]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge remote-tracking branches 'spi/topic/omap-100k', 'spi/topic/omap-uwire', 'spi...
[linux-beck.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50         DRM_FORMAT_C8, \
51         DRM_FORMAT_RGB565, \
52         DRM_FORMAT_XRGB8888, \
53         DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57         COMMON_PRIMARY_FORMATS,
58         DRM_FORMAT_XRGB1555,
59         DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64         COMMON_PRIMARY_FORMATS, \
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_ABGR8888,
67         DRM_FORMAT_XRGB2101010,
68         DRM_FORMAT_ARGB2101010,
69         DRM_FORMAT_XBGR2101010,
70         DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75         DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86                           int x, int y, struct drm_framebuffer *old_fb);
87 static int intel_framebuffer_init(struct drm_device *dev,
88                                   struct intel_framebuffer *ifb,
89                                   struct drm_mode_fb_cmd2 *mode_cmd,
90                                   struct drm_i915_gem_object *obj);
91 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
93 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
94                                          struct intel_link_m_n *m_n,
95                                          struct intel_link_m_n *m2_n2);
96 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
97 static void haswell_set_pipeconf(struct drm_crtc *crtc);
98 static void intel_set_pipe_csc(struct drm_crtc *crtc);
99 static void vlv_prepare_pll(struct intel_crtc *crtc,
100                             const struct intel_crtc_state *pipe_config);
101 static void chv_prepare_pll(struct intel_crtc *crtc,
102                             const struct intel_crtc_state *pipe_config);
103 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
105
106 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
107 {
108         if (!connector->mst_port)
109                 return connector->encoder;
110         else
111                 return &connector->mst_port->mst_encoders[pipe]->base;
112 }
113
114 typedef struct {
115         int     min, max;
116 } intel_range_t;
117
118 typedef struct {
119         int     dot_limit;
120         int     p2_slow, p2_fast;
121 } intel_p2_t;
122
123 typedef struct intel_limit intel_limit_t;
124 struct intel_limit {
125         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
126         intel_p2_t          p2;
127 };
128
129 int
130 intel_pch_rawclk(struct drm_device *dev)
131 {
132         struct drm_i915_private *dev_priv = dev->dev_private;
133
134         WARN_ON(!HAS_PCH_SPLIT(dev));
135
136         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
137 }
138
139 static inline u32 /* units of 100MHz */
140 intel_fdi_link_freq(struct drm_device *dev)
141 {
142         if (IS_GEN5(dev)) {
143                 struct drm_i915_private *dev_priv = dev->dev_private;
144                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
145         } else
146                 return 27;
147 }
148
149 static const intel_limit_t intel_limits_i8xx_dac = {
150         .dot = { .min = 25000, .max = 350000 },
151         .vco = { .min = 908000, .max = 1512000 },
152         .n = { .min = 2, .max = 16 },
153         .m = { .min = 96, .max = 140 },
154         .m1 = { .min = 18, .max = 26 },
155         .m2 = { .min = 6, .max = 16 },
156         .p = { .min = 4, .max = 128 },
157         .p1 = { .min = 2, .max = 33 },
158         .p2 = { .dot_limit = 165000,
159                 .p2_slow = 4, .p2_fast = 2 },
160 };
161
162 static const intel_limit_t intel_limits_i8xx_dvo = {
163         .dot = { .min = 25000, .max = 350000 },
164         .vco = { .min = 908000, .max = 1512000 },
165         .n = { .min = 2, .max = 16 },
166         .m = { .min = 96, .max = 140 },
167         .m1 = { .min = 18, .max = 26 },
168         .m2 = { .min = 6, .max = 16 },
169         .p = { .min = 4, .max = 128 },
170         .p1 = { .min = 2, .max = 33 },
171         .p2 = { .dot_limit = 165000,
172                 .p2_slow = 4, .p2_fast = 4 },
173 };
174
175 static const intel_limit_t intel_limits_i8xx_lvds = {
176         .dot = { .min = 25000, .max = 350000 },
177         .vco = { .min = 908000, .max = 1512000 },
178         .n = { .min = 2, .max = 16 },
179         .m = { .min = 96, .max = 140 },
180         .m1 = { .min = 18, .max = 26 },
181         .m2 = { .min = 6, .max = 16 },
182         .p = { .min = 4, .max = 128 },
183         .p1 = { .min = 1, .max = 6 },
184         .p2 = { .dot_limit = 165000,
185                 .p2_slow = 14, .p2_fast = 7 },
186 };
187
188 static const intel_limit_t intel_limits_i9xx_sdvo = {
189         .dot = { .min = 20000, .max = 400000 },
190         .vco = { .min = 1400000, .max = 2800000 },
191         .n = { .min = 1, .max = 6 },
192         .m = { .min = 70, .max = 120 },
193         .m1 = { .min = 8, .max = 18 },
194         .m2 = { .min = 3, .max = 7 },
195         .p = { .min = 5, .max = 80 },
196         .p1 = { .min = 1, .max = 8 },
197         .p2 = { .dot_limit = 200000,
198                 .p2_slow = 10, .p2_fast = 5 },
199 };
200
201 static const intel_limit_t intel_limits_i9xx_lvds = {
202         .dot = { .min = 20000, .max = 400000 },
203         .vco = { .min = 1400000, .max = 2800000 },
204         .n = { .min = 1, .max = 6 },
205         .m = { .min = 70, .max = 120 },
206         .m1 = { .min = 8, .max = 18 },
207         .m2 = { .min = 3, .max = 7 },
208         .p = { .min = 7, .max = 98 },
209         .p1 = { .min = 1, .max = 8 },
210         .p2 = { .dot_limit = 112000,
211                 .p2_slow = 14, .p2_fast = 7 },
212 };
213
214
215 static const intel_limit_t intel_limits_g4x_sdvo = {
216         .dot = { .min = 25000, .max = 270000 },
217         .vco = { .min = 1750000, .max = 3500000},
218         .n = { .min = 1, .max = 4 },
219         .m = { .min = 104, .max = 138 },
220         .m1 = { .min = 17, .max = 23 },
221         .m2 = { .min = 5, .max = 11 },
222         .p = { .min = 10, .max = 30 },
223         .p1 = { .min = 1, .max = 3},
224         .p2 = { .dot_limit = 270000,
225                 .p2_slow = 10,
226                 .p2_fast = 10
227         },
228 };
229
230 static const intel_limit_t intel_limits_g4x_hdmi = {
231         .dot = { .min = 22000, .max = 400000 },
232         .vco = { .min = 1750000, .max = 3500000},
233         .n = { .min = 1, .max = 4 },
234         .m = { .min = 104, .max = 138 },
235         .m1 = { .min = 16, .max = 23 },
236         .m2 = { .min = 5, .max = 11 },
237         .p = { .min = 5, .max = 80 },
238         .p1 = { .min = 1, .max = 8},
239         .p2 = { .dot_limit = 165000,
240                 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
244         .dot = { .min = 20000, .max = 115000 },
245         .vco = { .min = 1750000, .max = 3500000 },
246         .n = { .min = 1, .max = 3 },
247         .m = { .min = 104, .max = 138 },
248         .m1 = { .min = 17, .max = 23 },
249         .m2 = { .min = 5, .max = 11 },
250         .p = { .min = 28, .max = 112 },
251         .p1 = { .min = 2, .max = 8 },
252         .p2 = { .dot_limit = 0,
253                 .p2_slow = 14, .p2_fast = 14
254         },
255 };
256
257 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
258         .dot = { .min = 80000, .max = 224000 },
259         .vco = { .min = 1750000, .max = 3500000 },
260         .n = { .min = 1, .max = 3 },
261         .m = { .min = 104, .max = 138 },
262         .m1 = { .min = 17, .max = 23 },
263         .m2 = { .min = 5, .max = 11 },
264         .p = { .min = 14, .max = 42 },
265         .p1 = { .min = 2, .max = 6 },
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 7, .p2_fast = 7
268         },
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284 };
285
286 static const intel_limit_t intel_limits_pineview_lvds = {
287         .dot = { .min = 20000, .max = 400000 },
288         .vco = { .min = 1700000, .max = 3500000 },
289         .n = { .min = 3, .max = 6 },
290         .m = { .min = 2, .max = 256 },
291         .m1 = { .min = 0, .max = 0 },
292         .m2 = { .min = 0, .max = 254 },
293         .p = { .min = 7, .max = 112 },
294         .p1 = { .min = 1, .max = 8 },
295         .p2 = { .dot_limit = 112000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 /* Ironlake / Sandybridge
300  *
301  * We calculate clock using (register_value + 2) for N/M1/M2, so here
302  * the range value for them is (actual_value - 2).
303  */
304 static const intel_limit_t intel_limits_ironlake_dac = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 5 },
308         .m = { .min = 79, .max = 127 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 5, .max = 80 },
312         .p1 = { .min = 1, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 10, .p2_fast = 5 },
315 };
316
317 static const intel_limit_t intel_limits_ironlake_single_lvds = {
318         .dot = { .min = 25000, .max = 350000 },
319         .vco = { .min = 1760000, .max = 3510000 },
320         .n = { .min = 1, .max = 3 },
321         .m = { .min = 79, .max = 118 },
322         .m1 = { .min = 12, .max = 22 },
323         .m2 = { .min = 5, .max = 9 },
324         .p = { .min = 28, .max = 112 },
325         .p1 = { .min = 2, .max = 8 },
326         .p2 = { .dot_limit = 225000,
327                 .p2_slow = 14, .p2_fast = 14 },
328 };
329
330 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
331         .dot = { .min = 25000, .max = 350000 },
332         .vco = { .min = 1760000, .max = 3510000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 79, .max = 127 },
335         .m1 = { .min = 12, .max = 22 },
336         .m2 = { .min = 5, .max = 9 },
337         .p = { .min = 14, .max = 56 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 225000,
340                 .p2_slow = 7, .p2_fast = 7 },
341 };
342
343 /* LVDS 100mhz refclk limits. */
344 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
345         .dot = { .min = 25000, .max = 350000 },
346         .vco = { .min = 1760000, .max = 3510000 },
347         .n = { .min = 1, .max = 2 },
348         .m = { .min = 79, .max = 126 },
349         .m1 = { .min = 12, .max = 22 },
350         .m2 = { .min = 5, .max = 9 },
351         .p = { .min = 28, .max = 112 },
352         .p1 = { .min = 2, .max = 8 },
353         .p2 = { .dot_limit = 225000,
354                 .p2_slow = 14, .p2_fast = 14 },
355 };
356
357 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
358         .dot = { .min = 25000, .max = 350000 },
359         .vco = { .min = 1760000, .max = 3510000 },
360         .n = { .min = 1, .max = 3 },
361         .m = { .min = 79, .max = 126 },
362         .m1 = { .min = 12, .max = 22 },
363         .m2 = { .min = 5, .max = 9 },
364         .p = { .min = 14, .max = 42 },
365         .p1 = { .min = 2, .max = 6 },
366         .p2 = { .dot_limit = 225000,
367                 .p2_slow = 7, .p2_fast = 7 },
368 };
369
370 static const intel_limit_t intel_limits_vlv = {
371          /*
372           * These are the data rate limits (measured in fast clocks)
373           * since those are the strictest limits we have. The fast
374           * clock and actual rate limits are more relaxed, so checking
375           * them would make no difference.
376           */
377         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
378         .vco = { .min = 4000000, .max = 6000000 },
379         .n = { .min = 1, .max = 7 },
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p1 = { .min = 2, .max = 3 },
383         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
384 };
385
386 static const intel_limit_t intel_limits_chv = {
387         /*
388          * These are the data rate limits (measured in fast clocks)
389          * since those are the strictest limits we have.  The fast
390          * clock and actual rate limits are more relaxed, so checking
391          * them would make no difference.
392          */
393         .dot = { .min = 25000 * 5, .max = 540000 * 5},
394         .vco = { .min = 4860000, .max = 6700000 },
395         .n = { .min = 1, .max = 1 },
396         .m1 = { .min = 2, .max = 2 },
397         .m2 = { .min = 24 << 22, .max = 175 << 22 },
398         .p1 = { .min = 2, .max = 4 },
399         .p2 = { .p2_slow = 1, .p2_fast = 14 },
400 };
401
402 static void vlv_clock(int refclk, intel_clock_t *clock)
403 {
404         clock->m = clock->m1 * clock->m2;
405         clock->p = clock->p1 * clock->p2;
406         if (WARN_ON(clock->n == 0 || clock->p == 0))
407                 return;
408         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
409         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
410 }
411
412 /**
413  * Returns whether any output on the specified pipe is of the specified type
414  */
415 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
416 {
417         struct drm_device *dev = crtc->base.dev;
418         struct intel_encoder *encoder;
419
420         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
421                 if (encoder->type == type)
422                         return true;
423
424         return false;
425 }
426
427 /**
428  * Returns whether any output on the specified pipe will have the specified
429  * type after a staged modeset is complete, i.e., the same as
430  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
431  * encoder->crtc.
432  */
433 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
434 {
435         struct drm_device *dev = crtc->base.dev;
436         struct intel_encoder *encoder;
437
438         for_each_intel_encoder(dev, encoder)
439                 if (encoder->new_crtc == crtc && encoder->type == type)
440                         return true;
441
442         return false;
443 }
444
445 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
446                                                 int refclk)
447 {
448         struct drm_device *dev = crtc->base.dev;
449         const intel_limit_t *limit;
450
451         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
452                 if (intel_is_dual_link_lvds(dev)) {
453                         if (refclk == 100000)
454                                 limit = &intel_limits_ironlake_dual_lvds_100m;
455                         else
456                                 limit = &intel_limits_ironlake_dual_lvds;
457                 } else {
458                         if (refclk == 100000)
459                                 limit = &intel_limits_ironlake_single_lvds_100m;
460                         else
461                                 limit = &intel_limits_ironlake_single_lvds;
462                 }
463         } else
464                 limit = &intel_limits_ironlake_dac;
465
466         return limit;
467 }
468
469 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
470 {
471         struct drm_device *dev = crtc->base.dev;
472         const intel_limit_t *limit;
473
474         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
475                 if (intel_is_dual_link_lvds(dev))
476                         limit = &intel_limits_g4x_dual_channel_lvds;
477                 else
478                         limit = &intel_limits_g4x_single_channel_lvds;
479         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
480                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
481                 limit = &intel_limits_g4x_hdmi;
482         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
483                 limit = &intel_limits_g4x_sdvo;
484         } else /* The option is for other outputs */
485                 limit = &intel_limits_i9xx_sdvo;
486
487         return limit;
488 }
489
490 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
491 {
492         struct drm_device *dev = crtc->base.dev;
493         const intel_limit_t *limit;
494
495         if (HAS_PCH_SPLIT(dev))
496                 limit = intel_ironlake_limit(crtc, refclk);
497         else if (IS_G4X(dev)) {
498                 limit = intel_g4x_limit(crtc);
499         } else if (IS_PINEVIEW(dev)) {
500                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
501                         limit = &intel_limits_pineview_lvds;
502                 else
503                         limit = &intel_limits_pineview_sdvo;
504         } else if (IS_CHERRYVIEW(dev)) {
505                 limit = &intel_limits_chv;
506         } else if (IS_VALLEYVIEW(dev)) {
507                 limit = &intel_limits_vlv;
508         } else if (!IS_GEN2(dev)) {
509                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
510                         limit = &intel_limits_i9xx_lvds;
511                 else
512                         limit = &intel_limits_i9xx_sdvo;
513         } else {
514                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
515                         limit = &intel_limits_i8xx_lvds;
516                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
517                         limit = &intel_limits_i8xx_dvo;
518                 else
519                         limit = &intel_limits_i8xx_dac;
520         }
521         return limit;
522 }
523
524 /* m1 is reserved as 0 in Pineview, n is a ring counter */
525 static void pineview_clock(int refclk, intel_clock_t *clock)
526 {
527         clock->m = clock->m2 + 2;
528         clock->p = clock->p1 * clock->p2;
529         if (WARN_ON(clock->n == 0 || clock->p == 0))
530                 return;
531         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
532         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533 }
534
535 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
536 {
537         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
538 }
539
540 static void i9xx_clock(int refclk, intel_clock_t *clock)
541 {
542         clock->m = i9xx_dpll_compute_m(clock);
543         clock->p = clock->p1 * clock->p2;
544         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
545                 return;
546         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
547         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
548 }
549
550 static void chv_clock(int refclk, intel_clock_t *clock)
551 {
552         clock->m = clock->m1 * clock->m2;
553         clock->p = clock->p1 * clock->p2;
554         if (WARN_ON(clock->n == 0 || clock->p == 0))
555                 return;
556         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
557                         clock->n << 22);
558         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
559 }
560
561 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
562 /**
563  * Returns whether the given set of divisors are valid for a given refclk with
564  * the given connectors.
565  */
566
567 static bool intel_PLL_is_valid(struct drm_device *dev,
568                                const intel_limit_t *limit,
569                                const intel_clock_t *clock)
570 {
571         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
572                 INTELPllInvalid("n out of range\n");
573         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
574                 INTELPllInvalid("p1 out of range\n");
575         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
576                 INTELPllInvalid("m2 out of range\n");
577         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
578                 INTELPllInvalid("m1 out of range\n");
579
580         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
581                 if (clock->m1 <= clock->m2)
582                         INTELPllInvalid("m1 <= m2\n");
583
584         if (!IS_VALLEYVIEW(dev)) {
585                 if (clock->p < limit->p.min || limit->p.max < clock->p)
586                         INTELPllInvalid("p out of range\n");
587                 if (clock->m < limit->m.min || limit->m.max < clock->m)
588                         INTELPllInvalid("m out of range\n");
589         }
590
591         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
592                 INTELPllInvalid("vco out of range\n");
593         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
594          * connector, etc., rather than just a single range.
595          */
596         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
597                 INTELPllInvalid("dot out of range\n");
598
599         return true;
600 }
601
602 static bool
603 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
604                     int target, int refclk, intel_clock_t *match_clock,
605                     intel_clock_t *best_clock)
606 {
607         struct drm_device *dev = crtc->base.dev;
608         intel_clock_t clock;
609         int err = target;
610
611         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
612                 /*
613                  * For LVDS just rely on its current settings for dual-channel.
614                  * We haven't figured out how to reliably set up different
615                  * single/dual channel state, if we even can.
616                  */
617                 if (intel_is_dual_link_lvds(dev))
618                         clock.p2 = limit->p2.p2_fast;
619                 else
620                         clock.p2 = limit->p2.p2_slow;
621         } else {
622                 if (target < limit->p2.dot_limit)
623                         clock.p2 = limit->p2.p2_slow;
624                 else
625                         clock.p2 = limit->p2.p2_fast;
626         }
627
628         memset(best_clock, 0, sizeof(*best_clock));
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         if (clock.m2 >= clock.m1)
635                                 break;
636                         for (clock.n = limit->n.min;
637                              clock.n <= limit->n.max; clock.n++) {
638                                 for (clock.p1 = limit->p1.min;
639                                         clock.p1 <= limit->p1.max; clock.p1++) {
640                                         int this_err;
641
642                                         i9xx_clock(refclk, &clock);
643                                         if (!intel_PLL_is_valid(dev, limit,
644                                                                 &clock))
645                                                 continue;
646                                         if (match_clock &&
647                                             clock.p != match_clock->p)
648                                                 continue;
649
650                                         this_err = abs(clock.dot - target);
651                                         if (this_err < err) {
652                                                 *best_clock = clock;
653                                                 err = this_err;
654                                         }
655                                 }
656                         }
657                 }
658         }
659
660         return (err != target);
661 }
662
663 static bool
664 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
665                    int target, int refclk, intel_clock_t *match_clock,
666                    intel_clock_t *best_clock)
667 {
668         struct drm_device *dev = crtc->base.dev;
669         intel_clock_t clock;
670         int err = target;
671
672         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
673                 /*
674                  * For LVDS just rely on its current settings for dual-channel.
675                  * We haven't figured out how to reliably set up different
676                  * single/dual channel state, if we even can.
677                  */
678                 if (intel_is_dual_link_lvds(dev))
679                         clock.p2 = limit->p2.p2_fast;
680                 else
681                         clock.p2 = limit->p2.p2_slow;
682         } else {
683                 if (target < limit->p2.dot_limit)
684                         clock.p2 = limit->p2.p2_slow;
685                 else
686                         clock.p2 = limit->p2.p2_fast;
687         }
688
689         memset(best_clock, 0, sizeof(*best_clock));
690
691         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692              clock.m1++) {
693                 for (clock.m2 = limit->m2.min;
694                      clock.m2 <= limit->m2.max; clock.m2++) {
695                         for (clock.n = limit->n.min;
696                              clock.n <= limit->n.max; clock.n++) {
697                                 for (clock.p1 = limit->p1.min;
698                                         clock.p1 <= limit->p1.max; clock.p1++) {
699                                         int this_err;
700
701                                         pineview_clock(refclk, &clock);
702                                         if (!intel_PLL_is_valid(dev, limit,
703                                                                 &clock))
704                                                 continue;
705                                         if (match_clock &&
706                                             clock.p != match_clock->p)
707                                                 continue;
708
709                                         this_err = abs(clock.dot - target);
710                                         if (this_err < err) {
711                                                 *best_clock = clock;
712                                                 err = this_err;
713                                         }
714                                 }
715                         }
716                 }
717         }
718
719         return (err != target);
720 }
721
722 static bool
723 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
724                    int target, int refclk, intel_clock_t *match_clock,
725                    intel_clock_t *best_clock)
726 {
727         struct drm_device *dev = crtc->base.dev;
728         intel_clock_t clock;
729         int max_n;
730         bool found;
731         /* approximately equals target * 0.00585 */
732         int err_most = (target >> 8) + (target >> 9);
733         found = false;
734
735         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
736                 if (intel_is_dual_link_lvds(dev))
737                         clock.p2 = limit->p2.p2_fast;
738                 else
739                         clock.p2 = limit->p2.p2_slow;
740         } else {
741                 if (target < limit->p2.dot_limit)
742                         clock.p2 = limit->p2.p2_slow;
743                 else
744                         clock.p2 = limit->p2.p2_fast;
745         }
746
747         memset(best_clock, 0, sizeof(*best_clock));
748         max_n = limit->n.max;
749         /* based on hardware requirement, prefer smaller n to precision */
750         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
751                 /* based on hardware requirement, prefere larger m1,m2 */
752                 for (clock.m1 = limit->m1.max;
753                      clock.m1 >= limit->m1.min; clock.m1--) {
754                         for (clock.m2 = limit->m2.max;
755                              clock.m2 >= limit->m2.min; clock.m2--) {
756                                 for (clock.p1 = limit->p1.max;
757                                      clock.p1 >= limit->p1.min; clock.p1--) {
758                                         int this_err;
759
760                                         i9xx_clock(refclk, &clock);
761                                         if (!intel_PLL_is_valid(dev, limit,
762                                                                 &clock))
763                                                 continue;
764
765                                         this_err = abs(clock.dot - target);
766                                         if (this_err < err_most) {
767                                                 *best_clock = clock;
768                                                 err_most = this_err;
769                                                 max_n = clock.n;
770                                                 found = true;
771                                         }
772                                 }
773                         }
774                 }
775         }
776         return found;
777 }
778
779 static bool
780 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
781                    int target, int refclk, intel_clock_t *match_clock,
782                    intel_clock_t *best_clock)
783 {
784         struct drm_device *dev = crtc->base.dev;
785         intel_clock_t clock;
786         unsigned int bestppm = 1000000;
787         /* min update 19.2 MHz */
788         int max_n = min(limit->n.max, refclk / 19200);
789         bool found = false;
790
791         target *= 5; /* fast clock */
792
793         memset(best_clock, 0, sizeof(*best_clock));
794
795         /* based on hardware requirement, prefer smaller n to precision */
796         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
797                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
798                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
799                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
800                                 clock.p = clock.p1 * clock.p2;
801                                 /* based on hardware requirement, prefer bigger m1,m2 values */
802                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
803                                         unsigned int ppm, diff;
804
805                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
806                                                                      refclk * clock.m1);
807
808                                         vlv_clock(refclk, &clock);
809
810                                         if (!intel_PLL_is_valid(dev, limit,
811                                                                 &clock))
812                                                 continue;
813
814                                         diff = abs(clock.dot - target);
815                                         ppm = div_u64(1000000ULL * diff, target);
816
817                                         if (ppm < 100 && clock.p > best_clock->p) {
818                                                 bestppm = 0;
819                                                 *best_clock = clock;
820                                                 found = true;
821                                         }
822
823                                         if (bestppm >= 10 && ppm < bestppm - 10) {
824                                                 bestppm = ppm;
825                                                 *best_clock = clock;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832
833         return found;
834 }
835
836 static bool
837 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
838                    int target, int refclk, intel_clock_t *match_clock,
839                    intel_clock_t *best_clock)
840 {
841         struct drm_device *dev = crtc->base.dev;
842         intel_clock_t clock;
843         uint64_t m2;
844         int found = false;
845
846         memset(best_clock, 0, sizeof(*best_clock));
847
848         /*
849          * Based on hardware doc, the n always set to 1, and m1 always
850          * set to 2.  If requires to support 200Mhz refclk, we need to
851          * revisit this because n may not 1 anymore.
852          */
853         clock.n = 1, clock.m1 = 2;
854         target *= 5;    /* fast clock */
855
856         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
857                 for (clock.p2 = limit->p2.p2_fast;
858                                 clock.p2 >= limit->p2.p2_slow;
859                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
860
861                         clock.p = clock.p1 * clock.p2;
862
863                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
864                                         clock.n) << 22, refclk * clock.m1);
865
866                         if (m2 > INT_MAX/clock.m1)
867                                 continue;
868
869                         clock.m2 = m2;
870
871                         chv_clock(refclk, &clock);
872
873                         if (!intel_PLL_is_valid(dev, limit, &clock))
874                                 continue;
875
876                         /* based on hardware requirement, prefer bigger p
877                          */
878                         if (clock.p > best_clock->p) {
879                                 *best_clock = clock;
880                                 found = true;
881                         }
882                 }
883         }
884
885         return found;
886 }
887
888 bool intel_crtc_active(struct drm_crtc *crtc)
889 {
890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892         /* Be paranoid as we can arrive here with only partial
893          * state retrieved from the hardware during setup.
894          *
895          * We can ditch the adjusted_mode.crtc_clock check as soon
896          * as Haswell has gained clock readout/fastboot support.
897          *
898          * We can ditch the crtc->primary->fb check as soon as we can
899          * properly reconstruct framebuffers.
900          */
901         return intel_crtc->active && crtc->primary->fb &&
902                 intel_crtc->config->base.adjusted_mode.crtc_clock;
903 }
904
905 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
906                                              enum pipe pipe)
907 {
908         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
909         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
910
911         return intel_crtc->config->cpu_transcoder;
912 }
913
914 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
915 {
916         struct drm_i915_private *dev_priv = dev->dev_private;
917         u32 reg = PIPEDSL(pipe);
918         u32 line1, line2;
919         u32 line_mask;
920
921         if (IS_GEN2(dev))
922                 line_mask = DSL_LINEMASK_GEN2;
923         else
924                 line_mask = DSL_LINEMASK_GEN3;
925
926         line1 = I915_READ(reg) & line_mask;
927         mdelay(5);
928         line2 = I915_READ(reg) & line_mask;
929
930         return line1 == line2;
931 }
932
933 /*
934  * intel_wait_for_pipe_off - wait for pipe to turn off
935  * @crtc: crtc whose pipe to wait for
936  *
937  * After disabling a pipe, we can't wait for vblank in the usual way,
938  * spinning on the vblank interrupt status bit, since we won't actually
939  * see an interrupt when the pipe is disabled.
940  *
941  * On Gen4 and above:
942  *   wait for the pipe register state bit to turn off
943  *
944  * Otherwise:
945  *   wait for the display line value to settle (it usually
946  *   ends up stopping at the start of the next frame).
947  *
948  */
949 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
950 {
951         struct drm_device *dev = crtc->base.dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
954         enum pipe pipe = crtc->pipe;
955
956         if (INTEL_INFO(dev)->gen >= 4) {
957                 int reg = PIPECONF(cpu_transcoder);
958
959                 /* Wait for the Pipe State to go off */
960                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
961                              100))
962                         WARN(1, "pipe_off wait timed out\n");
963         } else {
964                 /* Wait for the display line to settle */
965                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
966                         WARN(1, "pipe_off wait timed out\n");
967         }
968 }
969
970 /*
971  * ibx_digital_port_connected - is the specified port connected?
972  * @dev_priv: i915 private structure
973  * @port: the port to test
974  *
975  * Returns true if @port is connected, false otherwise.
976  */
977 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
978                                 struct intel_digital_port *port)
979 {
980         u32 bit;
981
982         if (HAS_PCH_IBX(dev_priv->dev)) {
983                 switch (port->port) {
984                 case PORT_B:
985                         bit = SDE_PORTB_HOTPLUG;
986                         break;
987                 case PORT_C:
988                         bit = SDE_PORTC_HOTPLUG;
989                         break;
990                 case PORT_D:
991                         bit = SDE_PORTD_HOTPLUG;
992                         break;
993                 default:
994                         return true;
995                 }
996         } else {
997                 switch (port->port) {
998                 case PORT_B:
999                         bit = SDE_PORTB_HOTPLUG_CPT;
1000                         break;
1001                 case PORT_C:
1002                         bit = SDE_PORTC_HOTPLUG_CPT;
1003                         break;
1004                 case PORT_D:
1005                         bit = SDE_PORTD_HOTPLUG_CPT;
1006                         break;
1007                 default:
1008                         return true;
1009                 }
1010         }
1011
1012         return I915_READ(SDEISR) & bit;
1013 }
1014
1015 static const char *state_string(bool enabled)
1016 {
1017         return enabled ? "on" : "off";
1018 }
1019
1020 /* Only for pre-ILK configs */
1021 void assert_pll(struct drm_i915_private *dev_priv,
1022                 enum pipe pipe, bool state)
1023 {
1024         int reg;
1025         u32 val;
1026         bool cur_state;
1027
1028         reg = DPLL(pipe);
1029         val = I915_READ(reg);
1030         cur_state = !!(val & DPLL_VCO_ENABLE);
1031         I915_STATE_WARN(cur_state != state,
1032              "PLL state assertion failure (expected %s, current %s)\n",
1033              state_string(state), state_string(cur_state));
1034 }
1035
1036 /* XXX: the dsi pll is shared between MIPI DSI ports */
1037 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1038 {
1039         u32 val;
1040         bool cur_state;
1041
1042         mutex_lock(&dev_priv->dpio_lock);
1043         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1044         mutex_unlock(&dev_priv->dpio_lock);
1045
1046         cur_state = val & DSI_PLL_VCO_EN;
1047         I915_STATE_WARN(cur_state != state,
1048              "DSI PLL state assertion failure (expected %s, current %s)\n",
1049              state_string(state), state_string(cur_state));
1050 }
1051 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1052 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1053
1054 struct intel_shared_dpll *
1055 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1056 {
1057         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1058
1059         if (crtc->config->shared_dpll < 0)
1060                 return NULL;
1061
1062         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1063 }
1064
1065 /* For ILK+ */
1066 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1067                         struct intel_shared_dpll *pll,
1068                         bool state)
1069 {
1070         bool cur_state;
1071         struct intel_dpll_hw_state hw_state;
1072
1073         if (WARN (!pll,
1074                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1075                 return;
1076
1077         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1078         I915_STATE_WARN(cur_state != state,
1079              "%s assertion failure (expected %s, current %s)\n",
1080              pll->name, state_string(state), state_string(cur_state));
1081 }
1082
1083 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1084                           enum pipe pipe, bool state)
1085 {
1086         int reg;
1087         u32 val;
1088         bool cur_state;
1089         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1090                                                                       pipe);
1091
1092         if (HAS_DDI(dev_priv->dev)) {
1093                 /* DDI does not have a specific FDI_TX register */
1094                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1097         } else {
1098                 reg = FDI_TX_CTL(pipe);
1099                 val = I915_READ(reg);
1100                 cur_state = !!(val & FDI_TX_ENABLE);
1101         }
1102         I915_STATE_WARN(cur_state != state,
1103              "FDI TX state assertion failure (expected %s, current %s)\n",
1104              state_string(state), state_string(cur_state));
1105 }
1106 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1107 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1108
1109 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1110                           enum pipe pipe, bool state)
1111 {
1112         int reg;
1113         u32 val;
1114         bool cur_state;
1115
1116         reg = FDI_RX_CTL(pipe);
1117         val = I915_READ(reg);
1118         cur_state = !!(val & FDI_RX_ENABLE);
1119         I915_STATE_WARN(cur_state != state,
1120              "FDI RX state assertion failure (expected %s, current %s)\n",
1121              state_string(state), state_string(cur_state));
1122 }
1123 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1124 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1125
1126 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1127                                       enum pipe pipe)
1128 {
1129         int reg;
1130         u32 val;
1131
1132         /* ILK FDI PLL is always enabled */
1133         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1134                 return;
1135
1136         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1137         if (HAS_DDI(dev_priv->dev))
1138                 return;
1139
1140         reg = FDI_TX_CTL(pipe);
1141         val = I915_READ(reg);
1142         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1143 }
1144
1145 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1146                        enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         reg = FDI_RX_CTL(pipe);
1153         val = I915_READ(reg);
1154         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1155         I915_STATE_WARN(cur_state != state,
1156              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1157              state_string(state), state_string(cur_state));
1158 }
1159
1160 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1161                            enum pipe pipe)
1162 {
1163         struct drm_device *dev = dev_priv->dev;
1164         int pp_reg;
1165         u32 val;
1166         enum pipe panel_pipe = PIPE_A;
1167         bool locked = true;
1168
1169         if (WARN_ON(HAS_DDI(dev)))
1170                 return;
1171
1172         if (HAS_PCH_SPLIT(dev)) {
1173                 u32 port_sel;
1174
1175                 pp_reg = PCH_PP_CONTROL;
1176                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1177
1178                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1179                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1180                         panel_pipe = PIPE_B;
1181                 /* XXX: else fix for eDP */
1182         } else if (IS_VALLEYVIEW(dev)) {
1183                 /* presumably write lock depends on pipe, not port select */
1184                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1185                 panel_pipe = pipe;
1186         } else {
1187                 pp_reg = PP_CONTROL;
1188                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1189                         panel_pipe = PIPE_B;
1190         }
1191
1192         val = I915_READ(pp_reg);
1193         if (!(val & PANEL_POWER_ON) ||
1194             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1195                 locked = false;
1196
1197         I915_STATE_WARN(panel_pipe == pipe && locked,
1198              "panel assertion failure, pipe %c regs locked\n",
1199              pipe_name(pipe));
1200 }
1201
1202 static void assert_cursor(struct drm_i915_private *dev_priv,
1203                           enum pipe pipe, bool state)
1204 {
1205         struct drm_device *dev = dev_priv->dev;
1206         bool cur_state;
1207
1208         if (IS_845G(dev) || IS_I865G(dev))
1209                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1210         else
1211                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1212
1213         I915_STATE_WARN(cur_state != state,
1214              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1215              pipe_name(pipe), state_string(state), state_string(cur_state));
1216 }
1217 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1218 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1219
1220 void assert_pipe(struct drm_i915_private *dev_priv,
1221                  enum pipe pipe, bool state)
1222 {
1223         int reg;
1224         u32 val;
1225         bool cur_state;
1226         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1227                                                                       pipe);
1228
1229         /* if we need the pipe quirk it must be always on */
1230         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1231             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1232                 state = true;
1233
1234         if (!intel_display_power_is_enabled(dev_priv,
1235                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1236                 cur_state = false;
1237         } else {
1238                 reg = PIPECONF(cpu_transcoder);
1239                 val = I915_READ(reg);
1240                 cur_state = !!(val & PIPECONF_ENABLE);
1241         }
1242
1243         I915_STATE_WARN(cur_state != state,
1244              "pipe %c assertion failure (expected %s, current %s)\n",
1245              pipe_name(pipe), state_string(state), state_string(cur_state));
1246 }
1247
1248 static void assert_plane(struct drm_i915_private *dev_priv,
1249                          enum plane plane, bool state)
1250 {
1251         int reg;
1252         u32 val;
1253         bool cur_state;
1254
1255         reg = DSPCNTR(plane);
1256         val = I915_READ(reg);
1257         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1258         I915_STATE_WARN(cur_state != state,
1259              "plane %c assertion failure (expected %s, current %s)\n",
1260              plane_name(plane), state_string(state), state_string(cur_state));
1261 }
1262
1263 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1264 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1265
1266 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1267                                    enum pipe pipe)
1268 {
1269         struct drm_device *dev = dev_priv->dev;
1270         int reg, i;
1271         u32 val;
1272         int cur_pipe;
1273
1274         /* Primary planes are fixed to pipes on gen4+ */
1275         if (INTEL_INFO(dev)->gen >= 4) {
1276                 reg = DSPCNTR(pipe);
1277                 val = I915_READ(reg);
1278                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1279                      "plane %c assertion failure, should be disabled but not\n",
1280                      plane_name(pipe));
1281                 return;
1282         }
1283
1284         /* Need to check both planes against the pipe */
1285         for_each_pipe(dev_priv, i) {
1286                 reg = DSPCNTR(i);
1287                 val = I915_READ(reg);
1288                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1289                         DISPPLANE_SEL_PIPE_SHIFT;
1290                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1291                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1292                      plane_name(i), pipe_name(pipe));
1293         }
1294 }
1295
1296 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1297                                     enum pipe pipe)
1298 {
1299         struct drm_device *dev = dev_priv->dev;
1300         int reg, sprite;
1301         u32 val;
1302
1303         if (INTEL_INFO(dev)->gen >= 9) {
1304                 for_each_sprite(pipe, sprite) {
1305                         val = I915_READ(PLANE_CTL(pipe, sprite));
1306                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1307                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1308                              sprite, pipe_name(pipe));
1309                 }
1310         } else if (IS_VALLEYVIEW(dev)) {
1311                 for_each_sprite(pipe, sprite) {
1312                         reg = SPCNTR(pipe, sprite);
1313                         val = I915_READ(reg);
1314                         I915_STATE_WARN(val & SP_ENABLE,
1315                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1316                              sprite_name(pipe, sprite), pipe_name(pipe));
1317                 }
1318         } else if (INTEL_INFO(dev)->gen >= 7) {
1319                 reg = SPRCTL(pipe);
1320                 val = I915_READ(reg);
1321                 I915_STATE_WARN(val & SPRITE_ENABLE,
1322                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1323                      plane_name(pipe), pipe_name(pipe));
1324         } else if (INTEL_INFO(dev)->gen >= 5) {
1325                 reg = DVSCNTR(pipe);
1326                 val = I915_READ(reg);
1327                 I915_STATE_WARN(val & DVS_ENABLE,
1328                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1329                      plane_name(pipe), pipe_name(pipe));
1330         }
1331 }
1332
1333 static void assert_vblank_disabled(struct drm_crtc *crtc)
1334 {
1335         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1336                 drm_crtc_vblank_put(crtc);
1337 }
1338
1339 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1340 {
1341         u32 val;
1342         bool enabled;
1343
1344         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1345
1346         val = I915_READ(PCH_DREF_CONTROL);
1347         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1348                             DREF_SUPERSPREAD_SOURCE_MASK));
1349         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1350 }
1351
1352 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1353                                            enum pipe pipe)
1354 {
1355         int reg;
1356         u32 val;
1357         bool enabled;
1358
1359         reg = PCH_TRANSCONF(pipe);
1360         val = I915_READ(reg);
1361         enabled = !!(val & TRANS_ENABLE);
1362         I915_STATE_WARN(enabled,
1363              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364              pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368                             enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370         if ((val & DP_PORT_EN) == 0)
1371                 return false;
1372
1373         if (HAS_PCH_CPT(dev_priv->dev)) {
1374                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1375                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1376                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1377                         return false;
1378         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1379                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1380                         return false;
1381         } else {
1382                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1383                         return false;
1384         }
1385         return true;
1386 }
1387
1388 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1389                               enum pipe pipe, u32 val)
1390 {
1391         if ((val & SDVO_ENABLE) == 0)
1392                 return false;
1393
1394         if (HAS_PCH_CPT(dev_priv->dev)) {
1395                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1396                         return false;
1397         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1398                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1399                         return false;
1400         } else {
1401                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1402                         return false;
1403         }
1404         return true;
1405 }
1406
1407 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1408                               enum pipe pipe, u32 val)
1409 {
1410         if ((val & LVDS_PORT_EN) == 0)
1411                 return false;
1412
1413         if (HAS_PCH_CPT(dev_priv->dev)) {
1414                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1415                         return false;
1416         } else {
1417                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1418                         return false;
1419         }
1420         return true;
1421 }
1422
1423 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1424                               enum pipe pipe, u32 val)
1425 {
1426         if ((val & ADPA_DAC_ENABLE) == 0)
1427                 return false;
1428         if (HAS_PCH_CPT(dev_priv->dev)) {
1429                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1430                         return false;
1431         } else {
1432                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1433                         return false;
1434         }
1435         return true;
1436 }
1437
1438 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1439                                    enum pipe pipe, int reg, u32 port_sel)
1440 {
1441         u32 val = I915_READ(reg);
1442         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444              reg, pipe_name(pipe));
1445
1446         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1447              && (val & DP_PIPEB_SELECT),
1448              "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452                                      enum pipe pipe, int reg)
1453 {
1454         u32 val = I915_READ(reg);
1455         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457              reg, pipe_name(pipe));
1458
1459         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1460              && (val & SDVO_PIPE_B_SELECT),
1461              "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465                                       enum pipe pipe)
1466 {
1467         int reg;
1468         u32 val;
1469
1470         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1471         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1472         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1473
1474         reg = PCH_ADPA;
1475         val = I915_READ(reg);
1476         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1477              "PCH VGA enabled on transcoder %c, should be disabled\n",
1478              pipe_name(pipe));
1479
1480         reg = PCH_LVDS;
1481         val = I915_READ(reg);
1482         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1483              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1484              pipe_name(pipe));
1485
1486         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1487         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1488         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1489 }
1490
1491 static void intel_init_dpio(struct drm_device *dev)
1492 {
1493         struct drm_i915_private *dev_priv = dev->dev_private;
1494
1495         if (!IS_VALLEYVIEW(dev))
1496                 return;
1497
1498         /*
1499          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1500          * CHV x1 PHY (DP/HDMI D)
1501          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1502          */
1503         if (IS_CHERRYVIEW(dev)) {
1504                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1505                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1506         } else {
1507                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1508         }
1509 }
1510
1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512                            const struct intel_crtc_state *pipe_config)
1513 {
1514         struct drm_device *dev = crtc->base.dev;
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         int reg = DPLL(crtc->pipe);
1517         u32 dpll = pipe_config->dpll_hw_state.dpll;
1518
1519         assert_pipe_disabled(dev_priv, crtc->pipe);
1520
1521         /* No really, not for ILK+ */
1522         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1523
1524         /* PLL is protected by panel, make sure we can write it */
1525         if (IS_MOBILE(dev_priv->dev))
1526                 assert_panel_unlocked(dev_priv, crtc->pipe);
1527
1528         I915_WRITE(reg, dpll);
1529         POSTING_READ(reg);
1530         udelay(150);
1531
1532         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1533                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1534
1535         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1536         POSTING_READ(DPLL_MD(crtc->pipe));
1537
1538         /* We do this three times for luck */
1539         I915_WRITE(reg, dpll);
1540         POSTING_READ(reg);
1541         udelay(150); /* wait for warmup */
1542         I915_WRITE(reg, dpll);
1543         POSTING_READ(reg);
1544         udelay(150); /* wait for warmup */
1545         I915_WRITE(reg, dpll);
1546         POSTING_READ(reg);
1547         udelay(150); /* wait for warmup */
1548 }
1549
1550 static void chv_enable_pll(struct intel_crtc *crtc,
1551                            const struct intel_crtc_state *pipe_config)
1552 {
1553         struct drm_device *dev = crtc->base.dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         int pipe = crtc->pipe;
1556         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1557         u32 tmp;
1558
1559         assert_pipe_disabled(dev_priv, crtc->pipe);
1560
1561         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1562
1563         mutex_lock(&dev_priv->dpio_lock);
1564
1565         /* Enable back the 10bit clock to display controller */
1566         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1567         tmp |= DPIO_DCLKP_EN;
1568         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1569
1570         /*
1571          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1572          */
1573         udelay(1);
1574
1575         /* Enable PLL */
1576         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1577
1578         /* Check PLL is locked */
1579         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1580                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1581
1582         /* not sure when this should be written */
1583         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1584         POSTING_READ(DPLL_MD(pipe));
1585
1586         mutex_unlock(&dev_priv->dpio_lock);
1587 }
1588
1589 static int intel_num_dvo_pipes(struct drm_device *dev)
1590 {
1591         struct intel_crtc *crtc;
1592         int count = 0;
1593
1594         for_each_intel_crtc(dev, crtc)
1595                 count += crtc->active &&
1596                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1597
1598         return count;
1599 }
1600
1601 static void i9xx_enable_pll(struct intel_crtc *crtc)
1602 {
1603         struct drm_device *dev = crtc->base.dev;
1604         struct drm_i915_private *dev_priv = dev->dev_private;
1605         int reg = DPLL(crtc->pipe);
1606         u32 dpll = crtc->config->dpll_hw_state.dpll;
1607
1608         assert_pipe_disabled(dev_priv, crtc->pipe);
1609
1610         /* No really, not for ILK+ */
1611         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1612
1613         /* PLL is protected by panel, make sure we can write it */
1614         if (IS_MOBILE(dev) && !IS_I830(dev))
1615                 assert_panel_unlocked(dev_priv, crtc->pipe);
1616
1617         /* Enable DVO 2x clock on both PLLs if necessary */
1618         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1619                 /*
1620                  * It appears to be important that we don't enable this
1621                  * for the current pipe before otherwise configuring the
1622                  * PLL. No idea how this should be handled if multiple
1623                  * DVO outputs are enabled simultaneosly.
1624                  */
1625                 dpll |= DPLL_DVO_2X_MODE;
1626                 I915_WRITE(DPLL(!crtc->pipe),
1627                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1628         }
1629
1630         /* Wait for the clocks to stabilize. */
1631         POSTING_READ(reg);
1632         udelay(150);
1633
1634         if (INTEL_INFO(dev)->gen >= 4) {
1635                 I915_WRITE(DPLL_MD(crtc->pipe),
1636                            crtc->config->dpll_hw_state.dpll_md);
1637         } else {
1638                 /* The pixel multiplier can only be updated once the
1639                  * DPLL is enabled and the clocks are stable.
1640                  *
1641                  * So write it again.
1642                  */
1643                 I915_WRITE(reg, dpll);
1644         }
1645
1646         /* We do this three times for luck */
1647         I915_WRITE(reg, dpll);
1648         POSTING_READ(reg);
1649         udelay(150); /* wait for warmup */
1650         I915_WRITE(reg, dpll);
1651         POSTING_READ(reg);
1652         udelay(150); /* wait for warmup */
1653         I915_WRITE(reg, dpll);
1654         POSTING_READ(reg);
1655         udelay(150); /* wait for warmup */
1656 }
1657
1658 /**
1659  * i9xx_disable_pll - disable a PLL
1660  * @dev_priv: i915 private structure
1661  * @pipe: pipe PLL to disable
1662  *
1663  * Disable the PLL for @pipe, making sure the pipe is off first.
1664  *
1665  * Note!  This is for pre-ILK only.
1666  */
1667 static void i9xx_disable_pll(struct intel_crtc *crtc)
1668 {
1669         struct drm_device *dev = crtc->base.dev;
1670         struct drm_i915_private *dev_priv = dev->dev_private;
1671         enum pipe pipe = crtc->pipe;
1672
1673         /* Disable DVO 2x clock on both PLLs if necessary */
1674         if (IS_I830(dev) &&
1675             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1676             intel_num_dvo_pipes(dev) == 1) {
1677                 I915_WRITE(DPLL(PIPE_B),
1678                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1679                 I915_WRITE(DPLL(PIPE_A),
1680                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1681         }
1682
1683         /* Don't disable pipe or pipe PLLs if needed */
1684         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1685             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1686                 return;
1687
1688         /* Make sure the pipe isn't still relying on us */
1689         assert_pipe_disabled(dev_priv, pipe);
1690
1691         I915_WRITE(DPLL(pipe), 0);
1692         POSTING_READ(DPLL(pipe));
1693 }
1694
1695 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1696 {
1697         u32 val = 0;
1698
1699         /* Make sure the pipe isn't still relying on us */
1700         assert_pipe_disabled(dev_priv, pipe);
1701
1702         /*
1703          * Leave integrated clock source and reference clock enabled for pipe B.
1704          * The latter is needed for VGA hotplug / manual detection.
1705          */
1706         if (pipe == PIPE_B)
1707                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1708         I915_WRITE(DPLL(pipe), val);
1709         POSTING_READ(DPLL(pipe));
1710
1711 }
1712
1713 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1714 {
1715         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1716         u32 val;
1717
1718         /* Make sure the pipe isn't still relying on us */
1719         assert_pipe_disabled(dev_priv, pipe);
1720
1721         /* Set PLL en = 0 */
1722         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1723         if (pipe != PIPE_A)
1724                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1725         I915_WRITE(DPLL(pipe), val);
1726         POSTING_READ(DPLL(pipe));
1727
1728         mutex_lock(&dev_priv->dpio_lock);
1729
1730         /* Disable 10bit clock to display controller */
1731         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1732         val &= ~DPIO_DCLKP_EN;
1733         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1734
1735         /* disable left/right clock distribution */
1736         if (pipe != PIPE_B) {
1737                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1738                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1739                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1740         } else {
1741                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1742                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1743                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1744         }
1745
1746         mutex_unlock(&dev_priv->dpio_lock);
1747 }
1748
1749 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1750                 struct intel_digital_port *dport)
1751 {
1752         u32 port_mask;
1753         int dpll_reg;
1754
1755         switch (dport->port) {
1756         case PORT_B:
1757                 port_mask = DPLL_PORTB_READY_MASK;
1758                 dpll_reg = DPLL(0);
1759                 break;
1760         case PORT_C:
1761                 port_mask = DPLL_PORTC_READY_MASK;
1762                 dpll_reg = DPLL(0);
1763                 break;
1764         case PORT_D:
1765                 port_mask = DPLL_PORTD_READY_MASK;
1766                 dpll_reg = DPIO_PHY_STATUS;
1767                 break;
1768         default:
1769                 BUG();
1770         }
1771
1772         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1773                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1774                      port_name(dport->port), I915_READ(dpll_reg));
1775 }
1776
1777 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1778 {
1779         struct drm_device *dev = crtc->base.dev;
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1782
1783         if (WARN_ON(pll == NULL))
1784                 return;
1785
1786         WARN_ON(!pll->config.crtc_mask);
1787         if (pll->active == 0) {
1788                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1789                 WARN_ON(pll->on);
1790                 assert_shared_dpll_disabled(dev_priv, pll);
1791
1792                 pll->mode_set(dev_priv, pll);
1793         }
1794 }
1795
1796 /**
1797  * intel_enable_shared_dpll - enable PCH PLL
1798  * @dev_priv: i915 private structure
1799  * @pipe: pipe PLL to enable
1800  *
1801  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1802  * drives the transcoder clock.
1803  */
1804 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1805 {
1806         struct drm_device *dev = crtc->base.dev;
1807         struct drm_i915_private *dev_priv = dev->dev_private;
1808         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1809
1810         if (WARN_ON(pll == NULL))
1811                 return;
1812
1813         if (WARN_ON(pll->config.crtc_mask == 0))
1814                 return;
1815
1816         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1817                       pll->name, pll->active, pll->on,
1818                       crtc->base.base.id);
1819
1820         if (pll->active++) {
1821                 WARN_ON(!pll->on);
1822                 assert_shared_dpll_enabled(dev_priv, pll);
1823                 return;
1824         }
1825         WARN_ON(pll->on);
1826
1827         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1828
1829         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1830         pll->enable(dev_priv, pll);
1831         pll->on = true;
1832 }
1833
1834 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1835 {
1836         struct drm_device *dev = crtc->base.dev;
1837         struct drm_i915_private *dev_priv = dev->dev_private;
1838         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1839
1840         /* PCH only available on ILK+ */
1841         BUG_ON(INTEL_INFO(dev)->gen < 5);
1842         if (WARN_ON(pll == NULL))
1843                return;
1844
1845         if (WARN_ON(pll->config.crtc_mask == 0))
1846                 return;
1847
1848         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1849                       pll->name, pll->active, pll->on,
1850                       crtc->base.base.id);
1851
1852         if (WARN_ON(pll->active == 0)) {
1853                 assert_shared_dpll_disabled(dev_priv, pll);
1854                 return;
1855         }
1856
1857         assert_shared_dpll_enabled(dev_priv, pll);
1858         WARN_ON(!pll->on);
1859         if (--pll->active)
1860                 return;
1861
1862         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1863         pll->disable(dev_priv, pll);
1864         pll->on = false;
1865
1866         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1867 }
1868
1869 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1870                                            enum pipe pipe)
1871 {
1872         struct drm_device *dev = dev_priv->dev;
1873         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1874         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1875         uint32_t reg, val, pipeconf_val;
1876
1877         /* PCH only available on ILK+ */
1878         BUG_ON(!HAS_PCH_SPLIT(dev));
1879
1880         /* Make sure PCH DPLL is enabled */
1881         assert_shared_dpll_enabled(dev_priv,
1882                                    intel_crtc_to_shared_dpll(intel_crtc));
1883
1884         /* FDI must be feeding us bits for PCH ports */
1885         assert_fdi_tx_enabled(dev_priv, pipe);
1886         assert_fdi_rx_enabled(dev_priv, pipe);
1887
1888         if (HAS_PCH_CPT(dev)) {
1889                 /* Workaround: Set the timing override bit before enabling the
1890                  * pch transcoder. */
1891                 reg = TRANS_CHICKEN2(pipe);
1892                 val = I915_READ(reg);
1893                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1894                 I915_WRITE(reg, val);
1895         }
1896
1897         reg = PCH_TRANSCONF(pipe);
1898         val = I915_READ(reg);
1899         pipeconf_val = I915_READ(PIPECONF(pipe));
1900
1901         if (HAS_PCH_IBX(dev_priv->dev)) {
1902                 /*
1903                  * make the BPC in transcoder be consistent with
1904                  * that in pipeconf reg.
1905                  */
1906                 val &= ~PIPECONF_BPC_MASK;
1907                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1908         }
1909
1910         val &= ~TRANS_INTERLACE_MASK;
1911         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1912                 if (HAS_PCH_IBX(dev_priv->dev) &&
1913                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1914                         val |= TRANS_LEGACY_INTERLACED_ILK;
1915                 else
1916                         val |= TRANS_INTERLACED;
1917         else
1918                 val |= TRANS_PROGRESSIVE;
1919
1920         I915_WRITE(reg, val | TRANS_ENABLE);
1921         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1922                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1923 }
1924
1925 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1926                                       enum transcoder cpu_transcoder)
1927 {
1928         u32 val, pipeconf_val;
1929
1930         /* PCH only available on ILK+ */
1931         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1932
1933         /* FDI must be feeding us bits for PCH ports */
1934         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1935         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1936
1937         /* Workaround: set timing override bit. */
1938         val = I915_READ(_TRANSA_CHICKEN2);
1939         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1940         I915_WRITE(_TRANSA_CHICKEN2, val);
1941
1942         val = TRANS_ENABLE;
1943         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1944
1945         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1946             PIPECONF_INTERLACED_ILK)
1947                 val |= TRANS_INTERLACED;
1948         else
1949                 val |= TRANS_PROGRESSIVE;
1950
1951         I915_WRITE(LPT_TRANSCONF, val);
1952         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1953                 DRM_ERROR("Failed to enable PCH transcoder\n");
1954 }
1955
1956 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1957                                             enum pipe pipe)
1958 {
1959         struct drm_device *dev = dev_priv->dev;
1960         uint32_t reg, val;
1961
1962         /* FDI relies on the transcoder */
1963         assert_fdi_tx_disabled(dev_priv, pipe);
1964         assert_fdi_rx_disabled(dev_priv, pipe);
1965
1966         /* Ports must be off as well */
1967         assert_pch_ports_disabled(dev_priv, pipe);
1968
1969         reg = PCH_TRANSCONF(pipe);
1970         val = I915_READ(reg);
1971         val &= ~TRANS_ENABLE;
1972         I915_WRITE(reg, val);
1973         /* wait for PCH transcoder off, transcoder state */
1974         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1975                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1976
1977         if (!HAS_PCH_IBX(dev)) {
1978                 /* Workaround: Clear the timing override chicken bit again. */
1979                 reg = TRANS_CHICKEN2(pipe);
1980                 val = I915_READ(reg);
1981                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1982                 I915_WRITE(reg, val);
1983         }
1984 }
1985
1986 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1987 {
1988         u32 val;
1989
1990         val = I915_READ(LPT_TRANSCONF);
1991         val &= ~TRANS_ENABLE;
1992         I915_WRITE(LPT_TRANSCONF, val);
1993         /* wait for PCH transcoder off, transcoder state */
1994         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1995                 DRM_ERROR("Failed to disable PCH transcoder\n");
1996
1997         /* Workaround: clear timing override bit. */
1998         val = I915_READ(_TRANSA_CHICKEN2);
1999         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2000         I915_WRITE(_TRANSA_CHICKEN2, val);
2001 }
2002
2003 /**
2004  * intel_enable_pipe - enable a pipe, asserting requirements
2005  * @crtc: crtc responsible for the pipe
2006  *
2007  * Enable @crtc's pipe, making sure that various hardware specific requirements
2008  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2009  */
2010 static void intel_enable_pipe(struct intel_crtc *crtc)
2011 {
2012         struct drm_device *dev = crtc->base.dev;
2013         struct drm_i915_private *dev_priv = dev->dev_private;
2014         enum pipe pipe = crtc->pipe;
2015         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2016                                                                       pipe);
2017         enum pipe pch_transcoder;
2018         int reg;
2019         u32 val;
2020
2021         assert_planes_disabled(dev_priv, pipe);
2022         assert_cursor_disabled(dev_priv, pipe);
2023         assert_sprites_disabled(dev_priv, pipe);
2024
2025         if (HAS_PCH_LPT(dev_priv->dev))
2026                 pch_transcoder = TRANSCODER_A;
2027         else
2028                 pch_transcoder = pipe;
2029
2030         /*
2031          * A pipe without a PLL won't actually be able to drive bits from
2032          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2033          * need the check.
2034          */
2035         if (!HAS_PCH_SPLIT(dev_priv->dev))
2036                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2037                         assert_dsi_pll_enabled(dev_priv);
2038                 else
2039                         assert_pll_enabled(dev_priv, pipe);
2040         else {
2041                 if (crtc->config->has_pch_encoder) {
2042                         /* if driving the PCH, we need FDI enabled */
2043                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2044                         assert_fdi_tx_pll_enabled(dev_priv,
2045                                                   (enum pipe) cpu_transcoder);
2046                 }
2047                 /* FIXME: assert CPU port conditions for SNB+ */
2048         }
2049
2050         reg = PIPECONF(cpu_transcoder);
2051         val = I915_READ(reg);
2052         if (val & PIPECONF_ENABLE) {
2053                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2054                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2055                 return;
2056         }
2057
2058         I915_WRITE(reg, val | PIPECONF_ENABLE);
2059         POSTING_READ(reg);
2060 }
2061
2062 /**
2063  * intel_disable_pipe - disable a pipe, asserting requirements
2064  * @crtc: crtc whose pipes is to be disabled
2065  *
2066  * Disable the pipe of @crtc, making sure that various hardware
2067  * specific requirements are met, if applicable, e.g. plane
2068  * disabled, panel fitter off, etc.
2069  *
2070  * Will wait until the pipe has shut down before returning.
2071  */
2072 static void intel_disable_pipe(struct intel_crtc *crtc)
2073 {
2074         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2075         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2076         enum pipe pipe = crtc->pipe;
2077         int reg;
2078         u32 val;
2079
2080         /*
2081          * Make sure planes won't keep trying to pump pixels to us,
2082          * or we might hang the display.
2083          */
2084         assert_planes_disabled(dev_priv, pipe);
2085         assert_cursor_disabled(dev_priv, pipe);
2086         assert_sprites_disabled(dev_priv, pipe);
2087
2088         reg = PIPECONF(cpu_transcoder);
2089         val = I915_READ(reg);
2090         if ((val & PIPECONF_ENABLE) == 0)
2091                 return;
2092
2093         /*
2094          * Double wide has implications for planes
2095          * so best keep it disabled when not needed.
2096          */
2097         if (crtc->config->double_wide)
2098                 val &= ~PIPECONF_DOUBLE_WIDE;
2099
2100         /* Don't disable pipe or pipe PLLs if needed */
2101         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2102             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2103                 val &= ~PIPECONF_ENABLE;
2104
2105         I915_WRITE(reg, val);
2106         if ((val & PIPECONF_ENABLE) == 0)
2107                 intel_wait_for_pipe_off(crtc);
2108 }
2109
2110 /*
2111  * Plane regs are double buffered, going from enabled->disabled needs a
2112  * trigger in order to latch.  The display address reg provides this.
2113  */
2114 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2115                                enum plane plane)
2116 {
2117         struct drm_device *dev = dev_priv->dev;
2118         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2119
2120         I915_WRITE(reg, I915_READ(reg));
2121         POSTING_READ(reg);
2122 }
2123
2124 /**
2125  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2126  * @plane:  plane to be enabled
2127  * @crtc: crtc for the plane
2128  *
2129  * Enable @plane on @crtc, making sure that the pipe is running first.
2130  */
2131 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2132                                           struct drm_crtc *crtc)
2133 {
2134         struct drm_device *dev = plane->dev;
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137
2138         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2139         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2140
2141         if (intel_crtc->primary_enabled)
2142                 return;
2143
2144         intel_crtc->primary_enabled = true;
2145
2146         dev_priv->display.update_primary_plane(crtc, plane->fb,
2147                                                crtc->x, crtc->y);
2148
2149         /*
2150          * BDW signals flip done immediately if the plane
2151          * is disabled, even if the plane enable is already
2152          * armed to occur at the next vblank :(
2153          */
2154         if (IS_BROADWELL(dev))
2155                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2156 }
2157
2158 /**
2159  * intel_disable_primary_hw_plane - disable the primary hardware plane
2160  * @plane: plane to be disabled
2161  * @crtc: crtc for the plane
2162  *
2163  * Disable @plane on @crtc, making sure that the pipe is running first.
2164  */
2165 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2166                                            struct drm_crtc *crtc)
2167 {
2168         struct drm_device *dev = plane->dev;
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2171
2172         if (WARN_ON(!intel_crtc->active))
2173                 return;
2174
2175         if (!intel_crtc->primary_enabled)
2176                 return;
2177
2178         intel_crtc->primary_enabled = false;
2179
2180         dev_priv->display.update_primary_plane(crtc, plane->fb,
2181                                                crtc->x, crtc->y);
2182 }
2183
2184 static bool need_vtd_wa(struct drm_device *dev)
2185 {
2186 #ifdef CONFIG_INTEL_IOMMU
2187         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2188                 return true;
2189 #endif
2190         return false;
2191 }
2192
2193 int
2194 intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
2195 {
2196         int tile_height;
2197
2198         tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
2199         return ALIGN(height, tile_height);
2200 }
2201
2202 int
2203 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2204                            struct drm_framebuffer *fb,
2205                            struct intel_engine_cs *pipelined)
2206 {
2207         struct drm_device *dev = fb->dev;
2208         struct drm_i915_private *dev_priv = dev->dev_private;
2209         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2210         u32 alignment;
2211         int ret;
2212
2213         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2214
2215         switch (obj->tiling_mode) {
2216         case I915_TILING_NONE:
2217                 if (INTEL_INFO(dev)->gen >= 9)
2218                         alignment = 256 * 1024;
2219                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2220                         alignment = 128 * 1024;
2221                 else if (INTEL_INFO(dev)->gen >= 4)
2222                         alignment = 4 * 1024;
2223                 else
2224                         alignment = 64 * 1024;
2225                 break;
2226         case I915_TILING_X:
2227                 if (INTEL_INFO(dev)->gen >= 9)
2228                         alignment = 256 * 1024;
2229                 else {
2230                         /* pin() will align the object as required by fence */
2231                         alignment = 0;
2232                 }
2233                 break;
2234         case I915_TILING_Y:
2235                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2236                 return -EINVAL;
2237         default:
2238                 BUG();
2239         }
2240
2241         /* Note that the w/a also requires 64 PTE of padding following the
2242          * bo. We currently fill all unused PTE with the shadow page and so
2243          * we should always have valid PTE following the scanout preventing
2244          * the VT-d warning.
2245          */
2246         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2247                 alignment = 256 * 1024;
2248
2249         /*
2250          * Global gtt pte registers are special registers which actually forward
2251          * writes to a chunk of system memory. Which means that there is no risk
2252          * that the register values disappear as soon as we call
2253          * intel_runtime_pm_put(), so it is correct to wrap only the
2254          * pin/unpin/fence and not more.
2255          */
2256         intel_runtime_pm_get(dev_priv);
2257
2258         dev_priv->mm.interruptible = false;
2259         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2260         if (ret)
2261                 goto err_interruptible;
2262
2263         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2264          * fence, whereas 965+ only requires a fence if using
2265          * framebuffer compression.  For simplicity, we always install
2266          * a fence as the cost is not that onerous.
2267          */
2268         ret = i915_gem_object_get_fence(obj);
2269         if (ret)
2270                 goto err_unpin;
2271
2272         i915_gem_object_pin_fence(obj);
2273
2274         dev_priv->mm.interruptible = true;
2275         intel_runtime_pm_put(dev_priv);
2276         return 0;
2277
2278 err_unpin:
2279         i915_gem_object_unpin_from_display_plane(obj);
2280 err_interruptible:
2281         dev_priv->mm.interruptible = true;
2282         intel_runtime_pm_put(dev_priv);
2283         return ret;
2284 }
2285
2286 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2287 {
2288         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2289
2290         i915_gem_object_unpin_fence(obj);
2291         i915_gem_object_unpin_from_display_plane(obj);
2292 }
2293
2294 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2295  * is assumed to be a power-of-two. */
2296 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2297                                              unsigned int tiling_mode,
2298                                              unsigned int cpp,
2299                                              unsigned int pitch)
2300 {
2301         if (tiling_mode != I915_TILING_NONE) {
2302                 unsigned int tile_rows, tiles;
2303
2304                 tile_rows = *y / 8;
2305                 *y %= 8;
2306
2307                 tiles = *x / (512/cpp);
2308                 *x %= 512/cpp;
2309
2310                 return tile_rows * pitch * 8 + tiles * 4096;
2311         } else {
2312                 unsigned int offset;
2313
2314                 offset = *y * pitch + *x * cpp;
2315                 *y = 0;
2316                 *x = (offset & 4095) / cpp;
2317                 return offset & -4096;
2318         }
2319 }
2320
2321 static int i9xx_format_to_fourcc(int format)
2322 {
2323         switch (format) {
2324         case DISPPLANE_8BPP:
2325                 return DRM_FORMAT_C8;
2326         case DISPPLANE_BGRX555:
2327                 return DRM_FORMAT_XRGB1555;
2328         case DISPPLANE_BGRX565:
2329                 return DRM_FORMAT_RGB565;
2330         default:
2331         case DISPPLANE_BGRX888:
2332                 return DRM_FORMAT_XRGB8888;
2333         case DISPPLANE_RGBX888:
2334                 return DRM_FORMAT_XBGR8888;
2335         case DISPPLANE_BGRX101010:
2336                 return DRM_FORMAT_XRGB2101010;
2337         case DISPPLANE_RGBX101010:
2338                 return DRM_FORMAT_XBGR2101010;
2339         }
2340 }
2341
2342 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2343 {
2344         switch (format) {
2345         case PLANE_CTL_FORMAT_RGB_565:
2346                 return DRM_FORMAT_RGB565;
2347         default:
2348         case PLANE_CTL_FORMAT_XRGB_8888:
2349                 if (rgb_order) {
2350                         if (alpha)
2351                                 return DRM_FORMAT_ABGR8888;
2352                         else
2353                                 return DRM_FORMAT_XBGR8888;
2354                 } else {
2355                         if (alpha)
2356                                 return DRM_FORMAT_ARGB8888;
2357                         else
2358                                 return DRM_FORMAT_XRGB8888;
2359                 }
2360         case PLANE_CTL_FORMAT_XRGB_2101010:
2361                 if (rgb_order)
2362                         return DRM_FORMAT_XBGR2101010;
2363                 else
2364                         return DRM_FORMAT_XRGB2101010;
2365         }
2366 }
2367
2368 static bool
2369 intel_alloc_plane_obj(struct intel_crtc *crtc,
2370                       struct intel_initial_plane_config *plane_config)
2371 {
2372         struct drm_device *dev = crtc->base.dev;
2373         struct drm_i915_gem_object *obj = NULL;
2374         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2375         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2376         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2377                                     PAGE_SIZE);
2378
2379         size_aligned -= base_aligned;
2380
2381         if (plane_config->size == 0)
2382                 return false;
2383
2384         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2385                                                              base_aligned,
2386                                                              base_aligned,
2387                                                              size_aligned);
2388         if (!obj)
2389                 return false;
2390
2391         obj->tiling_mode = plane_config->tiling;
2392         if (obj->tiling_mode == I915_TILING_X)
2393                 obj->stride = crtc->base.primary->fb->pitches[0];
2394
2395         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2396         mode_cmd.width = crtc->base.primary->fb->width;
2397         mode_cmd.height = crtc->base.primary->fb->height;
2398         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2399
2400         mutex_lock(&dev->struct_mutex);
2401
2402         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2403                                    &mode_cmd, obj)) {
2404                 DRM_DEBUG_KMS("intel fb init failed\n");
2405                 goto out_unref_obj;
2406         }
2407
2408         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2409         mutex_unlock(&dev->struct_mutex);
2410
2411         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2412         return true;
2413
2414 out_unref_obj:
2415         drm_gem_object_unreference(&obj->base);
2416         mutex_unlock(&dev->struct_mutex);
2417         return false;
2418 }
2419
2420 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2421 static void
2422 update_state_fb(struct drm_plane *plane)
2423 {
2424         if (plane->fb != plane->state->fb)
2425                 drm_atomic_set_fb_for_plane(plane->state, plane->fb);
2426 }
2427
2428 static void
2429 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2430                      struct intel_initial_plane_config *plane_config)
2431 {
2432         struct drm_device *dev = intel_crtc->base.dev;
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         struct drm_crtc *c;
2435         struct intel_crtc *i;
2436         struct drm_i915_gem_object *obj;
2437
2438         if (!intel_crtc->base.primary->fb)
2439                 return;
2440
2441         if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
2442                 struct drm_plane *primary = intel_crtc->base.primary;
2443
2444                 primary->state->crtc = &intel_crtc->base;
2445                 primary->crtc = &intel_crtc->base;
2446                 update_state_fb(primary);
2447
2448                 return;
2449         }
2450
2451         kfree(intel_crtc->base.primary->fb);
2452         intel_crtc->base.primary->fb = NULL;
2453
2454         /*
2455          * Failed to alloc the obj, check to see if we should share
2456          * an fb with another CRTC instead
2457          */
2458         for_each_crtc(dev, c) {
2459                 i = to_intel_crtc(c);
2460
2461                 if (c == &intel_crtc->base)
2462                         continue;
2463
2464                 if (!i->active)
2465                         continue;
2466
2467                 obj = intel_fb_obj(c->primary->fb);
2468                 if (obj == NULL)
2469                         continue;
2470
2471                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2472                         struct drm_plane *primary = intel_crtc->base.primary;
2473
2474                         if (obj->tiling_mode != I915_TILING_NONE)
2475                                 dev_priv->preserve_bios_swizzle = true;
2476
2477                         drm_framebuffer_reference(c->primary->fb);
2478                         primary->fb = c->primary->fb;
2479                         primary->state->crtc = &intel_crtc->base;
2480                         primary->crtc = &intel_crtc->base;
2481                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2482                         break;
2483                 }
2484         }
2485
2486         update_state_fb(intel_crtc->base.primary);
2487 }
2488
2489 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2490                                       struct drm_framebuffer *fb,
2491                                       int x, int y)
2492 {
2493         struct drm_device *dev = crtc->dev;
2494         struct drm_i915_private *dev_priv = dev->dev_private;
2495         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2496         struct drm_i915_gem_object *obj;
2497         int plane = intel_crtc->plane;
2498         unsigned long linear_offset;
2499         u32 dspcntr;
2500         u32 reg = DSPCNTR(plane);
2501         int pixel_size;
2502
2503         if (!intel_crtc->primary_enabled) {
2504                 I915_WRITE(reg, 0);
2505                 if (INTEL_INFO(dev)->gen >= 4)
2506                         I915_WRITE(DSPSURF(plane), 0);
2507                 else
2508                         I915_WRITE(DSPADDR(plane), 0);
2509                 POSTING_READ(reg);
2510                 return;
2511         }
2512
2513         obj = intel_fb_obj(fb);
2514         if (WARN_ON(obj == NULL))
2515                 return;
2516
2517         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2518
2519         dspcntr = DISPPLANE_GAMMA_ENABLE;
2520
2521         dspcntr |= DISPLAY_PLANE_ENABLE;
2522
2523         if (INTEL_INFO(dev)->gen < 4) {
2524                 if (intel_crtc->pipe == PIPE_B)
2525                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2526
2527                 /* pipesrc and dspsize control the size that is scaled from,
2528                  * which should always be the user's requested size.
2529                  */
2530                 I915_WRITE(DSPSIZE(plane),
2531                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2532                            (intel_crtc->config->pipe_src_w - 1));
2533                 I915_WRITE(DSPPOS(plane), 0);
2534         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2535                 I915_WRITE(PRIMSIZE(plane),
2536                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2537                            (intel_crtc->config->pipe_src_w - 1));
2538                 I915_WRITE(PRIMPOS(plane), 0);
2539                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2540         }
2541
2542         switch (fb->pixel_format) {
2543         case DRM_FORMAT_C8:
2544                 dspcntr |= DISPPLANE_8BPP;
2545                 break;
2546         case DRM_FORMAT_XRGB1555:
2547         case DRM_FORMAT_ARGB1555:
2548                 dspcntr |= DISPPLANE_BGRX555;
2549                 break;
2550         case DRM_FORMAT_RGB565:
2551                 dspcntr |= DISPPLANE_BGRX565;
2552                 break;
2553         case DRM_FORMAT_XRGB8888:
2554         case DRM_FORMAT_ARGB8888:
2555                 dspcntr |= DISPPLANE_BGRX888;
2556                 break;
2557         case DRM_FORMAT_XBGR8888:
2558         case DRM_FORMAT_ABGR8888:
2559                 dspcntr |= DISPPLANE_RGBX888;
2560                 break;
2561         case DRM_FORMAT_XRGB2101010:
2562         case DRM_FORMAT_ARGB2101010:
2563                 dspcntr |= DISPPLANE_BGRX101010;
2564                 break;
2565         case DRM_FORMAT_XBGR2101010:
2566         case DRM_FORMAT_ABGR2101010:
2567                 dspcntr |= DISPPLANE_RGBX101010;
2568                 break;
2569         default:
2570                 BUG();
2571         }
2572
2573         if (INTEL_INFO(dev)->gen >= 4 &&
2574             obj->tiling_mode != I915_TILING_NONE)
2575                 dspcntr |= DISPPLANE_TILED;
2576
2577         if (IS_G4X(dev))
2578                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2579
2580         linear_offset = y * fb->pitches[0] + x * pixel_size;
2581
2582         if (INTEL_INFO(dev)->gen >= 4) {
2583                 intel_crtc->dspaddr_offset =
2584                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2585                                                        pixel_size,
2586                                                        fb->pitches[0]);
2587                 linear_offset -= intel_crtc->dspaddr_offset;
2588         } else {
2589                 intel_crtc->dspaddr_offset = linear_offset;
2590         }
2591
2592         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2593                 dspcntr |= DISPPLANE_ROTATE_180;
2594
2595                 x += (intel_crtc->config->pipe_src_w - 1);
2596                 y += (intel_crtc->config->pipe_src_h - 1);
2597
2598                 /* Finding the last pixel of the last line of the display
2599                 data and adding to linear_offset*/
2600                 linear_offset +=
2601                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2602                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2603         }
2604
2605         I915_WRITE(reg, dspcntr);
2606
2607         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2608                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2609                       fb->pitches[0]);
2610         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2611         if (INTEL_INFO(dev)->gen >= 4) {
2612                 I915_WRITE(DSPSURF(plane),
2613                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2614                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2615                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2616         } else
2617                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2618         POSTING_READ(reg);
2619 }
2620
2621 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2622                                           struct drm_framebuffer *fb,
2623                                           int x, int y)
2624 {
2625         struct drm_device *dev = crtc->dev;
2626         struct drm_i915_private *dev_priv = dev->dev_private;
2627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2628         struct drm_i915_gem_object *obj;
2629         int plane = intel_crtc->plane;
2630         unsigned long linear_offset;
2631         u32 dspcntr;
2632         u32 reg = DSPCNTR(plane);
2633         int pixel_size;
2634
2635         if (!intel_crtc->primary_enabled) {
2636                 I915_WRITE(reg, 0);
2637                 I915_WRITE(DSPSURF(plane), 0);
2638                 POSTING_READ(reg);
2639                 return;
2640         }
2641
2642         obj = intel_fb_obj(fb);
2643         if (WARN_ON(obj == NULL))
2644                 return;
2645
2646         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2647
2648         dspcntr = DISPPLANE_GAMMA_ENABLE;
2649
2650         dspcntr |= DISPLAY_PLANE_ENABLE;
2651
2652         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2653                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2654
2655         switch (fb->pixel_format) {
2656         case DRM_FORMAT_C8:
2657                 dspcntr |= DISPPLANE_8BPP;
2658                 break;
2659         case DRM_FORMAT_RGB565:
2660                 dspcntr |= DISPPLANE_BGRX565;
2661                 break;
2662         case DRM_FORMAT_XRGB8888:
2663         case DRM_FORMAT_ARGB8888:
2664                 dspcntr |= DISPPLANE_BGRX888;
2665                 break;
2666         case DRM_FORMAT_XBGR8888:
2667         case DRM_FORMAT_ABGR8888:
2668                 dspcntr |= DISPPLANE_RGBX888;
2669                 break;
2670         case DRM_FORMAT_XRGB2101010:
2671         case DRM_FORMAT_ARGB2101010:
2672                 dspcntr |= DISPPLANE_BGRX101010;
2673                 break;
2674         case DRM_FORMAT_XBGR2101010:
2675         case DRM_FORMAT_ABGR2101010:
2676                 dspcntr |= DISPPLANE_RGBX101010;
2677                 break;
2678         default:
2679                 BUG();
2680         }
2681
2682         if (obj->tiling_mode != I915_TILING_NONE)
2683                 dspcntr |= DISPPLANE_TILED;
2684
2685         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2686                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2687
2688         linear_offset = y * fb->pitches[0] + x * pixel_size;
2689         intel_crtc->dspaddr_offset =
2690                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2691                                                pixel_size,
2692                                                fb->pitches[0]);
2693         linear_offset -= intel_crtc->dspaddr_offset;
2694         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2695                 dspcntr |= DISPPLANE_ROTATE_180;
2696
2697                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2698                         x += (intel_crtc->config->pipe_src_w - 1);
2699                         y += (intel_crtc->config->pipe_src_h - 1);
2700
2701                         /* Finding the last pixel of the last line of the display
2702                         data and adding to linear_offset*/
2703                         linear_offset +=
2704                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2705                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2706                 }
2707         }
2708
2709         I915_WRITE(reg, dspcntr);
2710
2711         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2712                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2713                       fb->pitches[0]);
2714         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2715         I915_WRITE(DSPSURF(plane),
2716                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2717         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2718                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2719         } else {
2720                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2721                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2722         }
2723         POSTING_READ(reg);
2724 }
2725
2726 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2727                                          struct drm_framebuffer *fb,
2728                                          int x, int y)
2729 {
2730         struct drm_device *dev = crtc->dev;
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2733         struct intel_framebuffer *intel_fb;
2734         struct drm_i915_gem_object *obj;
2735         int pipe = intel_crtc->pipe;
2736         u32 plane_ctl, stride;
2737
2738         if (!intel_crtc->primary_enabled) {
2739                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2740                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2741                 POSTING_READ(PLANE_CTL(pipe, 0));
2742                 return;
2743         }
2744
2745         plane_ctl = PLANE_CTL_ENABLE |
2746                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2747                     PLANE_CTL_PIPE_CSC_ENABLE;
2748
2749         switch (fb->pixel_format) {
2750         case DRM_FORMAT_RGB565:
2751                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2752                 break;
2753         case DRM_FORMAT_XRGB8888:
2754                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2755                 break;
2756         case DRM_FORMAT_ARGB8888:
2757                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2758                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2759                 break;
2760         case DRM_FORMAT_XBGR8888:
2761                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2762                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2763                 break;
2764         case DRM_FORMAT_ABGR8888:
2765                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2766                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2767                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2768                 break;
2769         case DRM_FORMAT_XRGB2101010:
2770                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2771                 break;
2772         case DRM_FORMAT_XBGR2101010:
2773                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2774                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2775                 break;
2776         default:
2777                 BUG();
2778         }
2779
2780         intel_fb = to_intel_framebuffer(fb);
2781         obj = intel_fb->obj;
2782
2783         /*
2784          * The stride is either expressed as a multiple of 64 bytes chunks for
2785          * linear buffers or in number of tiles for tiled buffers.
2786          */
2787         switch (obj->tiling_mode) {
2788         case I915_TILING_NONE:
2789                 stride = fb->pitches[0] >> 6;
2790                 break;
2791         case I915_TILING_X:
2792                 plane_ctl |= PLANE_CTL_TILED_X;
2793                 stride = fb->pitches[0] >> 9;
2794                 break;
2795         default:
2796                 BUG();
2797         }
2798
2799         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2800         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2801                 plane_ctl |= PLANE_CTL_ROTATE_180;
2802
2803         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2804
2805         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2806                       i915_gem_obj_ggtt_offset(obj),
2807                       x, y, fb->width, fb->height,
2808                       fb->pitches[0]);
2809
2810         I915_WRITE(PLANE_POS(pipe, 0), 0);
2811         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2812         I915_WRITE(PLANE_SIZE(pipe, 0),
2813                    (intel_crtc->config->pipe_src_h - 1) << 16 |
2814                    (intel_crtc->config->pipe_src_w - 1));
2815         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2816         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2817
2818         POSTING_READ(PLANE_SURF(pipe, 0));
2819 }
2820
2821 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2822 static int
2823 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2824                            int x, int y, enum mode_set_atomic state)
2825 {
2826         struct drm_device *dev = crtc->dev;
2827         struct drm_i915_private *dev_priv = dev->dev_private;
2828
2829         if (dev_priv->display.disable_fbc)
2830                 dev_priv->display.disable_fbc(dev);
2831
2832         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2833
2834         return 0;
2835 }
2836
2837 static void intel_complete_page_flips(struct drm_device *dev)
2838 {
2839         struct drm_crtc *crtc;
2840
2841         for_each_crtc(dev, crtc) {
2842                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2843                 enum plane plane = intel_crtc->plane;
2844
2845                 intel_prepare_page_flip(dev, plane);
2846                 intel_finish_page_flip_plane(dev, plane);
2847         }
2848 }
2849
2850 static void intel_update_primary_planes(struct drm_device *dev)
2851 {
2852         struct drm_i915_private *dev_priv = dev->dev_private;
2853         struct drm_crtc *crtc;
2854
2855         for_each_crtc(dev, crtc) {
2856                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2857
2858                 drm_modeset_lock(&crtc->mutex, NULL);
2859                 /*
2860                  * FIXME: Once we have proper support for primary planes (and
2861                  * disabling them without disabling the entire crtc) allow again
2862                  * a NULL crtc->primary->fb.
2863                  */
2864                 if (intel_crtc->active && crtc->primary->fb)
2865                         dev_priv->display.update_primary_plane(crtc,
2866                                                                crtc->primary->fb,
2867                                                                crtc->x,
2868                                                                crtc->y);
2869                 drm_modeset_unlock(&crtc->mutex);
2870         }
2871 }
2872
2873 void intel_prepare_reset(struct drm_device *dev)
2874 {
2875         struct drm_i915_private *dev_priv = to_i915(dev);
2876         struct intel_crtc *crtc;
2877
2878         /* no reset support for gen2 */
2879         if (IS_GEN2(dev))
2880                 return;
2881
2882         /* reset doesn't touch the display */
2883         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2884                 return;
2885
2886         drm_modeset_lock_all(dev);
2887
2888         /*
2889          * Disabling the crtcs gracefully seems nicer. Also the
2890          * g33 docs say we should at least disable all the planes.
2891          */
2892         for_each_intel_crtc(dev, crtc) {
2893                 if (crtc->active)
2894                         dev_priv->display.crtc_disable(&crtc->base);
2895         }
2896 }
2897
2898 void intel_finish_reset(struct drm_device *dev)
2899 {
2900         struct drm_i915_private *dev_priv = to_i915(dev);
2901
2902         /*
2903          * Flips in the rings will be nuked by the reset,
2904          * so complete all pending flips so that user space
2905          * will get its events and not get stuck.
2906          */
2907         intel_complete_page_flips(dev);
2908
2909         /* no reset support for gen2 */
2910         if (IS_GEN2(dev))
2911                 return;
2912
2913         /* reset doesn't touch the display */
2914         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2915                 /*
2916                  * Flips in the rings have been nuked by the reset,
2917                  * so update the base address of all primary
2918                  * planes to the the last fb to make sure we're
2919                  * showing the correct fb after a reset.
2920                  */
2921                 intel_update_primary_planes(dev);
2922                 return;
2923         }
2924
2925         /*
2926          * The display has been reset as well,
2927          * so need a full re-initialization.
2928          */
2929         intel_runtime_pm_disable_interrupts(dev_priv);
2930         intel_runtime_pm_enable_interrupts(dev_priv);
2931
2932         intel_modeset_init_hw(dev);
2933
2934         spin_lock_irq(&dev_priv->irq_lock);
2935         if (dev_priv->display.hpd_irq_setup)
2936                 dev_priv->display.hpd_irq_setup(dev);
2937         spin_unlock_irq(&dev_priv->irq_lock);
2938
2939         intel_modeset_setup_hw_state(dev, true);
2940
2941         intel_hpd_init(dev_priv);
2942
2943         drm_modeset_unlock_all(dev);
2944 }
2945
2946 static int
2947 intel_finish_fb(struct drm_framebuffer *old_fb)
2948 {
2949         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2950         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2951         bool was_interruptible = dev_priv->mm.interruptible;
2952         int ret;
2953
2954         /* Big Hammer, we also need to ensure that any pending
2955          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2956          * current scanout is retired before unpinning the old
2957          * framebuffer.
2958          *
2959          * This should only fail upon a hung GPU, in which case we
2960          * can safely continue.
2961          */
2962         dev_priv->mm.interruptible = false;
2963         ret = i915_gem_object_finish_gpu(obj);
2964         dev_priv->mm.interruptible = was_interruptible;
2965
2966         return ret;
2967 }
2968
2969 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2970 {
2971         struct drm_device *dev = crtc->dev;
2972         struct drm_i915_private *dev_priv = dev->dev_private;
2973         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2974         bool pending;
2975
2976         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2977             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2978                 return false;
2979
2980         spin_lock_irq(&dev->event_lock);
2981         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2982         spin_unlock_irq(&dev->event_lock);
2983
2984         return pending;
2985 }
2986
2987 static void intel_update_pipe_size(struct intel_crtc *crtc)
2988 {
2989         struct drm_device *dev = crtc->base.dev;
2990         struct drm_i915_private *dev_priv = dev->dev_private;
2991         const struct drm_display_mode *adjusted_mode;
2992
2993         if (!i915.fastboot)
2994                 return;
2995
2996         /*
2997          * Update pipe size and adjust fitter if needed: the reason for this is
2998          * that in compute_mode_changes we check the native mode (not the pfit
2999          * mode) to see if we can flip rather than do a full mode set. In the
3000          * fastboot case, we'll flip, but if we don't update the pipesrc and
3001          * pfit state, we'll end up with a big fb scanned out into the wrong
3002          * sized surface.
3003          *
3004          * To fix this properly, we need to hoist the checks up into
3005          * compute_mode_changes (or above), check the actual pfit state and
3006          * whether the platform allows pfit disable with pipe active, and only
3007          * then update the pipesrc and pfit state, even on the flip path.
3008          */
3009
3010         adjusted_mode = &crtc->config->base.adjusted_mode;
3011
3012         I915_WRITE(PIPESRC(crtc->pipe),
3013                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3014                    (adjusted_mode->crtc_vdisplay - 1));
3015         if (!crtc->config->pch_pfit.enabled &&
3016             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3017              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3018                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3019                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3020                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3021         }
3022         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3023         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3024 }
3025
3026 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3027 {
3028         struct drm_device *dev = crtc->dev;
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031         int pipe = intel_crtc->pipe;
3032         u32 reg, temp;
3033
3034         /* enable normal train */
3035         reg = FDI_TX_CTL(pipe);
3036         temp = I915_READ(reg);
3037         if (IS_IVYBRIDGE(dev)) {
3038                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3039                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3040         } else {
3041                 temp &= ~FDI_LINK_TRAIN_NONE;
3042                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3043         }
3044         I915_WRITE(reg, temp);
3045
3046         reg = FDI_RX_CTL(pipe);
3047         temp = I915_READ(reg);
3048         if (HAS_PCH_CPT(dev)) {
3049                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3050                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3051         } else {
3052                 temp &= ~FDI_LINK_TRAIN_NONE;
3053                 temp |= FDI_LINK_TRAIN_NONE;
3054         }
3055         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3056
3057         /* wait one idle pattern time */
3058         POSTING_READ(reg);
3059         udelay(1000);
3060
3061         /* IVB wants error correction enabled */
3062         if (IS_IVYBRIDGE(dev))
3063                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3064                            FDI_FE_ERRC_ENABLE);
3065 }
3066
3067 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3068 {
3069         return crtc->base.enabled && crtc->active &&
3070                 crtc->config->has_pch_encoder;
3071 }
3072
3073 static void ivb_modeset_global_resources(struct drm_device *dev)
3074 {
3075         struct drm_i915_private *dev_priv = dev->dev_private;
3076         struct intel_crtc *pipe_B_crtc =
3077                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3078         struct intel_crtc *pipe_C_crtc =
3079                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3080         uint32_t temp;
3081
3082         /*
3083          * When everything is off disable fdi C so that we could enable fdi B
3084          * with all lanes. Note that we don't care about enabled pipes without
3085          * an enabled pch encoder.
3086          */
3087         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3088             !pipe_has_enabled_pch(pipe_C_crtc)) {
3089                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3090                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3091
3092                 temp = I915_READ(SOUTH_CHICKEN1);
3093                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3094                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3095                 I915_WRITE(SOUTH_CHICKEN1, temp);
3096         }
3097 }
3098
3099 /* The FDI link training functions for ILK/Ibexpeak. */
3100 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3101 {
3102         struct drm_device *dev = crtc->dev;
3103         struct drm_i915_private *dev_priv = dev->dev_private;
3104         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3105         int pipe = intel_crtc->pipe;
3106         u32 reg, temp, tries;
3107
3108         /* FDI needs bits from pipe first */
3109         assert_pipe_enabled(dev_priv, pipe);
3110
3111         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3112            for train result */
3113         reg = FDI_RX_IMR(pipe);
3114         temp = I915_READ(reg);
3115         temp &= ~FDI_RX_SYMBOL_LOCK;
3116         temp &= ~FDI_RX_BIT_LOCK;
3117         I915_WRITE(reg, temp);
3118         I915_READ(reg);
3119         udelay(150);
3120
3121         /* enable CPU FDI TX and PCH FDI RX */
3122         reg = FDI_TX_CTL(pipe);
3123         temp = I915_READ(reg);
3124         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3125         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3126         temp &= ~FDI_LINK_TRAIN_NONE;
3127         temp |= FDI_LINK_TRAIN_PATTERN_1;
3128         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3129
3130         reg = FDI_RX_CTL(pipe);
3131         temp = I915_READ(reg);
3132         temp &= ~FDI_LINK_TRAIN_NONE;
3133         temp |= FDI_LINK_TRAIN_PATTERN_1;
3134         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3135
3136         POSTING_READ(reg);
3137         udelay(150);
3138
3139         /* Ironlake workaround, enable clock pointer after FDI enable*/
3140         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3141         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3142                    FDI_RX_PHASE_SYNC_POINTER_EN);
3143
3144         reg = FDI_RX_IIR(pipe);
3145         for (tries = 0; tries < 5; tries++) {
3146                 temp = I915_READ(reg);
3147                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3148
3149                 if ((temp & FDI_RX_BIT_LOCK)) {
3150                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3151                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3152                         break;
3153                 }
3154         }
3155         if (tries == 5)
3156                 DRM_ERROR("FDI train 1 fail!\n");
3157
3158         /* Train 2 */
3159         reg = FDI_TX_CTL(pipe);
3160         temp = I915_READ(reg);
3161         temp &= ~FDI_LINK_TRAIN_NONE;
3162         temp |= FDI_LINK_TRAIN_PATTERN_2;
3163         I915_WRITE(reg, temp);
3164
3165         reg = FDI_RX_CTL(pipe);
3166         temp = I915_READ(reg);
3167         temp &= ~FDI_LINK_TRAIN_NONE;
3168         temp |= FDI_LINK_TRAIN_PATTERN_2;
3169         I915_WRITE(reg, temp);
3170
3171         POSTING_READ(reg);
3172         udelay(150);
3173
3174         reg = FDI_RX_IIR(pipe);
3175         for (tries = 0; tries < 5; tries++) {
3176                 temp = I915_READ(reg);
3177                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3178
3179                 if (temp & FDI_RX_SYMBOL_LOCK) {
3180                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3181                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3182                         break;
3183                 }
3184         }
3185         if (tries == 5)
3186                 DRM_ERROR("FDI train 2 fail!\n");
3187
3188         DRM_DEBUG_KMS("FDI train done\n");
3189
3190 }
3191
3192 static const int snb_b_fdi_train_param[] = {
3193         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3194         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3195         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3196         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3197 };
3198
3199 /* The FDI link training functions for SNB/Cougarpoint. */
3200 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3201 {
3202         struct drm_device *dev = crtc->dev;
3203         struct drm_i915_private *dev_priv = dev->dev_private;
3204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3205         int pipe = intel_crtc->pipe;
3206         u32 reg, temp, i, retry;
3207
3208         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3209            for train result */
3210         reg = FDI_RX_IMR(pipe);
3211         temp = I915_READ(reg);
3212         temp &= ~FDI_RX_SYMBOL_LOCK;
3213         temp &= ~FDI_RX_BIT_LOCK;
3214         I915_WRITE(reg, temp);
3215
3216         POSTING_READ(reg);
3217         udelay(150);
3218
3219         /* enable CPU FDI TX and PCH FDI RX */
3220         reg = FDI_TX_CTL(pipe);
3221         temp = I915_READ(reg);
3222         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3223         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3224         temp &= ~FDI_LINK_TRAIN_NONE;
3225         temp |= FDI_LINK_TRAIN_PATTERN_1;
3226         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3227         /* SNB-B */
3228         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3229         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3230
3231         I915_WRITE(FDI_RX_MISC(pipe),
3232                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3233
3234         reg = FDI_RX_CTL(pipe);
3235         temp = I915_READ(reg);
3236         if (HAS_PCH_CPT(dev)) {
3237                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3238                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3239         } else {
3240                 temp &= ~FDI_LINK_TRAIN_NONE;
3241                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3242         }
3243         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3244
3245         POSTING_READ(reg);
3246         udelay(150);
3247
3248         for (i = 0; i < 4; i++) {
3249                 reg = FDI_TX_CTL(pipe);
3250                 temp = I915_READ(reg);
3251                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3252                 temp |= snb_b_fdi_train_param[i];
3253                 I915_WRITE(reg, temp);
3254
3255                 POSTING_READ(reg);
3256                 udelay(500);
3257
3258                 for (retry = 0; retry < 5; retry++) {
3259                         reg = FDI_RX_IIR(pipe);
3260                         temp = I915_READ(reg);
3261                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3262                         if (temp & FDI_RX_BIT_LOCK) {
3263                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3264                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3265                                 break;
3266                         }
3267                         udelay(50);
3268                 }
3269                 if (retry < 5)
3270                         break;
3271         }
3272         if (i == 4)
3273                 DRM_ERROR("FDI train 1 fail!\n");
3274
3275         /* Train 2 */
3276         reg = FDI_TX_CTL(pipe);
3277         temp = I915_READ(reg);
3278         temp &= ~FDI_LINK_TRAIN_NONE;
3279         temp |= FDI_LINK_TRAIN_PATTERN_2;
3280         if (IS_GEN6(dev)) {
3281                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3282                 /* SNB-B */
3283                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3284         }
3285         I915_WRITE(reg, temp);
3286
3287         reg = FDI_RX_CTL(pipe);
3288         temp = I915_READ(reg);
3289         if (HAS_PCH_CPT(dev)) {
3290                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3291                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3292         } else {
3293                 temp &= ~FDI_LINK_TRAIN_NONE;
3294                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3295         }
3296         I915_WRITE(reg, temp);
3297
3298         POSTING_READ(reg);
3299         udelay(150);
3300
3301         for (i = 0; i < 4; i++) {
3302                 reg = FDI_TX_CTL(pipe);
3303                 temp = I915_READ(reg);
3304                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3305                 temp |= snb_b_fdi_train_param[i];
3306                 I915_WRITE(reg, temp);
3307
3308                 POSTING_READ(reg);
3309                 udelay(500);
3310
3311                 for (retry = 0; retry < 5; retry++) {
3312                         reg = FDI_RX_IIR(pipe);
3313                         temp = I915_READ(reg);
3314                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3315                         if (temp & FDI_RX_SYMBOL_LOCK) {
3316                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3317                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3318                                 break;
3319                         }
3320                         udelay(50);
3321                 }
3322                 if (retry < 5)
3323                         break;
3324         }
3325         if (i == 4)
3326                 DRM_ERROR("FDI train 2 fail!\n");
3327
3328         DRM_DEBUG_KMS("FDI train done.\n");
3329 }
3330
3331 /* Manual link training for Ivy Bridge A0 parts */
3332 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3333 {
3334         struct drm_device *dev = crtc->dev;
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3337         int pipe = intel_crtc->pipe;
3338         u32 reg, temp, i, j;
3339
3340         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3341            for train result */
3342         reg = FDI_RX_IMR(pipe);
3343         temp = I915_READ(reg);
3344         temp &= ~FDI_RX_SYMBOL_LOCK;
3345         temp &= ~FDI_RX_BIT_LOCK;
3346         I915_WRITE(reg, temp);
3347
3348         POSTING_READ(reg);
3349         udelay(150);
3350
3351         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3352                       I915_READ(FDI_RX_IIR(pipe)));
3353
3354         /* Try each vswing and preemphasis setting twice before moving on */
3355         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3356                 /* disable first in case we need to retry */
3357                 reg = FDI_TX_CTL(pipe);
3358                 temp = I915_READ(reg);
3359                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3360                 temp &= ~FDI_TX_ENABLE;
3361                 I915_WRITE(reg, temp);
3362
3363                 reg = FDI_RX_CTL(pipe);
3364                 temp = I915_READ(reg);
3365                 temp &= ~FDI_LINK_TRAIN_AUTO;
3366                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3367                 temp &= ~FDI_RX_ENABLE;
3368                 I915_WRITE(reg, temp);
3369
3370                 /* enable CPU FDI TX and PCH FDI RX */
3371                 reg = FDI_TX_CTL(pipe);
3372                 temp = I915_READ(reg);
3373                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3374                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3375                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3376                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3377                 temp |= snb_b_fdi_train_param[j/2];
3378                 temp |= FDI_COMPOSITE_SYNC;
3379                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3380
3381                 I915_WRITE(FDI_RX_MISC(pipe),
3382                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3383
3384                 reg = FDI_RX_CTL(pipe);
3385                 temp = I915_READ(reg);
3386                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3387                 temp |= FDI_COMPOSITE_SYNC;
3388                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3389
3390                 POSTING_READ(reg);
3391                 udelay(1); /* should be 0.5us */
3392
3393                 for (i = 0; i < 4; i++) {
3394                         reg = FDI_RX_IIR(pipe);
3395                         temp = I915_READ(reg);
3396                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3397
3398                         if (temp & FDI_RX_BIT_LOCK ||
3399                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3400                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3401                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3402                                               i);
3403                                 break;
3404                         }
3405                         udelay(1); /* should be 0.5us */
3406                 }
3407                 if (i == 4) {
3408                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3409                         continue;
3410                 }
3411
3412                 /* Train 2 */
3413                 reg = FDI_TX_CTL(pipe);
3414                 temp = I915_READ(reg);
3415                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3416                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3417                 I915_WRITE(reg, temp);
3418
3419                 reg = FDI_RX_CTL(pipe);
3420                 temp = I915_READ(reg);
3421                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3422                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3423                 I915_WRITE(reg, temp);
3424
3425                 POSTING_READ(reg);
3426                 udelay(2); /* should be 1.5us */
3427
3428                 for (i = 0; i < 4; i++) {
3429                         reg = FDI_RX_IIR(pipe);
3430                         temp = I915_READ(reg);
3431                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3432
3433                         if (temp & FDI_RX_SYMBOL_LOCK ||
3434                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3435                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3436                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3437                                               i);
3438                                 goto train_done;
3439                         }
3440                         udelay(2); /* should be 1.5us */
3441                 }
3442                 if (i == 4)
3443                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3444         }
3445
3446 train_done:
3447         DRM_DEBUG_KMS("FDI train done.\n");
3448 }
3449
3450 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3451 {
3452         struct drm_device *dev = intel_crtc->base.dev;
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457
3458         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3459         reg = FDI_RX_CTL(pipe);
3460         temp = I915_READ(reg);
3461         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3462         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3463         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3464         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3465
3466         POSTING_READ(reg);
3467         udelay(200);
3468
3469         /* Switch from Rawclk to PCDclk */
3470         temp = I915_READ(reg);
3471         I915_WRITE(reg, temp | FDI_PCDCLK);
3472
3473         POSTING_READ(reg);
3474         udelay(200);
3475
3476         /* Enable CPU FDI TX PLL, always on for Ironlake */
3477         reg = FDI_TX_CTL(pipe);
3478         temp = I915_READ(reg);
3479         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3480                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3481
3482                 POSTING_READ(reg);
3483                 udelay(100);
3484         }
3485 }
3486
3487 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3488 {
3489         struct drm_device *dev = intel_crtc->base.dev;
3490         struct drm_i915_private *dev_priv = dev->dev_private;
3491         int pipe = intel_crtc->pipe;
3492         u32 reg, temp;
3493
3494         /* Switch from PCDclk to Rawclk */
3495         reg = FDI_RX_CTL(pipe);
3496         temp = I915_READ(reg);
3497         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3498
3499         /* Disable CPU FDI TX PLL */
3500         reg = FDI_TX_CTL(pipe);
3501         temp = I915_READ(reg);
3502         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3503
3504         POSTING_READ(reg);
3505         udelay(100);
3506
3507         reg = FDI_RX_CTL(pipe);
3508         temp = I915_READ(reg);
3509         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3510
3511         /* Wait for the clocks to turn off. */
3512         POSTING_READ(reg);
3513         udelay(100);
3514 }
3515
3516 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3517 {
3518         struct drm_device *dev = crtc->dev;
3519         struct drm_i915_private *dev_priv = dev->dev_private;
3520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3521         int pipe = intel_crtc->pipe;
3522         u32 reg, temp;
3523
3524         /* disable CPU FDI tx and PCH FDI rx */
3525         reg = FDI_TX_CTL(pipe);
3526         temp = I915_READ(reg);
3527         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3528         POSTING_READ(reg);
3529
3530         reg = FDI_RX_CTL(pipe);
3531         temp = I915_READ(reg);
3532         temp &= ~(0x7 << 16);
3533         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3534         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3535
3536         POSTING_READ(reg);
3537         udelay(100);
3538
3539         /* Ironlake workaround, disable clock pointer after downing FDI */
3540         if (HAS_PCH_IBX(dev))
3541                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3542
3543         /* still set train pattern 1 */
3544         reg = FDI_TX_CTL(pipe);
3545         temp = I915_READ(reg);
3546         temp &= ~FDI_LINK_TRAIN_NONE;
3547         temp |= FDI_LINK_TRAIN_PATTERN_1;
3548         I915_WRITE(reg, temp);
3549
3550         reg = FDI_RX_CTL(pipe);
3551         temp = I915_READ(reg);
3552         if (HAS_PCH_CPT(dev)) {
3553                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3554                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3555         } else {
3556                 temp &= ~FDI_LINK_TRAIN_NONE;
3557                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3558         }
3559         /* BPC in FDI rx is consistent with that in PIPECONF */
3560         temp &= ~(0x07 << 16);
3561         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3562         I915_WRITE(reg, temp);
3563
3564         POSTING_READ(reg);
3565         udelay(100);
3566 }
3567
3568 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3569 {
3570         struct intel_crtc *crtc;
3571
3572         /* Note that we don't need to be called with mode_config.lock here
3573          * as our list of CRTC objects is static for the lifetime of the
3574          * device and so cannot disappear as we iterate. Similarly, we can
3575          * happily treat the predicates as racy, atomic checks as userspace
3576          * cannot claim and pin a new fb without at least acquring the
3577          * struct_mutex and so serialising with us.
3578          */
3579         for_each_intel_crtc(dev, crtc) {
3580                 if (atomic_read(&crtc->unpin_work_count) == 0)
3581                         continue;
3582
3583                 if (crtc->unpin_work)
3584                         intel_wait_for_vblank(dev, crtc->pipe);
3585
3586                 return true;
3587         }
3588
3589         return false;
3590 }
3591
3592 static void page_flip_completed(struct intel_crtc *intel_crtc)
3593 {
3594         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3595         struct intel_unpin_work *work = intel_crtc->unpin_work;
3596
3597         /* ensure that the unpin work is consistent wrt ->pending. */
3598         smp_rmb();
3599         intel_crtc->unpin_work = NULL;
3600
3601         if (work->event)
3602                 drm_send_vblank_event(intel_crtc->base.dev,
3603                                       intel_crtc->pipe,
3604                                       work->event);
3605
3606         drm_crtc_vblank_put(&intel_crtc->base);
3607
3608         wake_up_all(&dev_priv->pending_flip_queue);
3609         queue_work(dev_priv->wq, &work->work);
3610
3611         trace_i915_flip_complete(intel_crtc->plane,
3612                                  work->pending_flip_obj);
3613 }
3614
3615 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3616 {
3617         struct drm_device *dev = crtc->dev;
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619
3620         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3621         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3622                                        !intel_crtc_has_pending_flip(crtc),
3623                                        60*HZ) == 0)) {
3624                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3625
3626                 spin_lock_irq(&dev->event_lock);
3627                 if (intel_crtc->unpin_work) {
3628                         WARN_ONCE(1, "Removing stuck page flip\n");
3629                         page_flip_completed(intel_crtc);
3630                 }
3631                 spin_unlock_irq(&dev->event_lock);
3632         }
3633
3634         if (crtc->primary->fb) {
3635                 mutex_lock(&dev->struct_mutex);
3636                 intel_finish_fb(crtc->primary->fb);
3637                 mutex_unlock(&dev->struct_mutex);
3638         }
3639 }
3640
3641 /* Program iCLKIP clock to the desired frequency */
3642 static void lpt_program_iclkip(struct drm_crtc *crtc)
3643 {
3644         struct drm_device *dev = crtc->dev;
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3647         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3648         u32 temp;
3649
3650         mutex_lock(&dev_priv->dpio_lock);
3651
3652         /* It is necessary to ungate the pixclk gate prior to programming
3653          * the divisors, and gate it back when it is done.
3654          */
3655         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3656
3657         /* Disable SSCCTL */
3658         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3659                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3660                                 SBI_SSCCTL_DISABLE,
3661                         SBI_ICLK);
3662
3663         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3664         if (clock == 20000) {
3665                 auxdiv = 1;
3666                 divsel = 0x41;
3667                 phaseinc = 0x20;
3668         } else {
3669                 /* The iCLK virtual clock root frequency is in MHz,
3670                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3671                  * divisors, it is necessary to divide one by another, so we
3672                  * convert the virtual clock precision to KHz here for higher
3673                  * precision.
3674                  */
3675                 u32 iclk_virtual_root_freq = 172800 * 1000;
3676                 u32 iclk_pi_range = 64;
3677                 u32 desired_divisor, msb_divisor_value, pi_value;
3678
3679                 desired_divisor = (iclk_virtual_root_freq / clock);
3680                 msb_divisor_value = desired_divisor / iclk_pi_range;
3681                 pi_value = desired_divisor % iclk_pi_range;
3682
3683                 auxdiv = 0;
3684                 divsel = msb_divisor_value - 2;
3685                 phaseinc = pi_value;
3686         }
3687
3688         /* This should not happen with any sane values */
3689         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3690                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3691         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3692                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3693
3694         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3695                         clock,
3696                         auxdiv,
3697                         divsel,
3698                         phasedir,
3699                         phaseinc);
3700
3701         /* Program SSCDIVINTPHASE6 */
3702         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3703         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3704         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3705         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3706         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3707         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3708         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3709         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3710
3711         /* Program SSCAUXDIV */
3712         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3713         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3714         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3715         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3716
3717         /* Enable modulator and associated divider */
3718         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3719         temp &= ~SBI_SSCCTL_DISABLE;
3720         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3721
3722         /* Wait for initialization time */
3723         udelay(24);
3724
3725         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3726
3727         mutex_unlock(&dev_priv->dpio_lock);
3728 }
3729
3730 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3731                                                 enum pipe pch_transcoder)
3732 {
3733         struct drm_device *dev = crtc->base.dev;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3736
3737         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3738                    I915_READ(HTOTAL(cpu_transcoder)));
3739         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3740                    I915_READ(HBLANK(cpu_transcoder)));
3741         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3742                    I915_READ(HSYNC(cpu_transcoder)));
3743
3744         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3745                    I915_READ(VTOTAL(cpu_transcoder)));
3746         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3747                    I915_READ(VBLANK(cpu_transcoder)));
3748         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3749                    I915_READ(VSYNC(cpu_transcoder)));
3750         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3751                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3752 }
3753
3754 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3755 {
3756         struct drm_i915_private *dev_priv = dev->dev_private;
3757         uint32_t temp;
3758
3759         temp = I915_READ(SOUTH_CHICKEN1);
3760         if (temp & FDI_BC_BIFURCATION_SELECT)
3761                 return;
3762
3763         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3764         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3765
3766         temp |= FDI_BC_BIFURCATION_SELECT;
3767         DRM_DEBUG_KMS("enabling fdi C rx\n");
3768         I915_WRITE(SOUTH_CHICKEN1, temp);
3769         POSTING_READ(SOUTH_CHICKEN1);
3770 }
3771
3772 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3773 {
3774         struct drm_device *dev = intel_crtc->base.dev;
3775         struct drm_i915_private *dev_priv = dev->dev_private;
3776
3777         switch (intel_crtc->pipe) {
3778         case PIPE_A:
3779                 break;
3780         case PIPE_B:
3781                 if (intel_crtc->config->fdi_lanes > 2)
3782                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3783                 else
3784                         cpt_enable_fdi_bc_bifurcation(dev);
3785
3786                 break;
3787         case PIPE_C:
3788                 cpt_enable_fdi_bc_bifurcation(dev);
3789
3790                 break;
3791         default:
3792                 BUG();
3793         }
3794 }
3795
3796 /*
3797  * Enable PCH resources required for PCH ports:
3798  *   - PCH PLLs
3799  *   - FDI training & RX/TX
3800  *   - update transcoder timings
3801  *   - DP transcoding bits
3802  *   - transcoder
3803  */
3804 static void ironlake_pch_enable(struct drm_crtc *crtc)
3805 {
3806         struct drm_device *dev = crtc->dev;
3807         struct drm_i915_private *dev_priv = dev->dev_private;
3808         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3809         int pipe = intel_crtc->pipe;
3810         u32 reg, temp;
3811
3812         assert_pch_transcoder_disabled(dev_priv, pipe);
3813
3814         if (IS_IVYBRIDGE(dev))
3815                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3816
3817         /* Write the TU size bits before fdi link training, so that error
3818          * detection works. */
3819         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3820                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3821
3822         /* For PCH output, training FDI link */
3823         dev_priv->display.fdi_link_train(crtc);
3824
3825         /* We need to program the right clock selection before writing the pixel
3826          * mutliplier into the DPLL. */
3827         if (HAS_PCH_CPT(dev)) {
3828                 u32 sel;
3829
3830                 temp = I915_READ(PCH_DPLL_SEL);
3831                 temp |= TRANS_DPLL_ENABLE(pipe);
3832                 sel = TRANS_DPLLB_SEL(pipe);
3833                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3834                         temp |= sel;
3835                 else
3836                         temp &= ~sel;
3837                 I915_WRITE(PCH_DPLL_SEL, temp);
3838         }
3839
3840         /* XXX: pch pll's can be enabled any time before we enable the PCH
3841          * transcoder, and we actually should do this to not upset any PCH
3842          * transcoder that already use the clock when we share it.
3843          *
3844          * Note that enable_shared_dpll tries to do the right thing, but
3845          * get_shared_dpll unconditionally resets the pll - we need that to have
3846          * the right LVDS enable sequence. */
3847         intel_enable_shared_dpll(intel_crtc);
3848
3849         /* set transcoder timing, panel must allow it */
3850         assert_panel_unlocked(dev_priv, pipe);
3851         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3852
3853         intel_fdi_normal_train(crtc);
3854
3855         /* For PCH DP, enable TRANS_DP_CTL */
3856         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3857                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3858                 reg = TRANS_DP_CTL(pipe);
3859                 temp = I915_READ(reg);
3860                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3861                           TRANS_DP_SYNC_MASK |
3862                           TRANS_DP_BPC_MASK);
3863                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3864                          TRANS_DP_ENH_FRAMING);
3865                 temp |= bpc << 9; /* same format but at 11:9 */
3866
3867                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3868                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3869                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3870                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3871
3872                 switch (intel_trans_dp_port_sel(crtc)) {
3873                 case PCH_DP_B:
3874                         temp |= TRANS_DP_PORT_SEL_B;
3875                         break;
3876                 case PCH_DP_C:
3877                         temp |= TRANS_DP_PORT_SEL_C;
3878                         break;
3879                 case PCH_DP_D:
3880                         temp |= TRANS_DP_PORT_SEL_D;
3881                         break;
3882                 default:
3883                         BUG();
3884                 }
3885
3886                 I915_WRITE(reg, temp);
3887         }
3888
3889         ironlake_enable_pch_transcoder(dev_priv, pipe);
3890 }
3891
3892 static void lpt_pch_enable(struct drm_crtc *crtc)
3893 {
3894         struct drm_device *dev = crtc->dev;
3895         struct drm_i915_private *dev_priv = dev->dev_private;
3896         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3898
3899         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3900
3901         lpt_program_iclkip(crtc);
3902
3903         /* Set transcoder timing. */
3904         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3905
3906         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3907 }
3908
3909 void intel_put_shared_dpll(struct intel_crtc *crtc)
3910 {
3911         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3912
3913         if (pll == NULL)
3914                 return;
3915
3916         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3917                 WARN(1, "bad %s crtc mask\n", pll->name);
3918                 return;
3919         }
3920
3921         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3922         if (pll->config.crtc_mask == 0) {
3923                 WARN_ON(pll->on);
3924                 WARN_ON(pll->active);
3925         }
3926
3927         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
3928 }
3929
3930 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3931                                                 struct intel_crtc_state *crtc_state)
3932 {
3933         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3934         struct intel_shared_dpll *pll;
3935         enum intel_dpll_id i;
3936
3937         if (HAS_PCH_IBX(dev_priv->dev)) {
3938                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3939                 i = (enum intel_dpll_id) crtc->pipe;
3940                 pll = &dev_priv->shared_dplls[i];
3941
3942                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3943                               crtc->base.base.id, pll->name);
3944
3945                 WARN_ON(pll->new_config->crtc_mask);
3946
3947                 goto found;
3948         }
3949
3950         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3951                 pll = &dev_priv->shared_dplls[i];
3952
3953                 /* Only want to check enabled timings first */
3954                 if (pll->new_config->crtc_mask == 0)
3955                         continue;
3956
3957                 if (memcmp(&crtc_state->dpll_hw_state,
3958                            &pll->new_config->hw_state,
3959                            sizeof(pll->new_config->hw_state)) == 0) {
3960                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3961                                       crtc->base.base.id, pll->name,
3962                                       pll->new_config->crtc_mask,
3963                                       pll->active);
3964                         goto found;
3965                 }
3966         }
3967
3968         /* Ok no matching timings, maybe there's a free one? */
3969         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3970                 pll = &dev_priv->shared_dplls[i];
3971                 if (pll->new_config->crtc_mask == 0) {
3972                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3973                                       crtc->base.base.id, pll->name);
3974                         goto found;
3975                 }
3976         }
3977
3978         return NULL;
3979
3980 found:
3981         if (pll->new_config->crtc_mask == 0)
3982                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
3983
3984         crtc_state->shared_dpll = i;
3985         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3986                          pipe_name(crtc->pipe));
3987
3988         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3989
3990         return pll;
3991 }
3992
3993 /**
3994  * intel_shared_dpll_start_config - start a new PLL staged config
3995  * @dev_priv: DRM device
3996  * @clear_pipes: mask of pipes that will have their PLLs freed
3997  *
3998  * Starts a new PLL staged config, copying the current config but
3999  * releasing the references of pipes specified in clear_pipes.
4000  */
4001 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4002                                           unsigned clear_pipes)
4003 {
4004         struct intel_shared_dpll *pll;
4005         enum intel_dpll_id i;
4006
4007         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4008                 pll = &dev_priv->shared_dplls[i];
4009
4010                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4011                                           GFP_KERNEL);
4012                 if (!pll->new_config)
4013                         goto cleanup;
4014
4015                 pll->new_config->crtc_mask &= ~clear_pipes;
4016         }
4017
4018         return 0;
4019
4020 cleanup:
4021         while (--i >= 0) {
4022                 pll = &dev_priv->shared_dplls[i];
4023                 kfree(pll->new_config);
4024                 pll->new_config = NULL;
4025         }
4026
4027         return -ENOMEM;
4028 }
4029
4030 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4031 {
4032         struct intel_shared_dpll *pll;
4033         enum intel_dpll_id i;
4034
4035         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4036                 pll = &dev_priv->shared_dplls[i];
4037
4038                 WARN_ON(pll->new_config == &pll->config);
4039
4040                 pll->config = *pll->new_config;
4041                 kfree(pll->new_config);
4042                 pll->new_config = NULL;
4043         }
4044 }
4045
4046 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4047 {
4048         struct intel_shared_dpll *pll;
4049         enum intel_dpll_id i;
4050
4051         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4052                 pll = &dev_priv->shared_dplls[i];
4053
4054                 WARN_ON(pll->new_config == &pll->config);
4055
4056                 kfree(pll->new_config);
4057                 pll->new_config = NULL;
4058         }
4059 }
4060
4061 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4062 {
4063         struct drm_i915_private *dev_priv = dev->dev_private;
4064         int dslreg = PIPEDSL(pipe);
4065         u32 temp;
4066
4067         temp = I915_READ(dslreg);
4068         udelay(500);
4069         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4070                 if (wait_for(I915_READ(dslreg) != temp, 5))
4071                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4072         }
4073 }
4074
4075 static void skylake_pfit_enable(struct intel_crtc *crtc)
4076 {
4077         struct drm_device *dev = crtc->base.dev;
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         int pipe = crtc->pipe;
4080
4081         if (crtc->config->pch_pfit.enabled) {
4082                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4083                 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4084                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4085         }
4086 }
4087
4088 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4089 {
4090         struct drm_device *dev = crtc->base.dev;
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092         int pipe = crtc->pipe;
4093
4094         if (crtc->config->pch_pfit.enabled) {
4095                 /* Force use of hard-coded filter coefficients
4096                  * as some pre-programmed values are broken,
4097                  * e.g. x201.
4098                  */
4099                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4100                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4101                                                  PF_PIPE_SEL_IVB(pipe));
4102                 else
4103                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4104                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4105                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4106         }
4107 }
4108
4109 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4110 {
4111         struct drm_device *dev = crtc->dev;
4112         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4113         struct drm_plane *plane;
4114         struct intel_plane *intel_plane;
4115
4116         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4117                 intel_plane = to_intel_plane(plane);
4118                 if (intel_plane->pipe == pipe)
4119                         intel_plane_restore(&intel_plane->base);
4120         }
4121 }
4122
4123 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4124 {
4125         struct drm_device *dev = crtc->dev;
4126         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4127         struct drm_plane *plane;
4128         struct intel_plane *intel_plane;
4129
4130         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4131                 intel_plane = to_intel_plane(plane);
4132                 if (intel_plane->pipe == pipe)
4133                         plane->funcs->disable_plane(plane);
4134         }
4135 }
4136
4137 void hsw_enable_ips(struct intel_crtc *crtc)
4138 {
4139         struct drm_device *dev = crtc->base.dev;
4140         struct drm_i915_private *dev_priv = dev->dev_private;
4141
4142         if (!crtc->config->ips_enabled)
4143                 return;
4144
4145         /* We can only enable IPS after we enable a plane and wait for a vblank */
4146         intel_wait_for_vblank(dev, crtc->pipe);
4147
4148         assert_plane_enabled(dev_priv, crtc->plane);
4149         if (IS_BROADWELL(dev)) {
4150                 mutex_lock(&dev_priv->rps.hw_lock);
4151                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4152                 mutex_unlock(&dev_priv->rps.hw_lock);
4153                 /* Quoting Art Runyan: "its not safe to expect any particular
4154                  * value in IPS_CTL bit 31 after enabling IPS through the
4155                  * mailbox." Moreover, the mailbox may return a bogus state,
4156                  * so we need to just enable it and continue on.
4157                  */
4158         } else {
4159                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4160                 /* The bit only becomes 1 in the next vblank, so this wait here
4161                  * is essentially intel_wait_for_vblank. If we don't have this
4162                  * and don't wait for vblanks until the end of crtc_enable, then
4163                  * the HW state readout code will complain that the expected
4164                  * IPS_CTL value is not the one we read. */
4165                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4166                         DRM_ERROR("Timed out waiting for IPS enable\n");
4167         }
4168 }
4169
4170 void hsw_disable_ips(struct intel_crtc *crtc)
4171 {
4172         struct drm_device *dev = crtc->base.dev;
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174
4175         if (!crtc->config->ips_enabled)
4176                 return;
4177
4178         assert_plane_enabled(dev_priv, crtc->plane);
4179         if (IS_BROADWELL(dev)) {
4180                 mutex_lock(&dev_priv->rps.hw_lock);
4181                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4182                 mutex_unlock(&dev_priv->rps.hw_lock);
4183                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4184                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4185                         DRM_ERROR("Timed out waiting for IPS disable\n");
4186         } else {
4187                 I915_WRITE(IPS_CTL, 0);
4188                 POSTING_READ(IPS_CTL);
4189         }
4190
4191         /* We need to wait for a vblank before we can disable the plane. */
4192         intel_wait_for_vblank(dev, crtc->pipe);
4193 }
4194
4195 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4196 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4197 {
4198         struct drm_device *dev = crtc->dev;
4199         struct drm_i915_private *dev_priv = dev->dev_private;
4200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4201         enum pipe pipe = intel_crtc->pipe;
4202         int palreg = PALETTE(pipe);
4203         int i;
4204         bool reenable_ips = false;
4205
4206         /* The clocks have to be on to load the palette. */
4207         if (!crtc->enabled || !intel_crtc->active)
4208                 return;
4209
4210         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4211                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4212                         assert_dsi_pll_enabled(dev_priv);
4213                 else
4214                         assert_pll_enabled(dev_priv, pipe);
4215         }
4216
4217         /* use legacy palette for Ironlake */
4218         if (!HAS_GMCH_DISPLAY(dev))
4219                 palreg = LGC_PALETTE(pipe);
4220
4221         /* Workaround : Do not read or write the pipe palette/gamma data while
4222          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4223          */
4224         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4225             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4226              GAMMA_MODE_MODE_SPLIT)) {
4227                 hsw_disable_ips(intel_crtc);
4228                 reenable_ips = true;
4229         }
4230
4231         for (i = 0; i < 256; i++) {
4232                 I915_WRITE(palreg + 4 * i,
4233                            (intel_crtc->lut_r[i] << 16) |
4234                            (intel_crtc->lut_g[i] << 8) |
4235                            intel_crtc->lut_b[i]);
4236         }
4237
4238         if (reenable_ips)
4239                 hsw_enable_ips(intel_crtc);
4240 }
4241
4242 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4243 {
4244         if (!enable && intel_crtc->overlay) {
4245                 struct drm_device *dev = intel_crtc->base.dev;
4246                 struct drm_i915_private *dev_priv = dev->dev_private;
4247
4248                 mutex_lock(&dev->struct_mutex);
4249                 dev_priv->mm.interruptible = false;
4250                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4251                 dev_priv->mm.interruptible = true;
4252                 mutex_unlock(&dev->struct_mutex);
4253         }
4254
4255         /* Let userspace switch the overlay on again. In most cases userspace
4256          * has to recompute where to put it anyway.
4257          */
4258 }
4259
4260 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4261 {
4262         struct drm_device *dev = crtc->dev;
4263         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4264         int pipe = intel_crtc->pipe;
4265
4266         intel_enable_primary_hw_plane(crtc->primary, crtc);
4267         intel_enable_sprite_planes(crtc);
4268         intel_crtc_update_cursor(crtc, true);
4269         intel_crtc_dpms_overlay(intel_crtc, true);
4270
4271         hsw_enable_ips(intel_crtc);
4272
4273         mutex_lock(&dev->struct_mutex);
4274         intel_fbc_update(dev);
4275         mutex_unlock(&dev->struct_mutex);
4276
4277         /*
4278          * FIXME: Once we grow proper nuclear flip support out of this we need
4279          * to compute the mask of flip planes precisely. For the time being
4280          * consider this a flip from a NULL plane.
4281          */
4282         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4283 }
4284
4285 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4286 {
4287         struct drm_device *dev = crtc->dev;
4288         struct drm_i915_private *dev_priv = dev->dev_private;
4289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4290         int pipe = intel_crtc->pipe;
4291         int plane = intel_crtc->plane;
4292
4293         intel_crtc_wait_for_pending_flips(crtc);
4294
4295         if (dev_priv->fbc.plane == plane)
4296                 intel_fbc_disable(dev);
4297
4298         hsw_disable_ips(intel_crtc);
4299
4300         intel_crtc_dpms_overlay(intel_crtc, false);
4301         intel_crtc_update_cursor(crtc, false);
4302         intel_disable_sprite_planes(crtc);
4303         intel_disable_primary_hw_plane(crtc->primary, crtc);
4304
4305         /*
4306          * FIXME: Once we grow proper nuclear flip support out of this we need
4307          * to compute the mask of flip planes precisely. For the time being
4308          * consider this a flip to a NULL plane.
4309          */
4310         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4311 }
4312
4313 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4314 {
4315         struct drm_device *dev = crtc->dev;
4316         struct drm_i915_private *dev_priv = dev->dev_private;
4317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4318         struct intel_encoder *encoder;
4319         int pipe = intel_crtc->pipe;
4320
4321         WARN_ON(!crtc->enabled);
4322
4323         if (intel_crtc->active)
4324                 return;
4325
4326         if (intel_crtc->config->has_pch_encoder)
4327                 intel_prepare_shared_dpll(intel_crtc);
4328
4329         if (intel_crtc->config->has_dp_encoder)
4330                 intel_dp_set_m_n(intel_crtc);
4331
4332         intel_set_pipe_timings(intel_crtc);
4333
4334         if (intel_crtc->config->has_pch_encoder) {
4335                 intel_cpu_transcoder_set_m_n(intel_crtc,
4336                                      &intel_crtc->config->fdi_m_n, NULL);
4337         }
4338
4339         ironlake_set_pipeconf(crtc);
4340
4341         intel_crtc->active = true;
4342
4343         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4344         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4345
4346         for_each_encoder_on_crtc(dev, crtc, encoder)
4347                 if (encoder->pre_enable)
4348                         encoder->pre_enable(encoder);
4349
4350         if (intel_crtc->config->has_pch_encoder) {
4351                 /* Note: FDI PLL enabling _must_ be done before we enable the
4352                  * cpu pipes, hence this is separate from all the other fdi/pch
4353                  * enabling. */
4354                 ironlake_fdi_pll_enable(intel_crtc);
4355         } else {
4356                 assert_fdi_tx_disabled(dev_priv, pipe);
4357                 assert_fdi_rx_disabled(dev_priv, pipe);
4358         }
4359
4360         ironlake_pfit_enable(intel_crtc);
4361
4362         /*
4363          * On ILK+ LUT must be loaded before the pipe is running but with
4364          * clocks enabled
4365          */
4366         intel_crtc_load_lut(crtc);
4367
4368         intel_update_watermarks(crtc);
4369         intel_enable_pipe(intel_crtc);
4370
4371         if (intel_crtc->config->has_pch_encoder)
4372                 ironlake_pch_enable(crtc);
4373
4374         assert_vblank_disabled(crtc);
4375         drm_crtc_vblank_on(crtc);
4376
4377         for_each_encoder_on_crtc(dev, crtc, encoder)
4378                 encoder->enable(encoder);
4379
4380         if (HAS_PCH_CPT(dev))
4381                 cpt_verify_modeset(dev, intel_crtc->pipe);
4382
4383         intel_crtc_enable_planes(crtc);
4384 }
4385
4386 /* IPS only exists on ULT machines and is tied to pipe A. */
4387 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4388 {
4389         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4390 }
4391
4392 /*
4393  * This implements the workaround described in the "notes" section of the mode
4394  * set sequence documentation. When going from no pipes or single pipe to
4395  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4396  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4397  */
4398 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4399 {
4400         struct drm_device *dev = crtc->base.dev;
4401         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4402
4403         /* We want to get the other_active_crtc only if there's only 1 other
4404          * active crtc. */
4405         for_each_intel_crtc(dev, crtc_it) {
4406                 if (!crtc_it->active || crtc_it == crtc)
4407                         continue;
4408
4409                 if (other_active_crtc)
4410                         return;
4411
4412                 other_active_crtc = crtc_it;
4413         }
4414         if (!other_active_crtc)
4415                 return;
4416
4417         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4418         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4419 }
4420
4421 static void haswell_crtc_enable(struct drm_crtc *crtc)
4422 {
4423         struct drm_device *dev = crtc->dev;
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4426         struct intel_encoder *encoder;
4427         int pipe = intel_crtc->pipe;
4428
4429         WARN_ON(!crtc->enabled);
4430
4431         if (intel_crtc->active)
4432                 return;
4433
4434         if (intel_crtc_to_shared_dpll(intel_crtc))
4435                 intel_enable_shared_dpll(intel_crtc);
4436
4437         if (intel_crtc->config->has_dp_encoder)
4438                 intel_dp_set_m_n(intel_crtc);
4439
4440         intel_set_pipe_timings(intel_crtc);
4441
4442         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4443                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4444                            intel_crtc->config->pixel_multiplier - 1);
4445         }
4446
4447         if (intel_crtc->config->has_pch_encoder) {
4448                 intel_cpu_transcoder_set_m_n(intel_crtc,
4449                                      &intel_crtc->config->fdi_m_n, NULL);
4450         }
4451
4452         haswell_set_pipeconf(crtc);
4453
4454         intel_set_pipe_csc(crtc);
4455
4456         intel_crtc->active = true;
4457
4458         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4459         for_each_encoder_on_crtc(dev, crtc, encoder)
4460                 if (encoder->pre_enable)
4461                         encoder->pre_enable(encoder);
4462
4463         if (intel_crtc->config->has_pch_encoder) {
4464                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4465                                                       true);
4466                 dev_priv->display.fdi_link_train(crtc);
4467         }
4468
4469         intel_ddi_enable_pipe_clock(intel_crtc);
4470
4471         if (IS_SKYLAKE(dev))
4472                 skylake_pfit_enable(intel_crtc);
4473         else
4474                 ironlake_pfit_enable(intel_crtc);
4475
4476         /*
4477          * On ILK+ LUT must be loaded before the pipe is running but with
4478          * clocks enabled
4479          */
4480         intel_crtc_load_lut(crtc);
4481
4482         intel_ddi_set_pipe_settings(crtc);
4483         intel_ddi_enable_transcoder_func(crtc);
4484
4485         intel_update_watermarks(crtc);
4486         intel_enable_pipe(intel_crtc);
4487
4488         if (intel_crtc->config->has_pch_encoder)
4489                 lpt_pch_enable(crtc);
4490
4491         if (intel_crtc->config->dp_encoder_is_mst)
4492                 intel_ddi_set_vc_payload_alloc(crtc, true);
4493
4494         assert_vblank_disabled(crtc);
4495         drm_crtc_vblank_on(crtc);
4496
4497         for_each_encoder_on_crtc(dev, crtc, encoder) {
4498                 encoder->enable(encoder);
4499                 intel_opregion_notify_encoder(encoder, true);
4500         }
4501
4502         /* If we change the relative order between pipe/planes enabling, we need
4503          * to change the workaround. */
4504         haswell_mode_set_planes_workaround(intel_crtc);
4505         intel_crtc_enable_planes(crtc);
4506 }
4507
4508 static void skylake_pfit_disable(struct intel_crtc *crtc)
4509 {
4510         struct drm_device *dev = crtc->base.dev;
4511         struct drm_i915_private *dev_priv = dev->dev_private;
4512         int pipe = crtc->pipe;
4513
4514         /* To avoid upsetting the power well on haswell only disable the pfit if
4515          * it's in use. The hw state code will make sure we get this right. */
4516         if (crtc->config->pch_pfit.enabled) {
4517                 I915_WRITE(PS_CTL(pipe), 0);
4518                 I915_WRITE(PS_WIN_POS(pipe), 0);
4519                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4520         }
4521 }
4522
4523 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4524 {
4525         struct drm_device *dev = crtc->base.dev;
4526         struct drm_i915_private *dev_priv = dev->dev_private;
4527         int pipe = crtc->pipe;
4528
4529         /* To avoid upsetting the power well on haswell only disable the pfit if
4530          * it's in use. The hw state code will make sure we get this right. */
4531         if (crtc->config->pch_pfit.enabled) {
4532                 I915_WRITE(PF_CTL(pipe), 0);
4533                 I915_WRITE(PF_WIN_POS(pipe), 0);
4534                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4535         }
4536 }
4537
4538 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4539 {
4540         struct drm_device *dev = crtc->dev;
4541         struct drm_i915_private *dev_priv = dev->dev_private;
4542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4543         struct intel_encoder *encoder;
4544         int pipe = intel_crtc->pipe;
4545         u32 reg, temp;
4546
4547         if (!intel_crtc->active)
4548                 return;
4549
4550         intel_crtc_disable_planes(crtc);
4551
4552         for_each_encoder_on_crtc(dev, crtc, encoder)
4553                 encoder->disable(encoder);
4554
4555         drm_crtc_vblank_off(crtc);
4556         assert_vblank_disabled(crtc);
4557
4558         if (intel_crtc->config->has_pch_encoder)
4559                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4560
4561         intel_disable_pipe(intel_crtc);
4562
4563         ironlake_pfit_disable(intel_crtc);
4564
4565         for_each_encoder_on_crtc(dev, crtc, encoder)
4566                 if (encoder->post_disable)
4567                         encoder->post_disable(encoder);
4568
4569         if (intel_crtc->config->has_pch_encoder) {
4570                 ironlake_fdi_disable(crtc);
4571
4572                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4573
4574                 if (HAS_PCH_CPT(dev)) {
4575                         /* disable TRANS_DP_CTL */
4576                         reg = TRANS_DP_CTL(pipe);
4577                         temp = I915_READ(reg);
4578                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4579                                   TRANS_DP_PORT_SEL_MASK);
4580                         temp |= TRANS_DP_PORT_SEL_NONE;
4581                         I915_WRITE(reg, temp);
4582
4583                         /* disable DPLL_SEL */
4584                         temp = I915_READ(PCH_DPLL_SEL);
4585                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4586                         I915_WRITE(PCH_DPLL_SEL, temp);
4587                 }
4588
4589                 /* disable PCH DPLL */
4590                 intel_disable_shared_dpll(intel_crtc);
4591
4592                 ironlake_fdi_pll_disable(intel_crtc);
4593         }
4594
4595         intel_crtc->active = false;
4596         intel_update_watermarks(crtc);
4597
4598         mutex_lock(&dev->struct_mutex);
4599         intel_fbc_update(dev);
4600         mutex_unlock(&dev->struct_mutex);
4601 }
4602
4603 static void haswell_crtc_disable(struct drm_crtc *crtc)
4604 {
4605         struct drm_device *dev = crtc->dev;
4606         struct drm_i915_private *dev_priv = dev->dev_private;
4607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4608         struct intel_encoder *encoder;
4609         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4610
4611         if (!intel_crtc->active)
4612                 return;
4613
4614         intel_crtc_disable_planes(crtc);
4615
4616         for_each_encoder_on_crtc(dev, crtc, encoder) {
4617                 intel_opregion_notify_encoder(encoder, false);
4618                 encoder->disable(encoder);
4619         }
4620
4621         drm_crtc_vblank_off(crtc);
4622         assert_vblank_disabled(crtc);
4623
4624         if (intel_crtc->config->has_pch_encoder)
4625                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4626                                                       false);
4627         intel_disable_pipe(intel_crtc);
4628
4629         if (intel_crtc->config->dp_encoder_is_mst)
4630                 intel_ddi_set_vc_payload_alloc(crtc, false);
4631
4632         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4633
4634         if (IS_SKYLAKE(dev))
4635                 skylake_pfit_disable(intel_crtc);
4636         else
4637                 ironlake_pfit_disable(intel_crtc);
4638
4639         intel_ddi_disable_pipe_clock(intel_crtc);
4640
4641         if (intel_crtc->config->has_pch_encoder) {
4642                 lpt_disable_pch_transcoder(dev_priv);
4643                 intel_ddi_fdi_disable(crtc);
4644         }
4645
4646         for_each_encoder_on_crtc(dev, crtc, encoder)
4647                 if (encoder->post_disable)
4648                         encoder->post_disable(encoder);
4649
4650         intel_crtc->active = false;
4651         intel_update_watermarks(crtc);
4652
4653         mutex_lock(&dev->struct_mutex);
4654         intel_fbc_update(dev);
4655         mutex_unlock(&dev->struct_mutex);
4656
4657         if (intel_crtc_to_shared_dpll(intel_crtc))
4658                 intel_disable_shared_dpll(intel_crtc);
4659 }
4660
4661 static void ironlake_crtc_off(struct drm_crtc *crtc)
4662 {
4663         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4664         intel_put_shared_dpll(intel_crtc);
4665 }
4666
4667
4668 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4669 {
4670         struct drm_device *dev = crtc->base.dev;
4671         struct drm_i915_private *dev_priv = dev->dev_private;
4672         struct intel_crtc_state *pipe_config = crtc->config;
4673
4674         if (!pipe_config->gmch_pfit.control)
4675                 return;
4676
4677         /*
4678          * The panel fitter should only be adjusted whilst the pipe is disabled,
4679          * according to register description and PRM.
4680          */
4681         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4682         assert_pipe_disabled(dev_priv, crtc->pipe);
4683
4684         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4685         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4686
4687         /* Border color in case we don't scale up to the full screen. Black by
4688          * default, change to something else for debugging. */
4689         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4690 }
4691
4692 static enum intel_display_power_domain port_to_power_domain(enum port port)
4693 {
4694         switch (port) {
4695         case PORT_A:
4696                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4697         case PORT_B:
4698                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4699         case PORT_C:
4700                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4701         case PORT_D:
4702                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4703         default:
4704                 WARN_ON_ONCE(1);
4705                 return POWER_DOMAIN_PORT_OTHER;
4706         }
4707 }
4708
4709 #define for_each_power_domain(domain, mask)                             \
4710         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4711                 if ((1 << (domain)) & (mask))
4712
4713 enum intel_display_power_domain
4714 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4715 {
4716         struct drm_device *dev = intel_encoder->base.dev;
4717         struct intel_digital_port *intel_dig_port;
4718
4719         switch (intel_encoder->type) {
4720         case INTEL_OUTPUT_UNKNOWN:
4721                 /* Only DDI platforms should ever use this output type */
4722                 WARN_ON_ONCE(!HAS_DDI(dev));
4723         case INTEL_OUTPUT_DISPLAYPORT:
4724         case INTEL_OUTPUT_HDMI:
4725         case INTEL_OUTPUT_EDP:
4726                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4727                 return port_to_power_domain(intel_dig_port->port);
4728         case INTEL_OUTPUT_DP_MST:
4729                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4730                 return port_to_power_domain(intel_dig_port->port);
4731         case INTEL_OUTPUT_ANALOG:
4732                 return POWER_DOMAIN_PORT_CRT;
4733         case INTEL_OUTPUT_DSI:
4734                 return POWER_DOMAIN_PORT_DSI;
4735         default:
4736                 return POWER_DOMAIN_PORT_OTHER;
4737         }
4738 }
4739
4740 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4741 {
4742         struct drm_device *dev = crtc->dev;
4743         struct intel_encoder *intel_encoder;
4744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4745         enum pipe pipe = intel_crtc->pipe;
4746         unsigned long mask;
4747         enum transcoder transcoder;
4748
4749         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4750
4751         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4752         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4753         if (intel_crtc->config->pch_pfit.enabled ||
4754             intel_crtc->config->pch_pfit.force_thru)
4755                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4756
4757         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4758                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4759
4760         return mask;
4761 }
4762
4763 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4764 {
4765         struct drm_i915_private *dev_priv = dev->dev_private;
4766         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4767         struct intel_crtc *crtc;
4768
4769         /*
4770          * First get all needed power domains, then put all unneeded, to avoid
4771          * any unnecessary toggling of the power wells.
4772          */
4773         for_each_intel_crtc(dev, crtc) {
4774                 enum intel_display_power_domain domain;
4775
4776                 if (!crtc->base.enabled)
4777                         continue;
4778
4779                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4780
4781                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4782                         intel_display_power_get(dev_priv, domain);
4783         }
4784
4785         if (dev_priv->display.modeset_global_resources)
4786                 dev_priv->display.modeset_global_resources(dev);
4787
4788         for_each_intel_crtc(dev, crtc) {
4789                 enum intel_display_power_domain domain;
4790
4791                 for_each_power_domain(domain, crtc->enabled_power_domains)
4792                         intel_display_power_put(dev_priv, domain);
4793
4794                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4795         }
4796
4797         intel_display_set_init_power(dev_priv, false);
4798 }
4799
4800 /* returns HPLL frequency in kHz */
4801 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4802 {
4803         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4804
4805         /* Obtain SKU information */
4806         mutex_lock(&dev_priv->dpio_lock);
4807         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4808                 CCK_FUSE_HPLL_FREQ_MASK;
4809         mutex_unlock(&dev_priv->dpio_lock);
4810
4811         return vco_freq[hpll_freq] * 1000;
4812 }
4813
4814 static void vlv_update_cdclk(struct drm_device *dev)
4815 {
4816         struct drm_i915_private *dev_priv = dev->dev_private;
4817
4818         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4819         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4820                          dev_priv->vlv_cdclk_freq);
4821
4822         /*
4823          * Program the gmbus_freq based on the cdclk frequency.
4824          * BSpec erroneously claims we should aim for 4MHz, but
4825          * in fact 1MHz is the correct frequency.
4826          */
4827         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4828 }
4829
4830 /* Adjust CDclk dividers to allow high res or save power if possible */
4831 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4832 {
4833         struct drm_i915_private *dev_priv = dev->dev_private;
4834         u32 val, cmd;
4835
4836         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4837
4838         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4839                 cmd = 2;
4840         else if (cdclk == 266667)
4841                 cmd = 1;
4842         else
4843                 cmd = 0;
4844
4845         mutex_lock(&dev_priv->rps.hw_lock);
4846         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4847         val &= ~DSPFREQGUAR_MASK;
4848         val |= (cmd << DSPFREQGUAR_SHIFT);
4849         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4850         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4851                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4852                      50)) {
4853                 DRM_ERROR("timed out waiting for CDclk change\n");
4854         }
4855         mutex_unlock(&dev_priv->rps.hw_lock);
4856
4857         if (cdclk == 400000) {
4858                 u32 divider;
4859
4860                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4861
4862                 mutex_lock(&dev_priv->dpio_lock);
4863                 /* adjust cdclk divider */
4864                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4865                 val &= ~DISPLAY_FREQUENCY_VALUES;
4866                 val |= divider;
4867                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4868
4869                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4870                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4871                              50))
4872                         DRM_ERROR("timed out waiting for CDclk change\n");
4873                 mutex_unlock(&dev_priv->dpio_lock);
4874         }
4875
4876         mutex_lock(&dev_priv->dpio_lock);
4877         /* adjust self-refresh exit latency value */
4878         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4879         val &= ~0x7f;
4880
4881         /*
4882          * For high bandwidth configs, we set a higher latency in the bunit
4883          * so that the core display fetch happens in time to avoid underruns.
4884          */
4885         if (cdclk == 400000)
4886                 val |= 4500 / 250; /* 4.5 usec */
4887         else
4888                 val |= 3000 / 250; /* 3.0 usec */
4889         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4890         mutex_unlock(&dev_priv->dpio_lock);
4891
4892         vlv_update_cdclk(dev);
4893 }
4894
4895 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4896 {
4897         struct drm_i915_private *dev_priv = dev->dev_private;
4898         u32 val, cmd;
4899
4900         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4901
4902         switch (cdclk) {
4903         case 400000:
4904                 cmd = 3;
4905                 break;
4906         case 333333:
4907         case 320000:
4908                 cmd = 2;
4909                 break;
4910         case 266667:
4911                 cmd = 1;
4912                 break;
4913         case 200000:
4914                 cmd = 0;
4915                 break;
4916         default:
4917                 MISSING_CASE(cdclk);
4918                 return;
4919         }
4920
4921         mutex_lock(&dev_priv->rps.hw_lock);
4922         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4923         val &= ~DSPFREQGUAR_MASK_CHV;
4924         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4925         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4926         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4927                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4928                      50)) {
4929                 DRM_ERROR("timed out waiting for CDclk change\n");
4930         }
4931         mutex_unlock(&dev_priv->rps.hw_lock);
4932
4933         vlv_update_cdclk(dev);
4934 }
4935
4936 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4937                                  int max_pixclk)
4938 {
4939         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4940
4941         /* FIXME: Punit isn't quite ready yet */
4942         if (IS_CHERRYVIEW(dev_priv->dev))
4943                 return 400000;
4944
4945         /*
4946          * Really only a few cases to deal with, as only 4 CDclks are supported:
4947          *   200MHz
4948          *   267MHz
4949          *   320/333MHz (depends on HPLL freq)
4950          *   400MHz
4951          * So we check to see whether we're above 90% of the lower bin and
4952          * adjust if needed.
4953          *
4954          * We seem to get an unstable or solid color picture at 200MHz.
4955          * Not sure what's wrong. For now use 200MHz only when all pipes
4956          * are off.
4957          */
4958         if (max_pixclk > freq_320*9/10)
4959                 return 400000;
4960         else if (max_pixclk > 266667*9/10)
4961                 return freq_320;
4962         else if (max_pixclk > 0)
4963                 return 266667;
4964         else
4965                 return 200000;
4966 }
4967
4968 /* compute the max pixel clock for new configuration */
4969 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4970 {
4971         struct drm_device *dev = dev_priv->dev;
4972         struct intel_crtc *intel_crtc;
4973         int max_pixclk = 0;
4974
4975         for_each_intel_crtc(dev, intel_crtc) {
4976                 if (intel_crtc->new_enabled)
4977                         max_pixclk = max(max_pixclk,
4978                                          intel_crtc->new_config->base.adjusted_mode.crtc_clock);
4979         }
4980
4981         return max_pixclk;
4982 }
4983
4984 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4985                                             unsigned *prepare_pipes)
4986 {
4987         struct drm_i915_private *dev_priv = dev->dev_private;
4988         struct intel_crtc *intel_crtc;
4989         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4990
4991         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4992             dev_priv->vlv_cdclk_freq)
4993                 return;
4994
4995         /* disable/enable all currently active pipes while we change cdclk */
4996         for_each_intel_crtc(dev, intel_crtc)
4997                 if (intel_crtc->base.enabled)
4998                         *prepare_pipes |= (1 << intel_crtc->pipe);
4999 }
5000
5001 static void valleyview_modeset_global_resources(struct drm_device *dev)
5002 {
5003         struct drm_i915_private *dev_priv = dev->dev_private;
5004         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5005         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5006
5007         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5008                 /*
5009                  * FIXME: We can end up here with all power domains off, yet
5010                  * with a CDCLK frequency other than the minimum. To account
5011                  * for this take the PIPE-A power domain, which covers the HW
5012                  * blocks needed for the following programming. This can be
5013                  * removed once it's guaranteed that we get here either with
5014                  * the minimum CDCLK set, or the required power domains
5015                  * enabled.
5016                  */
5017                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5018
5019                 if (IS_CHERRYVIEW(dev))
5020                         cherryview_set_cdclk(dev, req_cdclk);
5021                 else
5022                         valleyview_set_cdclk(dev, req_cdclk);
5023
5024                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5025         }
5026 }
5027
5028 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5029 {
5030         struct drm_device *dev = crtc->dev;
5031         struct drm_i915_private *dev_priv = to_i915(dev);
5032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5033         struct intel_encoder *encoder;
5034         int pipe = intel_crtc->pipe;
5035         bool is_dsi;
5036
5037         WARN_ON(!crtc->enabled);
5038
5039         if (intel_crtc->active)
5040                 return;
5041
5042         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5043
5044         if (!is_dsi) {
5045                 if (IS_CHERRYVIEW(dev))
5046                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5047                 else
5048                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5049         }
5050
5051         if (intel_crtc->config->has_dp_encoder)
5052                 intel_dp_set_m_n(intel_crtc);
5053
5054         intel_set_pipe_timings(intel_crtc);
5055
5056         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5057                 struct drm_i915_private *dev_priv = dev->dev_private;
5058
5059                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5060                 I915_WRITE(CHV_CANVAS(pipe), 0);
5061         }
5062
5063         i9xx_set_pipeconf(intel_crtc);
5064
5065         intel_crtc->active = true;
5066
5067         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5068
5069         for_each_encoder_on_crtc(dev, crtc, encoder)
5070                 if (encoder->pre_pll_enable)
5071                         encoder->pre_pll_enable(encoder);
5072
5073         if (!is_dsi) {
5074                 if (IS_CHERRYVIEW(dev))
5075                         chv_enable_pll(intel_crtc, intel_crtc->config);
5076                 else
5077                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5078         }
5079
5080         for_each_encoder_on_crtc(dev, crtc, encoder)
5081                 if (encoder->pre_enable)
5082                         encoder->pre_enable(encoder);
5083
5084         i9xx_pfit_enable(intel_crtc);
5085
5086         intel_crtc_load_lut(crtc);
5087
5088         intel_update_watermarks(crtc);
5089         intel_enable_pipe(intel_crtc);
5090
5091         assert_vblank_disabled(crtc);
5092         drm_crtc_vblank_on(crtc);
5093
5094         for_each_encoder_on_crtc(dev, crtc, encoder)
5095                 encoder->enable(encoder);
5096
5097         intel_crtc_enable_planes(crtc);
5098
5099         /* Underruns don't raise interrupts, so check manually. */
5100         i9xx_check_fifo_underruns(dev_priv);
5101 }
5102
5103 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5104 {
5105         struct drm_device *dev = crtc->base.dev;
5106         struct drm_i915_private *dev_priv = dev->dev_private;
5107
5108         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5109         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5110 }
5111
5112 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5113 {
5114         struct drm_device *dev = crtc->dev;
5115         struct drm_i915_private *dev_priv = to_i915(dev);
5116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5117         struct intel_encoder *encoder;
5118         int pipe = intel_crtc->pipe;
5119
5120         WARN_ON(!crtc->enabled);
5121
5122         if (intel_crtc->active)
5123                 return;
5124
5125         i9xx_set_pll_dividers(intel_crtc);
5126
5127         if (intel_crtc->config->has_dp_encoder)
5128                 intel_dp_set_m_n(intel_crtc);
5129
5130         intel_set_pipe_timings(intel_crtc);
5131
5132         i9xx_set_pipeconf(intel_crtc);
5133
5134         intel_crtc->active = true;
5135
5136         if (!IS_GEN2(dev))
5137                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5138
5139         for_each_encoder_on_crtc(dev, crtc, encoder)
5140                 if (encoder->pre_enable)
5141                         encoder->pre_enable(encoder);
5142
5143         i9xx_enable_pll(intel_crtc);
5144
5145         i9xx_pfit_enable(intel_crtc);
5146
5147         intel_crtc_load_lut(crtc);
5148
5149         intel_update_watermarks(crtc);
5150         intel_enable_pipe(intel_crtc);
5151
5152         assert_vblank_disabled(crtc);
5153         drm_crtc_vblank_on(crtc);
5154
5155         for_each_encoder_on_crtc(dev, crtc, encoder)
5156                 encoder->enable(encoder);
5157
5158         intel_crtc_enable_planes(crtc);
5159
5160         /*
5161          * Gen2 reports pipe underruns whenever all planes are disabled.
5162          * So don't enable underrun reporting before at least some planes
5163          * are enabled.
5164          * FIXME: Need to fix the logic to work when we turn off all planes
5165          * but leave the pipe running.
5166          */
5167         if (IS_GEN2(dev))
5168                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5169
5170         /* Underruns don't raise interrupts, so check manually. */
5171         i9xx_check_fifo_underruns(dev_priv);
5172 }
5173
5174 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5175 {
5176         struct drm_device *dev = crtc->base.dev;
5177         struct drm_i915_private *dev_priv = dev->dev_private;
5178
5179         if (!crtc->config->gmch_pfit.control)
5180                 return;
5181
5182         assert_pipe_disabled(dev_priv, crtc->pipe);
5183
5184         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5185                          I915_READ(PFIT_CONTROL));
5186         I915_WRITE(PFIT_CONTROL, 0);
5187 }
5188
5189 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5190 {
5191         struct drm_device *dev = crtc->dev;
5192         struct drm_i915_private *dev_priv = dev->dev_private;
5193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5194         struct intel_encoder *encoder;
5195         int pipe = intel_crtc->pipe;
5196
5197         if (!intel_crtc->active)
5198                 return;
5199
5200         /*
5201          * Gen2 reports pipe underruns whenever all planes are disabled.
5202          * So diasble underrun reporting before all the planes get disabled.
5203          * FIXME: Need to fix the logic to work when we turn off all planes
5204          * but leave the pipe running.
5205          */
5206         if (IS_GEN2(dev))
5207                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5208
5209         /*
5210          * Vblank time updates from the shadow to live plane control register
5211          * are blocked if the memory self-refresh mode is active at that
5212          * moment. So to make sure the plane gets truly disabled, disable
5213          * first the self-refresh mode. The self-refresh enable bit in turn
5214          * will be checked/applied by the HW only at the next frame start
5215          * event which is after the vblank start event, so we need to have a
5216          * wait-for-vblank between disabling the plane and the pipe.
5217          */
5218         intel_set_memory_cxsr(dev_priv, false);
5219         intel_crtc_disable_planes(crtc);
5220
5221         /*
5222          * On gen2 planes are double buffered but the pipe isn't, so we must
5223          * wait for planes to fully turn off before disabling the pipe.
5224          * We also need to wait on all gmch platforms because of the
5225          * self-refresh mode constraint explained above.
5226          */
5227         intel_wait_for_vblank(dev, pipe);
5228
5229         for_each_encoder_on_crtc(dev, crtc, encoder)
5230                 encoder->disable(encoder);
5231
5232         drm_crtc_vblank_off(crtc);
5233         assert_vblank_disabled(crtc);
5234
5235         intel_disable_pipe(intel_crtc);
5236
5237         i9xx_pfit_disable(intel_crtc);
5238
5239         for_each_encoder_on_crtc(dev, crtc, encoder)
5240                 if (encoder->post_disable)
5241                         encoder->post_disable(encoder);
5242
5243         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5244                 if (IS_CHERRYVIEW(dev))
5245                         chv_disable_pll(dev_priv, pipe);
5246                 else if (IS_VALLEYVIEW(dev))
5247                         vlv_disable_pll(dev_priv, pipe);
5248                 else
5249                         i9xx_disable_pll(intel_crtc);
5250         }
5251
5252         if (!IS_GEN2(dev))
5253                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5254
5255         intel_crtc->active = false;
5256         intel_update_watermarks(crtc);
5257
5258         mutex_lock(&dev->struct_mutex);
5259         intel_fbc_update(dev);
5260         mutex_unlock(&dev->struct_mutex);
5261 }
5262
5263 static void i9xx_crtc_off(struct drm_crtc *crtc)
5264 {
5265 }
5266
5267 /* Master function to enable/disable CRTC and corresponding power wells */
5268 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5269 {
5270         struct drm_device *dev = crtc->dev;
5271         struct drm_i915_private *dev_priv = dev->dev_private;
5272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5273         enum intel_display_power_domain domain;
5274         unsigned long domains;
5275
5276         if (enable) {
5277                 if (!intel_crtc->active) {
5278                         domains = get_crtc_power_domains(crtc);
5279                         for_each_power_domain(domain, domains)
5280                                 intel_display_power_get(dev_priv, domain);
5281                         intel_crtc->enabled_power_domains = domains;
5282
5283                         dev_priv->display.crtc_enable(crtc);
5284                 }
5285         } else {
5286                 if (intel_crtc->active) {
5287                         dev_priv->display.crtc_disable(crtc);
5288
5289                         domains = intel_crtc->enabled_power_domains;
5290                         for_each_power_domain(domain, domains)
5291                                 intel_display_power_put(dev_priv, domain);
5292                         intel_crtc->enabled_power_domains = 0;
5293                 }
5294         }
5295 }
5296
5297 /**
5298  * Sets the power management mode of the pipe and plane.
5299  */
5300 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5301 {
5302         struct drm_device *dev = crtc->dev;
5303         struct intel_encoder *intel_encoder;
5304         bool enable = false;
5305
5306         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5307                 enable |= intel_encoder->connectors_active;
5308
5309         intel_crtc_control(crtc, enable);
5310 }
5311
5312 static void intel_crtc_disable(struct drm_crtc *crtc)
5313 {
5314         struct drm_device *dev = crtc->dev;
5315         struct drm_connector *connector;
5316         struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318         /* crtc should still be enabled when we disable it. */
5319         WARN_ON(!crtc->enabled);
5320
5321         dev_priv->display.crtc_disable(crtc);
5322         dev_priv->display.off(crtc);
5323
5324         crtc->primary->funcs->disable_plane(crtc->primary);
5325
5326         /* Update computed state. */
5327         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5328                 if (!connector->encoder || !connector->encoder->crtc)
5329                         continue;
5330
5331                 if (connector->encoder->crtc != crtc)
5332                         continue;
5333
5334                 connector->dpms = DRM_MODE_DPMS_OFF;
5335                 to_intel_encoder(connector->encoder)->connectors_active = false;
5336         }
5337 }
5338
5339 void intel_encoder_destroy(struct drm_encoder *encoder)
5340 {
5341         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5342
5343         drm_encoder_cleanup(encoder);
5344         kfree(intel_encoder);
5345 }
5346
5347 /* Simple dpms helper for encoders with just one connector, no cloning and only
5348  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5349  * state of the entire output pipe. */
5350 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5351 {
5352         if (mode == DRM_MODE_DPMS_ON) {
5353                 encoder->connectors_active = true;
5354
5355                 intel_crtc_update_dpms(encoder->base.crtc);
5356         } else {
5357                 encoder->connectors_active = false;
5358
5359                 intel_crtc_update_dpms(encoder->base.crtc);
5360         }
5361 }
5362
5363 /* Cross check the actual hw state with our own modeset state tracking (and it's
5364  * internal consistency). */
5365 static void intel_connector_check_state(struct intel_connector *connector)
5366 {
5367         if (connector->get_hw_state(connector)) {
5368                 struct intel_encoder *encoder = connector->encoder;
5369                 struct drm_crtc *crtc;
5370                 bool encoder_enabled;
5371                 enum pipe pipe;
5372
5373                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5374                               connector->base.base.id,
5375                               connector->base.name);
5376
5377                 /* there is no real hw state for MST connectors */
5378                 if (connector->mst_port)
5379                         return;
5380
5381                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5382                      "wrong connector dpms state\n");
5383                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5384                      "active connector not linked to encoder\n");
5385
5386                 if (encoder) {
5387                         I915_STATE_WARN(!encoder->connectors_active,
5388                              "encoder->connectors_active not set\n");
5389
5390                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5391                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5392                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5393                                 return;
5394
5395                         crtc = encoder->base.crtc;
5396
5397                         I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5398                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5399                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5400                              "encoder active on the wrong pipe\n");
5401                 }
5402         }
5403 }
5404
5405 /* Even simpler default implementation, if there's really no special case to
5406  * consider. */
5407 void intel_connector_dpms(struct drm_connector *connector, int mode)
5408 {
5409         /* All the simple cases only support two dpms states. */
5410         if (mode != DRM_MODE_DPMS_ON)
5411                 mode = DRM_MODE_DPMS_OFF;
5412
5413         if (mode == connector->dpms)
5414                 return;
5415
5416         connector->dpms = mode;
5417
5418         /* Only need to change hw state when actually enabled */
5419         if (connector->encoder)
5420                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5421
5422         intel_modeset_check_state(connector->dev);
5423 }
5424
5425 /* Simple connector->get_hw_state implementation for encoders that support only
5426  * one connector and no cloning and hence the encoder state determines the state
5427  * of the connector. */
5428 bool intel_connector_get_hw_state(struct intel_connector *connector)
5429 {
5430         enum pipe pipe = 0;
5431         struct intel_encoder *encoder = connector->encoder;
5432
5433         return encoder->get_hw_state(encoder, &pipe);
5434 }
5435
5436 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5437                                      struct intel_crtc_state *pipe_config)
5438 {
5439         struct drm_i915_private *dev_priv = dev->dev_private;
5440         struct intel_crtc *pipe_B_crtc =
5441                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5442
5443         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5444                       pipe_name(pipe), pipe_config->fdi_lanes);
5445         if (pipe_config->fdi_lanes > 4) {
5446                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5447                               pipe_name(pipe), pipe_config->fdi_lanes);
5448                 return false;
5449         }
5450
5451         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5452                 if (pipe_config->fdi_lanes > 2) {
5453                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5454                                       pipe_config->fdi_lanes);
5455                         return false;
5456                 } else {
5457                         return true;
5458                 }
5459         }
5460
5461         if (INTEL_INFO(dev)->num_pipes == 2)
5462                 return true;
5463
5464         /* Ivybridge 3 pipe is really complicated */
5465         switch (pipe) {
5466         case PIPE_A:
5467                 return true;
5468         case PIPE_B:
5469                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5470                     pipe_config->fdi_lanes > 2) {
5471                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5472                                       pipe_name(pipe), pipe_config->fdi_lanes);
5473                         return false;
5474                 }
5475                 return true;
5476         case PIPE_C:
5477                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5478                     pipe_B_crtc->config->fdi_lanes <= 2) {
5479                         if (pipe_config->fdi_lanes > 2) {
5480                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5481                                               pipe_name(pipe), pipe_config->fdi_lanes);
5482                                 return false;
5483                         }
5484                 } else {
5485                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5486                         return false;
5487                 }
5488                 return true;
5489         default:
5490                 BUG();
5491         }
5492 }
5493
5494 #define RETRY 1
5495 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5496                                        struct intel_crtc_state *pipe_config)
5497 {
5498         struct drm_device *dev = intel_crtc->base.dev;
5499         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5500         int lane, link_bw, fdi_dotclock;
5501         bool setup_ok, needs_recompute = false;
5502
5503 retry:
5504         /* FDI is a binary signal running at ~2.7GHz, encoding
5505          * each output octet as 10 bits. The actual frequency
5506          * is stored as a divider into a 100MHz clock, and the
5507          * mode pixel clock is stored in units of 1KHz.
5508          * Hence the bw of each lane in terms of the mode signal
5509          * is:
5510          */
5511         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5512
5513         fdi_dotclock = adjusted_mode->crtc_clock;
5514
5515         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5516                                            pipe_config->pipe_bpp);
5517
5518         pipe_config->fdi_lanes = lane;
5519
5520         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5521                                link_bw, &pipe_config->fdi_m_n);
5522
5523         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5524                                             intel_crtc->pipe, pipe_config);
5525         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5526                 pipe_config->pipe_bpp -= 2*3;
5527                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5528                               pipe_config->pipe_bpp);
5529                 needs_recompute = true;
5530                 pipe_config->bw_constrained = true;
5531
5532                 goto retry;
5533         }
5534
5535         if (needs_recompute)
5536                 return RETRY;
5537
5538         return setup_ok ? 0 : -EINVAL;
5539 }
5540
5541 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5542                                    struct intel_crtc_state *pipe_config)
5543 {
5544         pipe_config->ips_enabled = i915.enable_ips &&
5545                                    hsw_crtc_supports_ips(crtc) &&
5546                                    pipe_config->pipe_bpp <= 24;
5547 }
5548
5549 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5550                                      struct intel_crtc_state *pipe_config)
5551 {
5552         struct drm_device *dev = crtc->base.dev;
5553         struct drm_i915_private *dev_priv = dev->dev_private;
5554         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5555
5556         /* FIXME should check pixel clock limits on all platforms */
5557         if (INTEL_INFO(dev)->gen < 4) {
5558                 int clock_limit =
5559                         dev_priv->display.get_display_clock_speed(dev);
5560
5561                 /*
5562                  * Enable pixel doubling when the dot clock
5563                  * is > 90% of the (display) core speed.
5564                  *
5565                  * GDG double wide on either pipe,
5566                  * otherwise pipe A only.
5567                  */
5568                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5569                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5570                         clock_limit *= 2;
5571                         pipe_config->double_wide = true;
5572                 }
5573
5574                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5575                         return -EINVAL;
5576         }
5577
5578         /*
5579          * Pipe horizontal size must be even in:
5580          * - DVO ganged mode
5581          * - LVDS dual channel mode
5582          * - Double wide pipe
5583          */
5584         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5585              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5586                 pipe_config->pipe_src_w &= ~1;
5587
5588         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5589          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5590          */
5591         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5592                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5593                 return -EINVAL;
5594
5595         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5596                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5597         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5598                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5599                  * for lvds. */
5600                 pipe_config->pipe_bpp = 8*3;
5601         }
5602
5603         if (HAS_IPS(dev))
5604                 hsw_compute_ips_config(crtc, pipe_config);
5605
5606         if (pipe_config->has_pch_encoder)
5607                 return ironlake_fdi_compute_config(crtc, pipe_config);
5608
5609         return 0;
5610 }
5611
5612 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5613 {
5614         struct drm_i915_private *dev_priv = dev->dev_private;
5615         u32 val;
5616         int divider;
5617
5618         /* FIXME: Punit isn't quite ready yet */
5619         if (IS_CHERRYVIEW(dev))
5620                 return 400000;
5621
5622         if (dev_priv->hpll_freq == 0)
5623                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5624
5625         mutex_lock(&dev_priv->dpio_lock);
5626         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5627         mutex_unlock(&dev_priv->dpio_lock);
5628
5629         divider = val & DISPLAY_FREQUENCY_VALUES;
5630
5631         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5632              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5633              "cdclk change in progress\n");
5634
5635         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5636 }
5637
5638 static int i945_get_display_clock_speed(struct drm_device *dev)
5639 {
5640         return 400000;
5641 }
5642
5643 static int i915_get_display_clock_speed(struct drm_device *dev)
5644 {
5645         return 333000;
5646 }
5647
5648 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5649 {
5650         return 200000;
5651 }
5652
5653 static int pnv_get_display_clock_speed(struct drm_device *dev)
5654 {
5655         u16 gcfgc = 0;
5656
5657         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5658
5659         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5660         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5661                 return 267000;
5662         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5663                 return 333000;
5664         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5665                 return 444000;
5666         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5667                 return 200000;
5668         default:
5669                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5670         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5671                 return 133000;
5672         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5673                 return 167000;
5674         }
5675 }
5676
5677 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5678 {
5679         u16 gcfgc = 0;
5680
5681         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5682
5683         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5684                 return 133000;
5685         else {
5686                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5687                 case GC_DISPLAY_CLOCK_333_MHZ:
5688                         return 333000;
5689                 default:
5690                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5691                         return 190000;
5692                 }
5693         }
5694 }
5695
5696 static int i865_get_display_clock_speed(struct drm_device *dev)
5697 {
5698         return 266000;
5699 }
5700
5701 static int i855_get_display_clock_speed(struct drm_device *dev)
5702 {
5703         u16 hpllcc = 0;
5704         /* Assume that the hardware is in the high speed state.  This
5705          * should be the default.
5706          */
5707         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5708         case GC_CLOCK_133_200:
5709         case GC_CLOCK_100_200:
5710                 return 200000;
5711         case GC_CLOCK_166_250:
5712                 return 250000;
5713         case GC_CLOCK_100_133:
5714                 return 133000;
5715         }
5716
5717         /* Shouldn't happen */
5718         return 0;
5719 }
5720
5721 static int i830_get_display_clock_speed(struct drm_device *dev)
5722 {
5723         return 133000;
5724 }
5725
5726 static void
5727 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5728 {
5729         while (*num > DATA_LINK_M_N_MASK ||
5730                *den > DATA_LINK_M_N_MASK) {
5731                 *num >>= 1;
5732                 *den >>= 1;
5733         }
5734 }
5735
5736 static void compute_m_n(unsigned int m, unsigned int n,
5737                         uint32_t *ret_m, uint32_t *ret_n)
5738 {
5739         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5740         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5741         intel_reduce_m_n_ratio(ret_m, ret_n);
5742 }
5743
5744 void
5745 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5746                        int pixel_clock, int link_clock,
5747                        struct intel_link_m_n *m_n)
5748 {
5749         m_n->tu = 64;
5750
5751         compute_m_n(bits_per_pixel * pixel_clock,
5752                     link_clock * nlanes * 8,
5753                     &m_n->gmch_m, &m_n->gmch_n);
5754
5755         compute_m_n(pixel_clock, link_clock,
5756                     &m_n->link_m, &m_n->link_n);
5757 }
5758
5759 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5760 {
5761         if (i915.panel_use_ssc >= 0)
5762                 return i915.panel_use_ssc != 0;
5763         return dev_priv->vbt.lvds_use_ssc
5764                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5765 }
5766
5767 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5768 {
5769         struct drm_device *dev = crtc->base.dev;
5770         struct drm_i915_private *dev_priv = dev->dev_private;
5771         int refclk;
5772
5773         if (IS_VALLEYVIEW(dev)) {
5774                 refclk = 100000;
5775         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5776             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5777                 refclk = dev_priv->vbt.lvds_ssc_freq;
5778                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5779         } else if (!IS_GEN2(dev)) {
5780                 refclk = 96000;
5781         } else {
5782                 refclk = 48000;
5783         }
5784
5785         return refclk;
5786 }
5787
5788 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5789 {
5790         return (1 << dpll->n) << 16 | dpll->m2;
5791 }
5792
5793 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5794 {
5795         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5796 }
5797
5798 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5799                                      struct intel_crtc_state *crtc_state,
5800                                      intel_clock_t *reduced_clock)
5801 {
5802         struct drm_device *dev = crtc->base.dev;
5803         u32 fp, fp2 = 0;
5804
5805         if (IS_PINEVIEW(dev)) {
5806                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5807                 if (reduced_clock)
5808                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5809         } else {
5810                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5811                 if (reduced_clock)
5812                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5813         }
5814
5815         crtc_state->dpll_hw_state.fp0 = fp;
5816
5817         crtc->lowfreq_avail = false;
5818         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5819             reduced_clock && i915.powersave) {
5820                 crtc_state->dpll_hw_state.fp1 = fp2;
5821                 crtc->lowfreq_avail = true;
5822         } else {
5823                 crtc_state->dpll_hw_state.fp1 = fp;
5824         }
5825 }
5826
5827 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5828                 pipe)
5829 {
5830         u32 reg_val;
5831
5832         /*
5833          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5834          * and set it to a reasonable value instead.
5835          */
5836         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5837         reg_val &= 0xffffff00;
5838         reg_val |= 0x00000030;
5839         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5840
5841         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5842         reg_val &= 0x8cffffff;
5843         reg_val = 0x8c000000;
5844         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5845
5846         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5847         reg_val &= 0xffffff00;
5848         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5849
5850         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5851         reg_val &= 0x00ffffff;
5852         reg_val |= 0xb0000000;
5853         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5854 }
5855
5856 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5857                                          struct intel_link_m_n *m_n)
5858 {
5859         struct drm_device *dev = crtc->base.dev;
5860         struct drm_i915_private *dev_priv = dev->dev_private;
5861         int pipe = crtc->pipe;
5862
5863         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5864         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5865         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5866         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5867 }
5868
5869 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5870                                          struct intel_link_m_n *m_n,
5871                                          struct intel_link_m_n *m2_n2)
5872 {
5873         struct drm_device *dev = crtc->base.dev;
5874         struct drm_i915_private *dev_priv = dev->dev_private;
5875         int pipe = crtc->pipe;
5876         enum transcoder transcoder = crtc->config->cpu_transcoder;
5877
5878         if (INTEL_INFO(dev)->gen >= 5) {
5879                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5880                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5881                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5882                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5883                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5884                  * for gen < 8) and if DRRS is supported (to make sure the
5885                  * registers are not unnecessarily accessed).
5886                  */
5887                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5888                         crtc->config->has_drrs) {
5889                         I915_WRITE(PIPE_DATA_M2(transcoder),
5890                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5891                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5892                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5893                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5894                 }
5895         } else {
5896                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5897                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5898                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5899                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5900         }
5901 }
5902
5903 void intel_dp_set_m_n(struct intel_crtc *crtc)
5904 {
5905         if (crtc->config->has_pch_encoder)
5906                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
5907         else
5908                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5909                                                    &crtc->config->dp_m2_n2);
5910 }
5911
5912 static void vlv_update_pll(struct intel_crtc *crtc,
5913                            struct intel_crtc_state *pipe_config)
5914 {
5915         u32 dpll, dpll_md;
5916
5917         /*
5918          * Enable DPIO clock input. We should never disable the reference
5919          * clock for pipe B, since VGA hotplug / manual detection depends
5920          * on it.
5921          */
5922         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5923                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5924         /* We should never disable this, set it here for state tracking */
5925         if (crtc->pipe == PIPE_B)
5926                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5927         dpll |= DPLL_VCO_ENABLE;
5928         pipe_config->dpll_hw_state.dpll = dpll;
5929
5930         dpll_md = (pipe_config->pixel_multiplier - 1)
5931                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5932         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5933 }
5934
5935 static void vlv_prepare_pll(struct intel_crtc *crtc,
5936                             const struct intel_crtc_state *pipe_config)
5937 {
5938         struct drm_device *dev = crtc->base.dev;
5939         struct drm_i915_private *dev_priv = dev->dev_private;
5940         int pipe = crtc->pipe;
5941         u32 mdiv;
5942         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5943         u32 coreclk, reg_val;
5944
5945         mutex_lock(&dev_priv->dpio_lock);
5946
5947         bestn = pipe_config->dpll.n;
5948         bestm1 = pipe_config->dpll.m1;
5949         bestm2 = pipe_config->dpll.m2;
5950         bestp1 = pipe_config->dpll.p1;
5951         bestp2 = pipe_config->dpll.p2;
5952
5953         /* See eDP HDMI DPIO driver vbios notes doc */
5954
5955         /* PLL B needs special handling */
5956         if (pipe == PIPE_B)
5957                 vlv_pllb_recal_opamp(dev_priv, pipe);
5958
5959         /* Set up Tx target for periodic Rcomp update */
5960         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5961
5962         /* Disable target IRef on PLL */
5963         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5964         reg_val &= 0x00ffffff;
5965         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5966
5967         /* Disable fast lock */
5968         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5969
5970         /* Set idtafcrecal before PLL is enabled */
5971         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5972         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5973         mdiv |= ((bestn << DPIO_N_SHIFT));
5974         mdiv |= (1 << DPIO_K_SHIFT);
5975
5976         /*
5977          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5978          * but we don't support that).
5979          * Note: don't use the DAC post divider as it seems unstable.
5980          */
5981         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5982         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5983
5984         mdiv |= DPIO_ENABLE_CALIBRATION;
5985         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5986
5987         /* Set HBR and RBR LPF coefficients */
5988         if (pipe_config->port_clock == 162000 ||
5989             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5990             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5991                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5992                                  0x009f0003);
5993         else
5994                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5995                                  0x00d0000f);
5996
5997         if (pipe_config->has_dp_encoder) {
5998                 /* Use SSC source */
5999                 if (pipe == PIPE_A)
6000                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6001                                          0x0df40000);
6002                 else
6003                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6004                                          0x0df70000);
6005         } else { /* HDMI or VGA */
6006                 /* Use bend source */
6007                 if (pipe == PIPE_A)
6008                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6009                                          0x0df70000);
6010                 else
6011                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6012                                          0x0df40000);
6013         }
6014
6015         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6016         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6017         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6018             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6019                 coreclk |= 0x01000000;
6020         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6021
6022         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6023         mutex_unlock(&dev_priv->dpio_lock);
6024 }
6025
6026 static void chv_update_pll(struct intel_crtc *crtc,
6027                            struct intel_crtc_state *pipe_config)
6028 {
6029         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6030                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6031                 DPLL_VCO_ENABLE;
6032         if (crtc->pipe != PIPE_A)
6033                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6034
6035         pipe_config->dpll_hw_state.dpll_md =
6036                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6037 }
6038
6039 static void chv_prepare_pll(struct intel_crtc *crtc,
6040                             const struct intel_crtc_state *pipe_config)
6041 {
6042         struct drm_device *dev = crtc->base.dev;
6043         struct drm_i915_private *dev_priv = dev->dev_private;
6044         int pipe = crtc->pipe;
6045         int dpll_reg = DPLL(crtc->pipe);
6046         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6047         u32 loopfilter, intcoeff;
6048         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6049         int refclk;
6050
6051         bestn = pipe_config->dpll.n;
6052         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6053         bestm1 = pipe_config->dpll.m1;
6054         bestm2 = pipe_config->dpll.m2 >> 22;
6055         bestp1 = pipe_config->dpll.p1;
6056         bestp2 = pipe_config->dpll.p2;
6057
6058         /*
6059          * Enable Refclk and SSC
6060          */
6061         I915_WRITE(dpll_reg,
6062                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6063
6064         mutex_lock(&dev_priv->dpio_lock);
6065
6066         /* p1 and p2 divider */
6067         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6068                         5 << DPIO_CHV_S1_DIV_SHIFT |
6069                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6070                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6071                         1 << DPIO_CHV_K_DIV_SHIFT);
6072
6073         /* Feedback post-divider - m2 */
6074         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6075
6076         /* Feedback refclk divider - n and m1 */
6077         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6078                         DPIO_CHV_M1_DIV_BY_2 |
6079                         1 << DPIO_CHV_N_DIV_SHIFT);
6080
6081         /* M2 fraction division */
6082         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6083
6084         /* M2 fraction division enable */
6085         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6086                        DPIO_CHV_FRAC_DIV_EN |
6087                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6088
6089         /* Loop filter */
6090         refclk = i9xx_get_refclk(crtc, 0);
6091         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6092                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6093         if (refclk == 100000)
6094                 intcoeff = 11;
6095         else if (refclk == 38400)
6096                 intcoeff = 10;
6097         else
6098                 intcoeff = 9;
6099         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6100         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6101
6102         /* AFC Recal */
6103         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6104                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6105                         DPIO_AFC_RECAL);
6106
6107         mutex_unlock(&dev_priv->dpio_lock);
6108 }
6109
6110 /**
6111  * vlv_force_pll_on - forcibly enable just the PLL
6112  * @dev_priv: i915 private structure
6113  * @pipe: pipe PLL to enable
6114  * @dpll: PLL configuration
6115  *
6116  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6117  * in cases where we need the PLL enabled even when @pipe is not going to
6118  * be enabled.
6119  */
6120 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6121                       const struct dpll *dpll)
6122 {
6123         struct intel_crtc *crtc =
6124                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6125         struct intel_crtc_state pipe_config = {
6126                 .pixel_multiplier = 1,
6127                 .dpll = *dpll,
6128         };
6129
6130         if (IS_CHERRYVIEW(dev)) {
6131                 chv_update_pll(crtc, &pipe_config);
6132                 chv_prepare_pll(crtc, &pipe_config);
6133                 chv_enable_pll(crtc, &pipe_config);
6134         } else {
6135                 vlv_update_pll(crtc, &pipe_config);
6136                 vlv_prepare_pll(crtc, &pipe_config);
6137                 vlv_enable_pll(crtc, &pipe_config);
6138         }
6139 }
6140
6141 /**
6142  * vlv_force_pll_off - forcibly disable just the PLL
6143  * @dev_priv: i915 private structure
6144  * @pipe: pipe PLL to disable
6145  *
6146  * Disable the PLL for @pipe. To be used in cases where we need
6147  * the PLL enabled even when @pipe is not going to be enabled.
6148  */
6149 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6150 {
6151         if (IS_CHERRYVIEW(dev))
6152                 chv_disable_pll(to_i915(dev), pipe);
6153         else
6154                 vlv_disable_pll(to_i915(dev), pipe);
6155 }
6156
6157 static void i9xx_update_pll(struct intel_crtc *crtc,
6158                             struct intel_crtc_state *crtc_state,
6159                             intel_clock_t *reduced_clock,
6160                             int num_connectors)
6161 {
6162         struct drm_device *dev = crtc->base.dev;
6163         struct drm_i915_private *dev_priv = dev->dev_private;
6164         u32 dpll;
6165         bool is_sdvo;
6166         struct dpll *clock = &crtc_state->dpll;
6167
6168         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6169
6170         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6171                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6172
6173         dpll = DPLL_VGA_MODE_DIS;
6174
6175         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6176                 dpll |= DPLLB_MODE_LVDS;
6177         else
6178                 dpll |= DPLLB_MODE_DAC_SERIAL;
6179
6180         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6181                 dpll |= (crtc_state->pixel_multiplier - 1)
6182                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6183         }
6184
6185         if (is_sdvo)
6186                 dpll |= DPLL_SDVO_HIGH_SPEED;
6187
6188         if (crtc_state->has_dp_encoder)
6189                 dpll |= DPLL_SDVO_HIGH_SPEED;
6190
6191         /* compute bitmask from p1 value */
6192         if (IS_PINEVIEW(dev))
6193                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6194         else {
6195                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6196                 if (IS_G4X(dev) && reduced_clock)
6197                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6198         }
6199         switch (clock->p2) {
6200         case 5:
6201                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6202                 break;
6203         case 7:
6204                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6205                 break;
6206         case 10:
6207                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6208                 break;
6209         case 14:
6210                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6211                 break;
6212         }
6213         if (INTEL_INFO(dev)->gen >= 4)
6214                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6215
6216         if (crtc_state->sdvo_tv_clock)
6217                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6218         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6219                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6220                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6221         else
6222                 dpll |= PLL_REF_INPUT_DREFCLK;
6223
6224         dpll |= DPLL_VCO_ENABLE;
6225         crtc_state->dpll_hw_state.dpll = dpll;
6226
6227         if (INTEL_INFO(dev)->gen >= 4) {
6228                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6229                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6230                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6231         }
6232 }
6233
6234 static void i8xx_update_pll(struct intel_crtc *crtc,
6235                             struct intel_crtc_state *crtc_state,
6236                             intel_clock_t *reduced_clock,
6237                             int num_connectors)
6238 {
6239         struct drm_device *dev = crtc->base.dev;
6240         struct drm_i915_private *dev_priv = dev->dev_private;
6241         u32 dpll;
6242         struct dpll *clock = &crtc_state->dpll;
6243
6244         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6245
6246         dpll = DPLL_VGA_MODE_DIS;
6247
6248         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6249                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6250         } else {
6251                 if (clock->p1 == 2)
6252                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6253                 else
6254                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6255                 if (clock->p2 == 4)
6256                         dpll |= PLL_P2_DIVIDE_BY_4;
6257         }
6258
6259         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6260                 dpll |= DPLL_DVO_2X_MODE;
6261
6262         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6263                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6264                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6265         else
6266                 dpll |= PLL_REF_INPUT_DREFCLK;
6267
6268         dpll |= DPLL_VCO_ENABLE;
6269         crtc_state->dpll_hw_state.dpll = dpll;
6270 }
6271
6272 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6273 {
6274         struct drm_device *dev = intel_crtc->base.dev;
6275         struct drm_i915_private *dev_priv = dev->dev_private;
6276         enum pipe pipe = intel_crtc->pipe;
6277         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6278         struct drm_display_mode *adjusted_mode =
6279                 &intel_crtc->config->base.adjusted_mode;
6280         uint32_t crtc_vtotal, crtc_vblank_end;
6281         int vsyncshift = 0;
6282
6283         /* We need to be careful not to changed the adjusted mode, for otherwise
6284          * the hw state checker will get angry at the mismatch. */
6285         crtc_vtotal = adjusted_mode->crtc_vtotal;
6286         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6287
6288         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6289                 /* the chip adds 2 halflines automatically */
6290                 crtc_vtotal -= 1;
6291                 crtc_vblank_end -= 1;
6292
6293                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6294                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6295                 else
6296                         vsyncshift = adjusted_mode->crtc_hsync_start -
6297                                 adjusted_mode->crtc_htotal / 2;
6298                 if (vsyncshift < 0)
6299                         vsyncshift += adjusted_mode->crtc_htotal;
6300         }
6301
6302         if (INTEL_INFO(dev)->gen > 3)
6303                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6304
6305         I915_WRITE(HTOTAL(cpu_transcoder),
6306                    (adjusted_mode->crtc_hdisplay - 1) |
6307                    ((adjusted_mode->crtc_htotal - 1) << 16));
6308         I915_WRITE(HBLANK(cpu_transcoder),
6309                    (adjusted_mode->crtc_hblank_start - 1) |
6310                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6311         I915_WRITE(HSYNC(cpu_transcoder),
6312                    (adjusted_mode->crtc_hsync_start - 1) |
6313                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6314
6315         I915_WRITE(VTOTAL(cpu_transcoder),
6316                    (adjusted_mode->crtc_vdisplay - 1) |
6317                    ((crtc_vtotal - 1) << 16));
6318         I915_WRITE(VBLANK(cpu_transcoder),
6319                    (adjusted_mode->crtc_vblank_start - 1) |
6320                    ((crtc_vblank_end - 1) << 16));
6321         I915_WRITE(VSYNC(cpu_transcoder),
6322                    (adjusted_mode->crtc_vsync_start - 1) |
6323                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6324
6325         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6326          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6327          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6328          * bits. */
6329         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6330             (pipe == PIPE_B || pipe == PIPE_C))
6331                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6332
6333         /* pipesrc controls the size that is scaled from, which should
6334          * always be the user's requested size.
6335          */
6336         I915_WRITE(PIPESRC(pipe),
6337                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6338                    (intel_crtc->config->pipe_src_h - 1));
6339 }
6340
6341 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6342                                    struct intel_crtc_state *pipe_config)
6343 {
6344         struct drm_device *dev = crtc->base.dev;
6345         struct drm_i915_private *dev_priv = dev->dev_private;
6346         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6347         uint32_t tmp;
6348
6349         tmp = I915_READ(HTOTAL(cpu_transcoder));
6350         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6351         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6352         tmp = I915_READ(HBLANK(cpu_transcoder));
6353         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6354         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6355         tmp = I915_READ(HSYNC(cpu_transcoder));
6356         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6357         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6358
6359         tmp = I915_READ(VTOTAL(cpu_transcoder));
6360         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6361         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6362         tmp = I915_READ(VBLANK(cpu_transcoder));
6363         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6364         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6365         tmp = I915_READ(VSYNC(cpu_transcoder));
6366         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6367         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6368
6369         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6370                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6371                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6372                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6373         }
6374
6375         tmp = I915_READ(PIPESRC(crtc->pipe));
6376         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6377         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6378
6379         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6380         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6381 }
6382
6383 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6384                                  struct intel_crtc_state *pipe_config)
6385 {
6386         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6387         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6388         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6389         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6390
6391         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6392         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6393         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6394         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6395
6396         mode->flags = pipe_config->base.adjusted_mode.flags;
6397
6398         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6399         mode->flags |= pipe_config->base.adjusted_mode.flags;
6400 }
6401
6402 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6403 {
6404         struct drm_device *dev = intel_crtc->base.dev;
6405         struct drm_i915_private *dev_priv = dev->dev_private;
6406         uint32_t pipeconf;
6407
6408         pipeconf = 0;
6409
6410         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6411             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6412                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6413
6414         if (intel_crtc->config->double_wide)
6415                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6416
6417         /* only g4x and later have fancy bpc/dither controls */
6418         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6419                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6420                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6421                         pipeconf |= PIPECONF_DITHER_EN |
6422                                     PIPECONF_DITHER_TYPE_SP;
6423
6424                 switch (intel_crtc->config->pipe_bpp) {
6425                 case 18:
6426                         pipeconf |= PIPECONF_6BPC;
6427                         break;
6428                 case 24:
6429                         pipeconf |= PIPECONF_8BPC;
6430                         break;
6431                 case 30:
6432                         pipeconf |= PIPECONF_10BPC;
6433                         break;
6434                 default:
6435                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6436                         BUG();
6437                 }
6438         }
6439
6440         if (HAS_PIPE_CXSR(dev)) {
6441                 if (intel_crtc->lowfreq_avail) {
6442                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6443                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6444                 } else {
6445                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6446                 }
6447         }
6448
6449         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6450                 if (INTEL_INFO(dev)->gen < 4 ||
6451                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6452                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6453                 else
6454                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6455         } else
6456                 pipeconf |= PIPECONF_PROGRESSIVE;
6457
6458         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6459                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6460
6461         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6462         POSTING_READ(PIPECONF(intel_crtc->pipe));
6463 }
6464
6465 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6466                                    struct intel_crtc_state *crtc_state)
6467 {
6468         struct drm_device *dev = crtc->base.dev;
6469         struct drm_i915_private *dev_priv = dev->dev_private;
6470         int refclk, num_connectors = 0;
6471         intel_clock_t clock, reduced_clock;
6472         bool ok, has_reduced_clock = false;
6473         bool is_lvds = false, is_dsi = false;
6474         struct intel_encoder *encoder;
6475         const intel_limit_t *limit;
6476
6477         for_each_intel_encoder(dev, encoder) {
6478                 if (encoder->new_crtc != crtc)
6479                         continue;
6480
6481                 switch (encoder->type) {
6482                 case INTEL_OUTPUT_LVDS:
6483                         is_lvds = true;
6484                         break;
6485                 case INTEL_OUTPUT_DSI:
6486                         is_dsi = true;
6487                         break;
6488                 default:
6489                         break;
6490                 }
6491
6492                 num_connectors++;
6493         }
6494
6495         if (is_dsi)
6496                 return 0;
6497
6498         if (!crtc_state->clock_set) {
6499                 refclk = i9xx_get_refclk(crtc, num_connectors);
6500
6501                 /*
6502                  * Returns a set of divisors for the desired target clock with
6503                  * the given refclk, or FALSE.  The returned values represent
6504                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6505                  * 2) / p1 / p2.
6506                  */
6507                 limit = intel_limit(crtc, refclk);
6508                 ok = dev_priv->display.find_dpll(limit, crtc,
6509                                                  crtc_state->port_clock,
6510                                                  refclk, NULL, &clock);
6511                 if (!ok) {
6512                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6513                         return -EINVAL;
6514                 }
6515
6516                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6517                         /*
6518                          * Ensure we match the reduced clock's P to the target
6519                          * clock.  If the clocks don't match, we can't switch
6520                          * the display clock by using the FP0/FP1. In such case
6521                          * we will disable the LVDS downclock feature.
6522                          */
6523                         has_reduced_clock =
6524                                 dev_priv->display.find_dpll(limit, crtc,
6525                                                             dev_priv->lvds_downclock,
6526                                                             refclk, &clock,
6527                                                             &reduced_clock);
6528                 }
6529                 /* Compat-code for transition, will disappear. */
6530                 crtc_state->dpll.n = clock.n;
6531                 crtc_state->dpll.m1 = clock.m1;
6532                 crtc_state->dpll.m2 = clock.m2;
6533                 crtc_state->dpll.p1 = clock.p1;
6534                 crtc_state->dpll.p2 = clock.p2;
6535         }
6536
6537         if (IS_GEN2(dev)) {
6538                 i8xx_update_pll(crtc, crtc_state,
6539                                 has_reduced_clock ? &reduced_clock : NULL,
6540                                 num_connectors);
6541         } else if (IS_CHERRYVIEW(dev)) {
6542                 chv_update_pll(crtc, crtc_state);
6543         } else if (IS_VALLEYVIEW(dev)) {
6544                 vlv_update_pll(crtc, crtc_state);
6545         } else {
6546                 i9xx_update_pll(crtc, crtc_state,
6547                                 has_reduced_clock ? &reduced_clock : NULL,
6548                                 num_connectors);
6549         }
6550
6551         return 0;
6552 }
6553
6554 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6555                                  struct intel_crtc_state *pipe_config)
6556 {
6557         struct drm_device *dev = crtc->base.dev;
6558         struct drm_i915_private *dev_priv = dev->dev_private;
6559         uint32_t tmp;
6560
6561         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6562                 return;
6563
6564         tmp = I915_READ(PFIT_CONTROL);
6565         if (!(tmp & PFIT_ENABLE))
6566                 return;
6567
6568         /* Check whether the pfit is attached to our pipe. */
6569         if (INTEL_INFO(dev)->gen < 4) {
6570                 if (crtc->pipe != PIPE_B)
6571                         return;
6572         } else {
6573                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6574                         return;
6575         }
6576
6577         pipe_config->gmch_pfit.control = tmp;
6578         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6579         if (INTEL_INFO(dev)->gen < 5)
6580                 pipe_config->gmch_pfit.lvds_border_bits =
6581                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6582 }
6583
6584 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6585                                struct intel_crtc_state *pipe_config)
6586 {
6587         struct drm_device *dev = crtc->base.dev;
6588         struct drm_i915_private *dev_priv = dev->dev_private;
6589         int pipe = pipe_config->cpu_transcoder;
6590         intel_clock_t clock;
6591         u32 mdiv;
6592         int refclk = 100000;
6593
6594         /* In case of MIPI DPLL will not even be used */
6595         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6596                 return;
6597
6598         mutex_lock(&dev_priv->dpio_lock);
6599         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6600         mutex_unlock(&dev_priv->dpio_lock);
6601
6602         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6603         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6604         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6605         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6606         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6607
6608         vlv_clock(refclk, &clock);
6609
6610         /* clock.dot is the fast clock */
6611         pipe_config->port_clock = clock.dot / 5;
6612 }
6613
6614 static void
6615 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6616                               struct intel_initial_plane_config *plane_config)
6617 {
6618         struct drm_device *dev = crtc->base.dev;
6619         struct drm_i915_private *dev_priv = dev->dev_private;
6620         u32 val, base, offset;
6621         int pipe = crtc->pipe, plane = crtc->plane;
6622         int fourcc, pixel_format;
6623         int aligned_height;
6624         struct drm_framebuffer *fb;
6625         struct intel_framebuffer *intel_fb;
6626
6627         val = I915_READ(DSPCNTR(plane));
6628         if (!(val & DISPLAY_PLANE_ENABLE))
6629                 return;
6630
6631         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6632         if (!intel_fb) {
6633                 DRM_DEBUG_KMS("failed to alloc fb\n");
6634                 return;
6635         }
6636
6637         fb = &intel_fb->base;
6638
6639         if (INTEL_INFO(dev)->gen >= 4)
6640                 if (val & DISPPLANE_TILED)
6641                         plane_config->tiling = I915_TILING_X;
6642
6643         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6644         fourcc = i9xx_format_to_fourcc(pixel_format);
6645         fb->pixel_format = fourcc;
6646         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6647
6648         if (INTEL_INFO(dev)->gen >= 4) {
6649                 if (plane_config->tiling)
6650                         offset = I915_READ(DSPTILEOFF(plane));
6651                 else
6652                         offset = I915_READ(DSPLINOFF(plane));
6653                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6654         } else {
6655                 base = I915_READ(DSPADDR(plane));
6656         }
6657         plane_config->base = base;
6658
6659         val = I915_READ(PIPESRC(pipe));
6660         fb->width = ((val >> 16) & 0xfff) + 1;
6661         fb->height = ((val >> 0) & 0xfff) + 1;
6662
6663         val = I915_READ(DSPSTRIDE(pipe));
6664         fb->pitches[0] = val & 0xffffffc0;
6665
6666         aligned_height = intel_fb_align_height(dev, fb->height,
6667                                                plane_config->tiling);
6668
6669         plane_config->size = fb->pitches[0] * aligned_height;
6670
6671         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6672                       pipe_name(pipe), plane, fb->width, fb->height,
6673                       fb->bits_per_pixel, base, fb->pitches[0],
6674                       plane_config->size);
6675
6676         crtc->base.primary->fb = fb;
6677 }
6678
6679 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6680                                struct intel_crtc_state *pipe_config)
6681 {
6682         struct drm_device *dev = crtc->base.dev;
6683         struct drm_i915_private *dev_priv = dev->dev_private;
6684         int pipe = pipe_config->cpu_transcoder;
6685         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6686         intel_clock_t clock;
6687         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6688         int refclk = 100000;
6689
6690         mutex_lock(&dev_priv->dpio_lock);
6691         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6692         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6693         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6694         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6695         mutex_unlock(&dev_priv->dpio_lock);
6696
6697         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6698         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6699         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6700         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6701         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6702
6703         chv_clock(refclk, &clock);
6704
6705         /* clock.dot is the fast clock */
6706         pipe_config->port_clock = clock.dot / 5;
6707 }
6708
6709 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6710                                  struct intel_crtc_state *pipe_config)
6711 {
6712         struct drm_device *dev = crtc->base.dev;
6713         struct drm_i915_private *dev_priv = dev->dev_private;
6714         uint32_t tmp;
6715
6716         if (!intel_display_power_is_enabled(dev_priv,
6717                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6718                 return false;
6719
6720         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6721         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6722
6723         tmp = I915_READ(PIPECONF(crtc->pipe));
6724         if (!(tmp & PIPECONF_ENABLE))
6725                 return false;
6726
6727         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6728                 switch (tmp & PIPECONF_BPC_MASK) {
6729                 case PIPECONF_6BPC:
6730                         pipe_config->pipe_bpp = 18;
6731                         break;
6732                 case PIPECONF_8BPC:
6733                         pipe_config->pipe_bpp = 24;
6734                         break;
6735                 case PIPECONF_10BPC:
6736                         pipe_config->pipe_bpp = 30;
6737                         break;
6738                 default:
6739                         break;
6740                 }
6741         }
6742
6743         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6744                 pipe_config->limited_color_range = true;
6745
6746         if (INTEL_INFO(dev)->gen < 4)
6747                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6748
6749         intel_get_pipe_timings(crtc, pipe_config);
6750
6751         i9xx_get_pfit_config(crtc, pipe_config);
6752
6753         if (INTEL_INFO(dev)->gen >= 4) {
6754                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6755                 pipe_config->pixel_multiplier =
6756                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6757                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6758                 pipe_config->dpll_hw_state.dpll_md = tmp;
6759         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6760                 tmp = I915_READ(DPLL(crtc->pipe));
6761                 pipe_config->pixel_multiplier =
6762                         ((tmp & SDVO_MULTIPLIER_MASK)
6763                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6764         } else {
6765                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6766                  * port and will be fixed up in the encoder->get_config
6767                  * function. */
6768                 pipe_config->pixel_multiplier = 1;
6769         }
6770         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6771         if (!IS_VALLEYVIEW(dev)) {
6772                 /*
6773                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6774                  * on 830. Filter it out here so that we don't
6775                  * report errors due to that.
6776                  */
6777                 if (IS_I830(dev))
6778                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6779
6780                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6781                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6782         } else {
6783                 /* Mask out read-only status bits. */
6784                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6785                                                      DPLL_PORTC_READY_MASK |
6786                                                      DPLL_PORTB_READY_MASK);
6787         }
6788
6789         if (IS_CHERRYVIEW(dev))
6790                 chv_crtc_clock_get(crtc, pipe_config);
6791         else if (IS_VALLEYVIEW(dev))
6792                 vlv_crtc_clock_get(crtc, pipe_config);
6793         else
6794                 i9xx_crtc_clock_get(crtc, pipe_config);
6795
6796         return true;
6797 }
6798
6799 static void ironlake_init_pch_refclk(struct drm_device *dev)
6800 {
6801         struct drm_i915_private *dev_priv = dev->dev_private;
6802         struct intel_encoder *encoder;
6803         u32 val, final;
6804         bool has_lvds = false;
6805         bool has_cpu_edp = false;
6806         bool has_panel = false;
6807         bool has_ck505 = false;
6808         bool can_ssc = false;
6809
6810         /* We need to take the global config into account */
6811         for_each_intel_encoder(dev, encoder) {
6812                 switch (encoder->type) {
6813                 case INTEL_OUTPUT_LVDS:
6814                         has_panel = true;
6815                         has_lvds = true;
6816                         break;
6817                 case INTEL_OUTPUT_EDP:
6818                         has_panel = true;
6819                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6820                                 has_cpu_edp = true;
6821                         break;
6822                 default:
6823                         break;
6824                 }
6825         }
6826
6827         if (HAS_PCH_IBX(dev)) {
6828                 has_ck505 = dev_priv->vbt.display_clock_mode;
6829                 can_ssc = has_ck505;
6830         } else {
6831                 has_ck505 = false;
6832                 can_ssc = true;
6833         }
6834
6835         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6836                       has_panel, has_lvds, has_ck505);
6837
6838         /* Ironlake: try to setup display ref clock before DPLL
6839          * enabling. This is only under driver's control after
6840          * PCH B stepping, previous chipset stepping should be
6841          * ignoring this setting.
6842          */
6843         val = I915_READ(PCH_DREF_CONTROL);
6844
6845         /* As we must carefully and slowly disable/enable each source in turn,
6846          * compute the final state we want first and check if we need to
6847          * make any changes at all.
6848          */
6849         final = val;
6850         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6851         if (has_ck505)
6852                 final |= DREF_NONSPREAD_CK505_ENABLE;
6853         else
6854                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6855
6856         final &= ~DREF_SSC_SOURCE_MASK;
6857         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6858         final &= ~DREF_SSC1_ENABLE;
6859
6860         if (has_panel) {
6861                 final |= DREF_SSC_SOURCE_ENABLE;
6862
6863                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6864                         final |= DREF_SSC1_ENABLE;
6865
6866                 if (has_cpu_edp) {
6867                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6868                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6869                         else
6870                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6871                 } else
6872                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6873         } else {
6874                 final |= DREF_SSC_SOURCE_DISABLE;
6875                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6876         }
6877
6878         if (final == val)
6879                 return;
6880
6881         /* Always enable nonspread source */
6882         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6883
6884         if (has_ck505)
6885                 val |= DREF_NONSPREAD_CK505_ENABLE;
6886         else
6887                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6888
6889         if (has_panel) {
6890                 val &= ~DREF_SSC_SOURCE_MASK;
6891                 val |= DREF_SSC_SOURCE_ENABLE;
6892
6893                 /* SSC must be turned on before enabling the CPU output  */
6894                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6895                         DRM_DEBUG_KMS("Using SSC on panel\n");
6896                         val |= DREF_SSC1_ENABLE;
6897                 } else
6898                         val &= ~DREF_SSC1_ENABLE;
6899
6900                 /* Get SSC going before enabling the outputs */
6901                 I915_WRITE(PCH_DREF_CONTROL, val);
6902                 POSTING_READ(PCH_DREF_CONTROL);
6903                 udelay(200);
6904
6905                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6906
6907                 /* Enable CPU source on CPU attached eDP */
6908                 if (has_cpu_edp) {
6909                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6910                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6911                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6912                         } else
6913                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6914                 } else
6915                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6916
6917                 I915_WRITE(PCH_DREF_CONTROL, val);
6918                 POSTING_READ(PCH_DREF_CONTROL);
6919                 udelay(200);
6920         } else {
6921                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6922
6923                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6924
6925                 /* Turn off CPU output */
6926                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6927
6928                 I915_WRITE(PCH_DREF_CONTROL, val);
6929                 POSTING_READ(PCH_DREF_CONTROL);
6930                 udelay(200);
6931
6932                 /* Turn off the SSC source */
6933                 val &= ~DREF_SSC_SOURCE_MASK;
6934                 val |= DREF_SSC_SOURCE_DISABLE;
6935
6936                 /* Turn off SSC1 */
6937                 val &= ~DREF_SSC1_ENABLE;
6938
6939                 I915_WRITE(PCH_DREF_CONTROL, val);
6940                 POSTING_READ(PCH_DREF_CONTROL);
6941                 udelay(200);
6942         }
6943
6944         BUG_ON(val != final);
6945 }
6946
6947 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6948 {
6949         uint32_t tmp;
6950
6951         tmp = I915_READ(SOUTH_CHICKEN2);
6952         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6953         I915_WRITE(SOUTH_CHICKEN2, tmp);
6954
6955         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6956                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6957                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6958
6959         tmp = I915_READ(SOUTH_CHICKEN2);
6960         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6961         I915_WRITE(SOUTH_CHICKEN2, tmp);
6962
6963         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6964                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6965                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6966 }
6967
6968 /* WaMPhyProgramming:hsw */
6969 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6970 {
6971         uint32_t tmp;
6972
6973         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6974         tmp &= ~(0xFF << 24);
6975         tmp |= (0x12 << 24);
6976         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6977
6978         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6979         tmp |= (1 << 11);
6980         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6981
6982         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6983         tmp |= (1 << 11);
6984         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6985
6986         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6987         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6988         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6989
6990         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6991         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6992         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6993
6994         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6995         tmp &= ~(7 << 13);
6996         tmp |= (5 << 13);
6997         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6998
6999         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7000         tmp &= ~(7 << 13);
7001         tmp |= (5 << 13);
7002         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7003
7004         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7005         tmp &= ~0xFF;
7006         tmp |= 0x1C;
7007         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7008
7009         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7010         tmp &= ~0xFF;
7011         tmp |= 0x1C;
7012         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7013
7014         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7015         tmp &= ~(0xFF << 16);
7016         tmp |= (0x1C << 16);
7017         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7018
7019         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7020         tmp &= ~(0xFF << 16);
7021         tmp |= (0x1C << 16);
7022         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7023
7024         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7025         tmp |= (1 << 27);
7026         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7027
7028         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7029         tmp |= (1 << 27);
7030         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7031
7032         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7033         tmp &= ~(0xF << 28);
7034         tmp |= (4 << 28);
7035         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7036
7037         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7038         tmp &= ~(0xF << 28);
7039         tmp |= (4 << 28);
7040         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7041 }
7042
7043 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7044  * Programming" based on the parameters passed:
7045  * - Sequence to enable CLKOUT_DP
7046  * - Sequence to enable CLKOUT_DP without spread
7047  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7048  */
7049 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7050                                  bool with_fdi)
7051 {
7052         struct drm_i915_private *dev_priv = dev->dev_private;
7053         uint32_t reg, tmp;
7054
7055         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7056                 with_spread = true;
7057         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7058                  with_fdi, "LP PCH doesn't have FDI\n"))
7059                 with_fdi = false;
7060
7061         mutex_lock(&dev_priv->dpio_lock);
7062
7063         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7064         tmp &= ~SBI_SSCCTL_DISABLE;
7065         tmp |= SBI_SSCCTL_PATHALT;
7066         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7067
7068         udelay(24);
7069
7070         if (with_spread) {
7071                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7072                 tmp &= ~SBI_SSCCTL_PATHALT;
7073                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7074
7075                 if (with_fdi) {
7076                         lpt_reset_fdi_mphy(dev_priv);
7077                         lpt_program_fdi_mphy(dev_priv);
7078                 }
7079         }
7080
7081         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7082                SBI_GEN0 : SBI_DBUFF0;
7083         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7084         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7085         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7086
7087         mutex_unlock(&dev_priv->dpio_lock);
7088 }
7089
7090 /* Sequence to disable CLKOUT_DP */
7091 static void lpt_disable_clkout_dp(struct drm_device *dev)
7092 {
7093         struct drm_i915_private *dev_priv = dev->dev_private;
7094         uint32_t reg, tmp;
7095
7096         mutex_lock(&dev_priv->dpio_lock);
7097
7098         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7099                SBI_GEN0 : SBI_DBUFF0;
7100         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7101         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7102         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7103
7104         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7105         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7106                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7107                         tmp |= SBI_SSCCTL_PATHALT;
7108                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7109                         udelay(32);
7110                 }
7111                 tmp |= SBI_SSCCTL_DISABLE;
7112                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7113         }
7114
7115         mutex_unlock(&dev_priv->dpio_lock);
7116 }
7117
7118 static void lpt_init_pch_refclk(struct drm_device *dev)
7119 {
7120         struct intel_encoder *encoder;
7121         bool has_vga = false;
7122
7123         for_each_intel_encoder(dev, encoder) {
7124                 switch (encoder->type) {
7125                 case INTEL_OUTPUT_ANALOG:
7126                         has_vga = true;
7127                         break;
7128                 default:
7129                         break;
7130                 }
7131         }
7132
7133         if (has_vga)
7134                 lpt_enable_clkout_dp(dev, true, true);
7135         else
7136                 lpt_disable_clkout_dp(dev);
7137 }
7138
7139 /*
7140  * Initialize reference clocks when the driver loads
7141  */
7142 void intel_init_pch_refclk(struct drm_device *dev)
7143 {
7144         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7145                 ironlake_init_pch_refclk(dev);
7146         else if (HAS_PCH_LPT(dev))
7147                 lpt_init_pch_refclk(dev);
7148 }
7149
7150 static int ironlake_get_refclk(struct drm_crtc *crtc)
7151 {
7152         struct drm_device *dev = crtc->dev;
7153         struct drm_i915_private *dev_priv = dev->dev_private;
7154         struct intel_encoder *encoder;
7155         int num_connectors = 0;
7156         bool is_lvds = false;
7157
7158         for_each_intel_encoder(dev, encoder) {
7159                 if (encoder->new_crtc != to_intel_crtc(crtc))
7160                         continue;
7161
7162                 switch (encoder->type) {
7163                 case INTEL_OUTPUT_LVDS:
7164                         is_lvds = true;
7165                         break;
7166                 default:
7167                         break;
7168                 }
7169                 num_connectors++;
7170         }
7171
7172         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7173                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7174                               dev_priv->vbt.lvds_ssc_freq);
7175                 return dev_priv->vbt.lvds_ssc_freq;
7176         }
7177
7178         return 120000;
7179 }
7180
7181 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7182 {
7183         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7185         int pipe = intel_crtc->pipe;
7186         uint32_t val;
7187
7188         val = 0;
7189
7190         switch (intel_crtc->config->pipe_bpp) {
7191         case 18:
7192                 val |= PIPECONF_6BPC;
7193                 break;
7194         case 24:
7195                 val |= PIPECONF_8BPC;
7196                 break;
7197         case 30:
7198                 val |= PIPECONF_10BPC;
7199                 break;
7200         case 36:
7201                 val |= PIPECONF_12BPC;
7202                 break;
7203         default:
7204                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7205                 BUG();
7206         }
7207
7208         if (intel_crtc->config->dither)
7209                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7210
7211         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7212                 val |= PIPECONF_INTERLACED_ILK;
7213         else
7214                 val |= PIPECONF_PROGRESSIVE;
7215
7216         if (intel_crtc->config->limited_color_range)
7217                 val |= PIPECONF_COLOR_RANGE_SELECT;
7218
7219         I915_WRITE(PIPECONF(pipe), val);
7220         POSTING_READ(PIPECONF(pipe));
7221 }
7222
7223 /*
7224  * Set up the pipe CSC unit.
7225  *
7226  * Currently only full range RGB to limited range RGB conversion
7227  * is supported, but eventually this should handle various
7228  * RGB<->YCbCr scenarios as well.
7229  */
7230 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7231 {
7232         struct drm_device *dev = crtc->dev;
7233         struct drm_i915_private *dev_priv = dev->dev_private;
7234         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7235         int pipe = intel_crtc->pipe;
7236         uint16_t coeff = 0x7800; /* 1.0 */
7237
7238         /*
7239          * TODO: Check what kind of values actually come out of the pipe
7240          * with these coeff/postoff values and adjust to get the best
7241          * accuracy. Perhaps we even need to take the bpc value into
7242          * consideration.
7243          */
7244
7245         if (intel_crtc->config->limited_color_range)
7246                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7247
7248         /*
7249          * GY/GU and RY/RU should be the other way around according
7250          * to BSpec, but reality doesn't agree. Just set them up in
7251          * a way that results in the correct picture.
7252          */
7253         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7254         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7255
7256         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7257         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7258
7259         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7260         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7261
7262         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7263         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7264         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7265
7266         if (INTEL_INFO(dev)->gen > 6) {
7267                 uint16_t postoff = 0;
7268
7269                 if (intel_crtc->config->limited_color_range)
7270                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7271
7272                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7273                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7274                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7275
7276                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7277         } else {
7278                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7279
7280                 if (intel_crtc->config->limited_color_range)
7281                         mode |= CSC_BLACK_SCREEN_OFFSET;
7282
7283                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7284         }
7285 }
7286
7287 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7288 {
7289         struct drm_device *dev = crtc->dev;
7290         struct drm_i915_private *dev_priv = dev->dev_private;
7291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7292         enum pipe pipe = intel_crtc->pipe;
7293         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7294         uint32_t val;
7295
7296         val = 0;
7297
7298         if (IS_HASWELL(dev) && intel_crtc->config->dither)
7299                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7300
7301         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7302                 val |= PIPECONF_INTERLACED_ILK;
7303         else
7304                 val |= PIPECONF_PROGRESSIVE;
7305
7306         I915_WRITE(PIPECONF(cpu_transcoder), val);
7307         POSTING_READ(PIPECONF(cpu_transcoder));
7308
7309         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7310         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7311
7312         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7313                 val = 0;
7314
7315                 switch (intel_crtc->config->pipe_bpp) {
7316                 case 18:
7317                         val |= PIPEMISC_DITHER_6_BPC;
7318                         break;
7319                 case 24:
7320                         val |= PIPEMISC_DITHER_8_BPC;
7321                         break;
7322                 case 30:
7323                         val |= PIPEMISC_DITHER_10_BPC;
7324                         break;
7325                 case 36:
7326                         val |= PIPEMISC_DITHER_12_BPC;
7327                         break;
7328                 default:
7329                         /* Case prevented by pipe_config_set_bpp. */
7330                         BUG();
7331                 }
7332
7333                 if (intel_crtc->config->dither)
7334                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7335
7336                 I915_WRITE(PIPEMISC(pipe), val);
7337         }
7338 }
7339
7340 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7341                                     struct intel_crtc_state *crtc_state,
7342                                     intel_clock_t *clock,
7343                                     bool *has_reduced_clock,
7344                                     intel_clock_t *reduced_clock)
7345 {
7346         struct drm_device *dev = crtc->dev;
7347         struct drm_i915_private *dev_priv = dev->dev_private;
7348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7349         int refclk;
7350         const intel_limit_t *limit;
7351         bool ret, is_lvds = false;
7352
7353         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7354
7355         refclk = ironlake_get_refclk(crtc);
7356
7357         /*
7358          * Returns a set of divisors for the desired target clock with the given
7359          * refclk, or FALSE.  The returned values represent the clock equation:
7360          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7361          */
7362         limit = intel_limit(intel_crtc, refclk);
7363         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7364                                           crtc_state->port_clock,
7365                                           refclk, NULL, clock);
7366         if (!ret)
7367                 return false;
7368
7369         if (is_lvds && dev_priv->lvds_downclock_avail) {
7370                 /*
7371                  * Ensure we match the reduced clock's P to the target clock.
7372                  * If the clocks don't match, we can't switch the display clock
7373                  * by using the FP0/FP1. In such case we will disable the LVDS
7374                  * downclock feature.
7375                 */
7376                 *has_reduced_clock =
7377                         dev_priv->display.find_dpll(limit, intel_crtc,
7378                                                     dev_priv->lvds_downclock,
7379                                                     refclk, clock,
7380                                                     reduced_clock);
7381         }
7382
7383         return true;
7384 }
7385
7386 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7387 {
7388         /*
7389          * Account for spread spectrum to avoid
7390          * oversubscribing the link. Max center spread
7391          * is 2.5%; use 5% for safety's sake.
7392          */
7393         u32 bps = target_clock * bpp * 21 / 20;
7394         return DIV_ROUND_UP(bps, link_bw * 8);
7395 }
7396
7397 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7398 {
7399         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7400 }
7401
7402 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7403                                       struct intel_crtc_state *crtc_state,
7404                                       u32 *fp,
7405                                       intel_clock_t *reduced_clock, u32 *fp2)
7406 {
7407         struct drm_crtc *crtc = &intel_crtc->base;
7408         struct drm_device *dev = crtc->dev;
7409         struct drm_i915_private *dev_priv = dev->dev_private;
7410         struct intel_encoder *intel_encoder;
7411         uint32_t dpll;
7412         int factor, num_connectors = 0;
7413         bool is_lvds = false, is_sdvo = false;
7414
7415         for_each_intel_encoder(dev, intel_encoder) {
7416                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7417                         continue;
7418
7419                 switch (intel_encoder->type) {
7420                 case INTEL_OUTPUT_LVDS:
7421                         is_lvds = true;
7422                         break;
7423                 case INTEL_OUTPUT_SDVO:
7424                 case INTEL_OUTPUT_HDMI:
7425                         is_sdvo = true;
7426                         break;
7427                 default:
7428                         break;
7429                 }
7430
7431                 num_connectors++;
7432         }
7433
7434         /* Enable autotuning of the PLL clock (if permissible) */
7435         factor = 21;
7436         if (is_lvds) {
7437                 if ((intel_panel_use_ssc(dev_priv) &&
7438                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7439                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7440                         factor = 25;
7441         } else if (crtc_state->sdvo_tv_clock)
7442                 factor = 20;
7443
7444         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7445                 *fp |= FP_CB_TUNE;
7446
7447         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7448                 *fp2 |= FP_CB_TUNE;
7449
7450         dpll = 0;
7451
7452         if (is_lvds)
7453                 dpll |= DPLLB_MODE_LVDS;
7454         else
7455                 dpll |= DPLLB_MODE_DAC_SERIAL;
7456
7457         dpll |= (crtc_state->pixel_multiplier - 1)
7458                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7459
7460         if (is_sdvo)
7461                 dpll |= DPLL_SDVO_HIGH_SPEED;
7462         if (crtc_state->has_dp_encoder)
7463                 dpll |= DPLL_SDVO_HIGH_SPEED;
7464
7465         /* compute bitmask from p1 value */
7466         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7467         /* also FPA1 */
7468         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7469
7470         switch (crtc_state->dpll.p2) {
7471         case 5:
7472                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7473                 break;
7474         case 7:
7475                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7476                 break;
7477         case 10:
7478                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7479                 break;
7480         case 14:
7481                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7482                 break;
7483         }
7484
7485         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7486                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7487         else
7488                 dpll |= PLL_REF_INPUT_DREFCLK;
7489
7490         return dpll | DPLL_VCO_ENABLE;
7491 }
7492
7493 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7494                                        struct intel_crtc_state *crtc_state)
7495 {
7496         struct drm_device *dev = crtc->base.dev;
7497         intel_clock_t clock, reduced_clock;
7498         u32 dpll = 0, fp = 0, fp2 = 0;
7499         bool ok, has_reduced_clock = false;
7500         bool is_lvds = false;
7501         struct intel_shared_dpll *pll;
7502
7503         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7504
7505         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7506              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7507
7508         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7509                                      &has_reduced_clock, &reduced_clock);
7510         if (!ok && !crtc_state->clock_set) {
7511                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7512                 return -EINVAL;
7513         }
7514         /* Compat-code for transition, will disappear. */
7515         if (!crtc_state->clock_set) {
7516                 crtc_state->dpll.n = clock.n;
7517                 crtc_state->dpll.m1 = clock.m1;
7518                 crtc_state->dpll.m2 = clock.m2;
7519                 crtc_state->dpll.p1 = clock.p1;
7520                 crtc_state->dpll.p2 = clock.p2;
7521         }
7522
7523         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7524         if (crtc_state->has_pch_encoder) {
7525                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7526                 if (has_reduced_clock)
7527                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7528
7529                 dpll = ironlake_compute_dpll(crtc, crtc_state,
7530                                              &fp, &reduced_clock,
7531                                              has_reduced_clock ? &fp2 : NULL);
7532
7533                 crtc_state->dpll_hw_state.dpll = dpll;
7534                 crtc_state->dpll_hw_state.fp0 = fp;
7535                 if (has_reduced_clock)
7536                         crtc_state->dpll_hw_state.fp1 = fp2;
7537                 else
7538                         crtc_state->dpll_hw_state.fp1 = fp;
7539
7540                 pll = intel_get_shared_dpll(crtc, crtc_state);
7541                 if (pll == NULL) {
7542                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7543                                          pipe_name(crtc->pipe));
7544                         return -EINVAL;
7545                 }
7546         }
7547
7548         if (is_lvds && has_reduced_clock && i915.powersave)
7549                 crtc->lowfreq_avail = true;
7550         else
7551                 crtc->lowfreq_avail = false;
7552
7553         return 0;
7554 }
7555
7556 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7557                                          struct intel_link_m_n *m_n)
7558 {
7559         struct drm_device *dev = crtc->base.dev;
7560         struct drm_i915_private *dev_priv = dev->dev_private;
7561         enum pipe pipe = crtc->pipe;
7562
7563         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7564         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7565         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7566                 & ~TU_SIZE_MASK;
7567         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7568         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7569                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7570 }
7571
7572 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7573                                          enum transcoder transcoder,
7574                                          struct intel_link_m_n *m_n,
7575                                          struct intel_link_m_n *m2_n2)
7576 {
7577         struct drm_device *dev = crtc->base.dev;
7578         struct drm_i915_private *dev_priv = dev->dev_private;
7579         enum pipe pipe = crtc->pipe;
7580
7581         if (INTEL_INFO(dev)->gen >= 5) {
7582                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7583                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7584                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7585                         & ~TU_SIZE_MASK;
7586                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7587                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7588                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7589                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7590                  * gen < 8) and if DRRS is supported (to make sure the
7591                  * registers are not unnecessarily read).
7592                  */
7593                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7594                         crtc->config->has_drrs) {
7595                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7596                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7597                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7598                                         & ~TU_SIZE_MASK;
7599                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7600                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7601                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7602                 }
7603         } else {
7604                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7605                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7606                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7607                         & ~TU_SIZE_MASK;
7608                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7609                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7610                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7611         }
7612 }
7613
7614 void intel_dp_get_m_n(struct intel_crtc *crtc,
7615                       struct intel_crtc_state *pipe_config)
7616 {
7617         if (pipe_config->has_pch_encoder)
7618                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7619         else
7620                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7621                                              &pipe_config->dp_m_n,
7622                                              &pipe_config->dp_m2_n2);
7623 }
7624
7625 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7626                                         struct intel_crtc_state *pipe_config)
7627 {
7628         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7629                                      &pipe_config->fdi_m_n, NULL);
7630 }
7631
7632 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7633                                     struct intel_crtc_state *pipe_config)
7634 {
7635         struct drm_device *dev = crtc->base.dev;
7636         struct drm_i915_private *dev_priv = dev->dev_private;
7637         uint32_t tmp;
7638
7639         tmp = I915_READ(PS_CTL(crtc->pipe));
7640
7641         if (tmp & PS_ENABLE) {
7642                 pipe_config->pch_pfit.enabled = true;
7643                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7644                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7645         }
7646 }
7647
7648 static void
7649 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7650                                  struct intel_initial_plane_config *plane_config)
7651 {
7652         struct drm_device *dev = crtc->base.dev;
7653         struct drm_i915_private *dev_priv = dev->dev_private;
7654         u32 val, base, offset, stride_mult;
7655         int pipe = crtc->pipe;
7656         int fourcc, pixel_format;
7657         int aligned_height;
7658         struct drm_framebuffer *fb;
7659         struct intel_framebuffer *intel_fb;
7660
7661         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7662         if (!intel_fb) {
7663                 DRM_DEBUG_KMS("failed to alloc fb\n");
7664                 return;
7665         }
7666
7667         fb = &intel_fb->base;
7668
7669         val = I915_READ(PLANE_CTL(pipe, 0));
7670         if (!(val & PLANE_CTL_ENABLE))
7671                 goto error;
7672
7673         if (val & PLANE_CTL_TILED_MASK)
7674                 plane_config->tiling = I915_TILING_X;
7675
7676         pixel_format = val & PLANE_CTL_FORMAT_MASK;
7677         fourcc = skl_format_to_fourcc(pixel_format,
7678                                       val & PLANE_CTL_ORDER_RGBX,
7679                                       val & PLANE_CTL_ALPHA_MASK);
7680         fb->pixel_format = fourcc;
7681         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7682
7683         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7684         plane_config->base = base;
7685
7686         offset = I915_READ(PLANE_OFFSET(pipe, 0));
7687
7688         val = I915_READ(PLANE_SIZE(pipe, 0));
7689         fb->height = ((val >> 16) & 0xfff) + 1;
7690         fb->width = ((val >> 0) & 0x1fff) + 1;
7691
7692         val = I915_READ(PLANE_STRIDE(pipe, 0));
7693         switch (plane_config->tiling) {
7694         case I915_TILING_NONE:
7695                 stride_mult = 64;
7696                 break;
7697         case I915_TILING_X:
7698                 stride_mult = 512;
7699                 break;
7700         default:
7701                 MISSING_CASE(plane_config->tiling);
7702                 goto error;
7703         }
7704         fb->pitches[0] = (val & 0x3ff) * stride_mult;
7705
7706         aligned_height = intel_fb_align_height(dev, fb->height,
7707                                                plane_config->tiling);
7708
7709         plane_config->size = fb->pitches[0] * aligned_height;
7710
7711         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7712                       pipe_name(pipe), fb->width, fb->height,
7713                       fb->bits_per_pixel, base, fb->pitches[0],
7714                       plane_config->size);
7715
7716         crtc->base.primary->fb = fb;
7717         return;
7718
7719 error:
7720         kfree(fb);
7721 }
7722
7723 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7724                                      struct intel_crtc_state *pipe_config)
7725 {
7726         struct drm_device *dev = crtc->base.dev;
7727         struct drm_i915_private *dev_priv = dev->dev_private;
7728         uint32_t tmp;
7729
7730         tmp = I915_READ(PF_CTL(crtc->pipe));
7731
7732         if (tmp & PF_ENABLE) {
7733                 pipe_config->pch_pfit.enabled = true;
7734                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7735                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7736
7737                 /* We currently do not free assignements of panel fitters on
7738                  * ivb/hsw (since we don't use the higher upscaling modes which
7739                  * differentiates them) so just WARN about this case for now. */
7740                 if (IS_GEN7(dev)) {
7741                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7742                                 PF_PIPE_SEL_IVB(crtc->pipe));
7743                 }
7744         }
7745 }
7746
7747 static void
7748 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7749                                   struct intel_initial_plane_config *plane_config)
7750 {
7751         struct drm_device *dev = crtc->base.dev;
7752         struct drm_i915_private *dev_priv = dev->dev_private;
7753         u32 val, base, offset;
7754         int pipe = crtc->pipe;
7755         int fourcc, pixel_format;
7756         int aligned_height;
7757         struct drm_framebuffer *fb;
7758         struct intel_framebuffer *intel_fb;
7759
7760         val = I915_READ(DSPCNTR(pipe));
7761         if (!(val & DISPLAY_PLANE_ENABLE))
7762                 return;
7763
7764         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7765         if (!intel_fb) {
7766                 DRM_DEBUG_KMS("failed to alloc fb\n");
7767                 return;
7768         }
7769
7770         fb = &intel_fb->base;
7771
7772         if (INTEL_INFO(dev)->gen >= 4)
7773                 if (val & DISPPLANE_TILED)
7774                         plane_config->tiling = I915_TILING_X;
7775
7776         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7777         fourcc = i9xx_format_to_fourcc(pixel_format);
7778         fb->pixel_format = fourcc;
7779         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7780
7781         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7782         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7783                 offset = I915_READ(DSPOFFSET(pipe));
7784         } else {
7785                 if (plane_config->tiling)
7786                         offset = I915_READ(DSPTILEOFF(pipe));
7787                 else
7788                         offset = I915_READ(DSPLINOFF(pipe));
7789         }
7790         plane_config->base = base;
7791
7792         val = I915_READ(PIPESRC(pipe));
7793         fb->width = ((val >> 16) & 0xfff) + 1;
7794         fb->height = ((val >> 0) & 0xfff) + 1;
7795
7796         val = I915_READ(DSPSTRIDE(pipe));
7797         fb->pitches[0] = val & 0xffffffc0;
7798
7799         aligned_height = intel_fb_align_height(dev, fb->height,
7800                                                plane_config->tiling);
7801
7802         plane_config->size = fb->pitches[0] * aligned_height;
7803
7804         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7805                       pipe_name(pipe), fb->width, fb->height,
7806                       fb->bits_per_pixel, base, fb->pitches[0],
7807                       plane_config->size);
7808
7809         crtc->base.primary->fb = fb;
7810 }
7811
7812 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7813                                      struct intel_crtc_state *pipe_config)
7814 {
7815         struct drm_device *dev = crtc->base.dev;
7816         struct drm_i915_private *dev_priv = dev->dev_private;
7817         uint32_t tmp;
7818
7819         if (!intel_display_power_is_enabled(dev_priv,
7820                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7821                 return false;
7822
7823         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7824         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7825
7826         tmp = I915_READ(PIPECONF(crtc->pipe));
7827         if (!(tmp & PIPECONF_ENABLE))
7828                 return false;
7829
7830         switch (tmp & PIPECONF_BPC_MASK) {
7831         case PIPECONF_6BPC:
7832                 pipe_config->pipe_bpp = 18;
7833                 break;
7834         case PIPECONF_8BPC:
7835                 pipe_config->pipe_bpp = 24;
7836                 break;
7837         case PIPECONF_10BPC:
7838                 pipe_config->pipe_bpp = 30;
7839                 break;
7840         case PIPECONF_12BPC:
7841                 pipe_config->pipe_bpp = 36;
7842                 break;
7843         default:
7844                 break;
7845         }
7846
7847         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7848                 pipe_config->limited_color_range = true;
7849
7850         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7851                 struct intel_shared_dpll *pll;
7852
7853                 pipe_config->has_pch_encoder = true;
7854
7855                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7856                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7857                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7858
7859                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7860
7861                 if (HAS_PCH_IBX(dev_priv->dev)) {
7862                         pipe_config->shared_dpll =
7863                                 (enum intel_dpll_id) crtc->pipe;
7864                 } else {
7865                         tmp = I915_READ(PCH_DPLL_SEL);
7866                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7867                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7868                         else
7869                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7870                 }
7871
7872                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7873
7874                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7875                                            &pipe_config->dpll_hw_state));
7876
7877                 tmp = pipe_config->dpll_hw_state.dpll;
7878                 pipe_config->pixel_multiplier =
7879                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7880                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7881
7882                 ironlake_pch_clock_get(crtc, pipe_config);
7883         } else {
7884                 pipe_config->pixel_multiplier = 1;
7885         }
7886
7887         intel_get_pipe_timings(crtc, pipe_config);
7888
7889         ironlake_get_pfit_config(crtc, pipe_config);
7890
7891         return true;
7892 }
7893
7894 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7895 {
7896         struct drm_device *dev = dev_priv->dev;
7897         struct intel_crtc *crtc;
7898
7899         for_each_intel_crtc(dev, crtc)
7900                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7901                      pipe_name(crtc->pipe));
7902
7903         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7904         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7905         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7906         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7907         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7908         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7909              "CPU PWM1 enabled\n");
7910         if (IS_HASWELL(dev))
7911                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7912                      "CPU PWM2 enabled\n");
7913         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7914              "PCH PWM1 enabled\n");
7915         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7916              "Utility pin enabled\n");
7917         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7918
7919         /*
7920          * In theory we can still leave IRQs enabled, as long as only the HPD
7921          * interrupts remain enabled. We used to check for that, but since it's
7922          * gen-specific and since we only disable LCPLL after we fully disable
7923          * the interrupts, the check below should be enough.
7924          */
7925         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7926 }
7927
7928 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7929 {
7930         struct drm_device *dev = dev_priv->dev;
7931
7932         if (IS_HASWELL(dev))
7933                 return I915_READ(D_COMP_HSW);
7934         else
7935                 return I915_READ(D_COMP_BDW);
7936 }
7937
7938 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7939 {
7940         struct drm_device *dev = dev_priv->dev;
7941
7942         if (IS_HASWELL(dev)) {
7943                 mutex_lock(&dev_priv->rps.hw_lock);
7944                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7945                                             val))
7946                         DRM_ERROR("Failed to write to D_COMP\n");
7947                 mutex_unlock(&dev_priv->rps.hw_lock);
7948         } else {
7949                 I915_WRITE(D_COMP_BDW, val);
7950                 POSTING_READ(D_COMP_BDW);
7951         }
7952 }
7953
7954 /*
7955  * This function implements pieces of two sequences from BSpec:
7956  * - Sequence for display software to disable LCPLL
7957  * - Sequence for display software to allow package C8+
7958  * The steps implemented here are just the steps that actually touch the LCPLL
7959  * register. Callers should take care of disabling all the display engine
7960  * functions, doing the mode unset, fixing interrupts, etc.
7961  */
7962 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7963                               bool switch_to_fclk, bool allow_power_down)
7964 {
7965         uint32_t val;
7966
7967         assert_can_disable_lcpll(dev_priv);
7968
7969         val = I915_READ(LCPLL_CTL);
7970
7971         if (switch_to_fclk) {
7972                 val |= LCPLL_CD_SOURCE_FCLK;
7973                 I915_WRITE(LCPLL_CTL, val);
7974
7975                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7976                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7977                         DRM_ERROR("Switching to FCLK failed\n");
7978
7979                 val = I915_READ(LCPLL_CTL);
7980         }
7981
7982         val |= LCPLL_PLL_DISABLE;
7983         I915_WRITE(LCPLL_CTL, val);
7984         POSTING_READ(LCPLL_CTL);
7985
7986         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7987                 DRM_ERROR("LCPLL still locked\n");
7988
7989         val = hsw_read_dcomp(dev_priv);
7990         val |= D_COMP_COMP_DISABLE;
7991         hsw_write_dcomp(dev_priv, val);
7992         ndelay(100);
7993
7994         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7995                      1))
7996                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7997
7998         if (allow_power_down) {
7999                 val = I915_READ(LCPLL_CTL);
8000                 val |= LCPLL_POWER_DOWN_ALLOW;
8001                 I915_WRITE(LCPLL_CTL, val);
8002                 POSTING_READ(LCPLL_CTL);
8003         }
8004 }
8005
8006 /*
8007  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8008  * source.
8009  */
8010 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8011 {
8012         uint32_t val;
8013
8014         val = I915_READ(LCPLL_CTL);
8015
8016         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8017                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8018                 return;
8019
8020         /*
8021          * Make sure we're not on PC8 state before disabling PC8, otherwise
8022          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8023          */
8024         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8025
8026         if (val & LCPLL_POWER_DOWN_ALLOW) {
8027                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8028                 I915_WRITE(LCPLL_CTL, val);
8029                 POSTING_READ(LCPLL_CTL);
8030         }
8031
8032         val = hsw_read_dcomp(dev_priv);
8033         val |= D_COMP_COMP_FORCE;
8034         val &= ~D_COMP_COMP_DISABLE;
8035         hsw_write_dcomp(dev_priv, val);
8036
8037         val = I915_READ(LCPLL_CTL);
8038         val &= ~LCPLL_PLL_DISABLE;
8039         I915_WRITE(LCPLL_CTL, val);
8040
8041         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8042                 DRM_ERROR("LCPLL not locked yet\n");
8043
8044         if (val & LCPLL_CD_SOURCE_FCLK) {
8045                 val = I915_READ(LCPLL_CTL);
8046                 val &= ~LCPLL_CD_SOURCE_FCLK;
8047                 I915_WRITE(LCPLL_CTL, val);
8048
8049                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8050                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8051                         DRM_ERROR("Switching back to LCPLL failed\n");
8052         }
8053
8054         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8055 }
8056
8057 /*
8058  * Package states C8 and deeper are really deep PC states that can only be
8059  * reached when all the devices on the system allow it, so even if the graphics
8060  * device allows PC8+, it doesn't mean the system will actually get to these
8061  * states. Our driver only allows PC8+ when going into runtime PM.
8062  *
8063  * The requirements for PC8+ are that all the outputs are disabled, the power
8064  * well is disabled and most interrupts are disabled, and these are also
8065  * requirements for runtime PM. When these conditions are met, we manually do
8066  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8067  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8068  * hang the machine.
8069  *
8070  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8071  * the state of some registers, so when we come back from PC8+ we need to
8072  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8073  * need to take care of the registers kept by RC6. Notice that this happens even
8074  * if we don't put the device in PCI D3 state (which is what currently happens
8075  * because of the runtime PM support).
8076  *
8077  * For more, read "Display Sequences for Package C8" on the hardware
8078  * documentation.
8079  */
8080 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8081 {
8082         struct drm_device *dev = dev_priv->dev;
8083         uint32_t val;
8084
8085         DRM_DEBUG_KMS("Enabling package C8+\n");
8086
8087         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8088                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8089                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8090                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8091         }
8092
8093         lpt_disable_clkout_dp(dev);
8094         hsw_disable_lcpll(dev_priv, true, true);
8095 }
8096
8097 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8098 {
8099         struct drm_device *dev = dev_priv->dev;
8100         uint32_t val;
8101
8102         DRM_DEBUG_KMS("Disabling package C8+\n");
8103
8104         hsw_restore_lcpll(dev_priv);
8105         lpt_init_pch_refclk(dev);
8106
8107         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8108                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8109                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8110                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8111         }
8112
8113         intel_prepare_ddi(dev);
8114 }
8115
8116 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8117                                       struct intel_crtc_state *crtc_state)
8118 {
8119         if (!intel_ddi_pll_select(crtc, crtc_state))
8120                 return -EINVAL;
8121
8122         crtc->lowfreq_avail = false;
8123
8124         return 0;
8125 }
8126
8127 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8128                                 enum port port,
8129                                 struct intel_crtc_state *pipe_config)
8130 {
8131         u32 temp, dpll_ctl1;
8132
8133         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8134         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8135
8136         switch (pipe_config->ddi_pll_sel) {
8137         case SKL_DPLL0:
8138                 /*
8139                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8140                  * of the shared DPLL framework and thus needs to be read out
8141                  * separately
8142                  */
8143                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8144                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8145                 break;
8146         case SKL_DPLL1:
8147                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8148                 break;
8149         case SKL_DPLL2:
8150                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8151                 break;
8152         case SKL_DPLL3:
8153                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8154                 break;
8155         }
8156 }
8157
8158 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8159                                 enum port port,
8160                                 struct intel_crtc_state *pipe_config)
8161 {
8162         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8163
8164         switch (pipe_config->ddi_pll_sel) {
8165         case PORT_CLK_SEL_WRPLL1:
8166                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8167                 break;
8168         case PORT_CLK_SEL_WRPLL2:
8169                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8170                 break;
8171         }
8172 }
8173
8174 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8175                                        struct intel_crtc_state *pipe_config)
8176 {
8177         struct drm_device *dev = crtc->base.dev;
8178         struct drm_i915_private *dev_priv = dev->dev_private;
8179         struct intel_shared_dpll *pll;
8180         enum port port;
8181         uint32_t tmp;
8182
8183         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8184
8185         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8186
8187         if (IS_SKYLAKE(dev))
8188                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8189         else
8190                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8191
8192         if (pipe_config->shared_dpll >= 0) {
8193                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8194
8195                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8196                                            &pipe_config->dpll_hw_state));
8197         }
8198
8199         /*
8200          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8201          * DDI E. So just check whether this pipe is wired to DDI E and whether
8202          * the PCH transcoder is on.
8203          */
8204         if (INTEL_INFO(dev)->gen < 9 &&
8205             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8206                 pipe_config->has_pch_encoder = true;
8207
8208                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8209                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8210                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8211
8212                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8213         }
8214 }
8215
8216 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8217                                     struct intel_crtc_state *pipe_config)
8218 {
8219         struct drm_device *dev = crtc->base.dev;
8220         struct drm_i915_private *dev_priv = dev->dev_private;
8221         enum intel_display_power_domain pfit_domain;
8222         uint32_t tmp;
8223
8224         if (!intel_display_power_is_enabled(dev_priv,
8225                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8226                 return false;
8227
8228         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8229         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8230
8231         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8232         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8233                 enum pipe trans_edp_pipe;
8234                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8235                 default:
8236                         WARN(1, "unknown pipe linked to edp transcoder\n");
8237                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8238                 case TRANS_DDI_EDP_INPUT_A_ON:
8239                         trans_edp_pipe = PIPE_A;
8240                         break;
8241                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8242                         trans_edp_pipe = PIPE_B;
8243                         break;
8244                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8245                         trans_edp_pipe = PIPE_C;
8246                         break;
8247                 }
8248
8249                 if (trans_edp_pipe == crtc->pipe)
8250                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8251         }
8252
8253         if (!intel_display_power_is_enabled(dev_priv,
8254                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8255                 return false;
8256
8257         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8258         if (!(tmp & PIPECONF_ENABLE))
8259                 return false;
8260
8261         haswell_get_ddi_port_state(crtc, pipe_config);
8262
8263         intel_get_pipe_timings(crtc, pipe_config);
8264
8265         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8266         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8267                 if (IS_SKYLAKE(dev))
8268                         skylake_get_pfit_config(crtc, pipe_config);
8269                 else
8270                         ironlake_get_pfit_config(crtc, pipe_config);
8271         }
8272
8273         if (IS_HASWELL(dev))
8274                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8275                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8276
8277         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8278                 pipe_config->pixel_multiplier =
8279                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8280         } else {
8281                 pipe_config->pixel_multiplier = 1;
8282         }
8283
8284         return true;
8285 }
8286
8287 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8288 {
8289         struct drm_device *dev = crtc->dev;
8290         struct drm_i915_private *dev_priv = dev->dev_private;
8291         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8292         uint32_t cntl = 0, size = 0;
8293
8294         if (base) {
8295                 unsigned int width = intel_crtc->cursor_width;
8296                 unsigned int height = intel_crtc->cursor_height;
8297                 unsigned int stride = roundup_pow_of_two(width) * 4;
8298
8299                 switch (stride) {
8300                 default:
8301                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8302                                   width, stride);
8303                         stride = 256;
8304                         /* fallthrough */
8305                 case 256:
8306                 case 512:
8307                 case 1024:
8308                 case 2048:
8309                         break;
8310                 }
8311
8312                 cntl |= CURSOR_ENABLE |
8313                         CURSOR_GAMMA_ENABLE |
8314                         CURSOR_FORMAT_ARGB |
8315                         CURSOR_STRIDE(stride);
8316
8317                 size = (height << 12) | width;
8318         }
8319
8320         if (intel_crtc->cursor_cntl != 0 &&
8321             (intel_crtc->cursor_base != base ||
8322              intel_crtc->cursor_size != size ||
8323              intel_crtc->cursor_cntl != cntl)) {
8324                 /* On these chipsets we can only modify the base/size/stride
8325                  * whilst the cursor is disabled.
8326                  */
8327                 I915_WRITE(_CURACNTR, 0);
8328                 POSTING_READ(_CURACNTR);
8329                 intel_crtc->cursor_cntl = 0;
8330         }
8331
8332         if (intel_crtc->cursor_base != base) {
8333                 I915_WRITE(_CURABASE, base);
8334                 intel_crtc->cursor_base = base;
8335         }
8336
8337         if (intel_crtc->cursor_size != size) {
8338                 I915_WRITE(CURSIZE, size);
8339                 intel_crtc->cursor_size = size;
8340         }
8341
8342         if (intel_crtc->cursor_cntl != cntl) {
8343                 I915_WRITE(_CURACNTR, cntl);
8344                 POSTING_READ(_CURACNTR);
8345                 intel_crtc->cursor_cntl = cntl;
8346         }
8347 }
8348
8349 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8350 {
8351         struct drm_device *dev = crtc->dev;
8352         struct drm_i915_private *dev_priv = dev->dev_private;
8353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8354         int pipe = intel_crtc->pipe;
8355         uint32_t cntl;
8356
8357         cntl = 0;
8358         if (base) {
8359                 cntl = MCURSOR_GAMMA_ENABLE;
8360                 switch (intel_crtc->cursor_width) {
8361                         case 64:
8362                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8363                                 break;
8364                         case 128:
8365                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8366                                 break;
8367                         case 256:
8368                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8369                                 break;
8370                         default:
8371                                 MISSING_CASE(intel_crtc->cursor_width);
8372                                 return;
8373                 }
8374                 cntl |= pipe << 28; /* Connect to correct pipe */
8375
8376                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8377                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8378         }
8379
8380         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8381                 cntl |= CURSOR_ROTATE_180;
8382
8383         if (intel_crtc->cursor_cntl != cntl) {
8384                 I915_WRITE(CURCNTR(pipe), cntl);
8385                 POSTING_READ(CURCNTR(pipe));
8386                 intel_crtc->cursor_cntl = cntl;
8387         }
8388
8389         /* and commit changes on next vblank */
8390         I915_WRITE(CURBASE(pipe), base);
8391         POSTING_READ(CURBASE(pipe));
8392
8393         intel_crtc->cursor_base = base;
8394 }
8395
8396 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8397 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8398                                      bool on)
8399 {
8400         struct drm_device *dev = crtc->dev;
8401         struct drm_i915_private *dev_priv = dev->dev_private;
8402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8403         int pipe = intel_crtc->pipe;
8404         int x = crtc->cursor_x;
8405         int y = crtc->cursor_y;
8406         u32 base = 0, pos = 0;
8407
8408         if (on)
8409                 base = intel_crtc->cursor_addr;
8410
8411         if (x >= intel_crtc->config->pipe_src_w)
8412                 base = 0;
8413
8414         if (y >= intel_crtc->config->pipe_src_h)
8415                 base = 0;
8416
8417         if (x < 0) {
8418                 if (x + intel_crtc->cursor_width <= 0)
8419                         base = 0;
8420
8421                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8422                 x = -x;
8423         }
8424         pos |= x << CURSOR_X_SHIFT;
8425
8426         if (y < 0) {
8427                 if (y + intel_crtc->cursor_height <= 0)
8428                         base = 0;
8429
8430                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8431                 y = -y;
8432         }
8433         pos |= y << CURSOR_Y_SHIFT;
8434
8435         if (base == 0 && intel_crtc->cursor_base == 0)
8436                 return;
8437
8438         I915_WRITE(CURPOS(pipe), pos);
8439
8440         /* ILK+ do this automagically */
8441         if (HAS_GMCH_DISPLAY(dev) &&
8442             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8443                 base += (intel_crtc->cursor_height *
8444                         intel_crtc->cursor_width - 1) * 4;
8445         }
8446
8447         if (IS_845G(dev) || IS_I865G(dev))
8448                 i845_update_cursor(crtc, base);
8449         else
8450                 i9xx_update_cursor(crtc, base);
8451 }
8452
8453 static bool cursor_size_ok(struct drm_device *dev,
8454                            uint32_t width, uint32_t height)
8455 {
8456         if (width == 0 || height == 0)
8457                 return false;
8458
8459         /*
8460          * 845g/865g are special in that they are only limited by
8461          * the width of their cursors, the height is arbitrary up to
8462          * the precision of the register. Everything else requires
8463          * square cursors, limited to a few power-of-two sizes.
8464          */
8465         if (IS_845G(dev) || IS_I865G(dev)) {
8466                 if ((width & 63) != 0)
8467                         return false;
8468
8469                 if (width > (IS_845G(dev) ? 64 : 512))
8470                         return false;
8471
8472                 if (height > 1023)
8473                         return false;
8474         } else {
8475                 switch (width | height) {
8476                 case 256:
8477                 case 128:
8478                         if (IS_GEN2(dev))
8479                                 return false;
8480                 case 64:
8481                         break;
8482                 default:
8483                         return false;
8484                 }
8485         }
8486
8487         return true;
8488 }
8489
8490 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8491                                  u16 *blue, uint32_t start, uint32_t size)
8492 {
8493         int end = (start + size > 256) ? 256 : start + size, i;
8494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8495
8496         for (i = start; i < end; i++) {
8497                 intel_crtc->lut_r[i] = red[i] >> 8;
8498                 intel_crtc->lut_g[i] = green[i] >> 8;
8499                 intel_crtc->lut_b[i] = blue[i] >> 8;
8500         }
8501
8502         intel_crtc_load_lut(crtc);
8503 }
8504
8505 /* VESA 640x480x72Hz mode to set on the pipe */
8506 static struct drm_display_mode load_detect_mode = {
8507         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8508                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8509 };
8510
8511 struct drm_framebuffer *
8512 __intel_framebuffer_create(struct drm_device *dev,
8513                            struct drm_mode_fb_cmd2 *mode_cmd,
8514                            struct drm_i915_gem_object *obj)
8515 {
8516         struct intel_framebuffer *intel_fb;
8517         int ret;
8518
8519         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8520         if (!intel_fb) {
8521                 drm_gem_object_unreference(&obj->base);
8522                 return ERR_PTR(-ENOMEM);
8523         }
8524
8525         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8526         if (ret)
8527                 goto err;
8528
8529         return &intel_fb->base;
8530 err:
8531         drm_gem_object_unreference(&obj->base);
8532         kfree(intel_fb);
8533
8534         return ERR_PTR(ret);
8535 }
8536
8537 static struct drm_framebuffer *
8538 intel_framebuffer_create(struct drm_device *dev,
8539                          struct drm_mode_fb_cmd2 *mode_cmd,
8540                          struct drm_i915_gem_object *obj)
8541 {
8542         struct drm_framebuffer *fb;
8543         int ret;
8544
8545         ret = i915_mutex_lock_interruptible(dev);
8546         if (ret)
8547                 return ERR_PTR(ret);
8548         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8549         mutex_unlock(&dev->struct_mutex);
8550
8551         return fb;
8552 }
8553
8554 static u32
8555 intel_framebuffer_pitch_for_width(int width, int bpp)
8556 {
8557         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8558         return ALIGN(pitch, 64);
8559 }
8560
8561 static u32
8562 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8563 {
8564         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8565         return PAGE_ALIGN(pitch * mode->vdisplay);
8566 }
8567
8568 static struct drm_framebuffer *
8569 intel_framebuffer_create_for_mode(struct drm_device *dev,
8570                                   struct drm_display_mode *mode,
8571                                   int depth, int bpp)
8572 {
8573         struct drm_i915_gem_object *obj;
8574         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8575
8576         obj = i915_gem_alloc_object(dev,
8577                                     intel_framebuffer_size_for_mode(mode, bpp));
8578         if (obj == NULL)
8579                 return ERR_PTR(-ENOMEM);
8580
8581         mode_cmd.width = mode->hdisplay;
8582         mode_cmd.height = mode->vdisplay;
8583         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8584                                                                 bpp);
8585         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8586
8587         return intel_framebuffer_create(dev, &mode_cmd, obj);
8588 }
8589
8590 static struct drm_framebuffer *
8591 mode_fits_in_fbdev(struct drm_device *dev,
8592                    struct drm_display_mode *mode)
8593 {
8594 #ifdef CONFIG_DRM_I915_FBDEV
8595         struct drm_i915_private *dev_priv = dev->dev_private;
8596         struct drm_i915_gem_object *obj;
8597         struct drm_framebuffer *fb;
8598
8599         if (!dev_priv->fbdev)
8600                 return NULL;
8601
8602         if (!dev_priv->fbdev->fb)
8603                 return NULL;
8604
8605         obj = dev_priv->fbdev->fb->obj;
8606         BUG_ON(!obj);
8607
8608         fb = &dev_priv->fbdev->fb->base;
8609         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8610                                                                fb->bits_per_pixel))
8611                 return NULL;
8612
8613         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8614                 return NULL;
8615
8616         return fb;
8617 #else
8618         return NULL;
8619 #endif
8620 }
8621
8622 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8623                                 struct drm_display_mode *mode,
8624                                 struct intel_load_detect_pipe *old,
8625                                 struct drm_modeset_acquire_ctx *ctx)
8626 {
8627         struct intel_crtc *intel_crtc;
8628         struct intel_encoder *intel_encoder =
8629                 intel_attached_encoder(connector);
8630         struct drm_crtc *possible_crtc;
8631         struct drm_encoder *encoder = &intel_encoder->base;
8632         struct drm_crtc *crtc = NULL;
8633         struct drm_device *dev = encoder->dev;
8634         struct drm_framebuffer *fb;
8635         struct drm_mode_config *config = &dev->mode_config;
8636         int ret, i = -1;
8637
8638         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8639                       connector->base.id, connector->name,
8640                       encoder->base.id, encoder->name);
8641
8642 retry:
8643         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8644         if (ret)
8645                 goto fail_unlock;
8646
8647         /*
8648          * Algorithm gets a little messy:
8649          *
8650          *   - if the connector already has an assigned crtc, use it (but make
8651          *     sure it's on first)
8652          *
8653          *   - try to find the first unused crtc that can drive this connector,
8654          *     and use that if we find one
8655          */
8656
8657         /* See if we already have a CRTC for this connector */
8658         if (encoder->crtc) {
8659                 crtc = encoder->crtc;
8660
8661                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8662                 if (ret)
8663                         goto fail_unlock;
8664                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8665                 if (ret)
8666                         goto fail_unlock;
8667
8668                 old->dpms_mode = connector->dpms;
8669                 old->load_detect_temp = false;
8670
8671                 /* Make sure the crtc and connector are running */
8672                 if (connector->dpms != DRM_MODE_DPMS_ON)
8673                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8674
8675                 return true;
8676         }
8677
8678         /* Find an unused one (if possible) */
8679         for_each_crtc(dev, possible_crtc) {
8680                 i++;
8681                 if (!(encoder->possible_crtcs & (1 << i)))
8682                         continue;
8683                 if (possible_crtc->enabled)
8684                         continue;
8685                 /* This can occur when applying the pipe A quirk on resume. */
8686                 if (to_intel_crtc(possible_crtc)->new_enabled)
8687                         continue;
8688
8689                 crtc = possible_crtc;
8690                 break;
8691         }
8692
8693         /*
8694          * If we didn't find an unused CRTC, don't use any.
8695          */
8696         if (!crtc) {
8697                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8698                 goto fail_unlock;
8699         }
8700
8701         ret = drm_modeset_lock(&crtc->mutex, ctx);
8702         if (ret)
8703                 goto fail_unlock;
8704         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8705         if (ret)
8706                 goto fail_unlock;
8707         intel_encoder->new_crtc = to_intel_crtc(crtc);
8708         to_intel_connector(connector)->new_encoder = intel_encoder;
8709
8710         intel_crtc = to_intel_crtc(crtc);
8711         intel_crtc->new_enabled = true;
8712         intel_crtc->new_config = intel_crtc->config;
8713         old->dpms_mode = connector->dpms;
8714         old->load_detect_temp = true;
8715         old->release_fb = NULL;
8716
8717         if (!mode)
8718                 mode = &load_detect_mode;
8719
8720         /* We need a framebuffer large enough to accommodate all accesses
8721          * that the plane may generate whilst we perform load detection.
8722          * We can not rely on the fbcon either being present (we get called
8723          * during its initialisation to detect all boot displays, or it may
8724          * not even exist) or that it is large enough to satisfy the
8725          * requested mode.
8726          */
8727         fb = mode_fits_in_fbdev(dev, mode);
8728         if (fb == NULL) {
8729                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8730                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8731                 old->release_fb = fb;
8732         } else
8733                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8734         if (IS_ERR(fb)) {
8735                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8736                 goto fail;
8737         }
8738
8739         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8740                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8741                 if (old->release_fb)
8742                         old->release_fb->funcs->destroy(old->release_fb);
8743                 goto fail;
8744         }
8745         crtc->primary->crtc = crtc;
8746
8747         /* let the connector get through one full cycle before testing */
8748         intel_wait_for_vblank(dev, intel_crtc->pipe);
8749         return true;
8750
8751  fail:
8752         intel_crtc->new_enabled = crtc->enabled;
8753         if (intel_crtc->new_enabled)
8754                 intel_crtc->new_config = intel_crtc->config;
8755         else
8756                 intel_crtc->new_config = NULL;
8757 fail_unlock:
8758         if (ret == -EDEADLK) {
8759                 drm_modeset_backoff(ctx);
8760                 goto retry;
8761         }
8762
8763         return false;
8764 }
8765
8766 void intel_release_load_detect_pipe(struct drm_connector *connector,
8767                                     struct intel_load_detect_pipe *old)
8768 {
8769         struct intel_encoder *intel_encoder =
8770                 intel_attached_encoder(connector);
8771         struct drm_encoder *encoder = &intel_encoder->base;
8772         struct drm_crtc *crtc = encoder->crtc;
8773         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8774
8775         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8776                       connector->base.id, connector->name,
8777                       encoder->base.id, encoder->name);
8778
8779         if (old->load_detect_temp) {
8780                 to_intel_connector(connector)->new_encoder = NULL;
8781                 intel_encoder->new_crtc = NULL;
8782                 intel_crtc->new_enabled = false;
8783                 intel_crtc->new_config = NULL;
8784                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8785
8786                 if (old->release_fb) {
8787                         drm_framebuffer_unregister_private(old->release_fb);
8788                         drm_framebuffer_unreference(old->release_fb);
8789                 }
8790
8791                 return;
8792         }
8793
8794         /* Switch crtc and encoder back off if necessary */
8795         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8796                 connector->funcs->dpms(connector, old->dpms_mode);
8797 }
8798
8799 static int i9xx_pll_refclk(struct drm_device *dev,
8800                            const struct intel_crtc_state *pipe_config)
8801 {
8802         struct drm_i915_private *dev_priv = dev->dev_private;
8803         u32 dpll = pipe_config->dpll_hw_state.dpll;
8804
8805         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8806                 return dev_priv->vbt.lvds_ssc_freq;
8807         else if (HAS_PCH_SPLIT(dev))
8808                 return 120000;
8809         else if (!IS_GEN2(dev))
8810                 return 96000;
8811         else
8812                 return 48000;
8813 }
8814
8815 /* Returns the clock of the currently programmed mode of the given pipe. */
8816 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8817                                 struct intel_crtc_state *pipe_config)
8818 {
8819         struct drm_device *dev = crtc->base.dev;
8820         struct drm_i915_private *dev_priv = dev->dev_private;
8821         int pipe = pipe_config->cpu_transcoder;
8822         u32 dpll = pipe_config->dpll_hw_state.dpll;
8823         u32 fp;
8824         intel_clock_t clock;
8825         int refclk = i9xx_pll_refclk(dev, pipe_config);
8826
8827         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8828                 fp = pipe_config->dpll_hw_state.fp0;
8829         else
8830                 fp = pipe_config->dpll_hw_state.fp1;
8831
8832         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8833         if (IS_PINEVIEW(dev)) {
8834                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8835                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8836         } else {
8837                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8838                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8839         }
8840
8841         if (!IS_GEN2(dev)) {
8842                 if (IS_PINEVIEW(dev))
8843                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8844                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8845                 else
8846                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8847                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8848
8849                 switch (dpll & DPLL_MODE_MASK) {
8850                 case DPLLB_MODE_DAC_SERIAL:
8851                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8852                                 5 : 10;
8853                         break;
8854                 case DPLLB_MODE_LVDS:
8855                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8856                                 7 : 14;
8857                         break;
8858                 default:
8859                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8860                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8861                         return;
8862                 }
8863
8864                 if (IS_PINEVIEW(dev))
8865                         pineview_clock(refclk, &clock);
8866                 else
8867                         i9xx_clock(refclk, &clock);
8868         } else {
8869                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8870                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8871
8872                 if (is_lvds) {
8873                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8874                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8875
8876                         if (lvds & LVDS_CLKB_POWER_UP)
8877                                 clock.p2 = 7;
8878                         else
8879                                 clock.p2 = 14;
8880                 } else {
8881                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8882                                 clock.p1 = 2;
8883                         else {
8884                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8885                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8886                         }
8887                         if (dpll & PLL_P2_DIVIDE_BY_4)
8888                                 clock.p2 = 4;
8889                         else
8890                                 clock.p2 = 2;
8891                 }
8892
8893                 i9xx_clock(refclk, &clock);
8894         }
8895
8896         /*
8897          * This value includes pixel_multiplier. We will use
8898          * port_clock to compute adjusted_mode.crtc_clock in the
8899          * encoder's get_config() function.
8900          */
8901         pipe_config->port_clock = clock.dot;
8902 }
8903
8904 int intel_dotclock_calculate(int link_freq,
8905                              const struct intel_link_m_n *m_n)
8906 {
8907         /*
8908          * The calculation for the data clock is:
8909          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8910          * But we want to avoid losing precison if possible, so:
8911          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8912          *
8913          * and the link clock is simpler:
8914          * link_clock = (m * link_clock) / n
8915          */
8916
8917         if (!m_n->link_n)
8918                 return 0;
8919
8920         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8921 }
8922
8923 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8924                                    struct intel_crtc_state *pipe_config)
8925 {
8926         struct drm_device *dev = crtc->base.dev;
8927
8928         /* read out port_clock from the DPLL */
8929         i9xx_crtc_clock_get(crtc, pipe_config);
8930
8931         /*
8932          * This value does not include pixel_multiplier.
8933          * We will check that port_clock and adjusted_mode.crtc_clock
8934          * agree once we know their relationship in the encoder's
8935          * get_config() function.
8936          */
8937         pipe_config->base.adjusted_mode.crtc_clock =
8938                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8939                                          &pipe_config->fdi_m_n);
8940 }
8941
8942 /** Returns the currently programmed mode of the given pipe. */
8943 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8944                                              struct drm_crtc *crtc)
8945 {
8946         struct drm_i915_private *dev_priv = dev->dev_private;
8947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8948         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8949         struct drm_display_mode *mode;
8950         struct intel_crtc_state pipe_config;
8951         int htot = I915_READ(HTOTAL(cpu_transcoder));
8952         int hsync = I915_READ(HSYNC(cpu_transcoder));
8953         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8954         int vsync = I915_READ(VSYNC(cpu_transcoder));
8955         enum pipe pipe = intel_crtc->pipe;
8956
8957         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8958         if (!mode)
8959                 return NULL;
8960
8961         /*
8962          * Construct a pipe_config sufficient for getting the clock info
8963          * back out of crtc_clock_get.
8964          *
8965          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8966          * to use a real value here instead.
8967          */
8968         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8969         pipe_config.pixel_multiplier = 1;
8970         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8971         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8972         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8973         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8974
8975         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8976         mode->hdisplay = (htot & 0xffff) + 1;
8977         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8978         mode->hsync_start = (hsync & 0xffff) + 1;
8979         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8980         mode->vdisplay = (vtot & 0xffff) + 1;
8981         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8982         mode->vsync_start = (vsync & 0xffff) + 1;
8983         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8984
8985         drm_mode_set_name(mode);
8986
8987         return mode;
8988 }
8989
8990 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8991 {
8992         struct drm_device *dev = crtc->dev;
8993         struct drm_i915_private *dev_priv = dev->dev_private;
8994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8995
8996         if (!HAS_GMCH_DISPLAY(dev))
8997                 return;
8998
8999         if (!dev_priv->lvds_downclock_avail)
9000                 return;
9001
9002         /*
9003          * Since this is called by a timer, we should never get here in
9004          * the manual case.
9005          */
9006         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9007                 int pipe = intel_crtc->pipe;
9008                 int dpll_reg = DPLL(pipe);
9009                 int dpll;
9010
9011                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9012
9013                 assert_panel_unlocked(dev_priv, pipe);
9014
9015                 dpll = I915_READ(dpll_reg);
9016                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9017                 I915_WRITE(dpll_reg, dpll);
9018                 intel_wait_for_vblank(dev, pipe);
9019                 dpll = I915_READ(dpll_reg);
9020                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9021                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9022         }
9023
9024 }
9025
9026 void intel_mark_busy(struct drm_device *dev)
9027 {
9028         struct drm_i915_private *dev_priv = dev->dev_private;
9029
9030         if (dev_priv->mm.busy)
9031                 return;
9032
9033         intel_runtime_pm_get(dev_priv);
9034         i915_update_gfx_val(dev_priv);
9035         dev_priv->mm.busy = true;
9036 }
9037
9038 void intel_mark_idle(struct drm_device *dev)
9039 {
9040         struct drm_i915_private *dev_priv = dev->dev_private;
9041         struct drm_crtc *crtc;
9042
9043         if (!dev_priv->mm.busy)
9044                 return;
9045
9046         dev_priv->mm.busy = false;
9047
9048         if (!i915.powersave)
9049                 goto out;
9050
9051         for_each_crtc(dev, crtc) {
9052                 if (!crtc->primary->fb)
9053                         continue;
9054
9055                 intel_decrease_pllclock(crtc);
9056         }
9057
9058         if (INTEL_INFO(dev)->gen >= 6)
9059                 gen6_rps_idle(dev->dev_private);
9060
9061 out:
9062         intel_runtime_pm_put(dev_priv);
9063 }
9064
9065 static void intel_crtc_set_state(struct intel_crtc *crtc,
9066                                  struct intel_crtc_state *crtc_state)
9067 {
9068         kfree(crtc->config);
9069         crtc->config = crtc_state;
9070         crtc->base.state = &crtc_state->base;
9071 }
9072
9073 static void intel_crtc_destroy(struct drm_crtc *crtc)
9074 {
9075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9076         struct drm_device *dev = crtc->dev;
9077         struct intel_unpin_work *work;
9078
9079         spin_lock_irq(&dev->event_lock);
9080         work = intel_crtc->unpin_work;
9081         intel_crtc->unpin_work = NULL;
9082         spin_unlock_irq(&dev->event_lock);
9083
9084         if (work) {
9085                 cancel_work_sync(&work->work);
9086                 kfree(work);
9087         }
9088
9089         intel_crtc_set_state(intel_crtc, NULL);
9090         drm_crtc_cleanup(crtc);
9091
9092         kfree(intel_crtc);
9093 }
9094
9095 static void intel_unpin_work_fn(struct work_struct *__work)
9096 {
9097         struct intel_unpin_work *work =
9098                 container_of(__work, struct intel_unpin_work, work);
9099         struct drm_device *dev = work->crtc->dev;
9100         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9101
9102         mutex_lock(&dev->struct_mutex);
9103         intel_unpin_fb_obj(work->old_fb_obj);
9104         drm_gem_object_unreference(&work->pending_flip_obj->base);
9105         drm_gem_object_unreference(&work->old_fb_obj->base);
9106
9107         intel_fbc_update(dev);
9108
9109         if (work->flip_queued_req)
9110                 i915_gem_request_assign(&work->flip_queued_req, NULL);
9111         mutex_unlock(&dev->struct_mutex);
9112
9113         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9114
9115         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9116         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9117
9118         kfree(work);
9119 }
9120
9121 static void do_intel_finish_page_flip(struct drm_device *dev,
9122                                       struct drm_crtc *crtc)
9123 {
9124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9125         struct intel_unpin_work *work;
9126         unsigned long flags;
9127
9128         /* Ignore early vblank irqs */
9129         if (intel_crtc == NULL)
9130                 return;
9131
9132         /*
9133          * This is called both by irq handlers and the reset code (to complete
9134          * lost pageflips) so needs the full irqsave spinlocks.
9135          */
9136         spin_lock_irqsave(&dev->event_lock, flags);
9137         work = intel_crtc->unpin_work;
9138
9139         /* Ensure we don't miss a work->pending update ... */
9140         smp_rmb();
9141
9142         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9143                 spin_unlock_irqrestore(&dev->event_lock, flags);
9144                 return;
9145         }
9146
9147         page_flip_completed(intel_crtc);
9148
9149         spin_unlock_irqrestore(&dev->event_lock, flags);
9150 }
9151
9152 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9153 {
9154         struct drm_i915_private *dev_priv = dev->dev_private;
9155         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9156
9157         do_intel_finish_page_flip(dev, crtc);
9158 }
9159
9160 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9161 {
9162         struct drm_i915_private *dev_priv = dev->dev_private;
9163         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9164
9165         do_intel_finish_page_flip(dev, crtc);
9166 }
9167
9168 /* Is 'a' after or equal to 'b'? */
9169 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9170 {
9171         return !((a - b) & 0x80000000);
9172 }
9173
9174 static bool page_flip_finished(struct intel_crtc *crtc)
9175 {
9176         struct drm_device *dev = crtc->base.dev;
9177         struct drm_i915_private *dev_priv = dev->dev_private;
9178
9179         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9180             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9181                 return true;
9182
9183         /*
9184          * The relevant registers doen't exist on pre-ctg.
9185          * As the flip done interrupt doesn't trigger for mmio
9186          * flips on gmch platforms, a flip count check isn't
9187          * really needed there. But since ctg has the registers,
9188          * include it in the check anyway.
9189          */
9190         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9191                 return true;
9192
9193         /*
9194          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9195          * used the same base address. In that case the mmio flip might
9196          * have completed, but the CS hasn't even executed the flip yet.
9197          *
9198          * A flip count check isn't enough as the CS might have updated
9199          * the base address just after start of vblank, but before we
9200          * managed to process the interrupt. This means we'd complete the
9201          * CS flip too soon.
9202          *
9203          * Combining both checks should get us a good enough result. It may
9204          * still happen that the CS flip has been executed, but has not
9205          * yet actually completed. But in case the base address is the same
9206          * anyway, we don't really care.
9207          */
9208         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9209                 crtc->unpin_work->gtt_offset &&
9210                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9211                                     crtc->unpin_work->flip_count);
9212 }
9213
9214 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9215 {
9216         struct drm_i915_private *dev_priv = dev->dev_private;
9217         struct intel_crtc *intel_crtc =
9218                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9219         unsigned long flags;
9220
9221
9222         /*
9223          * This is called both by irq handlers and the reset code (to complete
9224          * lost pageflips) so needs the full irqsave spinlocks.
9225          *
9226          * NB: An MMIO update of the plane base pointer will also
9227          * generate a page-flip completion irq, i.e. every modeset
9228          * is also accompanied by a spurious intel_prepare_page_flip().
9229          */
9230         spin_lock_irqsave(&dev->event_lock, flags);
9231         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9232                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9233         spin_unlock_irqrestore(&dev->event_lock, flags);
9234 }
9235
9236 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9237 {
9238         /* Ensure that the work item is consistent when activating it ... */
9239         smp_wmb();
9240         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9241         /* and that it is marked active as soon as the irq could fire. */
9242         smp_wmb();
9243 }
9244
9245 static int intel_gen2_queue_flip(struct drm_device *dev,
9246                                  struct drm_crtc *crtc,
9247                                  struct drm_framebuffer *fb,
9248                                  struct drm_i915_gem_object *obj,
9249                                  struct intel_engine_cs *ring,
9250                                  uint32_t flags)
9251 {
9252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9253         u32 flip_mask;
9254         int ret;
9255
9256         ret = intel_ring_begin(ring, 6);
9257         if (ret)
9258                 return ret;
9259
9260         /* Can't queue multiple flips, so wait for the previous
9261          * one to finish before executing the next.
9262          */
9263         if (intel_crtc->plane)
9264                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9265         else
9266                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9267         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9268         intel_ring_emit(ring, MI_NOOP);
9269         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9270                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9271         intel_ring_emit(ring, fb->pitches[0]);
9272         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9273         intel_ring_emit(ring, 0); /* aux display base address, unused */
9274
9275         intel_mark_page_flip_active(intel_crtc);
9276         __intel_ring_advance(ring);
9277         return 0;
9278 }
9279
9280 static int intel_gen3_queue_flip(struct drm_device *dev,
9281                                  struct drm_crtc *crtc,
9282                                  struct drm_framebuffer *fb,
9283                                  struct drm_i915_gem_object *obj,
9284                                  struct intel_engine_cs *ring,
9285                                  uint32_t flags)
9286 {
9287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9288         u32 flip_mask;
9289         int ret;
9290
9291         ret = intel_ring_begin(ring, 6);
9292         if (ret)
9293                 return ret;
9294
9295         if (intel_crtc->plane)
9296                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9297         else
9298                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9299         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9300         intel_ring_emit(ring, MI_NOOP);
9301         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9302                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9303         intel_ring_emit(ring, fb->pitches[0]);
9304         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9305         intel_ring_emit(ring, MI_NOOP);
9306
9307         intel_mark_page_flip_active(intel_crtc);
9308         __intel_ring_advance(ring);
9309         return 0;
9310 }
9311
9312 static int intel_gen4_queue_flip(struct drm_device *dev,
9313                                  struct drm_crtc *crtc,
9314                                  struct drm_framebuffer *fb,
9315                                  struct drm_i915_gem_object *obj,
9316                                  struct intel_engine_cs *ring,
9317                                  uint32_t flags)
9318 {
9319         struct drm_i915_private *dev_priv = dev->dev_private;
9320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9321         uint32_t pf, pipesrc;
9322         int ret;
9323
9324         ret = intel_ring_begin(ring, 4);
9325         if (ret)
9326                 return ret;
9327
9328         /* i965+ uses the linear or tiled offsets from the
9329          * Display Registers (which do not change across a page-flip)
9330          * so we need only reprogram the base address.
9331          */
9332         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9333                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9334         intel_ring_emit(ring, fb->pitches[0]);
9335         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9336                         obj->tiling_mode);
9337
9338         /* XXX Enabling the panel-fitter across page-flip is so far
9339          * untested on non-native modes, so ignore it for now.
9340          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9341          */
9342         pf = 0;
9343         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9344         intel_ring_emit(ring, pf | pipesrc);
9345
9346         intel_mark_page_flip_active(intel_crtc);
9347         __intel_ring_advance(ring);
9348         return 0;
9349 }
9350
9351 static int intel_gen6_queue_flip(struct drm_device *dev,
9352                                  struct drm_crtc *crtc,
9353                                  struct drm_framebuffer *fb,
9354                                  struct drm_i915_gem_object *obj,
9355                                  struct intel_engine_cs *ring,
9356                                  uint32_t flags)
9357 {
9358         struct drm_i915_private *dev_priv = dev->dev_private;
9359         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9360         uint32_t pf, pipesrc;
9361         int ret;
9362
9363         ret = intel_ring_begin(ring, 4);
9364         if (ret)
9365                 return ret;
9366
9367         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9368                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9369         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9370         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9371
9372         /* Contrary to the suggestions in the documentation,
9373          * "Enable Panel Fitter" does not seem to be required when page
9374          * flipping with a non-native mode, and worse causes a normal
9375          * modeset to fail.
9376          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9377          */
9378         pf = 0;
9379         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9380         intel_ring_emit(ring, pf | pipesrc);
9381
9382         intel_mark_page_flip_active(intel_crtc);
9383         __intel_ring_advance(ring);
9384         return 0;
9385 }
9386
9387 static int intel_gen7_queue_flip(struct drm_device *dev,
9388                                  struct drm_crtc *crtc,
9389                                  struct drm_framebuffer *fb,
9390                                  struct drm_i915_gem_object *obj,
9391                                  struct intel_engine_cs *ring,
9392                                  uint32_t flags)
9393 {
9394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9395         uint32_t plane_bit = 0;
9396         int len, ret;
9397
9398         switch (intel_crtc->plane) {
9399         case PLANE_A:
9400                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9401                 break;
9402         case PLANE_B:
9403                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9404                 break;
9405         case PLANE_C:
9406                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9407                 break;
9408         default:
9409                 WARN_ONCE(1, "unknown plane in flip command\n");
9410                 return -ENODEV;
9411         }
9412
9413         len = 4;
9414         if (ring->id == RCS) {
9415                 len += 6;
9416                 /*
9417                  * On Gen 8, SRM is now taking an extra dword to accommodate
9418                  * 48bits addresses, and we need a NOOP for the batch size to
9419                  * stay even.
9420                  */
9421                 if (IS_GEN8(dev))
9422                         len += 2;
9423         }
9424
9425         /*
9426          * BSpec MI_DISPLAY_FLIP for IVB:
9427          * "The full packet must be contained within the same cache line."
9428          *
9429          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9430          * cacheline, if we ever start emitting more commands before
9431          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9432          * then do the cacheline alignment, and finally emit the
9433          * MI_DISPLAY_FLIP.
9434          */
9435         ret = intel_ring_cacheline_align(ring);
9436         if (ret)
9437                 return ret;
9438
9439         ret = intel_ring_begin(ring, len);
9440         if (ret)
9441                 return ret;
9442
9443         /* Unmask the flip-done completion message. Note that the bspec says that
9444          * we should do this for both the BCS and RCS, and that we must not unmask
9445          * more than one flip event at any time (or ensure that one flip message
9446          * can be sent by waiting for flip-done prior to queueing new flips).
9447          * Experimentation says that BCS works despite DERRMR masking all
9448          * flip-done completion events and that unmasking all planes at once
9449          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9450          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9451          */
9452         if (ring->id == RCS) {
9453                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9454                 intel_ring_emit(ring, DERRMR);
9455                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9456                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9457                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9458                 if (IS_GEN8(dev))
9459                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9460                                               MI_SRM_LRM_GLOBAL_GTT);
9461                 else
9462                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9463                                               MI_SRM_LRM_GLOBAL_GTT);
9464                 intel_ring_emit(ring, DERRMR);
9465                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9466                 if (IS_GEN8(dev)) {
9467                         intel_ring_emit(ring, 0);
9468                         intel_ring_emit(ring, MI_NOOP);
9469                 }
9470         }
9471
9472         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9473         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9474         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9475         intel_ring_emit(ring, (MI_NOOP));
9476
9477         intel_mark_page_flip_active(intel_crtc);
9478         __intel_ring_advance(ring);
9479         return 0;
9480 }
9481
9482 static bool use_mmio_flip(struct intel_engine_cs *ring,
9483                           struct drm_i915_gem_object *obj)
9484 {
9485         /*
9486          * This is not being used for older platforms, because
9487          * non-availability of flip done interrupt forces us to use
9488          * CS flips. Older platforms derive flip done using some clever
9489          * tricks involving the flip_pending status bits and vblank irqs.
9490          * So using MMIO flips there would disrupt this mechanism.
9491          */
9492
9493         if (ring == NULL)
9494                 return true;
9495
9496         if (INTEL_INFO(ring->dev)->gen < 5)
9497                 return false;
9498
9499         if (i915.use_mmio_flip < 0)
9500                 return false;
9501         else if (i915.use_mmio_flip > 0)
9502                 return true;
9503         else if (i915.enable_execlists)
9504                 return true;
9505         else
9506                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9507 }
9508
9509 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9510 {
9511         struct drm_device *dev = intel_crtc->base.dev;
9512         struct drm_i915_private *dev_priv = dev->dev_private;
9513         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9514         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9515         struct drm_i915_gem_object *obj = intel_fb->obj;
9516         const enum pipe pipe = intel_crtc->pipe;
9517         u32 ctl, stride;
9518
9519         ctl = I915_READ(PLANE_CTL(pipe, 0));
9520         ctl &= ~PLANE_CTL_TILED_MASK;
9521         if (obj->tiling_mode == I915_TILING_X)
9522                 ctl |= PLANE_CTL_TILED_X;
9523
9524         /*
9525          * The stride is either expressed as a multiple of 64 bytes chunks for
9526          * linear buffers or in number of tiles for tiled buffers.
9527          */
9528         stride = fb->pitches[0] >> 6;
9529         if (obj->tiling_mode == I915_TILING_X)
9530                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9531
9532         /*
9533          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9534          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9535          */
9536         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9537         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9538
9539         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9540         POSTING_READ(PLANE_SURF(pipe, 0));
9541 }
9542
9543 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9544 {
9545         struct drm_device *dev = intel_crtc->base.dev;
9546         struct drm_i915_private *dev_priv = dev->dev_private;
9547         struct intel_framebuffer *intel_fb =
9548                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9549         struct drm_i915_gem_object *obj = intel_fb->obj;
9550         u32 dspcntr;
9551         u32 reg;
9552
9553         reg = DSPCNTR(intel_crtc->plane);
9554         dspcntr = I915_READ(reg);
9555
9556         if (obj->tiling_mode != I915_TILING_NONE)
9557                 dspcntr |= DISPPLANE_TILED;
9558         else
9559                 dspcntr &= ~DISPPLANE_TILED;
9560
9561         I915_WRITE(reg, dspcntr);
9562
9563         I915_WRITE(DSPSURF(intel_crtc->plane),
9564                    intel_crtc->unpin_work->gtt_offset);
9565         POSTING_READ(DSPSURF(intel_crtc->plane));
9566
9567 }
9568
9569 /*
9570  * XXX: This is the temporary way to update the plane registers until we get
9571  * around to using the usual plane update functions for MMIO flips
9572  */
9573 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9574 {
9575         struct drm_device *dev = intel_crtc->base.dev;
9576         bool atomic_update;
9577         u32 start_vbl_count;
9578
9579         intel_mark_page_flip_active(intel_crtc);
9580
9581         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9582
9583         if (INTEL_INFO(dev)->gen >= 9)
9584                 skl_do_mmio_flip(intel_crtc);
9585         else
9586                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9587                 ilk_do_mmio_flip(intel_crtc);
9588
9589         if (atomic_update)
9590                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9591 }
9592
9593 static void intel_mmio_flip_work_func(struct work_struct *work)
9594 {
9595         struct intel_crtc *crtc =
9596                 container_of(work, struct intel_crtc, mmio_flip.work);
9597         struct intel_mmio_flip *mmio_flip;
9598
9599         mmio_flip = &crtc->mmio_flip;
9600         if (mmio_flip->req)
9601                 WARN_ON(__i915_wait_request(mmio_flip->req,
9602                                             crtc->reset_counter,
9603                                             false, NULL, NULL) != 0);
9604
9605         intel_do_mmio_flip(crtc);
9606         if (mmio_flip->req) {
9607                 mutex_lock(&crtc->base.dev->struct_mutex);
9608                 i915_gem_request_assign(&mmio_flip->req, NULL);
9609                 mutex_unlock(&crtc->base.dev->struct_mutex);
9610         }
9611 }
9612
9613 static int intel_queue_mmio_flip(struct drm_device *dev,
9614                                  struct drm_crtc *crtc,
9615                                  struct drm_framebuffer *fb,
9616                                  struct drm_i915_gem_object *obj,
9617                                  struct intel_engine_cs *ring,
9618                                  uint32_t flags)
9619 {
9620         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9621
9622         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9623                                 obj->last_write_req);
9624
9625         schedule_work(&intel_crtc->mmio_flip.work);
9626
9627         return 0;
9628 }
9629
9630 static int intel_gen9_queue_flip(struct drm_device *dev,
9631                                  struct drm_crtc *crtc,
9632                                  struct drm_framebuffer *fb,
9633                                  struct drm_i915_gem_object *obj,
9634                                  struct intel_engine_cs *ring,
9635                                  uint32_t flags)
9636 {
9637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9638         uint32_t plane = 0, stride;
9639         int ret;
9640
9641         switch(intel_crtc->pipe) {
9642         case PIPE_A:
9643                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9644                 break;
9645         case PIPE_B:
9646                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9647                 break;
9648         case PIPE_C:
9649                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9650                 break;
9651         default:
9652                 WARN_ONCE(1, "unknown plane in flip command\n");
9653                 return -ENODEV;
9654         }
9655
9656         switch (obj->tiling_mode) {
9657         case I915_TILING_NONE:
9658                 stride = fb->pitches[0] >> 6;
9659                 break;
9660         case I915_TILING_X:
9661                 stride = fb->pitches[0] >> 9;
9662                 break;
9663         default:
9664                 WARN_ONCE(1, "unknown tiling in flip command\n");
9665                 return -ENODEV;
9666         }
9667
9668         ret = intel_ring_begin(ring, 10);
9669         if (ret)
9670                 return ret;
9671
9672         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9673         intel_ring_emit(ring, DERRMR);
9674         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9675                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9676                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9677         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9678                               MI_SRM_LRM_GLOBAL_GTT);
9679         intel_ring_emit(ring, DERRMR);
9680         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9681         intel_ring_emit(ring, 0);
9682
9683         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9684         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9685         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9686
9687         intel_mark_page_flip_active(intel_crtc);
9688         __intel_ring_advance(ring);
9689
9690         return 0;
9691 }
9692
9693 static int intel_default_queue_flip(struct drm_device *dev,
9694                                     struct drm_crtc *crtc,
9695                                     struct drm_framebuffer *fb,
9696                                     struct drm_i915_gem_object *obj,
9697                                     struct intel_engine_cs *ring,
9698                                     uint32_t flags)
9699 {
9700         return -ENODEV;
9701 }
9702
9703 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9704                                          struct drm_crtc *crtc)
9705 {
9706         struct drm_i915_private *dev_priv = dev->dev_private;
9707         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9708         struct intel_unpin_work *work = intel_crtc->unpin_work;
9709         u32 addr;
9710
9711         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9712                 return true;
9713
9714         if (!work->enable_stall_check)
9715                 return false;
9716
9717         if (work->flip_ready_vblank == 0) {
9718                 if (work->flip_queued_req &&
9719                     !i915_gem_request_completed(work->flip_queued_req, true))
9720                         return false;
9721
9722                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9723         }
9724
9725         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9726                 return false;
9727
9728         /* Potential stall - if we see that the flip has happened,
9729          * assume a missed interrupt. */
9730         if (INTEL_INFO(dev)->gen >= 4)
9731                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9732         else
9733                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9734
9735         /* There is a potential issue here with a false positive after a flip
9736          * to the same address. We could address this by checking for a
9737          * non-incrementing frame counter.
9738          */
9739         return addr == work->gtt_offset;
9740 }
9741
9742 void intel_check_page_flip(struct drm_device *dev, int pipe)
9743 {
9744         struct drm_i915_private *dev_priv = dev->dev_private;
9745         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9746         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9747
9748         WARN_ON(!in_interrupt());
9749
9750         if (crtc == NULL)
9751                 return;
9752
9753         spin_lock(&dev->event_lock);
9754         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9755                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9756                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9757                 page_flip_completed(intel_crtc);
9758         }
9759         spin_unlock(&dev->event_lock);
9760 }
9761
9762 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9763                                 struct drm_framebuffer *fb,
9764                                 struct drm_pending_vblank_event *event,
9765                                 uint32_t page_flip_flags)
9766 {
9767         struct drm_device *dev = crtc->dev;
9768         struct drm_i915_private *dev_priv = dev->dev_private;
9769         struct drm_framebuffer *old_fb = crtc->primary->fb;
9770         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9772         struct drm_plane *primary = crtc->primary;
9773         enum pipe pipe = intel_crtc->pipe;
9774         struct intel_unpin_work *work;
9775         struct intel_engine_cs *ring;
9776         int ret;
9777
9778         /*
9779          * drm_mode_page_flip_ioctl() should already catch this, but double
9780          * check to be safe.  In the future we may enable pageflipping from
9781          * a disabled primary plane.
9782          */
9783         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9784                 return -EBUSY;
9785
9786         /* Can't change pixel format via MI display flips. */
9787         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9788                 return -EINVAL;
9789
9790         /*
9791          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9792          * Note that pitch changes could also affect these register.
9793          */
9794         if (INTEL_INFO(dev)->gen > 3 &&
9795             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9796              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9797                 return -EINVAL;
9798
9799         if (i915_terminally_wedged(&dev_priv->gpu_error))
9800                 goto out_hang;
9801
9802         work = kzalloc(sizeof(*work), GFP_KERNEL);
9803         if (work == NULL)
9804                 return -ENOMEM;
9805
9806         work->event = event;
9807         work->crtc = crtc;
9808         work->old_fb_obj = intel_fb_obj(old_fb);
9809         INIT_WORK(&work->work, intel_unpin_work_fn);
9810
9811         ret = drm_crtc_vblank_get(crtc);
9812         if (ret)
9813                 goto free_work;
9814
9815         /* We borrow the event spin lock for protecting unpin_work */
9816         spin_lock_irq(&dev->event_lock);
9817         if (intel_crtc->unpin_work) {
9818                 /* Before declaring the flip queue wedged, check if
9819                  * the hardware completed the operation behind our backs.
9820                  */
9821                 if (__intel_pageflip_stall_check(dev, crtc)) {
9822                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9823                         page_flip_completed(intel_crtc);
9824                 } else {
9825                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9826                         spin_unlock_irq(&dev->event_lock);
9827
9828                         drm_crtc_vblank_put(crtc);
9829                         kfree(work);
9830                         return -EBUSY;
9831                 }
9832         }
9833         intel_crtc->unpin_work = work;
9834         spin_unlock_irq(&dev->event_lock);
9835
9836         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9837                 flush_workqueue(dev_priv->wq);
9838
9839         ret = i915_mutex_lock_interruptible(dev);
9840         if (ret)
9841                 goto cleanup;
9842
9843         /* Reference the objects for the scheduled work. */
9844         drm_gem_object_reference(&work->old_fb_obj->base);
9845         drm_gem_object_reference(&obj->base);
9846
9847         crtc->primary->fb = fb;
9848         update_state_fb(crtc->primary);
9849
9850         work->pending_flip_obj = obj;
9851
9852         atomic_inc(&intel_crtc->unpin_work_count);
9853         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9854
9855         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9856                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9857
9858         if (IS_VALLEYVIEW(dev)) {
9859                 ring = &dev_priv->ring[BCS];
9860                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9861                         /* vlv: DISPLAY_FLIP fails to change tiling */
9862                         ring = NULL;
9863         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9864                 ring = &dev_priv->ring[BCS];
9865         } else if (INTEL_INFO(dev)->gen >= 7) {
9866                 ring = i915_gem_request_get_ring(obj->last_read_req);
9867                 if (ring == NULL || ring->id != RCS)
9868                         ring = &dev_priv->ring[BCS];
9869         } else {
9870                 ring = &dev_priv->ring[RCS];
9871         }
9872
9873         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9874         if (ret)
9875                 goto cleanup_pending;
9876
9877         work->gtt_offset =
9878                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9879
9880         if (use_mmio_flip(ring, obj)) {
9881                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9882                                             page_flip_flags);
9883                 if (ret)
9884                         goto cleanup_unpin;
9885
9886                 i915_gem_request_assign(&work->flip_queued_req,
9887                                         obj->last_write_req);
9888         } else {
9889                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9890                                                    page_flip_flags);
9891                 if (ret)
9892                         goto cleanup_unpin;
9893
9894                 i915_gem_request_assign(&work->flip_queued_req,
9895                                         intel_ring_get_request(ring));
9896         }
9897
9898         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9899         work->enable_stall_check = true;
9900
9901         i915_gem_track_fb(work->old_fb_obj, obj,
9902                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9903
9904         intel_fbc_disable(dev);
9905         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9906         mutex_unlock(&dev->struct_mutex);
9907
9908         trace_i915_flip_request(intel_crtc->plane, obj);
9909
9910         return 0;
9911
9912 cleanup_unpin:
9913         intel_unpin_fb_obj(obj);
9914 cleanup_pending:
9915         atomic_dec(&intel_crtc->unpin_work_count);
9916         crtc->primary->fb = old_fb;
9917         update_state_fb(crtc->primary);
9918         drm_gem_object_unreference(&work->old_fb_obj->base);
9919         drm_gem_object_unreference(&obj->base);
9920         mutex_unlock(&dev->struct_mutex);
9921
9922 cleanup:
9923         spin_lock_irq(&dev->event_lock);
9924         intel_crtc->unpin_work = NULL;
9925         spin_unlock_irq(&dev->event_lock);
9926
9927         drm_crtc_vblank_put(crtc);
9928 free_work:
9929         kfree(work);
9930
9931         if (ret == -EIO) {
9932 out_hang:
9933                 ret = intel_plane_restore(primary);
9934                 if (ret == 0 && event) {
9935                         spin_lock_irq(&dev->event_lock);
9936                         drm_send_vblank_event(dev, pipe, event);
9937                         spin_unlock_irq(&dev->event_lock);
9938                 }
9939         }
9940         return ret;
9941 }
9942
9943 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9944         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9945         .load_lut = intel_crtc_load_lut,
9946         .atomic_begin = intel_begin_crtc_commit,
9947         .atomic_flush = intel_finish_crtc_commit,
9948 };
9949
9950 /**
9951  * intel_modeset_update_staged_output_state
9952  *
9953  * Updates the staged output configuration state, e.g. after we've read out the
9954  * current hw state.
9955  */
9956 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9957 {
9958         struct intel_crtc *crtc;
9959         struct intel_encoder *encoder;
9960         struct intel_connector *connector;
9961
9962         list_for_each_entry(connector, &dev->mode_config.connector_list,
9963                             base.head) {
9964                 connector->new_encoder =
9965                         to_intel_encoder(connector->base.encoder);
9966         }
9967
9968         for_each_intel_encoder(dev, encoder) {
9969                 encoder->new_crtc =
9970                         to_intel_crtc(encoder->base.crtc);
9971         }
9972
9973         for_each_intel_crtc(dev, crtc) {
9974                 crtc->new_enabled = crtc->base.enabled;
9975
9976                 if (crtc->new_enabled)
9977                         crtc->new_config = crtc->config;
9978                 else
9979                         crtc->new_config = NULL;
9980         }
9981 }
9982
9983 /**
9984  * intel_modeset_commit_output_state
9985  *
9986  * This function copies the stage display pipe configuration to the real one.
9987  */
9988 static void intel_modeset_commit_output_state(struct drm_device *dev)
9989 {
9990         struct intel_crtc *crtc;
9991         struct intel_encoder *encoder;
9992         struct intel_connector *connector;
9993
9994         list_for_each_entry(connector, &dev->mode_config.connector_list,
9995                             base.head) {
9996                 connector->base.encoder = &connector->new_encoder->base;
9997         }
9998
9999         for_each_intel_encoder(dev, encoder) {
10000                 encoder->base.crtc = &encoder->new_crtc->base;
10001         }
10002
10003         for_each_intel_crtc(dev, crtc) {
10004                 crtc->base.enabled = crtc->new_enabled;
10005         }
10006 }
10007
10008 static void
10009 connected_sink_compute_bpp(struct intel_connector *connector,
10010                            struct intel_crtc_state *pipe_config)
10011 {
10012         int bpp = pipe_config->pipe_bpp;
10013
10014         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10015                 connector->base.base.id,
10016                 connector->base.name);
10017
10018         /* Don't use an invalid EDID bpc value */
10019         if (connector->base.display_info.bpc &&
10020             connector->base.display_info.bpc * 3 < bpp) {
10021                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10022                               bpp, connector->base.display_info.bpc*3);
10023                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10024         }
10025
10026         /* Clamp bpp to 8 on screens without EDID 1.4 */
10027         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10028                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10029                               bpp);
10030                 pipe_config->pipe_bpp = 24;
10031         }
10032 }
10033
10034 static int
10035 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10036                           struct drm_framebuffer *fb,
10037                           struct intel_crtc_state *pipe_config)
10038 {
10039         struct drm_device *dev = crtc->base.dev;
10040         struct intel_connector *connector;
10041         int bpp;
10042
10043         switch (fb->pixel_format) {
10044         case DRM_FORMAT_C8:
10045                 bpp = 8*3; /* since we go through a colormap */
10046                 break;
10047         case DRM_FORMAT_XRGB1555:
10048         case DRM_FORMAT_ARGB1555:
10049                 /* checked in intel_framebuffer_init already */
10050                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10051                         return -EINVAL;
10052         case DRM_FORMAT_RGB565:
10053                 bpp = 6*3; /* min is 18bpp */
10054                 break;
10055         case DRM_FORMAT_XBGR8888:
10056         case DRM_FORMAT_ABGR8888:
10057                 /* checked in intel_framebuffer_init already */
10058                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10059                         return -EINVAL;
10060         case DRM_FORMAT_XRGB8888:
10061         case DRM_FORMAT_ARGB8888:
10062                 bpp = 8*3;
10063                 break;
10064         case DRM_FORMAT_XRGB2101010:
10065         case DRM_FORMAT_ARGB2101010:
10066         case DRM_FORMAT_XBGR2101010:
10067         case DRM_FORMAT_ABGR2101010:
10068                 /* checked in intel_framebuffer_init already */
10069                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10070                         return -EINVAL;
10071                 bpp = 10*3;
10072                 break;
10073         /* TODO: gen4+ supports 16 bpc floating point, too. */
10074         default:
10075                 DRM_DEBUG_KMS("unsupported depth\n");
10076                 return -EINVAL;
10077         }
10078
10079         pipe_config->pipe_bpp = bpp;
10080
10081         /* Clamp display bpp to EDID value */
10082         list_for_each_entry(connector, &dev->mode_config.connector_list,
10083                             base.head) {
10084                 if (!connector->new_encoder ||
10085                     connector->new_encoder->new_crtc != crtc)
10086                         continue;
10087
10088                 connected_sink_compute_bpp(connector, pipe_config);
10089         }
10090
10091         return bpp;
10092 }
10093
10094 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10095 {
10096         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10097                         "type: 0x%x flags: 0x%x\n",
10098                 mode->crtc_clock,
10099                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10100                 mode->crtc_hsync_end, mode->crtc_htotal,
10101                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10102                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10103 }
10104
10105 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10106                                    struct intel_crtc_state *pipe_config,
10107                                    const char *context)
10108 {
10109         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10110                       context, pipe_name(crtc->pipe));
10111
10112         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10113         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10114                       pipe_config->pipe_bpp, pipe_config->dither);
10115         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10116                       pipe_config->has_pch_encoder,
10117                       pipe_config->fdi_lanes,
10118                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10119                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10120                       pipe_config->fdi_m_n.tu);
10121         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10122                       pipe_config->has_dp_encoder,
10123                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10124                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10125                       pipe_config->dp_m_n.tu);
10126
10127         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10128                       pipe_config->has_dp_encoder,
10129                       pipe_config->dp_m2_n2.gmch_m,
10130                       pipe_config->dp_m2_n2.gmch_n,
10131                       pipe_config->dp_m2_n2.link_m,
10132                       pipe_config->dp_m2_n2.link_n,
10133                       pipe_config->dp_m2_n2.tu);
10134
10135         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10136                       pipe_config->has_audio,
10137                       pipe_config->has_infoframe);
10138
10139         DRM_DEBUG_KMS("requested mode:\n");
10140         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10141         DRM_DEBUG_KMS("adjusted mode:\n");
10142         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10143         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10144         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10145         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10146                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10147         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10148                       pipe_config->gmch_pfit.control,
10149                       pipe_config->gmch_pfit.pgm_ratios,
10150                       pipe_config->gmch_pfit.lvds_border_bits);
10151         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10152                       pipe_config->pch_pfit.pos,
10153                       pipe_config->pch_pfit.size,
10154                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10155         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10156         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10157 }
10158
10159 static bool encoders_cloneable(const struct intel_encoder *a,
10160                                const struct intel_encoder *b)
10161 {
10162         /* masks could be asymmetric, so check both ways */
10163         return a == b || (a->cloneable & (1 << b->type) &&
10164                           b->cloneable & (1 << a->type));
10165 }
10166
10167 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10168                                          struct intel_encoder *encoder)
10169 {
10170         struct drm_device *dev = crtc->base.dev;
10171         struct intel_encoder *source_encoder;
10172
10173         for_each_intel_encoder(dev, source_encoder) {
10174                 if (source_encoder->new_crtc != crtc)
10175                         continue;
10176
10177                 if (!encoders_cloneable(encoder, source_encoder))
10178                         return false;
10179         }
10180
10181         return true;
10182 }
10183
10184 static bool check_encoder_cloning(struct intel_crtc *crtc)
10185 {
10186         struct drm_device *dev = crtc->base.dev;
10187         struct intel_encoder *encoder;
10188
10189         for_each_intel_encoder(dev, encoder) {
10190                 if (encoder->new_crtc != crtc)
10191                         continue;
10192
10193                 if (!check_single_encoder_cloning(crtc, encoder))
10194                         return false;
10195         }
10196
10197         return true;
10198 }
10199
10200 static bool check_digital_port_conflicts(struct drm_device *dev)
10201 {
10202         struct intel_connector *connector;
10203         unsigned int used_ports = 0;
10204
10205         /*
10206          * Walk the connector list instead of the encoder
10207          * list to detect the problem on ddi platforms
10208          * where there's just one encoder per digital port.
10209          */
10210         list_for_each_entry(connector,
10211                             &dev->mode_config.connector_list, base.head) {
10212                 struct intel_encoder *encoder = connector->new_encoder;
10213
10214                 if (!encoder)
10215                         continue;
10216
10217                 WARN_ON(!encoder->new_crtc);
10218
10219                 switch (encoder->type) {
10220                         unsigned int port_mask;
10221                 case INTEL_OUTPUT_UNKNOWN:
10222                         if (WARN_ON(!HAS_DDI(dev)))
10223                                 break;
10224                 case INTEL_OUTPUT_DISPLAYPORT:
10225                 case INTEL_OUTPUT_HDMI:
10226                 case INTEL_OUTPUT_EDP:
10227                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10228
10229                         /* the same port mustn't appear more than once */
10230                         if (used_ports & port_mask)
10231                                 return false;
10232
10233                         used_ports |= port_mask;
10234                 default:
10235                         break;
10236                 }
10237         }
10238
10239         return true;
10240 }
10241
10242 static struct intel_crtc_state *
10243 intel_modeset_pipe_config(struct drm_crtc *crtc,
10244                           struct drm_framebuffer *fb,
10245                           struct drm_display_mode *mode)
10246 {
10247         struct drm_device *dev = crtc->dev;
10248         struct intel_encoder *encoder;
10249         struct intel_crtc_state *pipe_config;
10250         int plane_bpp, ret = -EINVAL;
10251         bool retry = true;
10252
10253         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10254                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10255                 return ERR_PTR(-EINVAL);
10256         }
10257
10258         if (!check_digital_port_conflicts(dev)) {
10259                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10260                 return ERR_PTR(-EINVAL);
10261         }
10262
10263         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10264         if (!pipe_config)
10265                 return ERR_PTR(-ENOMEM);
10266
10267         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10268         drm_mode_copy(&pipe_config->base.mode, mode);
10269
10270         pipe_config->cpu_transcoder =
10271                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10272         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10273
10274         /*
10275          * Sanitize sync polarity flags based on requested ones. If neither
10276          * positive or negative polarity is requested, treat this as meaning
10277          * negative polarity.
10278          */
10279         if (!(pipe_config->base.adjusted_mode.flags &
10280               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10281                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10282
10283         if (!(pipe_config->base.adjusted_mode.flags &
10284               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10285                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10286
10287         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10288          * plane pixel format and any sink constraints into account. Returns the
10289          * source plane bpp so that dithering can be selected on mismatches
10290          * after encoders and crtc also have had their say. */
10291         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10292                                               fb, pipe_config);
10293         if (plane_bpp < 0)
10294                 goto fail;
10295
10296         /*
10297          * Determine the real pipe dimensions. Note that stereo modes can
10298          * increase the actual pipe size due to the frame doubling and
10299          * insertion of additional space for blanks between the frame. This
10300          * is stored in the crtc timings. We use the requested mode to do this
10301          * computation to clearly distinguish it from the adjusted mode, which
10302          * can be changed by the connectors in the below retry loop.
10303          */
10304         drm_crtc_get_hv_timing(&pipe_config->base.mode,
10305                                &pipe_config->pipe_src_w,
10306                                &pipe_config->pipe_src_h);
10307
10308 encoder_retry:
10309         /* Ensure the port clock defaults are reset when retrying. */
10310         pipe_config->port_clock = 0;
10311         pipe_config->pixel_multiplier = 1;
10312
10313         /* Fill in default crtc timings, allow encoders to overwrite them. */
10314         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10315                               CRTC_STEREO_DOUBLE);
10316
10317         /* Pass our mode to the connectors and the CRTC to give them a chance to
10318          * adjust it according to limitations or connector properties, and also
10319          * a chance to reject the mode entirely.
10320          */
10321         for_each_intel_encoder(dev, encoder) {
10322
10323                 if (&encoder->new_crtc->base != crtc)
10324                         continue;
10325
10326                 if (!(encoder->compute_config(encoder, pipe_config))) {
10327                         DRM_DEBUG_KMS("Encoder config failure\n");
10328                         goto fail;
10329                 }
10330         }
10331
10332         /* Set default port clock if not overwritten by the encoder. Needs to be
10333          * done afterwards in case the encoder adjusts the mode. */
10334         if (!pipe_config->port_clock)
10335                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10336                         * pipe_config->pixel_multiplier;
10337
10338         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10339         if (ret < 0) {
10340                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10341                 goto fail;
10342         }
10343
10344         if (ret == RETRY) {
10345                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10346                         ret = -EINVAL;
10347                         goto fail;
10348                 }
10349
10350                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10351                 retry = false;
10352                 goto encoder_retry;
10353         }
10354
10355         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10356         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10357                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10358
10359         return pipe_config;
10360 fail:
10361         kfree(pipe_config);
10362         return ERR_PTR(ret);
10363 }
10364
10365 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10366  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10367 static void
10368 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10369                              unsigned *prepare_pipes, unsigned *disable_pipes)
10370 {
10371         struct intel_crtc *intel_crtc;
10372         struct drm_device *dev = crtc->dev;
10373         struct intel_encoder *encoder;
10374         struct intel_connector *connector;
10375         struct drm_crtc *tmp_crtc;
10376
10377         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10378
10379         /* Check which crtcs have changed outputs connected to them, these need
10380          * to be part of the prepare_pipes mask. We don't (yet) support global
10381          * modeset across multiple crtcs, so modeset_pipes will only have one
10382          * bit set at most. */
10383         list_for_each_entry(connector, &dev->mode_config.connector_list,
10384                             base.head) {
10385                 if (connector->base.encoder == &connector->new_encoder->base)
10386                         continue;
10387
10388                 if (connector->base.encoder) {
10389                         tmp_crtc = connector->base.encoder->crtc;
10390
10391                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10392                 }
10393
10394                 if (connector->new_encoder)
10395                         *prepare_pipes |=
10396                                 1 << connector->new_encoder->new_crtc->pipe;
10397         }
10398
10399         for_each_intel_encoder(dev, encoder) {
10400                 if (encoder->base.crtc == &encoder->new_crtc->base)
10401                         continue;
10402
10403                 if (encoder->base.crtc) {
10404                         tmp_crtc = encoder->base.crtc;
10405
10406                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10407                 }
10408
10409                 if (encoder->new_crtc)
10410                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10411         }
10412
10413         /* Check for pipes that will be enabled/disabled ... */
10414         for_each_intel_crtc(dev, intel_crtc) {
10415                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10416                         continue;
10417
10418                 if (!intel_crtc->new_enabled)
10419                         *disable_pipes |= 1 << intel_crtc->pipe;
10420                 else
10421                         *prepare_pipes |= 1 << intel_crtc->pipe;
10422         }
10423
10424
10425         /* set_mode is also used to update properties on life display pipes. */
10426         intel_crtc = to_intel_crtc(crtc);
10427         if (intel_crtc->new_enabled)
10428                 *prepare_pipes |= 1 << intel_crtc->pipe;
10429
10430         /*
10431          * For simplicity do a full modeset on any pipe where the output routing
10432          * changed. We could be more clever, but that would require us to be
10433          * more careful with calling the relevant encoder->mode_set functions.
10434          */
10435         if (*prepare_pipes)
10436                 *modeset_pipes = *prepare_pipes;
10437
10438         /* ... and mask these out. */
10439         *modeset_pipes &= ~(*disable_pipes);
10440         *prepare_pipes &= ~(*disable_pipes);
10441
10442         /*
10443          * HACK: We don't (yet) fully support global modesets. intel_set_config
10444          * obies this rule, but the modeset restore mode of
10445          * intel_modeset_setup_hw_state does not.
10446          */
10447         *modeset_pipes &= 1 << intel_crtc->pipe;
10448         *prepare_pipes &= 1 << intel_crtc->pipe;
10449
10450         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10451                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10452 }
10453
10454 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10455 {
10456         struct drm_encoder *encoder;
10457         struct drm_device *dev = crtc->dev;
10458
10459         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10460                 if (encoder->crtc == crtc)
10461                         return true;
10462
10463         return false;
10464 }
10465
10466 static void
10467 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10468 {
10469         struct drm_i915_private *dev_priv = dev->dev_private;
10470         struct intel_encoder *intel_encoder;
10471         struct intel_crtc *intel_crtc;
10472         struct drm_connector *connector;
10473
10474         intel_shared_dpll_commit(dev_priv);
10475
10476         for_each_intel_encoder(dev, intel_encoder) {
10477                 if (!intel_encoder->base.crtc)
10478                         continue;
10479
10480                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10481
10482                 if (prepare_pipes & (1 << intel_crtc->pipe))
10483                         intel_encoder->connectors_active = false;
10484         }
10485
10486         intel_modeset_commit_output_state(dev);
10487
10488         /* Double check state. */
10489         for_each_intel_crtc(dev, intel_crtc) {
10490                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10491                 WARN_ON(intel_crtc->new_config &&
10492                         intel_crtc->new_config != intel_crtc->config);
10493                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10494         }
10495
10496         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10497                 if (!connector->encoder || !connector->encoder->crtc)
10498                         continue;
10499
10500                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10501
10502                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10503                         struct drm_property *dpms_property =
10504                                 dev->mode_config.dpms_property;
10505
10506                         connector->dpms = DRM_MODE_DPMS_ON;
10507                         drm_object_property_set_value(&connector->base,
10508                                                          dpms_property,
10509                                                          DRM_MODE_DPMS_ON);
10510
10511                         intel_encoder = to_intel_encoder(connector->encoder);
10512                         intel_encoder->connectors_active = true;
10513                 }
10514         }
10515
10516 }
10517
10518 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10519 {
10520         int diff;
10521
10522         if (clock1 == clock2)
10523                 return true;
10524
10525         if (!clock1 || !clock2)
10526                 return false;
10527
10528         diff = abs(clock1 - clock2);
10529
10530         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10531                 return true;
10532
10533         return false;
10534 }
10535
10536 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10537         list_for_each_entry((intel_crtc), \
10538                             &(dev)->mode_config.crtc_list, \
10539                             base.head) \
10540                 if (mask & (1 <<(intel_crtc)->pipe))
10541
10542 static bool
10543 intel_pipe_config_compare(struct drm_device *dev,
10544                           struct intel_crtc_state *current_config,
10545                           struct intel_crtc_state *pipe_config)
10546 {
10547 #define PIPE_CONF_CHECK_X(name) \
10548         if (current_config->name != pipe_config->name) { \
10549                 DRM_ERROR("mismatch in " #name " " \
10550                           "(expected 0x%08x, found 0x%08x)\n", \
10551                           current_config->name, \
10552                           pipe_config->name); \
10553                 return false; \
10554         }
10555
10556 #define PIPE_CONF_CHECK_I(name) \
10557         if (current_config->name != pipe_config->name) { \
10558                 DRM_ERROR("mismatch in " #name " " \
10559                           "(expected %i, found %i)\n", \
10560                           current_config->name, \
10561                           pipe_config->name); \
10562                 return false; \
10563         }
10564
10565 /* This is required for BDW+ where there is only one set of registers for
10566  * switching between high and low RR.
10567  * This macro can be used whenever a comparison has to be made between one
10568  * hw state and multiple sw state variables.
10569  */
10570 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10571         if ((current_config->name != pipe_config->name) && \
10572                 (current_config->alt_name != pipe_config->name)) { \
10573                         DRM_ERROR("mismatch in " #name " " \
10574                                   "(expected %i or %i, found %i)\n", \
10575                                   current_config->name, \
10576                                   current_config->alt_name, \
10577                                   pipe_config->name); \
10578                         return false; \
10579         }
10580
10581 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10582         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10583                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10584                           "(expected %i, found %i)\n", \
10585                           current_config->name & (mask), \
10586                           pipe_config->name & (mask)); \
10587                 return false; \
10588         }
10589
10590 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10591         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10592                 DRM_ERROR("mismatch in " #name " " \
10593                           "(expected %i, found %i)\n", \
10594                           current_config->name, \
10595                           pipe_config->name); \
10596                 return false; \
10597         }
10598
10599 #define PIPE_CONF_QUIRK(quirk)  \
10600         ((current_config->quirks | pipe_config->quirks) & (quirk))
10601
10602         PIPE_CONF_CHECK_I(cpu_transcoder);
10603
10604         PIPE_CONF_CHECK_I(has_pch_encoder);
10605         PIPE_CONF_CHECK_I(fdi_lanes);
10606         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10607         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10608         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10609         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10610         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10611
10612         PIPE_CONF_CHECK_I(has_dp_encoder);
10613
10614         if (INTEL_INFO(dev)->gen < 8) {
10615                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10616                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10617                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10618                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10619                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10620
10621                 if (current_config->has_drrs) {
10622                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10623                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10624                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10625                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10626                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10627                 }
10628         } else {
10629                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10630                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10631                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10632                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10633                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10634         }
10635
10636         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10637         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10638         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10639         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10640         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10641         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10642
10643         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10644         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10645         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10646         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10647         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10648         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10649
10650         PIPE_CONF_CHECK_I(pixel_multiplier);
10651         PIPE_CONF_CHECK_I(has_hdmi_sink);
10652         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10653             IS_VALLEYVIEW(dev))
10654                 PIPE_CONF_CHECK_I(limited_color_range);
10655         PIPE_CONF_CHECK_I(has_infoframe);
10656
10657         PIPE_CONF_CHECK_I(has_audio);
10658
10659         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10660                               DRM_MODE_FLAG_INTERLACE);
10661
10662         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10663                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10664                                       DRM_MODE_FLAG_PHSYNC);
10665                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10666                                       DRM_MODE_FLAG_NHSYNC);
10667                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10668                                       DRM_MODE_FLAG_PVSYNC);
10669                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10670                                       DRM_MODE_FLAG_NVSYNC);
10671         }
10672
10673         PIPE_CONF_CHECK_I(pipe_src_w);
10674         PIPE_CONF_CHECK_I(pipe_src_h);
10675
10676         /*
10677          * FIXME: BIOS likes to set up a cloned config with lvds+external
10678          * screen. Since we don't yet re-compute the pipe config when moving
10679          * just the lvds port away to another pipe the sw tracking won't match.
10680          *
10681          * Proper atomic modesets with recomputed global state will fix this.
10682          * Until then just don't check gmch state for inherited modes.
10683          */
10684         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10685                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10686                 /* pfit ratios are autocomputed by the hw on gen4+ */
10687                 if (INTEL_INFO(dev)->gen < 4)
10688                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10689                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10690         }
10691
10692         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10693         if (current_config->pch_pfit.enabled) {
10694                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10695                 PIPE_CONF_CHECK_I(pch_pfit.size);
10696         }
10697
10698         /* BDW+ don't expose a synchronous way to read the state */
10699         if (IS_HASWELL(dev))
10700                 PIPE_CONF_CHECK_I(ips_enabled);
10701
10702         PIPE_CONF_CHECK_I(double_wide);
10703
10704         PIPE_CONF_CHECK_X(ddi_pll_sel);
10705
10706         PIPE_CONF_CHECK_I(shared_dpll);
10707         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10708         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10709         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10710         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10711         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10712         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10713         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10714         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10715
10716         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10717                 PIPE_CONF_CHECK_I(pipe_bpp);
10718
10719         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10720         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10721
10722 #undef PIPE_CONF_CHECK_X
10723 #undef PIPE_CONF_CHECK_I
10724 #undef PIPE_CONF_CHECK_I_ALT
10725 #undef PIPE_CONF_CHECK_FLAGS
10726 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10727 #undef PIPE_CONF_QUIRK
10728
10729         return true;
10730 }
10731
10732 static void check_wm_state(struct drm_device *dev)
10733 {
10734         struct drm_i915_private *dev_priv = dev->dev_private;
10735         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10736         struct intel_crtc *intel_crtc;
10737         int plane;
10738
10739         if (INTEL_INFO(dev)->gen < 9)
10740                 return;
10741
10742         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10743         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10744
10745         for_each_intel_crtc(dev, intel_crtc) {
10746                 struct skl_ddb_entry *hw_entry, *sw_entry;
10747                 const enum pipe pipe = intel_crtc->pipe;
10748
10749                 if (!intel_crtc->active)
10750                         continue;
10751
10752                 /* planes */
10753                 for_each_plane(pipe, plane) {
10754                         hw_entry = &hw_ddb.plane[pipe][plane];
10755                         sw_entry = &sw_ddb->plane[pipe][plane];
10756
10757                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10758                                 continue;
10759
10760                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10761                                   "(expected (%u,%u), found (%u,%u))\n",
10762                                   pipe_name(pipe), plane + 1,
10763                                   sw_entry->start, sw_entry->end,
10764                                   hw_entry->start, hw_entry->end);
10765                 }
10766
10767                 /* cursor */
10768                 hw_entry = &hw_ddb.cursor[pipe];
10769                 sw_entry = &sw_ddb->cursor[pipe];
10770
10771                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10772                         continue;
10773
10774                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10775                           "(expected (%u,%u), found (%u,%u))\n",
10776                           pipe_name(pipe),
10777                           sw_entry->start, sw_entry->end,
10778                           hw_entry->start, hw_entry->end);
10779         }
10780 }
10781
10782 static void
10783 check_connector_state(struct drm_device *dev)
10784 {
10785         struct intel_connector *connector;
10786
10787         list_for_each_entry(connector, &dev->mode_config.connector_list,
10788                             base.head) {
10789                 /* This also checks the encoder/connector hw state with the
10790                  * ->get_hw_state callbacks. */
10791                 intel_connector_check_state(connector);
10792
10793                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10794                      "connector's staged encoder doesn't match current encoder\n");
10795         }
10796 }
10797
10798 static void
10799 check_encoder_state(struct drm_device *dev)
10800 {
10801         struct intel_encoder *encoder;
10802         struct intel_connector *connector;
10803
10804         for_each_intel_encoder(dev, encoder) {
10805                 bool enabled = false;
10806                 bool active = false;
10807                 enum pipe pipe, tracked_pipe;
10808
10809                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10810                               encoder->base.base.id,
10811                               encoder->base.name);
10812
10813                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10814                      "encoder's stage crtc doesn't match current crtc\n");
10815                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10816                      "encoder's active_connectors set, but no crtc\n");
10817
10818                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10819                                     base.head) {
10820                         if (connector->base.encoder != &encoder->base)
10821                                 continue;
10822                         enabled = true;
10823                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10824                                 active = true;
10825                 }
10826                 /*
10827                  * for MST connectors if we unplug the connector is gone
10828                  * away but the encoder is still connected to a crtc
10829                  * until a modeset happens in response to the hotplug.
10830                  */
10831                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10832                         continue;
10833
10834                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10835                      "encoder's enabled state mismatch "
10836                      "(expected %i, found %i)\n",
10837                      !!encoder->base.crtc, enabled);
10838                 I915_STATE_WARN(active && !encoder->base.crtc,
10839                      "active encoder with no crtc\n");
10840
10841                 I915_STATE_WARN(encoder->connectors_active != active,
10842                      "encoder's computed active state doesn't match tracked active state "
10843                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10844
10845                 active = encoder->get_hw_state(encoder, &pipe);
10846                 I915_STATE_WARN(active != encoder->connectors_active,
10847                      "encoder's hw state doesn't match sw tracking "
10848                      "(expected %i, found %i)\n",
10849                      encoder->connectors_active, active);
10850
10851                 if (!encoder->base.crtc)
10852                         continue;
10853
10854                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10855                 I915_STATE_WARN(active && pipe != tracked_pipe,
10856                      "active encoder's pipe doesn't match"
10857                      "(expected %i, found %i)\n",
10858                      tracked_pipe, pipe);
10859
10860         }
10861 }
10862
10863 static void
10864 check_crtc_state(struct drm_device *dev)
10865 {
10866         struct drm_i915_private *dev_priv = dev->dev_private;
10867         struct intel_crtc *crtc;
10868         struct intel_encoder *encoder;
10869         struct intel_crtc_state pipe_config;
10870
10871         for_each_intel_crtc(dev, crtc) {
10872                 bool enabled = false;
10873                 bool active = false;
10874
10875                 memset(&pipe_config, 0, sizeof(pipe_config));
10876
10877                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10878                               crtc->base.base.id);
10879
10880                 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10881                      "active crtc, but not enabled in sw tracking\n");
10882
10883                 for_each_intel_encoder(dev, encoder) {
10884                         if (encoder->base.crtc != &crtc->base)
10885                                 continue;
10886                         enabled = true;
10887                         if (encoder->connectors_active)
10888                                 active = true;
10889                 }
10890
10891                 I915_STATE_WARN(active != crtc->active,
10892                      "crtc's computed active state doesn't match tracked active state "
10893                      "(expected %i, found %i)\n", active, crtc->active);
10894                 I915_STATE_WARN(enabled != crtc->base.enabled,
10895                      "crtc's computed enabled state doesn't match tracked enabled state "
10896                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10897
10898                 active = dev_priv->display.get_pipe_config(crtc,
10899                                                            &pipe_config);
10900
10901                 /* hw state is inconsistent with the pipe quirk */
10902                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10903                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10904                         active = crtc->active;
10905
10906                 for_each_intel_encoder(dev, encoder) {
10907                         enum pipe pipe;
10908                         if (encoder->base.crtc != &crtc->base)
10909                                 continue;
10910                         if (encoder->get_hw_state(encoder, &pipe))
10911                                 encoder->get_config(encoder, &pipe_config);
10912                 }
10913
10914                 I915_STATE_WARN(crtc->active != active,
10915                      "crtc active state doesn't match with hw state "
10916                      "(expected %i, found %i)\n", crtc->active, active);
10917
10918                 if (active &&
10919                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
10920                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
10921                         intel_dump_pipe_config(crtc, &pipe_config,
10922                                                "[hw state]");
10923                         intel_dump_pipe_config(crtc, crtc->config,
10924                                                "[sw state]");
10925                 }
10926         }
10927 }
10928
10929 static void
10930 check_shared_dpll_state(struct drm_device *dev)
10931 {
10932         struct drm_i915_private *dev_priv = dev->dev_private;
10933         struct intel_crtc *crtc;
10934         struct intel_dpll_hw_state dpll_hw_state;
10935         int i;
10936
10937         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10938                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10939                 int enabled_crtcs = 0, active_crtcs = 0;
10940                 bool active;
10941
10942                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10943
10944                 DRM_DEBUG_KMS("%s\n", pll->name);
10945
10946                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10947
10948                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10949                      "more active pll users than references: %i vs %i\n",
10950                      pll->active, hweight32(pll->config.crtc_mask));
10951                 I915_STATE_WARN(pll->active && !pll->on,
10952                      "pll in active use but not on in sw tracking\n");
10953                 I915_STATE_WARN(pll->on && !pll->active,
10954                      "pll in on but not on in use in sw tracking\n");
10955                 I915_STATE_WARN(pll->on != active,
10956                      "pll on state mismatch (expected %i, found %i)\n",
10957                      pll->on, active);
10958
10959                 for_each_intel_crtc(dev, crtc) {
10960                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10961                                 enabled_crtcs++;
10962                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10963                                 active_crtcs++;
10964                 }
10965                 I915_STATE_WARN(pll->active != active_crtcs,
10966                      "pll active crtcs mismatch (expected %i, found %i)\n",
10967                      pll->active, active_crtcs);
10968                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10969                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10970                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10971
10972                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10973                                        sizeof(dpll_hw_state)),
10974                      "pll hw state mismatch\n");
10975         }
10976 }
10977
10978 void
10979 intel_modeset_check_state(struct drm_device *dev)
10980 {
10981         check_wm_state(dev);
10982         check_connector_state(dev);
10983         check_encoder_state(dev);
10984         check_crtc_state(dev);
10985         check_shared_dpll_state(dev);
10986 }
10987
10988 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
10989                                      int dotclock)
10990 {
10991         /*
10992          * FDI already provided one idea for the dotclock.
10993          * Yell if the encoder disagrees.
10994          */
10995         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
10996              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10997              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
10998 }
10999
11000 static void update_scanline_offset(struct intel_crtc *crtc)
11001 {
11002         struct drm_device *dev = crtc->base.dev;
11003
11004         /*
11005          * The scanline counter increments at the leading edge of hsync.
11006          *
11007          * On most platforms it starts counting from vtotal-1 on the
11008          * first active line. That means the scanline counter value is
11009          * always one less than what we would expect. Ie. just after
11010          * start of vblank, which also occurs at start of hsync (on the
11011          * last active line), the scanline counter will read vblank_start-1.
11012          *
11013          * On gen2 the scanline counter starts counting from 1 instead
11014          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11015          * to keep the value positive), instead of adding one.
11016          *
11017          * On HSW+ the behaviour of the scanline counter depends on the output
11018          * type. For DP ports it behaves like most other platforms, but on HDMI
11019          * there's an extra 1 line difference. So we need to add two instead of
11020          * one to the value.
11021          */
11022         if (IS_GEN2(dev)) {
11023                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11024                 int vtotal;
11025
11026                 vtotal = mode->crtc_vtotal;
11027                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11028                         vtotal /= 2;
11029
11030                 crtc->scanline_offset = vtotal - 1;
11031         } else if (HAS_DDI(dev) &&
11032                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11033                 crtc->scanline_offset = 2;
11034         } else
11035                 crtc->scanline_offset = 1;
11036 }
11037
11038 static struct intel_crtc_state *
11039 intel_modeset_compute_config(struct drm_crtc *crtc,
11040                              struct drm_display_mode *mode,
11041                              struct drm_framebuffer *fb,
11042                              unsigned *modeset_pipes,
11043                              unsigned *prepare_pipes,
11044                              unsigned *disable_pipes)
11045 {
11046         struct intel_crtc_state *pipe_config = NULL;
11047
11048         intel_modeset_affected_pipes(crtc, modeset_pipes,
11049                                      prepare_pipes, disable_pipes);
11050
11051         if ((*modeset_pipes) == 0)
11052                 goto out;
11053
11054         /*
11055          * Note this needs changes when we start tracking multiple modes
11056          * and crtcs.  At that point we'll need to compute the whole config
11057          * (i.e. one pipe_config for each crtc) rather than just the one
11058          * for this crtc.
11059          */
11060         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11061         if (IS_ERR(pipe_config)) {
11062                 goto out;
11063         }
11064         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11065                                "[modeset]");
11066
11067 out:
11068         return pipe_config;
11069 }
11070
11071 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11072                                        unsigned modeset_pipes,
11073                                        unsigned disable_pipes)
11074 {
11075         struct drm_i915_private *dev_priv = to_i915(dev);
11076         unsigned clear_pipes = modeset_pipes | disable_pipes;
11077         struct intel_crtc *intel_crtc;
11078         int ret = 0;
11079
11080         if (!dev_priv->display.crtc_compute_clock)
11081                 return 0;
11082
11083         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11084         if (ret)
11085                 goto done;
11086
11087         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11088                 struct intel_crtc_state *state = intel_crtc->new_config;
11089                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11090                                                            state);
11091                 if (ret) {
11092                         intel_shared_dpll_abort_config(dev_priv);
11093                         goto done;
11094                 }
11095         }
11096
11097 done:
11098         return ret;
11099 }
11100
11101 static int __intel_set_mode(struct drm_crtc *crtc,
11102                             struct drm_display_mode *mode,
11103                             int x, int y, struct drm_framebuffer *fb,
11104                             struct intel_crtc_state *pipe_config,
11105                             unsigned modeset_pipes,
11106                             unsigned prepare_pipes,
11107                             unsigned disable_pipes)
11108 {
11109         struct drm_device *dev = crtc->dev;
11110         struct drm_i915_private *dev_priv = dev->dev_private;
11111         struct drm_display_mode *saved_mode;
11112         struct intel_crtc *intel_crtc;
11113         int ret = 0;
11114
11115         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11116         if (!saved_mode)
11117                 return -ENOMEM;
11118
11119         *saved_mode = crtc->mode;
11120
11121         if (modeset_pipes)
11122                 to_intel_crtc(crtc)->new_config = pipe_config;
11123
11124         /*
11125          * See if the config requires any additional preparation, e.g.
11126          * to adjust global state with pipes off.  We need to do this
11127          * here so we can get the modeset_pipe updated config for the new
11128          * mode set on this crtc.  For other crtcs we need to use the
11129          * adjusted_mode bits in the crtc directly.
11130          */
11131         if (IS_VALLEYVIEW(dev)) {
11132                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11133
11134                 /* may have added more to prepare_pipes than we should */
11135                 prepare_pipes &= ~disable_pipes;
11136         }
11137
11138         ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11139         if (ret)
11140                 goto done;
11141
11142         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11143                 intel_crtc_disable(&intel_crtc->base);
11144
11145         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11146                 if (intel_crtc->base.enabled)
11147                         dev_priv->display.crtc_disable(&intel_crtc->base);
11148         }
11149
11150         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11151          * to set it here already despite that we pass it down the callchain.
11152          *
11153          * Note we'll need to fix this up when we start tracking multiple
11154          * pipes; here we assume a single modeset_pipe and only track the
11155          * single crtc and mode.
11156          */
11157         if (modeset_pipes) {
11158                 crtc->mode = *mode;
11159                 /* mode_set/enable/disable functions rely on a correct pipe
11160                  * config. */
11161                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11162
11163                 /*
11164                  * Calculate and store various constants which
11165                  * are later needed by vblank and swap-completion
11166                  * timestamping. They are derived from true hwmode.
11167                  */
11168                 drm_calc_timestamping_constants(crtc,
11169                                                 &pipe_config->base.adjusted_mode);
11170         }
11171
11172         /* Only after disabling all output pipelines that will be changed can we
11173          * update the the output configuration. */
11174         intel_modeset_update_state(dev, prepare_pipes);
11175
11176         modeset_update_crtc_power_domains(dev);
11177
11178         /* Set up the DPLL and any encoders state that needs to adjust or depend
11179          * on the DPLL.
11180          */
11181         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11182                 struct drm_plane *primary = intel_crtc->base.primary;
11183                 int vdisplay, hdisplay;
11184
11185                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11186                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11187                                                    fb, 0, 0,
11188                                                    hdisplay, vdisplay,
11189                                                    x << 16, y << 16,
11190                                                    hdisplay << 16, vdisplay << 16);
11191         }
11192
11193         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11194         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11195                 update_scanline_offset(intel_crtc);
11196
11197                 dev_priv->display.crtc_enable(&intel_crtc->base);
11198         }
11199
11200         /* FIXME: add subpixel order */
11201 done:
11202         if (ret && crtc->enabled)
11203                 crtc->mode = *saved_mode;
11204
11205         kfree(saved_mode);
11206         return ret;
11207 }
11208
11209 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11210                                 struct drm_display_mode *mode,
11211                                 int x, int y, struct drm_framebuffer *fb,
11212                                 struct intel_crtc_state *pipe_config,
11213                                 unsigned modeset_pipes,
11214                                 unsigned prepare_pipes,
11215                                 unsigned disable_pipes)
11216 {
11217         int ret;
11218
11219         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11220                                prepare_pipes, disable_pipes);
11221
11222         if (ret == 0)
11223                 intel_modeset_check_state(crtc->dev);
11224
11225         return ret;
11226 }
11227
11228 static int intel_set_mode(struct drm_crtc *crtc,
11229                           struct drm_display_mode *mode,
11230                           int x, int y, struct drm_framebuffer *fb)
11231 {
11232         struct intel_crtc_state *pipe_config;
11233         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11234
11235         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11236                                                    &modeset_pipes,
11237                                                    &prepare_pipes,
11238                                                    &disable_pipes);
11239
11240         if (IS_ERR(pipe_config))
11241                 return PTR_ERR(pipe_config);
11242
11243         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11244                                     modeset_pipes, prepare_pipes,
11245                                     disable_pipes);
11246 }
11247
11248 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11249 {
11250         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11251 }
11252
11253 #undef for_each_intel_crtc_masked
11254
11255 static void intel_set_config_free(struct intel_set_config *config)
11256 {
11257         if (!config)
11258                 return;
11259
11260         kfree(config->save_connector_encoders);
11261         kfree(config->save_encoder_crtcs);
11262         kfree(config->save_crtc_enabled);
11263         kfree(config);
11264 }
11265
11266 static int intel_set_config_save_state(struct drm_device *dev,
11267                                        struct intel_set_config *config)
11268 {
11269         struct drm_crtc *crtc;
11270         struct drm_encoder *encoder;
11271         struct drm_connector *connector;
11272         int count;
11273
11274         config->save_crtc_enabled =
11275                 kcalloc(dev->mode_config.num_crtc,
11276                         sizeof(bool), GFP_KERNEL);
11277         if (!config->save_crtc_enabled)
11278                 return -ENOMEM;
11279
11280         config->save_encoder_crtcs =
11281                 kcalloc(dev->mode_config.num_encoder,
11282                         sizeof(struct drm_crtc *), GFP_KERNEL);
11283         if (!config->save_encoder_crtcs)
11284                 return -ENOMEM;
11285
11286         config->save_connector_encoders =
11287                 kcalloc(dev->mode_config.num_connector,
11288                         sizeof(struct drm_encoder *), GFP_KERNEL);
11289         if (!config->save_connector_encoders)
11290                 return -ENOMEM;
11291
11292         /* Copy data. Note that driver private data is not affected.
11293          * Should anything bad happen only the expected state is
11294          * restored, not the drivers personal bookkeeping.
11295          */
11296         count = 0;
11297         for_each_crtc(dev, crtc) {
11298                 config->save_crtc_enabled[count++] = crtc->enabled;
11299         }
11300
11301         count = 0;
11302         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11303                 config->save_encoder_crtcs[count++] = encoder->crtc;
11304         }
11305
11306         count = 0;
11307         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11308                 config->save_connector_encoders[count++] = connector->encoder;
11309         }
11310
11311         return 0;
11312 }
11313
11314 static void intel_set_config_restore_state(struct drm_device *dev,
11315                                            struct intel_set_config *config)
11316 {
11317         struct intel_crtc *crtc;
11318         struct intel_encoder *encoder;
11319         struct intel_connector *connector;
11320         int count;
11321
11322         count = 0;
11323         for_each_intel_crtc(dev, crtc) {
11324                 crtc->new_enabled = config->save_crtc_enabled[count++];
11325
11326                 if (crtc->new_enabled)
11327                         crtc->new_config = crtc->config;
11328                 else
11329                         crtc->new_config = NULL;
11330         }
11331
11332         count = 0;
11333         for_each_intel_encoder(dev, encoder) {
11334                 encoder->new_crtc =
11335                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11336         }
11337
11338         count = 0;
11339         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11340                 connector->new_encoder =
11341                         to_intel_encoder(config->save_connector_encoders[count++]);
11342         }
11343 }
11344
11345 static bool
11346 is_crtc_connector_off(struct drm_mode_set *set)
11347 {
11348         int i;
11349
11350         if (set->num_connectors == 0)
11351                 return false;
11352
11353         if (WARN_ON(set->connectors == NULL))
11354                 return false;
11355
11356         for (i = 0; i < set->num_connectors; i++)
11357                 if (set->connectors[i]->encoder &&
11358                     set->connectors[i]->encoder->crtc == set->crtc &&
11359                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11360                         return true;
11361
11362         return false;
11363 }
11364
11365 static void
11366 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11367                                       struct intel_set_config *config)
11368 {
11369
11370         /* We should be able to check here if the fb has the same properties
11371          * and then just flip_or_move it */
11372         if (is_crtc_connector_off(set)) {
11373                 config->mode_changed = true;
11374         } else if (set->crtc->primary->fb != set->fb) {
11375                 /*
11376                  * If we have no fb, we can only flip as long as the crtc is
11377                  * active, otherwise we need a full mode set.  The crtc may
11378                  * be active if we've only disabled the primary plane, or
11379                  * in fastboot situations.
11380                  */
11381                 if (set->crtc->primary->fb == NULL) {
11382                         struct intel_crtc *intel_crtc =
11383                                 to_intel_crtc(set->crtc);
11384
11385                         if (intel_crtc->active) {
11386                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11387                                 config->fb_changed = true;
11388                         } else {
11389                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11390                                 config->mode_changed = true;
11391                         }
11392                 } else if (set->fb == NULL) {
11393                         config->mode_changed = true;
11394                 } else if (set->fb->pixel_format !=
11395                            set->crtc->primary->fb->pixel_format) {
11396                         config->mode_changed = true;
11397                 } else {
11398                         config->fb_changed = true;
11399                 }
11400         }
11401
11402         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11403                 config->fb_changed = true;
11404
11405         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11406                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11407                 drm_mode_debug_printmodeline(&set->crtc->mode);
11408                 drm_mode_debug_printmodeline(set->mode);
11409                 config->mode_changed = true;
11410         }
11411
11412         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11413                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11414 }
11415
11416 static int
11417 intel_modeset_stage_output_state(struct drm_device *dev,
11418                                  struct drm_mode_set *set,
11419                                  struct intel_set_config *config)
11420 {
11421         struct intel_connector *connector;
11422         struct intel_encoder *encoder;
11423         struct intel_crtc *crtc;
11424         int ro;
11425
11426         /* The upper layers ensure that we either disable a crtc or have a list
11427          * of connectors. For paranoia, double-check this. */
11428         WARN_ON(!set->fb && (set->num_connectors != 0));
11429         WARN_ON(set->fb && (set->num_connectors == 0));
11430
11431         list_for_each_entry(connector, &dev->mode_config.connector_list,
11432                             base.head) {
11433                 /* Otherwise traverse passed in connector list and get encoders
11434                  * for them. */
11435                 for (ro = 0; ro < set->num_connectors; ro++) {
11436                         if (set->connectors[ro] == &connector->base) {
11437                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11438                                 break;
11439                         }
11440                 }
11441
11442                 /* If we disable the crtc, disable all its connectors. Also, if
11443                  * the connector is on the changing crtc but not on the new
11444                  * connector list, disable it. */
11445                 if ((!set->fb || ro == set->num_connectors) &&
11446                     connector->base.encoder &&
11447                     connector->base.encoder->crtc == set->crtc) {
11448                         connector->new_encoder = NULL;
11449
11450                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11451                                 connector->base.base.id,
11452                                 connector->base.name);
11453                 }
11454
11455
11456                 if (&connector->new_encoder->base != connector->base.encoder) {
11457                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11458                         config->mode_changed = true;
11459                 }
11460         }
11461         /* connector->new_encoder is now updated for all connectors. */
11462
11463         /* Update crtc of enabled connectors. */
11464         list_for_each_entry(connector, &dev->mode_config.connector_list,
11465                             base.head) {
11466                 struct drm_crtc *new_crtc;
11467
11468                 if (!connector->new_encoder)
11469                         continue;
11470
11471                 new_crtc = connector->new_encoder->base.crtc;
11472
11473                 for (ro = 0; ro < set->num_connectors; ro++) {
11474                         if (set->connectors[ro] == &connector->base)
11475                                 new_crtc = set->crtc;
11476                 }
11477
11478                 /* Make sure the new CRTC will work with the encoder */
11479                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11480                                          new_crtc)) {
11481                         return -EINVAL;
11482                 }
11483                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11484
11485                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11486                         connector->base.base.id,
11487                         connector->base.name,
11488                         new_crtc->base.id);
11489         }
11490
11491         /* Check for any encoders that needs to be disabled. */
11492         for_each_intel_encoder(dev, encoder) {
11493                 int num_connectors = 0;
11494                 list_for_each_entry(connector,
11495                                     &dev->mode_config.connector_list,
11496                                     base.head) {
11497                         if (connector->new_encoder == encoder) {
11498                                 WARN_ON(!connector->new_encoder->new_crtc);
11499                                 num_connectors++;
11500                         }
11501                 }
11502
11503                 if (num_connectors == 0)
11504                         encoder->new_crtc = NULL;
11505                 else if (num_connectors > 1)
11506                         return -EINVAL;
11507
11508                 /* Only now check for crtc changes so we don't miss encoders
11509                  * that will be disabled. */
11510                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11511                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11512                         config->mode_changed = true;
11513                 }
11514         }
11515         /* Now we've also updated encoder->new_crtc for all encoders. */
11516         list_for_each_entry(connector, &dev->mode_config.connector_list,
11517                             base.head) {
11518                 if (connector->new_encoder)
11519                         if (connector->new_encoder != connector->encoder)
11520                                 connector->encoder = connector->new_encoder;
11521         }
11522         for_each_intel_crtc(dev, crtc) {
11523                 crtc->new_enabled = false;
11524
11525                 for_each_intel_encoder(dev, encoder) {
11526                         if (encoder->new_crtc == crtc) {
11527                                 crtc->new_enabled = true;
11528                                 break;
11529                         }
11530                 }
11531
11532                 if (crtc->new_enabled != crtc->base.enabled) {
11533                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11534                                       crtc->new_enabled ? "en" : "dis");
11535                         config->mode_changed = true;
11536                 }
11537
11538                 if (crtc->new_enabled)
11539                         crtc->new_config = crtc->config;
11540                 else
11541                         crtc->new_config = NULL;
11542         }
11543
11544         return 0;
11545 }
11546
11547 static void disable_crtc_nofb(struct intel_crtc *crtc)
11548 {
11549         struct drm_device *dev = crtc->base.dev;
11550         struct intel_encoder *encoder;
11551         struct intel_connector *connector;
11552
11553         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11554                       pipe_name(crtc->pipe));
11555
11556         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11557                 if (connector->new_encoder &&
11558                     connector->new_encoder->new_crtc == crtc)
11559                         connector->new_encoder = NULL;
11560         }
11561
11562         for_each_intel_encoder(dev, encoder) {
11563                 if (encoder->new_crtc == crtc)
11564                         encoder->new_crtc = NULL;
11565         }
11566
11567         crtc->new_enabled = false;
11568         crtc->new_config = NULL;
11569 }
11570
11571 static int intel_crtc_set_config(struct drm_mode_set *set)
11572 {
11573         struct drm_device *dev;
11574         struct drm_mode_set save_set;
11575         struct intel_set_config *config;
11576         struct intel_crtc_state *pipe_config;
11577         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11578         int ret;
11579
11580         BUG_ON(!set);
11581         BUG_ON(!set->crtc);
11582         BUG_ON(!set->crtc->helper_private);
11583
11584         /* Enforce sane interface api - has been abused by the fb helper. */
11585         BUG_ON(!set->mode && set->fb);
11586         BUG_ON(set->fb && set->num_connectors == 0);
11587
11588         if (set->fb) {
11589                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11590                                 set->crtc->base.id, set->fb->base.id,
11591                                 (int)set->num_connectors, set->x, set->y);
11592         } else {
11593                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11594         }
11595
11596         dev = set->crtc->dev;
11597
11598         ret = -ENOMEM;
11599         config = kzalloc(sizeof(*config), GFP_KERNEL);
11600         if (!config)
11601                 goto out_config;
11602
11603         ret = intel_set_config_save_state(dev, config);
11604         if (ret)
11605                 goto out_config;
11606
11607         save_set.crtc = set->crtc;
11608         save_set.mode = &set->crtc->mode;
11609         save_set.x = set->crtc->x;
11610         save_set.y = set->crtc->y;
11611         save_set.fb = set->crtc->primary->fb;
11612
11613         /* Compute whether we need a full modeset, only an fb base update or no
11614          * change at all. In the future we might also check whether only the
11615          * mode changed, e.g. for LVDS where we only change the panel fitter in
11616          * such cases. */
11617         intel_set_config_compute_mode_changes(set, config);
11618
11619         ret = intel_modeset_stage_output_state(dev, set, config);
11620         if (ret)
11621                 goto fail;
11622
11623         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11624                                                    set->fb,
11625                                                    &modeset_pipes,
11626                                                    &prepare_pipes,
11627                                                    &disable_pipes);
11628         if (IS_ERR(pipe_config)) {
11629                 ret = PTR_ERR(pipe_config);
11630                 goto fail;
11631         } else if (pipe_config) {
11632                 if (pipe_config->has_audio !=
11633                     to_intel_crtc(set->crtc)->config->has_audio)
11634                         config->mode_changed = true;
11635
11636                 /*
11637                  * Note we have an issue here with infoframes: current code
11638                  * only updates them on the full mode set path per hw
11639                  * requirements.  So here we should be checking for any
11640                  * required changes and forcing a mode set.
11641                  */
11642         }
11643
11644         /* set_mode will free it in the mode_changed case */
11645         if (!config->mode_changed)
11646                 kfree(pipe_config);
11647
11648         intel_update_pipe_size(to_intel_crtc(set->crtc));
11649
11650         if (config->mode_changed) {
11651                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11652                                            set->x, set->y, set->fb, pipe_config,
11653                                            modeset_pipes, prepare_pipes,
11654                                            disable_pipes);
11655         } else if (config->fb_changed) {
11656                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11657                 struct drm_plane *primary = set->crtc->primary;
11658                 int vdisplay, hdisplay;
11659
11660                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11661                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11662                                                    0, 0, hdisplay, vdisplay,
11663                                                    set->x << 16, set->y << 16,
11664                                                    hdisplay << 16, vdisplay << 16);
11665
11666                 /*
11667                  * We need to make sure the primary plane is re-enabled if it
11668                  * has previously been turned off.
11669                  */
11670                 if (!intel_crtc->primary_enabled && ret == 0) {
11671                         WARN_ON(!intel_crtc->active);
11672                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11673                 }
11674
11675                 /*
11676                  * In the fastboot case this may be our only check of the
11677                  * state after boot.  It would be better to only do it on
11678                  * the first update, but we don't have a nice way of doing that
11679                  * (and really, set_config isn't used much for high freq page
11680                  * flipping, so increasing its cost here shouldn't be a big
11681                  * deal).
11682                  */
11683                 if (i915.fastboot && ret == 0)
11684                         intel_modeset_check_state(set->crtc->dev);
11685         }
11686
11687         if (ret) {
11688                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11689                               set->crtc->base.id, ret);
11690 fail:
11691                 intel_set_config_restore_state(dev, config);
11692
11693                 /*
11694                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11695                  * force the pipe off to avoid oopsing in the modeset code
11696                  * due to fb==NULL. This should only happen during boot since
11697                  * we don't yet reconstruct the FB from the hardware state.
11698                  */
11699                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11700                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11701
11702                 /* Try to restore the config */
11703                 if (config->mode_changed &&
11704                     intel_set_mode(save_set.crtc, save_set.mode,
11705                                    save_set.x, save_set.y, save_set.fb))
11706                         DRM_ERROR("failed to restore config after modeset failure\n");
11707         }
11708
11709 out_config:
11710         intel_set_config_free(config);
11711         return ret;
11712 }
11713
11714 static const struct drm_crtc_funcs intel_crtc_funcs = {
11715         .gamma_set = intel_crtc_gamma_set,
11716         .set_config = intel_crtc_set_config,
11717         .destroy = intel_crtc_destroy,
11718         .page_flip = intel_crtc_page_flip,
11719         .atomic_duplicate_state = intel_crtc_duplicate_state,
11720         .atomic_destroy_state = intel_crtc_destroy_state,
11721 };
11722
11723 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11724                                       struct intel_shared_dpll *pll,
11725                                       struct intel_dpll_hw_state *hw_state)
11726 {
11727         uint32_t val;
11728
11729         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11730                 return false;
11731
11732         val = I915_READ(PCH_DPLL(pll->id));
11733         hw_state->dpll = val;
11734         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11735         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11736
11737         return val & DPLL_VCO_ENABLE;
11738 }
11739
11740 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11741                                   struct intel_shared_dpll *pll)
11742 {
11743         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11744         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11745 }
11746
11747 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11748                                 struct intel_shared_dpll *pll)
11749 {
11750         /* PCH refclock must be enabled first */
11751         ibx_assert_pch_refclk_enabled(dev_priv);
11752
11753         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11754
11755         /* Wait for the clocks to stabilize. */
11756         POSTING_READ(PCH_DPLL(pll->id));
11757         udelay(150);
11758
11759         /* The pixel multiplier can only be updated once the
11760          * DPLL is enabled and the clocks are stable.
11761          *
11762          * So write it again.
11763          */
11764         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11765         POSTING_READ(PCH_DPLL(pll->id));
11766         udelay(200);
11767 }
11768
11769 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11770                                  struct intel_shared_dpll *pll)
11771 {
11772         struct drm_device *dev = dev_priv->dev;
11773         struct intel_crtc *crtc;
11774
11775         /* Make sure no transcoder isn't still depending on us. */
11776         for_each_intel_crtc(dev, crtc) {
11777                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11778                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11779         }
11780
11781         I915_WRITE(PCH_DPLL(pll->id), 0);
11782         POSTING_READ(PCH_DPLL(pll->id));
11783         udelay(200);
11784 }
11785
11786 static char *ibx_pch_dpll_names[] = {
11787         "PCH DPLL A",
11788         "PCH DPLL B",
11789 };
11790
11791 static void ibx_pch_dpll_init(struct drm_device *dev)
11792 {
11793         struct drm_i915_private *dev_priv = dev->dev_private;
11794         int i;
11795
11796         dev_priv->num_shared_dpll = 2;
11797
11798         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11799                 dev_priv->shared_dplls[i].id = i;
11800                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11801                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11802                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11803                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11804                 dev_priv->shared_dplls[i].get_hw_state =
11805                         ibx_pch_dpll_get_hw_state;
11806         }
11807 }
11808
11809 static void intel_shared_dpll_init(struct drm_device *dev)
11810 {
11811         struct drm_i915_private *dev_priv = dev->dev_private;
11812
11813         if (HAS_DDI(dev))
11814                 intel_ddi_pll_init(dev);
11815         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11816                 ibx_pch_dpll_init(dev);
11817         else
11818                 dev_priv->num_shared_dpll = 0;
11819
11820         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11821 }
11822
11823 /**
11824  * intel_prepare_plane_fb - Prepare fb for usage on plane
11825  * @plane: drm plane to prepare for
11826  * @fb: framebuffer to prepare for presentation
11827  *
11828  * Prepares a framebuffer for usage on a display plane.  Generally this
11829  * involves pinning the underlying object and updating the frontbuffer tracking
11830  * bits.  Some older platforms need special physical address handling for
11831  * cursor planes.
11832  *
11833  * Returns 0 on success, negative error code on failure.
11834  */
11835 int
11836 intel_prepare_plane_fb(struct drm_plane *plane,
11837                        struct drm_framebuffer *fb)
11838 {
11839         struct drm_device *dev = plane->dev;
11840         struct intel_plane *intel_plane = to_intel_plane(plane);
11841         enum pipe pipe = intel_plane->pipe;
11842         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11843         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11844         unsigned frontbuffer_bits = 0;
11845         int ret = 0;
11846
11847         if (!obj)
11848                 return 0;
11849
11850         switch (plane->type) {
11851         case DRM_PLANE_TYPE_PRIMARY:
11852                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11853                 break;
11854         case DRM_PLANE_TYPE_CURSOR:
11855                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11856                 break;
11857         case DRM_PLANE_TYPE_OVERLAY:
11858                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11859                 break;
11860         }
11861
11862         mutex_lock(&dev->struct_mutex);
11863
11864         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11865             INTEL_INFO(dev)->cursor_needs_physical) {
11866                 int align = IS_I830(dev) ? 16 * 1024 : 256;
11867                 ret = i915_gem_object_attach_phys(obj, align);
11868                 if (ret)
11869                         DRM_DEBUG_KMS("failed to attach phys object\n");
11870         } else {
11871                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11872         }
11873
11874         if (ret == 0)
11875                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11876
11877         mutex_unlock(&dev->struct_mutex);
11878
11879         return ret;
11880 }
11881
11882 /**
11883  * intel_cleanup_plane_fb - Cleans up an fb after plane use
11884  * @plane: drm plane to clean up for
11885  * @fb: old framebuffer that was on plane
11886  *
11887  * Cleans up a framebuffer that has just been removed from a plane.
11888  */
11889 void
11890 intel_cleanup_plane_fb(struct drm_plane *plane,
11891                        struct drm_framebuffer *fb)
11892 {
11893         struct drm_device *dev = plane->dev;
11894         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11895
11896         if (WARN_ON(!obj))
11897                 return;
11898
11899         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11900             !INTEL_INFO(dev)->cursor_needs_physical) {
11901                 mutex_lock(&dev->struct_mutex);
11902                 intel_unpin_fb_obj(obj);
11903                 mutex_unlock(&dev->struct_mutex);
11904         }
11905 }
11906
11907 static int
11908 intel_check_primary_plane(struct drm_plane *plane,
11909                           struct intel_plane_state *state)
11910 {
11911         struct drm_device *dev = plane->dev;
11912         struct drm_i915_private *dev_priv = dev->dev_private;
11913         struct drm_crtc *crtc = state->base.crtc;
11914         struct intel_crtc *intel_crtc;
11915         struct drm_framebuffer *fb = state->base.fb;
11916         struct drm_rect *dest = &state->dst;
11917         struct drm_rect *src = &state->src;
11918         const struct drm_rect *clip = &state->clip;
11919         int ret;
11920
11921         crtc = crtc ? crtc : plane->crtc;
11922         intel_crtc = to_intel_crtc(crtc);
11923
11924         ret = drm_plane_helper_check_update(plane, crtc, fb,
11925                                             src, dest, clip,
11926                                             DRM_PLANE_HELPER_NO_SCALING,
11927                                             DRM_PLANE_HELPER_NO_SCALING,
11928                                             false, true, &state->visible);
11929         if (ret)
11930                 return ret;
11931
11932         if (intel_crtc->active) {
11933                 intel_crtc->atomic.wait_for_flips = true;
11934
11935                 /*
11936                  * FBC does not work on some platforms for rotated
11937                  * planes, so disable it when rotation is not 0 and
11938                  * update it when rotation is set back to 0.
11939                  *
11940                  * FIXME: This is redundant with the fbc update done in
11941                  * the primary plane enable function except that that
11942                  * one is done too late. We eventually need to unify
11943                  * this.
11944                  */
11945                 if (intel_crtc->primary_enabled &&
11946                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11947                     dev_priv->fbc.plane == intel_crtc->plane &&
11948                     state->base.rotation != BIT(DRM_ROTATE_0)) {
11949                         intel_crtc->atomic.disable_fbc = true;
11950                 }
11951
11952                 if (state->visible) {
11953                         /*
11954                          * BDW signals flip done immediately if the plane
11955                          * is disabled, even if the plane enable is already
11956                          * armed to occur at the next vblank :(
11957                          */
11958                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11959                                 intel_crtc->atomic.wait_vblank = true;
11960                 }
11961
11962                 intel_crtc->atomic.fb_bits |=
11963                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11964
11965                 intel_crtc->atomic.update_fbc = true;
11966         }
11967
11968         return 0;
11969 }
11970
11971 static void
11972 intel_commit_primary_plane(struct drm_plane *plane,
11973                            struct intel_plane_state *state)
11974 {
11975         struct drm_crtc *crtc = state->base.crtc;
11976         struct drm_framebuffer *fb = state->base.fb;
11977         struct drm_device *dev = plane->dev;
11978         struct drm_i915_private *dev_priv = dev->dev_private;
11979         struct intel_crtc *intel_crtc;
11980         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11981         struct intel_plane *intel_plane = to_intel_plane(plane);
11982         struct drm_rect *src = &state->src;
11983
11984         crtc = crtc ? crtc : plane->crtc;
11985         intel_crtc = to_intel_crtc(crtc);
11986
11987         plane->fb = fb;
11988         crtc->x = src->x1 >> 16;
11989         crtc->y = src->y1 >> 16;
11990
11991         intel_plane->obj = obj;
11992
11993         if (intel_crtc->active) {
11994                 if (state->visible) {
11995                         /* FIXME: kill this fastboot hack */
11996                         intel_update_pipe_size(intel_crtc);
11997
11998                         intel_crtc->primary_enabled = true;
11999
12000                         dev_priv->display.update_primary_plane(crtc, plane->fb,
12001                                         crtc->x, crtc->y);
12002                 } else {
12003                         /*
12004                          * If clipping results in a non-visible primary plane,
12005                          * we'll disable the primary plane.  Note that this is
12006                          * a bit different than what happens if userspace
12007                          * explicitly disables the plane by passing fb=0
12008                          * because plane->fb still gets set and pinned.
12009                          */
12010                         intel_disable_primary_hw_plane(plane, crtc);
12011                 }
12012         }
12013 }
12014
12015 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12016 {
12017         struct drm_device *dev = crtc->dev;
12018         struct drm_i915_private *dev_priv = dev->dev_private;
12019         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12020         struct intel_plane *intel_plane;
12021         struct drm_plane *p;
12022         unsigned fb_bits = 0;
12023
12024         /* Track fb's for any planes being disabled */
12025         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12026                 intel_plane = to_intel_plane(p);
12027
12028                 if (intel_crtc->atomic.disabled_planes &
12029                     (1 << drm_plane_index(p))) {
12030                         switch (p->type) {
12031                         case DRM_PLANE_TYPE_PRIMARY:
12032                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12033                                 break;
12034                         case DRM_PLANE_TYPE_CURSOR:
12035                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12036                                 break;
12037                         case DRM_PLANE_TYPE_OVERLAY:
12038                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12039                                 break;
12040                         }
12041
12042                         mutex_lock(&dev->struct_mutex);
12043                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12044                         mutex_unlock(&dev->struct_mutex);
12045                 }
12046         }
12047
12048         if (intel_crtc->atomic.wait_for_flips)
12049                 intel_crtc_wait_for_pending_flips(crtc);
12050
12051         if (intel_crtc->atomic.disable_fbc)
12052                 intel_fbc_disable(dev);
12053
12054         if (intel_crtc->atomic.pre_disable_primary)
12055                 intel_pre_disable_primary(crtc);
12056
12057         if (intel_crtc->atomic.update_wm)
12058                 intel_update_watermarks(crtc);
12059
12060         intel_runtime_pm_get(dev_priv);
12061
12062         /* Perform vblank evasion around commit operation */
12063         if (intel_crtc->active)
12064                 intel_crtc->atomic.evade =
12065                         intel_pipe_update_start(intel_crtc,
12066                                                 &intel_crtc->atomic.start_vbl_count);
12067 }
12068
12069 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12070 {
12071         struct drm_device *dev = crtc->dev;
12072         struct drm_i915_private *dev_priv = dev->dev_private;
12073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12074         struct drm_plane *p;
12075
12076         if (intel_crtc->atomic.evade)
12077                 intel_pipe_update_end(intel_crtc,
12078                                       intel_crtc->atomic.start_vbl_count);
12079
12080         intel_runtime_pm_put(dev_priv);
12081
12082         if (intel_crtc->atomic.wait_vblank)
12083                 intel_wait_for_vblank(dev, intel_crtc->pipe);
12084
12085         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12086
12087         if (intel_crtc->atomic.update_fbc) {
12088                 mutex_lock(&dev->struct_mutex);
12089                 intel_fbc_update(dev);
12090                 mutex_unlock(&dev->struct_mutex);
12091         }
12092
12093         if (intel_crtc->atomic.post_enable_primary)
12094                 intel_post_enable_primary(crtc);
12095
12096         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12097                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12098                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12099                                                        false, false);
12100
12101         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12102 }
12103
12104 /**
12105  * intel_plane_destroy - destroy a plane
12106  * @plane: plane to destroy
12107  *
12108  * Common destruction function for all types of planes (primary, cursor,
12109  * sprite).
12110  */
12111 void intel_plane_destroy(struct drm_plane *plane)
12112 {
12113         struct intel_plane *intel_plane = to_intel_plane(plane);
12114         drm_plane_cleanup(plane);
12115         kfree(intel_plane);
12116 }
12117
12118 const struct drm_plane_funcs intel_plane_funcs = {
12119         .update_plane = drm_plane_helper_update,
12120         .disable_plane = drm_plane_helper_disable,
12121         .destroy = intel_plane_destroy,
12122         .set_property = drm_atomic_helper_plane_set_property,
12123         .atomic_get_property = intel_plane_atomic_get_property,
12124         .atomic_set_property = intel_plane_atomic_set_property,
12125         .atomic_duplicate_state = intel_plane_duplicate_state,
12126         .atomic_destroy_state = intel_plane_destroy_state,
12127
12128 };
12129
12130 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12131                                                     int pipe)
12132 {
12133         struct intel_plane *primary;
12134         struct intel_plane_state *state;
12135         const uint32_t *intel_primary_formats;
12136         int num_formats;
12137
12138         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12139         if (primary == NULL)
12140                 return NULL;
12141
12142         state = intel_create_plane_state(&primary->base);
12143         if (!state) {
12144                 kfree(primary);
12145                 return NULL;
12146         }
12147         primary->base.state = &state->base;
12148
12149         primary->can_scale = false;
12150         primary->max_downscale = 1;
12151         primary->pipe = pipe;
12152         primary->plane = pipe;
12153         primary->check_plane = intel_check_primary_plane;
12154         primary->commit_plane = intel_commit_primary_plane;
12155         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12156                 primary->plane = !pipe;
12157
12158         if (INTEL_INFO(dev)->gen <= 3) {
12159                 intel_primary_formats = intel_primary_formats_gen2;
12160                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12161         } else {
12162                 intel_primary_formats = intel_primary_formats_gen4;
12163                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12164         }
12165
12166         drm_universal_plane_init(dev, &primary->base, 0,
12167                                  &intel_plane_funcs,
12168                                  intel_primary_formats, num_formats,
12169                                  DRM_PLANE_TYPE_PRIMARY);
12170
12171         if (INTEL_INFO(dev)->gen >= 4) {
12172                 if (!dev->mode_config.rotation_property)
12173                         dev->mode_config.rotation_property =
12174                                 drm_mode_create_rotation_property(dev,
12175                                                         BIT(DRM_ROTATE_0) |
12176                                                         BIT(DRM_ROTATE_180));
12177                 if (dev->mode_config.rotation_property)
12178                         drm_object_attach_property(&primary->base.base,
12179                                 dev->mode_config.rotation_property,
12180                                 state->base.rotation);
12181         }
12182
12183         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12184
12185         return &primary->base;
12186 }
12187
12188 static int
12189 intel_check_cursor_plane(struct drm_plane *plane,
12190                          struct intel_plane_state *state)
12191 {
12192         struct drm_crtc *crtc = state->base.crtc;
12193         struct drm_device *dev = plane->dev;
12194         struct drm_framebuffer *fb = state->base.fb;
12195         struct drm_rect *dest = &state->dst;
12196         struct drm_rect *src = &state->src;
12197         const struct drm_rect *clip = &state->clip;
12198         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12199         struct intel_crtc *intel_crtc;
12200         unsigned stride;
12201         int ret;
12202
12203         crtc = crtc ? crtc : plane->crtc;
12204         intel_crtc = to_intel_crtc(crtc);
12205
12206         ret = drm_plane_helper_check_update(plane, crtc, fb,
12207                                             src, dest, clip,
12208                                             DRM_PLANE_HELPER_NO_SCALING,
12209                                             DRM_PLANE_HELPER_NO_SCALING,
12210                                             true, true, &state->visible);
12211         if (ret)
12212                 return ret;
12213
12214
12215         /* if we want to turn off the cursor ignore width and height */
12216         if (!obj)
12217                 goto finish;
12218
12219         /* Check for which cursor types we support */
12220         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12221                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12222                           state->base.crtc_w, state->base.crtc_h);
12223                 return -EINVAL;
12224         }
12225
12226         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12227         if (obj->base.size < stride * state->base.crtc_h) {
12228                 DRM_DEBUG_KMS("buffer is too small\n");
12229                 return -ENOMEM;
12230         }
12231
12232         /* we only need to pin inside GTT if cursor is non-phy */
12233         mutex_lock(&dev->struct_mutex);
12234         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12235                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12236                 ret = -EINVAL;
12237         }
12238         mutex_unlock(&dev->struct_mutex);
12239
12240 finish:
12241         if (intel_crtc->active) {
12242                 if (intel_crtc->cursor_width != state->base.crtc_w)
12243                         intel_crtc->atomic.update_wm = true;
12244
12245                 intel_crtc->atomic.fb_bits |=
12246                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12247         }
12248
12249         return ret;
12250 }
12251
12252 static void
12253 intel_commit_cursor_plane(struct drm_plane *plane,
12254                           struct intel_plane_state *state)
12255 {
12256         struct drm_crtc *crtc = state->base.crtc;
12257         struct drm_device *dev = plane->dev;
12258         struct intel_crtc *intel_crtc;
12259         struct intel_plane *intel_plane = to_intel_plane(plane);
12260         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12261         uint32_t addr;
12262
12263         crtc = crtc ? crtc : plane->crtc;
12264         intel_crtc = to_intel_crtc(crtc);
12265
12266         plane->fb = state->base.fb;
12267         crtc->cursor_x = state->base.crtc_x;
12268         crtc->cursor_y = state->base.crtc_y;
12269
12270         intel_plane->obj = obj;
12271
12272         if (intel_crtc->cursor_bo == obj)
12273                 goto update;
12274
12275         if (!obj)
12276                 addr = 0;
12277         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12278                 addr = i915_gem_obj_ggtt_offset(obj);
12279         else
12280                 addr = obj->phys_handle->busaddr;
12281
12282         intel_crtc->cursor_addr = addr;
12283         intel_crtc->cursor_bo = obj;
12284 update:
12285         intel_crtc->cursor_width = state->base.crtc_w;
12286         intel_crtc->cursor_height = state->base.crtc_h;
12287
12288         if (intel_crtc->active)
12289                 intel_crtc_update_cursor(crtc, state->visible);
12290 }
12291
12292 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12293                                                    int pipe)
12294 {
12295         struct intel_plane *cursor;
12296         struct intel_plane_state *state;
12297
12298         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12299         if (cursor == NULL)
12300                 return NULL;
12301
12302         state = intel_create_plane_state(&cursor->base);
12303         if (!state) {
12304                 kfree(cursor);
12305                 return NULL;
12306         }
12307         cursor->base.state = &state->base;
12308
12309         cursor->can_scale = false;
12310         cursor->max_downscale = 1;
12311         cursor->pipe = pipe;
12312         cursor->plane = pipe;
12313         cursor->check_plane = intel_check_cursor_plane;
12314         cursor->commit_plane = intel_commit_cursor_plane;
12315
12316         drm_universal_plane_init(dev, &cursor->base, 0,
12317                                  &intel_plane_funcs,
12318                                  intel_cursor_formats,
12319                                  ARRAY_SIZE(intel_cursor_formats),
12320                                  DRM_PLANE_TYPE_CURSOR);
12321
12322         if (INTEL_INFO(dev)->gen >= 4) {
12323                 if (!dev->mode_config.rotation_property)
12324                         dev->mode_config.rotation_property =
12325                                 drm_mode_create_rotation_property(dev,
12326                                                         BIT(DRM_ROTATE_0) |
12327                                                         BIT(DRM_ROTATE_180));
12328                 if (dev->mode_config.rotation_property)
12329                         drm_object_attach_property(&cursor->base.base,
12330                                 dev->mode_config.rotation_property,
12331                                 state->base.rotation);
12332         }
12333
12334         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12335
12336         return &cursor->base;
12337 }
12338
12339 static void intel_crtc_init(struct drm_device *dev, int pipe)
12340 {
12341         struct drm_i915_private *dev_priv = dev->dev_private;
12342         struct intel_crtc *intel_crtc;
12343         struct intel_crtc_state *crtc_state = NULL;
12344         struct drm_plane *primary = NULL;
12345         struct drm_plane *cursor = NULL;
12346         int i, ret;
12347
12348         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12349         if (intel_crtc == NULL)
12350                 return;
12351
12352         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12353         if (!crtc_state)
12354                 goto fail;
12355         intel_crtc_set_state(intel_crtc, crtc_state);
12356
12357         primary = intel_primary_plane_create(dev, pipe);
12358         if (!primary)
12359                 goto fail;
12360
12361         cursor = intel_cursor_plane_create(dev, pipe);
12362         if (!cursor)
12363                 goto fail;
12364
12365         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12366                                         cursor, &intel_crtc_funcs);
12367         if (ret)
12368                 goto fail;
12369
12370         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12371         for (i = 0; i < 256; i++) {
12372                 intel_crtc->lut_r[i] = i;
12373                 intel_crtc->lut_g[i] = i;
12374                 intel_crtc->lut_b[i] = i;
12375         }
12376
12377         /*
12378          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12379          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12380          */
12381         intel_crtc->pipe = pipe;
12382         intel_crtc->plane = pipe;
12383         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12384                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12385                 intel_crtc->plane = !pipe;
12386         }
12387
12388         intel_crtc->cursor_base = ~0;
12389         intel_crtc->cursor_cntl = ~0;
12390         intel_crtc->cursor_size = ~0;
12391
12392         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12393                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12394         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12395         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12396
12397         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12398
12399         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12400
12401         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12402         return;
12403
12404 fail:
12405         if (primary)
12406                 drm_plane_cleanup(primary);
12407         if (cursor)
12408                 drm_plane_cleanup(cursor);
12409         kfree(crtc_state);
12410         kfree(intel_crtc);
12411 }
12412
12413 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12414 {
12415         struct drm_encoder *encoder = connector->base.encoder;
12416         struct drm_device *dev = connector->base.dev;
12417
12418         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12419
12420         if (!encoder || WARN_ON(!encoder->crtc))
12421                 return INVALID_PIPE;
12422
12423         return to_intel_crtc(encoder->crtc)->pipe;
12424 }
12425
12426 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12427                                 struct drm_file *file)
12428 {
12429         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12430         struct drm_crtc *drmmode_crtc;
12431         struct intel_crtc *crtc;
12432
12433         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12434                 return -ENODEV;
12435
12436         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12437
12438         if (!drmmode_crtc) {
12439                 DRM_ERROR("no such CRTC id\n");
12440                 return -ENOENT;
12441         }
12442
12443         crtc = to_intel_crtc(drmmode_crtc);
12444         pipe_from_crtc_id->pipe = crtc->pipe;
12445
12446         return 0;
12447 }
12448
12449 static int intel_encoder_clones(struct intel_encoder *encoder)
12450 {
12451         struct drm_device *dev = encoder->base.dev;
12452         struct intel_encoder *source_encoder;
12453         int index_mask = 0;
12454         int entry = 0;
12455
12456         for_each_intel_encoder(dev, source_encoder) {
12457                 if (encoders_cloneable(encoder, source_encoder))
12458                         index_mask |= (1 << entry);
12459
12460                 entry++;
12461         }
12462
12463         return index_mask;
12464 }
12465
12466 static bool has_edp_a(struct drm_device *dev)
12467 {
12468         struct drm_i915_private *dev_priv = dev->dev_private;
12469
12470         if (!IS_MOBILE(dev))
12471                 return false;
12472
12473         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12474                 return false;
12475
12476         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12477                 return false;
12478
12479         return true;
12480 }
12481
12482 static bool intel_crt_present(struct drm_device *dev)
12483 {
12484         struct drm_i915_private *dev_priv = dev->dev_private;
12485
12486         if (INTEL_INFO(dev)->gen >= 9)
12487                 return false;
12488
12489         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12490                 return false;
12491
12492         if (IS_CHERRYVIEW(dev))
12493                 return false;
12494
12495         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12496                 return false;
12497
12498         return true;
12499 }
12500
12501 static void intel_setup_outputs(struct drm_device *dev)
12502 {
12503         struct drm_i915_private *dev_priv = dev->dev_private;
12504         struct intel_encoder *encoder;
12505         struct drm_connector *connector;
12506         bool dpd_is_edp = false;
12507
12508         intel_lvds_init(dev);
12509
12510         if (intel_crt_present(dev))
12511                 intel_crt_init(dev);
12512
12513         if (HAS_DDI(dev)) {
12514                 int found;
12515
12516                 /* Haswell uses DDI functions to detect digital outputs */
12517                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12518                 /* DDI A only supports eDP */
12519                 if (found)
12520                         intel_ddi_init(dev, PORT_A);
12521
12522                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12523                  * register */
12524                 found = I915_READ(SFUSE_STRAP);
12525
12526                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12527                         intel_ddi_init(dev, PORT_B);
12528                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12529                         intel_ddi_init(dev, PORT_C);
12530                 if (found & SFUSE_STRAP_DDID_DETECTED)
12531                         intel_ddi_init(dev, PORT_D);
12532         } else if (HAS_PCH_SPLIT(dev)) {
12533                 int found;
12534                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12535
12536                 if (has_edp_a(dev))
12537                         intel_dp_init(dev, DP_A, PORT_A);
12538
12539                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12540                         /* PCH SDVOB multiplex with HDMIB */
12541                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12542                         if (!found)
12543                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12544                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12545                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12546                 }
12547
12548                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12549                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12550
12551                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12552                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12553
12554                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12555                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12556
12557                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12558                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12559         } else if (IS_VALLEYVIEW(dev)) {
12560                 /*
12561                  * The DP_DETECTED bit is the latched state of the DDC
12562                  * SDA pin at boot. However since eDP doesn't require DDC
12563                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12564                  * eDP ports may have been muxed to an alternate function.
12565                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12566                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12567                  * detect eDP ports.
12568                  */
12569                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12570                     !intel_dp_is_edp(dev, PORT_B))
12571                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12572                                         PORT_B);
12573                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12574                     intel_dp_is_edp(dev, PORT_B))
12575                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12576
12577                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12578                     !intel_dp_is_edp(dev, PORT_C))
12579                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12580                                         PORT_C);
12581                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12582                     intel_dp_is_edp(dev, PORT_C))
12583                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12584
12585                 if (IS_CHERRYVIEW(dev)) {
12586                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12587                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12588                                                 PORT_D);
12589                         /* eDP not supported on port D, so don't check VBT */
12590                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12591                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12592                 }
12593
12594                 intel_dsi_init(dev);
12595         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12596                 bool found = false;
12597
12598                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12599                         DRM_DEBUG_KMS("probing SDVOB\n");
12600                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12601                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12602                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12603                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12604                         }
12605
12606                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12607                                 intel_dp_init(dev, DP_B, PORT_B);
12608                 }
12609
12610                 /* Before G4X SDVOC doesn't have its own detect register */
12611
12612                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12613                         DRM_DEBUG_KMS("probing SDVOC\n");
12614                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12615                 }
12616
12617                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12618
12619                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12620                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12621                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12622                         }
12623                         if (SUPPORTS_INTEGRATED_DP(dev))
12624                                 intel_dp_init(dev, DP_C, PORT_C);
12625                 }
12626
12627                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12628                     (I915_READ(DP_D) & DP_DETECTED))
12629                         intel_dp_init(dev, DP_D, PORT_D);
12630         } else if (IS_GEN2(dev))
12631                 intel_dvo_init(dev);
12632
12633         if (SUPPORTS_TV(dev))
12634                 intel_tv_init(dev);
12635
12636         /*
12637          * FIXME:  We don't have full atomic support yet, but we want to be
12638          * able to enable/test plane updates via the atomic interface in the
12639          * meantime.  However as soon as we flip DRIVER_ATOMIC on, the DRM core
12640          * will take some atomic codepaths to lookup properties during
12641          * drmModeGetConnector() that unconditionally dereference
12642          * connector->state.
12643          *
12644          * We create a dummy connector state here for each connector to ensure
12645          * the DRM core doesn't try to dereference a NULL connector->state.
12646          * The actual connector properties will never be updated or contain
12647          * useful information, but since we're doing this specifically for
12648          * testing/debug of the plane operations (and only when a specific
12649          * kernel module option is given), that shouldn't really matter.
12650          *
12651          * Once atomic support for crtc's + connectors lands, this loop should
12652          * be removed since we'll be setting up real connector state, which
12653          * will contain Intel-specific properties.
12654          */
12655         if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12656                 list_for_each_entry(connector,
12657                                     &dev->mode_config.connector_list,
12658                                     head) {
12659                         if (!WARN_ON(connector->state)) {
12660                                 connector->state =
12661                                         kzalloc(sizeof(*connector->state),
12662                                                 GFP_KERNEL);
12663                         }
12664                 }
12665         }
12666
12667         intel_psr_init(dev);
12668
12669         for_each_intel_encoder(dev, encoder) {
12670                 encoder->base.possible_crtcs = encoder->crtc_mask;
12671                 encoder->base.possible_clones =
12672                         intel_encoder_clones(encoder);
12673         }
12674
12675         intel_init_pch_refclk(dev);
12676
12677         drm_helper_move_panel_connectors_to_head(dev);
12678 }
12679
12680 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12681 {
12682         struct drm_device *dev = fb->dev;
12683         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12684
12685         drm_framebuffer_cleanup(fb);
12686         mutex_lock(&dev->struct_mutex);
12687         WARN_ON(!intel_fb->obj->framebuffer_references--);
12688         drm_gem_object_unreference(&intel_fb->obj->base);
12689         mutex_unlock(&dev->struct_mutex);
12690         kfree(intel_fb);
12691 }
12692
12693 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12694                                                 struct drm_file *file,
12695                                                 unsigned int *handle)
12696 {
12697         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12698         struct drm_i915_gem_object *obj = intel_fb->obj;
12699
12700         return drm_gem_handle_create(file, &obj->base, handle);
12701 }
12702
12703 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12704         .destroy = intel_user_framebuffer_destroy,
12705         .create_handle = intel_user_framebuffer_create_handle,
12706 };
12707
12708 static int intel_framebuffer_init(struct drm_device *dev,
12709                                   struct intel_framebuffer *intel_fb,
12710                                   struct drm_mode_fb_cmd2 *mode_cmd,
12711                                   struct drm_i915_gem_object *obj)
12712 {
12713         int aligned_height;
12714         int pitch_limit;
12715         int ret;
12716
12717         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12718
12719         if (obj->tiling_mode == I915_TILING_Y) {
12720                 DRM_DEBUG("hardware does not support tiling Y\n");
12721                 return -EINVAL;
12722         }
12723
12724         if (mode_cmd->pitches[0] & 63) {
12725                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12726                           mode_cmd->pitches[0]);
12727                 return -EINVAL;
12728         }
12729
12730         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12731                 pitch_limit = 32*1024;
12732         } else if (INTEL_INFO(dev)->gen >= 4) {
12733                 if (obj->tiling_mode)
12734                         pitch_limit = 16*1024;
12735                 else
12736                         pitch_limit = 32*1024;
12737         } else if (INTEL_INFO(dev)->gen >= 3) {
12738                 if (obj->tiling_mode)
12739                         pitch_limit = 8*1024;
12740                 else
12741                         pitch_limit = 16*1024;
12742         } else
12743                 /* XXX DSPC is limited to 4k tiled */
12744                 pitch_limit = 8*1024;
12745
12746         if (mode_cmd->pitches[0] > pitch_limit) {
12747                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12748                           obj->tiling_mode ? "tiled" : "linear",
12749                           mode_cmd->pitches[0], pitch_limit);
12750                 return -EINVAL;
12751         }
12752
12753         if (obj->tiling_mode != I915_TILING_NONE &&
12754             mode_cmd->pitches[0] != obj->stride) {
12755                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12756                           mode_cmd->pitches[0], obj->stride);
12757                 return -EINVAL;
12758         }
12759
12760         /* Reject formats not supported by any plane early. */
12761         switch (mode_cmd->pixel_format) {
12762         case DRM_FORMAT_C8:
12763         case DRM_FORMAT_RGB565:
12764         case DRM_FORMAT_XRGB8888:
12765         case DRM_FORMAT_ARGB8888:
12766                 break;
12767         case DRM_FORMAT_XRGB1555:
12768         case DRM_FORMAT_ARGB1555:
12769                 if (INTEL_INFO(dev)->gen > 3) {
12770                         DRM_DEBUG("unsupported pixel format: %s\n",
12771                                   drm_get_format_name(mode_cmd->pixel_format));
12772                         return -EINVAL;
12773                 }
12774                 break;
12775         case DRM_FORMAT_XBGR8888:
12776         case DRM_FORMAT_ABGR8888:
12777         case DRM_FORMAT_XRGB2101010:
12778         case DRM_FORMAT_ARGB2101010:
12779         case DRM_FORMAT_XBGR2101010:
12780         case DRM_FORMAT_ABGR2101010:
12781                 if (INTEL_INFO(dev)->gen < 4) {
12782                         DRM_DEBUG("unsupported pixel format: %s\n",
12783                                   drm_get_format_name(mode_cmd->pixel_format));
12784                         return -EINVAL;
12785                 }
12786                 break;
12787         case DRM_FORMAT_YUYV:
12788         case DRM_FORMAT_UYVY:
12789         case DRM_FORMAT_YVYU:
12790         case DRM_FORMAT_VYUY:
12791                 if (INTEL_INFO(dev)->gen < 5) {
12792                         DRM_DEBUG("unsupported pixel format: %s\n",
12793                                   drm_get_format_name(mode_cmd->pixel_format));
12794                         return -EINVAL;
12795                 }
12796                 break;
12797         default:
12798                 DRM_DEBUG("unsupported pixel format: %s\n",
12799                           drm_get_format_name(mode_cmd->pixel_format));
12800                 return -EINVAL;
12801         }
12802
12803         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12804         if (mode_cmd->offsets[0] != 0)
12805                 return -EINVAL;
12806
12807         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12808                                                obj->tiling_mode);
12809         /* FIXME drm helper for size checks (especially planar formats)? */
12810         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12811                 return -EINVAL;
12812
12813         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12814         intel_fb->obj = obj;
12815         intel_fb->obj->framebuffer_references++;
12816
12817         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12818         if (ret) {
12819                 DRM_ERROR("framebuffer init failed %d\n", ret);
12820                 return ret;
12821         }
12822
12823         return 0;
12824 }
12825
12826 static struct drm_framebuffer *
12827 intel_user_framebuffer_create(struct drm_device *dev,
12828                               struct drm_file *filp,
12829                               struct drm_mode_fb_cmd2 *mode_cmd)
12830 {
12831         struct drm_i915_gem_object *obj;
12832
12833         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12834                                                 mode_cmd->handles[0]));
12835         if (&obj->base == NULL)
12836                 return ERR_PTR(-ENOENT);
12837
12838         return intel_framebuffer_create(dev, mode_cmd, obj);
12839 }
12840
12841 #ifndef CONFIG_DRM_I915_FBDEV
12842 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12843 {
12844 }
12845 #endif
12846
12847 static const struct drm_mode_config_funcs intel_mode_funcs = {
12848         .fb_create = intel_user_framebuffer_create,
12849         .output_poll_changed = intel_fbdev_output_poll_changed,
12850         .atomic_check = intel_atomic_check,
12851         .atomic_commit = intel_atomic_commit,
12852 };
12853
12854 /* Set up chip specific display functions */
12855 static void intel_init_display(struct drm_device *dev)
12856 {
12857         struct drm_i915_private *dev_priv = dev->dev_private;
12858
12859         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12860                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12861         else if (IS_CHERRYVIEW(dev))
12862                 dev_priv->display.find_dpll = chv_find_best_dpll;
12863         else if (IS_VALLEYVIEW(dev))
12864                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12865         else if (IS_PINEVIEW(dev))
12866                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12867         else
12868                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12869
12870         if (INTEL_INFO(dev)->gen >= 9) {
12871                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12872                 dev_priv->display.get_initial_plane_config =
12873                         skylake_get_initial_plane_config;
12874                 dev_priv->display.crtc_compute_clock =
12875                         haswell_crtc_compute_clock;
12876                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12877                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12878                 dev_priv->display.off = ironlake_crtc_off;
12879                 dev_priv->display.update_primary_plane =
12880                         skylake_update_primary_plane;
12881         } else if (HAS_DDI(dev)) {
12882                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12883                 dev_priv->display.get_initial_plane_config =
12884                         ironlake_get_initial_plane_config;
12885                 dev_priv->display.crtc_compute_clock =
12886                         haswell_crtc_compute_clock;
12887                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12888                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12889                 dev_priv->display.off = ironlake_crtc_off;
12890                 dev_priv->display.update_primary_plane =
12891                         ironlake_update_primary_plane;
12892         } else if (HAS_PCH_SPLIT(dev)) {
12893                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12894                 dev_priv->display.get_initial_plane_config =
12895                         ironlake_get_initial_plane_config;
12896                 dev_priv->display.crtc_compute_clock =
12897                         ironlake_crtc_compute_clock;
12898                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12899                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12900                 dev_priv->display.off = ironlake_crtc_off;
12901                 dev_priv->display.update_primary_plane =
12902                         ironlake_update_primary_plane;
12903         } else if (IS_VALLEYVIEW(dev)) {
12904                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12905                 dev_priv->display.get_initial_plane_config =
12906                         i9xx_get_initial_plane_config;
12907                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12908                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12909                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12910                 dev_priv->display.off = i9xx_crtc_off;
12911                 dev_priv->display.update_primary_plane =
12912                         i9xx_update_primary_plane;
12913         } else {
12914                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12915                 dev_priv->display.get_initial_plane_config =
12916                         i9xx_get_initial_plane_config;
12917                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12918                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12919                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12920                 dev_priv->display.off = i9xx_crtc_off;
12921                 dev_priv->display.update_primary_plane =
12922                         i9xx_update_primary_plane;
12923         }
12924
12925         /* Returns the core display clock speed */
12926         if (IS_VALLEYVIEW(dev))
12927                 dev_priv->display.get_display_clock_speed =
12928                         valleyview_get_display_clock_speed;
12929         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12930                 dev_priv->display.get_display_clock_speed =
12931                         i945_get_display_clock_speed;
12932         else if (IS_I915G(dev))
12933                 dev_priv->display.get_display_clock_speed =
12934                         i915_get_display_clock_speed;
12935         else if (IS_I945GM(dev) || IS_845G(dev))
12936                 dev_priv->display.get_display_clock_speed =
12937                         i9xx_misc_get_display_clock_speed;
12938         else if (IS_PINEVIEW(dev))
12939                 dev_priv->display.get_display_clock_speed =
12940                         pnv_get_display_clock_speed;
12941         else if (IS_I915GM(dev))
12942                 dev_priv->display.get_display_clock_speed =
12943                         i915gm_get_display_clock_speed;
12944         else if (IS_I865G(dev))
12945                 dev_priv->display.get_display_clock_speed =
12946                         i865_get_display_clock_speed;
12947         else if (IS_I85X(dev))
12948                 dev_priv->display.get_display_clock_speed =
12949                         i855_get_display_clock_speed;
12950         else /* 852, 830 */
12951                 dev_priv->display.get_display_clock_speed =
12952                         i830_get_display_clock_speed;
12953
12954         if (IS_GEN5(dev)) {
12955                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12956         } else if (IS_GEN6(dev)) {
12957                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12958         } else if (IS_IVYBRIDGE(dev)) {
12959                 /* FIXME: detect B0+ stepping and use auto training */
12960                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12961                 dev_priv->display.modeset_global_resources =
12962                         ivb_modeset_global_resources;
12963         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12964                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12965         } else if (IS_VALLEYVIEW(dev)) {
12966                 dev_priv->display.modeset_global_resources =
12967                         valleyview_modeset_global_resources;
12968         }
12969
12970         /* Default just returns -ENODEV to indicate unsupported */
12971         dev_priv->display.queue_flip = intel_default_queue_flip;
12972
12973         switch (INTEL_INFO(dev)->gen) {
12974         case 2:
12975                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12976                 break;
12977
12978         case 3:
12979                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12980                 break;
12981
12982         case 4:
12983         case 5:
12984                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12985                 break;
12986
12987         case 6:
12988                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12989                 break;
12990         case 7:
12991         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12992                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12993                 break;
12994         case 9:
12995                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12996                 break;
12997         }
12998
12999         intel_panel_init_backlight_funcs(dev);
13000
13001         mutex_init(&dev_priv->pps_mutex);
13002 }
13003
13004 /*
13005  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13006  * resume, or other times.  This quirk makes sure that's the case for
13007  * affected systems.
13008  */
13009 static void quirk_pipea_force(struct drm_device *dev)
13010 {
13011         struct drm_i915_private *dev_priv = dev->dev_private;
13012
13013         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13014         DRM_INFO("applying pipe a force quirk\n");
13015 }
13016
13017 static void quirk_pipeb_force(struct drm_device *dev)
13018 {
13019         struct drm_i915_private *dev_priv = dev->dev_private;
13020
13021         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13022         DRM_INFO("applying pipe b force quirk\n");
13023 }
13024
13025 /*
13026  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13027  */
13028 static void quirk_ssc_force_disable(struct drm_device *dev)
13029 {
13030         struct drm_i915_private *dev_priv = dev->dev_private;
13031         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13032         DRM_INFO("applying lvds SSC disable quirk\n");
13033 }
13034
13035 /*
13036  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13037  * brightness value
13038  */
13039 static void quirk_invert_brightness(struct drm_device *dev)
13040 {
13041         struct drm_i915_private *dev_priv = dev->dev_private;
13042         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13043         DRM_INFO("applying inverted panel brightness quirk\n");
13044 }
13045
13046 /* Some VBT's incorrectly indicate no backlight is present */
13047 static void quirk_backlight_present(struct drm_device *dev)
13048 {
13049         struct drm_i915_private *dev_priv = dev->dev_private;
13050         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13051         DRM_INFO("applying backlight present quirk\n");
13052 }
13053
13054 struct intel_quirk {
13055         int device;
13056         int subsystem_vendor;
13057         int subsystem_device;
13058         void (*hook)(struct drm_device *dev);
13059 };
13060
13061 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13062 struct intel_dmi_quirk {
13063         void (*hook)(struct drm_device *dev);
13064         const struct dmi_system_id (*dmi_id_list)[];
13065 };
13066
13067 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13068 {
13069         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13070         return 1;
13071 }
13072
13073 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13074         {
13075                 .dmi_id_list = &(const struct dmi_system_id[]) {
13076                         {
13077                                 .callback = intel_dmi_reverse_brightness,
13078                                 .ident = "NCR Corporation",
13079                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13080                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13081                                 },
13082                         },
13083                         { }  /* terminating entry */
13084                 },
13085                 .hook = quirk_invert_brightness,
13086         },
13087 };
13088
13089 static struct intel_quirk intel_quirks[] = {
13090         /* HP Mini needs pipe A force quirk (LP: #322104) */
13091         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13092
13093         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13094         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13095
13096         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13097         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13098
13099         /* 830 needs to leave pipe A & dpll A up */
13100         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13101
13102         /* 830 needs to leave pipe B & dpll B up */
13103         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13104
13105         /* Lenovo U160 cannot use SSC on LVDS */
13106         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13107
13108         /* Sony Vaio Y cannot use SSC on LVDS */
13109         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13110
13111         /* Acer Aspire 5734Z must invert backlight brightness */
13112         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13113
13114         /* Acer/eMachines G725 */
13115         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13116
13117         /* Acer/eMachines e725 */
13118         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13119
13120         /* Acer/Packard Bell NCL20 */
13121         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13122
13123         /* Acer Aspire 4736Z */
13124         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13125
13126         /* Acer Aspire 5336 */
13127         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13128
13129         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13130         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13131
13132         /* Acer C720 Chromebook (Core i3 4005U) */
13133         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13134
13135         /* Apple Macbook 2,1 (Core 2 T7400) */
13136         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13137
13138         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13139         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13140
13141         /* HP Chromebook 14 (Celeron 2955U) */
13142         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13143
13144         /* Dell Chromebook 11 */
13145         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13146 };
13147
13148 static void intel_init_quirks(struct drm_device *dev)
13149 {
13150         struct pci_dev *d = dev->pdev;
13151         int i;
13152
13153         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13154                 struct intel_quirk *q = &intel_quirks[i];
13155
13156                 if (d->device == q->device &&
13157                     (d->subsystem_vendor == q->subsystem_vendor ||
13158                      q->subsystem_vendor == PCI_ANY_ID) &&
13159                     (d->subsystem_device == q->subsystem_device ||
13160                      q->subsystem_device == PCI_ANY_ID))
13161                         q->hook(dev);
13162         }
13163         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13164                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13165                         intel_dmi_quirks[i].hook(dev);
13166         }
13167 }
13168
13169 /* Disable the VGA plane that we never use */
13170 static void i915_disable_vga(struct drm_device *dev)
13171 {
13172         struct drm_i915_private *dev_priv = dev->dev_private;
13173         u8 sr1;
13174         u32 vga_reg = i915_vgacntrl_reg(dev);
13175
13176         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13177         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13178         outb(SR01, VGA_SR_INDEX);
13179         sr1 = inb(VGA_SR_DATA);
13180         outb(sr1 | 1<<5, VGA_SR_DATA);
13181         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13182         udelay(300);
13183
13184         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13185         POSTING_READ(vga_reg);
13186 }
13187
13188 void intel_modeset_init_hw(struct drm_device *dev)
13189 {
13190         intel_prepare_ddi(dev);
13191
13192         if (IS_VALLEYVIEW(dev))
13193                 vlv_update_cdclk(dev);
13194
13195         intel_init_clock_gating(dev);
13196
13197         intel_enable_gt_powersave(dev);
13198 }
13199
13200 void intel_modeset_init(struct drm_device *dev)
13201 {
13202         struct drm_i915_private *dev_priv = dev->dev_private;
13203         int sprite, ret;
13204         enum pipe pipe;
13205         struct intel_crtc *crtc;
13206
13207         drm_mode_config_init(dev);
13208
13209         dev->mode_config.min_width = 0;
13210         dev->mode_config.min_height = 0;
13211
13212         dev->mode_config.preferred_depth = 24;
13213         dev->mode_config.prefer_shadow = 1;
13214
13215         dev->mode_config.funcs = &intel_mode_funcs;
13216
13217         intel_init_quirks(dev);
13218
13219         intel_init_pm(dev);
13220
13221         if (INTEL_INFO(dev)->num_pipes == 0)
13222                 return;
13223
13224         intel_init_display(dev);
13225         intel_init_audio(dev);
13226
13227         if (IS_GEN2(dev)) {
13228                 dev->mode_config.max_width = 2048;
13229                 dev->mode_config.max_height = 2048;
13230         } else if (IS_GEN3(dev)) {
13231                 dev->mode_config.max_width = 4096;
13232                 dev->mode_config.max_height = 4096;
13233         } else {
13234                 dev->mode_config.max_width = 8192;
13235                 dev->mode_config.max_height = 8192;
13236         }
13237
13238         if (IS_845G(dev) || IS_I865G(dev)) {
13239                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13240                 dev->mode_config.cursor_height = 1023;
13241         } else if (IS_GEN2(dev)) {
13242                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13243                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13244         } else {
13245                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13246                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13247         }
13248
13249         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13250
13251         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13252                       INTEL_INFO(dev)->num_pipes,
13253                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13254
13255         for_each_pipe(dev_priv, pipe) {
13256                 intel_crtc_init(dev, pipe);
13257                 for_each_sprite(pipe, sprite) {
13258                         ret = intel_plane_init(dev, pipe, sprite);
13259                         if (ret)
13260                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13261                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13262                 }
13263         }
13264
13265         intel_init_dpio(dev);
13266
13267         intel_shared_dpll_init(dev);
13268
13269         /* Just disable it once at startup */
13270         i915_disable_vga(dev);
13271         intel_setup_outputs(dev);
13272
13273         /* Just in case the BIOS is doing something questionable. */
13274         intel_fbc_disable(dev);
13275
13276         drm_modeset_lock_all(dev);
13277         intel_modeset_setup_hw_state(dev, false);
13278         drm_modeset_unlock_all(dev);
13279
13280         for_each_intel_crtc(dev, crtc) {
13281                 if (!crtc->active)
13282                         continue;
13283
13284                 /*
13285                  * Note that reserving the BIOS fb up front prevents us
13286                  * from stuffing other stolen allocations like the ring
13287                  * on top.  This prevents some ugliness at boot time, and
13288                  * can even allow for smooth boot transitions if the BIOS
13289                  * fb is large enough for the active pipe configuration.
13290                  */
13291                 if (dev_priv->display.get_initial_plane_config) {
13292                         dev_priv->display.get_initial_plane_config(crtc,
13293                                                            &crtc->plane_config);
13294                         /*
13295                          * If the fb is shared between multiple heads, we'll
13296                          * just get the first one.
13297                          */
13298                         intel_find_plane_obj(crtc, &crtc->plane_config);
13299                 }
13300         }
13301 }
13302
13303 static void intel_enable_pipe_a(struct drm_device *dev)
13304 {
13305         struct intel_connector *connector;
13306         struct drm_connector *crt = NULL;
13307         struct intel_load_detect_pipe load_detect_temp;
13308         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13309
13310         /* We can't just switch on the pipe A, we need to set things up with a
13311          * proper mode and output configuration. As a gross hack, enable pipe A
13312          * by enabling the load detect pipe once. */
13313         list_for_each_entry(connector,
13314                             &dev->mode_config.connector_list,
13315                             base.head) {
13316                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13317                         crt = &connector->base;
13318                         break;
13319                 }
13320         }
13321
13322         if (!crt)
13323                 return;
13324
13325         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13326                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13327 }
13328
13329 static bool
13330 intel_check_plane_mapping(struct intel_crtc *crtc)
13331 {
13332         struct drm_device *dev = crtc->base.dev;
13333         struct drm_i915_private *dev_priv = dev->dev_private;
13334         u32 reg, val;
13335
13336         if (INTEL_INFO(dev)->num_pipes == 1)
13337                 return true;
13338
13339         reg = DSPCNTR(!crtc->plane);
13340         val = I915_READ(reg);
13341
13342         if ((val & DISPLAY_PLANE_ENABLE) &&
13343             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13344                 return false;
13345
13346         return true;
13347 }
13348
13349 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13350 {
13351         struct drm_device *dev = crtc->base.dev;
13352         struct drm_i915_private *dev_priv = dev->dev_private;
13353         u32 reg;
13354
13355         /* Clear any frame start delays used for debugging left by the BIOS */
13356         reg = PIPECONF(crtc->config->cpu_transcoder);
13357         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13358
13359         /* restore vblank interrupts to correct state */
13360         if (crtc->active) {
13361                 update_scanline_offset(crtc);
13362                 drm_vblank_on(dev, crtc->pipe);
13363         } else
13364                 drm_vblank_off(dev, crtc->pipe);
13365
13366         /* We need to sanitize the plane -> pipe mapping first because this will
13367          * disable the crtc (and hence change the state) if it is wrong. Note
13368          * that gen4+ has a fixed plane -> pipe mapping.  */
13369         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13370                 struct intel_connector *connector;
13371                 bool plane;
13372
13373                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13374                               crtc->base.base.id);
13375
13376                 /* Pipe has the wrong plane attached and the plane is active.
13377                  * Temporarily change the plane mapping and disable everything
13378                  * ...  */
13379                 plane = crtc->plane;
13380                 crtc->plane = !plane;
13381                 crtc->primary_enabled = true;
13382                 dev_priv->display.crtc_disable(&crtc->base);
13383                 crtc->plane = plane;
13384
13385                 /* ... and break all links. */
13386                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13387                                     base.head) {
13388                         if (connector->encoder->base.crtc != &crtc->base)
13389                                 continue;
13390
13391                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13392                         connector->base.encoder = NULL;
13393                 }
13394                 /* multiple connectors may have the same encoder:
13395                  *  handle them and break crtc link separately */
13396                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13397                                     base.head)
13398                         if (connector->encoder->base.crtc == &crtc->base) {
13399                                 connector->encoder->base.crtc = NULL;
13400                                 connector->encoder->connectors_active = false;
13401                         }
13402
13403                 WARN_ON(crtc->active);
13404                 crtc->base.enabled = false;
13405         }
13406
13407         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13408             crtc->pipe == PIPE_A && !crtc->active) {
13409                 /* BIOS forgot to enable pipe A, this mostly happens after
13410                  * resume. Force-enable the pipe to fix this, the update_dpms
13411                  * call below we restore the pipe to the right state, but leave
13412                  * the required bits on. */
13413                 intel_enable_pipe_a(dev);
13414         }
13415
13416         /* Adjust the state of the output pipe according to whether we
13417          * have active connectors/encoders. */
13418         intel_crtc_update_dpms(&crtc->base);
13419
13420         if (crtc->active != crtc->base.enabled) {
13421                 struct intel_encoder *encoder;
13422
13423                 /* This can happen either due to bugs in the get_hw_state
13424                  * functions or because the pipe is force-enabled due to the
13425                  * pipe A quirk. */
13426                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13427                               crtc->base.base.id,
13428                               crtc->base.enabled ? "enabled" : "disabled",
13429                               crtc->active ? "enabled" : "disabled");
13430
13431                 crtc->base.enabled = crtc->active;
13432
13433                 /* Because we only establish the connector -> encoder ->
13434                  * crtc links if something is active, this means the
13435                  * crtc is now deactivated. Break the links. connector
13436                  * -> encoder links are only establish when things are
13437                  *  actually up, hence no need to break them. */
13438                 WARN_ON(crtc->active);
13439
13440                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13441                         WARN_ON(encoder->connectors_active);
13442                         encoder->base.crtc = NULL;
13443                 }
13444         }
13445
13446         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13447                 /*
13448                  * We start out with underrun reporting disabled to avoid races.
13449                  * For correct bookkeeping mark this on active crtcs.
13450                  *
13451                  * Also on gmch platforms we dont have any hardware bits to
13452                  * disable the underrun reporting. Which means we need to start
13453                  * out with underrun reporting disabled also on inactive pipes,
13454                  * since otherwise we'll complain about the garbage we read when
13455                  * e.g. coming up after runtime pm.
13456                  *
13457                  * No protection against concurrent access is required - at
13458                  * worst a fifo underrun happens which also sets this to false.
13459                  */
13460                 crtc->cpu_fifo_underrun_disabled = true;
13461                 crtc->pch_fifo_underrun_disabled = true;
13462         }
13463 }
13464
13465 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13466 {
13467         struct intel_connector *connector;
13468         struct drm_device *dev = encoder->base.dev;
13469
13470         /* We need to check both for a crtc link (meaning that the
13471          * encoder is active and trying to read from a pipe) and the
13472          * pipe itself being active. */
13473         bool has_active_crtc = encoder->base.crtc &&
13474                 to_intel_crtc(encoder->base.crtc)->active;
13475
13476         if (encoder->connectors_active && !has_active_crtc) {
13477                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13478                               encoder->base.base.id,
13479                               encoder->base.name);
13480
13481                 /* Connector is active, but has no active pipe. This is
13482                  * fallout from our resume register restoring. Disable
13483                  * the encoder manually again. */
13484                 if (encoder->base.crtc) {
13485                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13486                                       encoder->base.base.id,
13487                                       encoder->base.name);
13488                         encoder->disable(encoder);
13489                         if (encoder->post_disable)
13490                                 encoder->post_disable(encoder);
13491                 }
13492                 encoder->base.crtc = NULL;
13493                 encoder->connectors_active = false;
13494
13495                 /* Inconsistent output/port/pipe state happens presumably due to
13496                  * a bug in one of the get_hw_state functions. Or someplace else
13497                  * in our code, like the register restore mess on resume. Clamp
13498                  * things to off as a safer default. */
13499                 list_for_each_entry(connector,
13500                                     &dev->mode_config.connector_list,
13501                                     base.head) {
13502                         if (connector->encoder != encoder)
13503                                 continue;
13504                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13505                         connector->base.encoder = NULL;
13506                 }
13507         }
13508         /* Enabled encoders without active connectors will be fixed in
13509          * the crtc fixup. */
13510 }
13511
13512 void i915_redisable_vga_power_on(struct drm_device *dev)
13513 {
13514         struct drm_i915_private *dev_priv = dev->dev_private;
13515         u32 vga_reg = i915_vgacntrl_reg(dev);
13516
13517         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13518                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13519                 i915_disable_vga(dev);
13520         }
13521 }
13522
13523 void i915_redisable_vga(struct drm_device *dev)
13524 {
13525         struct drm_i915_private *dev_priv = dev->dev_private;
13526
13527         /* This function can be called both from intel_modeset_setup_hw_state or
13528          * at a very early point in our resume sequence, where the power well
13529          * structures are not yet restored. Since this function is at a very
13530          * paranoid "someone might have enabled VGA while we were not looking"
13531          * level, just check if the power well is enabled instead of trying to
13532          * follow the "don't touch the power well if we don't need it" policy
13533          * the rest of the driver uses. */
13534         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13535                 return;
13536
13537         i915_redisable_vga_power_on(dev);
13538 }
13539
13540 static bool primary_get_hw_state(struct intel_crtc *crtc)
13541 {
13542         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13543
13544         if (!crtc->active)
13545                 return false;
13546
13547         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13548 }
13549
13550 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13551 {
13552         struct drm_i915_private *dev_priv = dev->dev_private;
13553         enum pipe pipe;
13554         struct intel_crtc *crtc;
13555         struct intel_encoder *encoder;
13556         struct intel_connector *connector;
13557         int i;
13558
13559         for_each_intel_crtc(dev, crtc) {
13560                 memset(crtc->config, 0, sizeof(*crtc->config));
13561
13562                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13563
13564                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13565                                                                  crtc->config);
13566
13567                 crtc->base.enabled = crtc->active;
13568                 crtc->primary_enabled = primary_get_hw_state(crtc);
13569
13570                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13571                               crtc->base.base.id,
13572                               crtc->active ? "enabled" : "disabled");
13573         }
13574
13575         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13576                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13577
13578                 pll->on = pll->get_hw_state(dev_priv, pll,
13579                                             &pll->config.hw_state);
13580                 pll->active = 0;
13581                 pll->config.crtc_mask = 0;
13582                 for_each_intel_crtc(dev, crtc) {
13583                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13584                                 pll->active++;
13585                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13586                         }
13587                 }
13588
13589                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13590                               pll->name, pll->config.crtc_mask, pll->on);
13591
13592                 if (pll->config.crtc_mask)
13593                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13594         }
13595
13596         for_each_intel_encoder(dev, encoder) {
13597                 pipe = 0;
13598
13599                 if (encoder->get_hw_state(encoder, &pipe)) {
13600                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13601                         encoder->base.crtc = &crtc->base;
13602                         encoder->get_config(encoder, crtc->config);
13603                 } else {
13604                         encoder->base.crtc = NULL;
13605                 }
13606
13607                 encoder->connectors_active = false;
13608                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13609                               encoder->base.base.id,
13610                               encoder->base.name,
13611                               encoder->base.crtc ? "enabled" : "disabled",
13612                               pipe_name(pipe));
13613         }
13614
13615         list_for_each_entry(connector, &dev->mode_config.connector_list,
13616                             base.head) {
13617                 if (connector->get_hw_state(connector)) {
13618                         connector->base.dpms = DRM_MODE_DPMS_ON;
13619                         connector->encoder->connectors_active = true;
13620                         connector->base.encoder = &connector->encoder->base;
13621                 } else {
13622                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13623                         connector->base.encoder = NULL;
13624                 }
13625                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13626                               connector->base.base.id,
13627                               connector->base.name,
13628                               connector->base.encoder ? "enabled" : "disabled");
13629         }
13630 }
13631
13632 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13633  * and i915 state tracking structures. */
13634 void intel_modeset_setup_hw_state(struct drm_device *dev,
13635                                   bool force_restore)
13636 {
13637         struct drm_i915_private *dev_priv = dev->dev_private;
13638         enum pipe pipe;
13639         struct intel_crtc *crtc;
13640         struct intel_encoder *encoder;
13641         int i;
13642
13643         intel_modeset_readout_hw_state(dev);
13644
13645         /*
13646          * Now that we have the config, copy it to each CRTC struct
13647          * Note that this could go away if we move to using crtc_config
13648          * checking everywhere.
13649          */
13650         for_each_intel_crtc(dev, crtc) {
13651                 if (crtc->active && i915.fastboot) {
13652                         intel_mode_from_pipe_config(&crtc->base.mode,
13653                                                     crtc->config);
13654                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13655                                       crtc->base.base.id);
13656                         drm_mode_debug_printmodeline(&crtc->base.mode);
13657                 }
13658         }
13659
13660         /* HW state is read out, now we need to sanitize this mess. */
13661         for_each_intel_encoder(dev, encoder) {
13662                 intel_sanitize_encoder(encoder);
13663         }
13664
13665         for_each_pipe(dev_priv, pipe) {
13666                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13667                 intel_sanitize_crtc(crtc);
13668                 intel_dump_pipe_config(crtc, crtc->config,
13669                                        "[setup_hw_state]");
13670         }
13671
13672         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13673                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13674
13675                 if (!pll->on || pll->active)
13676                         continue;
13677
13678                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13679
13680                 pll->disable(dev_priv, pll);
13681                 pll->on = false;
13682         }
13683
13684         if (IS_GEN9(dev))
13685                 skl_wm_get_hw_state(dev);
13686         else if (HAS_PCH_SPLIT(dev))
13687                 ilk_wm_get_hw_state(dev);
13688
13689         if (force_restore) {
13690                 i915_redisable_vga(dev);
13691
13692                 /*
13693                  * We need to use raw interfaces for restoring state to avoid
13694                  * checking (bogus) intermediate states.
13695                  */
13696                 for_each_pipe(dev_priv, pipe) {
13697                         struct drm_crtc *crtc =
13698                                 dev_priv->pipe_to_crtc_mapping[pipe];
13699
13700                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13701                                        crtc->primary->fb);
13702                 }
13703         } else {
13704                 intel_modeset_update_staged_output_state(dev);
13705         }
13706
13707         intel_modeset_check_state(dev);
13708 }
13709
13710 void intel_modeset_gem_init(struct drm_device *dev)
13711 {
13712         struct drm_i915_private *dev_priv = dev->dev_private;
13713         struct drm_crtc *c;
13714         struct drm_i915_gem_object *obj;
13715
13716         mutex_lock(&dev->struct_mutex);
13717         intel_init_gt_powersave(dev);
13718         mutex_unlock(&dev->struct_mutex);
13719
13720         /*
13721          * There may be no VBT; and if the BIOS enabled SSC we can
13722          * just keep using it to avoid unnecessary flicker.  Whereas if the
13723          * BIOS isn't using it, don't assume it will work even if the VBT
13724          * indicates as much.
13725          */
13726         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13727                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13728                                                 DREF_SSC1_ENABLE);
13729
13730         intel_modeset_init_hw(dev);
13731
13732         intel_setup_overlay(dev);
13733
13734         /*
13735          * Make sure any fbs we allocated at startup are properly
13736          * pinned & fenced.  When we do the allocation it's too early
13737          * for this.
13738          */
13739         mutex_lock(&dev->struct_mutex);
13740         for_each_crtc(dev, c) {
13741                 obj = intel_fb_obj(c->primary->fb);
13742                 if (obj == NULL)
13743                         continue;
13744
13745                 if (intel_pin_and_fence_fb_obj(c->primary,
13746                                                c->primary->fb,
13747                                                NULL)) {
13748                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13749                                   to_intel_crtc(c)->pipe);
13750                         drm_framebuffer_unreference(c->primary->fb);
13751                         c->primary->fb = NULL;
13752                         update_state_fb(c->primary);
13753                 }
13754         }
13755         mutex_unlock(&dev->struct_mutex);
13756
13757         intel_backlight_register(dev);
13758 }
13759
13760 void intel_connector_unregister(struct intel_connector *intel_connector)
13761 {
13762         struct drm_connector *connector = &intel_connector->base;
13763
13764         intel_panel_destroy_backlight(connector);
13765         drm_connector_unregister(connector);
13766 }
13767
13768 void intel_modeset_cleanup(struct drm_device *dev)
13769 {
13770         struct drm_i915_private *dev_priv = dev->dev_private;
13771         struct drm_connector *connector;
13772
13773         intel_disable_gt_powersave(dev);
13774
13775         intel_backlight_unregister(dev);
13776
13777         /*
13778          * Interrupts and polling as the first thing to avoid creating havoc.
13779          * Too much stuff here (turning of connectors, ...) would
13780          * experience fancy races otherwise.
13781          */
13782         intel_irq_uninstall(dev_priv);
13783
13784         /*
13785          * Due to the hpd irq storm handling the hotplug work can re-arm the
13786          * poll handlers. Hence disable polling after hpd handling is shut down.
13787          */
13788         drm_kms_helper_poll_fini(dev);
13789
13790         mutex_lock(&dev->struct_mutex);
13791
13792         intel_unregister_dsm_handler();
13793
13794         intel_fbc_disable(dev);
13795
13796         ironlake_teardown_rc6(dev);
13797
13798         mutex_unlock(&dev->struct_mutex);
13799
13800         /* flush any delayed tasks or pending work */
13801         flush_scheduled_work();
13802
13803         /* destroy the backlight and sysfs files before encoders/connectors */
13804         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13805                 struct intel_connector *intel_connector;
13806
13807                 intel_connector = to_intel_connector(connector);
13808                 intel_connector->unregister(intel_connector);
13809         }
13810
13811         drm_mode_config_cleanup(dev);
13812
13813         intel_cleanup_overlay(dev);
13814
13815         mutex_lock(&dev->struct_mutex);
13816         intel_cleanup_gt_powersave(dev);
13817         mutex_unlock(&dev->struct_mutex);
13818 }
13819
13820 /*
13821  * Return which encoder is currently attached for connector.
13822  */
13823 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13824 {
13825         return &intel_attached_encoder(connector)->base;
13826 }
13827
13828 void intel_connector_attach_encoder(struct intel_connector *connector,
13829                                     struct intel_encoder *encoder)
13830 {
13831         connector->encoder = encoder;
13832         drm_mode_connector_attach_encoder(&connector->base,
13833                                           &encoder->base);
13834 }
13835
13836 /*
13837  * set vga decode state - true == enable VGA decode
13838  */
13839 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13840 {
13841         struct drm_i915_private *dev_priv = dev->dev_private;
13842         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13843         u16 gmch_ctrl;
13844
13845         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13846                 DRM_ERROR("failed to read control word\n");
13847                 return -EIO;
13848         }
13849
13850         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13851                 return 0;
13852
13853         if (state)
13854                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13855         else
13856                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13857
13858         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13859                 DRM_ERROR("failed to write control word\n");
13860                 return -EIO;
13861         }
13862
13863         return 0;
13864 }
13865
13866 struct intel_display_error_state {
13867
13868         u32 power_well_driver;
13869
13870         int num_transcoders;
13871
13872         struct intel_cursor_error_state {
13873                 u32 control;
13874                 u32 position;
13875                 u32 base;
13876                 u32 size;
13877         } cursor[I915_MAX_PIPES];
13878
13879         struct intel_pipe_error_state {
13880                 bool power_domain_on;
13881                 u32 source;
13882                 u32 stat;
13883         } pipe[I915_MAX_PIPES];
13884
13885         struct intel_plane_error_state {
13886                 u32 control;
13887                 u32 stride;
13888                 u32 size;
13889                 u32 pos;
13890                 u32 addr;
13891                 u32 surface;
13892                 u32 tile_offset;
13893         } plane[I915_MAX_PIPES];
13894
13895         struct intel_transcoder_error_state {
13896                 bool power_domain_on;
13897                 enum transcoder cpu_transcoder;
13898
13899                 u32 conf;
13900
13901                 u32 htotal;
13902                 u32 hblank;
13903                 u32 hsync;
13904                 u32 vtotal;
13905                 u32 vblank;
13906                 u32 vsync;
13907         } transcoder[4];
13908 };
13909
13910 struct intel_display_error_state *
13911 intel_display_capture_error_state(struct drm_device *dev)
13912 {
13913         struct drm_i915_private *dev_priv = dev->dev_private;
13914         struct intel_display_error_state *error;
13915         int transcoders[] = {
13916                 TRANSCODER_A,
13917                 TRANSCODER_B,
13918                 TRANSCODER_C,
13919                 TRANSCODER_EDP,
13920         };
13921         int i;
13922
13923         if (INTEL_INFO(dev)->num_pipes == 0)
13924                 return NULL;
13925
13926         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13927         if (error == NULL)
13928                 return NULL;
13929
13930         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13931                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13932
13933         for_each_pipe(dev_priv, i) {
13934                 error->pipe[i].power_domain_on =
13935                         __intel_display_power_is_enabled(dev_priv,
13936                                                          POWER_DOMAIN_PIPE(i));
13937                 if (!error->pipe[i].power_domain_on)
13938                         continue;
13939
13940                 error->cursor[i].control = I915_READ(CURCNTR(i));
13941                 error->cursor[i].position = I915_READ(CURPOS(i));
13942                 error->cursor[i].base = I915_READ(CURBASE(i));
13943
13944                 error->plane[i].control = I915_READ(DSPCNTR(i));
13945                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13946                 if (INTEL_INFO(dev)->gen <= 3) {
13947                         error->plane[i].size = I915_READ(DSPSIZE(i));
13948                         error->plane[i].pos = I915_READ(DSPPOS(i));
13949                 }
13950                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13951                         error->plane[i].addr = I915_READ(DSPADDR(i));
13952                 if (INTEL_INFO(dev)->gen >= 4) {
13953                         error->plane[i].surface = I915_READ(DSPSURF(i));
13954                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13955                 }
13956
13957                 error->pipe[i].source = I915_READ(PIPESRC(i));
13958
13959                 if (HAS_GMCH_DISPLAY(dev))
13960                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13961         }
13962
13963         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13964         if (HAS_DDI(dev_priv->dev))
13965                 error->num_transcoders++; /* Account for eDP. */
13966
13967         for (i = 0; i < error->num_transcoders; i++) {
13968                 enum transcoder cpu_transcoder = transcoders[i];
13969
13970                 error->transcoder[i].power_domain_on =
13971                         __intel_display_power_is_enabled(dev_priv,
13972                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13973                 if (!error->transcoder[i].power_domain_on)
13974                         continue;
13975
13976                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13977
13978                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13979                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13980                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13981                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13982                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13983                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13984                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13985         }
13986
13987         return error;
13988 }
13989
13990 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13991
13992 void
13993 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13994                                 struct drm_device *dev,
13995                                 struct intel_display_error_state *error)
13996 {
13997         struct drm_i915_private *dev_priv = dev->dev_private;
13998         int i;
13999
14000         if (!error)
14001                 return;
14002
14003         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14004         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14005                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14006                            error->power_well_driver);
14007         for_each_pipe(dev_priv, i) {
14008                 err_printf(m, "Pipe [%d]:\n", i);
14009                 err_printf(m, "  Power: %s\n",
14010                            error->pipe[i].power_domain_on ? "on" : "off");
14011                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
14012                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
14013
14014                 err_printf(m, "Plane [%d]:\n", i);
14015                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
14016                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
14017                 if (INTEL_INFO(dev)->gen <= 3) {
14018                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
14019                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
14020                 }
14021                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14022                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
14023                 if (INTEL_INFO(dev)->gen >= 4) {
14024                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
14025                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
14026                 }
14027
14028                 err_printf(m, "Cursor [%d]:\n", i);
14029                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
14030                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
14031                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
14032         }
14033
14034         for (i = 0; i < error->num_transcoders; i++) {
14035                 err_printf(m, "CPU transcoder: %c\n",
14036                            transcoder_name(error->transcoder[i].cpu_transcoder));
14037                 err_printf(m, "  Power: %s\n",
14038                            error->transcoder[i].power_domain_on ? "on" : "off");
14039                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
14040                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
14041                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
14042                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
14043                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
14044                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
14045                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
14046         }
14047 }
14048
14049 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14050 {
14051         struct intel_crtc *crtc;
14052
14053         for_each_intel_crtc(dev, crtc) {
14054                 struct intel_unpin_work *work;
14055
14056                 spin_lock_irq(&dev->event_lock);
14057
14058                 work = crtc->unpin_work;
14059
14060                 if (work && work->event &&
14061                     work->event->base.file_priv == file) {
14062                         kfree(work->event);
14063                         work->event = NULL;
14064                 }
14065
14066                 spin_unlock_irq(&dev->event_lock);
14067         }
14068 }