]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51         /* given values */
52         int n;
53         int m1, m2;
54         int p1, p2;
55         /* derived values */
56         int     dot;
57         int     vco;
58         int     m;
59         int     p;
60 } intel_clock_t;
61
62 typedef struct {
63         int     min, max;
64 } intel_range_t;
65
66 typedef struct {
67         int     dot_limit;
68         int     p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM                  2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
75         intel_p2_t          p2;
76         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77                         int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85                     int target, int refclk, intel_clock_t *match_clock,
86                     intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89                         int target, int refclk, intel_clock_t *match_clock,
90                         intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                       int target, int refclk, intel_clock_t *match_clock,
95                       intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98                            int target, int refclk, intel_clock_t *match_clock,
99                            intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103                         int target, int refclk, intel_clock_t *match_clock,
104                         intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109         if (IS_GEN5(dev)) {
110                 struct drm_i915_private *dev_priv = dev->dev_private;
111                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112         } else
113                 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117         .dot = { .min = 25000, .max = 350000 },
118         .vco = { .min = 930000, .max = 1400000 },
119         .n = { .min = 3, .max = 16 },
120         .m = { .min = 96, .max = 140 },
121         .m1 = { .min = 18, .max = 26 },
122         .m2 = { .min = 6, .max = 16 },
123         .p = { .min = 4, .max = 128 },
124         .p1 = { .min = 2, .max = 33 },
125         .p2 = { .dot_limit = 165000,
126                 .p2_slow = 4, .p2_fast = 2 },
127         .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131         .dot = { .min = 25000, .max = 350000 },
132         .vco = { .min = 930000, .max = 1400000 },
133         .n = { .min = 3, .max = 16 },
134         .m = { .min = 96, .max = 140 },
135         .m1 = { .min = 18, .max = 26 },
136         .m2 = { .min = 6, .max = 16 },
137         .p = { .min = 4, .max = 128 },
138         .p1 = { .min = 1, .max = 6 },
139         .p2 = { .dot_limit = 165000,
140                 .p2_slow = 14, .p2_fast = 7 },
141         .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 10, .max = 22 },
150         .m2 = { .min = 5, .max = 9 },
151         .p = { .min = 5, .max = 80 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 200000,
154                 .p2_slow = 10, .p2_fast = 5 },
155         .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 10, .max = 22 },
164         .m2 = { .min = 5, .max = 9 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169         .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174         .dot = { .min = 25000, .max = 270000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 17, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 10, .max = 30 },
181         .p1 = { .min = 1, .max = 3},
182         .p2 = { .dot_limit = 270000,
183                 .p2_slow = 10,
184                 .p2_fast = 10
185         },
186         .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190         .dot = { .min = 22000, .max = 400000 },
191         .vco = { .min = 1750000, .max = 3500000},
192         .n = { .min = 1, .max = 4 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 16, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8},
198         .p2 = { .dot_limit = 165000,
199                 .p2_slow = 10, .p2_fast = 5 },
200         .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204         .dot = { .min = 20000, .max = 115000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 28, .max = 112 },
211         .p1 = { .min = 2, .max = 8 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 14, .p2_fast = 14
214         },
215         .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219         .dot = { .min = 80000, .max = 224000 },
220         .vco = { .min = 1750000, .max = 3500000 },
221         .n = { .min = 1, .max = 3 },
222         .m = { .min = 104, .max = 138 },
223         .m1 = { .min = 17, .max = 23 },
224         .m2 = { .min = 5, .max = 11 },
225         .p = { .min = 14, .max = 42 },
226         .p1 = { .min = 2, .max = 6 },
227         .p2 = { .dot_limit = 0,
228                 .p2_slow = 7, .p2_fast = 7
229         },
230         .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234         .dot = { .min = 161670, .max = 227000 },
235         .vco = { .min = 1750000, .max = 3500000},
236         .n = { .min = 1, .max = 2 },
237         .m = { .min = 97, .max = 108 },
238         .m1 = { .min = 0x10, .max = 0x12 },
239         .m2 = { .min = 0x05, .max = 0x06 },
240         .p = { .min = 10, .max = 20 },
241         .p1 = { .min = 1, .max = 2},
242         .p2 = { .dot_limit = 0,
243                 .p2_slow = 10, .p2_fast = 10 },
244         .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248         .dot = { .min = 20000, .max = 400000},
249         .vco = { .min = 1700000, .max = 3500000 },
250         /* Pineview's Ncounter is a ring counter */
251         .n = { .min = 3, .max = 6 },
252         .m = { .min = 2, .max = 256 },
253         /* Pineview only has one combined m divider, which we treat as m2. */
254         .m1 = { .min = 0, .max = 0 },
255         .m2 = { .min = 0, .max = 254 },
256         .p = { .min = 5, .max = 80 },
257         .p1 = { .min = 1, .max = 8 },
258         .p2 = { .dot_limit = 200000,
259                 .p2_slow = 10, .p2_fast = 5 },
260         .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264         .dot = { .min = 20000, .max = 400000 },
265         .vco = { .min = 1700000, .max = 3500000 },
266         .n = { .min = 3, .max = 6 },
267         .m = { .min = 2, .max = 256 },
268         .m1 = { .min = 0, .max = 0 },
269         .m2 = { .min = 0, .max = 254 },
270         .p = { .min = 7, .max = 112 },
271         .p1 = { .min = 1, .max = 8 },
272         .p2 = { .dot_limit = 112000,
273                 .p2_slow = 14, .p2_fast = 14 },
274         .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278  *
279  * We calculate clock using (register_value + 2) for N/M1/M2, so here
280  * the range value for them is (actual_value - 2).
281  */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283         .dot = { .min = 25000, .max = 350000 },
284         .vco = { .min = 1760000, .max = 3510000 },
285         .n = { .min = 1, .max = 5 },
286         .m = { .min = 79, .max = 127 },
287         .m1 = { .min = 12, .max = 22 },
288         .m2 = { .min = 5, .max = 9 },
289         .p = { .min = 5, .max = 80 },
290         .p1 = { .min = 1, .max = 8 },
291         .p2 = { .dot_limit = 225000,
292                 .p2_slow = 10, .p2_fast = 5 },
293         .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297         .dot = { .min = 25000, .max = 350000 },
298         .vco = { .min = 1760000, .max = 3510000 },
299         .n = { .min = 1, .max = 3 },
300         .m = { .min = 79, .max = 118 },
301         .m1 = { .min = 12, .max = 22 },
302         .m2 = { .min = 5, .max = 9 },
303         .p = { .min = 28, .max = 112 },
304         .p1 = { .min = 2, .max = 8 },
305         .p2 = { .dot_limit = 225000,
306                 .p2_slow = 14, .p2_fast = 14 },
307         .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311         .dot = { .min = 25000, .max = 350000 },
312         .vco = { .min = 1760000, .max = 3510000 },
313         .n = { .min = 1, .max = 3 },
314         .m = { .min = 79, .max = 127 },
315         .m1 = { .min = 12, .max = 22 },
316         .m2 = { .min = 5, .max = 9 },
317         .p = { .min = 14, .max = 56 },
318         .p1 = { .min = 2, .max = 8 },
319         .p2 = { .dot_limit = 225000,
320                 .p2_slow = 7, .p2_fast = 7 },
321         .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326         .dot = { .min = 25000, .max = 350000 },
327         .vco = { .min = 1760000, .max = 3510000 },
328         .n = { .min = 1, .max = 2 },
329         .m = { .min = 79, .max = 126 },
330         .m1 = { .min = 12, .max = 22 },
331         .m2 = { .min = 5, .max = 9 },
332         .p = { .min = 28, .max = 112 },
333         .p1 = { .min = 2, .max = 8 },
334         .p2 = { .dot_limit = 225000,
335                 .p2_slow = 14, .p2_fast = 14 },
336         .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340         .dot = { .min = 25000, .max = 350000 },
341         .vco = { .min = 1760000, .max = 3510000 },
342         .n = { .min = 1, .max = 3 },
343         .m = { .min = 79, .max = 126 },
344         .m1 = { .min = 12, .max = 22 },
345         .m2 = { .min = 5, .max = 9 },
346         .p = { .min = 14, .max = 42 },
347         .p1 = { .min = 2, .max = 6 },
348         .p2 = { .dot_limit = 225000,
349                 .p2_slow = 7, .p2_fast = 7 },
350         .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354         .dot = { .min = 25000, .max = 350000 },
355         .vco = { .min = 1760000, .max = 3510000},
356         .n = { .min = 1, .max = 2 },
357         .m = { .min = 81, .max = 90 },
358         .m1 = { .min = 12, .max = 22 },
359         .m2 = { .min = 5, .max = 9 },
360         .p = { .min = 10, .max = 20 },
361         .p1 = { .min = 1, .max = 2},
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 10, .p2_fast = 10 },
364         .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368         .dot = { .min = 25000, .max = 270000 },
369         .vco = { .min = 4000000, .max = 6000000 },
370         .n = { .min = 1, .max = 7 },
371         .m = { .min = 22, .max = 450 }, /* guess */
372         .m1 = { .min = 2, .max = 3 },
373         .m2 = { .min = 11, .max = 156 },
374         .p = { .min = 10, .max = 30 },
375         .p1 = { .min = 2, .max = 3 },
376         .p2 = { .dot_limit = 270000,
377                 .p2_slow = 2, .p2_fast = 20 },
378         .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382         .dot = { .min = 20000, .max = 165000 },
383         .vco = { .min = 5994000, .max = 4000000 },
384         .n = { .min = 1, .max = 7 },
385         .m = { .min = 60, .max = 300 }, /* guess */
386         .m1 = { .min = 2, .max = 3 },
387         .m2 = { .min = 11, .max = 156 },
388         .p = { .min = 10, .max = 30 },
389         .p1 = { .min = 2, .max = 3 },
390         .p2 = { .dot_limit = 270000,
391                 .p2_slow = 2, .p2_fast = 20 },
392         .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396         .dot = { .min = 162000, .max = 270000 },
397         .vco = { .min = 5994000, .max = 4000000 },
398         .n = { .min = 1, .max = 7 },
399         .m = { .min = 60, .max = 300 }, /* guess */
400         .m1 = { .min = 2, .max = 3 },
401         .m2 = { .min = 11, .max = 156 },
402         .p = { .min = 10, .max = 30 },
403         .p1 = { .min = 2, .max = 3 },
404         .p2 = { .dot_limit = 270000,
405                 .p2_slow = 2, .p2_fast = 20 },
406         .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411         unsigned long flags;
412         u32 val = 0;
413
414         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416                 DRM_ERROR("DPIO idle wait timed out\n");
417                 goto out_unlock;
418         }
419
420         I915_WRITE(DPIO_REG, reg);
421         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422                    DPIO_BYTE);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO read wait timed out\n");
425                 goto out_unlock;
426         }
427         val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431         return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435                              u32 val)
436 {
437         unsigned long flags;
438
439         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                         HAS_eDP)
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         dotclk = target * 1000;
873         bestppm = 1000000;
874         ppm = absppm = 0;
875         fastclk = dotclk / (2*100);
876         updrate = 0;
877         minupdate = 19200;
878         fracbits = 1;
879         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
880         bestm1 = bestm2 = bestp1 = bestp2 = 0;
881
882         /* based on hardware requirement, prefer smaller n to precision */
883         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
884                 updrate = refclk / n;
885                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
886                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
887                                 if (p2 > 10)
888                                         p2 = p2 - 1;
889                                 p = p1 * p2;
890                                 /* based on hardware requirement, prefer bigger m1,m2 values */
891                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
892                                         m2 = (((2*(fastclk * p * n / m1 )) +
893                                                refclk) / (2*refclk));
894                                         m = m1 * m2;
895                                         vco = updrate * m;
896                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
897                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
898                                                 absppm = (ppm > 0) ? ppm : (-ppm);
899                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
900                                                         bestppm = 0;
901                                                         flag = 1;
902                                                 }
903                                                 if (absppm < bestppm - 10) {
904                                                         bestppm = absppm;
905                                                         flag = 1;
906                                                 }
907                                                 if (flag) {
908                                                         bestn = n;
909                                                         bestm1 = m1;
910                                                         bestm2 = m2;
911                                                         bestp1 = p1;
912                                                         bestp2 = p2;
913                                                         flag = 0;
914                                                 }
915                                         }
916                                 }
917                         }
918                 }
919         }
920         best_clock->n = bestn;
921         best_clock->m1 = bestm1;
922         best_clock->m2 = bestm2;
923         best_clock->p1 = bestp1;
924         best_clock->p2 = bestp2;
925
926         return true;
927 }
928
929 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
930 {
931         struct drm_i915_private *dev_priv = dev->dev_private;
932         u32 frame, frame_reg = PIPEFRAME(pipe);
933
934         frame = I915_READ(frame_reg);
935
936         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
937                 DRM_DEBUG_KMS("vblank wait timed out\n");
938 }
939
940 /**
941  * intel_wait_for_vblank - wait for vblank on a given pipe
942  * @dev: drm device
943  * @pipe: pipe to wait for
944  *
945  * Wait for vblank to occur on a given pipe.  Needed for various bits of
946  * mode setting code.
947  */
948 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
949 {
950         struct drm_i915_private *dev_priv = dev->dev_private;
951         int pipestat_reg = PIPESTAT(pipe);
952
953         if (INTEL_INFO(dev)->gen >= 5) {
954                 ironlake_wait_for_vblank(dev, pipe);
955                 return;
956         }
957
958         /* Clear existing vblank status. Note this will clear any other
959          * sticky status fields as well.
960          *
961          * This races with i915_driver_irq_handler() with the result
962          * that either function could miss a vblank event.  Here it is not
963          * fatal, as we will either wait upon the next vblank interrupt or
964          * timeout.  Generally speaking intel_wait_for_vblank() is only
965          * called during modeset at which time the GPU should be idle and
966          * should *not* be performing page flips and thus not waiting on
967          * vblanks...
968          * Currently, the result of us stealing a vblank from the irq
969          * handler is that a single frame will be skipped during swapbuffers.
970          */
971         I915_WRITE(pipestat_reg,
972                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
973
974         /* Wait for vblank interrupt bit to set */
975         if (wait_for(I915_READ(pipestat_reg) &
976                      PIPE_VBLANK_INTERRUPT_STATUS,
977                      50))
978                 DRM_DEBUG_KMS("vblank wait timed out\n");
979 }
980
981 /*
982  * intel_wait_for_pipe_off - wait for pipe to turn off
983  * @dev: drm device
984  * @pipe: pipe to wait for
985  *
986  * After disabling a pipe, we can't wait for vblank in the usual way,
987  * spinning on the vblank interrupt status bit, since we won't actually
988  * see an interrupt when the pipe is disabled.
989  *
990  * On Gen4 and above:
991  *   wait for the pipe register state bit to turn off
992  *
993  * Otherwise:
994  *   wait for the display line value to settle (it usually
995  *   ends up stopping at the start of the next frame).
996  *
997  */
998 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
999 {
1000         struct drm_i915_private *dev_priv = dev->dev_private;
1001
1002         if (INTEL_INFO(dev)->gen >= 4) {
1003                 int reg = PIPECONF(pipe);
1004
1005                 /* Wait for the Pipe State to go off */
1006                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1007                              100))
1008                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1009         } else {
1010                 u32 last_line, line_mask;
1011                 int reg = PIPEDSL(pipe);
1012                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1013
1014                 if (IS_GEN2(dev))
1015                         line_mask = DSL_LINEMASK_GEN2;
1016                 else
1017                         line_mask = DSL_LINEMASK_GEN3;
1018
1019                 /* Wait for the display line to settle */
1020                 do {
1021                         last_line = I915_READ(reg) & line_mask;
1022                         mdelay(5);
1023                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1024                          time_after(timeout, jiffies));
1025                 if (time_after(jiffies, timeout))
1026                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
1027         }
1028 }
1029
1030 static const char *state_string(bool enabled)
1031 {
1032         return enabled ? "on" : "off";
1033 }
1034
1035 /* Only for pre-ILK configs */
1036 static void assert_pll(struct drm_i915_private *dev_priv,
1037                        enum pipe pipe, bool state)
1038 {
1039         int reg;
1040         u32 val;
1041         bool cur_state;
1042
1043         reg = DPLL(pipe);
1044         val = I915_READ(reg);
1045         cur_state = !!(val & DPLL_VCO_ENABLE);
1046         WARN(cur_state != state,
1047              "PLL state assertion failure (expected %s, current %s)\n",
1048              state_string(state), state_string(cur_state));
1049 }
1050 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1051 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1052
1053 /* For ILK+ */
1054 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1055                            struct intel_pch_pll *pll,
1056                            struct intel_crtc *crtc,
1057                            bool state)
1058 {
1059         u32 val;
1060         bool cur_state;
1061
1062         if (HAS_PCH_LPT(dev_priv->dev)) {
1063                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1064                 return;
1065         }
1066
1067         if (WARN (!pll,
1068                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1069                 return;
1070
1071         val = I915_READ(pll->pll_reg);
1072         cur_state = !!(val & DPLL_VCO_ENABLE);
1073         WARN(cur_state != state,
1074              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1075              pll->pll_reg, state_string(state), state_string(cur_state), val);
1076
1077         /* Make sure the selected PLL is correctly attached to the transcoder */
1078         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1079                 u32 pch_dpll;
1080
1081                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1082                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1083                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1084                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1085                           cur_state, crtc->pipe, pch_dpll)) {
1086                         cur_state = !!(val >> (4*crtc->pipe + 3));
1087                         WARN(cur_state != state,
1088                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1089                              pll->pll_reg == _PCH_DPLL_B,
1090                              state_string(state),
1091                              crtc->pipe,
1092                              val);
1093                 }
1094         }
1095 }
1096 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1097 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1098
1099 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1100                           enum pipe pipe, bool state)
1101 {
1102         int reg;
1103         u32 val;
1104         bool cur_state;
1105
1106         if (IS_HASWELL(dev_priv->dev)) {
1107                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1108                 reg = DDI_FUNC_CTL(pipe);
1109                 val = I915_READ(reg);
1110                 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1111         } else {
1112                 reg = FDI_TX_CTL(pipe);
1113                 val = I915_READ(reg);
1114                 cur_state = !!(val & FDI_TX_ENABLE);
1115         }
1116         WARN(cur_state != state,
1117              "FDI TX state assertion failure (expected %s, current %s)\n",
1118              state_string(state), state_string(cur_state));
1119 }
1120 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1121 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1122
1123 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1124                           enum pipe pipe, bool state)
1125 {
1126         int reg;
1127         u32 val;
1128         bool cur_state;
1129
1130         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1131                         DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1132                         return;
1133         } else {
1134                 reg = FDI_RX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_RX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI RX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1143 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1144
1145 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1146                                       enum pipe pipe)
1147 {
1148         int reg;
1149         u32 val;
1150
1151         /* ILK FDI PLL is always enabled */
1152         if (dev_priv->info->gen == 5)
1153                 return;
1154
1155         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1156         if (IS_HASWELL(dev_priv->dev))
1157                 return;
1158
1159         reg = FDI_TX_CTL(pipe);
1160         val = I915_READ(reg);
1161         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1162 }
1163
1164 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1165                                       enum pipe pipe)
1166 {
1167         int reg;
1168         u32 val;
1169
1170         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1171                 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1172                 return;
1173         }
1174         reg = FDI_RX_CTL(pipe);
1175         val = I915_READ(reg);
1176         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1177 }
1178
1179 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1180                                   enum pipe pipe)
1181 {
1182         int pp_reg, lvds_reg;
1183         u32 val;
1184         enum pipe panel_pipe = PIPE_A;
1185         bool locked = true;
1186
1187         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1188                 pp_reg = PCH_PP_CONTROL;
1189                 lvds_reg = PCH_LVDS;
1190         } else {
1191                 pp_reg = PP_CONTROL;
1192                 lvds_reg = LVDS;
1193         }
1194
1195         val = I915_READ(pp_reg);
1196         if (!(val & PANEL_POWER_ON) ||
1197             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1198                 locked = false;
1199
1200         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1201                 panel_pipe = PIPE_B;
1202
1203         WARN(panel_pipe == pipe && locked,
1204              "panel assertion failure, pipe %c regs locked\n",
1205              pipe_name(pipe));
1206 }
1207
1208 void assert_pipe(struct drm_i915_private *dev_priv,
1209                  enum pipe pipe, bool state)
1210 {
1211         int reg;
1212         u32 val;
1213         bool cur_state;
1214
1215         /* if we need the pipe A quirk it must be always on */
1216         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1217                 state = true;
1218
1219         reg = PIPECONF(pipe);
1220         val = I915_READ(reg);
1221         cur_state = !!(val & PIPECONF_ENABLE);
1222         WARN(cur_state != state,
1223              "pipe %c assertion failure (expected %s, current %s)\n",
1224              pipe_name(pipe), state_string(state), state_string(cur_state));
1225 }
1226
1227 static void assert_plane(struct drm_i915_private *dev_priv,
1228                          enum plane plane, bool state)
1229 {
1230         int reg;
1231         u32 val;
1232         bool cur_state;
1233
1234         reg = DSPCNTR(plane);
1235         val = I915_READ(reg);
1236         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1237         WARN(cur_state != state,
1238              "plane %c assertion failure (expected %s, current %s)\n",
1239              plane_name(plane), state_string(state), state_string(cur_state));
1240 }
1241
1242 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1243 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1244
1245 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1246                                    enum pipe pipe)
1247 {
1248         int reg, i;
1249         u32 val;
1250         int cur_pipe;
1251
1252         /* Planes are fixed to pipes on ILK+ */
1253         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1254                 reg = DSPCNTR(pipe);
1255                 val = I915_READ(reg);
1256                 WARN((val & DISPLAY_PLANE_ENABLE),
1257                      "plane %c assertion failure, should be disabled but not\n",
1258                      plane_name(pipe));
1259                 return;
1260         }
1261
1262         /* Need to check both planes against the pipe */
1263         for (i = 0; i < 2; i++) {
1264                 reg = DSPCNTR(i);
1265                 val = I915_READ(reg);
1266                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1267                         DISPPLANE_SEL_PIPE_SHIFT;
1268                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1269                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1270                      plane_name(i), pipe_name(pipe));
1271         }
1272 }
1273
1274 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1275 {
1276         u32 val;
1277         bool enabled;
1278
1279         if (HAS_PCH_LPT(dev_priv->dev)) {
1280                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1281                 return;
1282         }
1283
1284         val = I915_READ(PCH_DREF_CONTROL);
1285         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1286                             DREF_SUPERSPREAD_SOURCE_MASK));
1287         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1288 }
1289
1290 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1291                                        enum pipe pipe)
1292 {
1293         int reg;
1294         u32 val;
1295         bool enabled;
1296
1297         reg = TRANSCONF(pipe);
1298         val = I915_READ(reg);
1299         enabled = !!(val & TRANS_ENABLE);
1300         WARN(enabled,
1301              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1302              pipe_name(pipe));
1303 }
1304
1305 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1306                             enum pipe pipe, u32 port_sel, u32 val)
1307 {
1308         if ((val & DP_PORT_EN) == 0)
1309                 return false;
1310
1311         if (HAS_PCH_CPT(dev_priv->dev)) {
1312                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1313                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1314                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1315                         return false;
1316         } else {
1317                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1318                         return false;
1319         }
1320         return true;
1321 }
1322
1323 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1324                               enum pipe pipe, u32 val)
1325 {
1326         if ((val & PORT_ENABLE) == 0)
1327                 return false;
1328
1329         if (HAS_PCH_CPT(dev_priv->dev)) {
1330                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1331                         return false;
1332         } else {
1333                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1334                         return false;
1335         }
1336         return true;
1337 }
1338
1339 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1340                               enum pipe pipe, u32 val)
1341 {
1342         if ((val & LVDS_PORT_EN) == 0)
1343                 return false;
1344
1345         if (HAS_PCH_CPT(dev_priv->dev)) {
1346                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1347                         return false;
1348         } else {
1349                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1350                         return false;
1351         }
1352         return true;
1353 }
1354
1355 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1356                               enum pipe pipe, u32 val)
1357 {
1358         if ((val & ADPA_DAC_ENABLE) == 0)
1359                 return false;
1360         if (HAS_PCH_CPT(dev_priv->dev)) {
1361                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362                         return false;
1363         } else {
1364                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1365                         return false;
1366         }
1367         return true;
1368 }
1369
1370 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1371                                    enum pipe pipe, int reg, u32 port_sel)
1372 {
1373         u32 val = I915_READ(reg);
1374         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1375              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1376              reg, pipe_name(pipe));
1377
1378         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1379              "IBX PCH dp port still using transcoder B\n");
1380 }
1381
1382 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1383                                      enum pipe pipe, int reg)
1384 {
1385         u32 val = I915_READ(reg);
1386         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1387              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1388              reg, pipe_name(pipe));
1389
1390         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1391              "IBX PCH hdmi port still using transcoder B\n");
1392 }
1393
1394 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1395                                       enum pipe pipe)
1396 {
1397         int reg;
1398         u32 val;
1399
1400         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1401         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1402         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1403
1404         reg = PCH_ADPA;
1405         val = I915_READ(reg);
1406         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1407              "PCH VGA enabled on transcoder %c, should be disabled\n",
1408              pipe_name(pipe));
1409
1410         reg = PCH_LVDS;
1411         val = I915_READ(reg);
1412         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1413              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1414              pipe_name(pipe));
1415
1416         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1417         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1418         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1419 }
1420
1421 /**
1422  * intel_enable_pll - enable a PLL
1423  * @dev_priv: i915 private structure
1424  * @pipe: pipe PLL to enable
1425  *
1426  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1427  * make sure the PLL reg is writable first though, since the panel write
1428  * protect mechanism may be enabled.
1429  *
1430  * Note!  This is for pre-ILK only.
1431  */
1432 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1433 {
1434         int reg;
1435         u32 val;
1436
1437         /* No really, not for ILK+ */
1438         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1439
1440         /* PLL is protected by panel, make sure we can write it */
1441         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1442                 assert_panel_unlocked(dev_priv, pipe);
1443
1444         reg = DPLL(pipe);
1445         val = I915_READ(reg);
1446         val |= DPLL_VCO_ENABLE;
1447
1448         /* We do this three times for luck */
1449         I915_WRITE(reg, val);
1450         POSTING_READ(reg);
1451         udelay(150); /* wait for warmup */
1452         I915_WRITE(reg, val);
1453         POSTING_READ(reg);
1454         udelay(150); /* wait for warmup */
1455         I915_WRITE(reg, val);
1456         POSTING_READ(reg);
1457         udelay(150); /* wait for warmup */
1458 }
1459
1460 /**
1461  * intel_disable_pll - disable a PLL
1462  * @dev_priv: i915 private structure
1463  * @pipe: pipe PLL to disable
1464  *
1465  * Disable the PLL for @pipe, making sure the pipe is off first.
1466  *
1467  * Note!  This is for pre-ILK only.
1468  */
1469 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1470 {
1471         int reg;
1472         u32 val;
1473
1474         /* Don't disable pipe A or pipe A PLLs if needed */
1475         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1476                 return;
1477
1478         /* Make sure the pipe isn't still relying on us */
1479         assert_pipe_disabled(dev_priv, pipe);
1480
1481         reg = DPLL(pipe);
1482         val = I915_READ(reg);
1483         val &= ~DPLL_VCO_ENABLE;
1484         I915_WRITE(reg, val);
1485         POSTING_READ(reg);
1486 }
1487
1488 /* SBI access */
1489 static void
1490 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1491 {
1492         unsigned long flags;
1493
1494         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1495         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1496                                 100)) {
1497                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1498                 goto out_unlock;
1499         }
1500
1501         I915_WRITE(SBI_ADDR,
1502                         (reg << 16));
1503         I915_WRITE(SBI_DATA,
1504                         value);
1505         I915_WRITE(SBI_CTL_STAT,
1506                         SBI_BUSY |
1507                         SBI_CTL_OP_CRWR);
1508
1509         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1510                                 100)) {
1511                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1512                 goto out_unlock;
1513         }
1514
1515 out_unlock:
1516         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1517 }
1518
1519 static u32
1520 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1521 {
1522         unsigned long flags;
1523         u32 value = 0;
1524
1525         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1526         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1527                                 100)) {
1528                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1529                 goto out_unlock;
1530         }
1531
1532         I915_WRITE(SBI_ADDR,
1533                         (reg << 16));
1534         I915_WRITE(SBI_CTL_STAT,
1535                         SBI_BUSY |
1536                         SBI_CTL_OP_CRRD);
1537
1538         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1539                                 100)) {
1540                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1541                 goto out_unlock;
1542         }
1543
1544         value = I915_READ(SBI_DATA);
1545
1546 out_unlock:
1547         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1548         return value;
1549 }
1550
1551 /**
1552  * intel_enable_pch_pll - enable PCH PLL
1553  * @dev_priv: i915 private structure
1554  * @pipe: pipe PLL to enable
1555  *
1556  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1557  * drives the transcoder clock.
1558  */
1559 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1560 {
1561         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1562         struct intel_pch_pll *pll;
1563         int reg;
1564         u32 val;
1565
1566         /* PCH PLLs only available on ILK, SNB and IVB */
1567         BUG_ON(dev_priv->info->gen < 5);
1568         pll = intel_crtc->pch_pll;
1569         if (pll == NULL)
1570                 return;
1571
1572         if (WARN_ON(pll->refcount == 0))
1573                 return;
1574
1575         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1576                       pll->pll_reg, pll->active, pll->on,
1577                       intel_crtc->base.base.id);
1578
1579         /* PCH refclock must be enabled first */
1580         assert_pch_refclk_enabled(dev_priv);
1581
1582         if (pll->active++ && pll->on) {
1583                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1584                 return;
1585         }
1586
1587         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1588
1589         reg = pll->pll_reg;
1590         val = I915_READ(reg);
1591         val |= DPLL_VCO_ENABLE;
1592         I915_WRITE(reg, val);
1593         POSTING_READ(reg);
1594         udelay(200);
1595
1596         pll->on = true;
1597 }
1598
1599 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1600 {
1601         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1602         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1603         int reg;
1604         u32 val;
1605
1606         /* PCH only available on ILK+ */
1607         BUG_ON(dev_priv->info->gen < 5);
1608         if (pll == NULL)
1609                return;
1610
1611         if (WARN_ON(pll->refcount == 0))
1612                 return;
1613
1614         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1615                       pll->pll_reg, pll->active, pll->on,
1616                       intel_crtc->base.base.id);
1617
1618         if (WARN_ON(pll->active == 0)) {
1619                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1620                 return;
1621         }
1622
1623         if (--pll->active) {
1624                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1625                 return;
1626         }
1627
1628         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1629
1630         /* Make sure transcoder isn't still depending on us */
1631         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1632
1633         reg = pll->pll_reg;
1634         val = I915_READ(reg);
1635         val &= ~DPLL_VCO_ENABLE;
1636         I915_WRITE(reg, val);
1637         POSTING_READ(reg);
1638         udelay(200);
1639
1640         pll->on = false;
1641 }
1642
1643 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1644                                     enum pipe pipe)
1645 {
1646         int reg;
1647         u32 val, pipeconf_val;
1648         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1649
1650         /* PCH only available on ILK+ */
1651         BUG_ON(dev_priv->info->gen < 5);
1652
1653         /* Make sure PCH DPLL is enabled */
1654         assert_pch_pll_enabled(dev_priv,
1655                                to_intel_crtc(crtc)->pch_pll,
1656                                to_intel_crtc(crtc));
1657
1658         /* FDI must be feeding us bits for PCH ports */
1659         assert_fdi_tx_enabled(dev_priv, pipe);
1660         assert_fdi_rx_enabled(dev_priv, pipe);
1661
1662         if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1663                 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1664                 return;
1665         }
1666         reg = TRANSCONF(pipe);
1667         val = I915_READ(reg);
1668         pipeconf_val = I915_READ(PIPECONF(pipe));
1669
1670         if (HAS_PCH_IBX(dev_priv->dev)) {
1671                 /*
1672                  * make the BPC in transcoder be consistent with
1673                  * that in pipeconf reg.
1674                  */
1675                 val &= ~PIPE_BPC_MASK;
1676                 val |= pipeconf_val & PIPE_BPC_MASK;
1677         }
1678
1679         val &= ~TRANS_INTERLACE_MASK;
1680         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1681                 if (HAS_PCH_IBX(dev_priv->dev) &&
1682                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1683                         val |= TRANS_LEGACY_INTERLACED_ILK;
1684                 else
1685                         val |= TRANS_INTERLACED;
1686         else
1687                 val |= TRANS_PROGRESSIVE;
1688
1689         I915_WRITE(reg, val | TRANS_ENABLE);
1690         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1691                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1692 }
1693
1694 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1695                                      enum pipe pipe)
1696 {
1697         int reg;
1698         u32 val;
1699
1700         /* FDI relies on the transcoder */
1701         assert_fdi_tx_disabled(dev_priv, pipe);
1702         assert_fdi_rx_disabled(dev_priv, pipe);
1703
1704         /* Ports must be off as well */
1705         assert_pch_ports_disabled(dev_priv, pipe);
1706
1707         reg = TRANSCONF(pipe);
1708         val = I915_READ(reg);
1709         val &= ~TRANS_ENABLE;
1710         I915_WRITE(reg, val);
1711         /* wait for PCH transcoder off, transcoder state */
1712         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1713                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1714 }
1715
1716 /**
1717  * intel_enable_pipe - enable a pipe, asserting requirements
1718  * @dev_priv: i915 private structure
1719  * @pipe: pipe to enable
1720  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1721  *
1722  * Enable @pipe, making sure that various hardware specific requirements
1723  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1724  *
1725  * @pipe should be %PIPE_A or %PIPE_B.
1726  *
1727  * Will wait until the pipe is actually running (i.e. first vblank) before
1728  * returning.
1729  */
1730 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1731                               bool pch_port)
1732 {
1733         int reg;
1734         u32 val;
1735
1736         /*
1737          * A pipe without a PLL won't actually be able to drive bits from
1738          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1739          * need the check.
1740          */
1741         if (!HAS_PCH_SPLIT(dev_priv->dev))
1742                 assert_pll_enabled(dev_priv, pipe);
1743         else {
1744                 if (pch_port) {
1745                         /* if driving the PCH, we need FDI enabled */
1746                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1747                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1748                 }
1749                 /* FIXME: assert CPU port conditions for SNB+ */
1750         }
1751
1752         reg = PIPECONF(pipe);
1753         val = I915_READ(reg);
1754         if (val & PIPECONF_ENABLE)
1755                 return;
1756
1757         I915_WRITE(reg, val | PIPECONF_ENABLE);
1758         intel_wait_for_vblank(dev_priv->dev, pipe);
1759 }
1760
1761 /**
1762  * intel_disable_pipe - disable a pipe, asserting requirements
1763  * @dev_priv: i915 private structure
1764  * @pipe: pipe to disable
1765  *
1766  * Disable @pipe, making sure that various hardware specific requirements
1767  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1768  *
1769  * @pipe should be %PIPE_A or %PIPE_B.
1770  *
1771  * Will wait until the pipe has shut down before returning.
1772  */
1773 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1774                                enum pipe pipe)
1775 {
1776         int reg;
1777         u32 val;
1778
1779         /*
1780          * Make sure planes won't keep trying to pump pixels to us,
1781          * or we might hang the display.
1782          */
1783         assert_planes_disabled(dev_priv, pipe);
1784
1785         /* Don't disable pipe A or pipe A PLLs if needed */
1786         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1787                 return;
1788
1789         reg = PIPECONF(pipe);
1790         val = I915_READ(reg);
1791         if ((val & PIPECONF_ENABLE) == 0)
1792                 return;
1793
1794         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1795         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1796 }
1797
1798 /*
1799  * Plane regs are double buffered, going from enabled->disabled needs a
1800  * trigger in order to latch.  The display address reg provides this.
1801  */
1802 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1803                                       enum plane plane)
1804 {
1805         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1806         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1807 }
1808
1809 /**
1810  * intel_enable_plane - enable a display plane on a given pipe
1811  * @dev_priv: i915 private structure
1812  * @plane: plane to enable
1813  * @pipe: pipe being fed
1814  *
1815  * Enable @plane on @pipe, making sure that @pipe is running first.
1816  */
1817 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1818                                enum plane plane, enum pipe pipe)
1819 {
1820         int reg;
1821         u32 val;
1822
1823         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1824         assert_pipe_enabled(dev_priv, pipe);
1825
1826         reg = DSPCNTR(plane);
1827         val = I915_READ(reg);
1828         if (val & DISPLAY_PLANE_ENABLE)
1829                 return;
1830
1831         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1832         intel_flush_display_plane(dev_priv, plane);
1833         intel_wait_for_vblank(dev_priv->dev, pipe);
1834 }
1835
1836 /**
1837  * intel_disable_plane - disable a display plane
1838  * @dev_priv: i915 private structure
1839  * @plane: plane to disable
1840  * @pipe: pipe consuming the data
1841  *
1842  * Disable @plane; should be an independent operation.
1843  */
1844 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1845                                 enum plane plane, enum pipe pipe)
1846 {
1847         int reg;
1848         u32 val;
1849
1850         reg = DSPCNTR(plane);
1851         val = I915_READ(reg);
1852         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1853                 return;
1854
1855         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1856         intel_flush_display_plane(dev_priv, plane);
1857         intel_wait_for_vblank(dev_priv->dev, pipe);
1858 }
1859
1860 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1861                            enum pipe pipe, int reg, u32 port_sel)
1862 {
1863         u32 val = I915_READ(reg);
1864         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1865                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1866                 I915_WRITE(reg, val & ~DP_PORT_EN);
1867         }
1868 }
1869
1870 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1871                              enum pipe pipe, int reg)
1872 {
1873         u32 val = I915_READ(reg);
1874         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1875                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1876                               reg, pipe);
1877                 I915_WRITE(reg, val & ~PORT_ENABLE);
1878         }
1879 }
1880
1881 /* Disable any ports connected to this transcoder */
1882 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1883                                     enum pipe pipe)
1884 {
1885         u32 reg, val;
1886
1887         val = I915_READ(PCH_PP_CONTROL);
1888         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1889
1890         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1891         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1892         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1893
1894         reg = PCH_ADPA;
1895         val = I915_READ(reg);
1896         if (adpa_pipe_enabled(dev_priv, val, pipe))
1897                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1898
1899         reg = PCH_LVDS;
1900         val = I915_READ(reg);
1901         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1902                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1903                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1904                 POSTING_READ(reg);
1905                 udelay(100);
1906         }
1907
1908         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1909         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1910         disable_pch_hdmi(dev_priv, pipe, HDMID);
1911 }
1912
1913 int
1914 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1915                            struct drm_i915_gem_object *obj,
1916                            struct intel_ring_buffer *pipelined)
1917 {
1918         struct drm_i915_private *dev_priv = dev->dev_private;
1919         u32 alignment;
1920         int ret;
1921
1922         switch (obj->tiling_mode) {
1923         case I915_TILING_NONE:
1924                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1925                         alignment = 128 * 1024;
1926                 else if (INTEL_INFO(dev)->gen >= 4)
1927                         alignment = 4 * 1024;
1928                 else
1929                         alignment = 64 * 1024;
1930                 break;
1931         case I915_TILING_X:
1932                 /* pin() will align the object as required by fence */
1933                 alignment = 0;
1934                 break;
1935         case I915_TILING_Y:
1936                 /* FIXME: Is this true? */
1937                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1938                 return -EINVAL;
1939         default:
1940                 BUG();
1941         }
1942
1943         dev_priv->mm.interruptible = false;
1944         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1945         if (ret)
1946                 goto err_interruptible;
1947
1948         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1949          * fence, whereas 965+ only requires a fence if using
1950          * framebuffer compression.  For simplicity, we always install
1951          * a fence as the cost is not that onerous.
1952          */
1953         ret = i915_gem_object_get_fence(obj);
1954         if (ret)
1955                 goto err_unpin;
1956
1957         i915_gem_object_pin_fence(obj);
1958
1959         dev_priv->mm.interruptible = true;
1960         return 0;
1961
1962 err_unpin:
1963         i915_gem_object_unpin(obj);
1964 err_interruptible:
1965         dev_priv->mm.interruptible = true;
1966         return ret;
1967 }
1968
1969 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1970 {
1971         i915_gem_object_unpin_fence(obj);
1972         i915_gem_object_unpin(obj);
1973 }
1974
1975 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1976  * is assumed to be a power-of-two. */
1977 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1978                                                         unsigned int bpp,
1979                                                         unsigned int pitch)
1980 {
1981         int tile_rows, tiles;
1982
1983         tile_rows = *y / 8;
1984         *y %= 8;
1985         tiles = *x / (512/bpp);
1986         *x %= 512/bpp;
1987
1988         return tile_rows * pitch * 8 + tiles * 4096;
1989 }
1990
1991 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1992                              int x, int y)
1993 {
1994         struct drm_device *dev = crtc->dev;
1995         struct drm_i915_private *dev_priv = dev->dev_private;
1996         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1997         struct intel_framebuffer *intel_fb;
1998         struct drm_i915_gem_object *obj;
1999         int plane = intel_crtc->plane;
2000         unsigned long linear_offset;
2001         u32 dspcntr;
2002         u32 reg;
2003
2004         switch (plane) {
2005         case 0:
2006         case 1:
2007                 break;
2008         default:
2009                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2010                 return -EINVAL;
2011         }
2012
2013         intel_fb = to_intel_framebuffer(fb);
2014         obj = intel_fb->obj;
2015
2016         reg = DSPCNTR(plane);
2017         dspcntr = I915_READ(reg);
2018         /* Mask out pixel format bits in case we change it */
2019         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2020         switch (fb->bits_per_pixel) {
2021         case 8:
2022                 dspcntr |= DISPPLANE_8BPP;
2023                 break;
2024         case 16:
2025                 if (fb->depth == 15)
2026                         dspcntr |= DISPPLANE_15_16BPP;
2027                 else
2028                         dspcntr |= DISPPLANE_16BPP;
2029                 break;
2030         case 24:
2031         case 32:
2032                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2033                 break;
2034         default:
2035                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2036                 return -EINVAL;
2037         }
2038         if (INTEL_INFO(dev)->gen >= 4) {
2039                 if (obj->tiling_mode != I915_TILING_NONE)
2040                         dspcntr |= DISPPLANE_TILED;
2041                 else
2042                         dspcntr &= ~DISPPLANE_TILED;
2043         }
2044
2045         I915_WRITE(reg, dspcntr);
2046
2047         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2048
2049         if (INTEL_INFO(dev)->gen >= 4) {
2050                 intel_crtc->dspaddr_offset =
2051                         gen4_compute_dspaddr_offset_xtiled(&x, &y,
2052                                                            fb->bits_per_pixel / 8,
2053                                                            fb->pitches[0]);
2054                 linear_offset -= intel_crtc->dspaddr_offset;
2055         } else {
2056                 intel_crtc->dspaddr_offset = linear_offset;
2057         }
2058
2059         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2060                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2061         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2062         if (INTEL_INFO(dev)->gen >= 4) {
2063                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2064                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2065                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2066                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2067         } else
2068                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2069         POSTING_READ(reg);
2070
2071         return 0;
2072 }
2073
2074 static int ironlake_update_plane(struct drm_crtc *crtc,
2075                                  struct drm_framebuffer *fb, int x, int y)
2076 {
2077         struct drm_device *dev = crtc->dev;
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080         struct intel_framebuffer *intel_fb;
2081         struct drm_i915_gem_object *obj;
2082         int plane = intel_crtc->plane;
2083         unsigned long linear_offset;
2084         u32 dspcntr;
2085         u32 reg;
2086
2087         switch (plane) {
2088         case 0:
2089         case 1:
2090         case 2:
2091                 break;
2092         default:
2093                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2094                 return -EINVAL;
2095         }
2096
2097         intel_fb = to_intel_framebuffer(fb);
2098         obj = intel_fb->obj;
2099
2100         reg = DSPCNTR(plane);
2101         dspcntr = I915_READ(reg);
2102         /* Mask out pixel format bits in case we change it */
2103         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2104         switch (fb->bits_per_pixel) {
2105         case 8:
2106                 dspcntr |= DISPPLANE_8BPP;
2107                 break;
2108         case 16:
2109                 if (fb->depth != 16)
2110                         return -EINVAL;
2111
2112                 dspcntr |= DISPPLANE_16BPP;
2113                 break;
2114         case 24:
2115         case 32:
2116                 if (fb->depth == 24)
2117                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2118                 else if (fb->depth == 30)
2119                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2120                 else
2121                         return -EINVAL;
2122                 break;
2123         default:
2124                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2125                 return -EINVAL;
2126         }
2127
2128         if (obj->tiling_mode != I915_TILING_NONE)
2129                 dspcntr |= DISPPLANE_TILED;
2130         else
2131                 dspcntr &= ~DISPPLANE_TILED;
2132
2133         /* must disable */
2134         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2135
2136         I915_WRITE(reg, dspcntr);
2137
2138         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2139         intel_crtc->dspaddr_offset =
2140                 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2141                                                    fb->bits_per_pixel / 8,
2142                                                    fb->pitches[0]);
2143         linear_offset -= intel_crtc->dspaddr_offset;
2144
2145         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2146                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2147         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2148         I915_MODIFY_DISPBASE(DSPSURF(plane),
2149                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2150         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2151         I915_WRITE(DSPLINOFF(plane), linear_offset);
2152         POSTING_READ(reg);
2153
2154         return 0;
2155 }
2156
2157 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2158 static int
2159 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2160                            int x, int y, enum mode_set_atomic state)
2161 {
2162         struct drm_device *dev = crtc->dev;
2163         struct drm_i915_private *dev_priv = dev->dev_private;
2164
2165         if (dev_priv->display.disable_fbc)
2166                 dev_priv->display.disable_fbc(dev);
2167         intel_increase_pllclock(crtc);
2168
2169         return dev_priv->display.update_plane(crtc, fb, x, y);
2170 }
2171
2172 static int
2173 intel_finish_fb(struct drm_framebuffer *old_fb)
2174 {
2175         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2176         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2177         bool was_interruptible = dev_priv->mm.interruptible;
2178         int ret;
2179
2180         wait_event(dev_priv->pending_flip_queue,
2181                    atomic_read(&dev_priv->mm.wedged) ||
2182                    atomic_read(&obj->pending_flip) == 0);
2183
2184         /* Big Hammer, we also need to ensure that any pending
2185          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2186          * current scanout is retired before unpinning the old
2187          * framebuffer.
2188          *
2189          * This should only fail upon a hung GPU, in which case we
2190          * can safely continue.
2191          */
2192         dev_priv->mm.interruptible = false;
2193         ret = i915_gem_object_finish_gpu(obj);
2194         dev_priv->mm.interruptible = was_interruptible;
2195
2196         return ret;
2197 }
2198
2199 static int
2200 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2201                     struct drm_framebuffer *old_fb)
2202 {
2203         struct drm_device *dev = crtc->dev;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205         struct drm_i915_master_private *master_priv;
2206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2207         int ret;
2208
2209         /* no fb bound */
2210         if (!crtc->fb) {
2211                 DRM_ERROR("No FB bound\n");
2212                 return 0;
2213         }
2214
2215         if(intel_crtc->plane > dev_priv->num_pipe) {
2216                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2217                                 intel_crtc->plane,
2218                                 dev_priv->num_pipe);
2219                 return -EINVAL;
2220         }
2221
2222         mutex_lock(&dev->struct_mutex);
2223         ret = intel_pin_and_fence_fb_obj(dev,
2224                                          to_intel_framebuffer(crtc->fb)->obj,
2225                                          NULL);
2226         if (ret != 0) {
2227                 mutex_unlock(&dev->struct_mutex);
2228                 DRM_ERROR("pin & fence failed\n");
2229                 return ret;
2230         }
2231
2232         if (old_fb)
2233                 intel_finish_fb(old_fb);
2234
2235         ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2236         if (ret) {
2237                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2238                 mutex_unlock(&dev->struct_mutex);
2239                 DRM_ERROR("failed to update base address\n");
2240                 return ret;
2241         }
2242
2243         if (old_fb) {
2244                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2245                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2246         }
2247
2248         intel_update_fbc(dev);
2249         mutex_unlock(&dev->struct_mutex);
2250
2251         if (!dev->primary->master)
2252                 return 0;
2253
2254         master_priv = dev->primary->master->driver_priv;
2255         if (!master_priv->sarea_priv)
2256                 return 0;
2257
2258         if (intel_crtc->pipe) {
2259                 master_priv->sarea_priv->pipeB_x = x;
2260                 master_priv->sarea_priv->pipeB_y = y;
2261         } else {
2262                 master_priv->sarea_priv->pipeA_x = x;
2263                 master_priv->sarea_priv->pipeA_y = y;
2264         }
2265
2266         return 0;
2267 }
2268
2269 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2270 {
2271         struct drm_device *dev = crtc->dev;
2272         struct drm_i915_private *dev_priv = dev->dev_private;
2273         u32 dpa_ctl;
2274
2275         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2276         dpa_ctl = I915_READ(DP_A);
2277         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2278
2279         if (clock < 200000) {
2280                 u32 temp;
2281                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2282                 /* workaround for 160Mhz:
2283                    1) program 0x4600c bits 15:0 = 0x8124
2284                    2) program 0x46010 bit 0 = 1
2285                    3) program 0x46034 bit 24 = 1
2286                    4) program 0x64000 bit 14 = 1
2287                    */
2288                 temp = I915_READ(0x4600c);
2289                 temp &= 0xffff0000;
2290                 I915_WRITE(0x4600c, temp | 0x8124);
2291
2292                 temp = I915_READ(0x46010);
2293                 I915_WRITE(0x46010, temp | 1);
2294
2295                 temp = I915_READ(0x46034);
2296                 I915_WRITE(0x46034, temp | (1 << 24));
2297         } else {
2298                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2299         }
2300         I915_WRITE(DP_A, dpa_ctl);
2301
2302         POSTING_READ(DP_A);
2303         udelay(500);
2304 }
2305
2306 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2307 {
2308         struct drm_device *dev = crtc->dev;
2309         struct drm_i915_private *dev_priv = dev->dev_private;
2310         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311         int pipe = intel_crtc->pipe;
2312         u32 reg, temp;
2313
2314         /* enable normal train */
2315         reg = FDI_TX_CTL(pipe);
2316         temp = I915_READ(reg);
2317         if (IS_IVYBRIDGE(dev)) {
2318                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2319                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2320         } else {
2321                 temp &= ~FDI_LINK_TRAIN_NONE;
2322                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2323         }
2324         I915_WRITE(reg, temp);
2325
2326         reg = FDI_RX_CTL(pipe);
2327         temp = I915_READ(reg);
2328         if (HAS_PCH_CPT(dev)) {
2329                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2330                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2331         } else {
2332                 temp &= ~FDI_LINK_TRAIN_NONE;
2333                 temp |= FDI_LINK_TRAIN_NONE;
2334         }
2335         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2336
2337         /* wait one idle pattern time */
2338         POSTING_READ(reg);
2339         udelay(1000);
2340
2341         /* IVB wants error correction enabled */
2342         if (IS_IVYBRIDGE(dev))
2343                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2344                            FDI_FE_ERRC_ENABLE);
2345 }
2346
2347 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2348 {
2349         struct drm_i915_private *dev_priv = dev->dev_private;
2350         u32 flags = I915_READ(SOUTH_CHICKEN1);
2351
2352         flags |= FDI_PHASE_SYNC_OVR(pipe);
2353         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2354         flags |= FDI_PHASE_SYNC_EN(pipe);
2355         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2356         POSTING_READ(SOUTH_CHICKEN1);
2357 }
2358
2359 /* The FDI link training functions for ILK/Ibexpeak. */
2360 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2361 {
2362         struct drm_device *dev = crtc->dev;
2363         struct drm_i915_private *dev_priv = dev->dev_private;
2364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365         int pipe = intel_crtc->pipe;
2366         int plane = intel_crtc->plane;
2367         u32 reg, temp, tries;
2368
2369         /* FDI needs bits from pipe & plane first */
2370         assert_pipe_enabled(dev_priv, pipe);
2371         assert_plane_enabled(dev_priv, plane);
2372
2373         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2374            for train result */
2375         reg = FDI_RX_IMR(pipe);
2376         temp = I915_READ(reg);
2377         temp &= ~FDI_RX_SYMBOL_LOCK;
2378         temp &= ~FDI_RX_BIT_LOCK;
2379         I915_WRITE(reg, temp);
2380         I915_READ(reg);
2381         udelay(150);
2382
2383         /* enable CPU FDI TX and PCH FDI RX */
2384         reg = FDI_TX_CTL(pipe);
2385         temp = I915_READ(reg);
2386         temp &= ~(7 << 19);
2387         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2388         temp &= ~FDI_LINK_TRAIN_NONE;
2389         temp |= FDI_LINK_TRAIN_PATTERN_1;
2390         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2391
2392         reg = FDI_RX_CTL(pipe);
2393         temp = I915_READ(reg);
2394         temp &= ~FDI_LINK_TRAIN_NONE;
2395         temp |= FDI_LINK_TRAIN_PATTERN_1;
2396         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2397
2398         POSTING_READ(reg);
2399         udelay(150);
2400
2401         /* Ironlake workaround, enable clock pointer after FDI enable*/
2402         if (HAS_PCH_IBX(dev)) {
2403                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2404                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2405                            FDI_RX_PHASE_SYNC_POINTER_EN);
2406         }
2407
2408         reg = FDI_RX_IIR(pipe);
2409         for (tries = 0; tries < 5; tries++) {
2410                 temp = I915_READ(reg);
2411                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2412
2413                 if ((temp & FDI_RX_BIT_LOCK)) {
2414                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2415                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2416                         break;
2417                 }
2418         }
2419         if (tries == 5)
2420                 DRM_ERROR("FDI train 1 fail!\n");
2421
2422         /* Train 2 */
2423         reg = FDI_TX_CTL(pipe);
2424         temp = I915_READ(reg);
2425         temp &= ~FDI_LINK_TRAIN_NONE;
2426         temp |= FDI_LINK_TRAIN_PATTERN_2;
2427         I915_WRITE(reg, temp);
2428
2429         reg = FDI_RX_CTL(pipe);
2430         temp = I915_READ(reg);
2431         temp &= ~FDI_LINK_TRAIN_NONE;
2432         temp |= FDI_LINK_TRAIN_PATTERN_2;
2433         I915_WRITE(reg, temp);
2434
2435         POSTING_READ(reg);
2436         udelay(150);
2437
2438         reg = FDI_RX_IIR(pipe);
2439         for (tries = 0; tries < 5; tries++) {
2440                 temp = I915_READ(reg);
2441                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2442
2443                 if (temp & FDI_RX_SYMBOL_LOCK) {
2444                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2445                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2446                         break;
2447                 }
2448         }
2449         if (tries == 5)
2450                 DRM_ERROR("FDI train 2 fail!\n");
2451
2452         DRM_DEBUG_KMS("FDI train done\n");
2453
2454 }
2455
2456 static const int snb_b_fdi_train_param[] = {
2457         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2458         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2459         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2460         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2461 };
2462
2463 /* The FDI link training functions for SNB/Cougarpoint. */
2464 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2465 {
2466         struct drm_device *dev = crtc->dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469         int pipe = intel_crtc->pipe;
2470         u32 reg, temp, i, retry;
2471
2472         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2473            for train result */
2474         reg = FDI_RX_IMR(pipe);
2475         temp = I915_READ(reg);
2476         temp &= ~FDI_RX_SYMBOL_LOCK;
2477         temp &= ~FDI_RX_BIT_LOCK;
2478         I915_WRITE(reg, temp);
2479
2480         POSTING_READ(reg);
2481         udelay(150);
2482
2483         /* enable CPU FDI TX and PCH FDI RX */
2484         reg = FDI_TX_CTL(pipe);
2485         temp = I915_READ(reg);
2486         temp &= ~(7 << 19);
2487         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2488         temp &= ~FDI_LINK_TRAIN_NONE;
2489         temp |= FDI_LINK_TRAIN_PATTERN_1;
2490         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2491         /* SNB-B */
2492         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495         reg = FDI_RX_CTL(pipe);
2496         temp = I915_READ(reg);
2497         if (HAS_PCH_CPT(dev)) {
2498                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2499                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2500         } else {
2501                 temp &= ~FDI_LINK_TRAIN_NONE;
2502                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2503         }
2504         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2505
2506         POSTING_READ(reg);
2507         udelay(150);
2508
2509         if (HAS_PCH_CPT(dev))
2510                 cpt_phase_pointer_enable(dev, pipe);
2511
2512         for (i = 0; i < 4; i++) {
2513                 reg = FDI_TX_CTL(pipe);
2514                 temp = I915_READ(reg);
2515                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516                 temp |= snb_b_fdi_train_param[i];
2517                 I915_WRITE(reg, temp);
2518
2519                 POSTING_READ(reg);
2520                 udelay(500);
2521
2522                 for (retry = 0; retry < 5; retry++) {
2523                         reg = FDI_RX_IIR(pipe);
2524                         temp = I915_READ(reg);
2525                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526                         if (temp & FDI_RX_BIT_LOCK) {
2527                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529                                 break;
2530                         }
2531                         udelay(50);
2532                 }
2533                 if (retry < 5)
2534                         break;
2535         }
2536         if (i == 4)
2537                 DRM_ERROR("FDI train 1 fail!\n");
2538
2539         /* Train 2 */
2540         reg = FDI_TX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         temp &= ~FDI_LINK_TRAIN_NONE;
2543         temp |= FDI_LINK_TRAIN_PATTERN_2;
2544         if (IS_GEN6(dev)) {
2545                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546                 /* SNB-B */
2547                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548         }
2549         I915_WRITE(reg, temp);
2550
2551         reg = FDI_RX_CTL(pipe);
2552         temp = I915_READ(reg);
2553         if (HAS_PCH_CPT(dev)) {
2554                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2555                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2556         } else {
2557                 temp &= ~FDI_LINK_TRAIN_NONE;
2558                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559         }
2560         I915_WRITE(reg, temp);
2561
2562         POSTING_READ(reg);
2563         udelay(150);
2564
2565         for (i = 0; i < 4; i++) {
2566                 reg = FDI_TX_CTL(pipe);
2567                 temp = I915_READ(reg);
2568                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2569                 temp |= snb_b_fdi_train_param[i];
2570                 I915_WRITE(reg, temp);
2571
2572                 POSTING_READ(reg);
2573                 udelay(500);
2574
2575                 for (retry = 0; retry < 5; retry++) {
2576                         reg = FDI_RX_IIR(pipe);
2577                         temp = I915_READ(reg);
2578                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579                         if (temp & FDI_RX_SYMBOL_LOCK) {
2580                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2581                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2582                                 break;
2583                         }
2584                         udelay(50);
2585                 }
2586                 if (retry < 5)
2587                         break;
2588         }
2589         if (i == 4)
2590                 DRM_ERROR("FDI train 2 fail!\n");
2591
2592         DRM_DEBUG_KMS("FDI train done.\n");
2593 }
2594
2595 /* Manual link training for Ivy Bridge A0 parts */
2596 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598         struct drm_device *dev = crtc->dev;
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601         int pipe = intel_crtc->pipe;
2602         u32 reg, temp, i;
2603
2604         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605            for train result */
2606         reg = FDI_RX_IMR(pipe);
2607         temp = I915_READ(reg);
2608         temp &= ~FDI_RX_SYMBOL_LOCK;
2609         temp &= ~FDI_RX_BIT_LOCK;
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         /* enable CPU FDI TX and PCH FDI RX */
2616         reg = FDI_TX_CTL(pipe);
2617         temp = I915_READ(reg);
2618         temp &= ~(7 << 19);
2619         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2620         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2621         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2622         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2623         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2624         temp |= FDI_COMPOSITE_SYNC;
2625         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2626
2627         reg = FDI_RX_CTL(pipe);
2628         temp = I915_READ(reg);
2629         temp &= ~FDI_LINK_TRAIN_AUTO;
2630         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2632         temp |= FDI_COMPOSITE_SYNC;
2633         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2634
2635         POSTING_READ(reg);
2636         udelay(150);
2637
2638         if (HAS_PCH_CPT(dev))
2639                 cpt_phase_pointer_enable(dev, pipe);
2640
2641         for (i = 0; i < 4; i++) {
2642                 reg = FDI_TX_CTL(pipe);
2643                 temp = I915_READ(reg);
2644                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645                 temp |= snb_b_fdi_train_param[i];
2646                 I915_WRITE(reg, temp);
2647
2648                 POSTING_READ(reg);
2649                 udelay(500);
2650
2651                 reg = FDI_RX_IIR(pipe);
2652                 temp = I915_READ(reg);
2653                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655                 if (temp & FDI_RX_BIT_LOCK ||
2656                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2657                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2658                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2659                         break;
2660                 }
2661         }
2662         if (i == 4)
2663                 DRM_ERROR("FDI train 1 fail!\n");
2664
2665         /* Train 2 */
2666         reg = FDI_TX_CTL(pipe);
2667         temp = I915_READ(reg);
2668         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2669         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2670         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2671         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2672         I915_WRITE(reg, temp);
2673
2674         reg = FDI_RX_CTL(pipe);
2675         temp = I915_READ(reg);
2676         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2677         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2678         I915_WRITE(reg, temp);
2679
2680         POSTING_READ(reg);
2681         udelay(150);
2682
2683         for (i = 0; i < 4; i++) {
2684                 reg = FDI_TX_CTL(pipe);
2685                 temp = I915_READ(reg);
2686                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2687                 temp |= snb_b_fdi_train_param[i];
2688                 I915_WRITE(reg, temp);
2689
2690                 POSTING_READ(reg);
2691                 udelay(500);
2692
2693                 reg = FDI_RX_IIR(pipe);
2694                 temp = I915_READ(reg);
2695                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696
2697                 if (temp & FDI_RX_SYMBOL_LOCK) {
2698                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2699                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2700                         break;
2701                 }
2702         }
2703         if (i == 4)
2704                 DRM_ERROR("FDI train 2 fail!\n");
2705
2706         DRM_DEBUG_KMS("FDI train done.\n");
2707 }
2708
2709 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2710 {
2711         struct drm_device *dev = crtc->dev;
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2714         int pipe = intel_crtc->pipe;
2715         u32 reg, temp;
2716
2717         /* Write the TU size bits so error detection works */
2718         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2719                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2720
2721         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2722         reg = FDI_RX_CTL(pipe);
2723         temp = I915_READ(reg);
2724         temp &= ~((0x7 << 19) | (0x7 << 16));
2725         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2726         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2727         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2728
2729         POSTING_READ(reg);
2730         udelay(200);
2731
2732         /* Switch from Rawclk to PCDclk */
2733         temp = I915_READ(reg);
2734         I915_WRITE(reg, temp | FDI_PCDCLK);
2735
2736         POSTING_READ(reg);
2737         udelay(200);
2738
2739         /* On Haswell, the PLL configuration for ports and pipes is handled
2740          * separately, as part of DDI setup */
2741         if (!IS_HASWELL(dev)) {
2742                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2743                 reg = FDI_TX_CTL(pipe);
2744                 temp = I915_READ(reg);
2745                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2746                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2747
2748                         POSTING_READ(reg);
2749                         udelay(100);
2750                 }
2751         }
2752 }
2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 {
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763         POSTING_READ(SOUTH_CHICKEN1);
2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 {
2767         struct drm_device *dev = crtc->dev;
2768         struct drm_i915_private *dev_priv = dev->dev_private;
2769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770         int pipe = intel_crtc->pipe;
2771         u32 reg, temp;
2772
2773         /* disable CPU FDI tx and PCH FDI rx */
2774         reg = FDI_TX_CTL(pipe);
2775         temp = I915_READ(reg);
2776         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777         POSTING_READ(reg);
2778
2779         reg = FDI_RX_CTL(pipe);
2780         temp = I915_READ(reg);
2781         temp &= ~(0x7 << 16);
2782         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785         POSTING_READ(reg);
2786         udelay(100);
2787
2788         /* Ironlake workaround, disable clock pointer after downing FDI */
2789         if (HAS_PCH_IBX(dev)) {
2790                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792                            I915_READ(FDI_RX_CHICKEN(pipe) &
2793                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794         } else if (HAS_PCH_CPT(dev)) {
2795                 cpt_phase_pointer_disable(dev, pipe);
2796         }
2797
2798         /* still set train pattern 1 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE;
2802         temp |= FDI_LINK_TRAIN_PATTERN_1;
2803         I915_WRITE(reg, temp);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         if (HAS_PCH_CPT(dev)) {
2808                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810         } else {
2811                 temp &= ~FDI_LINK_TRAIN_NONE;
2812                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813         }
2814         /* BPC in FDI rx is consistent with that in PIPECONF */
2815         temp &= ~(0x07 << 16);
2816         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817         I915_WRITE(reg, temp);
2818
2819         POSTING_READ(reg);
2820         udelay(100);
2821 }
2822
2823 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2824 {
2825         struct drm_device *dev = crtc->dev;
2826
2827         if (crtc->fb == NULL)
2828                 return;
2829
2830         mutex_lock(&dev->struct_mutex);
2831         intel_finish_fb(crtc->fb);
2832         mutex_unlock(&dev->struct_mutex);
2833 }
2834
2835 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2836 {
2837         struct drm_device *dev = crtc->dev;
2838         struct intel_encoder *encoder;
2839
2840         /*
2841          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2842          * must be driven by its own crtc; no sharing is possible.
2843          */
2844         for_each_encoder_on_crtc(dev, crtc, encoder) {
2845
2846                 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2847                  * CPU handles all others */
2848                 if (IS_HASWELL(dev)) {
2849                         /* It is still unclear how this will work on PPT, so throw up a warning */
2850                         WARN_ON(!HAS_PCH_LPT(dev));
2851
2852                         if (encoder->type == DRM_MODE_ENCODER_DAC) {
2853                                 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2854                                 return true;
2855                         } else {
2856                                 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2857                                                 encoder->type);
2858                                 return false;
2859                         }
2860                 }
2861
2862                 switch (encoder->type) {
2863                 case INTEL_OUTPUT_EDP:
2864                         if (!intel_encoder_is_pch_edp(&encoder->base))
2865                                 return false;
2866                         continue;
2867                 }
2868         }
2869
2870         return true;
2871 }
2872
2873 /* Program iCLKIP clock to the desired frequency */
2874 static void lpt_program_iclkip(struct drm_crtc *crtc)
2875 {
2876         struct drm_device *dev = crtc->dev;
2877         struct drm_i915_private *dev_priv = dev->dev_private;
2878         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2879         u32 temp;
2880
2881         /* It is necessary to ungate the pixclk gate prior to programming
2882          * the divisors, and gate it back when it is done.
2883          */
2884         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2885
2886         /* Disable SSCCTL */
2887         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2888                                 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2889                                         SBI_SSCCTL_DISABLE);
2890
2891         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2892         if (crtc->mode.clock == 20000) {
2893                 auxdiv = 1;
2894                 divsel = 0x41;
2895                 phaseinc = 0x20;
2896         } else {
2897                 /* The iCLK virtual clock root frequency is in MHz,
2898                  * but the crtc->mode.clock in in KHz. To get the divisors,
2899                  * it is necessary to divide one by another, so we
2900                  * convert the virtual clock precision to KHz here for higher
2901                  * precision.
2902                  */
2903                 u32 iclk_virtual_root_freq = 172800 * 1000;
2904                 u32 iclk_pi_range = 64;
2905                 u32 desired_divisor, msb_divisor_value, pi_value;
2906
2907                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2908                 msb_divisor_value = desired_divisor / iclk_pi_range;
2909                 pi_value = desired_divisor % iclk_pi_range;
2910
2911                 auxdiv = 0;
2912                 divsel = msb_divisor_value - 2;
2913                 phaseinc = pi_value;
2914         }
2915
2916         /* This should not happen with any sane values */
2917         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2918                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2919         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2920                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2921
2922         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2923                         crtc->mode.clock,
2924                         auxdiv,
2925                         divsel,
2926                         phasedir,
2927                         phaseinc);
2928
2929         /* Program SSCDIVINTPHASE6 */
2930         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2931         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2932         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2933         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2934         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2935         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2936         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2937
2938         intel_sbi_write(dev_priv,
2939                         SBI_SSCDIVINTPHASE6,
2940                         temp);
2941
2942         /* Program SSCAUXDIV */
2943         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2944         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2945         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2946         intel_sbi_write(dev_priv,
2947                         SBI_SSCAUXDIV6,
2948                         temp);
2949
2950
2951         /* Enable modulator and associated divider */
2952         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2953         temp &= ~SBI_SSCCTL_DISABLE;
2954         intel_sbi_write(dev_priv,
2955                         SBI_SSCCTL6,
2956                         temp);
2957
2958         /* Wait for initialization time */
2959         udelay(24);
2960
2961         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2962 }
2963
2964 /*
2965  * Enable PCH resources required for PCH ports:
2966  *   - PCH PLLs
2967  *   - FDI training & RX/TX
2968  *   - update transcoder timings
2969  *   - DP transcoding bits
2970  *   - transcoder
2971  */
2972 static void ironlake_pch_enable(struct drm_crtc *crtc)
2973 {
2974         struct drm_device *dev = crtc->dev;
2975         struct drm_i915_private *dev_priv = dev->dev_private;
2976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2977         int pipe = intel_crtc->pipe;
2978         u32 reg, temp;
2979
2980         assert_transcoder_disabled(dev_priv, pipe);
2981
2982         /* For PCH output, training FDI link */
2983         dev_priv->display.fdi_link_train(crtc);
2984
2985         intel_enable_pch_pll(intel_crtc);
2986
2987         if (HAS_PCH_LPT(dev)) {
2988                 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2989                 lpt_program_iclkip(crtc);
2990         } else if (HAS_PCH_CPT(dev)) {
2991                 u32 sel;
2992
2993                 temp = I915_READ(PCH_DPLL_SEL);
2994                 switch (pipe) {
2995                 default:
2996                 case 0:
2997                         temp |= TRANSA_DPLL_ENABLE;
2998                         sel = TRANSA_DPLLB_SEL;
2999                         break;
3000                 case 1:
3001                         temp |= TRANSB_DPLL_ENABLE;
3002                         sel = TRANSB_DPLLB_SEL;
3003                         break;
3004                 case 2:
3005                         temp |= TRANSC_DPLL_ENABLE;
3006                         sel = TRANSC_DPLLB_SEL;
3007                         break;
3008                 }
3009                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3010                         temp |= sel;
3011                 else
3012                         temp &= ~sel;
3013                 I915_WRITE(PCH_DPLL_SEL, temp);
3014         }
3015
3016         /* set transcoder timing, panel must allow it */
3017         assert_panel_unlocked(dev_priv, pipe);
3018         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3019         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3020         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3021
3022         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3023         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3024         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3025         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3026
3027         if (!IS_HASWELL(dev))
3028                 intel_fdi_normal_train(crtc);
3029
3030         /* For PCH DP, enable TRANS_DP_CTL */
3031         if (HAS_PCH_CPT(dev) &&
3032             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3033              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3034                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3035                 reg = TRANS_DP_CTL(pipe);
3036                 temp = I915_READ(reg);
3037                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3038                           TRANS_DP_SYNC_MASK |
3039                           TRANS_DP_BPC_MASK);
3040                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3041                          TRANS_DP_ENH_FRAMING);
3042                 temp |= bpc << 9; /* same format but at 11:9 */
3043
3044                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3045                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3046                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3047                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3048
3049                 switch (intel_trans_dp_port_sel(crtc)) {
3050                 case PCH_DP_B:
3051                         temp |= TRANS_DP_PORT_SEL_B;
3052                         break;
3053                 case PCH_DP_C:
3054                         temp |= TRANS_DP_PORT_SEL_C;
3055                         break;
3056                 case PCH_DP_D:
3057                         temp |= TRANS_DP_PORT_SEL_D;
3058                         break;
3059                 default:
3060                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3061                         temp |= TRANS_DP_PORT_SEL_B;
3062                         break;
3063                 }
3064
3065                 I915_WRITE(reg, temp);
3066         }
3067
3068         intel_enable_transcoder(dev_priv, pipe);
3069 }
3070
3071 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3072 {
3073         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3074
3075         if (pll == NULL)
3076                 return;
3077
3078         if (pll->refcount == 0) {
3079                 WARN(1, "bad PCH PLL refcount\n");
3080                 return;
3081         }
3082
3083         --pll->refcount;
3084         intel_crtc->pch_pll = NULL;
3085 }
3086
3087 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3088 {
3089         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3090         struct intel_pch_pll *pll;
3091         int i;
3092
3093         pll = intel_crtc->pch_pll;
3094         if (pll) {
3095                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3096                               intel_crtc->base.base.id, pll->pll_reg);
3097                 goto prepare;
3098         }
3099
3100         if (HAS_PCH_IBX(dev_priv->dev)) {
3101                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3102                 i = intel_crtc->pipe;
3103                 pll = &dev_priv->pch_plls[i];
3104
3105                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3106                               intel_crtc->base.base.id, pll->pll_reg);
3107
3108                 goto found;
3109         }
3110
3111         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3112                 pll = &dev_priv->pch_plls[i];
3113
3114                 /* Only want to check enabled timings first */
3115                 if (pll->refcount == 0)
3116                         continue;
3117
3118                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3119                     fp == I915_READ(pll->fp0_reg)) {
3120                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3121                                       intel_crtc->base.base.id,
3122                                       pll->pll_reg, pll->refcount, pll->active);
3123
3124                         goto found;
3125                 }
3126         }
3127
3128         /* Ok no matching timings, maybe there's a free one? */
3129         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3130                 pll = &dev_priv->pch_plls[i];
3131                 if (pll->refcount == 0) {
3132                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3133                                       intel_crtc->base.base.id, pll->pll_reg);
3134                         goto found;
3135                 }
3136         }
3137
3138         return NULL;
3139
3140 found:
3141         intel_crtc->pch_pll = pll;
3142         pll->refcount++;
3143         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3144 prepare: /* separate function? */
3145         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3146
3147         /* Wait for the clocks to stabilize before rewriting the regs */
3148         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3149         POSTING_READ(pll->pll_reg);
3150         udelay(150);
3151
3152         I915_WRITE(pll->fp0_reg, fp);
3153         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3154         pll->on = false;
3155         return pll;
3156 }
3157
3158 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3159 {
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3162         u32 temp;
3163
3164         temp = I915_READ(dslreg);
3165         udelay(500);
3166         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3167                 /* Without this, mode sets may fail silently on FDI */
3168                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3169                 udelay(250);
3170                 I915_WRITE(tc2reg, 0);
3171                 if (wait_for(I915_READ(dslreg) != temp, 5))
3172                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3173         }
3174 }
3175
3176 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3177 {
3178         struct drm_device *dev = crtc->dev;
3179         struct drm_i915_private *dev_priv = dev->dev_private;
3180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181         int pipe = intel_crtc->pipe;
3182         int plane = intel_crtc->plane;
3183         u32 temp;
3184         bool is_pch_port;
3185
3186         if (intel_crtc->active)
3187                 return;
3188
3189         intel_crtc->active = true;
3190         intel_update_watermarks(dev);
3191
3192         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3193                 temp = I915_READ(PCH_LVDS);
3194                 if ((temp & LVDS_PORT_EN) == 0)
3195                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3196         }
3197
3198         is_pch_port = intel_crtc_driving_pch(crtc);
3199
3200         if (is_pch_port)
3201                 ironlake_fdi_pll_enable(crtc);
3202         else
3203                 ironlake_fdi_disable(crtc);
3204
3205         /* Enable panel fitting for LVDS */
3206         if (dev_priv->pch_pf_size &&
3207             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3208                 /* Force use of hard-coded filter coefficients
3209                  * as some pre-programmed values are broken,
3210                  * e.g. x201.
3211                  */
3212                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3213                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3214                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3215         }
3216
3217         /*
3218          * On ILK+ LUT must be loaded before the pipe is running but with
3219          * clocks enabled
3220          */
3221         intel_crtc_load_lut(crtc);
3222
3223         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3224         intel_enable_plane(dev_priv, plane, pipe);
3225
3226         if (is_pch_port)
3227                 ironlake_pch_enable(crtc);
3228
3229         mutex_lock(&dev->struct_mutex);
3230         intel_update_fbc(dev);
3231         mutex_unlock(&dev->struct_mutex);
3232
3233         intel_crtc_update_cursor(crtc, true);
3234 }
3235
3236 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3237 {
3238         struct drm_device *dev = crtc->dev;
3239         struct drm_i915_private *dev_priv = dev->dev_private;
3240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241         int pipe = intel_crtc->pipe;
3242         int plane = intel_crtc->plane;
3243         u32 reg, temp;
3244
3245         if (!intel_crtc->active)
3246                 return;
3247
3248         intel_crtc_wait_for_pending_flips(crtc);
3249         drm_vblank_off(dev, pipe);
3250         intel_crtc_update_cursor(crtc, false);
3251
3252         intel_disable_plane(dev_priv, plane, pipe);
3253
3254         if (dev_priv->cfb_plane == plane)
3255                 intel_disable_fbc(dev);
3256
3257         intel_disable_pipe(dev_priv, pipe);
3258
3259         /* Disable PF */
3260         I915_WRITE(PF_CTL(pipe), 0);
3261         I915_WRITE(PF_WIN_SZ(pipe), 0);
3262
3263         ironlake_fdi_disable(crtc);
3264
3265         /* This is a horrible layering violation; we should be doing this in
3266          * the connector/encoder ->prepare instead, but we don't always have
3267          * enough information there about the config to know whether it will
3268          * actually be necessary or just cause undesired flicker.
3269          */
3270         intel_disable_pch_ports(dev_priv, pipe);
3271
3272         intel_disable_transcoder(dev_priv, pipe);
3273
3274         if (HAS_PCH_CPT(dev)) {
3275                 /* disable TRANS_DP_CTL */
3276                 reg = TRANS_DP_CTL(pipe);
3277                 temp = I915_READ(reg);
3278                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3279                 temp |= TRANS_DP_PORT_SEL_NONE;
3280                 I915_WRITE(reg, temp);
3281
3282                 /* disable DPLL_SEL */
3283                 temp = I915_READ(PCH_DPLL_SEL);
3284                 switch (pipe) {
3285                 case 0:
3286                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3287                         break;
3288                 case 1:
3289                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3290                         break;
3291                 case 2:
3292                         /* C shares PLL A or B */
3293                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3294                         break;
3295                 default:
3296                         BUG(); /* wtf */
3297                 }
3298                 I915_WRITE(PCH_DPLL_SEL, temp);
3299         }
3300
3301         /* disable PCH DPLL */
3302         intel_disable_pch_pll(intel_crtc);
3303
3304         /* Switch from PCDclk to Rawclk */
3305         reg = FDI_RX_CTL(pipe);
3306         temp = I915_READ(reg);
3307         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3308
3309         /* Disable CPU FDI TX PLL */
3310         reg = FDI_TX_CTL(pipe);
3311         temp = I915_READ(reg);
3312         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3313
3314         POSTING_READ(reg);
3315         udelay(100);
3316
3317         reg = FDI_RX_CTL(pipe);
3318         temp = I915_READ(reg);
3319         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3320
3321         /* Wait for the clocks to turn off. */
3322         POSTING_READ(reg);
3323         udelay(100);
3324
3325         intel_crtc->active = false;
3326         intel_update_watermarks(dev);
3327
3328         mutex_lock(&dev->struct_mutex);
3329         intel_update_fbc(dev);
3330         mutex_unlock(&dev->struct_mutex);
3331 }
3332
3333 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3334 {
3335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336         int pipe = intel_crtc->pipe;
3337         int plane = intel_crtc->plane;
3338
3339         /* XXX: When our outputs are all unaware of DPMS modes other than off
3340          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3341          */
3342         switch (mode) {
3343         case DRM_MODE_DPMS_ON:
3344         case DRM_MODE_DPMS_STANDBY:
3345         case DRM_MODE_DPMS_SUSPEND:
3346                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3347                 ironlake_crtc_enable(crtc);
3348                 break;
3349
3350         case DRM_MODE_DPMS_OFF:
3351                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3352                 ironlake_crtc_disable(crtc);
3353                 break;
3354         }
3355 }
3356
3357 static void ironlake_crtc_off(struct drm_crtc *crtc)
3358 {
3359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3360         intel_put_pch_pll(intel_crtc);
3361 }
3362
3363 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3364 {
3365         if (!enable && intel_crtc->overlay) {
3366                 struct drm_device *dev = intel_crtc->base.dev;
3367                 struct drm_i915_private *dev_priv = dev->dev_private;
3368
3369                 mutex_lock(&dev->struct_mutex);
3370                 dev_priv->mm.interruptible = false;
3371                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3372                 dev_priv->mm.interruptible = true;
3373                 mutex_unlock(&dev->struct_mutex);
3374         }
3375
3376         /* Let userspace switch the overlay on again. In most cases userspace
3377          * has to recompute where to put it anyway.
3378          */
3379 }
3380
3381 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3382 {
3383         struct drm_device *dev = crtc->dev;
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386         int pipe = intel_crtc->pipe;
3387         int plane = intel_crtc->plane;
3388
3389         if (intel_crtc->active)
3390                 return;
3391
3392         intel_crtc->active = true;
3393         intel_update_watermarks(dev);
3394
3395         intel_enable_pll(dev_priv, pipe);
3396         intel_enable_pipe(dev_priv, pipe, false);
3397         intel_enable_plane(dev_priv, plane, pipe);
3398
3399         intel_crtc_load_lut(crtc);
3400         intel_update_fbc(dev);
3401
3402         /* Give the overlay scaler a chance to enable if it's on this pipe */
3403         intel_crtc_dpms_overlay(intel_crtc, true);
3404         intel_crtc_update_cursor(crtc, true);
3405 }
3406
3407 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3408 {
3409         struct drm_device *dev = crtc->dev;
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3412         int pipe = intel_crtc->pipe;
3413         int plane = intel_crtc->plane;
3414
3415         if (!intel_crtc->active)
3416                 return;
3417
3418         /* Give the overlay scaler a chance to disable if it's on this pipe */
3419         intel_crtc_wait_for_pending_flips(crtc);
3420         drm_vblank_off(dev, pipe);
3421         intel_crtc_dpms_overlay(intel_crtc, false);
3422         intel_crtc_update_cursor(crtc, false);
3423
3424         if (dev_priv->cfb_plane == plane)
3425                 intel_disable_fbc(dev);
3426
3427         intel_disable_plane(dev_priv, plane, pipe);
3428         intel_disable_pipe(dev_priv, pipe);
3429         intel_disable_pll(dev_priv, pipe);
3430
3431         intel_crtc->active = false;
3432         intel_update_fbc(dev);
3433         intel_update_watermarks(dev);
3434 }
3435
3436 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3437 {
3438         /* XXX: When our outputs are all unaware of DPMS modes other than off
3439          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3440          */
3441         switch (mode) {
3442         case DRM_MODE_DPMS_ON:
3443         case DRM_MODE_DPMS_STANDBY:
3444         case DRM_MODE_DPMS_SUSPEND:
3445                 i9xx_crtc_enable(crtc);
3446                 break;
3447         case DRM_MODE_DPMS_OFF:
3448                 i9xx_crtc_disable(crtc);
3449                 break;
3450         }
3451 }
3452
3453 static void i9xx_crtc_off(struct drm_crtc *crtc)
3454 {
3455 }
3456
3457 /**
3458  * Sets the power management mode of the pipe and plane.
3459  */
3460 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3461 {
3462         struct drm_device *dev = crtc->dev;
3463         struct drm_i915_private *dev_priv = dev->dev_private;
3464         struct drm_i915_master_private *master_priv;
3465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3466         int pipe = intel_crtc->pipe;
3467         bool enabled;
3468
3469         if (intel_crtc->dpms_mode == mode)
3470                 return;
3471
3472         intel_crtc->dpms_mode = mode;
3473
3474         dev_priv->display.dpms(crtc, mode);
3475
3476         if (!dev->primary->master)
3477                 return;
3478
3479         master_priv = dev->primary->master->driver_priv;
3480         if (!master_priv->sarea_priv)
3481                 return;
3482
3483         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3484
3485         switch (pipe) {
3486         case 0:
3487                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3488                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3489                 break;
3490         case 1:
3491                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3492                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3493                 break;
3494         default:
3495                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3496                 break;
3497         }
3498 }
3499
3500 static void intel_crtc_disable(struct drm_crtc *crtc)
3501 {
3502         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3503         struct drm_device *dev = crtc->dev;
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505
3506         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3507         dev_priv->display.off(crtc);
3508
3509         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3510         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3511
3512         if (crtc->fb) {
3513                 mutex_lock(&dev->struct_mutex);
3514                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3515                 mutex_unlock(&dev->struct_mutex);
3516         }
3517 }
3518
3519 /* Prepare for a mode set.
3520  *
3521  * Note we could be a lot smarter here.  We need to figure out which outputs
3522  * will be enabled, which disabled (in short, how the config will changes)
3523  * and perform the minimum necessary steps to accomplish that, e.g. updating
3524  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3525  * panel fitting is in the proper state, etc.
3526  */
3527 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3528 {
3529         i9xx_crtc_disable(crtc);
3530 }
3531
3532 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3533 {
3534         i9xx_crtc_enable(crtc);
3535 }
3536
3537 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3538 {
3539         ironlake_crtc_disable(crtc);
3540 }
3541
3542 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3543 {
3544         ironlake_crtc_enable(crtc);
3545 }
3546
3547 void intel_encoder_prepare(struct drm_encoder *encoder)
3548 {
3549         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3550         /* lvds has its own version of prepare see intel_lvds_prepare */
3551         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3552 }
3553
3554 void intel_encoder_commit(struct drm_encoder *encoder)
3555 {
3556         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3557         struct drm_device *dev = encoder->dev;
3558         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3559
3560         /* lvds has its own version of commit see intel_lvds_commit */
3561         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3562
3563         if (HAS_PCH_CPT(dev))
3564                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3565 }
3566
3567 void intel_encoder_destroy(struct drm_encoder *encoder)
3568 {
3569         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3570
3571         drm_encoder_cleanup(encoder);
3572         kfree(intel_encoder);
3573 }
3574
3575 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3576                                   const struct drm_display_mode *mode,
3577                                   struct drm_display_mode *adjusted_mode)
3578 {
3579         struct drm_device *dev = crtc->dev;
3580
3581         if (HAS_PCH_SPLIT(dev)) {
3582                 /* FDI link clock is fixed at 2.7G */
3583                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3584                         return false;
3585         }
3586
3587         /* All interlaced capable intel hw wants timings in frames. Note though
3588          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3589          * timings, so we need to be careful not to clobber these.*/
3590         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3591                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3592
3593         return true;
3594 }
3595
3596 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3597 {
3598         return 400000; /* FIXME */
3599 }
3600
3601 static int i945_get_display_clock_speed(struct drm_device *dev)
3602 {
3603         return 400000;
3604 }
3605
3606 static int i915_get_display_clock_speed(struct drm_device *dev)
3607 {
3608         return 333000;
3609 }
3610
3611 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3612 {
3613         return 200000;
3614 }
3615
3616 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3617 {
3618         u16 gcfgc = 0;
3619
3620         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3621
3622         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3623                 return 133000;
3624         else {
3625                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3626                 case GC_DISPLAY_CLOCK_333_MHZ:
3627                         return 333000;
3628                 default:
3629                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3630                         return 190000;
3631                 }
3632         }
3633 }
3634
3635 static int i865_get_display_clock_speed(struct drm_device *dev)
3636 {
3637         return 266000;
3638 }
3639
3640 static int i855_get_display_clock_speed(struct drm_device *dev)
3641 {
3642         u16 hpllcc = 0;
3643         /* Assume that the hardware is in the high speed state.  This
3644          * should be the default.
3645          */
3646         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3647         case GC_CLOCK_133_200:
3648         case GC_CLOCK_100_200:
3649                 return 200000;
3650         case GC_CLOCK_166_250:
3651                 return 250000;
3652         case GC_CLOCK_100_133:
3653                 return 133000;
3654         }
3655
3656         /* Shouldn't happen */
3657         return 0;
3658 }
3659
3660 static int i830_get_display_clock_speed(struct drm_device *dev)
3661 {
3662         return 133000;
3663 }
3664
3665 struct fdi_m_n {
3666         u32        tu;
3667         u32        gmch_m;
3668         u32        gmch_n;
3669         u32        link_m;
3670         u32        link_n;
3671 };
3672
3673 static void
3674 fdi_reduce_ratio(u32 *num, u32 *den)
3675 {
3676         while (*num > 0xffffff || *den > 0xffffff) {
3677                 *num >>= 1;
3678                 *den >>= 1;
3679         }
3680 }
3681
3682 static void
3683 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3684                      int link_clock, struct fdi_m_n *m_n)
3685 {
3686         m_n->tu = 64; /* default size */
3687
3688         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3689         m_n->gmch_m = bits_per_pixel * pixel_clock;
3690         m_n->gmch_n = link_clock * nlanes * 8;
3691         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3692
3693         m_n->link_m = pixel_clock;
3694         m_n->link_n = link_clock;
3695         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3696 }
3697
3698 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3699 {
3700         if (i915_panel_use_ssc >= 0)
3701                 return i915_panel_use_ssc != 0;
3702         return dev_priv->lvds_use_ssc
3703                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3704 }
3705
3706 /**
3707  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3708  * @crtc: CRTC structure
3709  * @mode: requested mode
3710  *
3711  * A pipe may be connected to one or more outputs.  Based on the depth of the
3712  * attached framebuffer, choose a good color depth to use on the pipe.
3713  *
3714  * If possible, match the pipe depth to the fb depth.  In some cases, this
3715  * isn't ideal, because the connected output supports a lesser or restricted
3716  * set of depths.  Resolve that here:
3717  *    LVDS typically supports only 6bpc, so clamp down in that case
3718  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3719  *    Displays may support a restricted set as well, check EDID and clamp as
3720  *      appropriate.
3721  *    DP may want to dither down to 6bpc to fit larger modes
3722  *
3723  * RETURNS:
3724  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3725  * true if they don't match).
3726  */
3727 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3728                                          unsigned int *pipe_bpp,
3729                                          struct drm_display_mode *mode)
3730 {
3731         struct drm_device *dev = crtc->dev;
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         struct drm_connector *connector;
3734         struct intel_encoder *intel_encoder;
3735         unsigned int display_bpc = UINT_MAX, bpc;
3736
3737         /* Walk the encoders & connectors on this crtc, get min bpc */
3738         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3739
3740                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3741                         unsigned int lvds_bpc;
3742
3743                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3744                             LVDS_A3_POWER_UP)
3745                                 lvds_bpc = 8;
3746                         else
3747                                 lvds_bpc = 6;
3748
3749                         if (lvds_bpc < display_bpc) {
3750                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3751                                 display_bpc = lvds_bpc;
3752                         }
3753                         continue;
3754                 }
3755
3756                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3757                         /* Use VBT settings if we have an eDP panel */
3758                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3759
3760                         if (edp_bpc < display_bpc) {
3761                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3762                                 display_bpc = edp_bpc;
3763                         }
3764                         continue;
3765                 }
3766
3767                 /* Not one of the known troublemakers, check the EDID */
3768                 list_for_each_entry(connector, &dev->mode_config.connector_list,
3769                                     head) {
3770                         if (connector->encoder != &intel_encoder->base)
3771                                 continue;
3772
3773                         /* Don't use an invalid EDID bpc value */
3774                         if (connector->display_info.bpc &&
3775                             connector->display_info.bpc < display_bpc) {
3776                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3777                                 display_bpc = connector->display_info.bpc;
3778                         }
3779                 }
3780
3781                 /*
3782                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3783                  * through, clamp it down.  (Note: >12bpc will be caught below.)
3784                  */
3785                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3786                         if (display_bpc > 8 && display_bpc < 12) {
3787                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3788                                 display_bpc = 12;
3789                         } else {
3790                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3791                                 display_bpc = 8;
3792                         }
3793                 }
3794         }
3795
3796         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3797                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3798                 display_bpc = 6;
3799         }
3800
3801         /*
3802          * We could just drive the pipe at the highest bpc all the time and
3803          * enable dithering as needed, but that costs bandwidth.  So choose
3804          * the minimum value that expresses the full color range of the fb but
3805          * also stays within the max display bpc discovered above.
3806          */
3807
3808         switch (crtc->fb->depth) {
3809         case 8:
3810                 bpc = 8; /* since we go through a colormap */
3811                 break;
3812         case 15:
3813         case 16:
3814                 bpc = 6; /* min is 18bpp */
3815                 break;
3816         case 24:
3817                 bpc = 8;
3818                 break;
3819         case 30:
3820                 bpc = 10;
3821                 break;
3822         case 48:
3823                 bpc = 12;
3824                 break;
3825         default:
3826                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3827                 bpc = min((unsigned int)8, display_bpc);
3828                 break;
3829         }
3830
3831         display_bpc = min(display_bpc, bpc);
3832
3833         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3834                       bpc, display_bpc);
3835
3836         *pipe_bpp = display_bpc * 3;
3837
3838         return display_bpc != bpc;
3839 }
3840
3841 static int vlv_get_refclk(struct drm_crtc *crtc)
3842 {
3843         struct drm_device *dev = crtc->dev;
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         int refclk = 27000; /* for DP & HDMI */
3846
3847         return 100000; /* only one validated so far */
3848
3849         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3850                 refclk = 96000;
3851         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3852                 if (intel_panel_use_ssc(dev_priv))
3853                         refclk = 100000;
3854                 else
3855                         refclk = 96000;
3856         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3857                 refclk = 100000;
3858         }
3859
3860         return refclk;
3861 }
3862
3863 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3864 {
3865         struct drm_device *dev = crtc->dev;
3866         struct drm_i915_private *dev_priv = dev->dev_private;
3867         int refclk;
3868
3869         if (IS_VALLEYVIEW(dev)) {
3870                 refclk = vlv_get_refclk(crtc);
3871         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3872             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3873                 refclk = dev_priv->lvds_ssc_freq * 1000;
3874                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3875                               refclk / 1000);
3876         } else if (!IS_GEN2(dev)) {
3877                 refclk = 96000;
3878         } else {
3879                 refclk = 48000;
3880         }
3881
3882         return refclk;
3883 }
3884
3885 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3886                                       intel_clock_t *clock)
3887 {
3888         /* SDVO TV has fixed PLL values depend on its clock range,
3889            this mirrors vbios setting. */
3890         if (adjusted_mode->clock >= 100000
3891             && adjusted_mode->clock < 140500) {
3892                 clock->p1 = 2;
3893                 clock->p2 = 10;
3894                 clock->n = 3;
3895                 clock->m1 = 16;
3896                 clock->m2 = 8;
3897         } else if (adjusted_mode->clock >= 140500
3898                    && adjusted_mode->clock <= 200000) {
3899                 clock->p1 = 1;
3900                 clock->p2 = 10;
3901                 clock->n = 6;
3902                 clock->m1 = 12;
3903                 clock->m2 = 8;
3904         }
3905 }
3906
3907 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3908                                      intel_clock_t *clock,
3909                                      intel_clock_t *reduced_clock)
3910 {
3911         struct drm_device *dev = crtc->dev;
3912         struct drm_i915_private *dev_priv = dev->dev_private;
3913         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3914         int pipe = intel_crtc->pipe;
3915         u32 fp, fp2 = 0;
3916
3917         if (IS_PINEVIEW(dev)) {
3918                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3919                 if (reduced_clock)
3920                         fp2 = (1 << reduced_clock->n) << 16 |
3921                                 reduced_clock->m1 << 8 | reduced_clock->m2;
3922         } else {
3923                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3924                 if (reduced_clock)
3925                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3926                                 reduced_clock->m2;
3927         }
3928
3929         I915_WRITE(FP0(pipe), fp);
3930
3931         intel_crtc->lowfreq_avail = false;
3932         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3933             reduced_clock && i915_powersave) {
3934                 I915_WRITE(FP1(pipe), fp2);
3935                 intel_crtc->lowfreq_avail = true;
3936         } else {
3937                 I915_WRITE(FP1(pipe), fp);
3938         }
3939 }
3940
3941 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3942                               struct drm_display_mode *adjusted_mode)
3943 {
3944         struct drm_device *dev = crtc->dev;
3945         struct drm_i915_private *dev_priv = dev->dev_private;
3946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3947         int pipe = intel_crtc->pipe;
3948         u32 temp;
3949
3950         temp = I915_READ(LVDS);
3951         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3952         if (pipe == 1) {
3953                 temp |= LVDS_PIPEB_SELECT;
3954         } else {
3955                 temp &= ~LVDS_PIPEB_SELECT;
3956         }
3957         /* set the corresponsding LVDS_BORDER bit */
3958         temp |= dev_priv->lvds_border_bits;
3959         /* Set the B0-B3 data pairs corresponding to whether we're going to
3960          * set the DPLLs for dual-channel mode or not.
3961          */
3962         if (clock->p2 == 7)
3963                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3964         else
3965                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3966
3967         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3968          * appropriately here, but we need to look more thoroughly into how
3969          * panels behave in the two modes.
3970          */
3971         /* set the dithering flag on LVDS as needed */
3972         if (INTEL_INFO(dev)->gen >= 4) {
3973                 if (dev_priv->lvds_dither)
3974                         temp |= LVDS_ENABLE_DITHER;
3975                 else
3976                         temp &= ~LVDS_ENABLE_DITHER;
3977         }
3978         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3979         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3980                 temp |= LVDS_HSYNC_POLARITY;
3981         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3982                 temp |= LVDS_VSYNC_POLARITY;
3983         I915_WRITE(LVDS, temp);
3984 }
3985
3986 static void vlv_update_pll(struct drm_crtc *crtc,
3987                            struct drm_display_mode *mode,
3988                            struct drm_display_mode *adjusted_mode,
3989                            intel_clock_t *clock, intel_clock_t *reduced_clock,
3990                            int refclk, int num_connectors)
3991 {
3992         struct drm_device *dev = crtc->dev;
3993         struct drm_i915_private *dev_priv = dev->dev_private;
3994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3995         int pipe = intel_crtc->pipe;
3996         u32 dpll, mdiv, pdiv;
3997         u32 bestn, bestm1, bestm2, bestp1, bestp2;
3998         bool is_hdmi;
3999
4000         is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4001
4002         bestn = clock->n;
4003         bestm1 = clock->m1;
4004         bestm2 = clock->m2;
4005         bestp1 = clock->p1;
4006         bestp2 = clock->p2;
4007
4008         /* Enable DPIO clock input */
4009         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4010                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4011         I915_WRITE(DPLL(pipe), dpll);
4012         POSTING_READ(DPLL(pipe));
4013
4014         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4015         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4016         mdiv |= ((bestn << DPIO_N_SHIFT));
4017         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4018         mdiv |= (1 << DPIO_K_SHIFT);
4019         mdiv |= DPIO_ENABLE_CALIBRATION;
4020         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4021
4022         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4023
4024         pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4025                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4026                 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4027         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4028
4029         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4030
4031         dpll |= DPLL_VCO_ENABLE;
4032         I915_WRITE(DPLL(pipe), dpll);
4033         POSTING_READ(DPLL(pipe));
4034         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4035                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4036
4037         if (is_hdmi) {
4038                 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4039
4040                 if (temp > 1)
4041                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4042                 else
4043                         temp = 0;
4044
4045                 I915_WRITE(DPLL_MD(pipe), temp);
4046                 POSTING_READ(DPLL_MD(pipe));
4047         }
4048
4049         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4050 }
4051
4052 static void i9xx_update_pll(struct drm_crtc *crtc,
4053                             struct drm_display_mode *mode,
4054                             struct drm_display_mode *adjusted_mode,
4055                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4056                             int num_connectors)
4057 {
4058         struct drm_device *dev = crtc->dev;
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4061         int pipe = intel_crtc->pipe;
4062         u32 dpll;
4063         bool is_sdvo;
4064
4065         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4066                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4067
4068         dpll = DPLL_VGA_MODE_DIS;
4069
4070         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4071                 dpll |= DPLLB_MODE_LVDS;
4072         else
4073                 dpll |= DPLLB_MODE_DAC_SERIAL;
4074         if (is_sdvo) {
4075                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4076                 if (pixel_multiplier > 1) {
4077                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4078                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4079                 }
4080                 dpll |= DPLL_DVO_HIGH_SPEED;
4081         }
4082         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4083                 dpll |= DPLL_DVO_HIGH_SPEED;
4084
4085         /* compute bitmask from p1 value */
4086         if (IS_PINEVIEW(dev))
4087                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4088         else {
4089                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4090                 if (IS_G4X(dev) && reduced_clock)
4091                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4092         }
4093         switch (clock->p2) {
4094         case 5:
4095                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4096                 break;
4097         case 7:
4098                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4099                 break;
4100         case 10:
4101                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4102                 break;
4103         case 14:
4104                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4105                 break;
4106         }
4107         if (INTEL_INFO(dev)->gen >= 4)
4108                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4109
4110         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4111                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4112         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4113                 /* XXX: just matching BIOS for now */
4114                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4115                 dpll |= 3;
4116         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4117                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4118                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4119         else
4120                 dpll |= PLL_REF_INPUT_DREFCLK;
4121
4122         dpll |= DPLL_VCO_ENABLE;
4123         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4124         POSTING_READ(DPLL(pipe));
4125         udelay(150);
4126
4127         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4128          * This is an exception to the general rule that mode_set doesn't turn
4129          * things on.
4130          */
4131         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4132                 intel_update_lvds(crtc, clock, adjusted_mode);
4133
4134         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4135                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4136
4137         I915_WRITE(DPLL(pipe), dpll);
4138
4139         /* Wait for the clocks to stabilize. */
4140         POSTING_READ(DPLL(pipe));
4141         udelay(150);
4142
4143         if (INTEL_INFO(dev)->gen >= 4) {
4144                 u32 temp = 0;
4145                 if (is_sdvo) {
4146                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4147                         if (temp > 1)
4148                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4149                         else
4150                                 temp = 0;
4151                 }
4152                 I915_WRITE(DPLL_MD(pipe), temp);
4153         } else {
4154                 /* The pixel multiplier can only be updated once the
4155                  * DPLL is enabled and the clocks are stable.
4156                  *
4157                  * So write it again.
4158                  */
4159                 I915_WRITE(DPLL(pipe), dpll);
4160         }
4161 }
4162
4163 static void i8xx_update_pll(struct drm_crtc *crtc,
4164                             struct drm_display_mode *adjusted_mode,
4165                             intel_clock_t *clock,
4166                             int num_connectors)
4167 {
4168         struct drm_device *dev = crtc->dev;
4169         struct drm_i915_private *dev_priv = dev->dev_private;
4170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4171         int pipe = intel_crtc->pipe;
4172         u32 dpll;
4173
4174         dpll = DPLL_VGA_MODE_DIS;
4175
4176         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4177                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4178         } else {
4179                 if (clock->p1 == 2)
4180                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4181                 else
4182                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4183                 if (clock->p2 == 4)
4184                         dpll |= PLL_P2_DIVIDE_BY_4;
4185         }
4186
4187         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4188                 /* XXX: just matching BIOS for now */
4189                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4190                 dpll |= 3;
4191         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4192                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4193                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4194         else
4195                 dpll |= PLL_REF_INPUT_DREFCLK;
4196
4197         dpll |= DPLL_VCO_ENABLE;
4198         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4199         POSTING_READ(DPLL(pipe));
4200         udelay(150);
4201
4202         I915_WRITE(DPLL(pipe), dpll);
4203
4204         /* Wait for the clocks to stabilize. */
4205         POSTING_READ(DPLL(pipe));
4206         udelay(150);
4207
4208         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4209          * This is an exception to the general rule that mode_set doesn't turn
4210          * things on.
4211          */
4212         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4213                 intel_update_lvds(crtc, clock, adjusted_mode);
4214
4215         /* The pixel multiplier can only be updated once the
4216          * DPLL is enabled and the clocks are stable.
4217          *
4218          * So write it again.
4219          */
4220         I915_WRITE(DPLL(pipe), dpll);
4221 }
4222
4223 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4224                               struct drm_display_mode *mode,
4225                               struct drm_display_mode *adjusted_mode,
4226                               int x, int y,
4227                               struct drm_framebuffer *old_fb)
4228 {
4229         struct drm_device *dev = crtc->dev;
4230         struct drm_i915_private *dev_priv = dev->dev_private;
4231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4232         int pipe = intel_crtc->pipe;
4233         int plane = intel_crtc->plane;
4234         int refclk, num_connectors = 0;
4235         intel_clock_t clock, reduced_clock;
4236         u32 dspcntr, pipeconf, vsyncshift;
4237         bool ok, has_reduced_clock = false, is_sdvo = false;
4238         bool is_lvds = false, is_tv = false, is_dp = false;
4239         struct intel_encoder *encoder;
4240         const intel_limit_t *limit;
4241         int ret;
4242
4243         for_each_encoder_on_crtc(dev, crtc, encoder) {
4244                 switch (encoder->type) {
4245                 case INTEL_OUTPUT_LVDS:
4246                         is_lvds = true;
4247                         break;
4248                 case INTEL_OUTPUT_SDVO:
4249                 case INTEL_OUTPUT_HDMI:
4250                         is_sdvo = true;
4251                         if (encoder->needs_tv_clock)
4252                                 is_tv = true;
4253                         break;
4254                 case INTEL_OUTPUT_TVOUT:
4255                         is_tv = true;
4256                         break;
4257                 case INTEL_OUTPUT_DISPLAYPORT:
4258                         is_dp = true;
4259                         break;
4260                 }
4261
4262                 num_connectors++;
4263         }
4264
4265         refclk = i9xx_get_refclk(crtc, num_connectors);
4266
4267         /*
4268          * Returns a set of divisors for the desired target clock with the given
4269          * refclk, or FALSE.  The returned values represent the clock equation:
4270          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4271          */
4272         limit = intel_limit(crtc, refclk);
4273         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4274                              &clock);
4275         if (!ok) {
4276                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4277                 return -EINVAL;
4278         }
4279
4280         /* Ensure that the cursor is valid for the new mode before changing... */
4281         intel_crtc_update_cursor(crtc, true);
4282
4283         if (is_lvds && dev_priv->lvds_downclock_avail) {
4284                 /*
4285                  * Ensure we match the reduced clock's P to the target clock.
4286                  * If the clocks don't match, we can't switch the display clock
4287                  * by using the FP0/FP1. In such case we will disable the LVDS
4288                  * downclock feature.
4289                 */
4290                 has_reduced_clock = limit->find_pll(limit, crtc,
4291                                                     dev_priv->lvds_downclock,
4292                                                     refclk,
4293                                                     &clock,
4294                                                     &reduced_clock);
4295         }
4296
4297         if (is_sdvo && is_tv)
4298                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4299
4300         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4301                                  &reduced_clock : NULL);
4302
4303         if (IS_GEN2(dev))
4304                 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4305         else if (IS_VALLEYVIEW(dev))
4306                 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4307                                refclk, num_connectors);
4308         else
4309                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4310                                 has_reduced_clock ? &reduced_clock : NULL,
4311                                 num_connectors);
4312
4313         /* setup pipeconf */
4314         pipeconf = I915_READ(PIPECONF(pipe));
4315
4316         /* Set up the display plane register */
4317         dspcntr = DISPPLANE_GAMMA_ENABLE;
4318
4319         if (pipe == 0)
4320                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4321         else
4322                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4323
4324         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4325                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4326                  * core speed.
4327                  *
4328                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4329                  * pipe == 0 check?
4330                  */
4331                 if (mode->clock >
4332                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4333                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4334                 else
4335                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4336         }
4337
4338         /* default to 8bpc */
4339         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4340         if (is_dp) {
4341                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4342                         pipeconf |= PIPECONF_BPP_6 |
4343                                     PIPECONF_DITHER_EN |
4344                                     PIPECONF_DITHER_TYPE_SP;
4345                 }
4346         }
4347
4348         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4349         drm_mode_debug_printmodeline(mode);
4350
4351         if (HAS_PIPE_CXSR(dev)) {
4352                 if (intel_crtc->lowfreq_avail) {
4353                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4354                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4355                 } else {
4356                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4357                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4358                 }
4359         }
4360
4361         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4362         if (!IS_GEN2(dev) &&
4363             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4364                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4365                 /* the chip adds 2 halflines automatically */
4366                 adjusted_mode->crtc_vtotal -= 1;
4367                 adjusted_mode->crtc_vblank_end -= 1;
4368                 vsyncshift = adjusted_mode->crtc_hsync_start
4369                              - adjusted_mode->crtc_htotal/2;
4370         } else {
4371                 pipeconf |= PIPECONF_PROGRESSIVE;
4372                 vsyncshift = 0;
4373         }
4374
4375         if (!IS_GEN3(dev))
4376                 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4377
4378         I915_WRITE(HTOTAL(pipe),
4379                    (adjusted_mode->crtc_hdisplay - 1) |
4380                    ((adjusted_mode->crtc_htotal - 1) << 16));
4381         I915_WRITE(HBLANK(pipe),
4382                    (adjusted_mode->crtc_hblank_start - 1) |
4383                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4384         I915_WRITE(HSYNC(pipe),
4385                    (adjusted_mode->crtc_hsync_start - 1) |
4386                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4387
4388         I915_WRITE(VTOTAL(pipe),
4389                    (adjusted_mode->crtc_vdisplay - 1) |
4390                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4391         I915_WRITE(VBLANK(pipe),
4392                    (adjusted_mode->crtc_vblank_start - 1) |
4393                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4394         I915_WRITE(VSYNC(pipe),
4395                    (adjusted_mode->crtc_vsync_start - 1) |
4396                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4397
4398         /* pipesrc and dspsize control the size that is scaled from,
4399          * which should always be the user's requested size.
4400          */
4401         I915_WRITE(DSPSIZE(plane),
4402                    ((mode->vdisplay - 1) << 16) |
4403                    (mode->hdisplay - 1));
4404         I915_WRITE(DSPPOS(plane), 0);
4405         I915_WRITE(PIPESRC(pipe),
4406                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4407
4408         I915_WRITE(PIPECONF(pipe), pipeconf);
4409         POSTING_READ(PIPECONF(pipe));
4410         intel_enable_pipe(dev_priv, pipe, false);
4411
4412         intel_wait_for_vblank(dev, pipe);
4413
4414         I915_WRITE(DSPCNTR(plane), dspcntr);
4415         POSTING_READ(DSPCNTR(plane));
4416
4417         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4418
4419         intel_update_watermarks(dev);
4420
4421         return ret;
4422 }
4423
4424 /*
4425  * Initialize reference clocks when the driver loads
4426  */
4427 void ironlake_init_pch_refclk(struct drm_device *dev)
4428 {
4429         struct drm_i915_private *dev_priv = dev->dev_private;
4430         struct drm_mode_config *mode_config = &dev->mode_config;
4431         struct intel_encoder *encoder;
4432         u32 temp;
4433         bool has_lvds = false;
4434         bool has_cpu_edp = false;
4435         bool has_pch_edp = false;
4436         bool has_panel = false;
4437         bool has_ck505 = false;
4438         bool can_ssc = false;
4439
4440         /* We need to take the global config into account */
4441         list_for_each_entry(encoder, &mode_config->encoder_list,
4442                             base.head) {
4443                 switch (encoder->type) {
4444                 case INTEL_OUTPUT_LVDS:
4445                         has_panel = true;
4446                         has_lvds = true;
4447                         break;
4448                 case INTEL_OUTPUT_EDP:
4449                         has_panel = true;
4450                         if (intel_encoder_is_pch_edp(&encoder->base))
4451                                 has_pch_edp = true;
4452                         else
4453                                 has_cpu_edp = true;
4454                         break;
4455                 }
4456         }
4457
4458         if (HAS_PCH_IBX(dev)) {
4459                 has_ck505 = dev_priv->display_clock_mode;
4460                 can_ssc = has_ck505;
4461         } else {
4462                 has_ck505 = false;
4463                 can_ssc = true;
4464         }
4465
4466         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4467                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4468                       has_ck505);
4469
4470         /* Ironlake: try to setup display ref clock before DPLL
4471          * enabling. This is only under driver's control after
4472          * PCH B stepping, previous chipset stepping should be
4473          * ignoring this setting.
4474          */
4475         temp = I915_READ(PCH_DREF_CONTROL);
4476         /* Always enable nonspread source */
4477         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4478
4479         if (has_ck505)
4480                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4481         else
4482                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4483
4484         if (has_panel) {
4485                 temp &= ~DREF_SSC_SOURCE_MASK;
4486                 temp |= DREF_SSC_SOURCE_ENABLE;
4487
4488                 /* SSC must be turned on before enabling the CPU output  */
4489                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4490                         DRM_DEBUG_KMS("Using SSC on panel\n");
4491                         temp |= DREF_SSC1_ENABLE;
4492                 } else
4493                         temp &= ~DREF_SSC1_ENABLE;
4494
4495                 /* Get SSC going before enabling the outputs */
4496                 I915_WRITE(PCH_DREF_CONTROL, temp);
4497                 POSTING_READ(PCH_DREF_CONTROL);
4498                 udelay(200);
4499
4500                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4501
4502                 /* Enable CPU source on CPU attached eDP */
4503                 if (has_cpu_edp) {
4504                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4505                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4506                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4507                         }
4508                         else
4509                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4510                 } else
4511                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4512
4513                 I915_WRITE(PCH_DREF_CONTROL, temp);
4514                 POSTING_READ(PCH_DREF_CONTROL);
4515                 udelay(200);
4516         } else {
4517                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4518
4519                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4520
4521                 /* Turn off CPU output */
4522                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4523
4524                 I915_WRITE(PCH_DREF_CONTROL, temp);
4525                 POSTING_READ(PCH_DREF_CONTROL);
4526                 udelay(200);
4527
4528                 /* Turn off the SSC source */
4529                 temp &= ~DREF_SSC_SOURCE_MASK;
4530                 temp |= DREF_SSC_SOURCE_DISABLE;
4531
4532                 /* Turn off SSC1 */
4533                 temp &= ~ DREF_SSC1_ENABLE;
4534
4535                 I915_WRITE(PCH_DREF_CONTROL, temp);
4536                 POSTING_READ(PCH_DREF_CONTROL);
4537                 udelay(200);
4538         }
4539 }
4540
4541 static int ironlake_get_refclk(struct drm_crtc *crtc)
4542 {
4543         struct drm_device *dev = crtc->dev;
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         struct intel_encoder *encoder;
4546         struct intel_encoder *edp_encoder = NULL;
4547         int num_connectors = 0;
4548         bool is_lvds = false;
4549
4550         for_each_encoder_on_crtc(dev, crtc, encoder) {
4551                 switch (encoder->type) {
4552                 case INTEL_OUTPUT_LVDS:
4553                         is_lvds = true;
4554                         break;
4555                 case INTEL_OUTPUT_EDP:
4556                         edp_encoder = encoder;
4557                         break;
4558                 }
4559                 num_connectors++;
4560         }
4561
4562         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4563                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4564                               dev_priv->lvds_ssc_freq);
4565                 return dev_priv->lvds_ssc_freq * 1000;
4566         }
4567
4568         return 120000;
4569 }
4570
4571 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4572                                   struct drm_display_mode *mode,
4573                                   struct drm_display_mode *adjusted_mode,
4574                                   int x, int y,
4575                                   struct drm_framebuffer *old_fb)
4576 {
4577         struct drm_device *dev = crtc->dev;
4578         struct drm_i915_private *dev_priv = dev->dev_private;
4579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4580         int pipe = intel_crtc->pipe;
4581         int plane = intel_crtc->plane;
4582         int refclk, num_connectors = 0;
4583         intel_clock_t clock, reduced_clock;
4584         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4585         bool ok, has_reduced_clock = false, is_sdvo = false;
4586         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4587         struct intel_encoder *encoder, *edp_encoder = NULL;
4588         const intel_limit_t *limit;
4589         int ret;
4590         struct fdi_m_n m_n = {0};
4591         u32 temp;
4592         int target_clock, pixel_multiplier, lane, link_bw, factor;
4593         unsigned int pipe_bpp;
4594         bool dither;
4595         bool is_cpu_edp = false, is_pch_edp = false;
4596
4597         for_each_encoder_on_crtc(dev, crtc, encoder) {
4598                 switch (encoder->type) {
4599                 case INTEL_OUTPUT_LVDS:
4600                         is_lvds = true;
4601                         break;
4602                 case INTEL_OUTPUT_SDVO:
4603                 case INTEL_OUTPUT_HDMI:
4604                         is_sdvo = true;
4605                         if (encoder->needs_tv_clock)
4606                                 is_tv = true;
4607                         break;
4608                 case INTEL_OUTPUT_TVOUT:
4609                         is_tv = true;
4610                         break;
4611                 case INTEL_OUTPUT_ANALOG:
4612                         is_crt = true;
4613                         break;
4614                 case INTEL_OUTPUT_DISPLAYPORT:
4615                         is_dp = true;
4616                         break;
4617                 case INTEL_OUTPUT_EDP:
4618                         is_dp = true;
4619                         if (intel_encoder_is_pch_edp(&encoder->base))
4620                                 is_pch_edp = true;
4621                         else
4622                                 is_cpu_edp = true;
4623                         edp_encoder = encoder;
4624                         break;
4625                 }
4626
4627                 num_connectors++;
4628         }
4629
4630         refclk = ironlake_get_refclk(crtc);
4631
4632         /*
4633          * Returns a set of divisors for the desired target clock with the given
4634          * refclk, or FALSE.  The returned values represent the clock equation:
4635          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4636          */
4637         limit = intel_limit(crtc, refclk);
4638         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4639                              &clock);
4640         if (!ok) {
4641                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4642                 return -EINVAL;
4643         }
4644
4645         /* Ensure that the cursor is valid for the new mode before changing... */
4646         intel_crtc_update_cursor(crtc, true);
4647
4648         if (is_lvds && dev_priv->lvds_downclock_avail) {
4649                 /*
4650                  * Ensure we match the reduced clock's P to the target clock.
4651                  * If the clocks don't match, we can't switch the display clock
4652                  * by using the FP0/FP1. In such case we will disable the LVDS
4653                  * downclock feature.
4654                 */
4655                 has_reduced_clock = limit->find_pll(limit, crtc,
4656                                                     dev_priv->lvds_downclock,
4657                                                     refclk,
4658                                                     &clock,
4659                                                     &reduced_clock);
4660         }
4661
4662         if (is_sdvo && is_tv)
4663                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4664
4665
4666         /* FDI link */
4667         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4668         lane = 0;
4669         /* CPU eDP doesn't require FDI link, so just set DP M/N
4670            according to current link config */
4671         if (is_cpu_edp) {
4672                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4673         } else {
4674                 /* FDI is a binary signal running at ~2.7GHz, encoding
4675                  * each output octet as 10 bits. The actual frequency
4676                  * is stored as a divider into a 100MHz clock, and the
4677                  * mode pixel clock is stored in units of 1KHz.
4678                  * Hence the bw of each lane in terms of the mode signal
4679                  * is:
4680                  */
4681                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4682         }
4683
4684         /* [e]DP over FDI requires target mode clock instead of link clock. */
4685         if (edp_encoder)
4686                 target_clock = intel_edp_target_clock(edp_encoder, mode);
4687         else if (is_dp)
4688                 target_clock = mode->clock;
4689         else
4690                 target_clock = adjusted_mode->clock;
4691
4692         /* determine panel color depth */
4693         temp = I915_READ(PIPECONF(pipe));
4694         temp &= ~PIPE_BPC_MASK;
4695         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4696         switch (pipe_bpp) {
4697         case 18:
4698                 temp |= PIPE_6BPC;
4699                 break;
4700         case 24:
4701                 temp |= PIPE_8BPC;
4702                 break;
4703         case 30:
4704                 temp |= PIPE_10BPC;
4705                 break;
4706         case 36:
4707                 temp |= PIPE_12BPC;
4708                 break;
4709         default:
4710                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4711                         pipe_bpp);
4712                 temp |= PIPE_8BPC;
4713                 pipe_bpp = 24;
4714                 break;
4715         }
4716
4717         intel_crtc->bpp = pipe_bpp;
4718         I915_WRITE(PIPECONF(pipe), temp);
4719
4720         if (!lane) {
4721                 /*
4722                  * Account for spread spectrum to avoid
4723                  * oversubscribing the link. Max center spread
4724                  * is 2.5%; use 5% for safety's sake.
4725                  */
4726                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4727                 lane = bps / (link_bw * 8) + 1;
4728         }
4729
4730         intel_crtc->fdi_lanes = lane;
4731
4732         if (pixel_multiplier > 1)
4733                 link_bw *= pixel_multiplier;
4734         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4735                              &m_n);
4736
4737         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4738         if (has_reduced_clock)
4739                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4740                         reduced_clock.m2;
4741
4742         /* Enable autotuning of the PLL clock (if permissible) */
4743         factor = 21;
4744         if (is_lvds) {
4745                 if ((intel_panel_use_ssc(dev_priv) &&
4746                      dev_priv->lvds_ssc_freq == 100) ||
4747                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4748                         factor = 25;
4749         } else if (is_sdvo && is_tv)
4750                 factor = 20;
4751
4752         if (clock.m < factor * clock.n)
4753                 fp |= FP_CB_TUNE;
4754
4755         dpll = 0;
4756
4757         if (is_lvds)
4758                 dpll |= DPLLB_MODE_LVDS;
4759         else
4760                 dpll |= DPLLB_MODE_DAC_SERIAL;
4761         if (is_sdvo) {
4762                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4763                 if (pixel_multiplier > 1) {
4764                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4765                 }
4766                 dpll |= DPLL_DVO_HIGH_SPEED;
4767         }
4768         if (is_dp && !is_cpu_edp)
4769                 dpll |= DPLL_DVO_HIGH_SPEED;
4770
4771         /* compute bitmask from p1 value */
4772         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4773         /* also FPA1 */
4774         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4775
4776         switch (clock.p2) {
4777         case 5:
4778                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4779                 break;
4780         case 7:
4781                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4782                 break;
4783         case 10:
4784                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4785                 break;
4786         case 14:
4787                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4788                 break;
4789         }
4790
4791         if (is_sdvo && is_tv)
4792                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4793         else if (is_tv)
4794                 /* XXX: just matching BIOS for now */
4795                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4796                 dpll |= 3;
4797         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4798                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4799         else
4800                 dpll |= PLL_REF_INPUT_DREFCLK;
4801
4802         /* setup pipeconf */
4803         pipeconf = I915_READ(PIPECONF(pipe));
4804
4805         /* Set up the display plane register */
4806         dspcntr = DISPPLANE_GAMMA_ENABLE;
4807
4808         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4809         drm_mode_debug_printmodeline(mode);
4810
4811         /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4812          * pre-Haswell/LPT generation */
4813         if (HAS_PCH_LPT(dev)) {
4814                 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4815                                 pipe);
4816         } else if (!is_cpu_edp) {
4817                 struct intel_pch_pll *pll;
4818
4819                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4820                 if (pll == NULL) {
4821                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4822                                          pipe);
4823                         return -EINVAL;
4824                 }
4825         } else
4826                 intel_put_pch_pll(intel_crtc);
4827
4828         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4829          * This is an exception to the general rule that mode_set doesn't turn
4830          * things on.
4831          */
4832         if (is_lvds) {
4833                 temp = I915_READ(PCH_LVDS);
4834                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4835                 if (HAS_PCH_CPT(dev)) {
4836                         temp &= ~PORT_TRANS_SEL_MASK;
4837                         temp |= PORT_TRANS_SEL_CPT(pipe);
4838                 } else {
4839                         if (pipe == 1)
4840                                 temp |= LVDS_PIPEB_SELECT;
4841                         else
4842                                 temp &= ~LVDS_PIPEB_SELECT;
4843                 }
4844
4845                 /* set the corresponsding LVDS_BORDER bit */
4846                 temp |= dev_priv->lvds_border_bits;
4847                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4848                  * set the DPLLs for dual-channel mode or not.
4849                  */
4850                 if (clock.p2 == 7)
4851                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4852                 else
4853                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4854
4855                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4856                  * appropriately here, but we need to look more thoroughly into how
4857                  * panels behave in the two modes.
4858                  */
4859                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4860                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4861                         temp |= LVDS_HSYNC_POLARITY;
4862                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4863                         temp |= LVDS_VSYNC_POLARITY;
4864                 I915_WRITE(PCH_LVDS, temp);
4865         }
4866
4867         pipeconf &= ~PIPECONF_DITHER_EN;
4868         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4869         if ((is_lvds && dev_priv->lvds_dither) || dither) {
4870                 pipeconf |= PIPECONF_DITHER_EN;
4871                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4872         }
4873         if (is_dp && !is_cpu_edp) {
4874                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4875         } else {
4876                 /* For non-DP output, clear any trans DP clock recovery setting.*/
4877                 I915_WRITE(TRANSDATA_M1(pipe), 0);
4878                 I915_WRITE(TRANSDATA_N1(pipe), 0);
4879                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4880                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4881         }
4882
4883         if (intel_crtc->pch_pll) {
4884                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4885
4886                 /* Wait for the clocks to stabilize. */
4887                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4888                 udelay(150);
4889
4890                 /* The pixel multiplier can only be updated once the
4891                  * DPLL is enabled and the clocks are stable.
4892                  *
4893                  * So write it again.
4894                  */
4895                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4896         }
4897
4898         intel_crtc->lowfreq_avail = false;
4899         if (intel_crtc->pch_pll) {
4900                 if (is_lvds && has_reduced_clock && i915_powersave) {
4901                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4902                         intel_crtc->lowfreq_avail = true;
4903                 } else {
4904                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4905                 }
4906         }
4907
4908         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4909         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4910                 pipeconf |= PIPECONF_INTERLACED_ILK;
4911                 /* the chip adds 2 halflines automatically */
4912                 adjusted_mode->crtc_vtotal -= 1;
4913                 adjusted_mode->crtc_vblank_end -= 1;
4914                 I915_WRITE(VSYNCSHIFT(pipe),
4915                            adjusted_mode->crtc_hsync_start
4916                            - adjusted_mode->crtc_htotal/2);
4917         } else {
4918                 pipeconf |= PIPECONF_PROGRESSIVE;
4919                 I915_WRITE(VSYNCSHIFT(pipe), 0);
4920         }
4921
4922         I915_WRITE(HTOTAL(pipe),
4923                    (adjusted_mode->crtc_hdisplay - 1) |
4924                    ((adjusted_mode->crtc_htotal - 1) << 16));
4925         I915_WRITE(HBLANK(pipe),
4926                    (adjusted_mode->crtc_hblank_start - 1) |
4927                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4928         I915_WRITE(HSYNC(pipe),
4929                    (adjusted_mode->crtc_hsync_start - 1) |
4930                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4931
4932         I915_WRITE(VTOTAL(pipe),
4933                    (adjusted_mode->crtc_vdisplay - 1) |
4934                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4935         I915_WRITE(VBLANK(pipe),
4936                    (adjusted_mode->crtc_vblank_start - 1) |
4937                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4938         I915_WRITE(VSYNC(pipe),
4939                    (adjusted_mode->crtc_vsync_start - 1) |
4940                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4941
4942         /* pipesrc controls the size that is scaled from, which should
4943          * always be the user's requested size.
4944          */
4945         I915_WRITE(PIPESRC(pipe),
4946                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4947
4948         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4949         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4950         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4951         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4952
4953         if (is_cpu_edp)
4954                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4955
4956         I915_WRITE(PIPECONF(pipe), pipeconf);
4957         POSTING_READ(PIPECONF(pipe));
4958
4959         intel_wait_for_vblank(dev, pipe);
4960
4961         I915_WRITE(DSPCNTR(plane), dspcntr);
4962         POSTING_READ(DSPCNTR(plane));
4963
4964         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4965
4966         intel_update_watermarks(dev);
4967
4968         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4969
4970         return ret;
4971 }
4972
4973 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4974                                struct drm_display_mode *mode,
4975                                struct drm_display_mode *adjusted_mode,
4976                                int x, int y,
4977                                struct drm_framebuffer *old_fb)
4978 {
4979         struct drm_device *dev = crtc->dev;
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4982         int pipe = intel_crtc->pipe;
4983         int ret;
4984
4985         drm_vblank_pre_modeset(dev, pipe);
4986
4987         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4988                                               x, y, old_fb);
4989         drm_vblank_post_modeset(dev, pipe);
4990
4991         if (ret)
4992                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4993         else
4994                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4995
4996         return ret;
4997 }
4998
4999 static bool intel_eld_uptodate(struct drm_connector *connector,
5000                                int reg_eldv, uint32_t bits_eldv,
5001                                int reg_elda, uint32_t bits_elda,
5002                                int reg_edid)
5003 {
5004         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5005         uint8_t *eld = connector->eld;
5006         uint32_t i;
5007
5008         i = I915_READ(reg_eldv);
5009         i &= bits_eldv;
5010
5011         if (!eld[0])
5012                 return !i;
5013
5014         if (!i)
5015                 return false;
5016
5017         i = I915_READ(reg_elda);
5018         i &= ~bits_elda;
5019         I915_WRITE(reg_elda, i);
5020
5021         for (i = 0; i < eld[2]; i++)
5022                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5023                         return false;
5024
5025         return true;
5026 }
5027
5028 static void g4x_write_eld(struct drm_connector *connector,
5029                           struct drm_crtc *crtc)
5030 {
5031         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5032         uint8_t *eld = connector->eld;
5033         uint32_t eldv;
5034         uint32_t len;
5035         uint32_t i;
5036
5037         i = I915_READ(G4X_AUD_VID_DID);
5038
5039         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5040                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5041         else
5042                 eldv = G4X_ELDV_DEVCTG;
5043
5044         if (intel_eld_uptodate(connector,
5045                                G4X_AUD_CNTL_ST, eldv,
5046                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5047                                G4X_HDMIW_HDMIEDID))
5048                 return;
5049
5050         i = I915_READ(G4X_AUD_CNTL_ST);
5051         i &= ~(eldv | G4X_ELD_ADDR);
5052         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5053         I915_WRITE(G4X_AUD_CNTL_ST, i);
5054
5055         if (!eld[0])
5056                 return;
5057
5058         len = min_t(uint8_t, eld[2], len);
5059         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5060         for (i = 0; i < len; i++)
5061                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5062
5063         i = I915_READ(G4X_AUD_CNTL_ST);
5064         i |= eldv;
5065         I915_WRITE(G4X_AUD_CNTL_ST, i);
5066 }
5067
5068 static void ironlake_write_eld(struct drm_connector *connector,
5069                                      struct drm_crtc *crtc)
5070 {
5071         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5072         uint8_t *eld = connector->eld;
5073         uint32_t eldv;
5074         uint32_t i;
5075         int len;
5076         int hdmiw_hdmiedid;
5077         int aud_config;
5078         int aud_cntl_st;
5079         int aud_cntrl_st2;
5080
5081         if (HAS_PCH_IBX(connector->dev)) {
5082                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
5083                 aud_config = IBX_AUD_CONFIG_A;
5084                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
5085                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5086         } else {
5087                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
5088                 aud_config = CPT_AUD_CONFIG_A;
5089                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
5090                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5091         }
5092
5093         i = to_intel_crtc(crtc)->pipe;
5094         hdmiw_hdmiedid += i * 0x100;
5095         aud_cntl_st += i * 0x100;
5096         aud_config += i * 0x100;
5097
5098         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5099
5100         i = I915_READ(aud_cntl_st);
5101         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
5102         if (!i) {
5103                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5104                 /* operate blindly on all ports */
5105                 eldv = IBX_ELD_VALIDB;
5106                 eldv |= IBX_ELD_VALIDB << 4;
5107                 eldv |= IBX_ELD_VALIDB << 8;
5108         } else {
5109                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5110                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5111         }
5112
5113         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5114                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5115                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5116                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5117         } else
5118                 I915_WRITE(aud_config, 0);
5119
5120         if (intel_eld_uptodate(connector,
5121                                aud_cntrl_st2, eldv,
5122                                aud_cntl_st, IBX_ELD_ADDRESS,
5123                                hdmiw_hdmiedid))
5124                 return;
5125
5126         i = I915_READ(aud_cntrl_st2);
5127         i &= ~eldv;
5128         I915_WRITE(aud_cntrl_st2, i);
5129
5130         if (!eld[0])
5131                 return;
5132
5133         i = I915_READ(aud_cntl_st);
5134         i &= ~IBX_ELD_ADDRESS;
5135         I915_WRITE(aud_cntl_st, i);
5136
5137         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5138         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5139         for (i = 0; i < len; i++)
5140                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5141
5142         i = I915_READ(aud_cntrl_st2);
5143         i |= eldv;
5144         I915_WRITE(aud_cntrl_st2, i);
5145 }
5146
5147 void intel_write_eld(struct drm_encoder *encoder,
5148                      struct drm_display_mode *mode)
5149 {
5150         struct drm_crtc *crtc = encoder->crtc;
5151         struct drm_connector *connector;
5152         struct drm_device *dev = encoder->dev;
5153         struct drm_i915_private *dev_priv = dev->dev_private;
5154
5155         connector = drm_select_eld(encoder, mode);
5156         if (!connector)
5157                 return;
5158
5159         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5160                          connector->base.id,
5161                          drm_get_connector_name(connector),
5162                          connector->encoder->base.id,
5163                          drm_get_encoder_name(connector->encoder));
5164
5165         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5166
5167         if (dev_priv->display.write_eld)
5168                 dev_priv->display.write_eld(connector, crtc);
5169 }
5170
5171 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5172 void intel_crtc_load_lut(struct drm_crtc *crtc)
5173 {
5174         struct drm_device *dev = crtc->dev;
5175         struct drm_i915_private *dev_priv = dev->dev_private;
5176         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5177         int palreg = PALETTE(intel_crtc->pipe);
5178         int i;
5179
5180         /* The clocks have to be on to load the palette. */
5181         if (!crtc->enabled || !intel_crtc->active)
5182                 return;
5183
5184         /* use legacy palette for Ironlake */
5185         if (HAS_PCH_SPLIT(dev))
5186                 palreg = LGC_PALETTE(intel_crtc->pipe);
5187
5188         for (i = 0; i < 256; i++) {
5189                 I915_WRITE(palreg + 4 * i,
5190                            (intel_crtc->lut_r[i] << 16) |
5191                            (intel_crtc->lut_g[i] << 8) |
5192                            intel_crtc->lut_b[i]);
5193         }
5194 }
5195
5196 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5197 {
5198         struct drm_device *dev = crtc->dev;
5199         struct drm_i915_private *dev_priv = dev->dev_private;
5200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201         bool visible = base != 0;
5202         u32 cntl;
5203
5204         if (intel_crtc->cursor_visible == visible)
5205                 return;
5206
5207         cntl = I915_READ(_CURACNTR);
5208         if (visible) {
5209                 /* On these chipsets we can only modify the base whilst
5210                  * the cursor is disabled.
5211                  */
5212                 I915_WRITE(_CURABASE, base);
5213
5214                 cntl &= ~(CURSOR_FORMAT_MASK);
5215                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5216                 cntl |= CURSOR_ENABLE |
5217                         CURSOR_GAMMA_ENABLE |
5218                         CURSOR_FORMAT_ARGB;
5219         } else
5220                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5221         I915_WRITE(_CURACNTR, cntl);
5222
5223         intel_crtc->cursor_visible = visible;
5224 }
5225
5226 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5227 {
5228         struct drm_device *dev = crtc->dev;
5229         struct drm_i915_private *dev_priv = dev->dev_private;
5230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5231         int pipe = intel_crtc->pipe;
5232         bool visible = base != 0;
5233
5234         if (intel_crtc->cursor_visible != visible) {
5235                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5236                 if (base) {
5237                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5238                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5239                         cntl |= pipe << 28; /* Connect to correct pipe */
5240                 } else {
5241                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5242                         cntl |= CURSOR_MODE_DISABLE;
5243                 }
5244                 I915_WRITE(CURCNTR(pipe), cntl);
5245
5246                 intel_crtc->cursor_visible = visible;
5247         }
5248         /* and commit changes on next vblank */
5249         I915_WRITE(CURBASE(pipe), base);
5250 }
5251
5252 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5253 {
5254         struct drm_device *dev = crtc->dev;
5255         struct drm_i915_private *dev_priv = dev->dev_private;
5256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5257         int pipe = intel_crtc->pipe;
5258         bool visible = base != 0;
5259
5260         if (intel_crtc->cursor_visible != visible) {
5261                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5262                 if (base) {
5263                         cntl &= ~CURSOR_MODE;
5264                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5265                 } else {
5266                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5267                         cntl |= CURSOR_MODE_DISABLE;
5268                 }
5269                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5270
5271                 intel_crtc->cursor_visible = visible;
5272         }
5273         /* and commit changes on next vblank */
5274         I915_WRITE(CURBASE_IVB(pipe), base);
5275 }
5276
5277 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5278 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5279                                      bool on)
5280 {
5281         struct drm_device *dev = crtc->dev;
5282         struct drm_i915_private *dev_priv = dev->dev_private;
5283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5284         int pipe = intel_crtc->pipe;
5285         int x = intel_crtc->cursor_x;
5286         int y = intel_crtc->cursor_y;
5287         u32 base, pos;
5288         bool visible;
5289
5290         pos = 0;
5291
5292         if (on && crtc->enabled && crtc->fb) {
5293                 base = intel_crtc->cursor_addr;
5294                 if (x > (int) crtc->fb->width)
5295                         base = 0;
5296
5297                 if (y > (int) crtc->fb->height)
5298                         base = 0;
5299         } else
5300                 base = 0;
5301
5302         if (x < 0) {
5303                 if (x + intel_crtc->cursor_width < 0)
5304                         base = 0;
5305
5306                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5307                 x = -x;
5308         }
5309         pos |= x << CURSOR_X_SHIFT;
5310
5311         if (y < 0) {
5312                 if (y + intel_crtc->cursor_height < 0)
5313                         base = 0;
5314
5315                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5316                 y = -y;
5317         }
5318         pos |= y << CURSOR_Y_SHIFT;
5319
5320         visible = base != 0;
5321         if (!visible && !intel_crtc->cursor_visible)
5322                 return;
5323
5324         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5325                 I915_WRITE(CURPOS_IVB(pipe), pos);
5326                 ivb_update_cursor(crtc, base);
5327         } else {
5328                 I915_WRITE(CURPOS(pipe), pos);
5329                 if (IS_845G(dev) || IS_I865G(dev))
5330                         i845_update_cursor(crtc, base);
5331                 else
5332                         i9xx_update_cursor(crtc, base);
5333         }
5334 }
5335
5336 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5337                                  struct drm_file *file,
5338                                  uint32_t handle,
5339                                  uint32_t width, uint32_t height)
5340 {
5341         struct drm_device *dev = crtc->dev;
5342         struct drm_i915_private *dev_priv = dev->dev_private;
5343         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5344         struct drm_i915_gem_object *obj;
5345         uint32_t addr;
5346         int ret;
5347
5348         DRM_DEBUG_KMS("\n");
5349
5350         /* if we want to turn off the cursor ignore width and height */
5351         if (!handle) {
5352                 DRM_DEBUG_KMS("cursor off\n");
5353                 addr = 0;
5354                 obj = NULL;
5355                 mutex_lock(&dev->struct_mutex);
5356                 goto finish;
5357         }
5358
5359         /* Currently we only support 64x64 cursors */
5360         if (width != 64 || height != 64) {
5361                 DRM_ERROR("we currently only support 64x64 cursors\n");
5362                 return -EINVAL;
5363         }
5364
5365         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5366         if (&obj->base == NULL)
5367                 return -ENOENT;
5368
5369         if (obj->base.size < width * height * 4) {
5370                 DRM_ERROR("buffer is to small\n");
5371                 ret = -ENOMEM;
5372                 goto fail;
5373         }
5374
5375         /* we only need to pin inside GTT if cursor is non-phy */
5376         mutex_lock(&dev->struct_mutex);
5377         if (!dev_priv->info->cursor_needs_physical) {
5378                 if (obj->tiling_mode) {
5379                         DRM_ERROR("cursor cannot be tiled\n");
5380                         ret = -EINVAL;
5381                         goto fail_locked;
5382                 }
5383
5384                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5385                 if (ret) {
5386                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5387                         goto fail_locked;
5388                 }
5389
5390                 ret = i915_gem_object_put_fence(obj);
5391                 if (ret) {
5392                         DRM_ERROR("failed to release fence for cursor");
5393                         goto fail_unpin;
5394                 }
5395
5396                 addr = obj->gtt_offset;
5397         } else {
5398                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5399                 ret = i915_gem_attach_phys_object(dev, obj,
5400                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5401                                                   align);
5402                 if (ret) {
5403                         DRM_ERROR("failed to attach phys object\n");
5404                         goto fail_locked;
5405                 }
5406                 addr = obj->phys_obj->handle->busaddr;
5407         }
5408
5409         if (IS_GEN2(dev))
5410                 I915_WRITE(CURSIZE, (height << 12) | width);
5411
5412  finish:
5413         if (intel_crtc->cursor_bo) {
5414                 if (dev_priv->info->cursor_needs_physical) {
5415                         if (intel_crtc->cursor_bo != obj)
5416                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5417                 } else
5418                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5419                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5420         }
5421
5422         mutex_unlock(&dev->struct_mutex);
5423
5424         intel_crtc->cursor_addr = addr;
5425         intel_crtc->cursor_bo = obj;
5426         intel_crtc->cursor_width = width;
5427         intel_crtc->cursor_height = height;
5428
5429         intel_crtc_update_cursor(crtc, true);
5430
5431         return 0;
5432 fail_unpin:
5433         i915_gem_object_unpin(obj);
5434 fail_locked:
5435         mutex_unlock(&dev->struct_mutex);
5436 fail:
5437         drm_gem_object_unreference_unlocked(&obj->base);
5438         return ret;
5439 }
5440
5441 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5442 {
5443         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5444
5445         intel_crtc->cursor_x = x;
5446         intel_crtc->cursor_y = y;
5447
5448         intel_crtc_update_cursor(crtc, true);
5449
5450         return 0;
5451 }
5452
5453 /** Sets the color ramps on behalf of RandR */
5454 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5455                                  u16 blue, int regno)
5456 {
5457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458
5459         intel_crtc->lut_r[regno] = red >> 8;
5460         intel_crtc->lut_g[regno] = green >> 8;
5461         intel_crtc->lut_b[regno] = blue >> 8;
5462 }
5463
5464 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5465                              u16 *blue, int regno)
5466 {
5467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5468
5469         *red = intel_crtc->lut_r[regno] << 8;
5470         *green = intel_crtc->lut_g[regno] << 8;
5471         *blue = intel_crtc->lut_b[regno] << 8;
5472 }
5473
5474 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5475                                  u16 *blue, uint32_t start, uint32_t size)
5476 {
5477         int end = (start + size > 256) ? 256 : start + size, i;
5478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5479
5480         for (i = start; i < end; i++) {
5481                 intel_crtc->lut_r[i] = red[i] >> 8;
5482                 intel_crtc->lut_g[i] = green[i] >> 8;
5483                 intel_crtc->lut_b[i] = blue[i] >> 8;
5484         }
5485
5486         intel_crtc_load_lut(crtc);
5487 }
5488
5489 /**
5490  * Get a pipe with a simple mode set on it for doing load-based monitor
5491  * detection.
5492  *
5493  * It will be up to the load-detect code to adjust the pipe as appropriate for
5494  * its requirements.  The pipe will be connected to no other encoders.
5495  *
5496  * Currently this code will only succeed if there is a pipe with no encoders
5497  * configured for it.  In the future, it could choose to temporarily disable
5498  * some outputs to free up a pipe for its use.
5499  *
5500  * \return crtc, or NULL if no pipes are available.
5501  */
5502
5503 /* VESA 640x480x72Hz mode to set on the pipe */
5504 static struct drm_display_mode load_detect_mode = {
5505         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5506                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5507 };
5508
5509 static struct drm_framebuffer *
5510 intel_framebuffer_create(struct drm_device *dev,
5511                          struct drm_mode_fb_cmd2 *mode_cmd,
5512                          struct drm_i915_gem_object *obj)
5513 {
5514         struct intel_framebuffer *intel_fb;
5515         int ret;
5516
5517         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5518         if (!intel_fb) {
5519                 drm_gem_object_unreference_unlocked(&obj->base);
5520                 return ERR_PTR(-ENOMEM);
5521         }
5522
5523         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5524         if (ret) {
5525                 drm_gem_object_unreference_unlocked(&obj->base);
5526                 kfree(intel_fb);
5527                 return ERR_PTR(ret);
5528         }
5529
5530         return &intel_fb->base;
5531 }
5532
5533 static u32
5534 intel_framebuffer_pitch_for_width(int width, int bpp)
5535 {
5536         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5537         return ALIGN(pitch, 64);
5538 }
5539
5540 static u32
5541 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5542 {
5543         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5544         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5545 }
5546
5547 static struct drm_framebuffer *
5548 intel_framebuffer_create_for_mode(struct drm_device *dev,
5549                                   struct drm_display_mode *mode,
5550                                   int depth, int bpp)
5551 {
5552         struct drm_i915_gem_object *obj;
5553         struct drm_mode_fb_cmd2 mode_cmd;
5554
5555         obj = i915_gem_alloc_object(dev,
5556                                     intel_framebuffer_size_for_mode(mode, bpp));
5557         if (obj == NULL)
5558                 return ERR_PTR(-ENOMEM);
5559
5560         mode_cmd.width = mode->hdisplay;
5561         mode_cmd.height = mode->vdisplay;
5562         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5563                                                                 bpp);
5564         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5565
5566         return intel_framebuffer_create(dev, &mode_cmd, obj);
5567 }
5568
5569 static struct drm_framebuffer *
5570 mode_fits_in_fbdev(struct drm_device *dev,
5571                    struct drm_display_mode *mode)
5572 {
5573         struct drm_i915_private *dev_priv = dev->dev_private;
5574         struct drm_i915_gem_object *obj;
5575         struct drm_framebuffer *fb;
5576
5577         if (dev_priv->fbdev == NULL)
5578                 return NULL;
5579
5580         obj = dev_priv->fbdev->ifb.obj;
5581         if (obj == NULL)
5582                 return NULL;
5583
5584         fb = &dev_priv->fbdev->ifb.base;
5585         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5586                                                                fb->bits_per_pixel))
5587                 return NULL;
5588
5589         if (obj->base.size < mode->vdisplay * fb->pitches[0])
5590                 return NULL;
5591
5592         return fb;
5593 }
5594
5595 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5596                                 struct drm_connector *connector,
5597                                 struct drm_display_mode *mode,
5598                                 struct intel_load_detect_pipe *old)
5599 {
5600         struct intel_crtc *intel_crtc;
5601         struct drm_crtc *possible_crtc;
5602         struct drm_encoder *encoder = &intel_encoder->base;
5603         struct drm_crtc *crtc = NULL;
5604         struct drm_device *dev = encoder->dev;
5605         struct drm_framebuffer *old_fb;
5606         int i = -1;
5607
5608         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5609                       connector->base.id, drm_get_connector_name(connector),
5610                       encoder->base.id, drm_get_encoder_name(encoder));
5611
5612         /*
5613          * Algorithm gets a little messy:
5614          *
5615          *   - if the connector already has an assigned crtc, use it (but make
5616          *     sure it's on first)
5617          *
5618          *   - try to find the first unused crtc that can drive this connector,
5619          *     and use that if we find one
5620          */
5621
5622         /* See if we already have a CRTC for this connector */
5623         if (encoder->crtc) {
5624                 crtc = encoder->crtc;
5625
5626                 intel_crtc = to_intel_crtc(crtc);
5627                 old->dpms_mode = intel_crtc->dpms_mode;
5628                 old->load_detect_temp = false;
5629
5630                 /* Make sure the crtc and connector are running */
5631                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5632                         struct drm_encoder_helper_funcs *encoder_funcs;
5633                         struct drm_crtc_helper_funcs *crtc_funcs;
5634
5635                         crtc_funcs = crtc->helper_private;
5636                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5637
5638                         encoder_funcs = encoder->helper_private;
5639                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5640                 }
5641
5642                 return true;
5643         }
5644
5645         /* Find an unused one (if possible) */
5646         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5647                 i++;
5648                 if (!(encoder->possible_crtcs & (1 << i)))
5649                         continue;
5650                 if (!possible_crtc->enabled) {
5651                         crtc = possible_crtc;
5652                         break;
5653                 }
5654         }
5655
5656         /*
5657          * If we didn't find an unused CRTC, don't use any.
5658          */
5659         if (!crtc) {
5660                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5661                 return false;
5662         }
5663
5664         encoder->crtc = crtc;
5665         connector->encoder = encoder;
5666
5667         intel_crtc = to_intel_crtc(crtc);
5668         old->dpms_mode = intel_crtc->dpms_mode;
5669         old->load_detect_temp = true;
5670         old->release_fb = NULL;
5671
5672         if (!mode)
5673                 mode = &load_detect_mode;
5674
5675         old_fb = crtc->fb;
5676
5677         /* We need a framebuffer large enough to accommodate all accesses
5678          * that the plane may generate whilst we perform load detection.
5679          * We can not rely on the fbcon either being present (we get called
5680          * during its initialisation to detect all boot displays, or it may
5681          * not even exist) or that it is large enough to satisfy the
5682          * requested mode.
5683          */
5684         crtc->fb = mode_fits_in_fbdev(dev, mode);
5685         if (crtc->fb == NULL) {
5686                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5687                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5688                 old->release_fb = crtc->fb;
5689         } else
5690                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5691         if (IS_ERR(crtc->fb)) {
5692                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5693                 crtc->fb = old_fb;
5694                 return false;
5695         }
5696
5697         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5698                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5699                 if (old->release_fb)
5700                         old->release_fb->funcs->destroy(old->release_fb);
5701                 crtc->fb = old_fb;
5702                 return false;
5703         }
5704
5705         /* let the connector get through one full cycle before testing */
5706         intel_wait_for_vblank(dev, intel_crtc->pipe);
5707
5708         return true;
5709 }
5710
5711 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5712                                     struct drm_connector *connector,
5713                                     struct intel_load_detect_pipe *old)
5714 {
5715         struct drm_encoder *encoder = &intel_encoder->base;
5716         struct drm_device *dev = encoder->dev;
5717         struct drm_crtc *crtc = encoder->crtc;
5718         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5719         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5720
5721         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5722                       connector->base.id, drm_get_connector_name(connector),
5723                       encoder->base.id, drm_get_encoder_name(encoder));
5724
5725         if (old->load_detect_temp) {
5726                 connector->encoder = NULL;
5727                 drm_helper_disable_unused_functions(dev);
5728
5729                 if (old->release_fb)
5730                         old->release_fb->funcs->destroy(old->release_fb);
5731
5732                 return;
5733         }
5734
5735         /* Switch crtc and encoder back off if necessary */
5736         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5737                 encoder_funcs->dpms(encoder, old->dpms_mode);
5738                 crtc_funcs->dpms(crtc, old->dpms_mode);
5739         }
5740 }
5741
5742 /* Returns the clock of the currently programmed mode of the given pipe. */
5743 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5744 {
5745         struct drm_i915_private *dev_priv = dev->dev_private;
5746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5747         int pipe = intel_crtc->pipe;
5748         u32 dpll = I915_READ(DPLL(pipe));
5749         u32 fp;
5750         intel_clock_t clock;
5751
5752         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5753                 fp = I915_READ(FP0(pipe));
5754         else
5755                 fp = I915_READ(FP1(pipe));
5756
5757         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5758         if (IS_PINEVIEW(dev)) {
5759                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5760                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5761         } else {
5762                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5763                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5764         }
5765
5766         if (!IS_GEN2(dev)) {
5767                 if (IS_PINEVIEW(dev))
5768                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5769                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5770                 else
5771                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5772                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5773
5774                 switch (dpll & DPLL_MODE_MASK) {
5775                 case DPLLB_MODE_DAC_SERIAL:
5776                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5777                                 5 : 10;
5778                         break;
5779                 case DPLLB_MODE_LVDS:
5780                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5781                                 7 : 14;
5782                         break;
5783                 default:
5784                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5785                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5786                         return 0;
5787                 }
5788
5789                 /* XXX: Handle the 100Mhz refclk */
5790                 intel_clock(dev, 96000, &clock);
5791         } else {
5792                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5793
5794                 if (is_lvds) {
5795                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5796                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5797                         clock.p2 = 14;
5798
5799                         if ((dpll & PLL_REF_INPUT_MASK) ==
5800                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5801                                 /* XXX: might not be 66MHz */
5802                                 intel_clock(dev, 66000, &clock);
5803                         } else
5804                                 intel_clock(dev, 48000, &clock);
5805                 } else {
5806                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5807                                 clock.p1 = 2;
5808                         else {
5809                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5810                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5811                         }
5812                         if (dpll & PLL_P2_DIVIDE_BY_4)
5813                                 clock.p2 = 4;
5814                         else
5815                                 clock.p2 = 2;
5816
5817                         intel_clock(dev, 48000, &clock);
5818                 }
5819         }
5820
5821         /* XXX: It would be nice to validate the clocks, but we can't reuse
5822          * i830PllIsValid() because it relies on the xf86_config connector
5823          * configuration being accurate, which it isn't necessarily.
5824          */
5825
5826         return clock.dot;
5827 }
5828
5829 /** Returns the currently programmed mode of the given pipe. */
5830 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5831                                              struct drm_crtc *crtc)
5832 {
5833         struct drm_i915_private *dev_priv = dev->dev_private;
5834         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5835         int pipe = intel_crtc->pipe;
5836         struct drm_display_mode *mode;
5837         int htot = I915_READ(HTOTAL(pipe));
5838         int hsync = I915_READ(HSYNC(pipe));
5839         int vtot = I915_READ(VTOTAL(pipe));
5840         int vsync = I915_READ(VSYNC(pipe));
5841
5842         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5843         if (!mode)
5844                 return NULL;
5845
5846         mode->clock = intel_crtc_clock_get(dev, crtc);
5847         mode->hdisplay = (htot & 0xffff) + 1;
5848         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5849         mode->hsync_start = (hsync & 0xffff) + 1;
5850         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5851         mode->vdisplay = (vtot & 0xffff) + 1;
5852         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5853         mode->vsync_start = (vsync & 0xffff) + 1;
5854         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5855
5856         drm_mode_set_name(mode);
5857
5858         return mode;
5859 }
5860
5861 #define GPU_IDLE_TIMEOUT 500 /* ms */
5862
5863 /* When this timer fires, we've been idle for awhile */
5864 static void intel_gpu_idle_timer(unsigned long arg)
5865 {
5866         struct drm_device *dev = (struct drm_device *)arg;
5867         drm_i915_private_t *dev_priv = dev->dev_private;
5868
5869         if (!list_empty(&dev_priv->mm.active_list)) {
5870                 /* Still processing requests, so just re-arm the timer. */
5871                 mod_timer(&dev_priv->idle_timer, jiffies +
5872                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5873                 return;
5874         }
5875
5876         dev_priv->busy = false;
5877         queue_work(dev_priv->wq, &dev_priv->idle_work);
5878 }
5879
5880 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5881
5882 static void intel_crtc_idle_timer(unsigned long arg)
5883 {
5884         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5885         struct drm_crtc *crtc = &intel_crtc->base;
5886         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5887         struct intel_framebuffer *intel_fb;
5888
5889         intel_fb = to_intel_framebuffer(crtc->fb);
5890         if (intel_fb && intel_fb->obj->active) {
5891                 /* The framebuffer is still being accessed by the GPU. */
5892                 mod_timer(&intel_crtc->idle_timer, jiffies +
5893                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5894                 return;
5895         }
5896
5897         intel_crtc->busy = false;
5898         queue_work(dev_priv->wq, &dev_priv->idle_work);
5899 }
5900
5901 static void intel_increase_pllclock(struct drm_crtc *crtc)
5902 {
5903         struct drm_device *dev = crtc->dev;
5904         drm_i915_private_t *dev_priv = dev->dev_private;
5905         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5906         int pipe = intel_crtc->pipe;
5907         int dpll_reg = DPLL(pipe);
5908         int dpll;
5909
5910         if (HAS_PCH_SPLIT(dev))
5911                 return;
5912
5913         if (!dev_priv->lvds_downclock_avail)
5914                 return;
5915
5916         dpll = I915_READ(dpll_reg);
5917         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5918                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5919
5920                 assert_panel_unlocked(dev_priv, pipe);
5921
5922                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5923                 I915_WRITE(dpll_reg, dpll);
5924                 intel_wait_for_vblank(dev, pipe);
5925
5926                 dpll = I915_READ(dpll_reg);
5927                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5928                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5929         }
5930
5931         /* Schedule downclock */
5932         mod_timer(&intel_crtc->idle_timer, jiffies +
5933                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5934 }
5935
5936 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5937 {
5938         struct drm_device *dev = crtc->dev;
5939         drm_i915_private_t *dev_priv = dev->dev_private;
5940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5941
5942         if (HAS_PCH_SPLIT(dev))
5943                 return;
5944
5945         if (!dev_priv->lvds_downclock_avail)
5946                 return;
5947
5948         /*
5949          * Since this is called by a timer, we should never get here in
5950          * the manual case.
5951          */
5952         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5953                 int pipe = intel_crtc->pipe;
5954                 int dpll_reg = DPLL(pipe);
5955                 int dpll;
5956
5957                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5958
5959                 assert_panel_unlocked(dev_priv, pipe);
5960
5961                 dpll = I915_READ(dpll_reg);
5962                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5963                 I915_WRITE(dpll_reg, dpll);
5964                 intel_wait_for_vblank(dev, pipe);
5965                 dpll = I915_READ(dpll_reg);
5966                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5967                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5968         }
5969
5970 }
5971
5972 /**
5973  * intel_idle_update - adjust clocks for idleness
5974  * @work: work struct
5975  *
5976  * Either the GPU or display (or both) went idle.  Check the busy status
5977  * here and adjust the CRTC and GPU clocks as necessary.
5978  */
5979 static void intel_idle_update(struct work_struct *work)
5980 {
5981         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5982                                                     idle_work);
5983         struct drm_device *dev = dev_priv->dev;
5984         struct drm_crtc *crtc;
5985         struct intel_crtc *intel_crtc;
5986
5987         if (!i915_powersave)
5988                 return;
5989
5990         mutex_lock(&dev->struct_mutex);
5991
5992         i915_update_gfx_val(dev_priv);
5993
5994         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5995                 /* Skip inactive CRTCs */
5996                 if (!crtc->fb)
5997                         continue;
5998
5999                 intel_crtc = to_intel_crtc(crtc);
6000                 if (!intel_crtc->busy)
6001                         intel_decrease_pllclock(crtc);
6002         }
6003
6004
6005         mutex_unlock(&dev->struct_mutex);
6006 }
6007
6008 /**
6009  * intel_mark_busy - mark the GPU and possibly the display busy
6010  * @dev: drm device
6011  * @obj: object we're operating on
6012  *
6013  * Callers can use this function to indicate that the GPU is busy processing
6014  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6015  * buffer), we'll also mark the display as busy, so we know to increase its
6016  * clock frequency.
6017  */
6018 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6019 {
6020         drm_i915_private_t *dev_priv = dev->dev_private;
6021         struct drm_crtc *crtc = NULL;
6022         struct intel_framebuffer *intel_fb;
6023         struct intel_crtc *intel_crtc;
6024
6025         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6026                 return;
6027
6028         if (!dev_priv->busy) {
6029                 intel_sanitize_pm(dev);
6030                 dev_priv->busy = true;
6031         } else
6032                 mod_timer(&dev_priv->idle_timer, jiffies +
6033                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6034
6035         if (obj == NULL)
6036                 return;
6037
6038         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6039                 if (!crtc->fb)
6040                         continue;
6041
6042                 intel_crtc = to_intel_crtc(crtc);
6043                 intel_fb = to_intel_framebuffer(crtc->fb);
6044                 if (intel_fb->obj == obj) {
6045                         if (!intel_crtc->busy) {
6046                                 /* Non-busy -> busy, upclock */
6047                                 intel_increase_pllclock(crtc);
6048                                 intel_crtc->busy = true;
6049                         } else {
6050                                 /* Busy -> busy, put off timer */
6051                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6052                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6053                         }
6054                 }
6055         }
6056 }
6057
6058 static void intel_crtc_destroy(struct drm_crtc *crtc)
6059 {
6060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6061         struct drm_device *dev = crtc->dev;
6062         struct intel_unpin_work *work;
6063         unsigned long flags;
6064
6065         spin_lock_irqsave(&dev->event_lock, flags);
6066         work = intel_crtc->unpin_work;
6067         intel_crtc->unpin_work = NULL;
6068         spin_unlock_irqrestore(&dev->event_lock, flags);
6069
6070         if (work) {
6071                 cancel_work_sync(&work->work);
6072                 kfree(work);
6073         }
6074
6075         drm_crtc_cleanup(crtc);
6076
6077         kfree(intel_crtc);
6078 }
6079
6080 static void intel_unpin_work_fn(struct work_struct *__work)
6081 {
6082         struct intel_unpin_work *work =
6083                 container_of(__work, struct intel_unpin_work, work);
6084
6085         mutex_lock(&work->dev->struct_mutex);
6086         intel_unpin_fb_obj(work->old_fb_obj);
6087         drm_gem_object_unreference(&work->pending_flip_obj->base);
6088         drm_gem_object_unreference(&work->old_fb_obj->base);
6089
6090         intel_update_fbc(work->dev);
6091         mutex_unlock(&work->dev->struct_mutex);
6092         kfree(work);
6093 }
6094
6095 static void do_intel_finish_page_flip(struct drm_device *dev,
6096                                       struct drm_crtc *crtc)
6097 {
6098         drm_i915_private_t *dev_priv = dev->dev_private;
6099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6100         struct intel_unpin_work *work;
6101         struct drm_i915_gem_object *obj;
6102         struct drm_pending_vblank_event *e;
6103         struct timeval tnow, tvbl;
6104         unsigned long flags;
6105
6106         /* Ignore early vblank irqs */
6107         if (intel_crtc == NULL)
6108                 return;
6109
6110         do_gettimeofday(&tnow);
6111
6112         spin_lock_irqsave(&dev->event_lock, flags);
6113         work = intel_crtc->unpin_work;
6114         if (work == NULL || !work->pending) {
6115                 spin_unlock_irqrestore(&dev->event_lock, flags);
6116                 return;
6117         }
6118
6119         intel_crtc->unpin_work = NULL;
6120
6121         if (work->event) {
6122                 e = work->event;
6123                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6124
6125                 /* Called before vblank count and timestamps have
6126                  * been updated for the vblank interval of flip
6127                  * completion? Need to increment vblank count and
6128                  * add one videorefresh duration to returned timestamp
6129                  * to account for this. We assume this happened if we
6130                  * get called over 0.9 frame durations after the last
6131                  * timestamped vblank.
6132                  *
6133                  * This calculation can not be used with vrefresh rates
6134                  * below 5Hz (10Hz to be on the safe side) without
6135                  * promoting to 64 integers.
6136                  */
6137                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6138                     9 * crtc->framedur_ns) {
6139                         e->event.sequence++;
6140                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6141                                              crtc->framedur_ns);
6142                 }
6143
6144                 e->event.tv_sec = tvbl.tv_sec;
6145                 e->event.tv_usec = tvbl.tv_usec;
6146
6147                 list_add_tail(&e->base.link,
6148                               &e->base.file_priv->event_list);
6149                 wake_up_interruptible(&e->base.file_priv->event_wait);
6150         }
6151
6152         drm_vblank_put(dev, intel_crtc->pipe);
6153
6154         spin_unlock_irqrestore(&dev->event_lock, flags);
6155
6156         obj = work->old_fb_obj;
6157
6158         atomic_clear_mask(1 << intel_crtc->plane,
6159                           &obj->pending_flip.counter);
6160         if (atomic_read(&obj->pending_flip) == 0)
6161                 wake_up(&dev_priv->pending_flip_queue);
6162
6163         schedule_work(&work->work);
6164
6165         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6166 }
6167
6168 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6169 {
6170         drm_i915_private_t *dev_priv = dev->dev_private;
6171         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6172
6173         do_intel_finish_page_flip(dev, crtc);
6174 }
6175
6176 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6177 {
6178         drm_i915_private_t *dev_priv = dev->dev_private;
6179         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6180
6181         do_intel_finish_page_flip(dev, crtc);
6182 }
6183
6184 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6185 {
6186         drm_i915_private_t *dev_priv = dev->dev_private;
6187         struct intel_crtc *intel_crtc =
6188                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6189         unsigned long flags;
6190
6191         spin_lock_irqsave(&dev->event_lock, flags);
6192         if (intel_crtc->unpin_work) {
6193                 if ((++intel_crtc->unpin_work->pending) > 1)
6194                         DRM_ERROR("Prepared flip multiple times\n");
6195         } else {
6196                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6197         }
6198         spin_unlock_irqrestore(&dev->event_lock, flags);
6199 }
6200
6201 static int intel_gen2_queue_flip(struct drm_device *dev,
6202                                  struct drm_crtc *crtc,
6203                                  struct drm_framebuffer *fb,
6204                                  struct drm_i915_gem_object *obj)
6205 {
6206         struct drm_i915_private *dev_priv = dev->dev_private;
6207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6208         u32 flip_mask;
6209         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6210         int ret;
6211
6212         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6213         if (ret)
6214                 goto err;
6215
6216         ret = intel_ring_begin(ring, 6);
6217         if (ret)
6218                 goto err_unpin;
6219
6220         /* Can't queue multiple flips, so wait for the previous
6221          * one to finish before executing the next.
6222          */
6223         if (intel_crtc->plane)
6224                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6225         else
6226                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6227         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6228         intel_ring_emit(ring, MI_NOOP);
6229         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6230                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6231         intel_ring_emit(ring, fb->pitches[0]);
6232         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6233         intel_ring_emit(ring, 0); /* aux display base address, unused */
6234         intel_ring_advance(ring);
6235         return 0;
6236
6237 err_unpin:
6238         intel_unpin_fb_obj(obj);
6239 err:
6240         return ret;
6241 }
6242
6243 static int intel_gen3_queue_flip(struct drm_device *dev,
6244                                  struct drm_crtc *crtc,
6245                                  struct drm_framebuffer *fb,
6246                                  struct drm_i915_gem_object *obj)
6247 {
6248         struct drm_i915_private *dev_priv = dev->dev_private;
6249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6250         u32 flip_mask;
6251         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6252         int ret;
6253
6254         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6255         if (ret)
6256                 goto err;
6257
6258         ret = intel_ring_begin(ring, 6);
6259         if (ret)
6260                 goto err_unpin;
6261
6262         if (intel_crtc->plane)
6263                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6264         else
6265                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6266         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6267         intel_ring_emit(ring, MI_NOOP);
6268         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6269                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6270         intel_ring_emit(ring, fb->pitches[0]);
6271         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6272         intel_ring_emit(ring, MI_NOOP);
6273
6274         intel_ring_advance(ring);
6275         return 0;
6276
6277 err_unpin:
6278         intel_unpin_fb_obj(obj);
6279 err:
6280         return ret;
6281 }
6282
6283 static int intel_gen4_queue_flip(struct drm_device *dev,
6284                                  struct drm_crtc *crtc,
6285                                  struct drm_framebuffer *fb,
6286                                  struct drm_i915_gem_object *obj)
6287 {
6288         struct drm_i915_private *dev_priv = dev->dev_private;
6289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290         uint32_t pf, pipesrc;
6291         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6292         int ret;
6293
6294         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6295         if (ret)
6296                 goto err;
6297
6298         ret = intel_ring_begin(ring, 4);
6299         if (ret)
6300                 goto err_unpin;
6301
6302         /* i965+ uses the linear or tiled offsets from the
6303          * Display Registers (which do not change across a page-flip)
6304          * so we need only reprogram the base address.
6305          */
6306         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6307                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6308         intel_ring_emit(ring, fb->pitches[0]);
6309         intel_ring_emit(ring,
6310                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6311                         obj->tiling_mode);
6312
6313         /* XXX Enabling the panel-fitter across page-flip is so far
6314          * untested on non-native modes, so ignore it for now.
6315          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6316          */
6317         pf = 0;
6318         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6319         intel_ring_emit(ring, pf | pipesrc);
6320         intel_ring_advance(ring);
6321         return 0;
6322
6323 err_unpin:
6324         intel_unpin_fb_obj(obj);
6325 err:
6326         return ret;
6327 }
6328
6329 static int intel_gen6_queue_flip(struct drm_device *dev,
6330                                  struct drm_crtc *crtc,
6331                                  struct drm_framebuffer *fb,
6332                                  struct drm_i915_gem_object *obj)
6333 {
6334         struct drm_i915_private *dev_priv = dev->dev_private;
6335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6336         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6337         uint32_t pf, pipesrc;
6338         int ret;
6339
6340         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6341         if (ret)
6342                 goto err;
6343
6344         ret = intel_ring_begin(ring, 4);
6345         if (ret)
6346                 goto err_unpin;
6347
6348         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6349                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6350         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6351         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6352
6353         /* Contrary to the suggestions in the documentation,
6354          * "Enable Panel Fitter" does not seem to be required when page
6355          * flipping with a non-native mode, and worse causes a normal
6356          * modeset to fail.
6357          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6358          */
6359         pf = 0;
6360         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6361         intel_ring_emit(ring, pf | pipesrc);
6362         intel_ring_advance(ring);
6363         return 0;
6364
6365 err_unpin:
6366         intel_unpin_fb_obj(obj);
6367 err:
6368         return ret;
6369 }
6370
6371 /*
6372  * On gen7 we currently use the blit ring because (in early silicon at least)
6373  * the render ring doesn't give us interrpts for page flip completion, which
6374  * means clients will hang after the first flip is queued.  Fortunately the
6375  * blit ring generates interrupts properly, so use it instead.
6376  */
6377 static int intel_gen7_queue_flip(struct drm_device *dev,
6378                                  struct drm_crtc *crtc,
6379                                  struct drm_framebuffer *fb,
6380                                  struct drm_i915_gem_object *obj)
6381 {
6382         struct drm_i915_private *dev_priv = dev->dev_private;
6383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6384         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6385         uint32_t plane_bit = 0;
6386         int ret;
6387
6388         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6389         if (ret)
6390                 goto err;
6391
6392         switch(intel_crtc->plane) {
6393         case PLANE_A:
6394                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6395                 break;
6396         case PLANE_B:
6397                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6398                 break;
6399         case PLANE_C:
6400                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6401                 break;
6402         default:
6403                 WARN_ONCE(1, "unknown plane in flip command\n");
6404                 ret = -ENODEV;
6405                 goto err;
6406         }
6407
6408         ret = intel_ring_begin(ring, 4);
6409         if (ret)
6410                 goto err_unpin;
6411
6412         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6413         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6414         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6415         intel_ring_emit(ring, (MI_NOOP));
6416         intel_ring_advance(ring);
6417         return 0;
6418
6419 err_unpin:
6420         intel_unpin_fb_obj(obj);
6421 err:
6422         return ret;
6423 }
6424
6425 static int intel_default_queue_flip(struct drm_device *dev,
6426                                     struct drm_crtc *crtc,
6427                                     struct drm_framebuffer *fb,
6428                                     struct drm_i915_gem_object *obj)
6429 {
6430         return -ENODEV;
6431 }
6432
6433 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6434                                 struct drm_framebuffer *fb,
6435                                 struct drm_pending_vblank_event *event)
6436 {
6437         struct drm_device *dev = crtc->dev;
6438         struct drm_i915_private *dev_priv = dev->dev_private;
6439         struct intel_framebuffer *intel_fb;
6440         struct drm_i915_gem_object *obj;
6441         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6442         struct intel_unpin_work *work;
6443         unsigned long flags;
6444         int ret;
6445
6446         /* Can't change pixel format via MI display flips. */
6447         if (fb->pixel_format != crtc->fb->pixel_format)
6448                 return -EINVAL;
6449
6450         /*
6451          * TILEOFF/LINOFF registers can't be changed via MI display flips.
6452          * Note that pitch changes could also affect these register.
6453          */
6454         if (INTEL_INFO(dev)->gen > 3 &&
6455             (fb->offsets[0] != crtc->fb->offsets[0] ||
6456              fb->pitches[0] != crtc->fb->pitches[0]))
6457                 return -EINVAL;
6458
6459         work = kzalloc(sizeof *work, GFP_KERNEL);
6460         if (work == NULL)
6461                 return -ENOMEM;
6462
6463         work->event = event;
6464         work->dev = crtc->dev;
6465         intel_fb = to_intel_framebuffer(crtc->fb);
6466         work->old_fb_obj = intel_fb->obj;
6467         INIT_WORK(&work->work, intel_unpin_work_fn);
6468
6469         ret = drm_vblank_get(dev, intel_crtc->pipe);
6470         if (ret)
6471                 goto free_work;
6472
6473         /* We borrow the event spin lock for protecting unpin_work */
6474         spin_lock_irqsave(&dev->event_lock, flags);
6475         if (intel_crtc->unpin_work) {
6476                 spin_unlock_irqrestore(&dev->event_lock, flags);
6477                 kfree(work);
6478                 drm_vblank_put(dev, intel_crtc->pipe);
6479
6480                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6481                 return -EBUSY;
6482         }
6483         intel_crtc->unpin_work = work;
6484         spin_unlock_irqrestore(&dev->event_lock, flags);
6485
6486         intel_fb = to_intel_framebuffer(fb);
6487         obj = intel_fb->obj;
6488
6489         ret = i915_mutex_lock_interruptible(dev);
6490         if (ret)
6491                 goto cleanup;
6492
6493         /* Reference the objects for the scheduled work. */
6494         drm_gem_object_reference(&work->old_fb_obj->base);
6495         drm_gem_object_reference(&obj->base);
6496
6497         crtc->fb = fb;
6498
6499         work->pending_flip_obj = obj;
6500
6501         work->enable_stall_check = true;
6502
6503         /* Block clients from rendering to the new back buffer until
6504          * the flip occurs and the object is no longer visible.
6505          */
6506         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6507
6508         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6509         if (ret)
6510                 goto cleanup_pending;
6511
6512         intel_disable_fbc(dev);
6513         intel_mark_busy(dev, obj);
6514         mutex_unlock(&dev->struct_mutex);
6515
6516         trace_i915_flip_request(intel_crtc->plane, obj);
6517
6518         return 0;
6519
6520 cleanup_pending:
6521         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6522         drm_gem_object_unreference(&work->old_fb_obj->base);
6523         drm_gem_object_unreference(&obj->base);
6524         mutex_unlock(&dev->struct_mutex);
6525
6526 cleanup:
6527         spin_lock_irqsave(&dev->event_lock, flags);
6528         intel_crtc->unpin_work = NULL;
6529         spin_unlock_irqrestore(&dev->event_lock, flags);
6530
6531         drm_vblank_put(dev, intel_crtc->pipe);
6532 free_work:
6533         kfree(work);
6534
6535         return ret;
6536 }
6537
6538 static void intel_sanitize_modesetting(struct drm_device *dev,
6539                                        int pipe, int plane)
6540 {
6541         struct drm_i915_private *dev_priv = dev->dev_private;
6542         u32 reg, val;
6543         int i;
6544
6545         /* Clear any frame start delays used for debugging left by the BIOS */
6546         for_each_pipe(i) {
6547                 reg = PIPECONF(i);
6548                 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6549         }
6550
6551         if (HAS_PCH_SPLIT(dev))
6552                 return;
6553
6554         /* Who knows what state these registers were left in by the BIOS or
6555          * grub?
6556          *
6557          * If we leave the registers in a conflicting state (e.g. with the
6558          * display plane reading from the other pipe than the one we intend
6559          * to use) then when we attempt to teardown the active mode, we will
6560          * not disable the pipes and planes in the correct order -- leaving
6561          * a plane reading from a disabled pipe and possibly leading to
6562          * undefined behaviour.
6563          */
6564
6565         reg = DSPCNTR(plane);
6566         val = I915_READ(reg);
6567
6568         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6569                 return;
6570         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6571                 return;
6572
6573         /* This display plane is active and attached to the other CPU pipe. */
6574         pipe = !pipe;
6575
6576         /* Disable the plane and wait for it to stop reading from the pipe. */
6577         intel_disable_plane(dev_priv, plane, pipe);
6578         intel_disable_pipe(dev_priv, pipe);
6579 }
6580
6581 static void intel_crtc_reset(struct drm_crtc *crtc)
6582 {
6583         struct drm_device *dev = crtc->dev;
6584         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6585
6586         /* Reset flags back to the 'unknown' status so that they
6587          * will be correctly set on the initial modeset.
6588          */
6589         intel_crtc->dpms_mode = -1;
6590
6591         /* We need to fix up any BIOS configuration that conflicts with
6592          * our expectations.
6593          */
6594         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6595 }
6596
6597 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6598         .dpms = intel_crtc_dpms,
6599         .mode_fixup = intel_crtc_mode_fixup,
6600         .mode_set = intel_crtc_mode_set,
6601         .mode_set_base = intel_pipe_set_base,
6602         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6603         .load_lut = intel_crtc_load_lut,
6604         .disable = intel_crtc_disable,
6605 };
6606
6607 static const struct drm_crtc_funcs intel_crtc_funcs = {
6608         .reset = intel_crtc_reset,
6609         .cursor_set = intel_crtc_cursor_set,
6610         .cursor_move = intel_crtc_cursor_move,
6611         .gamma_set = intel_crtc_gamma_set,
6612         .set_config = drm_crtc_helper_set_config,
6613         .destroy = intel_crtc_destroy,
6614         .page_flip = intel_crtc_page_flip,
6615 };
6616
6617 static void intel_pch_pll_init(struct drm_device *dev)
6618 {
6619         drm_i915_private_t *dev_priv = dev->dev_private;
6620         int i;
6621
6622         if (dev_priv->num_pch_pll == 0) {
6623                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6624                 return;
6625         }
6626
6627         for (i = 0; i < dev_priv->num_pch_pll; i++) {
6628                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6629                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6630                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6631         }
6632 }
6633
6634 static void intel_crtc_init(struct drm_device *dev, int pipe)
6635 {
6636         drm_i915_private_t *dev_priv = dev->dev_private;
6637         struct intel_crtc *intel_crtc;
6638         int i;
6639
6640         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6641         if (intel_crtc == NULL)
6642                 return;
6643
6644         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6645
6646         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6647         for (i = 0; i < 256; i++) {
6648                 intel_crtc->lut_r[i] = i;
6649                 intel_crtc->lut_g[i] = i;
6650                 intel_crtc->lut_b[i] = i;
6651         }
6652
6653         /* Swap pipes & planes for FBC on pre-965 */
6654         intel_crtc->pipe = pipe;
6655         intel_crtc->plane = pipe;
6656         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6657                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6658                 intel_crtc->plane = !pipe;
6659         }
6660
6661         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6662                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6663         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6664         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6665
6666         intel_crtc_reset(&intel_crtc->base);
6667         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6668         intel_crtc->bpp = 24; /* default for pre-Ironlake */
6669
6670         if (HAS_PCH_SPLIT(dev)) {
6671                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6672                 intel_helper_funcs.commit = ironlake_crtc_commit;
6673         } else {
6674                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6675                 intel_helper_funcs.commit = i9xx_crtc_commit;
6676         }
6677
6678         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6679
6680         intel_crtc->busy = false;
6681
6682         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6683                     (unsigned long)intel_crtc);
6684 }
6685
6686 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6687                                 struct drm_file *file)
6688 {
6689         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6690         struct drm_mode_object *drmmode_obj;
6691         struct intel_crtc *crtc;
6692
6693         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6694                 return -ENODEV;
6695
6696         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6697                         DRM_MODE_OBJECT_CRTC);
6698
6699         if (!drmmode_obj) {
6700                 DRM_ERROR("no such CRTC id\n");
6701                 return -EINVAL;
6702         }
6703
6704         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6705         pipe_from_crtc_id->pipe = crtc->pipe;
6706
6707         return 0;
6708 }
6709
6710 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6711 {
6712         struct intel_encoder *encoder;
6713         int index_mask = 0;
6714         int entry = 0;
6715
6716         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6717                 if (type_mask & encoder->clone_mask)
6718                         index_mask |= (1 << entry);
6719                 entry++;
6720         }
6721
6722         return index_mask;
6723 }
6724
6725 static bool has_edp_a(struct drm_device *dev)
6726 {
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728
6729         if (!IS_MOBILE(dev))
6730                 return false;
6731
6732         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6733                 return false;
6734
6735         if (IS_GEN5(dev) &&
6736             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6737                 return false;
6738
6739         return true;
6740 }
6741
6742 static void intel_setup_outputs(struct drm_device *dev)
6743 {
6744         struct drm_i915_private *dev_priv = dev->dev_private;
6745         struct intel_encoder *encoder;
6746         bool dpd_is_edp = false;
6747         bool has_lvds;
6748
6749         has_lvds = intel_lvds_init(dev);
6750         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6751                 /* disable the panel fitter on everything but LVDS */
6752                 I915_WRITE(PFIT_CONTROL, 0);
6753         }
6754
6755         if (HAS_PCH_SPLIT(dev)) {
6756                 dpd_is_edp = intel_dpd_is_edp(dev);
6757
6758                 if (has_edp_a(dev))
6759                         intel_dp_init(dev, DP_A);
6760
6761                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6762                         intel_dp_init(dev, PCH_DP_D);
6763         }
6764
6765         intel_crt_init(dev);
6766
6767         if (IS_HASWELL(dev)) {
6768                 int found;
6769
6770                 /* Haswell uses DDI functions to detect digital outputs */
6771                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6772                 /* DDI A only supports eDP */
6773                 if (found)
6774                         intel_ddi_init(dev, PORT_A);
6775
6776                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
6777                  * register */
6778                 found = I915_READ(SFUSE_STRAP);
6779
6780                 if (found & SFUSE_STRAP_DDIB_DETECTED)
6781                         intel_ddi_init(dev, PORT_B);
6782                 if (found & SFUSE_STRAP_DDIC_DETECTED)
6783                         intel_ddi_init(dev, PORT_C);
6784                 if (found & SFUSE_STRAP_DDID_DETECTED)
6785                         intel_ddi_init(dev, PORT_D);
6786         } else if (HAS_PCH_SPLIT(dev)) {
6787                 int found;
6788
6789                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6790                         /* PCH SDVOB multiplex with HDMIB */
6791                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
6792                         if (!found)
6793                                 intel_hdmi_init(dev, HDMIB);
6794                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6795                                 intel_dp_init(dev, PCH_DP_B);
6796                 }
6797
6798                 if (I915_READ(HDMIC) & PORT_DETECTED)
6799                         intel_hdmi_init(dev, HDMIC);
6800
6801                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6802                         intel_hdmi_init(dev, HDMID);
6803
6804                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6805                         intel_dp_init(dev, PCH_DP_C);
6806
6807                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6808                         intel_dp_init(dev, PCH_DP_D);
6809         } else if (IS_VALLEYVIEW(dev)) {
6810                 int found;
6811
6812                 if (I915_READ(SDVOB) & PORT_DETECTED) {
6813                         /* SDVOB multiplex with HDMIB */
6814                         found = intel_sdvo_init(dev, SDVOB, true);
6815                         if (!found)
6816                                 intel_hdmi_init(dev, SDVOB);
6817                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
6818                                 intel_dp_init(dev, DP_B);
6819                 }
6820
6821                 if (I915_READ(SDVOC) & PORT_DETECTED)
6822                         intel_hdmi_init(dev, SDVOC);
6823
6824                 /* Shares lanes with HDMI on SDVOC */
6825                 if (I915_READ(DP_C) & DP_DETECTED)
6826                         intel_dp_init(dev, DP_C);
6827         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6828                 bool found = false;
6829
6830                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6831                         DRM_DEBUG_KMS("probing SDVOB\n");
6832                         found = intel_sdvo_init(dev, SDVOB, true);
6833                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6834                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6835                                 intel_hdmi_init(dev, SDVOB);
6836                         }
6837
6838                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6839                                 DRM_DEBUG_KMS("probing DP_B\n");
6840                                 intel_dp_init(dev, DP_B);
6841                         }
6842                 }
6843
6844                 /* Before G4X SDVOC doesn't have its own detect register */
6845
6846                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6847                         DRM_DEBUG_KMS("probing SDVOC\n");
6848                         found = intel_sdvo_init(dev, SDVOC, false);
6849                 }
6850
6851                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6852
6853                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6854                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6855                                 intel_hdmi_init(dev, SDVOC);
6856                         }
6857                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6858                                 DRM_DEBUG_KMS("probing DP_C\n");
6859                                 intel_dp_init(dev, DP_C);
6860                         }
6861                 }
6862
6863                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6864                     (I915_READ(DP_D) & DP_DETECTED)) {
6865                         DRM_DEBUG_KMS("probing DP_D\n");
6866                         intel_dp_init(dev, DP_D);
6867                 }
6868         } else if (IS_GEN2(dev))
6869                 intel_dvo_init(dev);
6870
6871         if (SUPPORTS_TV(dev))
6872                 intel_tv_init(dev);
6873
6874         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6875                 encoder->base.possible_crtcs = encoder->crtc_mask;
6876                 encoder->base.possible_clones =
6877                         intel_encoder_clones(dev, encoder->clone_mask);
6878         }
6879
6880         /* disable all the possible outputs/crtcs before entering KMS mode */
6881         drm_helper_disable_unused_functions(dev);
6882
6883         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6884                 ironlake_init_pch_refclk(dev);
6885 }
6886
6887 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6888 {
6889         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6890
6891         drm_framebuffer_cleanup(fb);
6892         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6893
6894         kfree(intel_fb);
6895 }
6896
6897 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6898                                                 struct drm_file *file,
6899                                                 unsigned int *handle)
6900 {
6901         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6902         struct drm_i915_gem_object *obj = intel_fb->obj;
6903
6904         return drm_gem_handle_create(file, &obj->base, handle);
6905 }
6906
6907 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6908         .destroy = intel_user_framebuffer_destroy,
6909         .create_handle = intel_user_framebuffer_create_handle,
6910 };
6911
6912 int intel_framebuffer_init(struct drm_device *dev,
6913                            struct intel_framebuffer *intel_fb,
6914                            struct drm_mode_fb_cmd2 *mode_cmd,
6915                            struct drm_i915_gem_object *obj)
6916 {
6917         int ret;
6918
6919         if (obj->tiling_mode == I915_TILING_Y)
6920                 return -EINVAL;
6921
6922         if (mode_cmd->pitches[0] & 63)
6923                 return -EINVAL;
6924
6925         switch (mode_cmd->pixel_format) {
6926         case DRM_FORMAT_RGB332:
6927         case DRM_FORMAT_RGB565:
6928         case DRM_FORMAT_XRGB8888:
6929         case DRM_FORMAT_XBGR8888:
6930         case DRM_FORMAT_ARGB8888:
6931         case DRM_FORMAT_XRGB2101010:
6932         case DRM_FORMAT_ARGB2101010:
6933                 /* RGB formats are common across chipsets */
6934                 break;
6935         case DRM_FORMAT_YUYV:
6936         case DRM_FORMAT_UYVY:
6937         case DRM_FORMAT_YVYU:
6938         case DRM_FORMAT_VYUY:
6939                 break;
6940         default:
6941                 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6942                                 mode_cmd->pixel_format);
6943                 return -EINVAL;
6944         }
6945
6946         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6947         if (ret) {
6948                 DRM_ERROR("framebuffer init failed %d\n", ret);
6949                 return ret;
6950         }
6951
6952         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6953         intel_fb->obj = obj;
6954         return 0;
6955 }
6956
6957 static struct drm_framebuffer *
6958 intel_user_framebuffer_create(struct drm_device *dev,
6959                               struct drm_file *filp,
6960                               struct drm_mode_fb_cmd2 *mode_cmd)
6961 {
6962         struct drm_i915_gem_object *obj;
6963
6964         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6965                                                 mode_cmd->handles[0]));
6966         if (&obj->base == NULL)
6967                 return ERR_PTR(-ENOENT);
6968
6969         return intel_framebuffer_create(dev, mode_cmd, obj);
6970 }
6971
6972 static const struct drm_mode_config_funcs intel_mode_funcs = {
6973         .fb_create = intel_user_framebuffer_create,
6974         .output_poll_changed = intel_fb_output_poll_changed,
6975 };
6976
6977 /* Set up chip specific display functions */
6978 static void intel_init_display(struct drm_device *dev)
6979 {
6980         struct drm_i915_private *dev_priv = dev->dev_private;
6981
6982         /* We always want a DPMS function */
6983         if (HAS_PCH_SPLIT(dev)) {
6984                 dev_priv->display.dpms = ironlake_crtc_dpms;
6985                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6986                 dev_priv->display.off = ironlake_crtc_off;
6987                 dev_priv->display.update_plane = ironlake_update_plane;
6988         } else {
6989                 dev_priv->display.dpms = i9xx_crtc_dpms;
6990                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6991                 dev_priv->display.off = i9xx_crtc_off;
6992                 dev_priv->display.update_plane = i9xx_update_plane;
6993         }
6994
6995         /* Returns the core display clock speed */
6996         if (IS_VALLEYVIEW(dev))
6997                 dev_priv->display.get_display_clock_speed =
6998                         valleyview_get_display_clock_speed;
6999         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
7000                 dev_priv->display.get_display_clock_speed =
7001                         i945_get_display_clock_speed;
7002         else if (IS_I915G(dev))
7003                 dev_priv->display.get_display_clock_speed =
7004                         i915_get_display_clock_speed;
7005         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7006                 dev_priv->display.get_display_clock_speed =
7007                         i9xx_misc_get_display_clock_speed;
7008         else if (IS_I915GM(dev))
7009                 dev_priv->display.get_display_clock_speed =
7010                         i915gm_get_display_clock_speed;
7011         else if (IS_I865G(dev))
7012                 dev_priv->display.get_display_clock_speed =
7013                         i865_get_display_clock_speed;
7014         else if (IS_I85X(dev))
7015                 dev_priv->display.get_display_clock_speed =
7016                         i855_get_display_clock_speed;
7017         else /* 852, 830 */
7018                 dev_priv->display.get_display_clock_speed =
7019                         i830_get_display_clock_speed;
7020
7021         if (HAS_PCH_SPLIT(dev)) {
7022                 if (IS_GEN5(dev)) {
7023                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7024                         dev_priv->display.write_eld = ironlake_write_eld;
7025                 } else if (IS_GEN6(dev)) {
7026                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7027                         dev_priv->display.write_eld = ironlake_write_eld;
7028                 } else if (IS_IVYBRIDGE(dev)) {
7029                         /* FIXME: detect B0+ stepping and use auto training */
7030                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7031                         dev_priv->display.write_eld = ironlake_write_eld;
7032                 } else if (IS_HASWELL(dev)) {
7033                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7034                         dev_priv->display.write_eld = ironlake_write_eld;
7035                 } else
7036                         dev_priv->display.update_wm = NULL;
7037         } else if (IS_G4X(dev)) {
7038                 dev_priv->display.write_eld = g4x_write_eld;
7039         }
7040
7041         /* Default just returns -ENODEV to indicate unsupported */
7042         dev_priv->display.queue_flip = intel_default_queue_flip;
7043
7044         switch (INTEL_INFO(dev)->gen) {
7045         case 2:
7046                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7047                 break;
7048
7049         case 3:
7050                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7051                 break;
7052
7053         case 4:
7054         case 5:
7055                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7056                 break;
7057
7058         case 6:
7059                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7060                 break;
7061         case 7:
7062                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7063                 break;
7064         }
7065 }
7066
7067 /*
7068  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7069  * resume, or other times.  This quirk makes sure that's the case for
7070  * affected systems.
7071  */
7072 static void quirk_pipea_force(struct drm_device *dev)
7073 {
7074         struct drm_i915_private *dev_priv = dev->dev_private;
7075
7076         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7077         DRM_INFO("applying pipe a force quirk\n");
7078 }
7079
7080 /*
7081  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7082  */
7083 static void quirk_ssc_force_disable(struct drm_device *dev)
7084 {
7085         struct drm_i915_private *dev_priv = dev->dev_private;
7086         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7087         DRM_INFO("applying lvds SSC disable quirk\n");
7088 }
7089
7090 /*
7091  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7092  * brightness value
7093  */
7094 static void quirk_invert_brightness(struct drm_device *dev)
7095 {
7096         struct drm_i915_private *dev_priv = dev->dev_private;
7097         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7098         DRM_INFO("applying inverted panel brightness quirk\n");
7099 }
7100
7101 struct intel_quirk {
7102         int device;
7103         int subsystem_vendor;
7104         int subsystem_device;
7105         void (*hook)(struct drm_device *dev);
7106 };
7107
7108 static struct intel_quirk intel_quirks[] = {
7109         /* HP Mini needs pipe A force quirk (LP: #322104) */
7110         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7111
7112         /* Thinkpad R31 needs pipe A force quirk */
7113         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7114         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7115         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7116
7117         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7118         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7119         /* ThinkPad X40 needs pipe A force quirk */
7120
7121         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7122         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7123
7124         /* 855 & before need to leave pipe A & dpll A up */
7125         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7126         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7127
7128         /* Lenovo U160 cannot use SSC on LVDS */
7129         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7130
7131         /* Sony Vaio Y cannot use SSC on LVDS */
7132         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7133
7134         /* Acer Aspire 5734Z must invert backlight brightness */
7135         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7136 };
7137
7138 static void intel_init_quirks(struct drm_device *dev)
7139 {
7140         struct pci_dev *d = dev->pdev;
7141         int i;
7142
7143         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7144                 struct intel_quirk *q = &intel_quirks[i];
7145
7146                 if (d->device == q->device &&
7147                     (d->subsystem_vendor == q->subsystem_vendor ||
7148                      q->subsystem_vendor == PCI_ANY_ID) &&
7149                     (d->subsystem_device == q->subsystem_device ||
7150                      q->subsystem_device == PCI_ANY_ID))
7151                         q->hook(dev);
7152         }
7153 }
7154
7155 /* Disable the VGA plane that we never use */
7156 static void i915_disable_vga(struct drm_device *dev)
7157 {
7158         struct drm_i915_private *dev_priv = dev->dev_private;
7159         u8 sr1;
7160         u32 vga_reg;
7161
7162         if (HAS_PCH_SPLIT(dev))
7163                 vga_reg = CPU_VGACNTRL;
7164         else
7165                 vga_reg = VGACNTRL;
7166
7167         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7168         outb(SR01, VGA_SR_INDEX);
7169         sr1 = inb(VGA_SR_DATA);
7170         outb(sr1 | 1<<5, VGA_SR_DATA);
7171         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7172         udelay(300);
7173
7174         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7175         POSTING_READ(vga_reg);
7176 }
7177
7178 void intel_modeset_init_hw(struct drm_device *dev)
7179 {
7180         /* We attempt to init the necessary power wells early in the initialization
7181          * time, so the subsystems that expect power to be enabled can work.
7182          */
7183         intel_init_power_wells(dev);
7184
7185         intel_prepare_ddi(dev);
7186
7187         intel_init_clock_gating(dev);
7188
7189         mutex_lock(&dev->struct_mutex);
7190         intel_enable_gt_powersave(dev);
7191         mutex_unlock(&dev->struct_mutex);
7192 }
7193
7194 void intel_modeset_init(struct drm_device *dev)
7195 {
7196         struct drm_i915_private *dev_priv = dev->dev_private;
7197         int i, ret;
7198
7199         drm_mode_config_init(dev);
7200
7201         dev->mode_config.min_width = 0;
7202         dev->mode_config.min_height = 0;
7203
7204         dev->mode_config.preferred_depth = 24;
7205         dev->mode_config.prefer_shadow = 1;
7206
7207         dev->mode_config.funcs = &intel_mode_funcs;
7208
7209         intel_init_quirks(dev);
7210
7211         intel_init_pm(dev);
7212
7213         intel_init_display(dev);
7214
7215         if (IS_GEN2(dev)) {
7216                 dev->mode_config.max_width = 2048;
7217                 dev->mode_config.max_height = 2048;
7218         } else if (IS_GEN3(dev)) {
7219                 dev->mode_config.max_width = 4096;
7220                 dev->mode_config.max_height = 4096;
7221         } else {
7222                 dev->mode_config.max_width = 8192;
7223                 dev->mode_config.max_height = 8192;
7224         }
7225         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7226
7227         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7228                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7229
7230         for (i = 0; i < dev_priv->num_pipe; i++) {
7231                 intel_crtc_init(dev, i);
7232                 ret = intel_plane_init(dev, i);
7233                 if (ret)
7234                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7235         }
7236
7237         intel_pch_pll_init(dev);
7238
7239         /* Just disable it once at startup */
7240         i915_disable_vga(dev);
7241         intel_setup_outputs(dev);
7242
7243         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7244         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7245                     (unsigned long)dev);
7246 }
7247
7248 void intel_modeset_gem_init(struct drm_device *dev)
7249 {
7250         intel_modeset_init_hw(dev);
7251
7252         intel_setup_overlay(dev);
7253 }
7254
7255 void intel_modeset_cleanup(struct drm_device *dev)
7256 {
7257         struct drm_i915_private *dev_priv = dev->dev_private;
7258         struct drm_crtc *crtc;
7259         struct intel_crtc *intel_crtc;
7260
7261         drm_kms_helper_poll_fini(dev);
7262         mutex_lock(&dev->struct_mutex);
7263
7264         intel_unregister_dsm_handler();
7265
7266
7267         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7268                 /* Skip inactive CRTCs */
7269                 if (!crtc->fb)
7270                         continue;
7271
7272                 intel_crtc = to_intel_crtc(crtc);
7273                 intel_increase_pllclock(crtc);
7274         }
7275
7276         intel_disable_fbc(dev);
7277
7278         intel_disable_gt_powersave(dev);
7279
7280         ironlake_teardown_rc6(dev);
7281
7282         if (IS_VALLEYVIEW(dev))
7283                 vlv_init_dpio(dev);
7284
7285         mutex_unlock(&dev->struct_mutex);
7286
7287         /* Disable the irq before mode object teardown, for the irq might
7288          * enqueue unpin/hotplug work. */
7289         drm_irq_uninstall(dev);
7290         cancel_work_sync(&dev_priv->hotplug_work);
7291         cancel_work_sync(&dev_priv->rps_work);
7292
7293         /* flush any delayed tasks or pending work */
7294         flush_scheduled_work();
7295
7296         /* Shut off idle work before the crtcs get freed. */
7297         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7298                 intel_crtc = to_intel_crtc(crtc);
7299                 del_timer_sync(&intel_crtc->idle_timer);
7300         }
7301         del_timer_sync(&dev_priv->idle_timer);
7302         cancel_work_sync(&dev_priv->idle_work);
7303
7304         drm_mode_config_cleanup(dev);
7305 }
7306
7307 /*
7308  * Return which encoder is currently attached for connector.
7309  */
7310 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7311 {
7312         return &intel_attached_encoder(connector)->base;
7313 }
7314
7315 void intel_connector_attach_encoder(struct intel_connector *connector,
7316                                     struct intel_encoder *encoder)
7317 {
7318         connector->encoder = encoder;
7319         drm_mode_connector_attach_encoder(&connector->base,
7320                                           &encoder->base);
7321 }
7322
7323 /*
7324  * set vga decode state - true == enable VGA decode
7325  */
7326 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7327 {
7328         struct drm_i915_private *dev_priv = dev->dev_private;
7329         u16 gmch_ctrl;
7330
7331         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7332         if (state)
7333                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7334         else
7335                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7336         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7337         return 0;
7338 }
7339
7340 #ifdef CONFIG_DEBUG_FS
7341 #include <linux/seq_file.h>
7342
7343 struct intel_display_error_state {
7344         struct intel_cursor_error_state {
7345                 u32 control;
7346                 u32 position;
7347                 u32 base;
7348                 u32 size;
7349         } cursor[2];
7350
7351         struct intel_pipe_error_state {
7352                 u32 conf;
7353                 u32 source;
7354
7355                 u32 htotal;
7356                 u32 hblank;
7357                 u32 hsync;
7358                 u32 vtotal;
7359                 u32 vblank;
7360                 u32 vsync;
7361         } pipe[2];
7362
7363         struct intel_plane_error_state {
7364                 u32 control;
7365                 u32 stride;
7366                 u32 size;
7367                 u32 pos;
7368                 u32 addr;
7369                 u32 surface;
7370                 u32 tile_offset;
7371         } plane[2];
7372 };
7373
7374 struct intel_display_error_state *
7375 intel_display_capture_error_state(struct drm_device *dev)
7376 {
7377         drm_i915_private_t *dev_priv = dev->dev_private;
7378         struct intel_display_error_state *error;
7379         int i;
7380
7381         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7382         if (error == NULL)
7383                 return NULL;
7384
7385         for (i = 0; i < 2; i++) {
7386                 error->cursor[i].control = I915_READ(CURCNTR(i));
7387                 error->cursor[i].position = I915_READ(CURPOS(i));
7388                 error->cursor[i].base = I915_READ(CURBASE(i));
7389
7390                 error->plane[i].control = I915_READ(DSPCNTR(i));
7391                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7392                 error->plane[i].size = I915_READ(DSPSIZE(i));
7393                 error->plane[i].pos = I915_READ(DSPPOS(i));
7394                 error->plane[i].addr = I915_READ(DSPADDR(i));
7395                 if (INTEL_INFO(dev)->gen >= 4) {
7396                         error->plane[i].surface = I915_READ(DSPSURF(i));
7397                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7398                 }
7399
7400                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7401                 error->pipe[i].source = I915_READ(PIPESRC(i));
7402                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7403                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7404                 error->pipe[i].hsync = I915_READ(HSYNC(i));
7405                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7406                 error->pipe[i].vblank = I915_READ(VBLANK(i));
7407                 error->pipe[i].vsync = I915_READ(VSYNC(i));
7408         }
7409
7410         return error;
7411 }
7412
7413 void
7414 intel_display_print_error_state(struct seq_file *m,
7415                                 struct drm_device *dev,
7416                                 struct intel_display_error_state *error)
7417 {
7418         int i;
7419
7420         for (i = 0; i < 2; i++) {
7421                 seq_printf(m, "Pipe [%d]:\n", i);
7422                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7423                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7424                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7425                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7426                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7427                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7428                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7429                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7430
7431                 seq_printf(m, "Plane [%d]:\n", i);
7432                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7433                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7434                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7435                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7436                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7437                 if (INTEL_INFO(dev)->gen >= 4) {
7438                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7439                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7440                 }
7441
7442                 seq_printf(m, "Cursor [%d]:\n", i);
7443                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7444                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7445                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7446         }
7447 }
7448 #endif