_private;
650         const intel_limit_t *limit;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654                     LVDS_CLKB_POWER_UP) {
655                         /* LVDS dual channel */
656                         if (refclk == 100000)
657                                 limit = &intel_limits_ironlake_dual_lvds_100m;
658                         else
659                                 limit = &intel_limits_ironlake_dual_lvds;
660                 } else {
661                         if (refclk == 100000)
662                                 limit = &intel_limits_ironlake_single_lvds_100m;
663                         else
664                                 limit = &intel_limits_ironlake_single_lvds;
665                 }
666         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667                         HAS_eDP)
668                 limit = &intel_limits_ironlake_display_port;
669         else
670                 limit = &intel_limits_ironlake_dac;
671
672         return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677         struct drm_device *dev = crtc->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679         const intel_limit_t *limit;
680
681         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683                     LVDS_CLKB_POWER_UP)
684                         /* LVDS with dual channel */
685                         limit = &intel_limits_g4x_dual_channel_lvds;
686                 else
687                         /* LVDS with dual channel */
688                         limit = &intel_limits_g4x_single_channel_lvds;
689         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691                 limit = &intel_limits_g4x_hdmi;
692         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693                 limit = &intel_limits_g4x_sdvo;
694         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695                 limit = &intel_limits_g4x_display_port;
696         } else /* The option is for other outputs */
697                 limit = &intel_limits_i9xx_sdvo;
698
699         return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
703 {
704         struct drm_device *dev = crtc->dev;
705         const intel_limit_t *limit;
706
707         if (HAS_PCH_SPLIT(dev))
708                 limit = intel_ironlake_limit(crtc, refclk);
709         else if (IS_G4X(dev)) {
710                 limit = intel_g4x_limit(crtc);
711         } else if (IS_PINEVIEW(dev)) {
712                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713                         limit = &intel_limits_pineview_lvds;
714                 else
715                         limit = &intel_limits_pineview_sdvo;
716         } else if (!IS_GEN2(dev)) {
717                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718                         limit = &intel_limits_i9xx_lvds;
719                 else
720                         limit = &intel_limits_i9xx_sdvo;
721         } else {
722                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723                         limit = &intel_limits_i8xx_lvds;
724                 else
725                         limit = &intel_limits_i8xx_dvo;
726         }
727         return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733         clock->m = clock->m2 + 2;
734         clock->p = clock->p1 * clock->p2;
735         clock->vco = refclk * clock->m / clock->n;
736         clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741         if (IS_PINEVIEW(dev)) {
742                 pineview_clock(refclk, clock);
743                 return;
744         }
745         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746         clock->p = clock->p1 * clock->p2;
747         clock->vco = refclk * clock->m / (clock->n + 2);
748         clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752  * Returns whether any output on the specified pipe is of the specified type
753  */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756         struct drm_device *dev = crtc->dev;
757         struct drm_mode_config *mode_config = &dev->mode_config;
758         struct intel_encoder *encoder;
759
760         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761                 if (encoder->base.crtc == crtc && encoder->type == type)
762                         return true;
763
764         return false;
765 }
766
767 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769  * Returns whether the given set of divisors are valid for a given refclk with
770  * the given connectors.
771  */
772
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774                                const intel_limit_t *limit,
775                                const intel_clock_t *clock)
776 {
777         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
778                 INTELPllInvalid ("p1 out of range\n");
779         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
780                 INTELPllInvalid ("p out of range\n");
781         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
782                 INTELPllInvalid ("m2 out of range\n");
783         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
784                 INTELPllInvalid ("m1 out of range\n");
785         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786                 INTELPllInvalid ("m1 <= m2\n");
787         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
788                 INTELPllInvalid ("m out of range\n");
789         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
790                 INTELPllInvalid ("n out of range\n");
791         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792                 INTELPllInvalid ("vco out of range\n");
793         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794          * connector, etc., rather than just a single range.
795          */
796         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797                 INTELPllInvalid ("dot out of range\n");
798
799         return true;
800 }
801
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804                     int target, int refclk, intel_clock_t *best_clock)
805
806 {
807         struct drm_device *dev = crtc->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809         intel_clock_t clock;
810         int err = target;
811
812         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813             (I915_READ(LVDS)) != 0) {
814                 /*
815                  * For LVDS, if the panel is on, just rely on its current
816                  * settings for dual-channel.  We haven't figured out how to
817                  * reliably set up different single/dual channel state, if we
818                  * even can.
819                  */
820                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821                     LVDS_CLKB_POWER_UP)
822                         clock.p2 = limit->p2.p2_fast;
823                 else
824                         clock.p2 = limit->p2.p2_slow;
825         } else {
826                 if (target < limit->p2.dot_limit)
827                         clock.p2 = limit->p2.p2_slow;
828                 else
829                         clock.p2 = limit->p2.p2_fast;
830         }
831
832         memset (best_clock, 0, sizeof (*best_clock));
833
834         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835              clock.m1++) {
836                 for (clock.m2 = limit->m2.min;
837                      clock.m2 <= limit->m2.max; clock.m2++) {
838                         /* m1 is always 0 in Pineview */
839                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840                                 break;
841                         for (clock.n = limit->n.min;
842                              clock.n <= limit->n.max; clock.n++) {
843                                 for (clock.p1 = limit->p1.min;
844                                         clock.p1 <= limit->p1.max; clock.p1++) {
845                                         int this_err;
846
847                                         intel_clock(dev, refclk, &clock);
848                                         if (!intel_PLL_is_valid(dev, limit,
849                                                                 &clock))
850                                                 continue;
851
852                                         this_err = abs(clock.dot - target);
853                                         if (this_err < err) {
854                                                 *best_clock = clock;
855                                                 err = this_err;
856                                         }
857                                 }
858                         }
859                 }
860         }
861
862         return (err != target);
863 }
864
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867                         int target, int refclk, intel_clock_t *best_clock)
868 {
869         struct drm_device *dev = crtc->dev;
870         struct drm_i915_private *dev_priv = dev->dev_private;
871         intel_clock_t clock;
872         int max_n;
873         bool found;
874         /* approximately equals target * 0.00585 */
875         int err_most = (target >> 8) + (target >> 9);
876         found = false;
877
878         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879                 int lvds_reg;
880
881                 if (HAS_PCH_SPLIT(dev))
882                         lvds_reg = PCH_LVDS;
883                 else
884                         lvds_reg = LVDS;
885                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886                     LVDS_CLKB_POWER_UP)
887                         clock.p2 = limit->p2.p2_fast;
888                 else
889                         clock.p2 = limit->p2.p2_slow;
890         } else {
891                 if (target < limit->p2.dot_limit)
892                         clock.p2 = limit->p2.p2_slow;
893                 else
894                         clock.p2 = limit->p2.p2_fast;
895         }
896
897         memset(best_clock, 0, sizeof(*best_clock));
898         max_n = limit->n.max;
899         /* based on hardware requirement, prefer smaller n to precision */
900         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901                 /* based on hardware requirement, prefere larger m1,m2 */
902                 for (clock.m1 = limit->m1.max;
903                      clock.m1 >= limit->m1.min; clock.m1--) {
904                         for (clock.m2 = limit->m2.max;
905                              clock.m2 >= limit->m2.min; clock.m2--) {
906                                 for (clock.p1 = limit->p1.max;
907                                      clock.p1 >= limit->p1.min; clock.p1--) {
908                                         int this_err;
909
910                                         intel_clock(dev, refclk, &clock);
911                                         if (!intel_PLL_is_valid(dev, limit,
912                                                                 &clock))
913                                                 continue;
914
915                                         this_err = abs(clock.dot - target);
916                                         if (this_err < err_most) {
917                                                 *best_clock = clock;
918                                                 err_most = this_err;
919                                                 max_n = clock.n;
920                                                 found = true;
921                                         }
922                                 }
923                         }
924                 }
925         }
926         return found;
927 }
928
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931                            int target, int refclk, intel_clock_t *best_clock)
932 {
933         struct drm_device *dev = crtc->dev;
934         intel_clock_t clock;
935
936         if (target < 200000) {
937                 clock.n = 1;
938                 clock.p1 = 2;
939                 clock.p2 = 10;
940                 clock.m1 = 12;
941                 clock.m2 = 9;
942         } else {
943                 clock.n = 2;
944                 clock.p1 = 1;
945                 clock.p2 = 10;
946                 clock.m1 = 14;
947                 clock.m2 = 8;
948         }
949         intel_clock(dev, refclk, &clock);
950         memcpy(best_clock, &clock, sizeof(intel_clock_t));
951         return true;
952 }
953
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957                       int target, int refclk, intel_clock_t *best_clock)
958 {
959         intel_clock_t clock;
960         if (target < 200000) {
961                 clock.p1 = 2;
962                 clock.p2 = 10;
963                 clock.n = 2;
964                 clock.m1 = 23;
965                 clock.m2 = 8;
966         } else {
967                 clock.p1 = 1;
968                 clock.p2 = 10;
969                 clock.n = 1;
970                 clock.m1 = 14;
971                 clock.m2 = 2;
972         }
973         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974         clock.p = (clock.p1 * clock.p2);
975         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976         clock.vco = 0;
977         memcpy(best_clock, &clock, sizeof(intel_clock_t));
978         return true;
979 }
980
981 /**
982  * intel_wait_for_vblank - wait for vblank on a given pipe
983  * @dev: drm device
984  * @pipe: pipe to wait for
985  *
986  * Wait for vblank to occur on a given pipe.  Needed for various bits of
987  * mode setting code.
988  */
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 {
991         struct drm_i915_private *dev_priv = dev->dev_private;
992         int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
993
994         /* Clear existing vblank status. Note this will clear any other
995          * sticky status fields as well.
996          *
997          * This races with i915_driver_irq_handler() with the result
998          * that either function could miss a vblank event.  Here it is not
999          * fatal, as we will either wait upon the next vblank interrupt or
1000          * timeout.  Generally speaking intel_wait_for_vblank() is only
1001          * called during modeset at which time the GPU should be idle and
1002          * should *not* be performing page flips and thus not waiting on
1003          * vblanks...
1004          * Currently, the result of us stealing a vblank from the irq
1005          * handler is that a single frame will be skipped during swapbuffers.
1006          */
1007         I915_WRITE(pipestat_reg,
1008                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009
1010         /* Wait for vblank interrupt bit to set */
1011         if (wait_for(I915_READ(pipestat_reg) &
1012                      PIPE_VBLANK_INTERRUPT_STATUS,
1013                      50))
1014                 DRM_DEBUG_KMS("vblank wait timed out\n");
1015 }
1016
1017 /*
1018  * intel_wait_for_pipe_off - wait for pipe to turn off
1019  * @dev: drm device
1020  * @pipe: pipe to wait for
1021  *
1022  * After disabling a pipe, we can't wait for vblank in the usual way,
1023  * spinning on the vblank interrupt status bit, since we won't actually
1024  * see an interrupt when the pipe is disabled.
1025  *
1026  * On Gen4 and above:
1027  *   wait for the pipe register state bit to turn off
1028  *
1029  * Otherwise:
1030  *   wait for the display line value to settle (it usually
1031  *   ends up stopping at the start of the next frame).
1032  *
1033  */
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 {
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037
1038         if (INTEL_INFO(dev)->gen >= 4) {
1039                 int reg = PIPECONF(pipe);
1040
1041                 /* Wait for the Pipe State to go off */
1042                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043                              100))
1044                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045         } else {
1046                 u32 last_line;
1047                 int reg = PIPEDSL(pipe);
1048                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049
1050                 /* Wait for the display line to settle */
1051                 do {
1052                         last_line = I915_READ(reg) & DSL_LINEMASK;
1053                         mdelay(5);
1054                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055                          time_after(timeout, jiffies));
1056                 if (time_after(jiffies, timeout))
1057                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1058         }
1059 }
1060
1061 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1062 {
1063         struct drm_device *dev = crtc->dev;
1064         struct drm_i915_private *dev_priv = dev->dev_private;
1065         struct drm_framebuffer *fb = crtc->fb;
1066         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1067         struct drm_i915_gem_object *obj = intel_fb->obj;
1068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1069         int plane, i;
1070         u32 fbc_ctl, fbc_ctl2;
1071
1072         if (fb->pitch == dev_priv->cfb_pitch &&
1073             obj->fence_reg == dev_priv->cfb_fence &&
1074             intel_crtc->plane == dev_priv->cfb_plane &&
1075             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1076                 return;
1077
1078         i8xx_disable_fbc(dev);
1079
1080         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1081
1082         if (fb->pitch < dev_priv->cfb_pitch)
1083                 dev_priv->cfb_pitch = fb->pitch;
1084
1085         /* FBC_CTL wants 64B units */
1086         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1087         dev_priv->cfb_fence = obj->fence_reg;
1088         dev_priv->cfb_plane = intel_crtc->plane;
1089         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1090
1091         /* Clear old tags */
1092         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1093                 I915_WRITE(FBC_TAG + (i * 4), 0);
1094
1095         /* Set it up... */
1096         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1097         if (obj->tiling_mode != I915_TILING_NONE)
1098                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1099         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1100         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1101
1102         /* enable it... */
1103         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1104         if (IS_I945GM(dev))
1105                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1106         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1107         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1108         if (obj->tiling_mode != I915_TILING_NONE)
1109                 fbc_ctl |= dev_priv->cfb_fence;
1110         I915_WRITE(FBC_CONTROL, fbc_ctl);
1111
1112         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1113                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1114 }
1115
1116 void i8xx_disable_fbc(struct drm_device *dev)
1117 {
1118         struct drm_i915_private *dev_priv = dev->dev_private;
1119         u32 fbc_ctl;
1120
1121         /* Disable compression */
1122         fbc_ctl = I915_READ(FBC_CONTROL);
1123         if ((fbc_ctl & FBC_CTL_EN) == 0)
1124                 return;
1125
1126         fbc_ctl &= ~FBC_CTL_EN;
1127         I915_WRITE(FBC_CONTROL, fbc_ctl);
1128
1129         /* Wait for compressing bit to clear */
1130         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1131                 DRM_DEBUG_KMS("FBC idle timed out\n");
1132                 return;
1133         }
1134
1135         DRM_DEBUG_KMS("disabled FBC\n");
1136 }
1137
1138 static bool i8xx_fbc_enabled(struct drm_device *dev)
1139 {
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141
1142         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1143 }
1144
1145 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1146 {
1147         struct drm_device *dev = crtc->dev;
1148         struct drm_i915_private *dev_priv = dev->dev_private;
1149         struct drm_framebuffer *fb = crtc->fb;
1150         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1151         struct drm_i915_gem_object *obj = intel_fb->obj;
1152         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1153         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1154         unsigned long stall_watermark = 200;
1155         u32 dpfc_ctl;
1156
1157         dpfc_ctl = I915_READ(DPFC_CONTROL);
1158         if (dpfc_ctl & DPFC_CTL_EN) {
1159                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1160                     dev_priv->cfb_fence == obj->fence_reg &&
1161                     dev_priv->cfb_plane == intel_crtc->plane &&
1162                     dev_priv->cfb_y == crtc->y)
1163                         return;
1164
1165                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1166                 POSTING_READ(DPFC_CONTROL);
1167                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1168         }
1169
1170         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1171         dev_priv->cfb_fence = obj->fence_reg;
1172         dev_priv->cfb_plane = intel_crtc->plane;
1173         dev_priv->cfb_y = crtc->y;
1174
1175         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1176         if (obj->tiling_mode != I915_TILING_NONE) {
1177                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1178                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1179         } else {
1180                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1181         }
1182
1183         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1184                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1185                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1186         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1187
1188         /* enable it... */
1189         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1190
1191         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1192 }
1193
1194 void g4x_disable_fbc(struct drm_device *dev)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197         u32 dpfc_ctl;
1198
1199         /* Disable compression */
1200         dpfc_ctl = I915_READ(DPFC_CONTROL);
1201         if (dpfc_ctl & DPFC_CTL_EN) {
1202                 dpfc_ctl &= ~DPFC_CTL_EN;
1203                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1204
1205                 DRM_DEBUG_KMS("disabled FBC\n");
1206         }
1207 }
1208
1209 static bool g4x_fbc_enabled(struct drm_device *dev)
1210 {
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212
1213         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1214 }
1215
1216 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1217 {
1218         struct drm_device *dev = crtc->dev;
1219         struct drm_i915_private *dev_priv = dev->dev_private;
1220         struct drm_framebuffer *fb = crtc->fb;
1221         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1222         struct drm_i915_gem_object *obj = intel_fb->obj;
1223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1224         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1225         unsigned long stall_watermark = 200;
1226         u32 dpfc_ctl;
1227
1228         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1229         if (dpfc_ctl & DPFC_CTL_EN) {
1230                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1231                     dev_priv->cfb_fence == obj->fence_reg &&
1232                     dev_priv->cfb_plane == intel_crtc->plane &&
1233                     dev_priv->cfb_offset == obj->gtt_offset &&
1234                     dev_priv->cfb_y == crtc->y)
1235                         return;
1236
1237                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1238                 POSTING_READ(ILK_DPFC_CONTROL);
1239                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1240         }
1241
1242         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1243         dev_priv->cfb_fence = obj->fence_reg;
1244         dev_priv->cfb_plane = intel_crtc->plane;
1245         dev_priv->cfb_offset = obj->gtt_offset;
1246         dev_priv->cfb_y = crtc->y;
1247
1248         dpfc_ctl &= DPFC_RESERVED;
1249         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1250         if (obj->tiling_mode != I915_TILING_NONE) {
1251                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1252                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1253         } else {
1254                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1255         }
1256
1257         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1258                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1259                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1260         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1261         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1262         /* enable it... */
1263         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1264
1265         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1266 }
1267
1268 void ironlake_disable_fbc(struct drm_device *dev)
1269 {
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         u32 dpfc_ctl;
1272
1273         /* Disable compression */
1274         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1275         if (dpfc_ctl & DPFC_CTL_EN) {
1276                 dpfc_ctl &= ~DPFC_CTL_EN;
1277                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1278
1279                 DRM_DEBUG_KMS("disabled FBC\n");
1280         }
1281 }
1282
1283 static bool ironlake_fbc_enabled(struct drm_device *dev)
1284 {
1285         struct drm_i915_private *dev_priv = dev->dev_private;
1286
1287         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1288 }
1289
1290 bool intel_fbc_enabled(struct drm_device *dev)
1291 {
1292         struct drm_i915_private *dev_priv = dev->dev_private;
1293
1294         if (!dev_priv->display.fbc_enabled)
1295                 return false;
1296
1297         return dev_priv->display.fbc_enabled(dev);
1298 }
1299
1300 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1301 {
1302         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1303
1304         if (!dev_priv->display.enable_fbc)
1305                 return;
1306
1307         dev_priv->display.enable_fbc(crtc, interval);
1308 }
1309
1310 void intel_disable_fbc(struct drm_device *dev)
1311 {
1312         struct drm_i915_private *dev_priv = dev->dev_private;
1313
1314         if (!dev_priv->display.disable_fbc)
1315                 return;
1316
1317         dev_priv->display.disable_fbc(dev);
1318 }
1319
1320 /**
1321  * intel_update_fbc - enable/disable FBC as needed
1322  * @dev: the drm_device
1323  *
1324  * Set up the framebuffer compression hardware at mode set time.  We
1325  * enable it if possible:
1326  *   - plane A only (on pre-965)
1327  *   - no pixel mulitply/line duplication
1328  *   - no alpha buffer discard
1329  *   - no dual wide
1330  *   - framebuffer <= 2048 in width, 1536 in height
1331  *
1332  * We can't assume that any compression will take place (worst case),
1333  * so the compressed buffer has to be the same size as the uncompressed
1334  * one.  It also must reside (along with the line length buffer) in
1335  * stolen memory.
1336  *
1337  * We need to enable/disable FBC on a global basis.
1338  */
1339 static void intel_update_fbc(struct drm_device *dev)
1340 {
1341         struct drm_i915_private *dev_priv = dev->dev_private;
1342         struct drm_crtc *crtc = NULL, *tmp_crtc;
1343         struct intel_crtc *intel_crtc;
1344         struct drm_framebuffer *fb;
1345         struct intel_framebuffer *intel_fb;
1346         struct drm_i915_gem_object *obj;
1347
1348         DRM_DEBUG_KMS("\n");
1349
1350         if (!i915_powersave)
1351                 return;
1352
1353         if (!I915_HAS_FBC(dev))
1354                 return;
1355
1356         /*
1357          * If FBC is already on, we just have to verify that we can
1358          * keep it that way...
1359          * Need to disable if:
1360          *   - more than one pipe is active
1361          *   - changing FBC params (stride, fence, mode)
1362          *   - new fb is too large to fit in compressed buffer
1363          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1364          */
1365         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1366                 if (tmp_crtc->enabled) {
1367                         if (crtc) {
1368                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1369                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1370                                 goto out_disable;
1371                         }
1372                         crtc = tmp_crtc;
1373                 }
1374         }
1375
1376         if (!crtc || crtc->fb == NULL) {
1377                 DRM_DEBUG_KMS("no output, disabling\n");
1378                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1379                 goto out_disable;
1380         }
1381
1382         intel_crtc = to_intel_crtc(crtc);
1383         fb = crtc->fb;
1384         intel_fb = to_intel_framebuffer(fb);
1385         obj = intel_fb->obj;
1386
1387         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1388                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1389                               "compression\n");
1390                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1391                 goto out_disable;
1392         }
1393         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1394             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1395                 DRM_DEBUG_KMS("mode incompatible with compression, "
1396                               "disabling\n");
1397                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1398                 goto out_disable;
1399         }
1400         if ((crtc->mode.hdisplay > 2048) ||
1401             (crtc->mode.vdisplay > 1536)) {
1402                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1403                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1404                 goto out_disable;
1405         }
1406         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1407                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1408                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1409                 goto out_disable;
1410         }
1411         if (obj->tiling_mode != I915_TILING_X) {
1412                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1413                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1414                 goto out_disable;
1415         }
1416
1417         /* If the kernel debugger is active, always disable compression */
1418         if (in_dbg_master())
1419                 goto out_disable;
1420
1421         intel_enable_fbc(crtc, 500);
1422         return;
1423
1424 out_disable:
1425         /* Multiple disables should be harmless */
1426         if (intel_fbc_enabled(dev)) {
1427                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1428                 intel_disable_fbc(dev);
1429         }
1430 }
1431
1432 int
1433 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1434                            struct drm_i915_gem_object *obj,
1435                            struct intel_ring_buffer *pipelined)
1436 {
1437         u32 alignment;
1438         int ret;
1439
1440         switch (obj->tiling_mode) {
1441         case I915_TILING_NONE:
1442                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1443                         alignment = 128 * 1024;
1444                 else if (INTEL_INFO(dev)->gen >= 4)
1445                         alignment = 4 * 1024;
1446                 else
1447                         alignment = 64 * 1024;
1448                 break;
1449         case I915_TILING_X:
1450                 /* pin() will align the object as required by fence */
1451                 alignment = 0;
1452                 break;
1453         case I915_TILING_Y:
1454                 /* FIXME: Is this true? */
1455                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1456                 return -EINVAL;
1457         default:
1458                 BUG();
1459         }
1460
1461         ret = i915_gem_object_pin(obj, alignment, true);
1462         if (ret)
1463                 return ret;
1464
1465         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1466         if (ret)
1467                 goto err_unpin;
1468
1469         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1470          * fence, whereas 965+ only requires a fence if using
1471          * framebuffer compression.  For simplicity, we always install
1472          * a fence as the cost is not that onerous.
1473          */
1474         if (obj->tiling_mode != I915_TILING_NONE) {
1475                 ret = i915_gem_object_get_fence(obj, pipelined, false);
1476                 if (ret)
1477                         goto err_unpin;
1478         }
1479
1480         return 0;
1481
1482 err_unpin:
1483         i915_gem_object_unpin(obj);
1484         return ret;
1485 }
1486
1487 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1488 static int
1489 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1490                            int x, int y, enum mode_set_atomic state)
1491 {
1492         struct drm_device *dev = crtc->dev;
1493         struct drm_i915_private *dev_priv = dev->dev_private;
1494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1495         struct intel_framebuffer *intel_fb;
1496         struct drm_i915_gem_object *obj;
1497         int plane = intel_crtc->plane;
1498         unsigned long Start, Offset;
1499         u32 dspcntr;
1500         u32 reg;
1501
1502         switch (plane) {
1503         case 0:
1504         case 1:
1505                 break;
1506         default:
1507                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1508                 return -EINVAL;
1509         }
1510
1511         intel_fb = to_intel_framebuffer(fb);
1512         obj = intel_fb->obj;
1513
1514         reg = DSPCNTR(plane);
1515         dspcntr = I915_READ(reg);
1516         /* Mask out pixel format bits in case we change it */
1517         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1518         switch (fb->bits_per_pixel) {
1519         case 8:
1520                 dspcntr |= DISPPLANE_8BPP;
1521                 break;
1522         case 16:
1523                 if (fb->depth == 15)
1524                         dspcntr |= DISPPLANE_15_16BPP;
1525                 else
1526                         dspcntr |= DISPPLANE_16BPP;
1527                 break;
1528         case 24:
1529         case 32:
1530                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1531                 break;
1532         default:
1533                 DRM_ERROR("Unknown color depth\n");
1534                 return -EINVAL;
1535         }
1536         if (INTEL_INFO(dev)->gen >= 4) {
1537                 if (obj->tiling_mode != I915_TILING_NONE)
1538                         dspcntr |= DISPPLANE_TILED;
1539                 else
1540                         dspcntr &= ~DISPPLANE_TILED;
1541         }
1542
1543         if (HAS_PCH_SPLIT(dev))
1544                 /* must disable */
1545                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1546
1547         I915_WRITE(reg, dspcntr);
1548
1549         Start = obj->gtt_offset;
1550         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1551
1552         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1553                       Start, Offset, x, y, fb->pitch);
1554         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1555         if (INTEL_INFO(dev)->gen >= 4) {
1556                 I915_WRITE(DSPSURF(plane), Start);
1557                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1558                 I915_WRITE(DSPADDR(plane), Offset);
1559         } else
1560                 I915_WRITE(DSPADDR(plane), Start + Offset);
1561         POSTING_READ(reg);
1562
1563         intel_update_fbc(dev);
1564         intel_increase_pllclock(crtc);
1565
1566         return 0;
1567 }
1568
1569 static int
1570 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1571                     struct drm_framebuffer *old_fb)
1572 {
1573         struct drm_device *dev = crtc->dev;
1574         struct drm_i915_master_private *master_priv;
1575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1576         int ret;
1577
1578         /* no fb bound */
1579         if (!crtc->fb) {
1580                 DRM_DEBUG_KMS("No FB bound\n");
1581                 return 0;
1582         }
1583
1584         switch (intel_crtc->plane) {
1585         case 0:
1586         case 1:
1587                 break;
1588         default:
1589                 return -EINVAL;
1590         }
1591
1592         mutex_lock(&dev->struct_mutex);
1593         ret = intel_pin_and_fence_fb_obj(dev,
1594                                          to_intel_framebuffer(crtc->fb)->obj,
1595                                          NULL);
1596         if (ret != 0) {
1597                 mutex_unlock(&dev->struct_mutex);
1598                 return ret;
1599         }
1600
1601         if (old_fb) {
1602                 struct drm_i915_private *dev_priv = dev->dev_private;
1603                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1604
1605                 wait_event(dev_priv->pending_flip_queue,
1606                            atomic_read(&obj->pending_flip) == 0);
1607
1608                 /* Big Hammer, we also need to ensure that any pending
1609                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1610                  * current scanout is retired before unpinning the old
1611                  * framebuffer.
1612                  */
1613                 ret = i915_gem_object_flush_gpu(obj, false);
1614                 if (ret) {
1615                         i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1616                         mutex_unlock(&dev->struct_mutex);
1617                         return ret;
1618                 }
1619         }
1620
1621         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1622                                          LEAVE_ATOMIC_MODE_SET);
1623         if (ret) {
1624                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1625                 mutex_unlock(&dev->struct_mutex);
1626                 return ret;
1627         }
1628
1629         if (old_fb)
1630                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1631
1632         mutex_unlock(&dev->struct_mutex);
1633
1634         if (!dev->primary->master)
1635                 return 0;
1636
1637         master_priv = dev->primary->master->driver_priv;
1638         if (!master_priv->sarea_priv)
1639                 return 0;
1640
1641         if (intel_crtc->pipe) {
1642                 master_priv->sarea_priv->pipeB_x = x;
1643                 master_priv->sarea_priv->pipeB_y = y;
1644         } else {
1645                 master_priv->sarea_priv->pipeA_x = x;
1646                 master_priv->sarea_priv->pipeA_y = y;
1647         }
1648
1649         return 0;
1650 }
1651
1652 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1653 {
1654         struct drm_device *dev = crtc->dev;
1655         struct drm_i915_private *dev_priv = dev->dev_private;
1656         u32 dpa_ctl;
1657
1658         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1659         dpa_ctl = I915_READ(DP_A);
1660         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1661
1662         if (clock < 200000) {
1663                 u32 temp;
1664                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1665                 /* workaround for 160Mhz:
1666                    1) program 0x4600c bits 15:0 = 0x8124
1667                    2) program 0x46010 bit 0 = 1
1668                    3) program 0x46034 bit 24 = 1
1669                    4) program 0x64000 bit 14 = 1
1670                    */
1671                 temp = I915_READ(0x4600c);
1672                 temp &= 0xffff0000;
1673                 I915_WRITE(0x4600c, temp | 0x8124);
1674
1675                 temp = I915_READ(0x46010);
1676                 I915_WRITE(0x46010, temp | 1);
1677
1678                 temp = I915_READ(0x46034);
1679                 I915_WRITE(0x46034, temp | (1 << 24));
1680         } else {
1681                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1682         }
1683         I915_WRITE(DP_A, dpa_ctl);
1684
1685         POSTING_READ(DP_A);
1686         udelay(500);
1687 }
1688
1689 static void intel_fdi_normal_train(struct drm_crtc *crtc)
1690 {
1691         struct drm_device *dev = crtc->dev;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1694         int pipe = intel_crtc->pipe;
1695         u32 reg, temp;
1696
1697         /* enable normal train */
1698         reg = FDI_TX_CTL(pipe);
1699         temp = I915_READ(reg);
1700         temp &= ~FDI_LINK_TRAIN_NONE;
1701         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1702         I915_WRITE(reg, temp);
1703
1704         reg = FDI_RX_CTL(pipe);
1705         temp = I915_READ(reg);
1706         if (HAS_PCH_CPT(dev)) {
1707                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1708                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1709         } else {
1710                 temp &= ~FDI_LINK_TRAIN_NONE;
1711                 temp |= FDI_LINK_TRAIN_NONE;
1712         }
1713         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1714
1715         /* wait one idle pattern time */
1716         POSTING_READ(reg);
1717         udelay(1000);
1718 }
1719
1720 /* The FDI link training functions for ILK/Ibexpeak. */
1721 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1722 {
1723         struct drm_device *dev = crtc->dev;
1724         struct drm_i915_private *dev_priv = dev->dev_private;
1725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1726         int pipe = intel_crtc->pipe;
1727         u32 reg, temp, tries;
1728
1729         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1730            for train result */
1731         reg = FDI_RX_IMR(pipe);
1732         temp = I915_READ(reg);
1733         temp &= ~FDI_RX_SYMBOL_LOCK;
1734         temp &= ~FDI_RX_BIT_LOCK;
1735         I915_WRITE(reg, temp);
1736         I915_READ(reg);
1737         udelay(150);
1738
1739         /* enable CPU FDI TX and PCH FDI RX */
1740         reg = FDI_TX_CTL(pipe);
1741         temp = I915_READ(reg);
1742         temp &= ~(7 << 19);
1743         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1744         temp &= ~FDI_LINK_TRAIN_NONE;
1745         temp |= FDI_LINK_TRAIN_PATTERN_1;
1746         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1747
1748         reg = FDI_RX_CTL(pipe);
1749         temp = I915_READ(reg);
1750         temp &= ~FDI_LINK_TRAIN_NONE;
1751         temp |= FDI_LINK_TRAIN_PATTERN_1;
1752         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1753
1754         POSTING_READ(reg);
1755         udelay(150);
1756
1757         /* Ironlake workaround, enable clock pointer after FDI enable*/
1758         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1759
1760         reg = FDI_RX_IIR(pipe);
1761         for (tries = 0; tries < 5; tries++) {
1762                 temp = I915_READ(reg);
1763                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1764
1765                 if ((temp & FDI_RX_BIT_LOCK)) {
1766                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1767                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1768                         break;
1769                 }
1770         }
1771         if (tries == 5)
1772                 DRM_ERROR("FDI train 1 fail!\n");
1773
1774         /* Train 2 */
1775         reg = FDI_TX_CTL(pipe);
1776         temp = I915_READ(reg);
1777         temp &= ~FDI_LINK_TRAIN_NONE;
1778         temp |= FDI_LINK_TRAIN_PATTERN_2;
1779         I915_WRITE(reg, temp);
1780
1781         reg = FDI_RX_CTL(pipe);
1782         temp = I915_READ(reg);
1783         temp &= ~FDI_LINK_TRAIN_NONE;
1784         temp |= FDI_LINK_TRAIN_PATTERN_2;
1785         I915_WRITE(reg, temp);
1786
1787         POSTING_READ(reg);
1788         udelay(150);
1789
1790         reg = FDI_RX_IIR(pipe);
1791         for (tries = 0; tries < 5; tries++) {
1792                 temp = I915_READ(reg);
1793                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1794
1795                 if (temp & FDI_RX_SYMBOL_LOCK) {
1796                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1797                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1798                         break;
1799                 }
1800         }
1801         if (tries == 5)
1802                 DRM_ERROR("FDI train 2 fail!\n");
1803
1804         DRM_DEBUG_KMS("FDI train done\n");
1805
1806 }
1807
1808 static const int const snb_b_fdi_train_param [] = {
1809         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1810         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1811         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1812         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1813 };
1814
1815 /* The FDI link training functions for SNB/Cougarpoint. */
1816 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1817 {
1818         struct drm_device *dev = crtc->dev;
1819         struct drm_i915_private *dev_priv = dev->dev_private;
1820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1821         int pipe = intel_crtc->pipe;
1822         u32 reg, temp, i;
1823
1824         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1825            for train result */
1826         reg = FDI_RX_IMR(pipe);
1827         temp = I915_READ(reg);
1828         temp &= ~FDI_RX_SYMBOL_LOCK;
1829         temp &= ~FDI_RX_BIT_LOCK;
1830         I915_WRITE(reg, temp);
1831
1832         POSTING_READ(reg);
1833         udelay(150);
1834
1835         /* enable CPU FDI TX and PCH FDI RX */
1836         reg = FDI_TX_CTL(pipe);
1837         temp = I915_READ(reg);
1838         temp &= ~(7 << 19);
1839         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1840         temp &= ~FDI_LINK_TRAIN_NONE;
1841         temp |= FDI_LINK_TRAIN_PATTERN_1;
1842         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1843         /* SNB-B */
1844         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1845         I915_WRITE(reg, temp | FDI_TX_ENABLE);
1846
1847         reg = FDI_RX_CTL(pipe);
1848         temp = I915_READ(reg);
1849         if (HAS_PCH_CPT(dev)) {
1850                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1851                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1852         } else {
1853                 temp &= ~FDI_LINK_TRAIN_NONE;
1854                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1855         }
1856         I915_WRITE(reg, temp | FDI_RX_ENABLE);
1857
1858         POSTING_READ(reg);
1859         udelay(150);
1860
1861         for (i = 0; i < 4; i++ ) {
1862                 reg = FDI_TX_CTL(pipe);
1863                 temp = I915_READ(reg);
1864                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1865                 temp |= snb_b_fdi_train_param[i];
1866                 I915_WRITE(reg, temp);
1867
1868                 POSTING_READ(reg);
1869                 udelay(500);
1870
1871                 reg = FDI_RX_IIR(pipe);
1872                 temp = I915_READ(reg);
1873                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1874
1875                 if (temp & FDI_RX_BIT_LOCK) {
1876                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1877                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1878                         break;
1879                 }
1880         }
1881         if (i == 4)
1882                 DRM_ERROR("FDI train 1 fail!\n");
1883
1884         /* Train 2 */
1885         reg = FDI_TX_CTL(pipe);
1886         temp = I915_READ(reg);
1887         temp &= ~FDI_LINK_TRAIN_NONE;
1888         temp |= FDI_LINK_TRAIN_PATTERN_2;
1889         if (IS_GEN6(dev)) {
1890                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1891                 /* SNB-B */
1892                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1893         }
1894         I915_WRITE(reg, temp);
1895
1896         reg = FDI_RX_CTL(pipe);
1897         temp = I915_READ(reg);
1898         if (HAS_PCH_CPT(dev)) {
1899                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1900                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1901         } else {
1902                 temp &= ~FDI_LINK_TRAIN_NONE;
1903                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1904         }
1905         I915_WRITE(reg, temp);
1906
1907         POSTING_READ(reg);
1908         udelay(150);
1909
1910         for (i = 0; i < 4; i++ ) {
1911                 reg = FDI_TX_CTL(pipe);
1912                 temp = I915_READ(reg);
1913                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1914                 temp |= snb_b_fdi_train_param[i];
1915                 I915_WRITE(reg, temp);
1916
1917                 POSTING_READ(reg);
1918                 udelay(500);
1919
1920                 reg = FDI_RX_IIR(pipe);
1921                 temp = I915_READ(reg);
1922                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1923
1924                 if (temp & FDI_RX_SYMBOL_LOCK) {
1925                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1926                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1927                         break;
1928                 }
1929         }
1930         if (i == 4)
1931                 DRM_ERROR("FDI train 2 fail!\n");
1932
1933         DRM_DEBUG_KMS("FDI train done.\n");
1934 }
1935
1936 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1937 {
1938         struct drm_device *dev = crtc->dev;
1939         struct drm_i915_private *dev_priv = dev->dev_private;
1940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1941         int pipe = intel_crtc->pipe;
1942         u32 reg, temp;
1943
1944         /* Write the TU size bits so error detection works */
1945         I915_WRITE(FDI_RX_TUSIZE1(pipe),
1946                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1947
1948         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1949         reg = FDI_RX_CTL(pipe);
1950         temp = I915_READ(reg);
1951         temp &= ~((0x7 << 19) | (0x7 << 16));
1952         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1953         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1954         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1955
1956         POSTING_READ(reg);
1957         udelay(200);
1958
1959         /* Switch from Rawclk to PCDclk */
1960         temp = I915_READ(reg);
1961         I915_WRITE(reg, temp | FDI_PCDCLK);
1962
1963         POSTING_READ(reg);
1964         udelay(200);
1965
1966         /* Enable CPU FDI TX PLL, always on for Ironlake */
1967         reg = FDI_TX_CTL(pipe);
1968         temp = I915_READ(reg);
1969         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1970                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1971
1972                 POSTING_READ(reg);
1973                 udelay(100);
1974         }
1975 }
1976
1977 static void intel_flush_display_plane(struct drm_device *dev,
1978                                       int plane)
1979 {
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         u32 reg = DSPADDR(plane);
1982         I915_WRITE(reg, I915_READ(reg));
1983 }
1984
1985 /*
1986  * When we disable a pipe, we need to clear any pending scanline wait events
1987  * to avoid hanging the ring, which we assume we are waiting on.
1988  */
1989 static void intel_clear_scanline_wait(struct drm_device *dev)
1990 {
1991         struct drm_i915_private *dev_priv = dev->dev_private;
1992         struct intel_ring_buffer *ring;
1993         u32 tmp;
1994
1995         if (IS_GEN2(dev))
1996                 /* Can't break the hang on i8xx */
1997                 return;
1998
1999         ring = LP_RING(dev_priv);
2000         tmp = I915_READ_CTL(ring);
2001         if (tmp & RING_WAIT)
2002                 I915_WRITE_CTL(ring, tmp);
2003 }
2004
2005 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2006 {
2007         struct drm_i915_gem_object *obj;
2008         struct drm_i915_private *dev_priv;
2009
2010         if (crtc->fb == NULL)
2011                 return;
2012
2013         obj = to_intel_framebuffer(crtc->fb)->obj;
2014         dev_priv = crtc->dev->dev_private;
2015         wait_event(dev_priv->pending_flip_queue,
2016                    atomic_read(&obj->pending_flip) == 0);
2017 }
2018
2019 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2020 {
2021         struct drm_device *dev = crtc->dev;
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024         int pipe = intel_crtc->pipe;
2025         int plane = intel_crtc->plane;
2026         u32 reg, temp;
2027
2028         if (intel_crtc->active)
2029                 return;
2030
2031         intel_crtc->active = true;
2032         intel_update_watermarks(dev);
2033
2034         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2035                 temp = I915_READ(PCH_LVDS);
2036                 if ((temp & LVDS_PORT_EN) == 0)
2037                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2038         }
2039
2040         ironlake_fdi_enable(crtc);
2041
2042         /* Enable panel fitting for LVDS */
2043         if (dev_priv->pch_pf_size &&
2044             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2045                 /* Force use of hard-coded filter coefficients
2046                  * as some pre-programmed values are broken,
2047                  * e.g. x201.
2048                  */
2049                 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2050                            PF_ENABLE | PF_FILTER_MED_3x3);
2051                 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2052                            dev_priv->pch_pf_pos);
2053                 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2054                            dev_priv->pch_pf_size);
2055         }
2056
2057         /* Enable CPU pipe */
2058         reg = PIPECONF(pipe);
2059         temp = I915_READ(reg);
2060         if ((temp & PIPECONF_ENABLE) == 0) {
2061                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2062                 POSTING_READ(reg);
2063                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2064         }
2065
2066         /* configure and enable CPU plane */
2067         reg = DSPCNTR(plane);
2068         temp = I915_READ(reg);
2069         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2070                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2071                 intel_flush_display_plane(dev, plane);
2072         }
2073
2074         /* For PCH output, training FDI link */
2075         if (IS_GEN6(dev))
2076                 gen6_fdi_link_train(crtc);
2077         else
2078                 ironlake_fdi_link_train(crtc);
2079
2080         /* enable PCH DPLL */
2081         reg = PCH_DPLL(pipe);
2082         temp = I915_READ(reg);
2083         if ((temp & DPLL_VCO_ENABLE) == 0) {
2084                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2085                 POSTING_READ(reg);
2086                 udelay(200);
2087         }
2088
2089         if (HAS_PCH_CPT(dev)) {
2090                 /* Be sure PCH DPLL SEL is set */
2091                 temp = I915_READ(PCH_DPLL_SEL);
2092                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2093                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2094                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2095                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2096                 I915_WRITE(PCH_DPLL_SEL, temp);
2097         }
2098
2099         /* set transcoder timing */
2100         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2101         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2102         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2103
2104         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2105         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2106         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2107
2108         intel_fdi_normal_train(crtc);
2109
2110         /* For PCH DP, enable TRANS_DP_CTL */
2111         if (HAS_PCH_CPT(dev) &&
2112             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2113                 reg = TRANS_DP_CTL(pipe);
2114                 temp = I915_READ(reg);
2115                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2116                           TRANS_DP_SYNC_MASK |
2117                           TRANS_DP_BPC_MASK);
2118                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2119                          TRANS_DP_ENH_FRAMING);
2120                 temp |= TRANS_DP_8BPC;
2121
2122                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2123                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2124                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2125                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2126
2127                 switch (intel_trans_dp_port_sel(crtc)) {
2128                 case PCH_DP_B:
2129                         temp |= TRANS_DP_PORT_SEL_B;
2130                         break;
2131                 case PCH_DP_C:
2132                         temp |= TRANS_DP_PORT_SEL_C;
2133                         break;
2134                 case PCH_DP_D:
2135                         temp |= TRANS_DP_PORT_SEL_D;
2136                         break;
2137                 default:
2138                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2139                         temp |= TRANS_DP_PORT_SEL_B;
2140                         break;
2141                 }
2142
2143                 I915_WRITE(reg, temp);
2144         }
2145
2146         /* enable PCH transcoder */
2147         reg = TRANSCONF(pipe);
2148         temp = I915_READ(reg);
2149         /*
2150          * make the BPC in transcoder be consistent with
2151          * that in pipeconf reg.
2152          */
2153         temp &= ~PIPE_BPC_MASK;
2154         temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2155         I915_WRITE(reg, temp | TRANS_ENABLE);
2156         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2157                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
2158
2159         intel_crtc_load_lut(crtc);
2160         intel_update_fbc(dev);
2161         intel_crtc_update_cursor(crtc, true);
2162 }
2163
2164 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2165 {
2166         struct drm_device *dev = crtc->dev;
2167         struct drm_i915_private *dev_priv = dev->dev_private;
2168         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169         int pipe = intel_crtc->pipe;
2170         int plane = intel_crtc->plane;
2171         u32 reg, temp;
2172
2173         if (!intel_crtc->active)
2174                 return;
2175
2176         intel_crtc_wait_for_pending_flips(crtc);
2177         drm_vblank_off(dev, pipe);
2178         intel_crtc_update_cursor(crtc, false);
2179
2180         /* Disable display plane */
2181         reg = DSPCNTR(plane);
2182         temp = I915_READ(reg);
2183         if (temp & DISPLAY_PLANE_ENABLE) {
2184                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2185                 intel_flush_display_plane(dev, plane);
2186         }
2187
2188         if (dev_priv->cfb_plane == plane &&
2189             dev_priv->display.disable_fbc)
2190                 dev_priv->display.disable_fbc(dev);
2191
2192         /* disable cpu pipe, disable after all planes disabled */
2193         reg = PIPECONF(pipe);
2194         temp = I915_READ(reg);
2195         if (temp & PIPECONF_ENABLE) {
2196                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2197                 POSTING_READ(reg);
2198                 /* wait for cpu pipe off, pipe state */
2199                 intel_wait_for_pipe_off(dev, intel_crtc->pipe);
2200         }
2201
2202         /* Disable PF */
2203         I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2204         I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2205
2206         /* disable CPU FDI tx and PCH FDI rx */
2207         reg = FDI_TX_CTL(pipe);
2208         temp = I915_READ(reg);
2209         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2210         POSTING_READ(reg);
2211
2212         reg = FDI_RX_CTL(pipe);
2213         temp = I915_READ(reg);
2214         temp &= ~(0x7 << 16);
2215         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2216         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2217
2218         POSTING_READ(reg);
2219         udelay(100);
2220
2221         /* Ironlake workaround, disable clock pointer after downing FDI */
2222         if (HAS_PCH_IBX(dev))
2223                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2224                            I915_READ(FDI_RX_CHICKEN(pipe) &
2225                                      ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2226
2227         /* still set train pattern 1 */
2228         reg = FDI_TX_CTL(pipe);
2229         temp = I915_READ(reg);
2230         temp &= ~FDI_LINK_TRAIN_NONE;
2231         temp |= FDI_LINK_TRAIN_PATTERN_1;
2232         I915_WRITE(reg, temp);
2233
2234         reg = FDI_RX_CTL(pipe);
2235         temp = I915_READ(reg);
2236         if (HAS_PCH_CPT(dev)) {
2237                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2238                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2239         } else {
2240                 temp &= ~FDI_LINK_TRAIN_NONE;
2241                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2242         }
2243         /* BPC in FDI rx is consistent with that in PIPECONF */
2244         temp &= ~(0x07 << 16);
2245         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2246         I915_WRITE(reg, temp);
2247
2248         POSTING_READ(reg);
2249         udelay(100);
2250
2251         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2252                 temp = I915_READ(PCH_LVDS);
2253                 if (temp & LVDS_PORT_EN) {
2254                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2255                         POSTING_READ(PCH_LVDS);
2256                         udelay(100);
2257                 }
2258         }
2259
2260         /* disable PCH transcoder */
2261         reg = TRANSCONF(plane);
2262         temp = I915_READ(reg);
2263         if (temp & TRANS_ENABLE) {
2264                 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2265                 /* wait for PCH transcoder off, transcoder state */
2266                 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2267                         DRM_ERROR("failed to disable transcoder\n");
2268         }
2269
2270         if (HAS_PCH_CPT(dev)) {
2271                 /* disable TRANS_DP_CTL */
2272                 reg = TRANS_DP_CTL(pipe);
2273                 temp = I915_READ(reg);
2274                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2275                 I915_WRITE(reg, temp);
2276
2277                 /* disable DPLL_SEL */
2278                 temp = I915_READ(PCH_DPLL_SEL);
2279                 if (pipe == 0)
2280                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2281                 else
2282                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2283                 I915_WRITE(PCH_DPLL_SEL, temp);
2284         }
2285
2286         /* disable PCH DPLL */
2287         reg = PCH_DPLL(pipe);
2288         temp = I915_READ(reg);
2289         I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2290
2291         /* Switch from PCDclk to Rawclk */
2292         reg = FDI_RX_CTL(pipe);
2293         temp = I915_READ(reg);
2294         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2295
2296         /* Disable CPU FDI TX PLL */
2297         reg = FDI_TX_CTL(pipe);
2298         temp = I915_READ(reg);
2299         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2300
2301         POSTING_READ(reg);
2302         udelay(100);
2303
2304         reg = FDI_RX_CTL(pipe);
2305         temp = I915_READ(reg);
2306         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2307
2308         /* Wait for the clocks to turn off. */
2309         POSTING_READ(reg);
2310         udelay(100);
2311
2312         intel_crtc->active = false;
2313         intel_update_watermarks(dev);
2314         intel_update_fbc(dev);
2315         intel_clear_scanline_wait(dev);
2316 }
2317
2318 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2319 {
2320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2321         int pipe = intel_crtc->pipe;
2322         int plane = intel_crtc->plane;
2323
2324         /* XXX: When our outputs are all unaware of DPMS modes other than off
2325          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2326          */
2327         switch (mode) {
2328         case DRM_MODE_DPMS_ON:
2329         case DRM_MODE_DPMS_STANDBY:
2330         case DRM_MODE_DPMS_SUSPEND:
2331                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2332                 ironlake_crtc_enable(crtc);
2333                 break;
2334
2335         case DRM_MODE_DPMS_OFF:
2336                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2337                 ironlake_crtc_disable(crtc);
2338                 break;
2339         }
2340 }
2341
2342 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2343 {
2344         if (!enable && intel_crtc->overlay) {
2345                 struct drm_device *dev = intel_crtc->base.dev;
2346
2347                 mutex_lock(&dev->struct_mutex);
2348                 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2349                 mutex_unlock(&dev->struct_mutex);
2350         }
2351
2352         /* Let userspace switch the overlay on again. In most cases userspace
2353          * has to recompute where to put it anyway.
2354          */
2355 }
2356
2357 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2358 {
2359         struct drm_device *dev = crtc->dev;
2360         struct drm_i915_private *dev_priv = dev->dev_private;
2361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2362         int pipe = intel_crtc->pipe;
2363         int plane = intel_crtc->plane;
2364         u32 reg, temp;
2365
2366         if (intel_crtc->active)
2367                 return;
2368
2369         intel_crtc->active = true;
2370         intel_update_watermarks(dev);
2371
2372         /* Enable the DPLL */
2373         reg = DPLL(pipe);
2374         temp = I915_READ(reg);
2375         if ((temp & DPLL_VCO_ENABLE) == 0) {
2376                 I915_WRITE(reg, temp);
2377
2378                 /* Wait for the clocks to stabilize. */
2379                 POSTING_READ(reg);
2380                 udelay(150);
2381
2382                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2383
2384                 /* Wait for the clocks to stabilize. */
2385                 POSTING_READ(reg);
2386                 udelay(150);
2387
2388                 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2389
2390                 /* Wait for the clocks to stabilize. */
2391                 POSTING_READ(reg);
2392                 udelay(150);
2393         }
2394
2395         /* Enable the pipe */
2396         reg = PIPECONF(pipe);
2397         temp = I915_READ(reg);
2398         if ((temp & PIPECONF_ENABLE) == 0)
2399                 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2400
2401         /* Enable the plane */
2402         reg = DSPCNTR(plane);
2403         temp = I915_READ(reg);
2404         if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2405                 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2406                 intel_flush_display_plane(dev, plane);
2407         }
2408
2409         intel_crtc_load_lut(crtc);
2410         intel_update_fbc(dev);
2411
2412         /* Give the overlay scaler a chance to enable if it's on this pipe */
2413         intel_crtc_dpms_overlay(intel_crtc, true);
2414         intel_crtc_update_cursor(crtc, true);
2415 }
2416
2417 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2418 {
2419         struct drm_device *dev = crtc->dev;
2420         struct drm_i915_private *dev_priv = dev->dev_private;
2421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2422         int pipe = intel_crtc->pipe;
2423         int plane = intel_crtc->plane;
2424         u32 reg, temp;
2425
2426         if (!intel_crtc->active)
2427                 return;
2428
2429         /* Give the overlay scaler a chance to disable if it's on this pipe */
2430         intel_crtc_wait_for_pending_flips(crtc);
2431         drm_vblank_off(dev, pipe);
2432         intel_crtc_dpms_overlay(intel_crtc, false);
2433         intel_crtc_update_cursor(crtc, false);
2434
2435         if (dev_priv->cfb_plane == plane &&
2436             dev_priv->display.disable_fbc)
2437                 dev_priv->display.disable_fbc(dev);
2438
2439         /* Disable display plane */
2440         reg = DSPCNTR(plane);
2441         temp = I915_READ(reg);
2442         if (temp & DISPLAY_PLANE_ENABLE) {
2443                 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2444                 /* Flush the plane changes */
2445                 intel_flush_display_plane(dev, plane);
2446
2447                 /* Wait for vblank for the disable to take effect */
2448                 if (IS_GEN2(dev))
2449                         intel_wait_for_vblank(dev, pipe);
2450         }
2451
2452         /* Don't disable pipe A or pipe A PLLs if needed */
2453         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2454                 goto done;
2455
2456         /* Next, disable display pipes */
2457         reg = PIPECONF(pipe);
2458         temp = I915_READ(reg);
2459         if (temp & PIPECONF_ENABLE) {
2460                 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2461
2462                 /* Wait for the pipe to turn off */
2463                 POSTING_READ(reg);
2464                 intel_wait_for_pipe_off(dev, pipe);
2465         }
2466
2467         reg = DPLL(pipe);
2468         temp = I915_READ(reg);
2469         if (temp & DPLL_VCO_ENABLE) {
2470                 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2471
2472                 /* Wait for the clocks to turn off. */
2473                 POSTING_READ(reg);
2474                 udelay(150);
2475         }
2476
2477 done:
2478         intel_crtc->active = false;
2479         intel_update_fbc(dev);
2480         intel_update_watermarks(dev);
2481         intel_clear_scanline_wait(dev);
2482 }
2483
2484 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2485 {
2486         /* XXX: When our outputs are all unaware of DPMS modes other than off
2487          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2488          */
2489         switch (mode) {
2490         case DRM_MODE_DPMS_ON:
2491         case DRM_MODE_DPMS_STANDBY:
2492         case DRM_MODE_DPMS_SUSPEND:
2493                 i9xx_crtc_enable(crtc);
2494                 break;
2495         case DRM_MODE_DPMS_OFF:
2496                 i9xx_crtc_disable(crtc);
2497                 break;
2498         }
2499 }
2500
2501 /**
2502  * Sets the power management mode of the pipe and plane.
2503  */
2504 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2505 {
2506         struct drm_device *dev = crtc->dev;
2507         struct drm_i915_private *dev_priv = dev->dev_private;
2508         struct drm_i915_master_private *master_priv;
2509         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2510         int pipe = intel_crtc->pipe;
2511         bool enabled;
2512
2513         if (intel_crtc->dpms_mode == mode)
2514                 return;
2515
2516         intel_crtc->dpms_mode = mode;
2517
2518         dev_priv->display.dpms(crtc, mode);
2519
2520         if (!dev->primary->master)
2521                 return;
2522
2523         master_priv = dev->primary->master->driver_priv;
2524         if (!master_priv->sarea_priv)
2525                 return;
2526
2527         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2528
2529         switch (pipe) {
2530         case 0:
2531                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2532                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2533                 break;
2534         case 1:
2535                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2536                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2537                 break;
2538         default:
2539                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2540                 break;
2541         }
2542 }
2543
2544 static void intel_crtc_disable(struct drm_crtc *crtc)
2545 {
2546         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2547         struct drm_device *dev = crtc->dev;
2548
2549         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2550
2551         if (crtc->fb) {
2552                 mutex_lock(&dev->struct_mutex);
2553                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2554                 mutex_unlock(&dev->struct_mutex);
2555         }
2556 }
2557
2558 /* Prepare for a mode set.
2559  *
2560  * Note we could be a lot smarter here.  We need to figure out which outputs
2561  * will be enabled, which disabled (in short, how the config will changes)
2562  * and perform the minimum necessary steps to accomplish that, e.g. updating
2563  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2564  * panel fitting is in the proper state, etc.
2565  */
2566 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2567 {
2568         i9xx_crtc_disable(crtc);
2569 }
2570
2571 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2572 {
2573         i9xx_crtc_enable(crtc);
2574 }
2575
2576 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2577 {
2578         ironlake_crtc_disable(crtc);
2579 }
2580
2581 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2582 {
2583         ironlake_crtc_enable(crtc);
2584 }
2585
2586 void intel_encoder_prepare (struct drm_encoder *encoder)
2587 {
2588         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2589         /* lvds has its own version of prepare see intel_lvds_prepare */
2590         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2591 }
2592
2593 void intel_encoder_commit (struct drm_encoder *encoder)
2594 {
2595         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2596         /* lvds has its own version of commit see intel_lvds_commit */
2597         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2598 }
2599
2600 void intel_encoder_destroy(struct drm_encoder *encoder)
2601 {
2602         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2603
2604         drm_encoder_cleanup(encoder);
2605         kfree(intel_encoder);
2606 }
2607
2608 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2609                                   struct drm_display_mode *mode,
2610                                   struct drm_display_mode *adjusted_mode)
2611 {
2612         struct drm_device *dev = crtc->dev;
2613
2614         if (HAS_PCH_SPLIT(dev)) {
2615                 /* FDI link clock is fixed at 2.7G */
2616                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2617                         return false;
2618         }
2619
2620         /* XXX some encoders set the crtcinfo, others don't.
2621          * Obviously we need some form of conflict resolution here...
2622          */
2623         if (adjusted_mode->crtc_htotal == 0)
2624                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2625
2626         return true;
2627 }
2628
2629 static int i945_get_display_clock_speed(struct drm_device *dev)
2630 {
2631         return 400000;
2632 }
2633
2634 static int i915_get_display_clock_speed(struct drm_device *dev)
2635 {
2636         return 333000;
2637 }
2638
2639 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2640 {
2641         return 200000;
2642 }
2643
2644 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2645 {
2646         u16 gcfgc = 0;
2647
2648         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2649
2650         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2651                 return 133000;
2652         else {
2653                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2654                 case GC_DISPLAY_CLOCK_333_MHZ:
2655                         return 333000;
2656                 default:
2657                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2658                         return 190000;
2659                 }
2660         }
2661 }
2662
2663 static int i865_get_display_clock_speed(struct drm_device *dev)
2664 {
2665         return 266000;
2666 }
2667
2668 static int i855_get_display_clock_speed(struct drm_device *dev)
2669 {
2670         u16 hpllcc = 0;
2671         /* Assume that the hardware is in the high speed state.  This
2672          * should be the default.
2673          */
2674         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2675         case GC_CLOCK_133_200:
2676         case GC_CLOCK_100_200:
2677                 return 200000;
2678         case GC_CLOCK_166_250:
2679                 return 250000;
2680         case GC_CLOCK_100_133:
2681                 return 133000;
2682         }
2683
2684         /* Shouldn't happen */
2685         return 0;
2686 }
2687
2688 static int i830_get_display_clock_speed(struct drm_device *dev)
2689 {
2690         return 133000;
2691 }
2692
2693 struct fdi_m_n {
2694         u32        tu;
2695         u32        gmch_m;
2696         u32        gmch_n;
2697         u32        link_m;
2698         u32        link_n;
2699 };
2700
2701 static void
2702 fdi_reduce_ratio(u32 *num, u32 *den)
2703 {
2704         while (*num > 0xffffff || *den > 0xffffff) {
2705                 *num >>= 1;
2706                 *den >>= 1;
2707         }
2708 }
2709
2710 static void
2711 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2712                      int link_clock, struct fdi_m_n *m_n)
2713 {
2714         m_n->tu = 64; /* default size */
2715
2716         /* BUG_ON(pixel_clock > INT_MAX / 36); */
2717         m_n->gmch_m = bits_per_pixel * pixel_clock;
2718         m_n->gmch_n = link_clock * nlanes * 8;
2719         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2720
2721         m_n->link_m = pixel_clock;
2722         m_n->link_n = link_clock;
2723         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2724 }
2725
2726
2727 struct intel_watermark_params {
2728         unsigned long fifo_size;
2729         unsigned long max_wm;
2730         unsigned long default_wm;
2731         unsigned long guard_size;
2732         unsigned long cacheline_size;
2733 };
2734
2735 /* Pineview has different values for various configs */
2736 static struct intel_watermark_params pineview_display_wm = {
2737         PINEVIEW_DISPLAY_FIFO,
2738         PINEVIEW_MAX_WM,
2739         PINEVIEW_DFT_WM,
2740         PINEVIEW_GUARD_WM,
2741         PINEVIEW_FIFO_LINE_SIZE
2742 };
2743 static struct intel_watermark_params pineview_display_hplloff_wm = {
2744         PINEVIEW_DISPLAY_FIFO,
2745         PINEVIEW_MAX_WM,
2746         PINEVIEW_DFT_HPLLOFF_WM,
2747         PINEVIEW_GUARD_WM,
2748         PINEVIEW_FIFO_LINE_SIZE
2749 };
2750 static struct intel_watermark_params pineview_cursor_wm = {
2751         PINEVIEW_CURSOR_FIFO,
2752         PINEVIEW_CURSOR_MAX_WM,
2753         PINEVIEW_CURSOR_DFT_WM,
2754         PINEVIEW_CURSOR_GUARD_WM,
2755         PINEVIEW_FIFO_LINE_SIZE,
2756 };
2757 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2758         PINEVIEW_CURSOR_FIFO,
2759         PINEVIEW_CURSOR_MAX_WM,
2760         PINEVIEW_CURSOR_DFT_WM,
2761         PINEVIEW_CURSOR_GUARD_WM,
2762         PINEVIEW_FIFO_LINE_SIZE
2763 };
2764 static struct intel_watermark_params g4x_wm_info = {
2765         G4X_FIFO_SIZE,
2766         G4X_MAX_WM,
2767         G4X_MAX_WM,
2768         2,
2769         G4X_FIFO_LINE_SIZE,
2770 };
2771 static struct intel_watermark_params g4x_cursor_wm_info = {
2772         I965_CURSOR_FIFO,
2773         I965_CURSOR_MAX_WM,
2774         I965_CURSOR_DFT_WM,
2775         2,
2776         G4X_FIFO_LINE_SIZE,
2777 };
2778 static struct intel_watermark_params i965_cursor_wm_info = {
2779         I965_CURSOR_FIFO,
2780         I965_CURSOR_MAX_WM,
2781         I965_CURSOR_DFT_WM,
2782         2,
2783         I915_FIFO_LINE_SIZE,
2784 };
2785 static struct intel_watermark_params i945_wm_info = {
2786         I945_FIFO_SIZE,
2787         I915_MAX_WM,
2788         1,
2789         2,
2790         I915_FIFO_LINE_SIZE
2791 };
2792 static struct intel_watermark_params i915_wm_info = {
2793         I915_FIFO_SIZE,
2794         I915_MAX_WM,
2795         1,
2796         2,
2797         I915_FIFO_LINE_SIZE
2798 };
2799 static struct intel_watermark_params i855_wm_info = {
2800         I855GM_FIFO_SIZE,
2801         I915_MAX_WM,
2802         1,
2803         2,
2804         I830_FIFO_LINE_SIZE
2805 };
2806 static struct intel_watermark_params i830_wm_info = {
2807         I830_FIFO_SIZE,
2808         I915_MAX_WM,
2809         1,
2810         2,
2811         I830_FIFO_LINE_SIZE
2812 };
2813
2814 static struct intel_watermark_params ironlake_display_wm_info = {
2815         ILK_DISPLAY_FIFO,
2816         ILK_DISPLAY_MAXWM,
2817         ILK_DISPLAY_DFTWM,
2818         2,
2819         ILK_FIFO_LINE_SIZE
2820 };
2821
2822 static struct intel_watermark_params ironlake_cursor_wm_info = {
2823         ILK_CURSOR_FIFO,
2824         ILK_CURSOR_MAXWM,
2825         ILK_CURSOR_DFTWM,
2826         2,
2827         ILK_FIFO_LINE_SIZE
2828 };
2829
2830 static struct intel_watermark_params ironlake_display_srwm_info = {
2831         ILK_DISPLAY_SR_FIFO,
2832         ILK_DISPLAY_MAX_SRWM,
2833         ILK_DISPLAY_DFT_SRWM,
2834         2,
2835         ILK_FIFO_LINE_SIZE
2836 };
2837
2838 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2839         ILK_CURSOR_SR_FIFO,
2840         ILK_CURSOR_MAX_SRWM,
2841         ILK_CURSOR_DFT_SRWM,
2842         2,
2843         ILK_FIFO_LINE_SIZE
2844 };
2845
2846 /**
2847  * intel_calculate_wm - calculate watermark level
2848  * @clock_in_khz: pixel clock
2849  * @wm: chip FIFO params
2850  * @pixel_size: display pixel size
2851  * @latency_ns: memory latency for the platform
2852  *
2853  * Calculate the watermark level (the level at which the display plane will
2854  * start fetching from memory again).  Each chip has a different display
2855  * FIFO size and allocation, so the caller needs to figure that out and pass
2856  * in the correct intel_watermark_params structure.
2857  *
2858  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2859  * on the pixel size.  When it reaches the watermark level, it'll start
2860  * fetching FIFO line sized based chunks from memory until the FIFO fills
2861  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2862  * will occur, and a display engine hang could result.
2863  */
2864 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2865                                         struct intel_watermark_params *wm,
2866                                         int pixel_size,
2867                                         unsigned long latency_ns)
2868 {
2869         long entries_required, wm_size;
2870
2871         /*
2872          * Note: we need to make sure we don't overflow for various clock &
2873          * latency values.
2874          * clocks go from a few thousand to several hundred thousand.
2875          * latency is usually a few thousand
2876          */
2877         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2878                 1000;
2879         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2880
2881         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2882
2883         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2884
2885         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2886
2887         /* Don't promote wm_size to unsigned... */
2888         if (wm_size > (long)wm->max_wm)
2889                 wm_size = wm->max_wm;
2890         if (wm_size <= 0)
2891                 wm_size = wm->default_wm;
2892         return wm_size;
2893 }
2894
2895 struct cxsr_latency {
2896         int is_desktop;
2897         int is_ddr3;
2898         unsigned long fsb_freq;
2899         unsigned long mem_freq;
2900         unsigned long display_sr;
2901         unsigned long display_hpll_disable;
2902         unsigned long cursor_sr;
2903         unsigned long cursor_hpll_disable;
2904 };
2905
2906 static const struct cxsr_latency cxsr_latency_table[] = {
2907         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2908         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2909         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2910         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
2911         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
2912
2913         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2914         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2915         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2916         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
2917         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
2918
2919         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2920         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2921         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2922         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
2923         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
2924
2925         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2926         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2927         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2928         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
2929         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
2930
2931         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2932         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2933         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2934         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
2935         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
2936
2937         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2938         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2939         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2940         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
2941         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
2942 };
2943
2944 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2945                                                          int is_ddr3,
2946                                                          int fsb,
2947                                                          int mem)
2948 {
2949         const struct cxsr_latency *latency;
2950         int i;
2951
2952         if (fsb == 0 || mem == 0)
2953                 return NULL;
2954
2955         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2956                 latency = &cxsr_latency_table[i];
2957                 if (is_desktop == latency->is_desktop &&
2958                     is_ddr3 == latency->is_ddr3 &&
2959                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2960                         return latency;
2961         }
2962
2963         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2964
2965         return NULL;
2966 }
2967
2968 static void pineview_disable_cxsr(struct drm_device *dev)
2969 {
2970         struct drm_i915_private *dev_priv = dev->dev_private;
2971
2972         /* deactivate cxsr */
2973         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2974 }
2975
2976 /*
2977  * Latency for FIFO fetches is dependent on several factors:
2978  *   - memory configuration (speed, channels)
2979  *   - chipset
2980  *   - current MCH state
2981  * It can be fairly high in some situations, so here we assume a fairly
2982  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2983  * set this value too high, the FIFO will fetch frequently to stay full)
2984  * and power consumption (set it too low to save power and we might see
2985  * FIFO underruns and display "flicker").
2986  *
2987  * A value of 5us seems to be a good balance; safe for very low end
2988  * platforms but not overly aggressive on lower latency configs.
2989  */
2990 static const int latency_ns = 5000;
2991
2992 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2993 {
2994         struct drm_i915_private *dev_priv = dev->dev_private;
2995         uint32_t dsparb = I915_READ(DSPARB);
2996         int size;
2997
2998         size = dsparb & 0x7f;
2999         if (plane)
3000                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3001
3002         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3003                       plane ? "B" : "A", size);
3004
3005         return size;
3006 }
3007
3008 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3009 {
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         uint32_t dsparb = I915_READ(DSPARB);
3012         int size;
3013
3014         size = dsparb & 0x1ff;
3015         if (plane)
3016                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3017         size >>= 1; /* Convert to cachelines */
3018
3019         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3020                       plane ? "B" : "A", size);
3021
3022         return size;
3023 }
3024
3025 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3026 {
3027         struct drm_i915_private *dev_priv = dev->dev_private;
3028         uint32_t dsparb = I915_READ(DSPARB);
3029         int size;
3030
3031         size = dsparb & 0x7f;
3032         size >>= 2; /* Convert to cachelines */
3033
3034         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3035                       plane ? "B" : "A",
3036                       size);
3037
3038         return size;
3039 }
3040
3041 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3042 {
3043         struct drm_i915_private *dev_priv = dev->dev_private;
3044         uint32_t dsparb = I915_READ(DSPARB);
3045         int size;
3046
3047         size = dsparb & 0x7f;
3048         size >>= 1; /* Convert to cachelines */
3049
3050         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3051                       plane ? "B" : "A", size);
3052
3053         return size;
3054 }
3055
3056 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
3057                                int planeb_clock, int sr_hdisplay, int unused,
3058                                int pixel_size)
3059 {
3060         struct drm_i915_private *dev_priv = dev->dev_private;
3061         const struct cxsr_latency *latency;
3062         u32 reg;
3063         unsigned long wm;
3064         int sr_clock;
3065
3066         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3067                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3068         if (!latency) {
3069                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3070                 pineview_disable_cxsr(dev);
3071                 return;
3072         }
3073
3074         if (!planea_clock || !planeb_clock) {
3075                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3076
3077                 /* Display SR */
3078                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3079                                         pixel_size, latency->display_sr);
3080                 reg = I915_READ(DSPFW1);
3081                 reg &= ~DSPFW_SR_MASK;
3082                 reg |= wm << DSPFW_SR_SHIFT;
3083                 I915_WRITE(DSPFW1, reg);
3084                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3085
3086                 /* cursor SR */
3087                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3088                                         pixel_size, latency->cursor_sr);
3089                 reg = I915_READ(DSPFW3);
3090                 reg &= ~DSPFW_CURSOR_SR_MASK;
3091                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3092                 I915_WRITE(DSPFW3, reg);
3093
3094                 /* Display HPLL off SR */
3095                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3096                                         pixel_size, latency->display_hpll_disable);
3097                 reg = I915_READ(DSPFW3);
3098                 reg &= ~DSPFW_HPLL_SR_MASK;
3099                 reg |= wm & DSPFW_HPLL_SR_MASK;
3100                 I915_WRITE(DSPFW3, reg);
3101
3102                 /* cursor HPLL off SR */
3103                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3104                                         pixel_size, latency->cursor_hpll_disable);
3105                 reg = I915_READ(DSPFW3);
3106                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3107                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3108                 I915_WRITE(DSPFW3, reg);
3109                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3110
3111                 /* activate cxsr */
3112                 I915_WRITE(DSPFW3,
3113                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3114                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3115         } else {
3116                 pineview_disable_cxsr(dev);
3117                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3118         }
3119 }
3120
3121 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
3122                           int planeb_clock, int sr_hdisplay, int sr_htotal,
3123                           int pixel_size)
3124 {
3125         struct drm_i915_private *dev_priv = dev->dev_private;
3126         int total_size, cacheline_size;
3127         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3128         struct intel_watermark_params planea_params, planeb_params;
3129         unsigned long line_time_us;
3130         int sr_clock, sr_entries = 0, entries_required;
3131
3132         /* Create copies of the base settings for each pipe */
3133         planea_params = planeb_params = g4x_wm_info;
3134
3135         /* Grab a couple of global values before we overwrite them */
3136         total_size = planea_params.fifo_size;
3137         cacheline_size = planea_params.cacheline_size;
3138
3139         /*
3140          * Note: we need to make sure we don't overflow for various clock &
3141          * latency values.
3142          * clocks go from a few thousand to several hundred thousand.
3143          * latency is usually a few thousand
3144          */
3145         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3146                 1000;
3147         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3148         planea_wm = entries_required + planea_params.guard_size;
3149
3150         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3151                 1000;
3152         entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3153         planeb_wm = entries_required + planeb_params.guard_size;
3154
3155         cursora_wm = cursorb_wm = 16;
3156         cursor_sr = 32;
3157
3158         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3159
3160         /* Calc sr entries for one plane configs */
3161         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3162                 /* self-refresh has much higher latency */
3163                 static const int sr_latency_ns = 12000;
3164
3165                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3166                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3167
3168                 /* Use ns/us then divide to preserve precision */
3169                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3170                         pixel_size * sr_hdisplay;
3171                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3172
3173                 entries_required = (((sr_latency_ns / line_time_us) +
3174                                      1000) / 1000) * pixel_size * 64;
3175                 entries_required = DIV_ROUND_UP(entries_required,
3176                                                 g4x_cursor_wm_info.cacheline_size);
3177                 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3178
3179                 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3180                         cursor_sr = g4x_cursor_wm_info.max_wm;
3181                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3182                               "cursor %d\n", sr_entries, cursor_sr);
3183
3184                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3185         } else {
3186                 /* Turn off self refresh if both pipes are enabled */
3187                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3188                            & ~FW_BLC_SELF_EN);
3189         }
3190
3191         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3192                   planea_wm, planeb_wm, sr_entries);
3193
3194         planea_wm &= 0x3f;
3195         planeb_wm &= 0x3f;
3196
3197         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3198                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3199                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3200         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3201                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3202         /* HPLL off in SR has some issues on G4x... disable it */
3203         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3204                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3205 }
3206
3207 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3208                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3209                            int pixel_size)
3210 {
3211         struct drm_i915_private *dev_priv = dev->dev_private;
3212         unsigned long line_time_us;
3213         int sr_clock, sr_entries, srwm = 1;
3214         int cursor_sr = 16;
3215
3216         /* Calc sr entries for one plane configs */
3217         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3218                 /* self-refresh has much higher latency */
3219                 static const int sr_latency_ns = 12000;
3220
3221                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3222                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3223
3224                 /* Use ns/us then divide to preserve precision */
3225                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3226                         pixel_size * sr_hdisplay;
3227                 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3228                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3229                 srwm = I965_FIFO_SIZE - sr_entries;
3230                 if (srwm < 0)
3231                         srwm = 1;
3232                 srwm &= 0x1ff;
3233
3234                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3235                         pixel_size * 64;
3236                 sr_entries = DIV_ROUND_UP(sr_entries,
3237                                           i965_cursor_wm_info.cacheline_size);
3238                 cursor_sr = i965_cursor_wm_info.fifo_size -
3239                         (sr_entries + i965_cursor_wm_info.guard_size);
3240
3241                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3242                         cursor_sr = i965_cursor_wm_info.max_wm;
3243
3244                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3245                               "cursor %d\n", srwm, cursor_sr);
3246
3247                 if (IS_CRESTLINE(dev))
3248                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3249         } else {
3250                 /* Turn off self refresh if both pipes are enabled */
3251                 if (IS_CRESTLINE(dev))
3252                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3253                                    & ~FW_BLC_SELF_EN);
3254         }
3255
3256         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3257                       srwm);
3258
3259         /* 965 has limitations... */
3260         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3261                    (8 << 0));
3262         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3263         /* update cursor SR watermark */
3264         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3265 }
3266
3267 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3268                            int planeb_clock, int sr_hdisplay, int sr_htotal,
3269                            int pixel_size)
3270 {
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272         uint32_t fwater_lo;
3273         uint32_t fwater_hi;
3274         int total_size, cacheline_size, cwm, srwm = 1;
3275         int planea_wm, planeb_wm;
3276         struct intel_watermark_params planea_params, planeb_params;
3277         unsigned long line_time_us;
3278         int sr_clock, sr_entries = 0;
3279
3280         /* Create copies of the base settings for each pipe */
3281         if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3282                 planea_params = planeb_params = i945_wm_info;
3283         else if (!IS_GEN2(dev))
3284                 planea_params = planeb_params = i915_wm_info;
3285         else
3286                 planea_params = planeb_params = i855_wm_info;
3287
3288         /* Grab a couple of global values before we overwrite them */
3289         total_size = planea_params.fifo_size;
3290         cacheline_size = planea_params.cacheline_size;
3291
3292         /* Update per-plane FIFO sizes */
3293         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3294         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3295
3296         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3297                                        pixel_size, latency_ns);
3298         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3299                                        pixel_size, latency_ns);
3300         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3301
3302         /*
3303          * Overlay gets an aggressive default since video jitter is bad.
3304          */
3305         cwm = 2;
3306
3307         /* Calc sr entries for one plane configs */
3308         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3309             (!planea_clock || !planeb_clock)) {
3310                 /* self-refresh has much higher latency */
3311                 static const int sr_latency_ns = 6000;
3312
3313                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3314                 line_time_us = ((sr_htotal * 1000) / sr_clock);
3315
3316                 /* Use ns/us then divide to preserve precision */
3317                 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3318                         pixel_size * sr_hdisplay;
3319                 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3320                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3321                 srwm = total_size - sr_entries;
3322                 if (srwm < 0)
3323                         srwm = 1;
3324
3325                 if (IS_I945G(dev) || IS_I945GM(dev))
3326                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3327                 else if (IS_I915GM(dev)) {
3328                         /* 915M has a smaller SRWM field */
3329                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3330                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3331                 }
3332         } else {
3333                 /* Turn off self refresh if both pipes are enabled */
3334                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3335                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3336                                    & ~FW_BLC_SELF_EN);
3337                 } else if (IS_I915GM(dev)) {
3338                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3339                 }
3340         }
3341
3342         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3343                       planea_wm, planeb_wm, cwm, srwm);
3344
3345         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3346         fwater_hi = (cwm & 0x1f);
3347
3348         /* Set request length to 8 cachelines per fetch */
3349         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3350         fwater_hi = fwater_hi | (1 << 8);
3351
3352         I915_WRITE(FW_BLC, fwater_lo);
3353         I915_WRITE(FW_BLC2, fwater_hi);
3354 }
3355
3356 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3357                            int unused2, int unused3, int pixel_size)
3358 {
3359         struct drm_i915_private *dev_priv = dev->dev_private;
3360         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3361         int planea_wm;
3362
3363         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3364
3365         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3366                                        pixel_size, latency_ns);
3367         fwater_lo |= (3<<8) | planea_wm;
3368
3369         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3370
3371         I915_WRITE(FW_BLC, fwater_lo);
3372 }
3373
3374 #define ILK_LP0_PLANE_LATENCY           700
3375 #define ILK_LP0_CURSOR_LATENCY          1300
3376
3377 static bool ironlake_compute_wm0(struct drm_device *dev,
3378                                  int pipe,
3379                                  int *plane_wm,
3380                                  int *cursor_wm)
3381 {
3382         struct drm_crtc *crtc;
3383         int htotal, hdisplay, clock, pixel_size = 0;
3384         int line_time_us, line_count, entries;
3385
3386         crtc = intel_get_crtc_for_pipe(dev, pipe);
3387         if (crtc->fb == NULL || !crtc->enabled)
3388                 return false;
3389
3390         htotal = crtc->mode.htotal;
3391         hdisplay = crtc->mode.hdisplay;
3392         clock = crtc->mode.clock;
3393         pixel_size = crtc->fb->bits_per_pixel / 8;
3394
3395         /* Use the small buffer method to calculate plane watermark */
3396         entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3397         entries = DIV_ROUND_UP(entries,
3398                                ironlake_display_wm_info.cacheline_size);
3399         *plane_wm = entries + ironlake_display_wm_info.guard_size;
3400         if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3401                 *plane_wm = ironlake_display_wm_info.max_wm;
3402
3403         /* Use the large buffer method to calculate cursor watermark */
3404         line_time_us = ((htotal * 1000) / clock);
3405         line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3406         entries = line_count * 64 * pixel_size;
3407         entries = DIV_ROUND_UP(entries,
3408                                ironlake_cursor_wm_info.cacheline_size);
3409         *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3410         if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3411                 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3412
3413         return true;
3414 }
3415
3416 static void ironlake_update_wm(struct drm_device *dev,
3417                                int planea_clock, int planeb_clock,
3418                                int sr_hdisplay, int sr_htotal,
3419                                int pixel_size)
3420 {
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         int plane_wm, cursor_wm, enabled;
3423         int tmp;
3424
3425         enabled = 0;
3426         if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3427                 I915_WRITE(WM0_PIPEA_ILK,
3428                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3429                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3430                               " plane %d, " "cursor: %d\n",
3431                               plane_wm, cursor_wm);
3432                 enabled++;
3433         }
3434
3435         if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3436                 I915_WRITE(WM0_PIPEB_ILK,
3437                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3438                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3439                               " plane %d, cursor: %d\n",
3440                               plane_wm, cursor_wm);
3441                 enabled++;
3442         }
3443
3444         /*
3445          * Calculate and update the self-refresh watermark only when one
3446          * display plane is used.
3447          */
3448         tmp = 0;
3449         if (enabled == 1) {
3450                 unsigned long line_time_us;
3451                 int small, large, plane_fbc;
3452                 int sr_clock, entries;
3453                 int line_count, line_size;
3454                 /* Read the self-refresh latency. The unit is 0.5us */
3455                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3456
3457                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3458                 line_time_us = (sr_htotal * 1000) / sr_clock;
3459
3460                 /* Use ns/us then divide to preserve precision */
3461                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3462                         / 1000;
3463                 line_size = sr_hdisplay * pixel_size;
3464
3465                 /* Use the minimum of the small and large buffer method for primary */
3466                 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3467                 large = line_count * line_size;
3468
3469                 entries = DIV_ROUND_UP(min(small, large),
3470                                        ironlake_display_srwm_info.cacheline_size);
3471
3472                 plane_fbc = entries * 64;
3473                 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3474
3475                 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3476                 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3477                         plane_wm = ironlake_display_srwm_info.max_wm;
3478
3479                 /* calculate the self-refresh watermark for display cursor */
3480                 entries = line_count * pixel_size * 64;
3481                 entries = DIV_ROUND_UP(entries,
3482                                        ironlake_cursor_srwm_info.cacheline_size);
3483
3484                 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3485                 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3486                         cursor_wm = ironlake_cursor_srwm_info.max_wm;
3487
3488                 /* configure watermark and enable self-refresh */
3489                 tmp = (WM1_LP_SR_EN |
3490                        (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3491                        (plane_fbc << WM1_LP_FBC_SHIFT) |
3492                        (plane_wm << WM1_LP_SR_SHIFT) |
3493                        cursor_wm);
3494                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3495                               " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3496         }
3497         I915_WRITE(WM1_LP_ILK, tmp);
3498         /* XXX setup WM2 and WM3 */
3499 }
3500
3501 /**
3502  * intel_update_watermarks - update FIFO watermark values based on current modes
3503  *
3504  * Calculate watermark values for the various WM regs based on current mode
3505  * and plane configuration.
3506  *
3507  * There are several cases to deal with here:
3508  *   - normal (i.e. non-self-refresh)
3509  *   - self-refresh (SR) mode
3510  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3511  *   - lines are small relative to FIFO size (buffer can hold more than 2
3512  *     lines), so need to account for TLB latency
3513  *
3514  *   The normal calculation is:
3515  *     watermark = dotclock * bytes per pixel * latency
3516  *   where latency is platform & configuration dependent (we assume pessimal
3517  *   values here).
3518  *
3519  *   The SR calculation is:
3520  *     watermark = (trunc(latency/line time)+1) * surface width *
3521  *       bytes per pixel
3522  *   where
3523  *     line time = htotal / dotclock
3524  *     surface width = hdisplay for normal plane and 64 for cursor
3525  *   and latency is assumed to be high, as above.
3526  *
3527  * The final value programmed to the register should always be rounded up,
3528  * and include an extra 2 entries to account for clock crossings.
3529  *
3530  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3531  * to set the non-SR watermarks to 8.
3532  */
3533 static void intel_update_watermarks(struct drm_device *dev)
3534 {
3535         struct drm_i915_private *dev_priv = dev->dev_private;
3536         struct drm_crtc *crtc;
3537         int sr_hdisplay = 0;
3538         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3539         int enabled = 0, pixel_size = 0;
3540         int sr_htotal = 0;
3541
3542         if (!dev_priv->display.update_wm)
3543                 return;
3544
3545         /* Get the clock config from both planes */
3546         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3547                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3548                 if (intel_crtc->active) {
3549                         enabled++;
3550                         if (intel_crtc->plane == 0) {
3551                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3552                                               intel_crtc->pipe, crtc->mode.clock);
3553                                 planea_clock = crtc->mode.clock;
3554                         } else {
3555                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3556                                               intel_crtc->pipe, crtc->mode.clock);
3557                                 planeb_clock = crtc->mode.clock;
3558                         }
3559                         sr_hdisplay = crtc->mode.hdisplay;
3560                         sr_clock = crtc->mode.clock;
3561                         sr_htotal = crtc->mode.htotal;
3562                         if (crtc->fb)
3563                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3564                         else
3565                                 pixel_size = 4; /* by default */
3566                 }
3567         }
3568
3569         if (enabled <= 0)
3570                 return;
3571
3572         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3573                                     sr_hdisplay, sr_htotal, pixel_size);
3574 }
3575
3576 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3577                                struct drm_display_mode *mode,
3578                                struct drm_display_mode *adjusted_mode,
3579                                int x, int y,
3580                                struct drm_framebuffer *old_fb)
3581 {
3582         struct drm_device *dev = crtc->dev;
3583         struct drm_i915_private *dev_priv = dev->dev_private;
3584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3585         int pipe = intel_crtc->pipe;
3586         int plane = intel_crtc->plane;
3587         u32 fp_reg, dpll_reg;
3588         int refclk, num_connectors = 0;
3589         intel_clock_t clock, reduced_clock;
3590         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3591         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3592         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3593         struct intel_encoder *has_edp_encoder = NULL;
3594         struct drm_mode_config *mode_config = &dev->mode_config;
3595         struct intel_encoder *encoder;
3596         const intel_limit_t *limit;
3597         int ret;
3598         struct fdi_m_n m_n = {0};
3599         u32 reg, temp;
3600         int target_clock;
3601
3602         drm_vblank_pre_modeset(dev, pipe);
3603
3604         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3605                 if (encoder->base.crtc != crtc)
3606                         continue;
3607
3608                 switch (encoder->type) {
3609                 case INTEL_OUTPUT_LVDS:
3610                         is_lvds = true;
3611                         break;
3612                 case INTEL_OUTPUT_SDVO:
3613                 case INTEL_OUTPUT_HDMI:
3614                         is_sdvo = true;
3615                         if (encoder->needs_tv_clock)
3616                                 is_tv = true;
3617                         break;
3618                 case INTEL_OUTPUT_DVO:
3619                         is_dvo = true;
3620                         break;
3621                 case INTEL_OUTPUT_TVOUT:
3622                         is_tv = true;
3623                         break;
3624                 case INTEL_OUTPUT_ANALOG:
3625                         is_crt = true;
3626                         break;
3627                 case INTEL_OUTPUT_DISPLAYPORT:
3628                         is_dp = true;
3629                         break;
3630                 case INTEL_OUTPUT_EDP:
3631                         has_edp_encoder = encoder;
3632                         break;
3633                 }
3634
3635                 num_connectors++;
3636         }
3637
3638         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3639                 refclk = dev_priv->lvds_ssc_freq * 1000;
3640                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3641                               refclk / 1000);
3642         } else if (!IS_GEN2(dev)) {
3643                 refclk = 96000;
3644                 if (HAS_PCH_SPLIT(dev) &&
3645                     (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
3646                         refclk = 120000; /* 120Mhz refclk */
3647         } else {
3648                 refclk = 48000;
3649         }
3650
3651         /*
3652          * Returns a set of divisors for the desired target clock with the given
3653          * refclk, or FALSE.  The returned values represent the clock equation:
3654          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3655          */
3656         limit = intel_limit(crtc, refclk);
3657         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3658         if (!ok) {
3659                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3660                 drm_vblank_post_modeset(dev, pipe);
3661                 return -EINVAL;
3662         }
3663
3664         /* Ensure that the cursor is valid for the new mode before changing... */
3665         intel_crtc_update_cursor(crtc, true);
3666
3667         if (is_lvds && dev_priv->lvds_downclock_avail) {
3668                 has_reduced_clock = limit->find_pll(limit, crtc,
3669                                                     dev_priv->lvds_downclock,
3670                                                     refclk,
3671                                                     &reduced_clock);
3672                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3673                         /*
3674                          * If the different P is found, it means that we can't
3675                          * switch the display clock by using the FP0/FP1.
3676                          * In such case we will disable the LVDS downclock
3677                          * feature.
3678                          */
3679                         DRM_DEBUG_KMS("Different P is found for "
3680                                       "LVDS clock/downclock\n");
3681                         has_reduced_clock = 0;
3682                 }
3683         }
3684         /* SDVO TV has fixed PLL values depend on its clock range,
3685            this mirrors vbios setting. */
3686         if (is_sdvo && is_tv) {
3687                 if (adjusted_mode->clock >= 100000
3688                     && adjusted_mode->clock < 140500) {
3689                         clock.p1 = 2;
3690                         clock.p2 = 10;
3691                         clock.n = 3;
3692                         clock.m1 = 16;
3693                         clock.m2 = 8;
3694                 } else if (adjusted_mode->clock >= 140500
3695                            && adjusted_mode->clock <= 200000) {
3696                         clock.p1 = 1;
3697                         clock.p2 = 10;
3698                         clock.n = 6;
3699                         clock.m1 = 12;
3700                         clock.m2 = 8;
3701                 }
3702         }
3703
3704         /* FDI link */
3705         if (HAS_PCH_SPLIT(dev)) {
3706                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3707                 int lane = 0, link_bw, bpp;
3708                 /* CPU eDP doesn't require FDI link, so just set DP M/N
3709                    according to current link config */
3710                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3711                         target_clock = mode->clock;
3712                         intel_edp_link_config(has_edp_encoder,
3713                                               &lane, &link_bw);
3714                 } else {
3715                         /* [e]DP over FDI requires target mode clock
3716                            instead of link clock */
3717                         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3718                                 target_clock = mode->clock;
3719                         else
3720                                 target_clock = adjusted_mode->clock;
3721
3722                         /* FDI is a binary signal running at ~2.7GHz, encoding
3723                          * each output octet as 10 bits. The actual frequency
3724                          * is stored as a divider into a 100MHz clock, and the
3725                          * mode pixel clock is stored in units of 1KHz.
3726                          * Hence the bw of each lane in terms of the mode signal
3727                          * is:
3728                          */
3729                         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3730                 }
3731
3732                 /* determine panel color depth */
3733                 temp = I915_READ(PIPECONF(pipe));
3734                 temp &= ~PIPE_BPC_MASK;
3735                 if (is_lvds) {
3736                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3737                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3738                                 temp |= PIPE_8BPC;
3739                         else
3740                                 temp |= PIPE_6BPC;
3741                 } else if (has_edp_encoder) {
3742                         switch (dev_priv->edp.bpp/3) {
3743                         case 8:
3744                                 temp |= PIPE_8BPC;
3745                                 break;
3746                         case 10:
3747                                 temp |= PIPE_10BPC;
3748                                 break;
3749                         case 6:
3750                                 temp |= PIPE_6BPC;
3751                                 break;
3752                         case 12:
3753                                 temp |= PIPE_12BPC;
3754                                 break;
3755                         }
3756                 } else
3757                         temp |= PIPE_8BPC;
3758                 I915_WRITE(PIPECONF(pipe), temp);
3759
3760                 switch (temp & PIPE_BPC_MASK) {
3761                 case PIPE_8BPC:
3762                         bpp = 24;
3763                         break;
3764                 case PIPE_10BPC:
3765                         bpp = 30;
3766                         break;
3767                 case PIPE_6BPC:
3768                         bpp = 18;
3769                         break;
3770                 case PIPE_12BPC:
3771                         bpp = 36;
3772                         break;
3773                 default:
3774                         DRM_ERROR("unknown pipe bpc value\n");
3775                         bpp = 24;
3776                 }
3777
3778                 if (!lane) {
3779                         /* 
3780                          * Account for spread spectrum to avoid
3781                          * oversubscribing the link. Max center spread
3782                          * is 2.5%; use 5% for safety's sake.
3783                          */
3784                         u32 bps = target_clock * bpp * 21 / 20;
3785                         lane = bps / (link_bw * 8) + 1;
3786                 }
3787
3788                 intel_crtc->fdi_lanes = lane;
3789
3790                 if (pixel_multiplier > 1)
3791                         link_bw *= pixel_multiplier;
3792                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3793         }
3794
3795         /* Ironlake: try to setup display ref clock before DPLL
3796          * enabling. This is only under driver's control after
3797          * PCH B stepping, previous chipset stepping should be
3798          * ignoring this setting.
3799          */
3800         if (HAS_PCH_SPLIT(dev)) {
3801                 temp = I915_READ(PCH_DREF_CONTROL);
3802                 /* Always enable nonspread source */
3803                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3804                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3805                 temp &= ~DREF_SSC_SOURCE_MASK;
3806                 temp |= DREF_SSC_SOURCE_ENABLE;
3807                 I915_WRITE(PCH_DREF_CONTROL, temp);
3808
3809                 POSTING_READ(PCH_DREF_CONTROL);
3810                 udelay(200);
3811
3812                 if (has_edp_encoder) {
3813                         if (dev_priv->lvds_use_ssc) {
3814                                 temp |= DREF_SSC1_ENABLE;
3815                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3816
3817                                 POSTING_READ(PCH_DREF_CONTROL);
3818                                 udelay(200);
3819                         }
3820                         temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3821
3822                         /* Enable CPU source on CPU attached eDP */
3823                         if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3824                                 if (dev_priv->lvds_use_ssc)
3825                                         temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3826                                 else
3827                                         temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3828                         } else {
3829                                 /* Enable SSC on PCH eDP if needed */
3830                                 if (dev_priv->lvds_use_ssc) {
3831                                         DRM_ERROR("enabling SSC on PCH\n");
3832                                         temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
3833                                 }
3834                         }
3835                         I915_WRITE(PCH_DREF_CONTROL, temp);
3836                         POSTING_READ(PCH_DREF_CONTROL);
3837                         udelay(200);
3838                 }
3839         }
3840
3841         if (IS_PINEVIEW(dev)) {
3842                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3843                 if (has_reduced_clock)
3844                         fp2 = (1 << reduced_clock.n) << 16 |
3845                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3846         } else {
3847                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3848                 if (has_reduced_clock)
3849                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3850                                 reduced_clock.m2;
3851         }
3852
3853         /* Enable autotuning of the PLL clock (if permissible) */
3854         if (HAS_PCH_SPLIT(dev)) {
3855                 int factor = 21;
3856
3857                 if (is_lvds) {
3858                         if ((dev_priv->lvds_use_ssc &&
3859                              dev_priv->lvds_ssc_freq == 100) ||
3860                             (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
3861                                 factor = 25;
3862                 } else if (is_sdvo && is_tv)
3863                         factor = 20;
3864
3865                 if (clock.m1 < factor * clock.n)
3866                         fp |= FP_CB_TUNE;
3867         }
3868
3869         dpll = 0;
3870         if (!HAS_PCH_SPLIT(dev))
3871                 dpll = DPLL_VGA_MODE_DIS;
3872
3873         if (!IS_GEN2(dev)) {
3874                 if (is_lvds)
3875                         dpll |= DPLLB_MODE_LVDS;
3876                 else
3877                         dpll |= DPLLB_MODE_DAC_SERIAL;
3878                 if (is_sdvo) {
3879                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3880                         if (pixel_multiplier > 1) {
3881                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3882                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3883                                 else if (HAS_PCH_SPLIT(dev))
3884                                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3885                         }
3886                         dpll |= DPLL_DVO_HIGH_SPEED;
3887                 }
3888                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3889                         dpll |= DPLL_DVO_HIGH_SPEED;
3890
3891                 /* compute bitmask from p1 value */
3892                 if (IS_PINEVIEW(dev))
3893                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3894                 else {
3895                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3896                         /* also FPA1 */
3897                         if (HAS_PCH_SPLIT(dev))
3898                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3899                         if (IS_G4X(dev) && has_reduced_clock)
3900                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3901                 }
3902                 switch (clock.p2) {
3903                 case 5:
3904                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3905                         break;
3906                 case 7:
3907                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3908                         break;
3909                 case 10:
3910                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3911                         break;
3912                 case 14:
3913                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3914                         break;
3915                 }
3916                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3917                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3918         } else {
3919                 if (is_lvds) {
3920                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3921                 } else {
3922                         if (clock.p1 == 2)
3923                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3924                         else
3925                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3926                         if (clock.p2 == 4)
3927                                 dpll |= PLL_P2_DIVIDE_BY_4;
3928                 }
3929         }
3930
3931         if (is_sdvo && is_tv)
3932                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3933         else if (is_tv)
3934                 /* XXX: just matching BIOS for now */
3935                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3936                 dpll |= 3;
3937         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3938                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3939         else
3940                 dpll |= PLL_REF_INPUT_DREFCLK;
3941
3942         /* setup pipeconf */
3943         pipeconf = I915_READ(PIPECONF(pipe));
3944
3945         /* Set up the display plane register */
3946         dspcntr = DISPPLANE_GAMMA_ENABLE;
3947
3948         /* Ironlake's plane is forced to pipe, bit 24 is to
3949            enable color space conversion */
3950         if (!HAS_PCH_SPLIT(dev)) {
3951                 if (pipe == 0)
3952                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3953                 else
3954                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3955         }
3956
3957         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3958                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3959                  * core speed.
3960                  *
3961                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3962                  * pipe == 0 check?
3963                  */
3964                 if (mode->clock >
3965                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3966                         pipeconf |= PIPECONF_DOUBLE_WIDE;
3967                 else
3968                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3969         }
3970
3971         dspcntr |= DISPLAY_PLANE_ENABLE;
3972         pipeconf |= PIPECONF_ENABLE;
3973         dpll |= DPLL_VCO_ENABLE;
3974
3975         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3976         drm_mode_debug_printmodeline(mode);
3977
3978         /* assign to Ironlake registers */
3979         if (HAS_PCH_SPLIT(dev)) {
3980                 fp_reg = PCH_FP0(pipe);
3981                 dpll_reg = PCH_DPLL(pipe);
3982         } else {
3983                 fp_reg = FP0(pipe);
3984                 dpll_reg = DPLL(pipe);
3985         }
3986
3987         /* PCH eDP needs FDI, but CPU eDP does not */
3988         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3989                 I915_WRITE(fp_reg, fp);
3990                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3991
3992                 POSTING_READ(dpll_reg);
3993                 udelay(150);
3994         }
3995
3996         /* enable transcoder DPLL */
3997         if (HAS_PCH_CPT(dev)) {
3998                 temp = I915_READ(PCH_DPLL_SEL);
3999                 if (pipe == 0)
4000                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4001                 else
4002                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4003                 I915_WRITE(PCH_DPLL_SEL, temp);
4004
4005                 POSTING_READ(PCH_DPLL_SEL);
4006                 udelay(150);
4007         }
4008
4009         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4010          * This is an exception to the general rule that mode_set doesn't turn
4011          * things on.
4012          */
4013         if (is_lvds) {
4014                 reg = LVDS;
4015                 if (HAS_PCH_SPLIT(dev))
4016                         reg = PCH_LVDS;
4017
4018                 temp = I915_READ(reg);
4019                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4020                 if (pipe == 1) {
4021                         if (HAS_PCH_CPT(dev))
4022                                 temp |= PORT_TRANS_B_SEL_CPT;
4023                         else
4024                                 temp |= LVDS_PIPEB_SELECT;
4025                 } else {
4026                         if (HAS_PCH_CPT(dev))
4027                                 temp &= ~PORT_TRANS_SEL_MASK;
4028                         else
4029                                 temp &= ~LVDS_PIPEB_SELECT;
4030                 }
4031                 /* set the corresponsding LVDS_BORDER bit */
4032                 temp |= dev_priv->lvds_border_bits;
4033                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4034                  * set the DPLLs for dual-channel mode or not.
4035                  */
4036                 if (clock.p2 == 7)
4037                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4038                 else
4039                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4040
4041                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4042                  * appropriately here, but we need to look more thoroughly into how
4043                  * panels behave in the two modes.
4044                  */
4045                 /* set the dithering flag on non-PCH LVDS as needed */
4046                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4047                         if (dev_priv->lvds_dither)
4048                                 temp |= LVDS_ENABLE_DITHER;
4049                         else
4050                                 temp &= ~LVDS_ENABLE_DITHER;
4051                 }
4052                 I915_WRITE(reg, temp);
4053         }
4054
4055         /* set the dithering flag and clear for anything other than a panel. */
4056         if (HAS_PCH_SPLIT(dev)) {
4057                 pipeconf &= ~PIPECONF_DITHER_EN;
4058                 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4059                 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4060                         pipeconf |= PIPECONF_DITHER_EN;
4061                         pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4062                 }
4063         }
4064
4065         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4066                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4067         } else if (HAS_PCH_SPLIT(dev)) {
4068                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4069                 if (pipe == 0) {
4070                         I915_WRITE(TRANSA_DATA_M1, 0);
4071                         I915_WRITE(TRANSA_DATA_N1, 0);
4072                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
4073                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
4074                 } else {
4075                         I915_WRITE(TRANSB_DATA_M1, 0);
4076                         I915_WRITE(TRANSB_DATA_N1, 0);
4077                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
4078                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
4079                 }
4080         }
4081
4082         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4083                 I915_WRITE(dpll_reg, dpll);
4084
4085                 /* Wait for the clocks to stabilize. */
4086                 POSTING_READ(dpll_reg);
4087                 udelay(150);
4088
4089                 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4090                         temp = 0;
4091                         if (is_sdvo) {
4092                                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4093                                 if (temp > 1)
4094                                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4095                                 else
4096                                         temp = 0;
4097                         }
4098                         I915_WRITE(DPLL_MD(pipe), temp);
4099                 } else {
4100                         /* The pixel multiplier can only be updated once the
4101                          * DPLL is enabled and the clocks are stable.
4102                          *
4103                          * So write it again.
4104                          */
4105                         I915_WRITE(dpll_reg, dpll);
4106                 }
4107         }
4108
4109         intel_crtc->lowfreq_avail = false;
4110         if (is_lvds && has_reduced_clock && i915_powersave) {
4111                 I915_WRITE(fp_reg + 4, fp2);
4112                 intel_crtc->lowfreq_avail = true;
4113                 if (HAS_PIPE_CXSR(dev)) {
4114                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4115                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4116                 }
4117         } else {
4118                 I915_WRITE(fp_reg + 4, fp);
4119                 if (HAS_PIPE_CXSR(dev)) {
4120                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4121                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4122                 }
4123         }
4124
4125         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4126                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4127                 /* the chip adds 2 halflines automatically */
4128                 adjusted_mode->crtc_vdisplay -= 1;
4129                 adjusted_mode->crtc_vtotal -= 1;
4130                 adjusted_mode->crtc_vblank_start -= 1;
4131                 adjusted_mode->crtc_vblank_end -= 1;
4132                 adjusted_mode->crtc_vsync_end -= 1;
4133                 adjusted_mode->crtc_vsync_start -= 1;
4134         } else
4135                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4136
4137         I915_WRITE(HTOTAL(pipe),
4138                    (adjusted_mode->crtc_hdisplay - 1) |
4139                    ((adjusted_mode->crtc_htotal - 1) << 16));
4140         I915_WRITE(HBLANK(pipe),
4141                    (adjusted_mode->crtc_hblank_start - 1) |
4142                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4143         I915_WRITE(HSYNC(pipe),
4144                    (adjusted_mode->crtc_hsync_start - 1) |
4145                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4146
4147         I915_WRITE(VTOTAL(pipe),
4148                    (adjusted_mode->crtc_vdisplay - 1) |
4149                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4150         I915_WRITE(VBLANK(pipe),
4151                    (adjusted_mode->crtc_vblank_start - 1) |
4152                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4153         I915_WRITE(VSYNC(pipe),
4154                    (adjusted_mode->crtc_vsync_start - 1) |
4155                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4156
4157         /* pipesrc and dspsize control the size that is scaled from,
4158          * which should always be the user's requested size.
4159          */
4160         if (!HAS_PCH_SPLIT(dev)) {
4161                 I915_WRITE(DSPSIZE(plane),
4162                            ((mode->vdisplay - 1) << 16) |
4163                            (mode->hdisplay - 1));
4164                 I915_WRITE(DSPPOS(plane), 0);
4165         }
4166         I915_WRITE(PIPESRC(pipe),
4167                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4168
4169         if (HAS_PCH_SPLIT(dev)) {
4170                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4171                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4172                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4173                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4174
4175                 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4176                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4177                 }
4178         }
4179
4180         I915_WRITE(PIPECONF(pipe), pipeconf);
4181         POSTING_READ(PIPECONF(pipe));
4182
4183         intel_wait_for_vblank(dev, pipe);
4184
4185         if (IS_GEN5(dev)) {
4186                 /* enable address swizzle for tiling buffer */
4187                 temp = I915_READ(DISP_ARB_CTL);
4188                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4189         }
4190
4191         I915_WRITE(DSPCNTR(plane), dspcntr);
4192
4193         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4194
4195         intel_update_watermarks(dev);
4196
4197         drm_vblank_post_modeset(dev, pipe);
4198
4199         return ret;
4200 }
4201
4202 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4203 void intel_crtc_load_lut(struct drm_crtc *crtc)
4204 {
4205         struct drm_device *dev = crtc->dev;
4206         struct drm_i915_private *dev_priv = dev->dev_private;
4207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4209         int i;
4210
4211         /* The clocks have to be on to load the palette. */
4212         if (!crtc->enabled)
4213                 return;
4214
4215         /* use legacy palette for Ironlake */
4216         if (HAS_PCH_SPLIT(dev))
4217                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4218                                                    LGC_PALETTE_B;
4219
4220         for (i = 0; i < 256; i++) {
4221                 I915_WRITE(palreg + 4 * i,
4222                            (intel_crtc->lut_r[i] << 16) |
4223                            (intel_crtc->lut_g[i] << 8) |
4224                            intel_crtc->lut_b[i]);
4225         }
4226 }
4227
4228 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4229 {
4230         struct drm_device *dev = crtc->dev;
4231         struct drm_i915_private *dev_priv = dev->dev_private;
4232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4233         bool visible = base != 0;
4234         u32 cntl;
4235
4236         if (intel_crtc->cursor_visible == visible)
4237                 return;
4238
4239         cntl = I915_READ(CURACNTR);
4240         if (visible) {
4241                 /* On these chipsets we can only modify the base whilst
4242                  * the cursor is disabled.
4243                  */
4244                 I915_WRITE(CURABASE, base);
4245
4246                 cntl &= ~(CURSOR_FORMAT_MASK);
4247                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4248                 cntl |= CURSOR_ENABLE |
4249                         CURSOR_GAMMA_ENABLE |
4250                         CURSOR_FORMAT_ARGB;
4251         } else
4252                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4253         I915_WRITE(CURACNTR, cntl);
4254
4255         intel_crtc->cursor_visible = visible;
4256 }
4257
4258 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4259 {
4260         struct drm_device *dev = crtc->dev;
4261         struct drm_i915_private *dev_priv = dev->dev_private;
4262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4263         int pipe = intel_crtc->pipe;
4264         bool visible = base != 0;
4265
4266         if (intel_crtc->cursor_visible != visible) {
4267                 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4268                 if (base) {
4269                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4270                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4271                         cntl |= pipe << 28; /* Connect to correct pipe */
4272                 } else {
4273                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4274                         cntl |= CURSOR_MODE_DISABLE;
4275                 }
4276                 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4277
4278                 intel_crtc->cursor_visible = visible;
4279         }
4280         /* and commit changes on next vblank */
4281         I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4282 }
4283
4284 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4285 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4286                                      bool on)
4287 {
4288         struct drm_device *dev = crtc->dev;
4289         struct drm_i915_private *dev_priv = dev->dev_private;
4290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4291         int pipe = intel_crtc->pipe;
4292         int x = intel_crtc->cursor_x;
4293         int y = intel_crtc->cursor_y;
4294         u32 base, pos;
4295         bool visible;
4296
4297         pos = 0;
4298
4299         if (on && crtc->enabled && crtc->fb) {
4300                 base = intel_crtc->cursor_addr;
4301                 if (x > (int) crtc->fb->width)
4302                         base = 0;
4303
4304                 if (y > (int) crtc->fb->height)
4305                         base = 0;
4306         } else
4307                 base = 0;
4308
4309         if (x < 0) {
4310                 if (x + intel_crtc->cursor_width < 0)
4311                         base = 0;
4312
4313                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4314                 x = -x;
4315         }
4316         pos |= x << CURSOR_X_SHIFT;
4317
4318         if (y < 0) {
4319                 if (y + intel_crtc->cursor_height < 0)
4320                         base = 0;
4321
4322                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4323                 y = -y;
4324         }
4325         pos |= y << CURSOR_Y_SHIFT;
4326
4327         visible = base != 0;
4328         if (!visible && !intel_crtc->cursor_visible)
4329                 return;
4330
4331         I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4332         if (IS_845G(dev) || IS_I865G(dev))
4333                 i845_update_cursor(crtc, base);
4334         else
4335                 i9xx_update_cursor(crtc, base);
4336
4337         if (visible)
4338                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4339 }
4340
4341 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4342                                  struct drm_file *file,
4343                                  uint32_t handle,
4344                                  uint32_t width, uint32_t height)
4345 {
4346         struct drm_device *dev = crtc->dev;
4347         struct drm_i915_private *dev_priv = dev->dev_private;
4348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4349         struct drm_i915_gem_object *obj;
4350         uint32_t addr;
4351         int ret;
4352
4353         DRM_DEBUG_KMS("\n");
4354
4355         /* if we want to turn off the cursor ignore width and height */
4356         if (!handle) {
4357                 DRM_DEBUG_KMS("cursor off\n");
4358                 addr = 0;
4359                 obj = NULL;
4360                 mutex_lock(&dev->struct_mutex);
4361                 goto finish;
4362         }
4363
4364         /* Currently we only support 64x64 cursors */
4365         if (width != 64 || height != 64) {
4366                 DRM_ERROR("we currently only support 64x64 cursors\n");
4367                 return -EINVAL;
4368         }
4369
4370         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4371         if (!obj)
4372                 return -ENOENT;
4373
4374         if (obj->base.size < width * height * 4) {
4375                 DRM_ERROR("buffer is to small\n");
4376                 ret = -ENOMEM;
4377                 goto fail;
4378         }
4379
4380         /* we only need to pin inside GTT if cursor is non-phy */
4381         mutex_lock(&dev->struct_mutex);
4382         if (!dev_priv->info->cursor_needs_physical) {
4383                 if (obj->tiling_mode) {
4384                         DRM_ERROR("cursor cannot be tiled\n");
4385                         ret = -EINVAL;
4386                         goto fail_locked;
4387                 }
4388
4389                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
4390                 if (ret) {
4391                         DRM_ERROR("failed to pin cursor bo\n");
4392                         goto fail_locked;
4393                 }
4394
4395                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
4396                 if (ret) {
4397                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4398                         goto fail_unpin;
4399                 }
4400
4401                 ret = i915_gem_object_put_fence(obj);
4402                 if (ret) {
4403                         DRM_ERROR("failed to move cursor bo into the GTT\n");
4404                         goto fail_unpin;
4405                 }
4406
4407                 addr = obj->gtt_offset;
4408         } else {
4409                 int align = IS_I830(dev) ? 16 * 1024 : 256;
4410                 ret = i915_gem_attach_phys_object(dev, obj,
4411                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4412                                                   align);
4413                 if (ret) {
4414                         DRM_ERROR("failed to attach phys object\n");
4415                         goto fail_locked;
4416                 }
4417                 addr = obj->phys_obj->handle->busaddr;
4418         }
4419
4420         if (IS_GEN2(dev))
4421                 I915_WRITE(CURSIZE, (height << 12) | width);
4422
4423  finish:
4424         if (intel_crtc->cursor_bo) {
4425                 if (dev_priv->info->cursor_needs_physical) {
4426                         if (intel_crtc->cursor_bo != obj)
4427                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4428                 } else
4429                         i915_gem_object_unpin(intel_crtc->cursor_bo);
4430                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4431         }
4432
4433         mutex_unlock(&dev->struct_mutex);
4434
4435         intel_crtc->cursor_addr = addr;
4436         intel_crtc->cursor_bo = obj;
4437         intel_crtc->cursor_width = width;
4438         intel_crtc->cursor_height = height;
4439
4440         intel_crtc_update_cursor(crtc, true);
4441
4442         return 0;
4443 fail_unpin:
4444         i915_gem_object_unpin(obj);
4445 fail_locked:
4446         mutex_unlock(&dev->struct_mutex);
4447 fail:
4448         drm_gem_object_unreference_unlocked(&obj->base);
4449         return ret;
4450 }
4451
4452 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4453 {
4454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4455
4456         intel_crtc->cursor_x = x;
4457         intel_crtc->cursor_y = y;
4458
4459         intel_crtc_update_cursor(crtc, true);
4460
4461         return 0;
4462 }
4463
4464 /** Sets the color ramps on behalf of RandR */
4465 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4466                                  u16 blue, int regno)
4467 {
4468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4469
4470         intel_crtc->lut_r[regno] = red >> 8;
4471         intel_crtc->lut_g[regno] = green >> 8;
4472         intel_crtc->lut_b[regno] = blue >> 8;
4473 }
4474
4475 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4476                              u16 *blue, int regno)
4477 {
4478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4479
4480         *red = intel_crtc->lut_r[regno] << 8;
4481         *green = intel_crtc->lut_g[regno] << 8;
4482         *blue = intel_crtc->lut_b[regno] << 8;
4483 }
4484
4485 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4486                                  u16 *blue, uint32_t start, uint32_t size)
4487 {
4488         int end = (start + size > 256) ? 256 : start + size, i;
4489         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4490
4491         for (i = start; i < end; i++) {
4492                 intel_crtc->lut_r[i] = red[i] >> 8;
4493                 intel_crtc->lut_g[i] = green[i] >> 8;
4494                 intel_crtc->lut_b[i] = blue[i] >> 8;
4495         }
4496
4497         intel_crtc_load_lut(crtc);
4498 }
4499
4500 /**
4501  * Get a pipe with a simple mode set on it for doing load-based monitor
4502  * detection.
4503  *
4504  * It will be up to the load-detect code to adjust the pipe as appropriate for
4505  * its requirements.  The pipe will be connected to no other encoders.
4506  *
4507  * Currently this code will only succeed if there is a pipe with no encoders
4508  * configured for it.  In the future, it could choose to temporarily disable
4509  * some outputs to free up a pipe for its use.
4510  *
4511  * \return crtc, or NULL if no pipes are available.
4512  */
4513
4514 /* VESA 640x480x72Hz mode to set on the pipe */
4515 static struct drm_display_mode load_detect_mode = {
4516         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4517                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4518 };
4519
4520 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4521                                             struct drm_connector *connector,
4522                                             struct drm_display_mode *mode,
4523                                             int *dpms_mode)
4524 {
4525         struct intel_crtc *intel_crtc;
4526         struct drm_crtc *possible_crtc;
4527         struct drm_crtc *supported_crtc =NULL;
4528         struct drm_encoder *encoder = &intel_encoder->base;
4529         struct drm_crtc *crtc = NULL;
4530         struct drm_device *dev = encoder->dev;
4531         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4532         struct drm_crtc_helper_funcs *crtc_funcs;
4533         int i = -1;
4534
4535         /*
4536          * Algorithm gets a little messy:
4537          *   - if the connector already has an assigned crtc, use it (but make
4538          *     sure it's on first)
4539          *   - try to find the first unused crtc that can drive this connector,
4540          *     and use that if we find one
4541          *   - if there are no unused crtcs available, try to use the first
4542          *     one we found that supports the connector
4543          */
4544
4545         /* See if we already have a CRTC for this connector */
4546         if (encoder->crtc) {
4547                 crtc = encoder->crtc;
4548                 /* Make sure the crtc and connector are running */
4549                 intel_crtc = to_intel_crtc(crtc);
4550                 *dpms_mode = intel_crtc->dpms_mode;
4551                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4552                         crtc_funcs = crtc->helper_private;
4553                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4554                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4555                 }
4556                 return crtc;
4557         }
4558
4559         /* Find an unused one (if possible) */
4560         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4561                 i++;
4562                 if (!(encoder->possible_crtcs & (1 << i)))
4563                         continue;
4564                 if (!possible_crtc->enabled) {
4565                         crtc = possible_crtc;
4566                         break;
4567                 }
4568                 if (!supported_crtc)
4569                         supported_crtc = possible_crtc;
4570         }
4571
4572         /*
4573          * If we didn't find an unused CRTC, don't use any.
4574          */
4575         if (!crtc) {
4576                 return NULL;
4577         }
4578
4579         encoder->crtc = crtc;
4580         connector->encoder = encoder;
4581         intel_encoder->load_detect_temp = true;
4582
4583         intel_crtc = to_intel_crtc(crtc);
4584         *dpms_mode = intel_crtc->dpms_mode;
4585
4586         if (!crtc->enabled) {
4587                 if (!mode)
4588                         mode = &load_detect_mode;
4589                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4590         } else {
4591                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4592                         crtc_funcs = crtc->helper_private;
4593                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4594                 }
4595
4596                 /* Add this connector to the crtc */
4597                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4598                 encoder_funcs->commit(encoder);
4599         }
4600         /* let the connector get through one full cycle before testing */
4601         intel_wait_for_vblank(dev, intel_crtc->pipe);
4602
4603         return crtc;
4604 }
4605
4606 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4607                                     struct drm_connector *connector, int dpms_mode)
4608 {
4609         struct drm_encoder *encoder = &intel_encoder->base;
4610         struct drm_device *dev = encoder->dev;
4611         struct drm_crtc *crtc = encoder->crtc;
4612         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4613         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4614
4615         if (intel_encoder->load_detect_temp) {
4616                 encoder->crtc = NULL;
4617                 connector->encoder = NULL;
4618                 intel_encoder->load_detect_temp = false;
4619                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4620                 drm_helper_disable_unused_functions(dev);
4621         }
4622
4623         /* Switch crtc and encoder back off if necessary */
4624         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4625                 if (encoder->crtc == crtc)
4626                         encoder_funcs->dpms(encoder, dpms_mode);
4627                 crtc_funcs->dpms(crtc, dpms_mode);
4628         }
4629 }
4630
4631 /* Returns the clock of the currently programmed mode of the given pipe. */
4632 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4633 {
4634         struct drm_i915_private *dev_priv = dev->dev_private;
4635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4636         int pipe = intel_crtc->pipe;
4637         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4638         u32 fp;
4639         intel_clock_t clock;
4640
4641         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4642                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4643         else
4644                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4645
4646         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4647         if (IS_PINEVIEW(dev)) {
4648                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4649                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4650         } else {
4651                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4652                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4653         }
4654
4655         if (!IS_GEN2(dev)) {
4656                 if (IS_PINEVIEW(dev))
4657                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4658                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4659                 else
4660                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4661                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4662
4663                 switch (dpll & DPLL_MODE_MASK) {
4664                 case DPLLB_MODE_DAC_SERIAL:
4665                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4666                                 5 : 10;
4667                         break;
4668                 case DPLLB_MODE_LVDS:
4669                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4670                                 7 : 14;
4671                         break;
4672                 default:
4673                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4674                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4675                         return 0;
4676                 }
4677
4678                 /* XXX: Handle the 100Mhz refclk */
4679                 intel_clock(dev, 96000, &clock);
4680         } else {
4681                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4682
4683                 if (is_lvds) {
4684                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4685                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4686                         clock.p2 = 14;
4687
4688                         if ((dpll & PLL_REF_INPUT_MASK) ==
4689                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4690                                 /* XXX: might not be 66MHz */
4691                                 intel_clock(dev, 66000, &clock);
4692                         } else
4693                                 intel_clock(dev, 48000, &clock);
4694                 } else {
4695                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4696                                 clock.p1 = 2;
4697                         else {
4698                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4699                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4700                         }
4701                         if (dpll & PLL_P2_DIVIDE_BY_4)
4702                                 clock.p2 = 4;
4703                         else
4704                                 clock.p2 = 2;
4705
4706                         intel_clock(dev, 48000, &clock);
4707                 }
4708         }
4709
4710         /* XXX: It would be nice to validate the clocks, but we can't reuse
4711          * i830PllIsValid() because it relies on the xf86_config connector
4712          * configuration being accurate, which it isn't necessarily.
4713          */
4714
4715         return clock.dot;
4716 }
4717
4718 /** Returns the currently programmed mode of the given pipe. */
4719 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4720                                              struct drm_crtc *crtc)
4721 {
4722         struct drm_i915_private *dev_priv = dev->dev_private;
4723         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4724         int pipe = intel_crtc->pipe;
4725         struct drm_display_mode *mode;
4726         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4727         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4728         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4729         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4730
4731         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4732         if (!mode)
4733                 return NULL;
4734
4735         mode->clock = intel_crtc_clock_get(dev, crtc);
4736         mode->hdisplay = (htot & 0xffff) + 1;
4737         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4738         mode->hsync_start = (hsync & 0xffff) + 1;
4739         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4740         mode->vdisplay = (vtot & 0xffff) + 1;
4741         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4742         mode->vsync_start = (vsync & 0xffff) + 1;
4743         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4744
4745         drm_mode_set_name(mode);
4746         drm_mode_set_crtcinfo(mode, 0);
4747
4748         return mode;
4749 }
4750
4751 #define GPU_IDLE_TIMEOUT 500 /* ms */
4752
4753 /* When this timer fires, we've been idle for awhile */
4754 static void intel_gpu_idle_timer(unsigned long arg)
4755 {
4756         struct drm_device *dev = (struct drm_device *)arg;
4757         drm_i915_private_t *dev_priv = dev->dev_private;
4758
4759         if (!list_empty(&dev_priv->mm.active_list)) {
4760                 /* Still processing requests, so just re-arm the timer. */
4761                 mod_timer(&dev_priv->idle_timer, jiffies +
4762                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4763                 return;
4764         }
4765
4766         dev_priv->busy = false;
4767         queue_work(dev_priv->wq, &dev_priv->idle_work);
4768 }
4769
4770 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4771
4772 static void intel_crtc_idle_timer(unsigned long arg)
4773 {
4774         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4775         struct drm_crtc *crtc = &intel_crtc->base;
4776         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4777         struct intel_framebuffer *intel_fb;
4778
4779         intel_fb = to_intel_framebuffer(crtc->fb);
4780         if (intel_fb && intel_fb->obj->active) {
4781                 /* The framebuffer is still being accessed by the GPU. */
4782                 mod_timer(&intel_crtc->idle_timer, jiffies +
4783                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4784                 return;
4785         }
4786
4787         intel_crtc->busy = false;
4788         queue_work(dev_priv->wq, &dev_priv->idle_work);
4789 }
4790
4791 static void intel_increase_pllclock(struct drm_crtc *crtc)
4792 {
4793         struct drm_device *dev = crtc->dev;
4794         drm_i915_private_t *dev_priv = dev->dev_private;
4795         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4796         int pipe = intel_crtc->pipe;
4797         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4798         int dpll = I915_READ(dpll_reg);
4799
4800         if (HAS_PCH_SPLIT(dev))
4801                 return;
4802
4803         if (!dev_priv->lvds_downclock_avail)
4804                 return;
4805
4806         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4807                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4808
4809                 /* Unlock panel regs */
4810                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4811                            PANEL_UNLOCK_REGS);
4812
4813                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4814                 I915_WRITE(dpll_reg, dpll);
4815                 dpll = I915_READ(dpll_reg);
4816                 intel_wait_for_vblank(dev, pipe);
4817                 dpll = I915_READ(dpll_reg);
4818                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4819                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4820
4821                 /* ...and lock them again */
4822                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4823         }
4824
4825         /* Schedule downclock */
4826         mod_timer(&intel_crtc->idle_timer, jiffies +
4827                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4828 }
4829
4830 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4831 {
4832         struct drm_device *dev = crtc->dev;
4833         drm_i915_private_t *dev_priv = dev->dev_private;
4834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4835         int pipe = intel_crtc->pipe;
4836         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4837         int dpll = I915_READ(dpll_reg);
4838
4839         if (HAS_PCH_SPLIT(dev))
4840                 return;
4841
4842         if (!dev_priv->lvds_downclock_avail)
4843                 return;
4844
4845         /*
4846          * Since this is called by a timer, we should never get here in
4847          * the manual case.
4848          */
4849         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4850                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4851
4852                 /* Unlock panel regs */
4853                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4854                            PANEL_UNLOCK_REGS);
4855
4856                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4857                 I915_WRITE(dpll_reg, dpll);
4858                 dpll = I915_READ(dpll_reg);
4859                 intel_wait_for_vblank(dev, pipe);
4860                 dpll = I915_READ(dpll_reg);
4861                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4862                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4863
4864                 /* ...and lock them again */
4865                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4866         }
4867
4868 }
4869
4870 /**
4871  * intel_idle_update - adjust clocks for idleness
4872  * @work: work struct
4873  *
4874  * Either the GPU or display (or both) went idle.  Check the busy status
4875  * here and adjust the CRTC and GPU clocks as necessary.
4876  */
4877 static void intel_idle_update(struct work_struct *work)
4878 {
4879         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4880                                                     idle_work);
4881         struct drm_device *dev = dev_priv->dev;
4882         struct drm_crtc *crtc;
4883         struct intel_crtc *intel_crtc;
4884         int enabled = 0;
4885
4886         if (!i915_powersave)
4887                 return;
4888
4889         mutex_lock(&dev->struct_mutex);
4890
4891         i915_update_gfx_val(dev_priv);
4892
4893         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4894                 /* Skip inactive CRTCs */
4895                 if (!crtc->fb)
4896                         continue;
4897
4898                 enabled++;
4899                 intel_crtc = to_intel_crtc(crtc);
4900                 if (!intel_crtc->busy)
4901                         intel_decrease_pllclock(crtc);
4902         }
4903
4904         if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4905                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4906                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4907         }
4908
4909         mutex_unlock(&dev->struct_mutex);
4910 }
4911
4912 /**
4913  * intel_mark_busy - mark the GPU and possibly the display busy
4914  * @dev: drm device
4915  * @obj: object we're operating on
4916  *
4917  * Callers can use this function to indicate that the GPU is busy processing
4918  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4919  * buffer), we'll also mark the display as busy, so we know to increase its
4920  * clock frequency.
4921  */
4922 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
4923 {
4924         drm_i915_private_t *dev_priv = dev->dev_private;
4925         struct drm_crtc *crtc = NULL;
4926         struct intel_framebuffer *intel_fb;
4927         struct intel_crtc *intel_crtc;
4928
4929         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4930                 return;
4931
4932         if (!dev_priv->busy) {
4933                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4934                         u32 fw_blc_self;
4935
4936                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4937                         fw_blc_self = I915_READ(FW_BLC_SELF);
4938                         fw_blc_self &= ~FW_BLC_SELF_EN;
4939                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4940                 }
4941                 dev_priv->busy = true;
4942         } else
4943                 mod_timer(&dev_priv->idle_timer, jiffies +
4944                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4945
4946         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4947                 if (!crtc->fb)
4948                         continue;
4949
4950                 intel_crtc = to_intel_crtc(crtc);
4951                 intel_fb = to_intel_framebuffer(crtc->fb);
4952                 if (intel_fb->obj == obj) {
4953                         if (!intel_crtc->busy) {
4954                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4955                                         u32 fw_blc_self;
4956
4957                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4958                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4959                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4960                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4961                                 }
4962                                 /* Non-busy -> busy, upclock */
4963                                 intel_increase_pllclock(crtc);
4964                                 intel_crtc->busy = true;
4965                         } else {
4966                                 /* Busy -> busy, put off timer */
4967                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4968                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4969                         }
4970                 }
4971         }
4972 }
4973
4974 static void intel_crtc_destroy(struct drm_crtc *crtc)
4975 {
4976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4977         struct drm_device *dev = crtc->dev;
4978         struct intel_unpin_work *work;
4979         unsigned long flags;
4980
4981         spin_lock_irqsave(&dev->event_lock, flags);
4982         work = intel_crtc->unpin_work;
4983         intel_crtc->unpin_work = NULL;
4984         spin_unlock_irqrestore(&dev->event_lock, flags);
4985
4986         if (work) {
4987                 cancel_work_sync(&work->work);
4988                 kfree(work);
4989         }
4990
4991         drm_crtc_cleanup(crtc);
4992
4993         kfree(intel_crtc);
4994 }
4995
4996 static void intel_unpin_work_fn(struct work_struct *__work)
4997 {
4998         struct intel_unpin_work *work =
4999                 container_of(__work, struct intel_unpin_work, work);
5000
5001         mutex_lock(&work->dev->struct_mutex);
5002         i915_gem_object_unpin(work->old_fb_obj);
5003         drm_gem_object_unreference(&work->pending_flip_obj->base);
5004         drm_gem_object_unreference(&work->old_fb_obj->base);
5005
5006         mutex_unlock(&work->dev->struct_mutex);
5007         kfree(work);
5008 }
5009
5010 static void do_intel_finish_page_flip(struct drm_device *dev,
5011                                       struct drm_crtc *crtc)
5012 {
5013         drm_i915_private_t *dev_priv = dev->dev_private;
5014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5015         struct intel_unpin_work *work;
5016         struct drm_i915_gem_object *obj;
5017         struct drm_pending_vblank_event *e;
5018         struct timeval now;
5019         unsigned long flags;
5020
5021         /* Ignore early vblank irqs */
5022         if (intel_crtc == NULL)
5023                 return;
5024
5025         spin_lock_irqsave(&dev->event_lock, flags);
5026         work = intel_crtc->unpin_work;
5027         if (work == NULL || !work->pending) {
5028                 spin_unlock_irqrestore(&dev->event_lock, flags);
5029                 return;
5030         }
5031
5032         intel_crtc->unpin_work = NULL;
5033         drm_vblank_put(dev, intel_crtc->pipe);
5034
5035         if (work->event) {
5036                 e = work->event;
5037                 do_gettimeofday(&now);
5038                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
5039                 e->event.tv_sec = now.tv_sec;
5040                 e->event.tv_usec = now.tv_usec;
5041                 list_add_tail(&e->base.link,
5042                               &e->base.file_priv->event_list);
5043                 wake_up_interruptible(&e->base.file_priv->event_wait);
5044         }
5045
5046         spin_unlock_irqrestore(&dev->event_lock, flags);
5047
5048         obj = work->old_fb_obj;
5049
5050         atomic_clear_mask(1 << intel_crtc->plane,
5051                           &obj->pending_flip.counter);
5052         if (atomic_read(&obj->pending_flip) == 0)
5053                 wake_up(&dev_priv->pending_flip_queue);
5054
5055         schedule_work(&work->work);
5056
5057         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5058 }
5059
5060 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5061 {
5062         drm_i915_private_t *dev_priv = dev->dev_private;
5063         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5064
5065         do_intel_finish_page_flip(dev, crtc);
5066 }
5067
5068 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5069 {
5070         drm_i915_private_t *dev_priv = dev->dev_private;
5071         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5072
5073         do_intel_finish_page_flip(dev, crtc);
5074 }
5075
5076 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5077 {
5078         drm_i915_private_t *dev_priv = dev->dev_private;
5079         struct intel_crtc *intel_crtc =
5080                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5081         unsigned long flags;
5082
5083         spin_lock_irqsave(&dev->event_lock, flags);
5084         if (intel_crtc->unpin_work) {
5085                 if ((++intel_crtc->unpin_work->pending) > 1)
5086                         DRM_ERROR("Prepared flip multiple times\n");
5087         } else {
5088                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5089         }
5090         spin_unlock_irqrestore(&dev->event_lock, flags);
5091 }
5092
5093 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5094                                 struct drm_framebuffer *fb,
5095                                 struct drm_pending_vblank_event *event)
5096 {
5097         struct drm_device *dev = crtc->dev;
5098         struct drm_i915_private *dev_priv = dev->dev_private;
5099         struct intel_framebuffer *intel_fb;
5100         struct drm_i915_gem_object *obj;
5101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5102         struct intel_unpin_work *work;
5103         unsigned long flags, offset;
5104         int pipe = intel_crtc->pipe;
5105         u32 pf, pipesrc;
5106         int ret;
5107
5108         work = kzalloc(sizeof *work, GFP_KERNEL);
5109         if (work == NULL)
5110                 return -ENOMEM;
5111
5112         work->event = event;
5113         work->dev = crtc->dev;
5114         intel_fb = to_intel_framebuffer(crtc->fb);
5115         work->old_fb_obj = intel_fb->obj;
5116         INIT_WORK(&work->work, intel_unpin_work_fn);
5117
5118         /* We borrow the event spin lock for protecting unpin_work */
5119         spin_lock_irqsave(&dev->event_lock, flags);
5120         if (intel_crtc->unpin_work) {
5121                 spin_unlock_irqrestore(&dev->event_lock, flags);
5122                 kfree(work);
5123
5124                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5125                 return -EBUSY;
5126         }
5127         intel_crtc->unpin_work = work;
5128         spin_unlock_irqrestore(&dev->event_lock, flags);
5129
5130         intel_fb = to_intel_framebuffer(fb);
5131         obj = intel_fb->obj;
5132
5133         mutex_lock(&dev->struct_mutex);
5134         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5135         if (ret)
5136                 goto cleanup_work;
5137
5138         /* Reference the objects for the scheduled work. */
5139         drm_gem_object_reference(&work->old_fb_obj->base);
5140         drm_gem_object_reference(&obj->base);
5141
5142         crtc->fb = fb;
5143
5144         ret = drm_vblank_get(dev, intel_crtc->pipe);
5145         if (ret)
5146                 goto cleanup_objs;
5147
5148         if (IS_GEN3(dev) || IS_GEN2(dev)) {
5149                 u32 flip_mask;
5150
5151                 /* Can't queue multiple flips, so wait for the previous
5152                  * one to finish before executing the next.
5153                  */
5154                 ret = BEGIN_LP_RING(2);
5155                 if (ret)
5156                         goto cleanup_objs;
5157
5158                 if (intel_crtc->plane)
5159                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5160                 else
5161                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5162                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5163                 OUT_RING(MI_NOOP);
5164                 ADVANCE_LP_RING();
5165         }
5166
5167         work->pending_flip_obj = obj;
5168
5169         work->enable_stall_check = true;
5170
5171         /* Offset into the new buffer for cases of shared fbs between CRTCs */
5172         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5173
5174         ret = BEGIN_LP_RING(4);
5175         if (ret)
5176                 goto cleanup_objs;
5177
5178         /* Block clients from rendering to the new back buffer until
5179          * the flip occurs and the object is no longer visible.
5180          */
5181         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
5182
5183         switch (INTEL_INFO(dev)->gen) {
5184         case 2:
5185                 OUT_RING(MI_DISPLAY_FLIP |
5186                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5187                 OUT_RING(fb->pitch);
5188                 OUT_RING(obj->gtt_offset + offset);
5189                 OUT_RING(MI_NOOP);
5190                 break;
5191
5192         case 3:
5193                 OUT_RING(MI_DISPLAY_FLIP_I915 |
5194                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5195                 OUT_RING(fb->pitch);
5196                 OUT_RING(obj->gtt_offset + offset);
5197                 OUT_RING(MI_NOOP);
5198                 break;
5199
5200         case 4:
5201         case 5:
5202                 /* i965+ uses the linear or tiled offsets from the
5203                  * Display Registers (which do not change across a page-flip)
5204                  * so we need only reprogram the base address.
5205                  */
5206                 OUT_RING(MI_DISPLAY_FLIP |
5207                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5208                 OUT_RING(fb->pitch);
5209                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
5210
5211                 /* XXX Enabling the panel-fitter across page-flip is so far
5212                  * untested on non-native modes, so ignore it for now.
5213                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5214                  */
5215                 pf = 0;
5216                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5217                 OUT_RING(pf | pipesrc);
5218                 break;
5219
5220         case 6:
5221                 OUT_RING(MI_DISPLAY_FLIP |
5222                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5223                 OUT_RING(fb->pitch | obj->tiling_mode);
5224                 OUT_RING(obj->gtt_offset);
5225
5226                 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5227                 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5228                 OUT_RING(pf | pipesrc);
5229                 break;
5230         }
5231         ADVANCE_LP_RING();
5232
5233         mutex_unlock(&dev->struct_mutex);
5234
5235         trace_i915_flip_request(intel_crtc->plane, obj);
5236
5237         return 0;
5238
5239 cleanup_objs:
5240         drm_gem_object_unreference(&work->old_fb_obj->base);
5241         drm_gem_object_unreference(&obj->base);
5242 cleanup_work:
5243         mutex_unlock(&dev->struct_mutex);
5244
5245         spin_lock_irqsave(&dev->event_lock, flags);
5246         intel_crtc->unpin_work = NULL;
5247         spin_unlock_irqrestore(&dev->event_lock, flags);
5248
5249         kfree(work);
5250
5251         return ret;
5252 }
5253
5254 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5255         .dpms = intel_crtc_dpms,
5256         .mode_fixup = intel_crtc_mode_fixup,
5257         .mode_set = intel_crtc_mode_set,
5258         .mode_set_base = intel_pipe_set_base,
5259         .mode_set_base_atomic = intel_pipe_set_base_atomic,
5260         .load_lut = intel_crtc_load_lut,
5261         .disable = intel_crtc_disable,
5262 };
5263
5264 static const struct drm_crtc_funcs intel_crtc_funcs = {
5265         .cursor_set = intel_crtc_cursor_set,
5266         .cursor_move = intel_crtc_cursor_move,
5267         .gamma_set = intel_crtc_gamma_set,
5268         .set_config = drm_crtc_helper_set_config,
5269         .destroy = intel_crtc_destroy,
5270         .page_flip = intel_crtc_page_flip,
5271 };
5272
5273 static void intel_sanitize_modesetting(struct drm_device *dev,
5274                                        int pipe, int plane)
5275 {
5276         struct drm_i915_private *dev_priv = dev->dev_private;
5277         u32 reg, val;
5278
5279         if (HAS_PCH_SPLIT(dev))
5280                 return;
5281
5282         /* Who knows what state these registers were left in by the BIOS or
5283          * grub?
5284          *
5285          * If we leave the registers in a conflicting state (e.g. with the
5286          * display plane reading from the other pipe than the one we intend
5287          * to use) then when we attempt to teardown the active mode, we will
5288          * not disable the pipes and planes in the correct order -- leaving
5289          * a plane reading from a disabled pipe and possibly leading to
5290          * undefined behaviour.
5291          */
5292
5293         reg = DSPCNTR(plane);
5294         val = I915_READ(reg);
5295
5296         if ((val & DISPLAY_PLANE_ENABLE) == 0)
5297                 return;
5298         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
5299                 return;
5300
5301         /* This display plane is active and attached to the other CPU pipe. */
5302         pipe = !pipe;
5303
5304         /* Disable the plane and wait for it to stop reading from the pipe. */
5305         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
5306         intel_flush_display_plane(dev, plane);
5307
5308         if (IS_GEN2(dev))
5309                 intel_wait_for_vblank(dev, pipe);
5310
5311         if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
5312                 return;
5313
5314         /* Switch off the pipe. */
5315         reg = PIPECONF(pipe);
5316         val = I915_READ(reg);
5317         if (val & PIPECONF_ENABLE) {
5318                 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
5319                 intel_wait_for_pipe_off(dev, pipe);
5320         }
5321 }
5322
5323 static void intel_crtc_init(struct drm_device *dev, int pipe)
5324 {
5325         drm_i915_private_t *dev_priv = dev->dev_private;
5326         struct intel_crtc *intel_crtc;
5327         int i;
5328
5329         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5330         if (intel_crtc == NULL)
5331                 return;
5332
5333         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5334
5335         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5336         for (i = 0; i < 256; i++) {
5337                 intel_crtc->lut_r[i] = i;
5338                 intel_crtc->lut_g[i] = i;
5339                 intel_crtc->lut_b[i] = i;
5340         }
5341
5342         /* Swap pipes & planes for FBC on pre-965 */
5343         intel_crtc->pipe = pipe;
5344         intel_crtc->plane = pipe;
5345         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5346                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5347                 intel_crtc->plane = !pipe;
5348         }
5349
5350         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5351                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5352         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5353         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5354
5355         intel_crtc->cursor_addr = 0;
5356         intel_crtc->dpms_mode = -1;
5357         intel_crtc->active = true; /* force the pipe off on setup_init_config */
5358
5359         if (HAS_PCH_SPLIT(dev)) {
5360                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5361                 intel_helper_funcs.commit = ironlake_crtc_commit;
5362         } else {
5363                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5364                 intel_helper_funcs.commit = i9xx_crtc_commit;
5365         }
5366
5367         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5368
5369         intel_crtc->busy = false;
5370
5371         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5372                     (unsigned long)intel_crtc);
5373
5374         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
5375 }
5376
5377 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5378                                 struct drm_file *file)
5379 {
5380         drm_i915_private_t *dev_priv = dev->dev_private;
5381         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5382         struct drm_mode_object *drmmode_obj;
5383         struct intel_crtc *crtc;
5384
5385         if (!dev_priv) {
5386                 DRM_ERROR("called with no initialization\n");
5387                 return -EINVAL;
5388         }
5389
5390         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5391                         DRM_MODE_OBJECT_CRTC);
5392
5393         if (!drmmode_obj) {
5394                 DRM_ERROR("no such CRTC id\n");
5395                 return -EINVAL;
5396         }
5397
5398         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5399         pipe_from_crtc_id->pipe = crtc->pipe;
5400
5401         return 0;
5402 }
5403
5404 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5405 {
5406         struct intel_encoder *encoder;
5407         int index_mask = 0;
5408         int entry = 0;
5409
5410         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5411                 if (type_mask & encoder->clone_mask)
5412                         index_mask |= (1 << entry);
5413                 entry++;
5414         }
5415
5416         return index_mask;
5417 }
5418
5419 static void intel_setup_outputs(struct drm_device *dev)
5420 {
5421         struct drm_i915_private *dev_priv = dev->dev_private;
5422         struct intel_encoder *encoder;
5423         bool dpd_is_edp = false;
5424         bool has_lvds = false;
5425
5426         if (IS_MOBILE(dev) && !IS_I830(dev))
5427                 has_lvds = intel_lvds_init(dev);
5428         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
5429                 /* disable the panel fitter on everything but LVDS */
5430                 I915_WRITE(PFIT_CONTROL, 0);
5431         }
5432
5433         if (HAS_PCH_SPLIT(dev)) {
5434                 dpd_is_edp = intel_dpd_is_edp(dev);
5435
5436                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5437                         intel_dp_init(dev, DP_A);
5438
5439                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5440                         intel_dp_init(dev, PCH_DP_D);
5441         }
5442
5443         intel_crt_init(dev);
5444
5445         if (HAS_PCH_SPLIT(dev)) {
5446                 int found;
5447
5448                 if (I915_READ(HDMIB) & PORT_DETECTED) {
5449                         /* PCH SDVOB multiplex with HDMIB */
5450                         found = intel_sdvo_init(dev, PCH_SDVOB);
5451                         if (!found)
5452                                 intel_hdmi_init(dev, HDMIB);
5453                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5454                                 intel_dp_init(dev, PCH_DP_B);
5455                 }
5456
5457                 if (I915_READ(HDMIC) & PORT_DETECTED)
5458                         intel_hdmi_init(dev, HDMIC);
5459
5460                 if (I915_READ(HDMID) & PORT_DETECTED)
5461                         intel_hdmi_init(dev, HDMID);
5462
5463                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5464                         intel_dp_init(dev, PCH_DP_C);
5465
5466                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5467                         intel_dp_init(dev, PCH_DP_D);
5468
5469         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5470                 bool found = false;
5471
5472                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5473                         DRM_DEBUG_KMS("probing SDVOB\n");
5474                         found = intel_sdvo_init(dev, SDVOB);
5475                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5476                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5477                                 intel_hdmi_init(dev, SDVOB);
5478                         }
5479
5480                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5481                                 DRM_DEBUG_KMS("probing DP_B\n");
5482                                 intel_dp_init(dev, DP_B);
5483                         }
5484                 }
5485
5486                 /* Before G4X SDVOC doesn't have its own detect register */
5487
5488                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5489                         DRM_DEBUG_KMS("probing SDVOC\n");
5490                         found = intel_sdvo_init(dev, SDVOC);
5491                 }
5492
5493                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5494
5495                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5496                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5497                                 intel_hdmi_init(dev, SDVOC);
5498                         }
5499                         if (SUPPORTS_INTEGRATED_DP(dev)) {
5500                                 DRM_DEBUG_KMS("probing DP_C\n");
5501                                 intel_dp_init(dev, DP_C);
5502                         }
5503                 }
5504
5505                 if (SUPPORTS_INTEGRATED_DP(dev) &&
5506                     (I915_READ(DP_D) & DP_DETECTED)) {
5507                         DRM_DEBUG_KMS("probing DP_D\n");
5508                         intel_dp_init(dev, DP_D);
5509                 }
5510         } else if (IS_GEN2(dev))
5511                 intel_dvo_init(dev);
5512
5513         if (SUPPORTS_TV(dev))
5514                 intel_tv_init(dev);
5515
5516         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5517                 encoder->base.possible_crtcs = encoder->crtc_mask;
5518                 encoder->base.possible_clones =
5519                         intel_encoder_clones(dev, encoder->clone_mask);
5520         }
5521 }
5522
5523 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5524 {
5525         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5526
5527         drm_framebuffer_cleanup(fb);
5528         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
5529
5530         kfree(intel_fb);
5531 }
5532
5533 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5534                                                 struct drm_file *file,
5535                                                 unsigned int *handle)
5536 {
5537         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5538         struct drm_i915_gem_object *obj = intel_fb->obj;
5539
5540         return drm_gem_handle_create(file, &obj->base, handle);
5541 }
5542
5543 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5544         .destroy = intel_user_framebuffer_destroy,
5545         .create_handle = intel_user_framebuffer_create_handle,
5546 };
5547
5548 int intel_framebuffer_init(struct drm_device *dev,
5549                            struct intel_framebuffer *intel_fb,
5550                            struct drm_mode_fb_cmd *mode_cmd,
5551                            struct drm_i915_gem_object *obj)
5552 {
5553         int ret;
5554
5555         if (obj->tiling_mode == I915_TILING_Y)
5556                 return -EINVAL;
5557
5558         if (mode_cmd->pitch & 63)
5559                 return -EINVAL;
5560
5561         switch (mode_cmd->bpp) {
5562         case 8:
5563         case 16:
5564         case 24:
5565         case 32:
5566                 break;
5567         default:
5568                 return -EINVAL;
5569         }
5570
5571         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5572         if (ret) {
5573                 DRM_ERROR("framebuffer init failed %d\n", ret);
5574                 return ret;
5575         }
5576
5577         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5578         intel_fb->obj = obj;
5579         return 0;
5580 }
5581
5582 static struct drm_framebuffer *
5583 intel_user_framebuffer_create(struct drm_device *dev,
5584                               struct drm_file *filp,
5585                               struct drm_mode_fb_cmd *mode_cmd)
5586 {
5587         struct drm_i915_gem_object *obj;
5588         struct intel_framebuffer *intel_fb;
5589         int ret;
5590
5591         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
5592         if (!obj)
5593                 return ERR_PTR(-ENOENT);
5594
5595         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5596         if (!intel_fb)
5597                 return ERR_PTR(-ENOMEM);
5598
5599         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5600         if (ret) {
5601                 drm_gem_object_unreference_unlocked(&obj->base);
5602                 kfree(intel_fb);
5603                 return ERR_PTR(ret);
5604         }
5605
5606         return &intel_fb->base;
5607 }
5608
5609 static const struct drm_mode_config_funcs intel_mode_funcs = {
5610         .fb_create = intel_user_framebuffer_create,
5611         .output_poll_changed = intel_fb_output_poll_changed,
5612 };
5613
5614 static struct drm_i915_gem_object *
5615 intel_alloc_context_page(struct drm_device *dev)
5616 {
5617         struct drm_i915_gem_object *ctx;
5618         int ret;
5619
5620         ctx = i915_gem_alloc_object(dev, 4096);
5621         if (!ctx) {
5622                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5623                 return NULL;
5624         }
5625
5626         mutex_lock(&dev->struct_mutex);
5627         ret = i915_gem_object_pin(ctx, 4096, true);
5628         if (ret) {
5629                 DRM_ERROR("failed to pin power context: %d\n", ret);
5630                 goto err_unref;
5631         }
5632
5633         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5634         if (ret) {
5635                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5636                 goto err_unpin;
5637         }
5638         mutex_unlock(&dev->struct_mutex);
5639
5640         return ctx;
5641
5642 err_unpin:
5643         i915_gem_object_unpin(ctx);
5644 err_unref:
5645         drm_gem_object_unreference(&ctx->base);
5646         mutex_unlock(&dev->struct_mutex);
5647         return NULL;
5648 }
5649
5650 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5651 {
5652         struct drm_i915_private *dev_priv = dev->dev_private;
5653         u16 rgvswctl;
5654
5655         rgvswctl = I915_READ16(MEMSWCTL);
5656         if (rgvswctl & MEMCTL_CMD_STS) {
5657                 DRM_DEBUG("gpu busy, RCS change rejected\n");
5658                 return false; /* still busy with another command */
5659         }
5660
5661         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5662                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5663         I915_WRITE16(MEMSWCTL, rgvswctl);
5664         POSTING_READ16(MEMSWCTL);
5665
5666         rgvswctl |= MEMCTL_CMD_STS;
5667         I915_WRITE16(MEMSWCTL, rgvswctl);
5668
5669         return true;
5670 }
5671
5672 void ironlake_enable_drps(struct drm_device *dev)
5673 {
5674         struct drm_i915_private *dev_priv = dev->dev_private;
5675         u32 rgvmodectl = I915_READ(MEMMODECTL);
5676         u8 fmax, fmin, fstart, vstart;
5677
5678         /* Enable temp reporting */
5679         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5680         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5681
5682         /* 100ms RC evaluation intervals */
5683         I915_WRITE(RCUPEI, 100000);
5684         I915_WRITE(RCDNEI, 100000);
5685
5686         /* Set max/min thresholds to 90ms and 80ms respectively */
5687         I915_WRITE(RCBMAXAVG, 90000);
5688         I915_WRITE(RCBMINAVG, 80000);
5689
5690         I915_WRITE(MEMIHYST, 1);
5691
5692         /* Set up min, max, and cur for interrupt handling */
5693         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5694         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5695         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5696                 MEMMODE_FSTART_SHIFT;
5697
5698         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5699                 PXVFREQ_PX_SHIFT;
5700
5701         dev_priv->fmax = fmax; /* IPS callback will increase this */
5702         dev_priv->fstart = fstart;
5703
5704         dev_priv->max_delay = fstart;
5705         dev_priv->min_delay = fmin;
5706         dev_priv->cur_delay = fstart;
5707
5708         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5709                          fmax, fmin, fstart);
5710
5711         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5712
5713         /*
5714          * Interrupts will be enabled in ironlake_irq_postinstall
5715          */
5716
5717         I915_WRITE(VIDSTART, vstart);
5718         POSTING_READ(VIDSTART);
5719
5720         rgvmodectl |= MEMMODE_SWMODE_EN;
5721         I915_WRITE(MEMMODECTL, rgvmodectl);
5722
5723         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5724                 DRM_ERROR("stuck trying to change perf mode\n");
5725         msleep(1);
5726
5727         ironlake_set_drps(dev, fstart);
5728
5729         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5730                 I915_READ(0x112e0);
5731         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5732         dev_priv->last_count2 = I915_READ(0x112f4);
5733         getrawmonotonic(&dev_priv->last_time2);
5734 }
5735
5736 void ironlake_disable_drps(struct drm_device *dev)
5737 {
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         u16 rgvswctl = I915_READ16(MEMSWCTL);
5740
5741         /* Ack interrupts, disable EFC interrupt */
5742         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5743         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5744         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5745         I915_WRITE(DEIIR, DE_PCU_EVENT);
5746         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5747
5748         /* Go back to the starting frequency */
5749         ironlake_set_drps(dev, dev_priv->fstart);
5750         msleep(1);
5751         rgvswctl |= MEMCTL_CMD_STS;
5752         I915_WRITE(MEMSWCTL, rgvswctl);
5753         msleep(1);
5754
5755 }
5756
5757 static unsigned long intel_pxfreq(u32 vidfreq)
5758 {
5759         unsigned long freq;
5760         int div = (vidfreq & 0x3f0000) >> 16;
5761         int post = (vidfreq & 0x3000) >> 12;
5762         int pre = (vidfreq & 0x7);
5763
5764         if (!pre)
5765                 return 0;
5766
5767         freq = ((div * 133333) / ((1<<post) * pre));
5768
5769         return freq;
5770 }
5771
5772 void intel_init_emon(struct drm_device *dev)
5773 {
5774         struct drm_i915_private *dev_priv = dev->dev_private;
5775         u32 lcfuse;
5776         u8 pxw[16];
5777         int i;
5778
5779         /* Disable to program */
5780         I915_WRITE(ECR, 0);
5781         POSTING_READ(ECR);
5782
5783         /* Program energy weights for various events */
5784         I915_WRITE(SDEW, 0x15040d00);
5785         I915_WRITE(CSIEW0, 0x007f0000);
5786         I915_WRITE(CSIEW1, 0x1e220004);
5787         I915_WRITE(CSIEW2, 0x04000004);
5788
5789         for (i = 0; i < 5; i++)
5790                 I915_WRITE(PEW + (i * 4), 0);
5791         for (i = 0; i < 3; i++)
5792                 I915_WRITE(DEW + (i * 4), 0);
5793
5794         /* Program P-state weights to account for frequency power adjustment */
5795         for (i = 0; i < 16; i++) {
5796                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5797                 unsigned long freq = intel_pxfreq(pxvidfreq);
5798                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5799                         PXVFREQ_PX_SHIFT;
5800                 unsigned long val;
5801
5802                 val = vid * vid;
5803                 val *= (freq / 1000);
5804                 val *= 255;
5805                 val /= (127*127*900);
5806                 if (val > 0xff)
5807                         DRM_ERROR("bad pxval: %ld\n", val);
5808                 pxw[i] = val;
5809         }
5810         /* Render standby states get 0 weight */
5811         pxw[14] = 0;
5812         pxw[15] = 0;
5813
5814         for (i = 0; i < 4; i++) {
5815                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5816                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5817                 I915_WRITE(PXW + (i * 4), val);
5818         }
5819
5820         /* Adjust magic regs to magic values (more experimental results) */
5821         I915_WRITE(OGW0, 0);
5822         I915_WRITE(OGW1, 0);
5823         I915_WRITE(EG0, 0x00007f00);
5824         I915_WRITE(EG1, 0x0000000e);
5825         I915_WRITE(EG2, 0x000e0000);
5826         I915_WRITE(EG3, 0x68000300);
5827         I915_WRITE(EG4, 0x42000000);
5828         I915_WRITE(EG5, 0x00140031);
5829         I915_WRITE(EG6, 0);
5830         I915_WRITE(EG7, 0);
5831
5832         for (i = 0; i < 8; i++)
5833                 I915_WRITE(PXWL + (i * 4), 0);
5834
5835         /* Enable PMON + select events */
5836         I915_WRITE(ECR, 0x80000019);
5837
5838         lcfuse = I915_READ(LCFUSE02);
5839
5840         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5841 }
5842
5843 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
5844 {
5845         int i;
5846
5847         /* Here begins a magic sequence of register writes to enable
5848          * auto-downclocking.
5849          *
5850          * Perhaps there might be some value in exposing these to
5851          * userspace...
5852          */
5853         I915_WRITE(GEN6_RC_STATE, 0);
5854         __gen6_force_wake_get(dev_priv);
5855
5856         /* disable the counters and set determistic thresholds */
5857         I915_WRITE(GEN6_RC_CONTROL, 0);
5858
5859         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5860         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5861         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5862         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5863         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5864
5865         for (i = 0; i < I915_NUM_RINGS; i++)
5866                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
5867
5868         I915_WRITE(GEN6_RC_SLEEP, 0);
5869         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5870         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5871         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
5872         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5873
5874         I915_WRITE(GEN6_RC_CONTROL,
5875                    GEN6_RC_CTL_RC6p_ENABLE |
5876                    GEN6_RC_CTL_RC6_ENABLE |
5877                    GEN6_RC_CTL_HW_ENABLE);
5878
5879         I915_WRITE(GEN6_RC_NORMAL_FREQ,
5880                    GEN6_FREQUENCY(10) |
5881                    GEN6_OFFSET(0) |
5882                    GEN6_AGGRESSIVE_TURBO);
5883         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5884                    GEN6_FREQUENCY(12));
5885
5886         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5887         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5888                    18 << 24 |
5889                    6 << 16);
5890         I915_WRITE(GEN6_RP_UP_THRESHOLD, 90000);
5891         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 100000);
5892         I915_WRITE(GEN6_RP_UP_EI, 100000);
5893         I915_WRITE(GEN6_RP_DOWN_EI, 300000);
5894         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5895         I915_WRITE(GEN6_RP_CONTROL,
5896                    GEN6_RP_MEDIA_TURBO |
5897                    GEN6_RP_USE_NORMAL_FREQ |
5898                    GEN6_RP_MEDIA_IS_GFX |
5899                    GEN6_RP_ENABLE |
5900                    GEN6_RP_UP_BUSY_MAX |
5901                    GEN6_RP_DOWN_BUSY_MIN);
5902
5903         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5904                      500))
5905                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
5906
5907         I915_WRITE(GEN6_PCODE_DATA, 0);
5908         I915_WRITE(GEN6_PCODE_MAILBOX,
5909                    GEN6_PCODE_READY |
5910                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
5911         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5912                      500))
5913                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
5914
5915         /* requires MSI enabled */
5916         I915_WRITE(GEN6_PMIER,
5917                    GEN6_PM_MBOX_EVENT |
5918                    GEN6_PM_THERMAL_EVENT |
5919                    GEN6_PM_RP_DOWN_TIMEOUT |
5920                    GEN6_PM_RP_UP_THRESHOLD |
5921                    GEN6_PM_RP_DOWN_THRESHOLD |
5922                    GEN6_PM_RP_UP_EI_EXPIRED |
5923                    GEN6_PM_RP_DOWN_EI_EXPIRED);
5924
5925         __gen6_force_wake_put(dev_priv);
5926 }
5927
5928 void intel_enable_clock_gating(struct drm_device *dev)
5929 {
5930         struct drm_i915_private *dev_priv = dev->dev_private;
5931
5932         /*
5933          * Disable clock gating reported to work incorrectly according to the
5934          * specs, but enable as much else as we can.
5935          */
5936         if (HAS_PCH_SPLIT(dev)) {
5937                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5938
5939                 if (IS_GEN5(dev)) {
5940                         /* Required for FBC */
5941                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5942                         /* Required for CxSR */
5943                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5944
5945                         I915_WRITE(PCH_3DCGDIS0,
5946                                    MARIUNIT_CLOCK_GATE_DISABLE |
5947                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5948                 }
5949
5950                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5951
5952                 /*
5953                  * On Ibex Peak and Cougar Point, we need to disable clock
5954                  * gating for the panel power sequencer or it will fail to
5955                  * start up when no ports are active.
5956                  */
5957                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5958
5959                 /*
5960                  * According to the spec the following bits should be set in
5961                  * order to enable memory self-refresh
5962                  * The bit 22/21 of 0x42004
5963                  * The bit 5 of 0x42020
5964                  * The bit 15 of 0x45000
5965                  */
5966                 if (IS_GEN5(dev)) {
5967                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5968                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5969                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5970                         I915_WRITE(ILK_DSPCLK_GATE,
5971                                         (I915_READ(ILK_DSPCLK_GATE) |
5972                                                 ILK_DPARB_CLK_GATE));
5973                         I915_WRITE(DISP_ARB_CTL,
5974                                         (I915_READ(DISP_ARB_CTL) |
5975                                                 DISP_FBC_WM_DIS));
5976                 I915_WRITE(WM3_LP_ILK, 0);
5977                 I915_WRITE(WM2_LP_ILK, 0);
5978                 I915_WRITE(WM1_LP_ILK, 0);
5979                 }
5980                 /*
5981                  * Based on the document from hardware guys the following bits
5982                  * should be set unconditionally in order to enable FBC.
5983                  * The bit 22 of 0x42000
5984                  * The bit 22 of 0x42004
5985                  * The bit 7,8,9 of 0x42020.
5986                  */
5987                 if (IS_IRONLAKE_M(dev)) {
5988                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5989                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5990                                    ILK_FBCQ_DIS);
5991                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5992                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5993                                    ILK_DPARB_GATE);
5994                         I915_WRITE(ILK_DSPCLK_GATE,
5995                                    I915_READ(ILK_DSPCLK_GATE) |
5996                                    ILK_DPFC_DIS1 |
5997                                    ILK_DPFC_DIS2 |
5998                                    ILK_CLK_FBC);
5999                 }
6000
6001                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6002                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6003                            ILK_ELPIN_409_SELECT);
6004
6005                 if (IS_GEN5(dev)) {
6006                         I915_WRITE(_3D_CHICKEN2,
6007                                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6008                                    _3D_CHICKEN2_WM_READ_PIPELINED);
6009                 }
6010
6011         } else if (IS_G4X(dev)) {
6012                 uint32_t dspclk_gate;
6013                 I915_WRITE(RENCLK_GATE_D1, 0);
6014                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6015                        GS_UNIT_CLOCK_GATE_DISABLE |
6016                        CL_UNIT_CLOCK_GATE_DISABLE);
6017                 I915_WRITE(RAMCLK_GATE_D, 0);
6018                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6019                         OVRUNIT_CLOCK_GATE_DISABLE |
6020                         OVCUNIT_CLOCK_GATE_DISABLE;
6021                 if (IS_GM45(dev))
6022                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6023                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6024         } else if (IS_CRESTLINE(dev)) {
6025                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6026                 I915_WRITE(RENCLK_GATE_D2, 0);
6027                 I915_WRITE(DSPCLK_GATE_D, 0);
6028                 I915_WRITE(RAMCLK_GATE_D, 0);
6029                 I915_WRITE16(DEUC, 0);
6030         } else if (IS_BROADWATER(dev)) {
6031                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6032                        I965_RCC_CLOCK_GATE_DISABLE |
6033                        I965_RCPB_CLOCK_GATE_DISABLE |
6034                        I965_ISC_CLOCK_GATE_DISABLE |
6035                        I965_FBC_CLOCK_GATE_DISABLE);
6036                 I915_WRITE(RENCLK_GATE_D2, 0);
6037         } else if (IS_GEN3(dev)) {
6038                 u32 dstate = I915_READ(D_STATE);
6039
6040                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6041                         DSTATE_DOT_CLOCK_GATING;
6042                 I915_WRITE(D_STATE, dstate);
6043         } else if (IS_I85X(dev) || IS_I865G(dev)) {
6044                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6045         } else if (IS_I830(dev)) {
6046                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6047         }
6048
6049         /*
6050          * GPU can automatically power down the render unit if given a page
6051          * to save state.
6052          */
6053         if (IS_IRONLAKE_M(dev) && 0) { /* XXX causes a failure during suspend */
6054                 if (dev_priv->renderctx == NULL)
6055                         dev_priv->renderctx = intel_alloc_context_page(dev);
6056                 if (dev_priv->renderctx) {
6057                         struct drm_i915_gem_object *obj = dev_priv->renderctx;
6058                         if (BEGIN_LP_RING(4) == 0) {
6059                                 OUT_RING(MI_SET_CONTEXT);
6060                                 OUT_RING(obj->gtt_offset |
6061                                          MI_MM_SPACE_GTT |
6062                                          MI_SAVE_EXT_STATE_EN |
6063                                          MI_RESTORE_EXT_STATE_EN |
6064                                          MI_RESTORE_INHIBIT);
6065                                 OUT_RING(MI_NOOP);
6066                                 OUT_RING(MI_FLUSH);
6067                                 ADVANCE_LP_RING();
6068                         }
6069                 } else
6070                         DRM_DEBUG_KMS("Failed to allocate render context."
6071                                        "Disable RC6\n");
6072         }
6073
6074         if (IS_GEN4(dev) && IS_MOBILE(dev)) {
6075                 if (dev_priv->pwrctx == NULL)
6076                         dev_priv->pwrctx = intel_alloc_context_page(dev);
6077                 if (dev_priv->pwrctx) {
6078                         struct drm_i915_gem_object *obj = dev_priv->pwrctx;
6079                         I915_WRITE(PWRCTXA, obj->gtt_offset | PWRCTX_EN);
6080                         I915_WRITE(MCHBAR_RENDER_STANDBY,
6081                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
6082                 }
6083         }
6084
6085         if (IS_GEN6(dev))
6086                 gen6_enable_rc6(dev_priv);
6087 }
6088
6089 void intel_disable_clock_gating(struct drm_device *dev)
6090 {
6091         struct drm_i915_private *dev_priv = dev->dev_private;
6092
6093         if (dev_priv->renderctx) {
6094                 struct drm_i915_gem_object *obj = dev_priv->renderctx;
6095
6096                 I915_WRITE(CCID, 0);
6097                 POSTING_READ(CCID);
6098
6099                 i915_gem_object_unpin(obj);
6100                 drm_gem_object_unreference(&obj->base);
6101                 dev_priv->renderctx = NULL;
6102         }
6103
6104         if (dev_priv->pwrctx) {
6105                 struct drm_i915_gem_object *obj = dev_priv->pwrctx;
6106
6107                 I915_WRITE(PWRCTXA, 0);
6108                 POSTING_READ(PWRCTXA);
6109
6110                 i915_gem_object_unpin(obj);
6111                 drm_gem_object_unreference(&obj->base);
6112                 dev_priv->pwrctx = NULL;
6113         }
6114 }
6115
6116 /* Set up chip specific display functions */
6117 static void intel_init_display(struct drm_device *dev)
6118 {
6119         struct drm_i915_private *dev_priv = dev->dev_private;
6120
6121         /* We always want a DPMS function */
6122         if (HAS_PCH_SPLIT(dev))
6123                 dev_priv->display.dpms = ironlake_crtc_dpms;
6124         else
6125                 dev_priv->display.dpms = i9xx_crtc_dpms;
6126
6127         if (I915_HAS_FBC(dev)) {
6128                 if (IS_IRONLAKE_M(dev)) {
6129                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6130                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6131                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6132                 } else if (IS_GM45(dev)) {
6133                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6134                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6135                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6136                 } else if (IS_CRESTLINE(dev)) {
6137                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6138                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6139                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6140                 }
6141                 /* 855GM needs testing */
6142         }
6143
6144         /* Returns the core display clock speed */
6145         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
6146                 dev_priv->display.get_display_clock_speed =
6147                         i945_get_display_clock_speed;
6148         else if (IS_I915G(dev))
6149                 dev_priv->display.get_display_clock_speed =
6150                         i915_get_display_clock_speed;
6151         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6152                 dev_priv->display.get_display_clock_speed =
6153                         i9xx_misc_get_display_clock_speed;
6154         else if (IS_I915GM(dev))
6155                 dev_priv->display.get_display_clock_speed =
6156                         i915gm_get_display_clock_speed;
6157         else if (IS_I865G(dev))
6158                 dev_priv->display.get_display_clock_speed =
6159                         i865_get_display_clock_speed;
6160         else if (IS_I85X(dev))
6161                 dev_priv->display.get_display_clock_speed =
6162                         i855_get_display_clock_speed;
6163         else /* 852, 830 */
6164                 dev_priv->display.get_display_clock_speed =
6165                         i830_get_display_clock_speed;
6166
6167         /* For FIFO watermark updates */
6168         if (HAS_PCH_SPLIT(dev)) {
6169                 if (IS_GEN5(dev)) {
6170                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
6171                                 dev_priv->display.update_wm = ironlake_update_wm;
6172                         else {
6173                                 DRM_DEBUG_KMS("Failed to get proper latency. "
6174                                               "Disable CxSR\n");
6175                                 dev_priv->display.update_wm = NULL;
6176                         }
6177                 } else
6178                         dev_priv->display.update_wm = NULL;
6179         } else if (IS_PINEVIEW(dev)) {
6180                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6181                                             dev_priv->is_ddr3,
6182                                             dev_priv->fsb_freq,
6183                                             dev_priv->mem_freq)) {
6184                         DRM_INFO("failed to find known CxSR latency "
6185                                  "(found ddr%s fsb freq %d, mem freq %d), "
6186                                  "disabling CxSR\n",
6187                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
6188                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6189                         /* Disable CxSR and never update its watermark again */
6190                         pineview_disable_cxsr(dev);
6191                         dev_priv->display.update_wm = NULL;
6192                 } else
6193                         dev_priv->display.update_wm = pineview_update_wm;
6194         } else if (IS_G4X(dev))
6195                 dev_priv->display.update_wm = g4x_update_wm;
6196         else if (IS_GEN4(dev))
6197                 dev_priv->display.update_wm = i965_update_wm;
6198         else if (IS_GEN3(dev)) {
6199                 dev_priv->display.update_wm = i9xx_update_wm;
6200                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6201         } else if (IS_I85X(dev)) {
6202                 dev_priv->display.update_wm = i9xx_update_wm;
6203                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6204         } else {
6205                 dev_priv->display.update_wm = i830_update_wm;
6206                 if (IS_845G(dev))
6207                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6208                 else
6209                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6210         }
6211 }
6212
6213 /*
6214  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6215  * resume, or other times.  This quirk makes sure that's the case for
6216  * affected systems.
6217  */
6218 static void quirk_pipea_force (struct drm_device *dev)
6219 {
6220         struct drm_i915_private *dev_priv = dev->dev_private;
6221
6222         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6223         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
6224 }
6225
6226 struct intel_quirk {
6227         int device;
6228         int subsystem_vendor;
6229         int subsystem_device;
6230         void (*hook)(struct drm_device *dev);
6231 };
6232
6233 struct intel_quirk intel_quirks[] = {
6234         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6235         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6236         /* HP Mini needs pipe A force quirk (LP: #322104) */
6237         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6238
6239         /* Thinkpad R31 needs pipe A force quirk */
6240         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6241         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6242         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6243
6244         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6245         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
6246         /* ThinkPad X40 needs pipe A force quirk */
6247
6248         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6249         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6250
6251         /* 855 & before need to leave pipe A & dpll A up */
6252         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6253         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6254 };
6255
6256 static void intel_init_quirks(struct drm_device *dev)
6257 {
6258         struct pci_dev *d = dev->pdev;
6259         int i;
6260
6261         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6262                 struct intel_quirk *q = &intel_quirks[i];
6263
6264                 if (d->device == q->device &&
6265                     (d->subsystem_vendor == q->subsystem_vendor ||
6266                      q->subsystem_vendor == PCI_ANY_ID) &&
6267                     (d->subsystem_device == q->subsystem_device ||
6268                      q->subsystem_device == PCI_ANY_ID))
6269                         q->hook(dev);
6270         }
6271 }
6272
6273 /* Disable the VGA plane that we never use */
6274 static void i915_disable_vga(struct drm_device *dev)
6275 {
6276         struct drm_i915_private *dev_priv = dev->dev_private;
6277         u8 sr1;
6278         u32 vga_reg;
6279
6280         if (HAS_PCH_SPLIT(dev))
6281                 vga_reg = CPU_VGACNTRL;
6282         else
6283                 vga_reg = VGACNTRL;
6284
6285         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6286         outb(1, VGA_SR_INDEX);
6287         sr1 = inb(VGA_SR_DATA);
6288         outb(sr1 | 1<<5, VGA_SR_DATA);
6289         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6290         udelay(300);
6291
6292         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6293         POSTING_READ(vga_reg);
6294 }
6295
6296 void intel_modeset_init(struct drm_device *dev)
6297 {
6298         struct drm_i915_private *dev_priv = dev->dev_private;
6299         int i;
6300
6301         drm_mode_config_init(dev);
6302
6303         dev->mode_config.min_width = 0;
6304         dev->mode_config.min_height = 0;
6305
6306         dev->mode_config.funcs = (void *)&intel_mode_funcs;
6307
6308         intel_init_quirks(dev);
6309
6310         intel_init_display(dev);
6311
6312         if (IS_GEN2(dev)) {
6313                 dev->mode_config.max_width = 2048;
6314                 dev->mode_config.max_height = 2048;
6315         } else if (IS_GEN3(dev)) {
6316                 dev->mode_config.max_width = 4096;
6317                 dev->mode_config.max_height = 4096;
6318         } else {
6319                 dev->mode_config.max_width = 8192;
6320                 dev->mode_config.max_height = 8192;
6321         }
6322
6323         /* set memory base */
6324         if (IS_GEN2(dev))
6325                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6326         else
6327                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6328
6329         if (IS_MOBILE(dev) || !IS_GEN2(dev))
6330                 dev_priv->num_pipe = 2;
6331         else
6332                 dev_priv->num_pipe = 1;
6333         DRM_DEBUG_KMS("%d display pipe%s available.\n",
6334                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6335
6336         for (i = 0; i < dev_priv->num_pipe; i++) {
6337                 intel_crtc_init(dev, i);
6338         }
6339
6340         intel_setup_outputs(dev);
6341
6342         intel_enable_clock_gating(dev);
6343
6344         /* Just disable it once at startup */
6345         i915_disable_vga(dev);
6346
6347         if (IS_IRONLAKE_M(dev)) {
6348                 ironlake_enable_drps(dev);
6349                 intel_init_emon(dev);
6350         }
6351
6352         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6353         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6354                     (unsigned long)dev);
6355
6356         intel_setup_overlay(dev);
6357 }
6358
6359 void intel_modeset_cleanup(struct drm_device *dev)
6360 {
6361         struct drm_i915_private *dev_priv = dev->dev_private;
6362         struct drm_crtc *crtc;
6363         struct intel_crtc *intel_crtc;
6364
6365         drm_kms_helper_poll_fini(dev);
6366         mutex_lock(&dev->struct_mutex);
6367
6368         intel_unregister_dsm_handler();
6369
6370
6371         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6372                 /* Skip inactive CRTCs */
6373                 if (!crtc->fb)
6374                         continue;
6375
6376                 intel_crtc = to_intel_crtc(crtc);
6377                 intel_increase_pllclock(crtc);
6378         }
6379
6380         if (dev_priv->display.disable_fbc)
6381                 dev_priv->display.disable_fbc(dev);
6382
6383         if (IS_IRONLAKE_M(dev))
6384                 ironlake_disable_drps(dev);
6385
6386         intel_disable_clock_gating(dev);
6387
6388         mutex_unlock(&dev->struct_mutex);
6389
6390         /* Disable the irq before mode object teardown, for the irq might
6391          * enqueue unpin/hotplug work. */
6392         drm_irq_uninstall(dev);
6393         cancel_work_sync(&dev_priv->hotplug_work);
6394
6395         /* Shut off idle work before the crtcs get freed. */
6396         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6397                 intel_crtc = to_intel_crtc(crtc);
6398                 del_timer_sync(&intel_crtc->idle_timer);
6399         }
6400         del_timer_sync(&dev_priv->idle_timer);
6401         cancel_work_sync(&dev_priv->idle_work);
6402
6403         drm_mode_config_cleanup(dev);
6404 }
6405
6406 /*
6407  * Return which encoder is currently attached for connector.
6408  */
6409 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6410 {
6411         return &intel_attached_encoder(connector)->base;
6412 }
6413
6414 void intel_connector_attach_encoder(struct intel_connector *connector,
6415                                     struct intel_encoder *encoder)
6416 {
6417         connector->encoder = encoder;
6418         drm_mode_connector_attach_encoder(&connector->base,
6419                                           &encoder->base);
6420 }
6421
6422 /*
6423  * set vga decode state - true == enable VGA decode
6424  */
6425 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6426 {
6427         struct drm_i915_private *dev_priv = dev->dev_private;
6428         u16 gmch_ctrl;
6429
6430         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6431         if (state)
6432                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6433         else
6434                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6435         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6436         return 0;
6437 }
6438
6439 #ifdef CONFIG_DEBUG_FS
6440 #include <linux/seq_file.h>
6441
6442 struct intel_display_error_state {
6443         struct intel_cursor_error_state {
6444                 u32 control;
6445                 u32 position;
6446                 u32 base;
6447                 u32 size;
6448         } cursor[2];
6449
6450         struct intel_pipe_error_state {
6451                 u32 conf;
6452                 u32 source;
6453
6454                 u32 htotal;
6455                 u32 hblank;
6456                 u32 hsync;
6457                 u32 vtotal;
6458                 u32 vblank;
6459                 u32 vsync;
6460         } pipe[2];
6461
6462         struct intel_plane_error_state {
6463                 u32 control;
6464                 u32 stride;
6465                 u32 size;
6466                 u32 pos;
6467                 u32 addr;
6468                 u32 surface;
6469                 u32 tile_offset;
6470         } plane[2];
6471 };
6472
6473 struct intel_display_error_state *
6474 intel_display_capture_error_state(struct drm_device *dev)
6475 {
6476         drm_i915_private_t *dev_priv = dev->dev_private;
6477         struct intel_display_error_state *error;
6478         int i;
6479
6480         error = kmalloc(sizeof(*error), GFP_ATOMIC);
6481         if (error == NULL)
6482                 return NULL;
6483
6484         for (i = 0; i < 2; i++) {
6485                 error->cursor[i].control = I915_READ(CURCNTR(i));
6486                 error->cursor[i].position = I915_READ(CURPOS(i));
6487                 error->cursor[i].base = I915_READ(CURBASE(i));
6488
6489                 error->plane[i].control = I915_READ(DSPCNTR(i));
6490                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6491                 error->plane[i].size = I915_READ(DSPSIZE(i));
6492                 error->plane[i].pos= I915_READ(DSPPOS(i));
6493                 error->plane[i].addr = I915_READ(DSPADDR(i));
6494                 if (INTEL_INFO(dev)->gen >= 4) {
6495                         error->plane[i].surface = I915_READ(DSPSURF(i));
6496                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6497                 }
6498
6499                 error->pipe[i].conf = I915_READ(PIPECONF(i));
6500                 error->pipe[i].source = I915_READ(PIPESRC(i));
6501                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6502                 error->pipe[i].hblank = I915_READ(HBLANK(i));
6503                 error->pipe[i].hsync = I915_READ(HSYNC(i));
6504                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6505                 error->pipe[i].vblank = I915_READ(VBLANK(i));
6506                 error->pipe[i].vsync = I915_READ(VSYNC(i));
6507         }
6508
6509         return error;
6510 }
6511
6512 void
6513 intel_display_print_error_state(struct seq_file *m,
6514                                 struct drm_device *dev,
6515                                 struct intel_display_error_state *error)
6516 {
6517         int i;
6518
6519         for (i = 0; i < 2; i++) {
6520                 seq_printf(m, "Pipe [%d]:\n", i);
6521                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
6522                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
6523                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
6524                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
6525                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
6526                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
6527                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
6528                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
6529
6530                 seq_printf(m, "Plane [%d]:\n", i);
6531                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
6532                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
6533                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
6534                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
6535                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
6536                 if (INTEL_INFO(dev)->gen >= 4) {
6537                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
6538                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
6539                 }
6540
6541                 seq_printf(m, "Cursor [%d]:\n", i);
6542                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
6543                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
6544                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
6545         }
6546 }
6547 #endif