]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: pipe_src_w must be even in LVDS dual channel, DVO ganged, and double wide...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
51                                    struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54                           int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58         int     min, max;
59 } intel_range_t;
60
61 typedef struct {
62         int     dot_limit;
63         int     p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70 };
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75         struct drm_i915_private *dev_priv = dev->dev_private;
76
77         WARN_ON(!HAS_PCH_SPLIT(dev));
78
79         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85         if (IS_GEN5(dev)) {
86                 struct drm_i915_private *dev_priv = dev->dev_private;
87                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88         } else
89                 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93         .dot = { .min = 25000, .max = 350000 },
94         .vco = { .min = 930000, .max = 1400000 },
95         .n = { .min = 3, .max = 16 },
96         .m = { .min = 96, .max = 140 },
97         .m1 = { .min = 18, .max = 26 },
98         .m2 = { .min = 6, .max = 16 },
99         .p = { .min = 4, .max = 128 },
100         .p1 = { .min = 2, .max = 33 },
101         .p2 = { .dot_limit = 165000,
102                 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106         .dot = { .min = 25000, .max = 350000 },
107         .vco = { .min = 930000, .max = 1400000 },
108         .n = { .min = 3, .max = 16 },
109         .m = { .min = 96, .max = 140 },
110         .m1 = { .min = 18, .max = 26 },
111         .m2 = { .min = 6, .max = 16 },
112         .p = { .min = 4, .max = 128 },
113         .p1 = { .min = 2, .max = 33 },
114         .p2 = { .dot_limit = 165000,
115                 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119         .dot = { .min = 25000, .max = 350000 },
120         .vco = { .min = 930000, .max = 1400000 },
121         .n = { .min = 3, .max = 16 },
122         .m = { .min = 96, .max = 140 },
123         .m1 = { .min = 18, .max = 26 },
124         .m2 = { .min = 6, .max = 16 },
125         .p = { .min = 4, .max = 128 },
126         .p1 = { .min = 1, .max = 6 },
127         .p2 = { .dot_limit = 165000,
128                 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132         .dot = { .min = 20000, .max = 400000 },
133         .vco = { .min = 1400000, .max = 2800000 },
134         .n = { .min = 1, .max = 6 },
135         .m = { .min = 70, .max = 120 },
136         .m1 = { .min = 8, .max = 18 },
137         .m2 = { .min = 3, .max = 7 },
138         .p = { .min = 5, .max = 80 },
139         .p1 = { .min = 1, .max = 8 },
140         .p2 = { .dot_limit = 200000,
141                 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 8, .max = 18 },
150         .m2 = { .min = 3, .max = 7 },
151         .p = { .min = 7, .max = 98 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 112000,
154                 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159         .dot = { .min = 25000, .max = 270000 },
160         .vco = { .min = 1750000, .max = 3500000},
161         .n = { .min = 1, .max = 4 },
162         .m = { .min = 104, .max = 138 },
163         .m1 = { .min = 17, .max = 23 },
164         .m2 = { .min = 5, .max = 11 },
165         .p = { .min = 10, .max = 30 },
166         .p1 = { .min = 1, .max = 3},
167         .p2 = { .dot_limit = 270000,
168                 .p2_slow = 10,
169                 .p2_fast = 10
170         },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174         .dot = { .min = 22000, .max = 400000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 16, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 5, .max = 80 },
181         .p1 = { .min = 1, .max = 8},
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187         .dot = { .min = 20000, .max = 115000 },
188         .vco = { .min = 1750000, .max = 3500000 },
189         .n = { .min = 1, .max = 3 },
190         .m = { .min = 104, .max = 138 },
191         .m1 = { .min = 17, .max = 23 },
192         .m2 = { .min = 5, .max = 11 },
193         .p = { .min = 28, .max = 112 },
194         .p1 = { .min = 2, .max = 8 },
195         .p2 = { .dot_limit = 0,
196                 .p2_slow = 14, .p2_fast = 14
197         },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201         .dot = { .min = 80000, .max = 224000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 14, .max = 42 },
208         .p1 = { .min = 2, .max = 6 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 7, .p2_fast = 7
211         },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215         .dot = { .min = 20000, .max = 400000},
216         .vco = { .min = 1700000, .max = 3500000 },
217         /* Pineview's Ncounter is a ring counter */
218         .n = { .min = 3, .max = 6 },
219         .m = { .min = 2, .max = 256 },
220         /* Pineview only has one combined m divider, which we treat as m2. */
221         .m1 = { .min = 0, .max = 0 },
222         .m2 = { .min = 0, .max = 254 },
223         .p = { .min = 5, .max = 80 },
224         .p1 = { .min = 1, .max = 8 },
225         .p2 = { .dot_limit = 200000,
226                 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230         .dot = { .min = 20000, .max = 400000 },
231         .vco = { .min = 1700000, .max = 3500000 },
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         .m1 = { .min = 0, .max = 0 },
235         .m2 = { .min = 0, .max = 254 },
236         .p = { .min = 7, .max = 112 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 112000,
239                 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243  *
244  * We calculate clock using (register_value + 2) for N/M1/M2, so here
245  * the range value for them is (actual_value - 2).
246  */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248         .dot = { .min = 25000, .max = 350000 },
249         .vco = { .min = 1760000, .max = 3510000 },
250         .n = { .min = 1, .max = 5 },
251         .m = { .min = 79, .max = 127 },
252         .m1 = { .min = 12, .max = 22 },
253         .m2 = { .min = 5, .max = 9 },
254         .p = { .min = 5, .max = 80 },
255         .p1 = { .min = 1, .max = 8 },
256         .p2 = { .dot_limit = 225000,
257                 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261         .dot = { .min = 25000, .max = 350000 },
262         .vco = { .min = 1760000, .max = 3510000 },
263         .n = { .min = 1, .max = 3 },
264         .m = { .min = 79, .max = 118 },
265         .m1 = { .min = 12, .max = 22 },
266         .m2 = { .min = 5, .max = 9 },
267         .p = { .min = 28, .max = 112 },
268         .p1 = { .min = 2, .max = 8 },
269         .p2 = { .dot_limit = 225000,
270                 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 3 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 14, .max = 56 },
281         .p1 = { .min = 2, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 2 },
291         .m = { .min = 79, .max = 126 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 126 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 42 },
308         .p1 = { .min = 2, .max = 6 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314         .dot = { .min = 25000, .max = 270000 },
315         .vco = { .min = 4000000, .max = 6000000 },
316         .n = { .min = 1, .max = 7 },
317         .m = { .min = 22, .max = 450 }, /* guess */
318         .m1 = { .min = 2, .max = 3 },
319         .m2 = { .min = 11, .max = 156 },
320         .p = { .min = 10, .max = 30 },
321         .p1 = { .min = 1, .max = 3 },
322         .p2 = { .dot_limit = 270000,
323                 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327         .dot = { .min = 25000, .max = 270000 },
328         .vco = { .min = 4000000, .max = 6000000 },
329         .n = { .min = 1, .max = 7 },
330         .m = { .min = 60, .max = 300 }, /* guess */
331         .m1 = { .min = 2, .max = 3 },
332         .m2 = { .min = 11, .max = 156 },
333         .p = { .min = 10, .max = 30 },
334         .p1 = { .min = 2, .max = 3 },
335         .p2 = { .dot_limit = 270000,
336                 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
340                                                 int refclk)
341 {
342         struct drm_device *dev = crtc->dev;
343         const intel_limit_t *limit;
344
345         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
346                 if (intel_is_dual_link_lvds(dev)) {
347                         if (refclk == 100000)
348                                 limit = &intel_limits_ironlake_dual_lvds_100m;
349                         else
350                                 limit = &intel_limits_ironlake_dual_lvds;
351                 } else {
352                         if (refclk == 100000)
353                                 limit = &intel_limits_ironlake_single_lvds_100m;
354                         else
355                                 limit = &intel_limits_ironlake_single_lvds;
356                 }
357         } else
358                 limit = &intel_limits_ironlake_dac;
359
360         return limit;
361 }
362
363 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
364 {
365         struct drm_device *dev = crtc->dev;
366         const intel_limit_t *limit;
367
368         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369                 if (intel_is_dual_link_lvds(dev))
370                         limit = &intel_limits_g4x_dual_channel_lvds;
371                 else
372                         limit = &intel_limits_g4x_single_channel_lvds;
373         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
374                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
375                 limit = &intel_limits_g4x_hdmi;
376         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
377                 limit = &intel_limits_g4x_sdvo;
378         } else /* The option is for other outputs */
379                 limit = &intel_limits_i9xx_sdvo;
380
381         return limit;
382 }
383
384 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
385 {
386         struct drm_device *dev = crtc->dev;
387         const intel_limit_t *limit;
388
389         if (HAS_PCH_SPLIT(dev))
390                 limit = intel_ironlake_limit(crtc, refclk);
391         else if (IS_G4X(dev)) {
392                 limit = intel_g4x_limit(crtc);
393         } else if (IS_PINEVIEW(dev)) {
394                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
395                         limit = &intel_limits_pineview_lvds;
396                 else
397                         limit = &intel_limits_pineview_sdvo;
398         } else if (IS_VALLEYVIEW(dev)) {
399                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
400                         limit = &intel_limits_vlv_dac;
401                 else
402                         limit = &intel_limits_vlv_hdmi;
403         } else if (!IS_GEN2(dev)) {
404                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
405                         limit = &intel_limits_i9xx_lvds;
406                 else
407                         limit = &intel_limits_i9xx_sdvo;
408         } else {
409                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
410                         limit = &intel_limits_i8xx_lvds;
411                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
412                         limit = &intel_limits_i8xx_dvo;
413                 else
414                         limit = &intel_limits_i8xx_dac;
415         }
416         return limit;
417 }
418
419 /* m1 is reserved as 0 in Pineview, n is a ring counter */
420 static void pineview_clock(int refclk, intel_clock_t *clock)
421 {
422         clock->m = clock->m2 + 2;
423         clock->p = clock->p1 * clock->p2;
424         clock->vco = refclk * clock->m / clock->n;
425         clock->dot = clock->vco / clock->p;
426 }
427
428 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
429 {
430         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
431 }
432
433 static void i9xx_clock(int refclk, intel_clock_t *clock)
434 {
435         clock->m = i9xx_dpll_compute_m(clock);
436         clock->p = clock->p1 * clock->p2;
437         clock->vco = refclk * clock->m / (clock->n + 2);
438         clock->dot = clock->vco / clock->p;
439 }
440
441 /**
442  * Returns whether any output on the specified pipe is of the specified type
443  */
444 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
445 {
446         struct drm_device *dev = crtc->dev;
447         struct intel_encoder *encoder;
448
449         for_each_encoder_on_crtc(dev, crtc, encoder)
450                 if (encoder->type == type)
451                         return true;
452
453         return false;
454 }
455
456 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458  * Returns whether the given set of divisors are valid for a given refclk with
459  * the given connectors.
460  */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463                                const intel_limit_t *limit,
464                                const intel_clock_t *clock)
465 {
466         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
467                 INTELPllInvalid("p1 out of range\n");
468         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
469                 INTELPllInvalid("p out of range\n");
470         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
471                 INTELPllInvalid("m2 out of range\n");
472         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
473                 INTELPllInvalid("m1 out of range\n");
474         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
475                 INTELPllInvalid("m1 <= m2\n");
476         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
477                 INTELPllInvalid("m out of range\n");
478         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
479                 INTELPllInvalid("n out of range\n");
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
674         u32 m, n, fastclk;
675         u32 updrate, minupdate, p;
676         unsigned long bestppm, ppm, absppm;
677         int dotclk, flag;
678
679         flag = 0;
680         dotclk = target * 1000;
681         bestppm = 1000000;
682         ppm = absppm = 0;
683         fastclk = dotclk / (2*100);
684         updrate = 0;
685         minupdate = 19200;
686         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
687         bestm1 = bestm2 = bestp1 = bestp2 = 0;
688
689         /* based on hardware requirement, prefer smaller n to precision */
690         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
691                 updrate = refclk / n;
692                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
693                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
694                                 if (p2 > 10)
695                                         p2 = p2 - 1;
696                                 p = p1 * p2;
697                                 /* based on hardware requirement, prefer bigger m1,m2 values */
698                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
699                                         m2 = (((2*(fastclk * p * n / m1 )) +
700                                                refclk) / (2*refclk));
701                                         m = m1 * m2;
702                                         vco = updrate * m;
703                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
704                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
705                                                 absppm = (ppm > 0) ? ppm : (-ppm);
706                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
707                                                         bestppm = 0;
708                                                         flag = 1;
709                                                 }
710                                                 if (absppm < bestppm - 10) {
711                                                         bestppm = absppm;
712                                                         flag = 1;
713                                                 }
714                                                 if (flag) {
715                                                         bestn = n;
716                                                         bestm1 = m1;
717                                                         bestm2 = m2;
718                                                         bestp1 = p1;
719                                                         bestp2 = p2;
720                                                         flag = 0;
721                                                 }
722                                         }
723                                 }
724                         }
725                 }
726         }
727         best_clock->n = bestn;
728         best_clock->m1 = bestm1;
729         best_clock->m2 = bestm2;
730         best_clock->p1 = bestp1;
731         best_clock->p2 = bestp2;
732
733         return true;
734 }
735
736 bool intel_crtc_active(struct drm_crtc *crtc)
737 {
738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
739
740         /* Be paranoid as we can arrive here with only partial
741          * state retrieved from the hardware during setup.
742          *
743          * We can ditch the adjusted_mode.clock check as soon
744          * as Haswell has gained clock readout/fastboot support.
745          *
746          * We can ditch the crtc->fb check as soon as we can
747          * properly reconstruct framebuffers.
748          */
749         return intel_crtc->active && crtc->fb &&
750                 intel_crtc->config.adjusted_mode.clock;
751 }
752
753 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
754                                              enum pipe pipe)
755 {
756         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
758
759         return intel_crtc->config.cpu_transcoder;
760 }
761
762 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
763 {
764         struct drm_i915_private *dev_priv = dev->dev_private;
765         u32 frame, frame_reg = PIPEFRAME(pipe);
766
767         frame = I915_READ(frame_reg);
768
769         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
770                 DRM_DEBUG_KMS("vblank wait timed out\n");
771 }
772
773 /**
774  * intel_wait_for_vblank - wait for vblank on a given pipe
775  * @dev: drm device
776  * @pipe: pipe to wait for
777  *
778  * Wait for vblank to occur on a given pipe.  Needed for various bits of
779  * mode setting code.
780  */
781 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         int pipestat_reg = PIPESTAT(pipe);
785
786         if (INTEL_INFO(dev)->gen >= 5) {
787                 ironlake_wait_for_vblank(dev, pipe);
788                 return;
789         }
790
791         /* Clear existing vblank status. Note this will clear any other
792          * sticky status fields as well.
793          *
794          * This races with i915_driver_irq_handler() with the result
795          * that either function could miss a vblank event.  Here it is not
796          * fatal, as we will either wait upon the next vblank interrupt or
797          * timeout.  Generally speaking intel_wait_for_vblank() is only
798          * called during modeset at which time the GPU should be idle and
799          * should *not* be performing page flips and thus not waiting on
800          * vblanks...
801          * Currently, the result of us stealing a vblank from the irq
802          * handler is that a single frame will be skipped during swapbuffers.
803          */
804         I915_WRITE(pipestat_reg,
805                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
806
807         /* Wait for vblank interrupt bit to set */
808         if (wait_for(I915_READ(pipestat_reg) &
809                      PIPE_VBLANK_INTERRUPT_STATUS,
810                      50))
811                 DRM_DEBUG_KMS("vblank wait timed out\n");
812 }
813
814 /*
815  * intel_wait_for_pipe_off - wait for pipe to turn off
816  * @dev: drm device
817  * @pipe: pipe to wait for
818  *
819  * After disabling a pipe, we can't wait for vblank in the usual way,
820  * spinning on the vblank interrupt status bit, since we won't actually
821  * see an interrupt when the pipe is disabled.
822  *
823  * On Gen4 and above:
824  *   wait for the pipe register state bit to turn off
825  *
826  * Otherwise:
827  *   wait for the display line value to settle (it usually
828  *   ends up stopping at the start of the next frame).
829  *
830  */
831 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
832 {
833         struct drm_i915_private *dev_priv = dev->dev_private;
834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
835                                                                       pipe);
836
837         if (INTEL_INFO(dev)->gen >= 4) {
838                 int reg = PIPECONF(cpu_transcoder);
839
840                 /* Wait for the Pipe State to go off */
841                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
842                              100))
843                         WARN(1, "pipe_off wait timed out\n");
844         } else {
845                 u32 last_line, line_mask;
846                 int reg = PIPEDSL(pipe);
847                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
848
849                 if (IS_GEN2(dev))
850                         line_mask = DSL_LINEMASK_GEN2;
851                 else
852                         line_mask = DSL_LINEMASK_GEN3;
853
854                 /* Wait for the display line to settle */
855                 do {
856                         last_line = I915_READ(reg) & line_mask;
857                         mdelay(5);
858                 } while (((I915_READ(reg) & line_mask) != last_line) &&
859                          time_after(timeout, jiffies));
860                 if (time_after(jiffies, timeout))
861                         WARN(1, "pipe_off wait timed out\n");
862         }
863 }
864
865 /*
866  * ibx_digital_port_connected - is the specified port connected?
867  * @dev_priv: i915 private structure
868  * @port: the port to test
869  *
870  * Returns true if @port is connected, false otherwise.
871  */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873                                 struct intel_digital_port *port)
874 {
875         u32 bit;
876
877         if (HAS_PCH_IBX(dev_priv->dev)) {
878                 switch(port->port) {
879                 case PORT_B:
880                         bit = SDE_PORTB_HOTPLUG;
881                         break;
882                 case PORT_C:
883                         bit = SDE_PORTC_HOTPLUG;
884                         break;
885                 case PORT_D:
886                         bit = SDE_PORTD_HOTPLUG;
887                         break;
888                 default:
889                         return true;
890                 }
891         } else {
892                 switch(port->port) {
893                 case PORT_B:
894                         bit = SDE_PORTB_HOTPLUG_CPT;
895                         break;
896                 case PORT_C:
897                         bit = SDE_PORTC_HOTPLUG_CPT;
898                         break;
899                 case PORT_D:
900                         bit = SDE_PORTD_HOTPLUG_CPT;
901                         break;
902                 default:
903                         return true;
904                 }
905         }
906
907         return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912         return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917                 enum pipe pipe, bool state)
918 {
919         int reg;
920         u32 val;
921         bool cur_state;
922
923         reg = DPLL(pipe);
924         val = I915_READ(reg);
925         cur_state = !!(val & DPLL_VCO_ENABLE);
926         WARN(cur_state != state,
927              "PLL state assertion failure (expected %s, current %s)\n",
928              state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934         u32 val;
935         bool cur_state;
936
937         mutex_lock(&dev_priv->dpio_lock);
938         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939         mutex_unlock(&dev_priv->dpio_lock);
940
941         cur_state = val & DSI_PLL_VCO_EN;
942         WARN(cur_state != state,
943              "DSI PLL state assertion failure (expected %s, current %s)\n",
944              state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954         if (crtc->config.shared_dpll < 0)
955                 return NULL;
956
957         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962                         struct intel_shared_dpll *pll,
963                         bool state)
964 {
965         bool cur_state;
966         struct intel_dpll_hw_state hw_state;
967
968         if (HAS_PCH_LPT(dev_priv->dev)) {
969                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970                 return;
971         }
972
973         if (WARN (!pll,
974                   "asserting DPLL %s with no DPLL\n", state_string(state)))
975                 return;
976
977         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978         WARN(cur_state != state,
979              "%s assertion failure (expected %s, current %s)\n",
980              pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984                           enum pipe pipe, bool state)
985 {
986         int reg;
987         u32 val;
988         bool cur_state;
989         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990                                                                       pipe);
991
992         if (HAS_DDI(dev_priv->dev)) {
993                 /* DDI does not have a specific FDI_TX register */
994                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995                 val = I915_READ(reg);
996                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997         } else {
998                 reg = FDI_TX_CTL(pipe);
999                 val = I915_READ(reg);
1000                 cur_state = !!(val & FDI_TX_ENABLE);
1001         }
1002         WARN(cur_state != state,
1003              "FDI TX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010                           enum pipe pipe, bool state)
1011 {
1012         int reg;
1013         u32 val;
1014         bool cur_state;
1015
1016         reg = FDI_RX_CTL(pipe);
1017         val = I915_READ(reg);
1018         cur_state = !!(val & FDI_RX_ENABLE);
1019         WARN(cur_state != state,
1020              "FDI RX state assertion failure (expected %s, current %s)\n",
1021              state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027                                       enum pipe pipe)
1028 {
1029         int reg;
1030         u32 val;
1031
1032         /* ILK FDI PLL is always enabled */
1033         if (dev_priv->info->gen == 5)
1034                 return;
1035
1036         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037         if (HAS_DDI(dev_priv->dev))
1038                 return;
1039
1040         reg = FDI_TX_CTL(pipe);
1041         val = I915_READ(reg);
1042         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046                        enum pipe pipe, bool state)
1047 {
1048         int reg;
1049         u32 val;
1050         bool cur_state;
1051
1052         reg = FDI_RX_CTL(pipe);
1053         val = I915_READ(reg);
1054         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055         WARN(cur_state != state,
1056              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057              state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061                                   enum pipe pipe)
1062 {
1063         int pp_reg, lvds_reg;
1064         u32 val;
1065         enum pipe panel_pipe = PIPE_A;
1066         bool locked = true;
1067
1068         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069                 pp_reg = PCH_PP_CONTROL;
1070                 lvds_reg = PCH_LVDS;
1071         } else {
1072                 pp_reg = PP_CONTROL;
1073                 lvds_reg = LVDS;
1074         }
1075
1076         val = I915_READ(pp_reg);
1077         if (!(val & PANEL_POWER_ON) ||
1078             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079                 locked = false;
1080
1081         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082                 panel_pipe = PIPE_B;
1083
1084         WARN(panel_pipe == pipe && locked,
1085              "panel assertion failure, pipe %c regs locked\n",
1086              pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090                           enum pipe pipe, bool state)
1091 {
1092         struct drm_device *dev = dev_priv->dev;
1093         bool cur_state;
1094
1095         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097         else if (IS_845G(dev) || IS_I865G(dev))
1098                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099         else
1100                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102         WARN(cur_state != state,
1103              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104              pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110                  enum pipe pipe, bool state)
1111 {
1112         int reg;
1113         u32 val;
1114         bool cur_state;
1115         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116                                                                       pipe);
1117
1118         /* if we need the pipe A quirk it must be always on */
1119         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120                 state = true;
1121
1122         if (!intel_display_power_enabled(dev_priv->dev,
1123                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124                 cur_state = false;
1125         } else {
1126                 reg = PIPECONF(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & PIPECONF_ENABLE);
1129         }
1130
1131         WARN(cur_state != state,
1132              "pipe %c assertion failure (expected %s, current %s)\n",
1133              pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137                          enum plane plane, bool state)
1138 {
1139         int reg;
1140         u32 val;
1141         bool cur_state;
1142
1143         reg = DSPCNTR(plane);
1144         val = I915_READ(reg);
1145         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146         WARN(cur_state != state,
1147              "plane %c assertion failure (expected %s, current %s)\n",
1148              plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155                                    enum pipe pipe)
1156 {
1157         struct drm_device *dev = dev_priv->dev;
1158         int reg, i;
1159         u32 val;
1160         int cur_pipe;
1161
1162         /* Primary planes are fixed to pipes on gen4+ */
1163         if (INTEL_INFO(dev)->gen >= 4) {
1164                 reg = DSPCNTR(pipe);
1165                 val = I915_READ(reg);
1166                 WARN((val & DISPLAY_PLANE_ENABLE),
1167                      "plane %c assertion failure, should be disabled but not\n",
1168                      plane_name(pipe));
1169                 return;
1170         }
1171
1172         /* Need to check both planes against the pipe */
1173         for_each_pipe(i) {
1174                 reg = DSPCNTR(i);
1175                 val = I915_READ(reg);
1176                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177                         DISPPLANE_SEL_PIPE_SHIFT;
1178                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180                      plane_name(i), pipe_name(pipe));
1181         }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185                                     enum pipe pipe)
1186 {
1187         struct drm_device *dev = dev_priv->dev;
1188         int reg, i;
1189         u32 val;
1190
1191         if (IS_VALLEYVIEW(dev)) {
1192                 for (i = 0; i < dev_priv->num_plane; i++) {
1193                         reg = SPCNTR(pipe, i);
1194                         val = I915_READ(reg);
1195                         WARN((val & SP_ENABLE),
1196                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197                              sprite_name(pipe, i), pipe_name(pipe));
1198                 }
1199         } else if (INTEL_INFO(dev)->gen >= 7) {
1200                 reg = SPRCTL(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & SPRITE_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         } else if (INTEL_INFO(dev)->gen >= 5) {
1206                 reg = DVSCNTR(pipe);
1207                 val = I915_READ(reg);
1208                 WARN((val & DVS_ENABLE),
1209                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210                      plane_name(pipe), pipe_name(pipe));
1211         }
1212 }
1213
1214 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216         u32 val;
1217         bool enabled;
1218
1219         if (HAS_PCH_LPT(dev_priv->dev)) {
1220                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1221                 return;
1222         }
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void vlv_enable_pll(struct intel_crtc *crtc)
1364 {
1365         struct drm_device *dev = crtc->base.dev;
1366         struct drm_i915_private *dev_priv = dev->dev_private;
1367         int reg = DPLL(crtc->pipe);
1368         u32 dpll = crtc->config.dpll_hw_state.dpll;
1369
1370         assert_pipe_disabled(dev_priv, crtc->pipe);
1371
1372         /* No really, not for ILK+ */
1373         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1374
1375         /* PLL is protected by panel, make sure we can write it */
1376         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1377                 assert_panel_unlocked(dev_priv, crtc->pipe);
1378
1379         I915_WRITE(reg, dpll);
1380         POSTING_READ(reg);
1381         udelay(150);
1382
1383         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1384                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1385
1386         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1387         POSTING_READ(DPLL_MD(crtc->pipe));
1388
1389         /* We do this three times for luck */
1390         I915_WRITE(reg, dpll);
1391         POSTING_READ(reg);
1392         udelay(150); /* wait for warmup */
1393         I915_WRITE(reg, dpll);
1394         POSTING_READ(reg);
1395         udelay(150); /* wait for warmup */
1396         I915_WRITE(reg, dpll);
1397         POSTING_READ(reg);
1398         udelay(150); /* wait for warmup */
1399 }
1400
1401 static void i9xx_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(dev_priv->info->gen >= 5);
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev) && !IS_I830(dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418
1419         /* Wait for the clocks to stabilize. */
1420         POSTING_READ(reg);
1421         udelay(150);
1422
1423         if (INTEL_INFO(dev)->gen >= 4) {
1424                 I915_WRITE(DPLL_MD(crtc->pipe),
1425                            crtc->config.dpll_hw_state.dpll_md);
1426         } else {
1427                 /* The pixel multiplier can only be updated once the
1428                  * DPLL is enabled and the clocks are stable.
1429                  *
1430                  * So write it again.
1431                  */
1432                 I915_WRITE(reg, dpll);
1433         }
1434
1435         /* We do this three times for luck */
1436         I915_WRITE(reg, dpll);
1437         POSTING_READ(reg);
1438         udelay(150); /* wait for warmup */
1439         I915_WRITE(reg, dpll);
1440         POSTING_READ(reg);
1441         udelay(150); /* wait for warmup */
1442         I915_WRITE(reg, dpll);
1443         POSTING_READ(reg);
1444         udelay(150); /* wait for warmup */
1445 }
1446
1447 /**
1448  * i9xx_disable_pll - disable a PLL
1449  * @dev_priv: i915 private structure
1450  * @pipe: pipe PLL to disable
1451  *
1452  * Disable the PLL for @pipe, making sure the pipe is off first.
1453  *
1454  * Note!  This is for pre-ILK only.
1455  */
1456 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1457 {
1458         /* Don't disable pipe A or pipe A PLLs if needed */
1459         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1460                 return;
1461
1462         /* Make sure the pipe isn't still relying on us */
1463         assert_pipe_disabled(dev_priv, pipe);
1464
1465         I915_WRITE(DPLL(pipe), 0);
1466         POSTING_READ(DPLL(pipe));
1467 }
1468
1469 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1470 {
1471         u32 port_mask;
1472
1473         if (!port)
1474                 port_mask = DPLL_PORTB_READY_MASK;
1475         else
1476                 port_mask = DPLL_PORTC_READY_MASK;
1477
1478         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1479                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1480                      'B' + port, I915_READ(DPLL(0)));
1481 }
1482
1483 /**
1484  * ironlake_enable_shared_dpll - enable PCH PLL
1485  * @dev_priv: i915 private structure
1486  * @pipe: pipe PLL to enable
1487  *
1488  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1489  * drives the transcoder clock.
1490  */
1491 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1492 {
1493         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1494         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1495
1496         /* PCH PLLs only available on ILK, SNB and IVB */
1497         BUG_ON(dev_priv->info->gen < 5);
1498         if (WARN_ON(pll == NULL))
1499                 return;
1500
1501         if (WARN_ON(pll->refcount == 0))
1502                 return;
1503
1504         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1505                       pll->name, pll->active, pll->on,
1506                       crtc->base.base.id);
1507
1508         if (pll->active++) {
1509                 WARN_ON(!pll->on);
1510                 assert_shared_dpll_enabled(dev_priv, pll);
1511                 return;
1512         }
1513         WARN_ON(pll->on);
1514
1515         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1516         pll->enable(dev_priv, pll);
1517         pll->on = true;
1518 }
1519
1520 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1521 {
1522         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1523         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1524
1525         /* PCH only available on ILK+ */
1526         BUG_ON(dev_priv->info->gen < 5);
1527         if (WARN_ON(pll == NULL))
1528                return;
1529
1530         if (WARN_ON(pll->refcount == 0))
1531                 return;
1532
1533         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1534                       pll->name, pll->active, pll->on,
1535                       crtc->base.base.id);
1536
1537         if (WARN_ON(pll->active == 0)) {
1538                 assert_shared_dpll_disabled(dev_priv, pll);
1539                 return;
1540         }
1541
1542         assert_shared_dpll_enabled(dev_priv, pll);
1543         WARN_ON(!pll->on);
1544         if (--pll->active)
1545                 return;
1546
1547         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1548         pll->disable(dev_priv, pll);
1549         pll->on = false;
1550 }
1551
1552 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1553                                            enum pipe pipe)
1554 {
1555         struct drm_device *dev = dev_priv->dev;
1556         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1558         uint32_t reg, val, pipeconf_val;
1559
1560         /* PCH only available on ILK+ */
1561         BUG_ON(dev_priv->info->gen < 5);
1562
1563         /* Make sure PCH DPLL is enabled */
1564         assert_shared_dpll_enabled(dev_priv,
1565                                    intel_crtc_to_shared_dpll(intel_crtc));
1566
1567         /* FDI must be feeding us bits for PCH ports */
1568         assert_fdi_tx_enabled(dev_priv, pipe);
1569         assert_fdi_rx_enabled(dev_priv, pipe);
1570
1571         if (HAS_PCH_CPT(dev)) {
1572                 /* Workaround: Set the timing override bit before enabling the
1573                  * pch transcoder. */
1574                 reg = TRANS_CHICKEN2(pipe);
1575                 val = I915_READ(reg);
1576                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1577                 I915_WRITE(reg, val);
1578         }
1579
1580         reg = PCH_TRANSCONF(pipe);
1581         val = I915_READ(reg);
1582         pipeconf_val = I915_READ(PIPECONF(pipe));
1583
1584         if (HAS_PCH_IBX(dev_priv->dev)) {
1585                 /*
1586                  * make the BPC in transcoder be consistent with
1587                  * that in pipeconf reg.
1588                  */
1589                 val &= ~PIPECONF_BPC_MASK;
1590                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1591         }
1592
1593         val &= ~TRANS_INTERLACE_MASK;
1594         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1595                 if (HAS_PCH_IBX(dev_priv->dev) &&
1596                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1597                         val |= TRANS_LEGACY_INTERLACED_ILK;
1598                 else
1599                         val |= TRANS_INTERLACED;
1600         else
1601                 val |= TRANS_PROGRESSIVE;
1602
1603         I915_WRITE(reg, val | TRANS_ENABLE);
1604         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1605                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1606 }
1607
1608 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1609                                       enum transcoder cpu_transcoder)
1610 {
1611         u32 val, pipeconf_val;
1612
1613         /* PCH only available on ILK+ */
1614         BUG_ON(dev_priv->info->gen < 5);
1615
1616         /* FDI must be feeding us bits for PCH ports */
1617         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1618         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1619
1620         /* Workaround: set timing override bit. */
1621         val = I915_READ(_TRANSA_CHICKEN2);
1622         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1623         I915_WRITE(_TRANSA_CHICKEN2, val);
1624
1625         val = TRANS_ENABLE;
1626         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1627
1628         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1629             PIPECONF_INTERLACED_ILK)
1630                 val |= TRANS_INTERLACED;
1631         else
1632                 val |= TRANS_PROGRESSIVE;
1633
1634         I915_WRITE(LPT_TRANSCONF, val);
1635         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1636                 DRM_ERROR("Failed to enable PCH transcoder\n");
1637 }
1638
1639 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1640                                             enum pipe pipe)
1641 {
1642         struct drm_device *dev = dev_priv->dev;
1643         uint32_t reg, val;
1644
1645         /* FDI relies on the transcoder */
1646         assert_fdi_tx_disabled(dev_priv, pipe);
1647         assert_fdi_rx_disabled(dev_priv, pipe);
1648
1649         /* Ports must be off as well */
1650         assert_pch_ports_disabled(dev_priv, pipe);
1651
1652         reg = PCH_TRANSCONF(pipe);
1653         val = I915_READ(reg);
1654         val &= ~TRANS_ENABLE;
1655         I915_WRITE(reg, val);
1656         /* wait for PCH transcoder off, transcoder state */
1657         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1658                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1659
1660         if (!HAS_PCH_IBX(dev)) {
1661                 /* Workaround: Clear the timing override chicken bit again. */
1662                 reg = TRANS_CHICKEN2(pipe);
1663                 val = I915_READ(reg);
1664                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1665                 I915_WRITE(reg, val);
1666         }
1667 }
1668
1669 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1670 {
1671         u32 val;
1672
1673         val = I915_READ(LPT_TRANSCONF);
1674         val &= ~TRANS_ENABLE;
1675         I915_WRITE(LPT_TRANSCONF, val);
1676         /* wait for PCH transcoder off, transcoder state */
1677         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1678                 DRM_ERROR("Failed to disable PCH transcoder\n");
1679
1680         /* Workaround: clear timing override bit. */
1681         val = I915_READ(_TRANSA_CHICKEN2);
1682         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1683         I915_WRITE(_TRANSA_CHICKEN2, val);
1684 }
1685
1686 /**
1687  * intel_enable_pipe - enable a pipe, asserting requirements
1688  * @dev_priv: i915 private structure
1689  * @pipe: pipe to enable
1690  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1691  *
1692  * Enable @pipe, making sure that various hardware specific requirements
1693  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1694  *
1695  * @pipe should be %PIPE_A or %PIPE_B.
1696  *
1697  * Will wait until the pipe is actually running (i.e. first vblank) before
1698  * returning.
1699  */
1700 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1701                               bool pch_port, bool dsi)
1702 {
1703         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1704                                                                       pipe);
1705         enum pipe pch_transcoder;
1706         int reg;
1707         u32 val;
1708
1709         assert_planes_disabled(dev_priv, pipe);
1710         assert_cursor_disabled(dev_priv, pipe);
1711         assert_sprites_disabled(dev_priv, pipe);
1712
1713         if (HAS_PCH_LPT(dev_priv->dev))
1714                 pch_transcoder = TRANSCODER_A;
1715         else
1716                 pch_transcoder = pipe;
1717
1718         /*
1719          * A pipe without a PLL won't actually be able to drive bits from
1720          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1721          * need the check.
1722          */
1723         if (!HAS_PCH_SPLIT(dev_priv->dev))
1724                 if (dsi)
1725                         assert_dsi_pll_enabled(dev_priv);
1726                 else
1727                         assert_pll_enabled(dev_priv, pipe);
1728         else {
1729                 if (pch_port) {
1730                         /* if driving the PCH, we need FDI enabled */
1731                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1732                         assert_fdi_tx_pll_enabled(dev_priv,
1733                                                   (enum pipe) cpu_transcoder);
1734                 }
1735                 /* FIXME: assert CPU port conditions for SNB+ */
1736         }
1737
1738         reg = PIPECONF(cpu_transcoder);
1739         val = I915_READ(reg);
1740         if (val & PIPECONF_ENABLE)
1741                 return;
1742
1743         I915_WRITE(reg, val | PIPECONF_ENABLE);
1744         intel_wait_for_vblank(dev_priv->dev, pipe);
1745 }
1746
1747 /**
1748  * intel_disable_pipe - disable a pipe, asserting requirements
1749  * @dev_priv: i915 private structure
1750  * @pipe: pipe to disable
1751  *
1752  * Disable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe has shut down before returning.
1758  */
1759 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1760                                enum pipe pipe)
1761 {
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         int reg;
1765         u32 val;
1766
1767         /*
1768          * Make sure planes won't keep trying to pump pixels to us,
1769          * or we might hang the display.
1770          */
1771         assert_planes_disabled(dev_priv, pipe);
1772         assert_cursor_disabled(dev_priv, pipe);
1773         assert_sprites_disabled(dev_priv, pipe);
1774
1775         /* Don't disable pipe A or pipe A PLLs if needed */
1776         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1777                 return;
1778
1779         reg = PIPECONF(cpu_transcoder);
1780         val = I915_READ(reg);
1781         if ((val & PIPECONF_ENABLE) == 0)
1782                 return;
1783
1784         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1785         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1786 }
1787
1788 /*
1789  * Plane regs are double buffered, going from enabled->disabled needs a
1790  * trigger in order to latch.  The display address reg provides this.
1791  */
1792 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1793                                       enum plane plane)
1794 {
1795         if (dev_priv->info->gen >= 4)
1796                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1797         else
1798                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1799 }
1800
1801 /**
1802  * intel_enable_plane - enable a display plane on a given pipe
1803  * @dev_priv: i915 private structure
1804  * @plane: plane to enable
1805  * @pipe: pipe being fed
1806  *
1807  * Enable @plane on @pipe, making sure that @pipe is running first.
1808  */
1809 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1810                                enum plane plane, enum pipe pipe)
1811 {
1812         int reg;
1813         u32 val;
1814
1815         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1816         assert_pipe_enabled(dev_priv, pipe);
1817
1818         reg = DSPCNTR(plane);
1819         val = I915_READ(reg);
1820         if (val & DISPLAY_PLANE_ENABLE)
1821                 return;
1822
1823         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1824         intel_flush_display_plane(dev_priv, plane);
1825         intel_wait_for_vblank(dev_priv->dev, pipe);
1826 }
1827
1828 /**
1829  * intel_disable_plane - disable a display plane
1830  * @dev_priv: i915 private structure
1831  * @plane: plane to disable
1832  * @pipe: pipe consuming the data
1833  *
1834  * Disable @plane; should be an independent operation.
1835  */
1836 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1837                                 enum plane plane, enum pipe pipe)
1838 {
1839         int reg;
1840         u32 val;
1841
1842         reg = DSPCNTR(plane);
1843         val = I915_READ(reg);
1844         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1845                 return;
1846
1847         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1848         intel_flush_display_plane(dev_priv, plane);
1849         intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 static bool need_vtd_wa(struct drm_device *dev)
1853 {
1854 #ifdef CONFIG_INTEL_IOMMU
1855         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1856                 return true;
1857 #endif
1858         return false;
1859 }
1860
1861 int
1862 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1863                            struct drm_i915_gem_object *obj,
1864                            struct intel_ring_buffer *pipelined)
1865 {
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         u32 alignment;
1868         int ret;
1869
1870         switch (obj->tiling_mode) {
1871         case I915_TILING_NONE:
1872                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1873                         alignment = 128 * 1024;
1874                 else if (INTEL_INFO(dev)->gen >= 4)
1875                         alignment = 4 * 1024;
1876                 else
1877                         alignment = 64 * 1024;
1878                 break;
1879         case I915_TILING_X:
1880                 /* pin() will align the object as required by fence */
1881                 alignment = 0;
1882                 break;
1883         case I915_TILING_Y:
1884                 /* Despite that we check this in framebuffer_init userspace can
1885                  * screw us over and change the tiling after the fact. Only
1886                  * pinned buffers can't change their tiling. */
1887                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1888                 return -EINVAL;
1889         default:
1890                 BUG();
1891         }
1892
1893         /* Note that the w/a also requires 64 PTE of padding following the
1894          * bo. We currently fill all unused PTE with the shadow page and so
1895          * we should always have valid PTE following the scanout preventing
1896          * the VT-d warning.
1897          */
1898         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1899                 alignment = 256 * 1024;
1900
1901         dev_priv->mm.interruptible = false;
1902         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1903         if (ret)
1904                 goto err_interruptible;
1905
1906         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1907          * fence, whereas 965+ only requires a fence if using
1908          * framebuffer compression.  For simplicity, we always install
1909          * a fence as the cost is not that onerous.
1910          */
1911         ret = i915_gem_object_get_fence(obj);
1912         if (ret)
1913                 goto err_unpin;
1914
1915         i915_gem_object_pin_fence(obj);
1916
1917         dev_priv->mm.interruptible = true;
1918         return 0;
1919
1920 err_unpin:
1921         i915_gem_object_unpin_from_display_plane(obj);
1922 err_interruptible:
1923         dev_priv->mm.interruptible = true;
1924         return ret;
1925 }
1926
1927 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1928 {
1929         i915_gem_object_unpin_fence(obj);
1930         i915_gem_object_unpin_from_display_plane(obj);
1931 }
1932
1933 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1934  * is assumed to be a power-of-two. */
1935 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1936                                              unsigned int tiling_mode,
1937                                              unsigned int cpp,
1938                                              unsigned int pitch)
1939 {
1940         if (tiling_mode != I915_TILING_NONE) {
1941                 unsigned int tile_rows, tiles;
1942
1943                 tile_rows = *y / 8;
1944                 *y %= 8;
1945
1946                 tiles = *x / (512/cpp);
1947                 *x %= 512/cpp;
1948
1949                 return tile_rows * pitch * 8 + tiles * 4096;
1950         } else {
1951                 unsigned int offset;
1952
1953                 offset = *y * pitch + *x * cpp;
1954                 *y = 0;
1955                 *x = (offset & 4095) / cpp;
1956                 return offset & -4096;
1957         }
1958 }
1959
1960 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1961                              int x, int y)
1962 {
1963         struct drm_device *dev = crtc->dev;
1964         struct drm_i915_private *dev_priv = dev->dev_private;
1965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966         struct intel_framebuffer *intel_fb;
1967         struct drm_i915_gem_object *obj;
1968         int plane = intel_crtc->plane;
1969         unsigned long linear_offset;
1970         u32 dspcntr;
1971         u32 reg;
1972
1973         switch (plane) {
1974         case 0:
1975         case 1:
1976                 break;
1977         default:
1978                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1979                 return -EINVAL;
1980         }
1981
1982         intel_fb = to_intel_framebuffer(fb);
1983         obj = intel_fb->obj;
1984
1985         reg = DSPCNTR(plane);
1986         dspcntr = I915_READ(reg);
1987         /* Mask out pixel format bits in case we change it */
1988         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1989         switch (fb->pixel_format) {
1990         case DRM_FORMAT_C8:
1991                 dspcntr |= DISPPLANE_8BPP;
1992                 break;
1993         case DRM_FORMAT_XRGB1555:
1994         case DRM_FORMAT_ARGB1555:
1995                 dspcntr |= DISPPLANE_BGRX555;
1996                 break;
1997         case DRM_FORMAT_RGB565:
1998                 dspcntr |= DISPPLANE_BGRX565;
1999                 break;
2000         case DRM_FORMAT_XRGB8888:
2001         case DRM_FORMAT_ARGB8888:
2002                 dspcntr |= DISPPLANE_BGRX888;
2003                 break;
2004         case DRM_FORMAT_XBGR8888:
2005         case DRM_FORMAT_ABGR8888:
2006                 dspcntr |= DISPPLANE_RGBX888;
2007                 break;
2008         case DRM_FORMAT_XRGB2101010:
2009         case DRM_FORMAT_ARGB2101010:
2010                 dspcntr |= DISPPLANE_BGRX101010;
2011                 break;
2012         case DRM_FORMAT_XBGR2101010:
2013         case DRM_FORMAT_ABGR2101010:
2014                 dspcntr |= DISPPLANE_RGBX101010;
2015                 break;
2016         default:
2017                 BUG();
2018         }
2019
2020         if (INTEL_INFO(dev)->gen >= 4) {
2021                 if (obj->tiling_mode != I915_TILING_NONE)
2022                         dspcntr |= DISPPLANE_TILED;
2023                 else
2024                         dspcntr &= ~DISPPLANE_TILED;
2025         }
2026
2027         if (IS_G4X(dev))
2028                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2029
2030         I915_WRITE(reg, dspcntr);
2031
2032         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2033
2034         if (INTEL_INFO(dev)->gen >= 4) {
2035                 intel_crtc->dspaddr_offset =
2036                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2037                                                        fb->bits_per_pixel / 8,
2038                                                        fb->pitches[0]);
2039                 linear_offset -= intel_crtc->dspaddr_offset;
2040         } else {
2041                 intel_crtc->dspaddr_offset = linear_offset;
2042         }
2043
2044         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2045                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2046                       fb->pitches[0]);
2047         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2048         if (INTEL_INFO(dev)->gen >= 4) {
2049                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2050                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2051                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2052                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2053         } else
2054                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2055         POSTING_READ(reg);
2056
2057         return 0;
2058 }
2059
2060 static int ironlake_update_plane(struct drm_crtc *crtc,
2061                                  struct drm_framebuffer *fb, int x, int y)
2062 {
2063         struct drm_device *dev = crtc->dev;
2064         struct drm_i915_private *dev_priv = dev->dev_private;
2065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2066         struct intel_framebuffer *intel_fb;
2067         struct drm_i915_gem_object *obj;
2068         int plane = intel_crtc->plane;
2069         unsigned long linear_offset;
2070         u32 dspcntr;
2071         u32 reg;
2072
2073         switch (plane) {
2074         case 0:
2075         case 1:
2076         case 2:
2077                 break;
2078         default:
2079                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2080                 return -EINVAL;
2081         }
2082
2083         intel_fb = to_intel_framebuffer(fb);
2084         obj = intel_fb->obj;
2085
2086         reg = DSPCNTR(plane);
2087         dspcntr = I915_READ(reg);
2088         /* Mask out pixel format bits in case we change it */
2089         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2090         switch (fb->pixel_format) {
2091         case DRM_FORMAT_C8:
2092                 dspcntr |= DISPPLANE_8BPP;
2093                 break;
2094         case DRM_FORMAT_RGB565:
2095                 dspcntr |= DISPPLANE_BGRX565;
2096                 break;
2097         case DRM_FORMAT_XRGB8888:
2098         case DRM_FORMAT_ARGB8888:
2099                 dspcntr |= DISPPLANE_BGRX888;
2100                 break;
2101         case DRM_FORMAT_XBGR8888:
2102         case DRM_FORMAT_ABGR8888:
2103                 dspcntr |= DISPPLANE_RGBX888;
2104                 break;
2105         case DRM_FORMAT_XRGB2101010:
2106         case DRM_FORMAT_ARGB2101010:
2107                 dspcntr |= DISPPLANE_BGRX101010;
2108                 break;
2109         case DRM_FORMAT_XBGR2101010:
2110         case DRM_FORMAT_ABGR2101010:
2111                 dspcntr |= DISPPLANE_RGBX101010;
2112                 break;
2113         default:
2114                 BUG();
2115         }
2116
2117         if (obj->tiling_mode != I915_TILING_NONE)
2118                 dspcntr |= DISPPLANE_TILED;
2119         else
2120                 dspcntr &= ~DISPPLANE_TILED;
2121
2122         if (IS_HASWELL(dev))
2123                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2124         else
2125                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2126
2127         I915_WRITE(reg, dspcntr);
2128
2129         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2130         intel_crtc->dspaddr_offset =
2131                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2132                                                fb->bits_per_pixel / 8,
2133                                                fb->pitches[0]);
2134         linear_offset -= intel_crtc->dspaddr_offset;
2135
2136         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2138                       fb->pitches[0]);
2139         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2140         I915_MODIFY_DISPBASE(DSPSURF(plane),
2141                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2142         if (IS_HASWELL(dev)) {
2143                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2144         } else {
2145                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2146                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2147         }
2148         POSTING_READ(reg);
2149
2150         return 0;
2151 }
2152
2153 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2154 static int
2155 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2156                            int x, int y, enum mode_set_atomic state)
2157 {
2158         struct drm_device *dev = crtc->dev;
2159         struct drm_i915_private *dev_priv = dev->dev_private;
2160
2161         if (dev_priv->display.disable_fbc)
2162                 dev_priv->display.disable_fbc(dev);
2163         intel_increase_pllclock(crtc);
2164
2165         return dev_priv->display.update_plane(crtc, fb, x, y);
2166 }
2167
2168 void intel_display_handle_reset(struct drm_device *dev)
2169 {
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         struct drm_crtc *crtc;
2172
2173         /*
2174          * Flips in the rings have been nuked by the reset,
2175          * so complete all pending flips so that user space
2176          * will get its events and not get stuck.
2177          *
2178          * Also update the base address of all primary
2179          * planes to the the last fb to make sure we're
2180          * showing the correct fb after a reset.
2181          *
2182          * Need to make two loops over the crtcs so that we
2183          * don't try to grab a crtc mutex before the
2184          * pending_flip_queue really got woken up.
2185          */
2186
2187         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2188                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2189                 enum plane plane = intel_crtc->plane;
2190
2191                 intel_prepare_page_flip(dev, plane);
2192                 intel_finish_page_flip_plane(dev, plane);
2193         }
2194
2195         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2196                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198                 mutex_lock(&crtc->mutex);
2199                 if (intel_crtc->active)
2200                         dev_priv->display.update_plane(crtc, crtc->fb,
2201                                                        crtc->x, crtc->y);
2202                 mutex_unlock(&crtc->mutex);
2203         }
2204 }
2205
2206 static int
2207 intel_finish_fb(struct drm_framebuffer *old_fb)
2208 {
2209         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2210         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2211         bool was_interruptible = dev_priv->mm.interruptible;
2212         int ret;
2213
2214         /* Big Hammer, we also need to ensure that any pending
2215          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2216          * current scanout is retired before unpinning the old
2217          * framebuffer.
2218          *
2219          * This should only fail upon a hung GPU, in which case we
2220          * can safely continue.
2221          */
2222         dev_priv->mm.interruptible = false;
2223         ret = i915_gem_object_finish_gpu(obj);
2224         dev_priv->mm.interruptible = was_interruptible;
2225
2226         return ret;
2227 }
2228
2229 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2230 {
2231         struct drm_device *dev = crtc->dev;
2232         struct drm_i915_master_private *master_priv;
2233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235         if (!dev->primary->master)
2236                 return;
2237
2238         master_priv = dev->primary->master->driver_priv;
2239         if (!master_priv->sarea_priv)
2240                 return;
2241
2242         switch (intel_crtc->pipe) {
2243         case 0:
2244                 master_priv->sarea_priv->pipeA_x = x;
2245                 master_priv->sarea_priv->pipeA_y = y;
2246                 break;
2247         case 1:
2248                 master_priv->sarea_priv->pipeB_x = x;
2249                 master_priv->sarea_priv->pipeB_y = y;
2250                 break;
2251         default:
2252                 break;
2253         }
2254 }
2255
2256 static int
2257 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2258                     struct drm_framebuffer *fb)
2259 {
2260         struct drm_device *dev = crtc->dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263         struct drm_framebuffer *old_fb;
2264         int ret;
2265
2266         /* no fb bound */
2267         if (!fb) {
2268                 DRM_ERROR("No FB bound\n");
2269                 return 0;
2270         }
2271
2272         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2273                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2274                           plane_name(intel_crtc->plane),
2275                           INTEL_INFO(dev)->num_pipes);
2276                 return -EINVAL;
2277         }
2278
2279         mutex_lock(&dev->struct_mutex);
2280         ret = intel_pin_and_fence_fb_obj(dev,
2281                                          to_intel_framebuffer(fb)->obj,
2282                                          NULL);
2283         if (ret != 0) {
2284                 mutex_unlock(&dev->struct_mutex);
2285                 DRM_ERROR("pin & fence failed\n");
2286                 return ret;
2287         }
2288
2289         /* Update pipe size and adjust fitter if needed */
2290         if (i915_fastboot) {
2291                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2292                            ((crtc->mode.hdisplay - 1) << 16) |
2293                            (crtc->mode.vdisplay - 1));
2294                 if (!intel_crtc->config.pch_pfit.size &&
2295                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2296                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2297                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2298                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2299                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2300                 }
2301         }
2302
2303         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2304         if (ret) {
2305                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2306                 mutex_unlock(&dev->struct_mutex);
2307                 DRM_ERROR("failed to update base address\n");
2308                 return ret;
2309         }
2310
2311         old_fb = crtc->fb;
2312         crtc->fb = fb;
2313         crtc->x = x;
2314         crtc->y = y;
2315
2316         if (old_fb) {
2317                 if (intel_crtc->active && old_fb != fb)
2318                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2319                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2320         }
2321
2322         intel_update_fbc(dev);
2323         intel_edp_psr_update(dev);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328         return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         int pipe = intel_crtc->pipe;
2337         u32 reg, temp;
2338
2339         /* enable normal train */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         if (IS_IVYBRIDGE(dev)) {
2343                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         } else {
2346                 temp &= ~FDI_LINK_TRAIN_NONE;
2347                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348         }
2349         I915_WRITE(reg, temp);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         if (HAS_PCH_CPT(dev)) {
2354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356         } else {
2357                 temp &= ~FDI_LINK_TRAIN_NONE;
2358                 temp |= FDI_LINK_TRAIN_NONE;
2359         }
2360         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362         /* wait one idle pattern time */
2363         POSTING_READ(reg);
2364         udelay(1000);
2365
2366         /* IVB wants error correction enabled */
2367         if (IS_IVYBRIDGE(dev))
2368                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369                            FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         struct intel_crtc *pipe_B_crtc =
2381                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382         struct intel_crtc *pipe_C_crtc =
2383                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384         uint32_t temp;
2385
2386         /*
2387          * When everything is off disable fdi C so that we could enable fdi B
2388          * with all lanes. Note that we don't care about enabled pipes without
2389          * an enabled pch encoder.
2390          */
2391         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392             !pipe_has_enabled_pch(pipe_C_crtc)) {
2393                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396                 temp = I915_READ(SOUTH_CHICKEN1);
2397                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399                 I915_WRITE(SOUTH_CHICKEN1, temp);
2400         }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406         struct drm_device *dev = crtc->dev;
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409         int pipe = intel_crtc->pipe;
2410         int plane = intel_crtc->plane;
2411         u32 reg, temp, tries;
2412
2413         /* FDI needs bits from pipe & plane first */
2414         assert_pipe_enabled(dev_priv, pipe);
2415         assert_plane_enabled(dev_priv, plane);
2416
2417         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418            for train result */
2419         reg = FDI_RX_IMR(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_RX_SYMBOL_LOCK;
2422         temp &= ~FDI_RX_BIT_LOCK;
2423         I915_WRITE(reg, temp);
2424         I915_READ(reg);
2425         udelay(150);
2426
2427         /* enable CPU FDI TX and PCH FDI RX */
2428         reg = FDI_TX_CTL(pipe);
2429         temp = I915_READ(reg);
2430         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_1;
2434         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~FDI_LINK_TRAIN_NONE;
2439         temp |= FDI_LINK_TRAIN_PATTERN_1;
2440         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442         POSTING_READ(reg);
2443         udelay(150);
2444
2445         /* Ironlake workaround, enable clock pointer after FDI enable*/
2446         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448                    FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if ((temp & FDI_RX_BIT_LOCK)) {
2456                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2457                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 1 fail!\n");
2463
2464         /* Train 2 */
2465         reg = FDI_TX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         temp &= ~FDI_LINK_TRAIN_NONE;
2468         temp |= FDI_LINK_TRAIN_PATTERN_2;
2469         I915_WRITE(reg, temp);
2470
2471         reg = FDI_RX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~FDI_LINK_TRAIN_NONE;
2474         temp |= FDI_LINK_TRAIN_PATTERN_2;
2475         I915_WRITE(reg, temp);
2476
2477         POSTING_READ(reg);
2478         udelay(150);
2479
2480         reg = FDI_RX_IIR(pipe);
2481         for (tries = 0; tries < 5; tries++) {
2482                 temp = I915_READ(reg);
2483                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485                 if (temp & FDI_RX_SYMBOL_LOCK) {
2486                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2488                         break;
2489                 }
2490         }
2491         if (tries == 5)
2492                 DRM_ERROR("FDI train 2 fail!\n");
2493
2494         DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508         struct drm_device *dev = crtc->dev;
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511         int pipe = intel_crtc->pipe;
2512         u32 reg, temp, i, retry;
2513
2514         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515            for train result */
2516         reg = FDI_RX_IMR(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~FDI_RX_SYMBOL_LOCK;
2519         temp &= ~FDI_RX_BIT_LOCK;
2520         I915_WRITE(reg, temp);
2521
2522         POSTING_READ(reg);
2523         udelay(150);
2524
2525         /* enable CPU FDI TX and PCH FDI RX */
2526         reg = FDI_TX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530         temp &= ~FDI_LINK_TRAIN_NONE;
2531         temp |= FDI_LINK_TRAIN_PATTERN_1;
2532         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533         /* SNB-B */
2534         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537         I915_WRITE(FDI_RX_MISC(pipe),
2538                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540         reg = FDI_RX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         if (HAS_PCH_CPT(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545         } else {
2546                 temp &= ~FDI_LINK_TRAIN_NONE;
2547                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548         }
2549         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551         POSTING_READ(reg);
2552         udelay(150);
2553
2554         for (i = 0; i < 4; i++) {
2555                 reg = FDI_TX_CTL(pipe);
2556                 temp = I915_READ(reg);
2557                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558                 temp |= snb_b_fdi_train_param[i];
2559                 I915_WRITE(reg, temp);
2560
2561                 POSTING_READ(reg);
2562                 udelay(500);
2563
2564                 for (retry = 0; retry < 5; retry++) {
2565                         reg = FDI_RX_IIR(pipe);
2566                         temp = I915_READ(reg);
2567                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568                         if (temp & FDI_RX_BIT_LOCK) {
2569                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571                                 break;
2572                         }
2573                         udelay(50);
2574                 }
2575                 if (retry < 5)
2576                         break;
2577         }
2578         if (i == 4)
2579                 DRM_ERROR("FDI train 1 fail!\n");
2580
2581         /* Train 2 */
2582         reg = FDI_TX_CTL(pipe);
2583         temp = I915_READ(reg);
2584         temp &= ~FDI_LINK_TRAIN_NONE;
2585         temp |= FDI_LINK_TRAIN_PATTERN_2;
2586         if (IS_GEN6(dev)) {
2587                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588                 /* SNB-B */
2589                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590         }
2591         I915_WRITE(reg, temp);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601         }
2602         I915_WRITE(reg, temp);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_SYMBOL_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 2 fail!\n");
2633
2634         DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         int pipe = intel_crtc->pipe;
2644         u32 reg, temp, i, j;
2645
2646         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647            for train result */
2648         reg = FDI_RX_IMR(pipe);
2649         temp = I915_READ(reg);
2650         temp &= ~FDI_RX_SYMBOL_LOCK;
2651         temp &= ~FDI_RX_BIT_LOCK;
2652         I915_WRITE(reg, temp);
2653
2654         POSTING_READ(reg);
2655         udelay(150);
2656
2657         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658                       I915_READ(FDI_RX_IIR(pipe)));
2659
2660         /* Try each vswing and preemphasis setting twice before moving on */
2661         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2662                 /* disable first in case we need to retry */
2663                 reg = FDI_TX_CTL(pipe);
2664                 temp = I915_READ(reg);
2665                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666                 temp &= ~FDI_TX_ENABLE;
2667                 I915_WRITE(reg, temp);
2668
2669                 reg = FDI_RX_CTL(pipe);
2670                 temp = I915_READ(reg);
2671                 temp &= ~FDI_LINK_TRAIN_AUTO;
2672                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673                 temp &= ~FDI_RX_ENABLE;
2674                 I915_WRITE(reg, temp);
2675
2676                 /* enable CPU FDI TX and PCH FDI RX */
2677                 reg = FDI_TX_CTL(pipe);
2678                 temp = I915_READ(reg);
2679                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2680                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2681                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2682                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683                 temp |= snb_b_fdi_train_param[j/2];
2684                 temp |= FDI_COMPOSITE_SYNC;
2685                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2686
2687                 I915_WRITE(FDI_RX_MISC(pipe),
2688                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2689
2690                 reg = FDI_RX_CTL(pipe);
2691                 temp = I915_READ(reg);
2692                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2693                 temp |= FDI_COMPOSITE_SYNC;
2694                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2695
2696                 POSTING_READ(reg);
2697                 udelay(1); /* should be 0.5us */
2698
2699                 for (i = 0; i < 4; i++) {
2700                         reg = FDI_RX_IIR(pipe);
2701                         temp = I915_READ(reg);
2702                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704                         if (temp & FDI_RX_BIT_LOCK ||
2705                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2708                                               i);
2709                                 break;
2710                         }
2711                         udelay(1); /* should be 0.5us */
2712                 }
2713                 if (i == 4) {
2714                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2715                         continue;
2716                 }
2717
2718                 /* Train 2 */
2719                 reg = FDI_TX_CTL(pipe);
2720                 temp = I915_READ(reg);
2721                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2722                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2723                 I915_WRITE(reg, temp);
2724
2725                 reg = FDI_RX_CTL(pipe);
2726                 temp = I915_READ(reg);
2727                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2728                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2729                 I915_WRITE(reg, temp);
2730
2731                 POSTING_READ(reg);
2732                 udelay(2); /* should be 1.5us */
2733
2734                 for (i = 0; i < 4; i++) {
2735                         reg = FDI_RX_IIR(pipe);
2736                         temp = I915_READ(reg);
2737                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2738
2739                         if (temp & FDI_RX_SYMBOL_LOCK ||
2740                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2741                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2742                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2743                                               i);
2744                                 goto train_done;
2745                         }
2746                         udelay(2); /* should be 1.5us */
2747                 }
2748                 if (i == 4)
2749                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2750         }
2751
2752 train_done:
2753         DRM_DEBUG_KMS("FDI train done.\n");
2754 }
2755
2756 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2757 {
2758         struct drm_device *dev = intel_crtc->base.dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         int pipe = intel_crtc->pipe;
2761         u32 reg, temp;
2762
2763
2764         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2768         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2769         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2770         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2771
2772         POSTING_READ(reg);
2773         udelay(200);
2774
2775         /* Switch from Rawclk to PCDclk */
2776         temp = I915_READ(reg);
2777         I915_WRITE(reg, temp | FDI_PCDCLK);
2778
2779         POSTING_READ(reg);
2780         udelay(200);
2781
2782         /* Enable CPU FDI TX PLL, always on for Ironlake */
2783         reg = FDI_TX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2786                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2787
2788                 POSTING_READ(reg);
2789                 udelay(100);
2790         }
2791 }
2792
2793 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2794 {
2795         struct drm_device *dev = intel_crtc->base.dev;
2796         struct drm_i915_private *dev_priv = dev->dev_private;
2797         int pipe = intel_crtc->pipe;
2798         u32 reg, temp;
2799
2800         /* Switch from PCDclk to Rawclk */
2801         reg = FDI_RX_CTL(pipe);
2802         temp = I915_READ(reg);
2803         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2804
2805         /* Disable CPU FDI TX PLL */
2806         reg = FDI_TX_CTL(pipe);
2807         temp = I915_READ(reg);
2808         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2809
2810         POSTING_READ(reg);
2811         udelay(100);
2812
2813         reg = FDI_RX_CTL(pipe);
2814         temp = I915_READ(reg);
2815         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2816
2817         /* Wait for the clocks to turn off. */
2818         POSTING_READ(reg);
2819         udelay(100);
2820 }
2821
2822 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2823 {
2824         struct drm_device *dev = crtc->dev;
2825         struct drm_i915_private *dev_priv = dev->dev_private;
2826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2827         int pipe = intel_crtc->pipe;
2828         u32 reg, temp;
2829
2830         /* disable CPU FDI tx and PCH FDI rx */
2831         reg = FDI_TX_CTL(pipe);
2832         temp = I915_READ(reg);
2833         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2834         POSTING_READ(reg);
2835
2836         reg = FDI_RX_CTL(pipe);
2837         temp = I915_READ(reg);
2838         temp &= ~(0x7 << 16);
2839         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2840         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2841
2842         POSTING_READ(reg);
2843         udelay(100);
2844
2845         /* Ironlake workaround, disable clock pointer after downing FDI */
2846         if (HAS_PCH_IBX(dev)) {
2847                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2848         }
2849
2850         /* still set train pattern 1 */
2851         reg = FDI_TX_CTL(pipe);
2852         temp = I915_READ(reg);
2853         temp &= ~FDI_LINK_TRAIN_NONE;
2854         temp |= FDI_LINK_TRAIN_PATTERN_1;
2855         I915_WRITE(reg, temp);
2856
2857         reg = FDI_RX_CTL(pipe);
2858         temp = I915_READ(reg);
2859         if (HAS_PCH_CPT(dev)) {
2860                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2861                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2862         } else {
2863                 temp &= ~FDI_LINK_TRAIN_NONE;
2864                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2865         }
2866         /* BPC in FDI rx is consistent with that in PIPECONF */
2867         temp &= ~(0x07 << 16);
2868         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2869         I915_WRITE(reg, temp);
2870
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         unsigned long flags;
2881         bool pending;
2882
2883         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2884             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2885                 return false;
2886
2887         spin_lock_irqsave(&dev->event_lock, flags);
2888         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2889         spin_unlock_irqrestore(&dev->event_lock, flags);
2890
2891         return pending;
2892 }
2893
2894 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2895 {
2896         struct drm_device *dev = crtc->dev;
2897         struct drm_i915_private *dev_priv = dev->dev_private;
2898
2899         if (crtc->fb == NULL)
2900                 return;
2901
2902         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2903
2904         wait_event(dev_priv->pending_flip_queue,
2905                    !intel_crtc_has_pending_flip(crtc));
2906
2907         mutex_lock(&dev->struct_mutex);
2908         intel_finish_fb(crtc->fb);
2909         mutex_unlock(&dev->struct_mutex);
2910 }
2911
2912 /* Program iCLKIP clock to the desired frequency */
2913 static void lpt_program_iclkip(struct drm_crtc *crtc)
2914 {
2915         struct drm_device *dev = crtc->dev;
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917         int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2918         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2919         u32 temp;
2920
2921         mutex_lock(&dev_priv->dpio_lock);
2922
2923         /* It is necessary to ungate the pixclk gate prior to programming
2924          * the divisors, and gate it back when it is done.
2925          */
2926         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2927
2928         /* Disable SSCCTL */
2929         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2930                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2931                                 SBI_SSCCTL_DISABLE,
2932                         SBI_ICLK);
2933
2934         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2935         if (clock == 20000) {
2936                 auxdiv = 1;
2937                 divsel = 0x41;
2938                 phaseinc = 0x20;
2939         } else {
2940                 /* The iCLK virtual clock root frequency is in MHz,
2941                  * but the adjusted_mode->clock in in KHz. To get the divisors,
2942                  * it is necessary to divide one by another, so we
2943                  * convert the virtual clock precision to KHz here for higher
2944                  * precision.
2945                  */
2946                 u32 iclk_virtual_root_freq = 172800 * 1000;
2947                 u32 iclk_pi_range = 64;
2948                 u32 desired_divisor, msb_divisor_value, pi_value;
2949
2950                 desired_divisor = (iclk_virtual_root_freq / clock);
2951                 msb_divisor_value = desired_divisor / iclk_pi_range;
2952                 pi_value = desired_divisor % iclk_pi_range;
2953
2954                 auxdiv = 0;
2955                 divsel = msb_divisor_value - 2;
2956                 phaseinc = pi_value;
2957         }
2958
2959         /* This should not happen with any sane values */
2960         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2961                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2962         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2963                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2964
2965         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2966                         clock,
2967                         auxdiv,
2968                         divsel,
2969                         phasedir,
2970                         phaseinc);
2971
2972         /* Program SSCDIVINTPHASE6 */
2973         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2974         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2975         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2976         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2977         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2978         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2979         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2980         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2981
2982         /* Program SSCAUXDIV */
2983         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2984         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2985         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2986         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2987
2988         /* Enable modulator and associated divider */
2989         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2990         temp &= ~SBI_SSCCTL_DISABLE;
2991         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2992
2993         /* Wait for initialization time */
2994         udelay(24);
2995
2996         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2997
2998         mutex_unlock(&dev_priv->dpio_lock);
2999 }
3000
3001 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3002                                                 enum pipe pch_transcoder)
3003 {
3004         struct drm_device *dev = crtc->base.dev;
3005         struct drm_i915_private *dev_priv = dev->dev_private;
3006         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3007
3008         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3009                    I915_READ(HTOTAL(cpu_transcoder)));
3010         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3011                    I915_READ(HBLANK(cpu_transcoder)));
3012         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3013                    I915_READ(HSYNC(cpu_transcoder)));
3014
3015         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3016                    I915_READ(VTOTAL(cpu_transcoder)));
3017         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3018                    I915_READ(VBLANK(cpu_transcoder)));
3019         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3020                    I915_READ(VSYNC(cpu_transcoder)));
3021         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3022                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3023 }
3024
3025 /*
3026  * Enable PCH resources required for PCH ports:
3027  *   - PCH PLLs
3028  *   - FDI training & RX/TX
3029  *   - update transcoder timings
3030  *   - DP transcoding bits
3031  *   - transcoder
3032  */
3033 static void ironlake_pch_enable(struct drm_crtc *crtc)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038         int pipe = intel_crtc->pipe;
3039         u32 reg, temp;
3040
3041         assert_pch_transcoder_disabled(dev_priv, pipe);
3042
3043         /* Write the TU size bits before fdi link training, so that error
3044          * detection works. */
3045         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3046                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3047
3048         /* For PCH output, training FDI link */
3049         dev_priv->display.fdi_link_train(crtc);
3050
3051         /* We need to program the right clock selection before writing the pixel
3052          * mutliplier into the DPLL. */
3053         if (HAS_PCH_CPT(dev)) {
3054                 u32 sel;
3055
3056                 temp = I915_READ(PCH_DPLL_SEL);
3057                 temp |= TRANS_DPLL_ENABLE(pipe);
3058                 sel = TRANS_DPLLB_SEL(pipe);
3059                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3060                         temp |= sel;
3061                 else
3062                         temp &= ~sel;
3063                 I915_WRITE(PCH_DPLL_SEL, temp);
3064         }
3065
3066         /* XXX: pch pll's can be enabled any time before we enable the PCH
3067          * transcoder, and we actually should do this to not upset any PCH
3068          * transcoder that already use the clock when we share it.
3069          *
3070          * Note that enable_shared_dpll tries to do the right thing, but
3071          * get_shared_dpll unconditionally resets the pll - we need that to have
3072          * the right LVDS enable sequence. */
3073         ironlake_enable_shared_dpll(intel_crtc);
3074
3075         /* set transcoder timing, panel must allow it */
3076         assert_panel_unlocked(dev_priv, pipe);
3077         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3078
3079         intel_fdi_normal_train(crtc);
3080
3081         /* For PCH DP, enable TRANS_DP_CTL */
3082         if (HAS_PCH_CPT(dev) &&
3083             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3084              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3085                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3086                 reg = TRANS_DP_CTL(pipe);
3087                 temp = I915_READ(reg);
3088                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3089                           TRANS_DP_SYNC_MASK |
3090                           TRANS_DP_BPC_MASK);
3091                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3092                          TRANS_DP_ENH_FRAMING);
3093                 temp |= bpc << 9; /* same format but at 11:9 */
3094
3095                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3096                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3097                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3098                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3099
3100                 switch (intel_trans_dp_port_sel(crtc)) {
3101                 case PCH_DP_B:
3102                         temp |= TRANS_DP_PORT_SEL_B;
3103                         break;
3104                 case PCH_DP_C:
3105                         temp |= TRANS_DP_PORT_SEL_C;
3106                         break;
3107                 case PCH_DP_D:
3108                         temp |= TRANS_DP_PORT_SEL_D;
3109                         break;
3110                 default:
3111                         BUG();
3112                 }
3113
3114                 I915_WRITE(reg, temp);
3115         }
3116
3117         ironlake_enable_pch_transcoder(dev_priv, pipe);
3118 }
3119
3120 static void lpt_pch_enable(struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3126
3127         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3128
3129         lpt_program_iclkip(crtc);
3130
3131         /* Set transcoder timing. */
3132         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3133
3134         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3135 }
3136
3137 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3138 {
3139         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3140
3141         if (pll == NULL)
3142                 return;
3143
3144         if (pll->refcount == 0) {
3145                 WARN(1, "bad %s refcount\n", pll->name);
3146                 return;
3147         }
3148
3149         if (--pll->refcount == 0) {
3150                 WARN_ON(pll->on);
3151                 WARN_ON(pll->active);
3152         }
3153
3154         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3155 }
3156
3157 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3158 {
3159         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3160         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3161         enum intel_dpll_id i;
3162
3163         if (pll) {
3164                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3165                               crtc->base.base.id, pll->name);
3166                 intel_put_shared_dpll(crtc);
3167         }
3168
3169         if (HAS_PCH_IBX(dev_priv->dev)) {
3170                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3171                 i = (enum intel_dpll_id) crtc->pipe;
3172                 pll = &dev_priv->shared_dplls[i];
3173
3174                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3175                               crtc->base.base.id, pll->name);
3176
3177                 goto found;
3178         }
3179
3180         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3181                 pll = &dev_priv->shared_dplls[i];
3182
3183                 /* Only want to check enabled timings first */
3184                 if (pll->refcount == 0)
3185                         continue;
3186
3187                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3188                            sizeof(pll->hw_state)) == 0) {
3189                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3190                                       crtc->base.base.id,
3191                                       pll->name, pll->refcount, pll->active);
3192
3193                         goto found;
3194                 }
3195         }
3196
3197         /* Ok no matching timings, maybe there's a free one? */
3198         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3199                 pll = &dev_priv->shared_dplls[i];
3200                 if (pll->refcount == 0) {
3201                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3202                                       crtc->base.base.id, pll->name);
3203                         goto found;
3204                 }
3205         }
3206
3207         return NULL;
3208
3209 found:
3210         crtc->config.shared_dpll = i;
3211         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3212                          pipe_name(crtc->pipe));
3213
3214         if (pll->active == 0) {
3215                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3216                        sizeof(pll->hw_state));
3217
3218                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3219                 WARN_ON(pll->on);
3220                 assert_shared_dpll_disabled(dev_priv, pll);
3221
3222                 pll->mode_set(dev_priv, pll);
3223         }
3224         pll->refcount++;
3225
3226         return pll;
3227 }
3228
3229 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3230 {
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         int dslreg = PIPEDSL(pipe);
3233         u32 temp;
3234
3235         temp = I915_READ(dslreg);
3236         udelay(500);
3237         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3238                 if (wait_for(I915_READ(dslreg) != temp, 5))
3239                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3240         }
3241 }
3242
3243 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3244 {
3245         struct drm_device *dev = crtc->base.dev;
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247         int pipe = crtc->pipe;
3248
3249         if (crtc->config.pch_pfit.size) {
3250                 /* Force use of hard-coded filter coefficients
3251                  * as some pre-programmed values are broken,
3252                  * e.g. x201.
3253                  */
3254                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3255                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3256                                                  PF_PIPE_SEL_IVB(pipe));
3257                 else
3258                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3259                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3260                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3261         }
3262 }
3263
3264 static void intel_enable_planes(struct drm_crtc *crtc)
3265 {
3266         struct drm_device *dev = crtc->dev;
3267         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3268         struct intel_plane *intel_plane;
3269
3270         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3271                 if (intel_plane->pipe == pipe)
3272                         intel_plane_restore(&intel_plane->base);
3273 }
3274
3275 static void intel_disable_planes(struct drm_crtc *crtc)
3276 {
3277         struct drm_device *dev = crtc->dev;
3278         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3279         struct intel_plane *intel_plane;
3280
3281         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3282                 if (intel_plane->pipe == pipe)
3283                         intel_plane_disable(&intel_plane->base);
3284 }
3285
3286 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3287 {
3288         struct drm_device *dev = crtc->dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3291         struct intel_encoder *encoder;
3292         int pipe = intel_crtc->pipe;
3293         int plane = intel_crtc->plane;
3294
3295         WARN_ON(!crtc->enabled);
3296
3297         if (intel_crtc->active)
3298                 return;
3299
3300         intel_crtc->active = true;
3301
3302         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3303         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3304
3305         for_each_encoder_on_crtc(dev, crtc, encoder)
3306                 if (encoder->pre_enable)
3307                         encoder->pre_enable(encoder);
3308
3309         if (intel_crtc->config.has_pch_encoder) {
3310                 /* Note: FDI PLL enabling _must_ be done before we enable the
3311                  * cpu pipes, hence this is separate from all the other fdi/pch
3312                  * enabling. */
3313                 ironlake_fdi_pll_enable(intel_crtc);
3314         } else {
3315                 assert_fdi_tx_disabled(dev_priv, pipe);
3316                 assert_fdi_rx_disabled(dev_priv, pipe);
3317         }
3318
3319         ironlake_pfit_enable(intel_crtc);
3320
3321         /*
3322          * On ILK+ LUT must be loaded before the pipe is running but with
3323          * clocks enabled
3324          */
3325         intel_crtc_load_lut(crtc);
3326
3327         intel_update_watermarks(crtc);
3328         intel_enable_pipe(dev_priv, pipe,
3329                           intel_crtc->config.has_pch_encoder, false);
3330         intel_enable_plane(dev_priv, plane, pipe);
3331         intel_enable_planes(crtc);
3332         intel_crtc_update_cursor(crtc, true);
3333
3334         if (intel_crtc->config.has_pch_encoder)
3335                 ironlake_pch_enable(crtc);
3336
3337         mutex_lock(&dev->struct_mutex);
3338         intel_update_fbc(dev);
3339         mutex_unlock(&dev->struct_mutex);
3340
3341         for_each_encoder_on_crtc(dev, crtc, encoder)
3342                 encoder->enable(encoder);
3343
3344         if (HAS_PCH_CPT(dev))
3345                 cpt_verify_modeset(dev, intel_crtc->pipe);
3346
3347         /*
3348          * There seems to be a race in PCH platform hw (at least on some
3349          * outputs) where an enabled pipe still completes any pageflip right
3350          * away (as if the pipe is off) instead of waiting for vblank. As soon
3351          * as the first vblank happend, everything works as expected. Hence just
3352          * wait for one vblank before returning to avoid strange things
3353          * happening.
3354          */
3355         intel_wait_for_vblank(dev, intel_crtc->pipe);
3356 }
3357
3358 /* IPS only exists on ULT machines and is tied to pipe A. */
3359 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3360 {
3361         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3362 }
3363
3364 static void hsw_enable_ips(struct intel_crtc *crtc)
3365 {
3366         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3367
3368         if (!crtc->config.ips_enabled)
3369                 return;
3370
3371         /* We can only enable IPS after we enable a plane and wait for a vblank.
3372          * We guarantee that the plane is enabled by calling intel_enable_ips
3373          * only after intel_enable_plane. And intel_enable_plane already waits
3374          * for a vblank, so all we need to do here is to enable the IPS bit. */
3375         assert_plane_enabled(dev_priv, crtc->plane);
3376         I915_WRITE(IPS_CTL, IPS_ENABLE);
3377 }
3378
3379 static void hsw_disable_ips(struct intel_crtc *crtc)
3380 {
3381         struct drm_device *dev = crtc->base.dev;
3382         struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384         if (!crtc->config.ips_enabled)
3385                 return;
3386
3387         assert_plane_enabled(dev_priv, crtc->plane);
3388         I915_WRITE(IPS_CTL, 0);
3389
3390         /* We need to wait for a vblank before we can disable the plane. */
3391         intel_wait_for_vblank(dev, crtc->pipe);
3392 }
3393
3394 static void haswell_crtc_enable(struct drm_crtc *crtc)
3395 {
3396         struct drm_device *dev = crtc->dev;
3397         struct drm_i915_private *dev_priv = dev->dev_private;
3398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3399         struct intel_encoder *encoder;
3400         int pipe = intel_crtc->pipe;
3401         int plane = intel_crtc->plane;
3402
3403         WARN_ON(!crtc->enabled);
3404
3405         if (intel_crtc->active)
3406                 return;
3407
3408         intel_crtc->active = true;
3409
3410         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3411         if (intel_crtc->config.has_pch_encoder)
3412                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3413
3414         if (intel_crtc->config.has_pch_encoder)
3415                 dev_priv->display.fdi_link_train(crtc);
3416
3417         for_each_encoder_on_crtc(dev, crtc, encoder)
3418                 if (encoder->pre_enable)
3419                         encoder->pre_enable(encoder);
3420
3421         intel_ddi_enable_pipe_clock(intel_crtc);
3422
3423         ironlake_pfit_enable(intel_crtc);
3424
3425         /*
3426          * On ILK+ LUT must be loaded before the pipe is running but with
3427          * clocks enabled
3428          */
3429         intel_crtc_load_lut(crtc);
3430
3431         intel_ddi_set_pipe_settings(crtc);
3432         intel_ddi_enable_transcoder_func(crtc);
3433
3434         intel_update_watermarks(crtc);
3435         intel_enable_pipe(dev_priv, pipe,
3436                           intel_crtc->config.has_pch_encoder, false);
3437         intel_enable_plane(dev_priv, plane, pipe);
3438         intel_enable_planes(crtc);
3439         intel_crtc_update_cursor(crtc, true);
3440
3441         hsw_enable_ips(intel_crtc);
3442
3443         if (intel_crtc->config.has_pch_encoder)
3444                 lpt_pch_enable(crtc);
3445
3446         mutex_lock(&dev->struct_mutex);
3447         intel_update_fbc(dev);
3448         mutex_unlock(&dev->struct_mutex);
3449
3450         for_each_encoder_on_crtc(dev, crtc, encoder) {
3451                 encoder->enable(encoder);
3452                 intel_opregion_notify_encoder(encoder, true);
3453         }
3454
3455         /*
3456          * There seems to be a race in PCH platform hw (at least on some
3457          * outputs) where an enabled pipe still completes any pageflip right
3458          * away (as if the pipe is off) instead of waiting for vblank. As soon
3459          * as the first vblank happend, everything works as expected. Hence just
3460          * wait for one vblank before returning to avoid strange things
3461          * happening.
3462          */
3463         intel_wait_for_vblank(dev, intel_crtc->pipe);
3464 }
3465
3466 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3467 {
3468         struct drm_device *dev = crtc->base.dev;
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470         int pipe = crtc->pipe;
3471
3472         /* To avoid upsetting the power well on haswell only disable the pfit if
3473          * it's in use. The hw state code will make sure we get this right. */
3474         if (crtc->config.pch_pfit.size) {
3475                 I915_WRITE(PF_CTL(pipe), 0);
3476                 I915_WRITE(PF_WIN_POS(pipe), 0);
3477                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3478         }
3479 }
3480
3481 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3482 {
3483         struct drm_device *dev = crtc->dev;
3484         struct drm_i915_private *dev_priv = dev->dev_private;
3485         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3486         struct intel_encoder *encoder;
3487         int pipe = intel_crtc->pipe;
3488         int plane = intel_crtc->plane;
3489         u32 reg, temp;
3490
3491
3492         if (!intel_crtc->active)
3493                 return;
3494
3495         for_each_encoder_on_crtc(dev, crtc, encoder)
3496                 encoder->disable(encoder);
3497
3498         intel_crtc_wait_for_pending_flips(crtc);
3499         drm_vblank_off(dev, pipe);
3500
3501         if (dev_priv->fbc.plane == plane)
3502                 intel_disable_fbc(dev);
3503
3504         intel_crtc_update_cursor(crtc, false);
3505         intel_disable_planes(crtc);
3506         intel_disable_plane(dev_priv, plane, pipe);
3507
3508         if (intel_crtc->config.has_pch_encoder)
3509                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3510
3511         intel_disable_pipe(dev_priv, pipe);
3512
3513         ironlake_pfit_disable(intel_crtc);
3514
3515         for_each_encoder_on_crtc(dev, crtc, encoder)
3516                 if (encoder->post_disable)
3517                         encoder->post_disable(encoder);
3518
3519         if (intel_crtc->config.has_pch_encoder) {
3520                 ironlake_fdi_disable(crtc);
3521
3522                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3523                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3524
3525                 if (HAS_PCH_CPT(dev)) {
3526                         /* disable TRANS_DP_CTL */
3527                         reg = TRANS_DP_CTL(pipe);
3528                         temp = I915_READ(reg);
3529                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3530                                   TRANS_DP_PORT_SEL_MASK);
3531                         temp |= TRANS_DP_PORT_SEL_NONE;
3532                         I915_WRITE(reg, temp);
3533
3534                         /* disable DPLL_SEL */
3535                         temp = I915_READ(PCH_DPLL_SEL);
3536                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3537                         I915_WRITE(PCH_DPLL_SEL, temp);
3538                 }
3539
3540                 /* disable PCH DPLL */
3541                 intel_disable_shared_dpll(intel_crtc);
3542
3543                 ironlake_fdi_pll_disable(intel_crtc);
3544         }
3545
3546         intel_crtc->active = false;
3547         intel_update_watermarks(crtc);
3548
3549         mutex_lock(&dev->struct_mutex);
3550         intel_update_fbc(dev);
3551         mutex_unlock(&dev->struct_mutex);
3552 }
3553
3554 static void haswell_crtc_disable(struct drm_crtc *crtc)
3555 {
3556         struct drm_device *dev = crtc->dev;
3557         struct drm_i915_private *dev_priv = dev->dev_private;
3558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559         struct intel_encoder *encoder;
3560         int pipe = intel_crtc->pipe;
3561         int plane = intel_crtc->plane;
3562         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3563
3564         if (!intel_crtc->active)
3565                 return;
3566
3567         for_each_encoder_on_crtc(dev, crtc, encoder) {
3568                 intel_opregion_notify_encoder(encoder, false);
3569                 encoder->disable(encoder);
3570         }
3571
3572         intel_crtc_wait_for_pending_flips(crtc);
3573         drm_vblank_off(dev, pipe);
3574
3575         /* FBC must be disabled before disabling the plane on HSW. */
3576         if (dev_priv->fbc.plane == plane)
3577                 intel_disable_fbc(dev);
3578
3579         hsw_disable_ips(intel_crtc);
3580
3581         intel_crtc_update_cursor(crtc, false);
3582         intel_disable_planes(crtc);
3583         intel_disable_plane(dev_priv, plane, pipe);
3584
3585         if (intel_crtc->config.has_pch_encoder)
3586                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3587         intel_disable_pipe(dev_priv, pipe);
3588
3589         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3590
3591         ironlake_pfit_disable(intel_crtc);
3592
3593         intel_ddi_disable_pipe_clock(intel_crtc);
3594
3595         for_each_encoder_on_crtc(dev, crtc, encoder)
3596                 if (encoder->post_disable)
3597                         encoder->post_disable(encoder);
3598
3599         if (intel_crtc->config.has_pch_encoder) {
3600                 lpt_disable_pch_transcoder(dev_priv);
3601                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3602                 intel_ddi_fdi_disable(crtc);
3603         }
3604
3605         intel_crtc->active = false;
3606         intel_update_watermarks(crtc);
3607
3608         mutex_lock(&dev->struct_mutex);
3609         intel_update_fbc(dev);
3610         mutex_unlock(&dev->struct_mutex);
3611 }
3612
3613 static void ironlake_crtc_off(struct drm_crtc *crtc)
3614 {
3615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616         intel_put_shared_dpll(intel_crtc);
3617 }
3618
3619 static void haswell_crtc_off(struct drm_crtc *crtc)
3620 {
3621         intel_ddi_put_crtc_pll(crtc);
3622 }
3623
3624 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3625 {
3626         if (!enable && intel_crtc->overlay) {
3627                 struct drm_device *dev = intel_crtc->base.dev;
3628                 struct drm_i915_private *dev_priv = dev->dev_private;
3629
3630                 mutex_lock(&dev->struct_mutex);
3631                 dev_priv->mm.interruptible = false;
3632                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3633                 dev_priv->mm.interruptible = true;
3634                 mutex_unlock(&dev->struct_mutex);
3635         }
3636
3637         /* Let userspace switch the overlay on again. In most cases userspace
3638          * has to recompute where to put it anyway.
3639          */
3640 }
3641
3642 /**
3643  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3644  * cursor plane briefly if not already running after enabling the display
3645  * plane.
3646  * This workaround avoids occasional blank screens when self refresh is
3647  * enabled.
3648  */
3649 static void
3650 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3651 {
3652         u32 cntl = I915_READ(CURCNTR(pipe));
3653
3654         if ((cntl & CURSOR_MODE) == 0) {
3655                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3656
3657                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3658                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3659                 intel_wait_for_vblank(dev_priv->dev, pipe);
3660                 I915_WRITE(CURCNTR(pipe), cntl);
3661                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3662                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3663         }
3664 }
3665
3666 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3667 {
3668         struct drm_device *dev = crtc->base.dev;
3669         struct drm_i915_private *dev_priv = dev->dev_private;
3670         struct intel_crtc_config *pipe_config = &crtc->config;
3671
3672         if (!crtc->config.gmch_pfit.control)
3673                 return;
3674
3675         /*
3676          * The panel fitter should only be adjusted whilst the pipe is disabled,
3677          * according to register description and PRM.
3678          */
3679         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3680         assert_pipe_disabled(dev_priv, crtc->pipe);
3681
3682         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3683         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3684
3685         /* Border color in case we don't scale up to the full screen. Black by
3686          * default, change to something else for debugging. */
3687         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3688 }
3689
3690 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3691 {
3692         struct drm_device *dev = crtc->dev;
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695         struct intel_encoder *encoder;
3696         int pipe = intel_crtc->pipe;
3697         int plane = intel_crtc->plane;
3698         bool is_dsi;
3699
3700         WARN_ON(!crtc->enabled);
3701
3702         if (intel_crtc->active)
3703                 return;
3704
3705         intel_crtc->active = true;
3706
3707         for_each_encoder_on_crtc(dev, crtc, encoder)
3708                 if (encoder->pre_pll_enable)
3709                         encoder->pre_pll_enable(encoder);
3710
3711         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3712
3713         if (!is_dsi)
3714                 vlv_enable_pll(intel_crtc);
3715
3716         for_each_encoder_on_crtc(dev, crtc, encoder)
3717                 if (encoder->pre_enable)
3718                         encoder->pre_enable(encoder);
3719
3720         i9xx_pfit_enable(intel_crtc);
3721
3722         intel_crtc_load_lut(crtc);
3723
3724         intel_update_watermarks(crtc);
3725         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3726         intel_enable_plane(dev_priv, plane, pipe);
3727         intel_enable_planes(crtc);
3728         intel_crtc_update_cursor(crtc, true);
3729
3730         intel_update_fbc(dev);
3731
3732         for_each_encoder_on_crtc(dev, crtc, encoder)
3733                 encoder->enable(encoder);
3734 }
3735
3736 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3737 {
3738         struct drm_device *dev = crtc->dev;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741         struct intel_encoder *encoder;
3742         int pipe = intel_crtc->pipe;
3743         int plane = intel_crtc->plane;
3744
3745         WARN_ON(!crtc->enabled);
3746
3747         if (intel_crtc->active)
3748                 return;
3749
3750         intel_crtc->active = true;
3751
3752         for_each_encoder_on_crtc(dev, crtc, encoder)
3753                 if (encoder->pre_enable)
3754                         encoder->pre_enable(encoder);
3755
3756         i9xx_enable_pll(intel_crtc);
3757
3758         i9xx_pfit_enable(intel_crtc);
3759
3760         intel_crtc_load_lut(crtc);
3761
3762         intel_update_watermarks(crtc);
3763         intel_enable_pipe(dev_priv, pipe, false, false);
3764         intel_enable_plane(dev_priv, plane, pipe);
3765         intel_enable_planes(crtc);
3766         /* The fixup needs to happen before cursor is enabled */
3767         if (IS_G4X(dev))
3768                 g4x_fixup_plane(dev_priv, pipe);
3769         intel_crtc_update_cursor(crtc, true);
3770
3771         /* Give the overlay scaler a chance to enable if it's on this pipe */
3772         intel_crtc_dpms_overlay(intel_crtc, true);
3773
3774         intel_update_fbc(dev);
3775
3776         for_each_encoder_on_crtc(dev, crtc, encoder)
3777                 encoder->enable(encoder);
3778 }
3779
3780 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3781 {
3782         struct drm_device *dev = crtc->base.dev;
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784
3785         if (!crtc->config.gmch_pfit.control)
3786                 return;
3787
3788         assert_pipe_disabled(dev_priv, crtc->pipe);
3789
3790         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3791                          I915_READ(PFIT_CONTROL));
3792         I915_WRITE(PFIT_CONTROL, 0);
3793 }
3794
3795 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3796 {
3797         struct drm_device *dev = crtc->dev;
3798         struct drm_i915_private *dev_priv = dev->dev_private;
3799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3800         struct intel_encoder *encoder;
3801         int pipe = intel_crtc->pipe;
3802         int plane = intel_crtc->plane;
3803
3804         if (!intel_crtc->active)
3805                 return;
3806
3807         for_each_encoder_on_crtc(dev, crtc, encoder)
3808                 encoder->disable(encoder);
3809
3810         /* Give the overlay scaler a chance to disable if it's on this pipe */
3811         intel_crtc_wait_for_pending_flips(crtc);
3812         drm_vblank_off(dev, pipe);
3813
3814         if (dev_priv->fbc.plane == plane)
3815                 intel_disable_fbc(dev);
3816
3817         intel_crtc_dpms_overlay(intel_crtc, false);
3818         intel_crtc_update_cursor(crtc, false);
3819         intel_disable_planes(crtc);
3820         intel_disable_plane(dev_priv, plane, pipe);
3821
3822         intel_disable_pipe(dev_priv, pipe);
3823
3824         i9xx_pfit_disable(intel_crtc);
3825
3826         for_each_encoder_on_crtc(dev, crtc, encoder)
3827                 if (encoder->post_disable)
3828                         encoder->post_disable(encoder);
3829
3830         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3831                 i9xx_disable_pll(dev_priv, pipe);
3832
3833         intel_crtc->active = false;
3834         intel_update_watermarks(crtc);
3835
3836         intel_update_fbc(dev);
3837 }
3838
3839 static void i9xx_crtc_off(struct drm_crtc *crtc)
3840 {
3841 }
3842
3843 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3844                                     bool enabled)
3845 {
3846         struct drm_device *dev = crtc->dev;
3847         struct drm_i915_master_private *master_priv;
3848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3849         int pipe = intel_crtc->pipe;
3850
3851         if (!dev->primary->master)
3852                 return;
3853
3854         master_priv = dev->primary->master->driver_priv;
3855         if (!master_priv->sarea_priv)
3856                 return;
3857
3858         switch (pipe) {
3859         case 0:
3860                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3861                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3862                 break;
3863         case 1:
3864                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3865                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3866                 break;
3867         default:
3868                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3869                 break;
3870         }
3871 }
3872
3873 /**
3874  * Sets the power management mode of the pipe and plane.
3875  */
3876 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3877 {
3878         struct drm_device *dev = crtc->dev;
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880         struct intel_encoder *intel_encoder;
3881         bool enable = false;
3882
3883         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3884                 enable |= intel_encoder->connectors_active;
3885
3886         if (enable)
3887                 dev_priv->display.crtc_enable(crtc);
3888         else
3889                 dev_priv->display.crtc_disable(crtc);
3890
3891         intel_crtc_update_sarea(crtc, enable);
3892 }
3893
3894 static void intel_crtc_disable(struct drm_crtc *crtc)
3895 {
3896         struct drm_device *dev = crtc->dev;
3897         struct drm_connector *connector;
3898         struct drm_i915_private *dev_priv = dev->dev_private;
3899         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3900
3901         /* crtc should still be enabled when we disable it. */
3902         WARN_ON(!crtc->enabled);
3903
3904         dev_priv->display.crtc_disable(crtc);
3905         intel_crtc->eld_vld = false;
3906         intel_crtc_update_sarea(crtc, false);
3907         dev_priv->display.off(crtc);
3908
3909         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3910         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3911         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3912
3913         if (crtc->fb) {
3914                 mutex_lock(&dev->struct_mutex);
3915                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3916                 mutex_unlock(&dev->struct_mutex);
3917                 crtc->fb = NULL;
3918         }
3919
3920         /* Update computed state. */
3921         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3922                 if (!connector->encoder || !connector->encoder->crtc)
3923                         continue;
3924
3925                 if (connector->encoder->crtc != crtc)
3926                         continue;
3927
3928                 connector->dpms = DRM_MODE_DPMS_OFF;
3929                 to_intel_encoder(connector->encoder)->connectors_active = false;
3930         }
3931 }
3932
3933 void intel_encoder_destroy(struct drm_encoder *encoder)
3934 {
3935         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3936
3937         drm_encoder_cleanup(encoder);
3938         kfree(intel_encoder);
3939 }
3940
3941 /* Simple dpms helper for encoders with just one connector, no cloning and only
3942  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3943  * state of the entire output pipe. */
3944 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3945 {
3946         if (mode == DRM_MODE_DPMS_ON) {
3947                 encoder->connectors_active = true;
3948
3949                 intel_crtc_update_dpms(encoder->base.crtc);
3950         } else {
3951                 encoder->connectors_active = false;
3952
3953                 intel_crtc_update_dpms(encoder->base.crtc);
3954         }
3955 }
3956
3957 /* Cross check the actual hw state with our own modeset state tracking (and it's
3958  * internal consistency). */
3959 static void intel_connector_check_state(struct intel_connector *connector)
3960 {
3961         if (connector->get_hw_state(connector)) {
3962                 struct intel_encoder *encoder = connector->encoder;
3963                 struct drm_crtc *crtc;
3964                 bool encoder_enabled;
3965                 enum pipe pipe;
3966
3967                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3968                               connector->base.base.id,
3969                               drm_get_connector_name(&connector->base));
3970
3971                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3972                      "wrong connector dpms state\n");
3973                 WARN(connector->base.encoder != &encoder->base,
3974                      "active connector not linked to encoder\n");
3975                 WARN(!encoder->connectors_active,
3976                      "encoder->connectors_active not set\n");
3977
3978                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3979                 WARN(!encoder_enabled, "encoder not enabled\n");
3980                 if (WARN_ON(!encoder->base.crtc))
3981                         return;
3982
3983                 crtc = encoder->base.crtc;
3984
3985                 WARN(!crtc->enabled, "crtc not enabled\n");
3986                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3987                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3988                      "encoder active on the wrong pipe\n");
3989         }
3990 }
3991
3992 /* Even simpler default implementation, if there's really no special case to
3993  * consider. */
3994 void intel_connector_dpms(struct drm_connector *connector, int mode)
3995 {
3996         struct intel_encoder *encoder = intel_attached_encoder(connector);
3997
3998         /* All the simple cases only support two dpms states. */
3999         if (mode != DRM_MODE_DPMS_ON)
4000                 mode = DRM_MODE_DPMS_OFF;
4001
4002         if (mode == connector->dpms)
4003                 return;
4004
4005         connector->dpms = mode;
4006
4007         /* Only need to change hw state when actually enabled */
4008         if (encoder->base.crtc)
4009                 intel_encoder_dpms(encoder, mode);
4010         else
4011                 WARN_ON(encoder->connectors_active != false);
4012
4013         intel_modeset_check_state(connector->dev);
4014 }
4015
4016 /* Simple connector->get_hw_state implementation for encoders that support only
4017  * one connector and no cloning and hence the encoder state determines the state
4018  * of the connector. */
4019 bool intel_connector_get_hw_state(struct intel_connector *connector)
4020 {
4021         enum pipe pipe = 0;
4022         struct intel_encoder *encoder = connector->encoder;
4023
4024         return encoder->get_hw_state(encoder, &pipe);
4025 }
4026
4027 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4028                                      struct intel_crtc_config *pipe_config)
4029 {
4030         struct drm_i915_private *dev_priv = dev->dev_private;
4031         struct intel_crtc *pipe_B_crtc =
4032                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4033
4034         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4035                       pipe_name(pipe), pipe_config->fdi_lanes);
4036         if (pipe_config->fdi_lanes > 4) {
4037                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4038                               pipe_name(pipe), pipe_config->fdi_lanes);
4039                 return false;
4040         }
4041
4042         if (IS_HASWELL(dev)) {
4043                 if (pipe_config->fdi_lanes > 2) {
4044                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4045                                       pipe_config->fdi_lanes);
4046                         return false;
4047                 } else {
4048                         return true;
4049                 }
4050         }
4051
4052         if (INTEL_INFO(dev)->num_pipes == 2)
4053                 return true;
4054
4055         /* Ivybridge 3 pipe is really complicated */
4056         switch (pipe) {
4057         case PIPE_A:
4058                 return true;
4059         case PIPE_B:
4060                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4061                     pipe_config->fdi_lanes > 2) {
4062                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4063                                       pipe_name(pipe), pipe_config->fdi_lanes);
4064                         return false;
4065                 }
4066                 return true;
4067         case PIPE_C:
4068                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4069                     pipe_B_crtc->config.fdi_lanes <= 2) {
4070                         if (pipe_config->fdi_lanes > 2) {
4071                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4072                                               pipe_name(pipe), pipe_config->fdi_lanes);
4073                                 return false;
4074                         }
4075                 } else {
4076                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4077                         return false;
4078                 }
4079                 return true;
4080         default:
4081                 BUG();
4082         }
4083 }
4084
4085 #define RETRY 1
4086 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4087                                        struct intel_crtc_config *pipe_config)
4088 {
4089         struct drm_device *dev = intel_crtc->base.dev;
4090         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4091         int lane, link_bw, fdi_dotclock;
4092         bool setup_ok, needs_recompute = false;
4093
4094 retry:
4095         /* FDI is a binary signal running at ~2.7GHz, encoding
4096          * each output octet as 10 bits. The actual frequency
4097          * is stored as a divider into a 100MHz clock, and the
4098          * mode pixel clock is stored in units of 1KHz.
4099          * Hence the bw of each lane in terms of the mode signal
4100          * is:
4101          */
4102         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4103
4104         fdi_dotclock = adjusted_mode->clock;
4105
4106         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4107                                            pipe_config->pipe_bpp);
4108
4109         pipe_config->fdi_lanes = lane;
4110
4111         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4112                                link_bw, &pipe_config->fdi_m_n);
4113
4114         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4115                                             intel_crtc->pipe, pipe_config);
4116         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4117                 pipe_config->pipe_bpp -= 2*3;
4118                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4119                               pipe_config->pipe_bpp);
4120                 needs_recompute = true;
4121                 pipe_config->bw_constrained = true;
4122
4123                 goto retry;
4124         }
4125
4126         if (needs_recompute)
4127                 return RETRY;
4128
4129         return setup_ok ? 0 : -EINVAL;
4130 }
4131
4132 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4133                                    struct intel_crtc_config *pipe_config)
4134 {
4135         pipe_config->ips_enabled = i915_enable_ips &&
4136                                    hsw_crtc_supports_ips(crtc) &&
4137                                    pipe_config->pipe_bpp <= 24;
4138 }
4139
4140 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4141                                      struct intel_crtc_config *pipe_config)
4142 {
4143         struct drm_device *dev = crtc->base.dev;
4144         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4145
4146         /* FIXME should check pixel clock limits on all platforms */
4147         if (INTEL_INFO(dev)->gen < 4) {
4148                 struct drm_i915_private *dev_priv = dev->dev_private;
4149                 int clock_limit =
4150                         dev_priv->display.get_display_clock_speed(dev);
4151
4152                 /*
4153                  * Enable pixel doubling when the dot clock
4154                  * is > 90% of the (display) core speed.
4155                  *
4156                  * XXX: No double-wide on 915GM pipe B. Is that
4157                  * the only reason for the pipe == PIPE_A check?
4158                  */
4159                 if (crtc->pipe == PIPE_A &&
4160                     adjusted_mode->clock > clock_limit * 9 / 10) {
4161                         clock_limit *= 2;
4162                         pipe_config->double_wide = true;
4163                 }
4164
4165                 if (adjusted_mode->clock > clock_limit * 9 / 10)
4166                         return -EINVAL;
4167         }
4168
4169         /*
4170          * Pipe horizontal size must be even in:
4171          * - DVO ganged mode
4172          * - LVDS dual channel mode
4173          * - Double wide pipe
4174          */
4175         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4176              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4177                 pipe_config->pipe_src_w &= ~1;
4178
4179         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4180          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4181          */
4182         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4183                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4184                 return -EINVAL;
4185
4186         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4187                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4188         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4189                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4190                  * for lvds. */
4191                 pipe_config->pipe_bpp = 8*3;
4192         }
4193
4194         if (HAS_IPS(dev))
4195                 hsw_compute_ips_config(crtc, pipe_config);
4196
4197         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4198          * clock survives for now. */
4199         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4200                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4201
4202         if (pipe_config->has_pch_encoder)
4203                 return ironlake_fdi_compute_config(crtc, pipe_config);
4204
4205         return 0;
4206 }
4207
4208 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4209 {
4210         return 400000; /* FIXME */
4211 }
4212
4213 static int i945_get_display_clock_speed(struct drm_device *dev)
4214 {
4215         return 400000;
4216 }
4217
4218 static int i915_get_display_clock_speed(struct drm_device *dev)
4219 {
4220         return 333000;
4221 }
4222
4223 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4224 {
4225         return 200000;
4226 }
4227
4228 static int pnv_get_display_clock_speed(struct drm_device *dev)
4229 {
4230         u16 gcfgc = 0;
4231
4232         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4233
4234         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4235         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4236                 return 267000;
4237         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4238                 return 333000;
4239         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4240                 return 444000;
4241         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4242                 return 200000;
4243         default:
4244                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4245         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4246                 return 133000;
4247         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4248                 return 167000;
4249         }
4250 }
4251
4252 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4253 {
4254         u16 gcfgc = 0;
4255
4256         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4257
4258         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4259                 return 133000;
4260         else {
4261                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4262                 case GC_DISPLAY_CLOCK_333_MHZ:
4263                         return 333000;
4264                 default:
4265                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4266                         return 190000;
4267                 }
4268         }
4269 }
4270
4271 static int i865_get_display_clock_speed(struct drm_device *dev)
4272 {
4273         return 266000;
4274 }
4275
4276 static int i855_get_display_clock_speed(struct drm_device *dev)
4277 {
4278         u16 hpllcc = 0;
4279         /* Assume that the hardware is in the high speed state.  This
4280          * should be the default.
4281          */
4282         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4283         case GC_CLOCK_133_200:
4284         case GC_CLOCK_100_200:
4285                 return 200000;
4286         case GC_CLOCK_166_250:
4287                 return 250000;
4288         case GC_CLOCK_100_133:
4289                 return 133000;
4290         }
4291
4292         /* Shouldn't happen */
4293         return 0;
4294 }
4295
4296 static int i830_get_display_clock_speed(struct drm_device *dev)
4297 {
4298         return 133000;
4299 }
4300
4301 static void
4302 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4303 {
4304         while (*num > DATA_LINK_M_N_MASK ||
4305                *den > DATA_LINK_M_N_MASK) {
4306                 *num >>= 1;
4307                 *den >>= 1;
4308         }
4309 }
4310
4311 static void compute_m_n(unsigned int m, unsigned int n,
4312                         uint32_t *ret_m, uint32_t *ret_n)
4313 {
4314         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4315         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4316         intel_reduce_m_n_ratio(ret_m, ret_n);
4317 }
4318
4319 void
4320 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4321                        int pixel_clock, int link_clock,
4322                        struct intel_link_m_n *m_n)
4323 {
4324         m_n->tu = 64;
4325
4326         compute_m_n(bits_per_pixel * pixel_clock,
4327                     link_clock * nlanes * 8,
4328                     &m_n->gmch_m, &m_n->gmch_n);
4329
4330         compute_m_n(pixel_clock, link_clock,
4331                     &m_n->link_m, &m_n->link_n);
4332 }
4333
4334 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4335 {
4336         if (i915_panel_use_ssc >= 0)
4337                 return i915_panel_use_ssc != 0;
4338         return dev_priv->vbt.lvds_use_ssc
4339                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4340 }
4341
4342 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4343 {
4344         struct drm_device *dev = crtc->dev;
4345         struct drm_i915_private *dev_priv = dev->dev_private;
4346         int refclk;
4347
4348         if (IS_VALLEYVIEW(dev)) {
4349                 refclk = 100000;
4350         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4351             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4352                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4353                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4354                               refclk / 1000);
4355         } else if (!IS_GEN2(dev)) {
4356                 refclk = 96000;
4357         } else {
4358                 refclk = 48000;
4359         }
4360
4361         return refclk;
4362 }
4363
4364 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4365 {
4366         return (1 << dpll->n) << 16 | dpll->m2;
4367 }
4368
4369 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4370 {
4371         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4372 }
4373
4374 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4375                                      intel_clock_t *reduced_clock)
4376 {
4377         struct drm_device *dev = crtc->base.dev;
4378         struct drm_i915_private *dev_priv = dev->dev_private;
4379         int pipe = crtc->pipe;
4380         u32 fp, fp2 = 0;
4381
4382         if (IS_PINEVIEW(dev)) {
4383                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4384                 if (reduced_clock)
4385                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4386         } else {
4387                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4388                 if (reduced_clock)
4389                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4390         }
4391
4392         I915_WRITE(FP0(pipe), fp);
4393         crtc->config.dpll_hw_state.fp0 = fp;
4394
4395         crtc->lowfreq_avail = false;
4396         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4397             reduced_clock && i915_powersave) {
4398                 I915_WRITE(FP1(pipe), fp2);
4399                 crtc->config.dpll_hw_state.fp1 = fp2;
4400                 crtc->lowfreq_avail = true;
4401         } else {
4402                 I915_WRITE(FP1(pipe), fp);
4403                 crtc->config.dpll_hw_state.fp1 = fp;
4404         }
4405 }
4406
4407 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4408                 pipe)
4409 {
4410         u32 reg_val;
4411
4412         /*
4413          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4414          * and set it to a reasonable value instead.
4415          */
4416         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4417         reg_val &= 0xffffff00;
4418         reg_val |= 0x00000030;
4419         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4420
4421         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4422         reg_val &= 0x8cffffff;
4423         reg_val = 0x8c000000;
4424         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4425
4426         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4427         reg_val &= 0xffffff00;
4428         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4429
4430         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4431         reg_val &= 0x00ffffff;
4432         reg_val |= 0xb0000000;
4433         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4434 }
4435
4436 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4437                                          struct intel_link_m_n *m_n)
4438 {
4439         struct drm_device *dev = crtc->base.dev;
4440         struct drm_i915_private *dev_priv = dev->dev_private;
4441         int pipe = crtc->pipe;
4442
4443         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4444         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4445         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4446         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4447 }
4448
4449 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4450                                          struct intel_link_m_n *m_n)
4451 {
4452         struct drm_device *dev = crtc->base.dev;
4453         struct drm_i915_private *dev_priv = dev->dev_private;
4454         int pipe = crtc->pipe;
4455         enum transcoder transcoder = crtc->config.cpu_transcoder;
4456
4457         if (INTEL_INFO(dev)->gen >= 5) {
4458                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4459                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4460                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4461                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4462         } else {
4463                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4464                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4465                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4466                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4467         }
4468 }
4469
4470 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4471 {
4472         if (crtc->config.has_pch_encoder)
4473                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4474         else
4475                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4476 }
4477
4478 static void vlv_update_pll(struct intel_crtc *crtc)
4479 {
4480         struct drm_device *dev = crtc->base.dev;
4481         struct drm_i915_private *dev_priv = dev->dev_private;
4482         int pipe = crtc->pipe;
4483         u32 dpll, mdiv;
4484         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4485         u32 coreclk, reg_val, dpll_md;
4486
4487         mutex_lock(&dev_priv->dpio_lock);
4488
4489         bestn = crtc->config.dpll.n;
4490         bestm1 = crtc->config.dpll.m1;
4491         bestm2 = crtc->config.dpll.m2;
4492         bestp1 = crtc->config.dpll.p1;
4493         bestp2 = crtc->config.dpll.p2;
4494
4495         /* See eDP HDMI DPIO driver vbios notes doc */
4496
4497         /* PLL B needs special handling */
4498         if (pipe)
4499                 vlv_pllb_recal_opamp(dev_priv, pipe);
4500
4501         /* Set up Tx target for periodic Rcomp update */
4502         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4503
4504         /* Disable target IRef on PLL */
4505         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4506         reg_val &= 0x00ffffff;
4507         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4508
4509         /* Disable fast lock */
4510         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4511
4512         /* Set idtafcrecal before PLL is enabled */
4513         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4514         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4515         mdiv |= ((bestn << DPIO_N_SHIFT));
4516         mdiv |= (1 << DPIO_K_SHIFT);
4517
4518         /*
4519          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4520          * but we don't support that).
4521          * Note: don't use the DAC post divider as it seems unstable.
4522          */
4523         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4524         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4525
4526         mdiv |= DPIO_ENABLE_CALIBRATION;
4527         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4528
4529         /* Set HBR and RBR LPF coefficients */
4530         if (crtc->config.port_clock == 162000 ||
4531             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4532             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4533                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4534                                  0x009f0003);
4535         else
4536                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4537                                  0x00d0000f);
4538
4539         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4540             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4541                 /* Use SSC source */
4542                 if (!pipe)
4543                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4544                                          0x0df40000);
4545                 else
4546                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4547                                          0x0df70000);
4548         } else { /* HDMI or VGA */
4549                 /* Use bend source */
4550                 if (!pipe)
4551                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4552                                          0x0df70000);
4553                 else
4554                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4555                                          0x0df40000);
4556         }
4557
4558         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4559         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4560         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4561             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4562                 coreclk |= 0x01000000;
4563         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4564
4565         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4566
4567         /* Enable DPIO clock input */
4568         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4569                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4570         if (pipe)
4571                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4572
4573         dpll |= DPLL_VCO_ENABLE;
4574         crtc->config.dpll_hw_state.dpll = dpll;
4575
4576         dpll_md = (crtc->config.pixel_multiplier - 1)
4577                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4578         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4579
4580         if (crtc->config.has_dp_encoder)
4581                 intel_dp_set_m_n(crtc);
4582
4583         mutex_unlock(&dev_priv->dpio_lock);
4584 }
4585
4586 static void i9xx_update_pll(struct intel_crtc *crtc,
4587                             intel_clock_t *reduced_clock,
4588                             int num_connectors)
4589 {
4590         struct drm_device *dev = crtc->base.dev;
4591         struct drm_i915_private *dev_priv = dev->dev_private;
4592         u32 dpll;
4593         bool is_sdvo;
4594         struct dpll *clock = &crtc->config.dpll;
4595
4596         i9xx_update_pll_dividers(crtc, reduced_clock);
4597
4598         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4599                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4600
4601         dpll = DPLL_VGA_MODE_DIS;
4602
4603         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4604                 dpll |= DPLLB_MODE_LVDS;
4605         else
4606                 dpll |= DPLLB_MODE_DAC_SERIAL;
4607
4608         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4609                 dpll |= (crtc->config.pixel_multiplier - 1)
4610                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4611         }
4612
4613         if (is_sdvo)
4614                 dpll |= DPLL_SDVO_HIGH_SPEED;
4615
4616         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4617                 dpll |= DPLL_SDVO_HIGH_SPEED;
4618
4619         /* compute bitmask from p1 value */
4620         if (IS_PINEVIEW(dev))
4621                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4622         else {
4623                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4624                 if (IS_G4X(dev) && reduced_clock)
4625                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4626         }
4627         switch (clock->p2) {
4628         case 5:
4629                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4630                 break;
4631         case 7:
4632                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4633                 break;
4634         case 10:
4635                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4636                 break;
4637         case 14:
4638                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4639                 break;
4640         }
4641         if (INTEL_INFO(dev)->gen >= 4)
4642                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4643
4644         if (crtc->config.sdvo_tv_clock)
4645                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4646         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4647                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4648                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4649         else
4650                 dpll |= PLL_REF_INPUT_DREFCLK;
4651
4652         dpll |= DPLL_VCO_ENABLE;
4653         crtc->config.dpll_hw_state.dpll = dpll;
4654
4655         if (INTEL_INFO(dev)->gen >= 4) {
4656                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4657                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4658                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4659         }
4660
4661         if (crtc->config.has_dp_encoder)
4662                 intel_dp_set_m_n(crtc);
4663 }
4664
4665 static void i8xx_update_pll(struct intel_crtc *crtc,
4666                             intel_clock_t *reduced_clock,
4667                             int num_connectors)
4668 {
4669         struct drm_device *dev = crtc->base.dev;
4670         struct drm_i915_private *dev_priv = dev->dev_private;
4671         u32 dpll;
4672         struct dpll *clock = &crtc->config.dpll;
4673
4674         i9xx_update_pll_dividers(crtc, reduced_clock);
4675
4676         dpll = DPLL_VGA_MODE_DIS;
4677
4678         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4679                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4680         } else {
4681                 if (clock->p1 == 2)
4682                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4683                 else
4684                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4685                 if (clock->p2 == 4)
4686                         dpll |= PLL_P2_DIVIDE_BY_4;
4687         }
4688
4689         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4690                 dpll |= DPLL_DVO_2X_MODE;
4691
4692         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4693                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4694                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4695         else
4696                 dpll |= PLL_REF_INPUT_DREFCLK;
4697
4698         dpll |= DPLL_VCO_ENABLE;
4699         crtc->config.dpll_hw_state.dpll = dpll;
4700 }
4701
4702 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4703 {
4704         struct drm_device *dev = intel_crtc->base.dev;
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         enum pipe pipe = intel_crtc->pipe;
4707         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4708         struct drm_display_mode *adjusted_mode =
4709                 &intel_crtc->config.adjusted_mode;
4710         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4711
4712         /* We need to be careful not to changed the adjusted mode, for otherwise
4713          * the hw state checker will get angry at the mismatch. */
4714         crtc_vtotal = adjusted_mode->crtc_vtotal;
4715         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4716
4717         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4718                 /* the chip adds 2 halflines automatically */
4719                 crtc_vtotal -= 1;
4720                 crtc_vblank_end -= 1;
4721                 vsyncshift = adjusted_mode->crtc_hsync_start
4722                              - adjusted_mode->crtc_htotal / 2;
4723         } else {
4724                 vsyncshift = 0;
4725         }
4726
4727         if (INTEL_INFO(dev)->gen > 3)
4728                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4729
4730         I915_WRITE(HTOTAL(cpu_transcoder),
4731                    (adjusted_mode->crtc_hdisplay - 1) |
4732                    ((adjusted_mode->crtc_htotal - 1) << 16));
4733         I915_WRITE(HBLANK(cpu_transcoder),
4734                    (adjusted_mode->crtc_hblank_start - 1) |
4735                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4736         I915_WRITE(HSYNC(cpu_transcoder),
4737                    (adjusted_mode->crtc_hsync_start - 1) |
4738                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4739
4740         I915_WRITE(VTOTAL(cpu_transcoder),
4741                    (adjusted_mode->crtc_vdisplay - 1) |
4742                    ((crtc_vtotal - 1) << 16));
4743         I915_WRITE(VBLANK(cpu_transcoder),
4744                    (adjusted_mode->crtc_vblank_start - 1) |
4745                    ((crtc_vblank_end - 1) << 16));
4746         I915_WRITE(VSYNC(cpu_transcoder),
4747                    (adjusted_mode->crtc_vsync_start - 1) |
4748                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4749
4750         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4751          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4752          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4753          * bits. */
4754         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4755             (pipe == PIPE_B || pipe == PIPE_C))
4756                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4757
4758         /* pipesrc controls the size that is scaled from, which should
4759          * always be the user's requested size.
4760          */
4761         I915_WRITE(PIPESRC(pipe),
4762                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
4763                    (intel_crtc->config.pipe_src_h - 1));
4764 }
4765
4766 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4767                                    struct intel_crtc_config *pipe_config)
4768 {
4769         struct drm_device *dev = crtc->base.dev;
4770         struct drm_i915_private *dev_priv = dev->dev_private;
4771         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4772         uint32_t tmp;
4773
4774         tmp = I915_READ(HTOTAL(cpu_transcoder));
4775         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4776         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4777         tmp = I915_READ(HBLANK(cpu_transcoder));
4778         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4779         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4780         tmp = I915_READ(HSYNC(cpu_transcoder));
4781         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4782         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4783
4784         tmp = I915_READ(VTOTAL(cpu_transcoder));
4785         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4786         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4787         tmp = I915_READ(VBLANK(cpu_transcoder));
4788         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4789         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4790         tmp = I915_READ(VSYNC(cpu_transcoder));
4791         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4792         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4793
4794         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4795                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4796                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4797                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4798         }
4799
4800         tmp = I915_READ(PIPESRC(crtc->pipe));
4801         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4802         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4803
4804         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4805         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4806 }
4807
4808 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4809                                              struct intel_crtc_config *pipe_config)
4810 {
4811         struct drm_crtc *crtc = &intel_crtc->base;
4812
4813         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4814         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4815         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4816         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4817
4818         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4819         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4820         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4821         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4822
4823         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4824
4825         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4826         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4827 }
4828
4829 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4830 {
4831         struct drm_device *dev = intel_crtc->base.dev;
4832         struct drm_i915_private *dev_priv = dev->dev_private;
4833         uint32_t pipeconf;
4834
4835         pipeconf = 0;
4836
4837         if (intel_crtc->config.double_wide)
4838                 pipeconf |= PIPECONF_DOUBLE_WIDE;
4839
4840         /* only g4x and later have fancy bpc/dither controls */
4841         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4842                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4843                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4844                         pipeconf |= PIPECONF_DITHER_EN |
4845                                     PIPECONF_DITHER_TYPE_SP;
4846
4847                 switch (intel_crtc->config.pipe_bpp) {
4848                 case 18:
4849                         pipeconf |= PIPECONF_6BPC;
4850                         break;
4851                 case 24:
4852                         pipeconf |= PIPECONF_8BPC;
4853                         break;
4854                 case 30:
4855                         pipeconf |= PIPECONF_10BPC;
4856                         break;
4857                 default:
4858                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4859                         BUG();
4860                 }
4861         }
4862
4863         if (HAS_PIPE_CXSR(dev)) {
4864                 if (intel_crtc->lowfreq_avail) {
4865                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4866                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4867                 } else {
4868                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4869                 }
4870         }
4871
4872         if (!IS_GEN2(dev) &&
4873             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4874                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4875         else
4876                 pipeconf |= PIPECONF_PROGRESSIVE;
4877
4878         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4879                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4880
4881         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4882         POSTING_READ(PIPECONF(intel_crtc->pipe));
4883 }
4884
4885 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4886                               int x, int y,
4887                               struct drm_framebuffer *fb)
4888 {
4889         struct drm_device *dev = crtc->dev;
4890         struct drm_i915_private *dev_priv = dev->dev_private;
4891         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4892         int pipe = intel_crtc->pipe;
4893         int plane = intel_crtc->plane;
4894         int refclk, num_connectors = 0;
4895         intel_clock_t clock, reduced_clock;
4896         u32 dspcntr;
4897         bool ok, has_reduced_clock = false;
4898         bool is_lvds = false, is_dsi = false;
4899         struct intel_encoder *encoder;
4900         const intel_limit_t *limit;
4901         int ret;
4902
4903         for_each_encoder_on_crtc(dev, crtc, encoder) {
4904                 switch (encoder->type) {
4905                 case INTEL_OUTPUT_LVDS:
4906                         is_lvds = true;
4907                         break;
4908                 case INTEL_OUTPUT_DSI:
4909                         is_dsi = true;
4910                         break;
4911                 }
4912
4913                 num_connectors++;
4914         }
4915
4916         refclk = i9xx_get_refclk(crtc, num_connectors);
4917
4918         if (!is_dsi && !intel_crtc->config.clock_set) {
4919                 /*
4920                  * Returns a set of divisors for the desired target clock with
4921                  * the given refclk, or FALSE.  The returned values represent
4922                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4923                  * 2) / p1 / p2.
4924                  */
4925                 limit = intel_limit(crtc, refclk);
4926                 ok = dev_priv->display.find_dpll(limit, crtc,
4927                                                  intel_crtc->config.port_clock,
4928                                                  refclk, NULL, &clock);
4929                 if (!ok && !intel_crtc->config.clock_set) {
4930                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
4931                         return -EINVAL;
4932                 }
4933         }
4934
4935         /* Ensure that the cursor is valid for the new mode before changing... */
4936         intel_crtc_update_cursor(crtc, true);
4937
4938         if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
4939                 /*
4940                  * Ensure we match the reduced clock's P to the target clock.
4941                  * If the clocks don't match, we can't switch the display clock
4942                  * by using the FP0/FP1. In such case we will disable the LVDS
4943                  * downclock feature.
4944                 */
4945                 limit = intel_limit(crtc, refclk);
4946                 has_reduced_clock =
4947                         dev_priv->display.find_dpll(limit, crtc,
4948                                                     dev_priv->lvds_downclock,
4949                                                     refclk, &clock,
4950                                                     &reduced_clock);
4951         }
4952         /* Compat-code for transition, will disappear. */
4953         if (!intel_crtc->config.clock_set) {
4954                 intel_crtc->config.dpll.n = clock.n;
4955                 intel_crtc->config.dpll.m1 = clock.m1;
4956                 intel_crtc->config.dpll.m2 = clock.m2;
4957                 intel_crtc->config.dpll.p1 = clock.p1;
4958                 intel_crtc->config.dpll.p2 = clock.p2;
4959         }
4960
4961         if (IS_GEN2(dev)) {
4962                 i8xx_update_pll(intel_crtc,
4963                                 has_reduced_clock ? &reduced_clock : NULL,
4964                                 num_connectors);
4965         } else if (IS_VALLEYVIEW(dev)) {
4966                 if (!is_dsi)
4967                         vlv_update_pll(intel_crtc);
4968         } else {
4969                 i9xx_update_pll(intel_crtc,
4970                                 has_reduced_clock ? &reduced_clock : NULL,
4971                                 num_connectors);
4972         }
4973
4974         /* Set up the display plane register */
4975         dspcntr = DISPPLANE_GAMMA_ENABLE;
4976
4977         if (!IS_VALLEYVIEW(dev)) {
4978                 if (pipe == 0)
4979                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4980                 else
4981                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4982         }
4983
4984         intel_set_pipe_timings(intel_crtc);
4985
4986         /* pipesrc and dspsize control the size that is scaled from,
4987          * which should always be the user's requested size.
4988          */
4989         I915_WRITE(DSPSIZE(plane),
4990                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4991                    (intel_crtc->config.pipe_src_w - 1));
4992         I915_WRITE(DSPPOS(plane), 0);
4993
4994         i9xx_set_pipeconf(intel_crtc);
4995
4996         I915_WRITE(DSPCNTR(plane), dspcntr);
4997         POSTING_READ(DSPCNTR(plane));
4998
4999         ret = intel_pipe_set_base(crtc, x, y, fb);
5000
5001         return ret;
5002 }
5003
5004 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5005                                  struct intel_crtc_config *pipe_config)
5006 {
5007         struct drm_device *dev = crtc->base.dev;
5008         struct drm_i915_private *dev_priv = dev->dev_private;
5009         uint32_t tmp;
5010
5011         tmp = I915_READ(PFIT_CONTROL);
5012         if (!(tmp & PFIT_ENABLE))
5013                 return;
5014
5015         /* Check whether the pfit is attached to our pipe. */
5016         if (INTEL_INFO(dev)->gen < 4) {
5017                 if (crtc->pipe != PIPE_B)
5018                         return;
5019         } else {
5020                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5021                         return;
5022         }
5023
5024         pipe_config->gmch_pfit.control = tmp;
5025         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5026         if (INTEL_INFO(dev)->gen < 5)
5027                 pipe_config->gmch_pfit.lvds_border_bits =
5028                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5029 }
5030
5031 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5032                                  struct intel_crtc_config *pipe_config)
5033 {
5034         struct drm_device *dev = crtc->base.dev;
5035         struct drm_i915_private *dev_priv = dev->dev_private;
5036         uint32_t tmp;
5037
5038         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5039         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5040
5041         tmp = I915_READ(PIPECONF(crtc->pipe));
5042         if (!(tmp & PIPECONF_ENABLE))
5043                 return false;
5044
5045         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5046                 switch (tmp & PIPECONF_BPC_MASK) {
5047                 case PIPECONF_6BPC:
5048                         pipe_config->pipe_bpp = 18;
5049                         break;
5050                 case PIPECONF_8BPC:
5051                         pipe_config->pipe_bpp = 24;
5052                         break;
5053                 case PIPECONF_10BPC:
5054                         pipe_config->pipe_bpp = 30;
5055                         break;
5056                 default:
5057                         break;
5058                 }
5059         }
5060
5061         if (INTEL_INFO(dev)->gen < 4)
5062                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5063
5064         intel_get_pipe_timings(crtc, pipe_config);
5065
5066         i9xx_get_pfit_config(crtc, pipe_config);
5067
5068         if (INTEL_INFO(dev)->gen >= 4) {
5069                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5070                 pipe_config->pixel_multiplier =
5071                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5072                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5073                 pipe_config->dpll_hw_state.dpll_md = tmp;
5074         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5075                 tmp = I915_READ(DPLL(crtc->pipe));
5076                 pipe_config->pixel_multiplier =
5077                         ((tmp & SDVO_MULTIPLIER_MASK)
5078                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5079         } else {
5080                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5081                  * port and will be fixed up in the encoder->get_config
5082                  * function. */
5083                 pipe_config->pixel_multiplier = 1;
5084         }
5085         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5086         if (!IS_VALLEYVIEW(dev)) {
5087                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5088                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5089         } else {
5090                 /* Mask out read-only status bits. */
5091                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5092                                                      DPLL_PORTC_READY_MASK |
5093                                                      DPLL_PORTB_READY_MASK);
5094         }
5095
5096         i9xx_crtc_clock_get(crtc, pipe_config);
5097
5098         return true;
5099 }
5100
5101 static void ironlake_init_pch_refclk(struct drm_device *dev)
5102 {
5103         struct drm_i915_private *dev_priv = dev->dev_private;
5104         struct drm_mode_config *mode_config = &dev->mode_config;
5105         struct intel_encoder *encoder;
5106         u32 val, final;
5107         bool has_lvds = false;
5108         bool has_cpu_edp = false;
5109         bool has_panel = false;
5110         bool has_ck505 = false;
5111         bool can_ssc = false;
5112
5113         /* We need to take the global config into account */
5114         list_for_each_entry(encoder, &mode_config->encoder_list,
5115                             base.head) {
5116                 switch (encoder->type) {
5117                 case INTEL_OUTPUT_LVDS:
5118                         has_panel = true;
5119                         has_lvds = true;
5120                         break;
5121                 case INTEL_OUTPUT_EDP:
5122                         has_panel = true;
5123                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5124                                 has_cpu_edp = true;
5125                         break;
5126                 }
5127         }
5128
5129         if (HAS_PCH_IBX(dev)) {
5130                 has_ck505 = dev_priv->vbt.display_clock_mode;
5131                 can_ssc = has_ck505;
5132         } else {
5133                 has_ck505 = false;
5134                 can_ssc = true;
5135         }
5136
5137         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5138                       has_panel, has_lvds, has_ck505);
5139
5140         /* Ironlake: try to setup display ref clock before DPLL
5141          * enabling. This is only under driver's control after
5142          * PCH B stepping, previous chipset stepping should be
5143          * ignoring this setting.
5144          */
5145         val = I915_READ(PCH_DREF_CONTROL);
5146
5147         /* As we must carefully and slowly disable/enable each source in turn,
5148          * compute the final state we want first and check if we need to
5149          * make any changes at all.
5150          */
5151         final = val;
5152         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5153         if (has_ck505)
5154                 final |= DREF_NONSPREAD_CK505_ENABLE;
5155         else
5156                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5157
5158         final &= ~DREF_SSC_SOURCE_MASK;
5159         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5160         final &= ~DREF_SSC1_ENABLE;
5161
5162         if (has_panel) {
5163                 final |= DREF_SSC_SOURCE_ENABLE;
5164
5165                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5166                         final |= DREF_SSC1_ENABLE;
5167
5168                 if (has_cpu_edp) {
5169                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5170                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5171                         else
5172                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5173                 } else
5174                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5175         } else {
5176                 final |= DREF_SSC_SOURCE_DISABLE;
5177                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5178         }
5179
5180         if (final == val)
5181                 return;
5182
5183         /* Always enable nonspread source */
5184         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5185
5186         if (has_ck505)
5187                 val |= DREF_NONSPREAD_CK505_ENABLE;
5188         else
5189                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5190
5191         if (has_panel) {
5192                 val &= ~DREF_SSC_SOURCE_MASK;
5193                 val |= DREF_SSC_SOURCE_ENABLE;
5194
5195                 /* SSC must be turned on before enabling the CPU output  */
5196                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5197                         DRM_DEBUG_KMS("Using SSC on panel\n");
5198                         val |= DREF_SSC1_ENABLE;
5199                 } else
5200                         val &= ~DREF_SSC1_ENABLE;
5201
5202                 /* Get SSC going before enabling the outputs */
5203                 I915_WRITE(PCH_DREF_CONTROL, val);
5204                 POSTING_READ(PCH_DREF_CONTROL);
5205                 udelay(200);
5206
5207                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5208
5209                 /* Enable CPU source on CPU attached eDP */
5210                 if (has_cpu_edp) {
5211                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5212                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5213                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5214                         }
5215                         else
5216                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5217                 } else
5218                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5219
5220                 I915_WRITE(PCH_DREF_CONTROL, val);
5221                 POSTING_READ(PCH_DREF_CONTROL);
5222                 udelay(200);
5223         } else {
5224                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5225
5226                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5227
5228                 /* Turn off CPU output */
5229                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5230
5231                 I915_WRITE(PCH_DREF_CONTROL, val);
5232                 POSTING_READ(PCH_DREF_CONTROL);
5233                 udelay(200);
5234
5235                 /* Turn off the SSC source */
5236                 val &= ~DREF_SSC_SOURCE_MASK;
5237                 val |= DREF_SSC_SOURCE_DISABLE;
5238
5239                 /* Turn off SSC1 */
5240                 val &= ~DREF_SSC1_ENABLE;
5241
5242                 I915_WRITE(PCH_DREF_CONTROL, val);
5243                 POSTING_READ(PCH_DREF_CONTROL);
5244                 udelay(200);
5245         }
5246
5247         BUG_ON(val != final);
5248 }
5249
5250 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5251 {
5252         uint32_t tmp;
5253
5254         tmp = I915_READ(SOUTH_CHICKEN2);
5255         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5256         I915_WRITE(SOUTH_CHICKEN2, tmp);
5257
5258         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5259                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5260                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5261
5262         tmp = I915_READ(SOUTH_CHICKEN2);
5263         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5264         I915_WRITE(SOUTH_CHICKEN2, tmp);
5265
5266         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5267                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5268                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5269 }
5270
5271 /* WaMPhyProgramming:hsw */
5272 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5273 {
5274         uint32_t tmp;
5275
5276         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5277         tmp &= ~(0xFF << 24);
5278         tmp |= (0x12 << 24);
5279         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5280
5281         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5282         tmp |= (1 << 11);
5283         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5284
5285         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5286         tmp |= (1 << 11);
5287         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5288
5289         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5290         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5291         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5292
5293         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5294         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5295         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5296
5297         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5298         tmp &= ~(7 << 13);
5299         tmp |= (5 << 13);
5300         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5301
5302         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5303         tmp &= ~(7 << 13);
5304         tmp |= (5 << 13);
5305         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5306
5307         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5308         tmp &= ~0xFF;
5309         tmp |= 0x1C;
5310         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5311
5312         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5313         tmp &= ~0xFF;
5314         tmp |= 0x1C;
5315         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5316
5317         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5318         tmp &= ~(0xFF << 16);
5319         tmp |= (0x1C << 16);
5320         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5321
5322         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5323         tmp &= ~(0xFF << 16);
5324         tmp |= (0x1C << 16);
5325         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5326
5327         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5328         tmp |= (1 << 27);
5329         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5330
5331         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5332         tmp |= (1 << 27);
5333         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5334
5335         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5336         tmp &= ~(0xF << 28);
5337         tmp |= (4 << 28);
5338         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5339
5340         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5341         tmp &= ~(0xF << 28);
5342         tmp |= (4 << 28);
5343         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5344 }
5345
5346 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5347  * Programming" based on the parameters passed:
5348  * - Sequence to enable CLKOUT_DP
5349  * - Sequence to enable CLKOUT_DP without spread
5350  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5351  */
5352 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5353                                  bool with_fdi)
5354 {
5355         struct drm_i915_private *dev_priv = dev->dev_private;
5356         uint32_t reg, tmp;
5357
5358         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5359                 with_spread = true;
5360         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5361                  with_fdi, "LP PCH doesn't have FDI\n"))
5362                 with_fdi = false;
5363
5364         mutex_lock(&dev_priv->dpio_lock);
5365
5366         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5367         tmp &= ~SBI_SSCCTL_DISABLE;
5368         tmp |= SBI_SSCCTL_PATHALT;
5369         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5370
5371         udelay(24);
5372
5373         if (with_spread) {
5374                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5375                 tmp &= ~SBI_SSCCTL_PATHALT;
5376                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5377
5378                 if (with_fdi) {
5379                         lpt_reset_fdi_mphy(dev_priv);
5380                         lpt_program_fdi_mphy(dev_priv);
5381                 }
5382         }
5383
5384         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5385                SBI_GEN0 : SBI_DBUFF0;
5386         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5387         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5388         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5389
5390         mutex_unlock(&dev_priv->dpio_lock);
5391 }
5392
5393 /* Sequence to disable CLKOUT_DP */
5394 static void lpt_disable_clkout_dp(struct drm_device *dev)
5395 {
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         uint32_t reg, tmp;
5398
5399         mutex_lock(&dev_priv->dpio_lock);
5400
5401         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5402                SBI_GEN0 : SBI_DBUFF0;
5403         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5404         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5405         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5406
5407         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5408         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5409                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5410                         tmp |= SBI_SSCCTL_PATHALT;
5411                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5412                         udelay(32);
5413                 }
5414                 tmp |= SBI_SSCCTL_DISABLE;
5415                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5416         }
5417
5418         mutex_unlock(&dev_priv->dpio_lock);
5419 }
5420
5421 static void lpt_init_pch_refclk(struct drm_device *dev)
5422 {
5423         struct drm_mode_config *mode_config = &dev->mode_config;
5424         struct intel_encoder *encoder;
5425         bool has_vga = false;
5426
5427         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5428                 switch (encoder->type) {
5429                 case INTEL_OUTPUT_ANALOG:
5430                         has_vga = true;
5431                         break;
5432                 }
5433         }
5434
5435         if (has_vga)
5436                 lpt_enable_clkout_dp(dev, true, true);
5437         else
5438                 lpt_disable_clkout_dp(dev);
5439 }
5440
5441 /*
5442  * Initialize reference clocks when the driver loads
5443  */
5444 void intel_init_pch_refclk(struct drm_device *dev)
5445 {
5446         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5447                 ironlake_init_pch_refclk(dev);
5448         else if (HAS_PCH_LPT(dev))
5449                 lpt_init_pch_refclk(dev);
5450 }
5451
5452 static int ironlake_get_refclk(struct drm_crtc *crtc)
5453 {
5454         struct drm_device *dev = crtc->dev;
5455         struct drm_i915_private *dev_priv = dev->dev_private;
5456         struct intel_encoder *encoder;
5457         int num_connectors = 0;
5458         bool is_lvds = false;
5459
5460         for_each_encoder_on_crtc(dev, crtc, encoder) {
5461                 switch (encoder->type) {
5462                 case INTEL_OUTPUT_LVDS:
5463                         is_lvds = true;
5464                         break;
5465                 }
5466                 num_connectors++;
5467         }
5468
5469         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5470                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5471                               dev_priv->vbt.lvds_ssc_freq);
5472                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5473         }
5474
5475         return 120000;
5476 }
5477
5478 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5479 {
5480         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5482         int pipe = intel_crtc->pipe;
5483         uint32_t val;
5484
5485         val = 0;
5486
5487         switch (intel_crtc->config.pipe_bpp) {
5488         case 18:
5489                 val |= PIPECONF_6BPC;
5490                 break;
5491         case 24:
5492                 val |= PIPECONF_8BPC;
5493                 break;
5494         case 30:
5495                 val |= PIPECONF_10BPC;
5496                 break;
5497         case 36:
5498                 val |= PIPECONF_12BPC;
5499                 break;
5500         default:
5501                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5502                 BUG();
5503         }
5504
5505         if (intel_crtc->config.dither)
5506                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5507
5508         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5509                 val |= PIPECONF_INTERLACED_ILK;
5510         else
5511                 val |= PIPECONF_PROGRESSIVE;
5512
5513         if (intel_crtc->config.limited_color_range)
5514                 val |= PIPECONF_COLOR_RANGE_SELECT;
5515
5516         I915_WRITE(PIPECONF(pipe), val);
5517         POSTING_READ(PIPECONF(pipe));
5518 }
5519
5520 /*
5521  * Set up the pipe CSC unit.
5522  *
5523  * Currently only full range RGB to limited range RGB conversion
5524  * is supported, but eventually this should handle various
5525  * RGB<->YCbCr scenarios as well.
5526  */
5527 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5528 {
5529         struct drm_device *dev = crtc->dev;
5530         struct drm_i915_private *dev_priv = dev->dev_private;
5531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5532         int pipe = intel_crtc->pipe;
5533         uint16_t coeff = 0x7800; /* 1.0 */
5534
5535         /*
5536          * TODO: Check what kind of values actually come out of the pipe
5537          * with these coeff/postoff values and adjust to get the best
5538          * accuracy. Perhaps we even need to take the bpc value into
5539          * consideration.
5540          */
5541
5542         if (intel_crtc->config.limited_color_range)
5543                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5544
5545         /*
5546          * GY/GU and RY/RU should be the other way around according
5547          * to BSpec, but reality doesn't agree. Just set them up in
5548          * a way that results in the correct picture.
5549          */
5550         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5551         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5552
5553         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5554         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5555
5556         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5557         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5558
5559         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5560         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5561         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5562
5563         if (INTEL_INFO(dev)->gen > 6) {
5564                 uint16_t postoff = 0;
5565
5566                 if (intel_crtc->config.limited_color_range)
5567                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5568
5569                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5570                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5571                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5572
5573                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5574         } else {
5575                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5576
5577                 if (intel_crtc->config.limited_color_range)
5578                         mode |= CSC_BLACK_SCREEN_OFFSET;
5579
5580                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5581         }
5582 }
5583
5584 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5585 {
5586         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5588         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5589         uint32_t val;
5590
5591         val = 0;
5592
5593         if (intel_crtc->config.dither)
5594                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5595
5596         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5597                 val |= PIPECONF_INTERLACED_ILK;
5598         else
5599                 val |= PIPECONF_PROGRESSIVE;
5600
5601         I915_WRITE(PIPECONF(cpu_transcoder), val);
5602         POSTING_READ(PIPECONF(cpu_transcoder));
5603
5604         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5605         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5606 }
5607
5608 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5609                                     intel_clock_t *clock,
5610                                     bool *has_reduced_clock,
5611                                     intel_clock_t *reduced_clock)
5612 {
5613         struct drm_device *dev = crtc->dev;
5614         struct drm_i915_private *dev_priv = dev->dev_private;
5615         struct intel_encoder *intel_encoder;
5616         int refclk;
5617         const intel_limit_t *limit;
5618         bool ret, is_lvds = false;
5619
5620         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5621                 switch (intel_encoder->type) {
5622                 case INTEL_OUTPUT_LVDS:
5623                         is_lvds = true;
5624                         break;
5625                 }
5626         }
5627
5628         refclk = ironlake_get_refclk(crtc);
5629
5630         /*
5631          * Returns a set of divisors for the desired target clock with the given
5632          * refclk, or FALSE.  The returned values represent the clock equation:
5633          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5634          */
5635         limit = intel_limit(crtc, refclk);
5636         ret = dev_priv->display.find_dpll(limit, crtc,
5637                                           to_intel_crtc(crtc)->config.port_clock,
5638                                           refclk, NULL, clock);
5639         if (!ret)
5640                 return false;
5641
5642         if (is_lvds && dev_priv->lvds_downclock_avail) {
5643                 /*
5644                  * Ensure we match the reduced clock's P to the target clock.
5645                  * If the clocks don't match, we can't switch the display clock
5646                  * by using the FP0/FP1. In such case we will disable the LVDS
5647                  * downclock feature.
5648                 */
5649                 *has_reduced_clock =
5650                         dev_priv->display.find_dpll(limit, crtc,
5651                                                     dev_priv->lvds_downclock,
5652                                                     refclk, clock,
5653                                                     reduced_clock);
5654         }
5655
5656         return true;
5657 }
5658
5659 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5660 {
5661         struct drm_i915_private *dev_priv = dev->dev_private;
5662         uint32_t temp;
5663
5664         temp = I915_READ(SOUTH_CHICKEN1);
5665         if (temp & FDI_BC_BIFURCATION_SELECT)
5666                 return;
5667
5668         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5669         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5670
5671         temp |= FDI_BC_BIFURCATION_SELECT;
5672         DRM_DEBUG_KMS("enabling fdi C rx\n");
5673         I915_WRITE(SOUTH_CHICKEN1, temp);
5674         POSTING_READ(SOUTH_CHICKEN1);
5675 }
5676
5677 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5678 {
5679         struct drm_device *dev = intel_crtc->base.dev;
5680         struct drm_i915_private *dev_priv = dev->dev_private;
5681
5682         switch (intel_crtc->pipe) {
5683         case PIPE_A:
5684                 break;
5685         case PIPE_B:
5686                 if (intel_crtc->config.fdi_lanes > 2)
5687                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5688                 else
5689                         cpt_enable_fdi_bc_bifurcation(dev);
5690
5691                 break;
5692         case PIPE_C:
5693                 cpt_enable_fdi_bc_bifurcation(dev);
5694
5695                 break;
5696         default:
5697                 BUG();
5698         }
5699 }
5700
5701 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5702 {
5703         /*
5704          * Account for spread spectrum to avoid
5705          * oversubscribing the link. Max center spread
5706          * is 2.5%; use 5% for safety's sake.
5707          */
5708         u32 bps = target_clock * bpp * 21 / 20;
5709         return bps / (link_bw * 8) + 1;
5710 }
5711
5712 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5713 {
5714         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5715 }
5716
5717 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5718                                       u32 *fp,
5719                                       intel_clock_t *reduced_clock, u32 *fp2)
5720 {
5721         struct drm_crtc *crtc = &intel_crtc->base;
5722         struct drm_device *dev = crtc->dev;
5723         struct drm_i915_private *dev_priv = dev->dev_private;
5724         struct intel_encoder *intel_encoder;
5725         uint32_t dpll;
5726         int factor, num_connectors = 0;
5727         bool is_lvds = false, is_sdvo = false;
5728
5729         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5730                 switch (intel_encoder->type) {
5731                 case INTEL_OUTPUT_LVDS:
5732                         is_lvds = true;
5733                         break;
5734                 case INTEL_OUTPUT_SDVO:
5735                 case INTEL_OUTPUT_HDMI:
5736                         is_sdvo = true;
5737                         break;
5738                 }
5739
5740                 num_connectors++;
5741         }
5742
5743         /* Enable autotuning of the PLL clock (if permissible) */
5744         factor = 21;
5745         if (is_lvds) {
5746                 if ((intel_panel_use_ssc(dev_priv) &&
5747                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5748                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5749                         factor = 25;
5750         } else if (intel_crtc->config.sdvo_tv_clock)
5751                 factor = 20;
5752
5753         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5754                 *fp |= FP_CB_TUNE;
5755
5756         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5757                 *fp2 |= FP_CB_TUNE;
5758
5759         dpll = 0;
5760
5761         if (is_lvds)
5762                 dpll |= DPLLB_MODE_LVDS;
5763         else
5764                 dpll |= DPLLB_MODE_DAC_SERIAL;
5765
5766         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5767                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5768
5769         if (is_sdvo)
5770                 dpll |= DPLL_SDVO_HIGH_SPEED;
5771         if (intel_crtc->config.has_dp_encoder)
5772                 dpll |= DPLL_SDVO_HIGH_SPEED;
5773
5774         /* compute bitmask from p1 value */
5775         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5776         /* also FPA1 */
5777         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5778
5779         switch (intel_crtc->config.dpll.p2) {
5780         case 5:
5781                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5782                 break;
5783         case 7:
5784                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5785                 break;
5786         case 10:
5787                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5788                 break;
5789         case 14:
5790                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5791                 break;
5792         }
5793
5794         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5795                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5796         else
5797                 dpll |= PLL_REF_INPUT_DREFCLK;
5798
5799         return dpll | DPLL_VCO_ENABLE;
5800 }
5801
5802 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5803                                   int x, int y,
5804                                   struct drm_framebuffer *fb)
5805 {
5806         struct drm_device *dev = crtc->dev;
5807         struct drm_i915_private *dev_priv = dev->dev_private;
5808         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5809         int pipe = intel_crtc->pipe;
5810         int plane = intel_crtc->plane;
5811         int num_connectors = 0;
5812         intel_clock_t clock, reduced_clock;
5813         u32 dpll = 0, fp = 0, fp2 = 0;
5814         bool ok, has_reduced_clock = false;
5815         bool is_lvds = false;
5816         struct intel_encoder *encoder;
5817         struct intel_shared_dpll *pll;
5818         int ret;
5819
5820         for_each_encoder_on_crtc(dev, crtc, encoder) {
5821                 switch (encoder->type) {
5822                 case INTEL_OUTPUT_LVDS:
5823                         is_lvds = true;
5824                         break;
5825                 }
5826
5827                 num_connectors++;
5828         }
5829
5830         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5831              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5832
5833         ok = ironlake_compute_clocks(crtc, &clock,
5834                                      &has_reduced_clock, &reduced_clock);
5835         if (!ok && !intel_crtc->config.clock_set) {
5836                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5837                 return -EINVAL;
5838         }
5839         /* Compat-code for transition, will disappear. */
5840         if (!intel_crtc->config.clock_set) {
5841                 intel_crtc->config.dpll.n = clock.n;
5842                 intel_crtc->config.dpll.m1 = clock.m1;
5843                 intel_crtc->config.dpll.m2 = clock.m2;
5844                 intel_crtc->config.dpll.p1 = clock.p1;
5845                 intel_crtc->config.dpll.p2 = clock.p2;
5846         }
5847
5848         /* Ensure that the cursor is valid for the new mode before changing... */
5849         intel_crtc_update_cursor(crtc, true);
5850
5851         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5852         if (intel_crtc->config.has_pch_encoder) {
5853                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5854                 if (has_reduced_clock)
5855                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5856
5857                 dpll = ironlake_compute_dpll(intel_crtc,
5858                                              &fp, &reduced_clock,
5859                                              has_reduced_clock ? &fp2 : NULL);
5860
5861                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5862                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5863                 if (has_reduced_clock)
5864                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5865                 else
5866                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5867
5868                 pll = intel_get_shared_dpll(intel_crtc);
5869                 if (pll == NULL) {
5870                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5871                                          pipe_name(pipe));
5872                         return -EINVAL;
5873                 }
5874         } else
5875                 intel_put_shared_dpll(intel_crtc);
5876
5877         if (intel_crtc->config.has_dp_encoder)
5878                 intel_dp_set_m_n(intel_crtc);
5879
5880         if (is_lvds && has_reduced_clock && i915_powersave)
5881                 intel_crtc->lowfreq_avail = true;
5882         else
5883                 intel_crtc->lowfreq_avail = false;
5884
5885         if (intel_crtc->config.has_pch_encoder) {
5886                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5887
5888         }
5889
5890         intel_set_pipe_timings(intel_crtc);
5891
5892         if (intel_crtc->config.has_pch_encoder) {
5893                 intel_cpu_transcoder_set_m_n(intel_crtc,
5894                                              &intel_crtc->config.fdi_m_n);
5895         }
5896
5897         if (IS_IVYBRIDGE(dev))
5898                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5899
5900         ironlake_set_pipeconf(crtc);
5901
5902         /* Set up the display plane register */
5903         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5904         POSTING_READ(DSPCNTR(plane));
5905
5906         ret = intel_pipe_set_base(crtc, x, y, fb);
5907
5908         return ret;
5909 }
5910
5911 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5912                                          struct intel_link_m_n *m_n)
5913 {
5914         struct drm_device *dev = crtc->base.dev;
5915         struct drm_i915_private *dev_priv = dev->dev_private;
5916         enum pipe pipe = crtc->pipe;
5917
5918         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5919         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5920         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5921                 & ~TU_SIZE_MASK;
5922         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5923         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5924                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5925 }
5926
5927 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
5928                                          enum transcoder transcoder,
5929                                          struct intel_link_m_n *m_n)
5930 {
5931         struct drm_device *dev = crtc->base.dev;
5932         struct drm_i915_private *dev_priv = dev->dev_private;
5933         enum pipe pipe = crtc->pipe;
5934
5935         if (INTEL_INFO(dev)->gen >= 5) {
5936                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
5937                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
5938                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5939                         & ~TU_SIZE_MASK;
5940                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5941                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5942                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5943         } else {
5944                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
5945                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
5946                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
5947                         & ~TU_SIZE_MASK;
5948                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
5949                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
5950                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5951         }
5952 }
5953
5954 void intel_dp_get_m_n(struct intel_crtc *crtc,
5955                       struct intel_crtc_config *pipe_config)
5956 {
5957         if (crtc->config.has_pch_encoder)
5958                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
5959         else
5960                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5961                                              &pipe_config->dp_m_n);
5962 }
5963
5964 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5965                                         struct intel_crtc_config *pipe_config)
5966 {
5967         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5968                                      &pipe_config->fdi_m_n);
5969 }
5970
5971 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5972                                      struct intel_crtc_config *pipe_config)
5973 {
5974         struct drm_device *dev = crtc->base.dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         uint32_t tmp;
5977
5978         tmp = I915_READ(PF_CTL(crtc->pipe));
5979
5980         if (tmp & PF_ENABLE) {
5981                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5982                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5983
5984                 /* We currently do not free assignements of panel fitters on
5985                  * ivb/hsw (since we don't use the higher upscaling modes which
5986                  * differentiates them) so just WARN about this case for now. */
5987                 if (IS_GEN7(dev)) {
5988                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5989                                 PF_PIPE_SEL_IVB(crtc->pipe));
5990                 }
5991         }
5992 }
5993
5994 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5995                                      struct intel_crtc_config *pipe_config)
5996 {
5997         struct drm_device *dev = crtc->base.dev;
5998         struct drm_i915_private *dev_priv = dev->dev_private;
5999         uint32_t tmp;
6000
6001         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6002         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6003
6004         tmp = I915_READ(PIPECONF(crtc->pipe));
6005         if (!(tmp & PIPECONF_ENABLE))
6006                 return false;
6007
6008         switch (tmp & PIPECONF_BPC_MASK) {
6009         case PIPECONF_6BPC:
6010                 pipe_config->pipe_bpp = 18;
6011                 break;
6012         case PIPECONF_8BPC:
6013                 pipe_config->pipe_bpp = 24;
6014                 break;
6015         case PIPECONF_10BPC:
6016                 pipe_config->pipe_bpp = 30;
6017                 break;
6018         case PIPECONF_12BPC:
6019                 pipe_config->pipe_bpp = 36;
6020                 break;
6021         default:
6022                 break;
6023         }
6024
6025         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6026                 struct intel_shared_dpll *pll;
6027
6028                 pipe_config->has_pch_encoder = true;
6029
6030                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6031                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6032                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6033
6034                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6035
6036                 if (HAS_PCH_IBX(dev_priv->dev)) {
6037                         pipe_config->shared_dpll =
6038                                 (enum intel_dpll_id) crtc->pipe;
6039                 } else {
6040                         tmp = I915_READ(PCH_DPLL_SEL);
6041                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6042                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6043                         else
6044                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6045                 }
6046
6047                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6048
6049                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6050                                            &pipe_config->dpll_hw_state));
6051
6052                 tmp = pipe_config->dpll_hw_state.dpll;
6053                 pipe_config->pixel_multiplier =
6054                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6055                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6056
6057                 ironlake_pch_clock_get(crtc, pipe_config);
6058         } else {
6059                 pipe_config->pixel_multiplier = 1;
6060         }
6061
6062         intel_get_pipe_timings(crtc, pipe_config);
6063
6064         ironlake_get_pfit_config(crtc, pipe_config);
6065
6066         return true;
6067 }
6068
6069 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6070 {
6071         struct drm_device *dev = dev_priv->dev;
6072         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6073         struct intel_crtc *crtc;
6074         unsigned long irqflags;
6075         uint32_t val;
6076
6077         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6078                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6079                      pipe_name(crtc->pipe));
6080
6081         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6082         WARN(plls->spll_refcount, "SPLL enabled\n");
6083         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6084         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6085         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6086         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6087              "CPU PWM1 enabled\n");
6088         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6089              "CPU PWM2 enabled\n");
6090         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6091              "PCH PWM1 enabled\n");
6092         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6093              "Utility pin enabled\n");
6094         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6095
6096         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6097         val = I915_READ(DEIMR);
6098         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6099              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6100         val = I915_READ(SDEIMR);
6101         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6102              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6103         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6104 }
6105
6106 /*
6107  * This function implements pieces of two sequences from BSpec:
6108  * - Sequence for display software to disable LCPLL
6109  * - Sequence for display software to allow package C8+
6110  * The steps implemented here are just the steps that actually touch the LCPLL
6111  * register. Callers should take care of disabling all the display engine
6112  * functions, doing the mode unset, fixing interrupts, etc.
6113  */
6114 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6115                        bool switch_to_fclk, bool allow_power_down)
6116 {
6117         uint32_t val;
6118
6119         assert_can_disable_lcpll(dev_priv);
6120
6121         val = I915_READ(LCPLL_CTL);
6122
6123         if (switch_to_fclk) {
6124                 val |= LCPLL_CD_SOURCE_FCLK;
6125                 I915_WRITE(LCPLL_CTL, val);
6126
6127                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6128                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6129                         DRM_ERROR("Switching to FCLK failed\n");
6130
6131                 val = I915_READ(LCPLL_CTL);
6132         }
6133
6134         val |= LCPLL_PLL_DISABLE;
6135         I915_WRITE(LCPLL_CTL, val);
6136         POSTING_READ(LCPLL_CTL);
6137
6138         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6139                 DRM_ERROR("LCPLL still locked\n");
6140
6141         val = I915_READ(D_COMP);
6142         val |= D_COMP_COMP_DISABLE;
6143         I915_WRITE(D_COMP, val);
6144         POSTING_READ(D_COMP);
6145         ndelay(100);
6146
6147         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6148                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6149
6150         if (allow_power_down) {
6151                 val = I915_READ(LCPLL_CTL);
6152                 val |= LCPLL_POWER_DOWN_ALLOW;
6153                 I915_WRITE(LCPLL_CTL, val);
6154                 POSTING_READ(LCPLL_CTL);
6155         }
6156 }
6157
6158 /*
6159  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6160  * source.
6161  */
6162 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6163 {
6164         uint32_t val;
6165
6166         val = I915_READ(LCPLL_CTL);
6167
6168         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6169                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6170                 return;
6171
6172         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6173          * we'll hang the machine! */
6174         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6175
6176         if (val & LCPLL_POWER_DOWN_ALLOW) {
6177                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6178                 I915_WRITE(LCPLL_CTL, val);
6179                 POSTING_READ(LCPLL_CTL);
6180         }
6181
6182         val = I915_READ(D_COMP);
6183         val |= D_COMP_COMP_FORCE;
6184         val &= ~D_COMP_COMP_DISABLE;
6185         I915_WRITE(D_COMP, val);
6186         POSTING_READ(D_COMP);
6187
6188         val = I915_READ(LCPLL_CTL);
6189         val &= ~LCPLL_PLL_DISABLE;
6190         I915_WRITE(LCPLL_CTL, val);
6191
6192         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6193                 DRM_ERROR("LCPLL not locked yet\n");
6194
6195         if (val & LCPLL_CD_SOURCE_FCLK) {
6196                 val = I915_READ(LCPLL_CTL);
6197                 val &= ~LCPLL_CD_SOURCE_FCLK;
6198                 I915_WRITE(LCPLL_CTL, val);
6199
6200                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6201                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6202                         DRM_ERROR("Switching back to LCPLL failed\n");
6203         }
6204
6205         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6206 }
6207
6208 void hsw_enable_pc8_work(struct work_struct *__work)
6209 {
6210         struct drm_i915_private *dev_priv =
6211                 container_of(to_delayed_work(__work), struct drm_i915_private,
6212                              pc8.enable_work);
6213         struct drm_device *dev = dev_priv->dev;
6214         uint32_t val;
6215
6216         if (dev_priv->pc8.enabled)
6217                 return;
6218
6219         DRM_DEBUG_KMS("Enabling package C8+\n");
6220
6221         dev_priv->pc8.enabled = true;
6222
6223         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6224                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6225                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6226                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6227         }
6228
6229         lpt_disable_clkout_dp(dev);
6230         hsw_pc8_disable_interrupts(dev);
6231         hsw_disable_lcpll(dev_priv, true, true);
6232 }
6233
6234 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6235 {
6236         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6237         WARN(dev_priv->pc8.disable_count < 1,
6238              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6239
6240         dev_priv->pc8.disable_count--;
6241         if (dev_priv->pc8.disable_count != 0)
6242                 return;
6243
6244         schedule_delayed_work(&dev_priv->pc8.enable_work,
6245                               msecs_to_jiffies(i915_pc8_timeout));
6246 }
6247
6248 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6249 {
6250         struct drm_device *dev = dev_priv->dev;
6251         uint32_t val;
6252
6253         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6254         WARN(dev_priv->pc8.disable_count < 0,
6255              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6256
6257         dev_priv->pc8.disable_count++;
6258         if (dev_priv->pc8.disable_count != 1)
6259                 return;
6260
6261         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6262         if (!dev_priv->pc8.enabled)
6263                 return;
6264
6265         DRM_DEBUG_KMS("Disabling package C8+\n");
6266
6267         hsw_restore_lcpll(dev_priv);
6268         hsw_pc8_restore_interrupts(dev);
6269         lpt_init_pch_refclk(dev);
6270
6271         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6272                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6273                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6274                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6275         }
6276
6277         intel_prepare_ddi(dev);
6278         i915_gem_init_swizzling(dev);
6279         mutex_lock(&dev_priv->rps.hw_lock);
6280         gen6_update_ring_freq(dev);
6281         mutex_unlock(&dev_priv->rps.hw_lock);
6282         dev_priv->pc8.enabled = false;
6283 }
6284
6285 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6286 {
6287         mutex_lock(&dev_priv->pc8.lock);
6288         __hsw_enable_package_c8(dev_priv);
6289         mutex_unlock(&dev_priv->pc8.lock);
6290 }
6291
6292 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6293 {
6294         mutex_lock(&dev_priv->pc8.lock);
6295         __hsw_disable_package_c8(dev_priv);
6296         mutex_unlock(&dev_priv->pc8.lock);
6297 }
6298
6299 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6300 {
6301         struct drm_device *dev = dev_priv->dev;
6302         struct intel_crtc *crtc;
6303         uint32_t val;
6304
6305         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6306                 if (crtc->base.enabled)
6307                         return false;
6308
6309         /* This case is still possible since we have the i915.disable_power_well
6310          * parameter and also the KVMr or something else might be requesting the
6311          * power well. */
6312         val = I915_READ(HSW_PWR_WELL_DRIVER);
6313         if (val != 0) {
6314                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6315                 return false;
6316         }
6317
6318         return true;
6319 }
6320
6321 /* Since we're called from modeset_global_resources there's no way to
6322  * symmetrically increase and decrease the refcount, so we use
6323  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6324  * or not.
6325  */
6326 static void hsw_update_package_c8(struct drm_device *dev)
6327 {
6328         struct drm_i915_private *dev_priv = dev->dev_private;
6329         bool allow;
6330
6331         if (!i915_enable_pc8)
6332                 return;
6333
6334         mutex_lock(&dev_priv->pc8.lock);
6335
6336         allow = hsw_can_enable_package_c8(dev_priv);
6337
6338         if (allow == dev_priv->pc8.requirements_met)
6339                 goto done;
6340
6341         dev_priv->pc8.requirements_met = allow;
6342
6343         if (allow)
6344                 __hsw_enable_package_c8(dev_priv);
6345         else
6346                 __hsw_disable_package_c8(dev_priv);
6347
6348 done:
6349         mutex_unlock(&dev_priv->pc8.lock);
6350 }
6351
6352 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6353 {
6354         if (!dev_priv->pc8.gpu_idle) {
6355                 dev_priv->pc8.gpu_idle = true;
6356                 hsw_enable_package_c8(dev_priv);
6357         }
6358 }
6359
6360 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6361 {
6362         if (dev_priv->pc8.gpu_idle) {
6363                 dev_priv->pc8.gpu_idle = false;
6364                 hsw_disable_package_c8(dev_priv);
6365         }
6366 }
6367
6368 static void haswell_modeset_global_resources(struct drm_device *dev)
6369 {
6370         bool enable = false;
6371         struct intel_crtc *crtc;
6372
6373         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6374                 if (!crtc->base.enabled)
6375                         continue;
6376
6377                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6378                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6379                         enable = true;
6380         }
6381
6382         intel_set_power_well(dev, enable);
6383
6384         hsw_update_package_c8(dev);
6385 }
6386
6387 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6388                                  int x, int y,
6389                                  struct drm_framebuffer *fb)
6390 {
6391         struct drm_device *dev = crtc->dev;
6392         struct drm_i915_private *dev_priv = dev->dev_private;
6393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6394         int plane = intel_crtc->plane;
6395         int ret;
6396
6397         if (!intel_ddi_pll_mode_set(crtc))
6398                 return -EINVAL;
6399
6400         /* Ensure that the cursor is valid for the new mode before changing... */
6401         intel_crtc_update_cursor(crtc, true);
6402
6403         if (intel_crtc->config.has_dp_encoder)
6404                 intel_dp_set_m_n(intel_crtc);
6405
6406         intel_crtc->lowfreq_avail = false;
6407
6408         intel_set_pipe_timings(intel_crtc);
6409
6410         if (intel_crtc->config.has_pch_encoder) {
6411                 intel_cpu_transcoder_set_m_n(intel_crtc,
6412                                              &intel_crtc->config.fdi_m_n);
6413         }
6414
6415         haswell_set_pipeconf(crtc);
6416
6417         intel_set_pipe_csc(crtc);
6418
6419         /* Set up the display plane register */
6420         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6421         POSTING_READ(DSPCNTR(plane));
6422
6423         ret = intel_pipe_set_base(crtc, x, y, fb);
6424
6425         return ret;
6426 }
6427
6428 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6429                                     struct intel_crtc_config *pipe_config)
6430 {
6431         struct drm_device *dev = crtc->base.dev;
6432         struct drm_i915_private *dev_priv = dev->dev_private;
6433         enum intel_display_power_domain pfit_domain;
6434         uint32_t tmp;
6435
6436         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6437         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6438
6439         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6440         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6441                 enum pipe trans_edp_pipe;
6442                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6443                 default:
6444                         WARN(1, "unknown pipe linked to edp transcoder\n");
6445                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6446                 case TRANS_DDI_EDP_INPUT_A_ON:
6447                         trans_edp_pipe = PIPE_A;
6448                         break;
6449                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6450                         trans_edp_pipe = PIPE_B;
6451                         break;
6452                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6453                         trans_edp_pipe = PIPE_C;
6454                         break;
6455                 }
6456
6457                 if (trans_edp_pipe == crtc->pipe)
6458                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6459         }
6460
6461         if (!intel_display_power_enabled(dev,
6462                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6463                 return false;
6464
6465         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6466         if (!(tmp & PIPECONF_ENABLE))
6467                 return false;
6468
6469         /*
6470          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6471          * DDI E. So just check whether this pipe is wired to DDI E and whether
6472          * the PCH transcoder is on.
6473          */
6474         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6475         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6476             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6477                 pipe_config->has_pch_encoder = true;
6478
6479                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6480                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6481                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6482
6483                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6484         }
6485
6486         intel_get_pipe_timings(crtc, pipe_config);
6487
6488         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6489         if (intel_display_power_enabled(dev, pfit_domain))
6490                 ironlake_get_pfit_config(crtc, pipe_config);
6491
6492         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6493                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6494
6495         pipe_config->pixel_multiplier = 1;
6496
6497         return true;
6498 }
6499
6500 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6501                                int x, int y,
6502                                struct drm_framebuffer *fb)
6503 {
6504         struct drm_device *dev = crtc->dev;
6505         struct drm_i915_private *dev_priv = dev->dev_private;
6506         struct intel_encoder *encoder;
6507         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6508         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6509         int pipe = intel_crtc->pipe;
6510         int ret;
6511
6512         drm_vblank_pre_modeset(dev, pipe);
6513
6514         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6515
6516         drm_vblank_post_modeset(dev, pipe);
6517
6518         if (ret != 0)
6519                 return ret;
6520
6521         for_each_encoder_on_crtc(dev, crtc, encoder) {
6522                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6523                         encoder->base.base.id,
6524                         drm_get_encoder_name(&encoder->base),
6525                         mode->base.id, mode->name);
6526                 encoder->mode_set(encoder);
6527         }
6528
6529         return 0;
6530 }
6531
6532 static bool intel_eld_uptodate(struct drm_connector *connector,
6533                                int reg_eldv, uint32_t bits_eldv,
6534                                int reg_elda, uint32_t bits_elda,
6535                                int reg_edid)
6536 {
6537         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6538         uint8_t *eld = connector->eld;
6539         uint32_t i;
6540
6541         i = I915_READ(reg_eldv);
6542         i &= bits_eldv;
6543
6544         if (!eld[0])
6545                 return !i;
6546
6547         if (!i)
6548                 return false;
6549
6550         i = I915_READ(reg_elda);
6551         i &= ~bits_elda;
6552         I915_WRITE(reg_elda, i);
6553
6554         for (i = 0; i < eld[2]; i++)
6555                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6556                         return false;
6557
6558         return true;
6559 }
6560
6561 static void g4x_write_eld(struct drm_connector *connector,
6562                           struct drm_crtc *crtc)
6563 {
6564         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6565         uint8_t *eld = connector->eld;
6566         uint32_t eldv;
6567         uint32_t len;
6568         uint32_t i;
6569
6570         i = I915_READ(G4X_AUD_VID_DID);
6571
6572         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6573                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6574         else
6575                 eldv = G4X_ELDV_DEVCTG;
6576
6577         if (intel_eld_uptodate(connector,
6578                                G4X_AUD_CNTL_ST, eldv,
6579                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6580                                G4X_HDMIW_HDMIEDID))
6581                 return;
6582
6583         i = I915_READ(G4X_AUD_CNTL_ST);
6584         i &= ~(eldv | G4X_ELD_ADDR);
6585         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6586         I915_WRITE(G4X_AUD_CNTL_ST, i);
6587
6588         if (!eld[0])
6589                 return;
6590
6591         len = min_t(uint8_t, eld[2], len);
6592         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6593         for (i = 0; i < len; i++)
6594                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6595
6596         i = I915_READ(G4X_AUD_CNTL_ST);
6597         i |= eldv;
6598         I915_WRITE(G4X_AUD_CNTL_ST, i);
6599 }
6600
6601 static void haswell_write_eld(struct drm_connector *connector,
6602                                      struct drm_crtc *crtc)
6603 {
6604         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6605         uint8_t *eld = connector->eld;
6606         struct drm_device *dev = crtc->dev;
6607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6608         uint32_t eldv;
6609         uint32_t i;
6610         int len;
6611         int pipe = to_intel_crtc(crtc)->pipe;
6612         int tmp;
6613
6614         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6615         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6616         int aud_config = HSW_AUD_CFG(pipe);
6617         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6618
6619
6620         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6621
6622         /* Audio output enable */
6623         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6624         tmp = I915_READ(aud_cntrl_st2);
6625         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6626         I915_WRITE(aud_cntrl_st2, tmp);
6627
6628         /* Wait for 1 vertical blank */
6629         intel_wait_for_vblank(dev, pipe);
6630
6631         /* Set ELD valid state */
6632         tmp = I915_READ(aud_cntrl_st2);
6633         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6634         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6635         I915_WRITE(aud_cntrl_st2, tmp);
6636         tmp = I915_READ(aud_cntrl_st2);
6637         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6638
6639         /* Enable HDMI mode */
6640         tmp = I915_READ(aud_config);
6641         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6642         /* clear N_programing_enable and N_value_index */
6643         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6644         I915_WRITE(aud_config, tmp);
6645
6646         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6647
6648         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6649         intel_crtc->eld_vld = true;
6650
6651         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6652                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6653                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6654                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6655         } else
6656                 I915_WRITE(aud_config, 0);
6657
6658         if (intel_eld_uptodate(connector,
6659                                aud_cntrl_st2, eldv,
6660                                aud_cntl_st, IBX_ELD_ADDRESS,
6661                                hdmiw_hdmiedid))
6662                 return;
6663
6664         i = I915_READ(aud_cntrl_st2);
6665         i &= ~eldv;
6666         I915_WRITE(aud_cntrl_st2, i);
6667
6668         if (!eld[0])
6669                 return;
6670
6671         i = I915_READ(aud_cntl_st);
6672         i &= ~IBX_ELD_ADDRESS;
6673         I915_WRITE(aud_cntl_st, i);
6674         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6675         DRM_DEBUG_DRIVER("port num:%d\n", i);
6676
6677         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6678         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6679         for (i = 0; i < len; i++)
6680                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6681
6682         i = I915_READ(aud_cntrl_st2);
6683         i |= eldv;
6684         I915_WRITE(aud_cntrl_st2, i);
6685
6686 }
6687
6688 static void ironlake_write_eld(struct drm_connector *connector,
6689                                      struct drm_crtc *crtc)
6690 {
6691         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6692         uint8_t *eld = connector->eld;
6693         uint32_t eldv;
6694         uint32_t i;
6695         int len;
6696         int hdmiw_hdmiedid;
6697         int aud_config;
6698         int aud_cntl_st;
6699         int aud_cntrl_st2;
6700         int pipe = to_intel_crtc(crtc)->pipe;
6701
6702         if (HAS_PCH_IBX(connector->dev)) {
6703                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6704                 aud_config = IBX_AUD_CFG(pipe);
6705                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6706                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6707         } else {
6708                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6709                 aud_config = CPT_AUD_CFG(pipe);
6710                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6711                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6712         }
6713
6714         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6715
6716         i = I915_READ(aud_cntl_st);
6717         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6718         if (!i) {
6719                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6720                 /* operate blindly on all ports */
6721                 eldv = IBX_ELD_VALIDB;
6722                 eldv |= IBX_ELD_VALIDB << 4;
6723                 eldv |= IBX_ELD_VALIDB << 8;
6724         } else {
6725                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6726                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6727         }
6728
6729         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6730                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6731                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6732                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6733         } else
6734                 I915_WRITE(aud_config, 0);
6735
6736         if (intel_eld_uptodate(connector,
6737                                aud_cntrl_st2, eldv,
6738                                aud_cntl_st, IBX_ELD_ADDRESS,
6739                                hdmiw_hdmiedid))
6740                 return;
6741
6742         i = I915_READ(aud_cntrl_st2);
6743         i &= ~eldv;
6744         I915_WRITE(aud_cntrl_st2, i);
6745
6746         if (!eld[0])
6747                 return;
6748
6749         i = I915_READ(aud_cntl_st);
6750         i &= ~IBX_ELD_ADDRESS;
6751         I915_WRITE(aud_cntl_st, i);
6752
6753         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6754         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6755         for (i = 0; i < len; i++)
6756                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6757
6758         i = I915_READ(aud_cntrl_st2);
6759         i |= eldv;
6760         I915_WRITE(aud_cntrl_st2, i);
6761 }
6762
6763 void intel_write_eld(struct drm_encoder *encoder,
6764                      struct drm_display_mode *mode)
6765 {
6766         struct drm_crtc *crtc = encoder->crtc;
6767         struct drm_connector *connector;
6768         struct drm_device *dev = encoder->dev;
6769         struct drm_i915_private *dev_priv = dev->dev_private;
6770
6771         connector = drm_select_eld(encoder, mode);
6772         if (!connector)
6773                 return;
6774
6775         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6776                          connector->base.id,
6777                          drm_get_connector_name(connector),
6778                          connector->encoder->base.id,
6779                          drm_get_encoder_name(connector->encoder));
6780
6781         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6782
6783         if (dev_priv->display.write_eld)
6784                 dev_priv->display.write_eld(connector, crtc);
6785 }
6786
6787 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6788 void intel_crtc_load_lut(struct drm_crtc *crtc)
6789 {
6790         struct drm_device *dev = crtc->dev;
6791         struct drm_i915_private *dev_priv = dev->dev_private;
6792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6793         enum pipe pipe = intel_crtc->pipe;
6794         int palreg = PALETTE(pipe);
6795         int i;
6796         bool reenable_ips = false;
6797
6798         /* The clocks have to be on to load the palette. */
6799         if (!crtc->enabled || !intel_crtc->active)
6800                 return;
6801
6802         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
6803                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
6804                         assert_dsi_pll_enabled(dev_priv);
6805                 else
6806                         assert_pll_enabled(dev_priv, pipe);
6807         }
6808
6809         /* use legacy palette for Ironlake */
6810         if (HAS_PCH_SPLIT(dev))
6811                 palreg = LGC_PALETTE(pipe);
6812
6813         /* Workaround : Do not read or write the pipe palette/gamma data while
6814          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6815          */
6816         if (intel_crtc->config.ips_enabled &&
6817             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6818              GAMMA_MODE_MODE_SPLIT)) {
6819                 hsw_disable_ips(intel_crtc);
6820                 reenable_ips = true;
6821         }
6822
6823         for (i = 0; i < 256; i++) {
6824                 I915_WRITE(palreg + 4 * i,
6825                            (intel_crtc->lut_r[i] << 16) |
6826                            (intel_crtc->lut_g[i] << 8) |
6827                            intel_crtc->lut_b[i]);
6828         }
6829
6830         if (reenable_ips)
6831                 hsw_enable_ips(intel_crtc);
6832 }
6833
6834 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6835 {
6836         struct drm_device *dev = crtc->dev;
6837         struct drm_i915_private *dev_priv = dev->dev_private;
6838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6839         bool visible = base != 0;
6840         u32 cntl;
6841
6842         if (intel_crtc->cursor_visible == visible)
6843                 return;
6844
6845         cntl = I915_READ(_CURACNTR);
6846         if (visible) {
6847                 /* On these chipsets we can only modify the base whilst
6848                  * the cursor is disabled.
6849                  */
6850                 I915_WRITE(_CURABASE, base);
6851
6852                 cntl &= ~(CURSOR_FORMAT_MASK);
6853                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6854                 cntl |= CURSOR_ENABLE |
6855                         CURSOR_GAMMA_ENABLE |
6856                         CURSOR_FORMAT_ARGB;
6857         } else
6858                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6859         I915_WRITE(_CURACNTR, cntl);
6860
6861         intel_crtc->cursor_visible = visible;
6862 }
6863
6864 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6865 {
6866         struct drm_device *dev = crtc->dev;
6867         struct drm_i915_private *dev_priv = dev->dev_private;
6868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6869         int pipe = intel_crtc->pipe;
6870         bool visible = base != 0;
6871
6872         if (intel_crtc->cursor_visible != visible) {
6873                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6874                 if (base) {
6875                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6876                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6877                         cntl |= pipe << 28; /* Connect to correct pipe */
6878                 } else {
6879                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6880                         cntl |= CURSOR_MODE_DISABLE;
6881                 }
6882                 I915_WRITE(CURCNTR(pipe), cntl);
6883
6884                 intel_crtc->cursor_visible = visible;
6885         }
6886         /* and commit changes on next vblank */
6887         I915_WRITE(CURBASE(pipe), base);
6888 }
6889
6890 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6891 {
6892         struct drm_device *dev = crtc->dev;
6893         struct drm_i915_private *dev_priv = dev->dev_private;
6894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895         int pipe = intel_crtc->pipe;
6896         bool visible = base != 0;
6897
6898         if (intel_crtc->cursor_visible != visible) {
6899                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6900                 if (base) {
6901                         cntl &= ~CURSOR_MODE;
6902                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6903                 } else {
6904                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6905                         cntl |= CURSOR_MODE_DISABLE;
6906                 }
6907                 if (IS_HASWELL(dev)) {
6908                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6909                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6910                 }
6911                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6912
6913                 intel_crtc->cursor_visible = visible;
6914         }
6915         /* and commit changes on next vblank */
6916         I915_WRITE(CURBASE_IVB(pipe), base);
6917 }
6918
6919 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6920 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6921                                      bool on)
6922 {
6923         struct drm_device *dev = crtc->dev;
6924         struct drm_i915_private *dev_priv = dev->dev_private;
6925         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6926         int pipe = intel_crtc->pipe;
6927         int x = intel_crtc->cursor_x;
6928         int y = intel_crtc->cursor_y;
6929         u32 base = 0, pos = 0;
6930         bool visible;
6931
6932         if (on)
6933                 base = intel_crtc->cursor_addr;
6934
6935         if (x >= intel_crtc->config.pipe_src_w)
6936                 base = 0;
6937
6938         if (y >= intel_crtc->config.pipe_src_h)
6939                 base = 0;
6940
6941         if (x < 0) {
6942                 if (x + intel_crtc->cursor_width <= 0)
6943                         base = 0;
6944
6945                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6946                 x = -x;
6947         }
6948         pos |= x << CURSOR_X_SHIFT;
6949
6950         if (y < 0) {
6951                 if (y + intel_crtc->cursor_height <= 0)
6952                         base = 0;
6953
6954                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6955                 y = -y;
6956         }
6957         pos |= y << CURSOR_Y_SHIFT;
6958
6959         visible = base != 0;
6960         if (!visible && !intel_crtc->cursor_visible)
6961                 return;
6962
6963         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6964                 I915_WRITE(CURPOS_IVB(pipe), pos);
6965                 ivb_update_cursor(crtc, base);
6966         } else {
6967                 I915_WRITE(CURPOS(pipe), pos);
6968                 if (IS_845G(dev) || IS_I865G(dev))
6969                         i845_update_cursor(crtc, base);
6970                 else
6971                         i9xx_update_cursor(crtc, base);
6972         }
6973 }
6974
6975 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6976                                  struct drm_file *file,
6977                                  uint32_t handle,
6978                                  uint32_t width, uint32_t height)
6979 {
6980         struct drm_device *dev = crtc->dev;
6981         struct drm_i915_private *dev_priv = dev->dev_private;
6982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6983         struct drm_i915_gem_object *obj;
6984         uint32_t addr;
6985         int ret;
6986
6987         /* if we want to turn off the cursor ignore width and height */
6988         if (!handle) {
6989                 DRM_DEBUG_KMS("cursor off\n");
6990                 addr = 0;
6991                 obj = NULL;
6992                 mutex_lock(&dev->struct_mutex);
6993                 goto finish;
6994         }
6995
6996         /* Currently we only support 64x64 cursors */
6997         if (width != 64 || height != 64) {
6998                 DRM_ERROR("we currently only support 64x64 cursors\n");
6999                 return -EINVAL;
7000         }
7001
7002         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7003         if (&obj->base == NULL)
7004                 return -ENOENT;
7005
7006         if (obj->base.size < width * height * 4) {
7007                 DRM_ERROR("buffer is to small\n");
7008                 ret = -ENOMEM;
7009                 goto fail;
7010         }
7011
7012         /* we only need to pin inside GTT if cursor is non-phy */
7013         mutex_lock(&dev->struct_mutex);
7014         if (!dev_priv->info->cursor_needs_physical) {
7015                 unsigned alignment;
7016
7017                 if (obj->tiling_mode) {
7018                         DRM_ERROR("cursor cannot be tiled\n");
7019                         ret = -EINVAL;
7020                         goto fail_locked;
7021                 }
7022
7023                 /* Note that the w/a also requires 2 PTE of padding following
7024                  * the bo. We currently fill all unused PTE with the shadow
7025                  * page and so we should always have valid PTE following the
7026                  * cursor preventing the VT-d warning.
7027                  */
7028                 alignment = 0;
7029                 if (need_vtd_wa(dev))
7030                         alignment = 64*1024;
7031
7032                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7033                 if (ret) {
7034                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7035                         goto fail_locked;
7036                 }
7037
7038                 ret = i915_gem_object_put_fence(obj);
7039                 if (ret) {
7040                         DRM_ERROR("failed to release fence for cursor");
7041                         goto fail_unpin;
7042                 }
7043
7044                 addr = i915_gem_obj_ggtt_offset(obj);
7045         } else {
7046                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7047                 ret = i915_gem_attach_phys_object(dev, obj,
7048                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7049                                                   align);
7050                 if (ret) {
7051                         DRM_ERROR("failed to attach phys object\n");
7052                         goto fail_locked;
7053                 }
7054                 addr = obj->phys_obj->handle->busaddr;
7055         }
7056
7057         if (IS_GEN2(dev))
7058                 I915_WRITE(CURSIZE, (height << 12) | width);
7059
7060  finish:
7061         if (intel_crtc->cursor_bo) {
7062                 if (dev_priv->info->cursor_needs_physical) {
7063                         if (intel_crtc->cursor_bo != obj)
7064                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7065                 } else
7066                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7067                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7068         }
7069
7070         mutex_unlock(&dev->struct_mutex);
7071
7072         intel_crtc->cursor_addr = addr;
7073         intel_crtc->cursor_bo = obj;
7074         intel_crtc->cursor_width = width;
7075         intel_crtc->cursor_height = height;
7076
7077         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7078
7079         return 0;
7080 fail_unpin:
7081         i915_gem_object_unpin_from_display_plane(obj);
7082 fail_locked:
7083         mutex_unlock(&dev->struct_mutex);
7084 fail:
7085         drm_gem_object_unreference_unlocked(&obj->base);
7086         return ret;
7087 }
7088
7089 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7090 {
7091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7092
7093         intel_crtc->cursor_x = x;
7094         intel_crtc->cursor_y = y;
7095
7096         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7097
7098         return 0;
7099 }
7100
7101 /** Sets the color ramps on behalf of RandR */
7102 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
7103                                  u16 blue, int regno)
7104 {
7105         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7106
7107         intel_crtc->lut_r[regno] = red >> 8;
7108         intel_crtc->lut_g[regno] = green >> 8;
7109         intel_crtc->lut_b[regno] = blue >> 8;
7110 }
7111
7112 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7113                              u16 *blue, int regno)
7114 {
7115         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7116
7117         *red = intel_crtc->lut_r[regno] << 8;
7118         *green = intel_crtc->lut_g[regno] << 8;
7119         *blue = intel_crtc->lut_b[regno] << 8;
7120 }
7121
7122 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7123                                  u16 *blue, uint32_t start, uint32_t size)
7124 {
7125         int end = (start + size > 256) ? 256 : start + size, i;
7126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7127
7128         for (i = start; i < end; i++) {
7129                 intel_crtc->lut_r[i] = red[i] >> 8;
7130                 intel_crtc->lut_g[i] = green[i] >> 8;
7131                 intel_crtc->lut_b[i] = blue[i] >> 8;
7132         }
7133
7134         intel_crtc_load_lut(crtc);
7135 }
7136
7137 /* VESA 640x480x72Hz mode to set on the pipe */
7138 static struct drm_display_mode load_detect_mode = {
7139         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7140                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7141 };
7142
7143 static struct drm_framebuffer *
7144 intel_framebuffer_create(struct drm_device *dev,
7145                          struct drm_mode_fb_cmd2 *mode_cmd,
7146                          struct drm_i915_gem_object *obj)
7147 {
7148         struct intel_framebuffer *intel_fb;
7149         int ret;
7150
7151         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7152         if (!intel_fb) {
7153                 drm_gem_object_unreference_unlocked(&obj->base);
7154                 return ERR_PTR(-ENOMEM);
7155         }
7156
7157         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7158         if (ret) {
7159                 drm_gem_object_unreference_unlocked(&obj->base);
7160                 kfree(intel_fb);
7161                 return ERR_PTR(ret);
7162         }
7163
7164         return &intel_fb->base;
7165 }
7166
7167 static u32
7168 intel_framebuffer_pitch_for_width(int width, int bpp)
7169 {
7170         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7171         return ALIGN(pitch, 64);
7172 }
7173
7174 static u32
7175 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7176 {
7177         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7178         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7179 }
7180
7181 static struct drm_framebuffer *
7182 intel_framebuffer_create_for_mode(struct drm_device *dev,
7183                                   struct drm_display_mode *mode,
7184                                   int depth, int bpp)
7185 {
7186         struct drm_i915_gem_object *obj;
7187         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7188
7189         obj = i915_gem_alloc_object(dev,
7190                                     intel_framebuffer_size_for_mode(mode, bpp));
7191         if (obj == NULL)
7192                 return ERR_PTR(-ENOMEM);
7193
7194         mode_cmd.width = mode->hdisplay;
7195         mode_cmd.height = mode->vdisplay;
7196         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7197                                                                 bpp);
7198         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7199
7200         return intel_framebuffer_create(dev, &mode_cmd, obj);
7201 }
7202
7203 static struct drm_framebuffer *
7204 mode_fits_in_fbdev(struct drm_device *dev,
7205                    struct drm_display_mode *mode)
7206 {
7207         struct drm_i915_private *dev_priv = dev->dev_private;
7208         struct drm_i915_gem_object *obj;
7209         struct drm_framebuffer *fb;
7210
7211         if (dev_priv->fbdev == NULL)
7212                 return NULL;
7213
7214         obj = dev_priv->fbdev->ifb.obj;
7215         if (obj == NULL)
7216                 return NULL;
7217
7218         fb = &dev_priv->fbdev->ifb.base;
7219         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7220                                                                fb->bits_per_pixel))
7221                 return NULL;
7222
7223         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7224                 return NULL;
7225
7226         return fb;
7227 }
7228
7229 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7230                                 struct drm_display_mode *mode,
7231                                 struct intel_load_detect_pipe *old)
7232 {
7233         struct intel_crtc *intel_crtc;
7234         struct intel_encoder *intel_encoder =
7235                 intel_attached_encoder(connector);
7236         struct drm_crtc *possible_crtc;
7237         struct drm_encoder *encoder = &intel_encoder->base;
7238         struct drm_crtc *crtc = NULL;
7239         struct drm_device *dev = encoder->dev;
7240         struct drm_framebuffer *fb;
7241         int i = -1;
7242
7243         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7244                       connector->base.id, drm_get_connector_name(connector),
7245                       encoder->base.id, drm_get_encoder_name(encoder));
7246
7247         /*
7248          * Algorithm gets a little messy:
7249          *
7250          *   - if the connector already has an assigned crtc, use it (but make
7251          *     sure it's on first)
7252          *
7253          *   - try to find the first unused crtc that can drive this connector,
7254          *     and use that if we find one
7255          */
7256
7257         /* See if we already have a CRTC for this connector */
7258         if (encoder->crtc) {
7259                 crtc = encoder->crtc;
7260
7261                 mutex_lock(&crtc->mutex);
7262
7263                 old->dpms_mode = connector->dpms;
7264                 old->load_detect_temp = false;
7265
7266                 /* Make sure the crtc and connector are running */
7267                 if (connector->dpms != DRM_MODE_DPMS_ON)
7268                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7269
7270                 return true;
7271         }
7272
7273         /* Find an unused one (if possible) */
7274         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7275                 i++;
7276                 if (!(encoder->possible_crtcs & (1 << i)))
7277                         continue;
7278                 if (!possible_crtc->enabled) {
7279                         crtc = possible_crtc;
7280                         break;
7281                 }
7282         }
7283
7284         /*
7285          * If we didn't find an unused CRTC, don't use any.
7286          */
7287         if (!crtc) {
7288                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7289                 return false;
7290         }
7291
7292         mutex_lock(&crtc->mutex);
7293         intel_encoder->new_crtc = to_intel_crtc(crtc);
7294         to_intel_connector(connector)->new_encoder = intel_encoder;
7295
7296         intel_crtc = to_intel_crtc(crtc);
7297         old->dpms_mode = connector->dpms;
7298         old->load_detect_temp = true;
7299         old->release_fb = NULL;
7300
7301         if (!mode)
7302                 mode = &load_detect_mode;
7303
7304         /* We need a framebuffer large enough to accommodate all accesses
7305          * that the plane may generate whilst we perform load detection.
7306          * We can not rely on the fbcon either being present (we get called
7307          * during its initialisation to detect all boot displays, or it may
7308          * not even exist) or that it is large enough to satisfy the
7309          * requested mode.
7310          */
7311         fb = mode_fits_in_fbdev(dev, mode);
7312         if (fb == NULL) {
7313                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7314                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7315                 old->release_fb = fb;
7316         } else
7317                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7318         if (IS_ERR(fb)) {
7319                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7320                 mutex_unlock(&crtc->mutex);
7321                 return false;
7322         }
7323
7324         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7325                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7326                 if (old->release_fb)
7327                         old->release_fb->funcs->destroy(old->release_fb);
7328                 mutex_unlock(&crtc->mutex);
7329                 return false;
7330         }
7331
7332         /* let the connector get through one full cycle before testing */
7333         intel_wait_for_vblank(dev, intel_crtc->pipe);
7334         return true;
7335 }
7336
7337 void intel_release_load_detect_pipe(struct drm_connector *connector,
7338                                     struct intel_load_detect_pipe *old)
7339 {
7340         struct intel_encoder *intel_encoder =
7341                 intel_attached_encoder(connector);
7342         struct drm_encoder *encoder = &intel_encoder->base;
7343         struct drm_crtc *crtc = encoder->crtc;
7344
7345         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7346                       connector->base.id, drm_get_connector_name(connector),
7347                       encoder->base.id, drm_get_encoder_name(encoder));
7348
7349         if (old->load_detect_temp) {
7350                 to_intel_connector(connector)->new_encoder = NULL;
7351                 intel_encoder->new_crtc = NULL;
7352                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7353
7354                 if (old->release_fb) {
7355                         drm_framebuffer_unregister_private(old->release_fb);
7356                         drm_framebuffer_unreference(old->release_fb);
7357                 }
7358
7359                 mutex_unlock(&crtc->mutex);
7360                 return;
7361         }
7362
7363         /* Switch crtc and encoder back off if necessary */
7364         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7365                 connector->funcs->dpms(connector, old->dpms_mode);
7366
7367         mutex_unlock(&crtc->mutex);
7368 }
7369
7370 static int i9xx_pll_refclk(struct drm_device *dev,
7371                            const struct intel_crtc_config *pipe_config)
7372 {
7373         struct drm_i915_private *dev_priv = dev->dev_private;
7374         u32 dpll = pipe_config->dpll_hw_state.dpll;
7375
7376         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7377                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7378         else if (HAS_PCH_SPLIT(dev))
7379                 return 120000;
7380         else if (!IS_GEN2(dev))
7381                 return 96000;
7382         else
7383                 return 48000;
7384 }
7385
7386 /* Returns the clock of the currently programmed mode of the given pipe. */
7387 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7388                                 struct intel_crtc_config *pipe_config)
7389 {
7390         struct drm_device *dev = crtc->base.dev;
7391         struct drm_i915_private *dev_priv = dev->dev_private;
7392         int pipe = pipe_config->cpu_transcoder;
7393         u32 dpll = pipe_config->dpll_hw_state.dpll;
7394         u32 fp;
7395         intel_clock_t clock;
7396         int refclk = i9xx_pll_refclk(dev, pipe_config);
7397
7398         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7399                 fp = pipe_config->dpll_hw_state.fp0;
7400         else
7401                 fp = pipe_config->dpll_hw_state.fp1;
7402
7403         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7404         if (IS_PINEVIEW(dev)) {
7405                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7406                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7407         } else {
7408                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7409                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7410         }
7411
7412         if (!IS_GEN2(dev)) {
7413                 if (IS_PINEVIEW(dev))
7414                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7415                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7416                 else
7417                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7418                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7419
7420                 switch (dpll & DPLL_MODE_MASK) {
7421                 case DPLLB_MODE_DAC_SERIAL:
7422                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7423                                 5 : 10;
7424                         break;
7425                 case DPLLB_MODE_LVDS:
7426                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7427                                 7 : 14;
7428                         break;
7429                 default:
7430                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7431                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7432                         return;
7433                 }
7434
7435                 if (IS_PINEVIEW(dev))
7436                         pineview_clock(refclk, &clock);
7437                 else
7438                         i9xx_clock(refclk, &clock);
7439         } else {
7440                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7441
7442                 if (is_lvds) {
7443                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7444                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7445                         clock.p2 = 14;
7446                 } else {
7447                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7448                                 clock.p1 = 2;
7449                         else {
7450                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7451                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7452                         }
7453                         if (dpll & PLL_P2_DIVIDE_BY_4)
7454                                 clock.p2 = 4;
7455                         else
7456                                 clock.p2 = 2;
7457                 }
7458
7459                 i9xx_clock(refclk, &clock);
7460         }
7461
7462         /*
7463          * This value includes pixel_multiplier. We will use
7464          * port_clock to compute adjusted_mode.clock in the
7465          * encoder's get_config() function.
7466          */
7467         pipe_config->port_clock = clock.dot;
7468 }
7469
7470 int intel_dotclock_calculate(int link_freq,
7471                              const struct intel_link_m_n *m_n)
7472 {
7473         /*
7474          * The calculation for the data clock is:
7475          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7476          * But we want to avoid losing precison if possible, so:
7477          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7478          *
7479          * and the link clock is simpler:
7480          * link_clock = (m * link_clock) / n
7481          */
7482
7483         if (!m_n->link_n)
7484                 return 0;
7485
7486         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7487 }
7488
7489 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7490                                    struct intel_crtc_config *pipe_config)
7491 {
7492         struct drm_device *dev = crtc->base.dev;
7493
7494         /* read out port_clock from the DPLL */
7495         i9xx_crtc_clock_get(crtc, pipe_config);
7496
7497         /*
7498          * This value does not include pixel_multiplier.
7499          * We will check that port_clock and adjusted_mode.clock
7500          * agree once we know their relationship in the encoder's
7501          * get_config() function.
7502          */
7503         pipe_config->adjusted_mode.clock =
7504                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7505                                          &pipe_config->fdi_m_n);
7506 }
7507
7508 /** Returns the currently programmed mode of the given pipe. */
7509 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7510                                              struct drm_crtc *crtc)
7511 {
7512         struct drm_i915_private *dev_priv = dev->dev_private;
7513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7514         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7515         struct drm_display_mode *mode;
7516         struct intel_crtc_config pipe_config;
7517         int htot = I915_READ(HTOTAL(cpu_transcoder));
7518         int hsync = I915_READ(HSYNC(cpu_transcoder));
7519         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7520         int vsync = I915_READ(VSYNC(cpu_transcoder));
7521         enum pipe pipe = intel_crtc->pipe;
7522
7523         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7524         if (!mode)
7525                 return NULL;
7526
7527         /*
7528          * Construct a pipe_config sufficient for getting the clock info
7529          * back out of crtc_clock_get.
7530          *
7531          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7532          * to use a real value here instead.
7533          */
7534         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7535         pipe_config.pixel_multiplier = 1;
7536         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7537         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7538         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7539         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7540
7541         mode->clock = pipe_config.adjusted_mode.clock;
7542         mode->hdisplay = (htot & 0xffff) + 1;
7543         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7544         mode->hsync_start = (hsync & 0xffff) + 1;
7545         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7546         mode->vdisplay = (vtot & 0xffff) + 1;
7547         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7548         mode->vsync_start = (vsync & 0xffff) + 1;
7549         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7550
7551         drm_mode_set_name(mode);
7552
7553         return mode;
7554 }
7555
7556 static void intel_increase_pllclock(struct drm_crtc *crtc)
7557 {
7558         struct drm_device *dev = crtc->dev;
7559         drm_i915_private_t *dev_priv = dev->dev_private;
7560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7561         int pipe = intel_crtc->pipe;
7562         int dpll_reg = DPLL(pipe);
7563         int dpll;
7564
7565         if (HAS_PCH_SPLIT(dev))
7566                 return;
7567
7568         if (!dev_priv->lvds_downclock_avail)
7569                 return;
7570
7571         dpll = I915_READ(dpll_reg);
7572         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7573                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7574
7575                 assert_panel_unlocked(dev_priv, pipe);
7576
7577                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7578                 I915_WRITE(dpll_reg, dpll);
7579                 intel_wait_for_vblank(dev, pipe);
7580
7581                 dpll = I915_READ(dpll_reg);
7582                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7583                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7584         }
7585 }
7586
7587 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7588 {
7589         struct drm_device *dev = crtc->dev;
7590         drm_i915_private_t *dev_priv = dev->dev_private;
7591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7592
7593         if (HAS_PCH_SPLIT(dev))
7594                 return;
7595
7596         if (!dev_priv->lvds_downclock_avail)
7597                 return;
7598
7599         /*
7600          * Since this is called by a timer, we should never get here in
7601          * the manual case.
7602          */
7603         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7604                 int pipe = intel_crtc->pipe;
7605                 int dpll_reg = DPLL(pipe);
7606                 int dpll;
7607
7608                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7609
7610                 assert_panel_unlocked(dev_priv, pipe);
7611
7612                 dpll = I915_READ(dpll_reg);
7613                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7614                 I915_WRITE(dpll_reg, dpll);
7615                 intel_wait_for_vblank(dev, pipe);
7616                 dpll = I915_READ(dpll_reg);
7617                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7618                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7619         }
7620
7621 }
7622
7623 void intel_mark_busy(struct drm_device *dev)
7624 {
7625         struct drm_i915_private *dev_priv = dev->dev_private;
7626
7627         hsw_package_c8_gpu_busy(dev_priv);
7628         i915_update_gfx_val(dev_priv);
7629 }
7630
7631 void intel_mark_idle(struct drm_device *dev)
7632 {
7633         struct drm_i915_private *dev_priv = dev->dev_private;
7634         struct drm_crtc *crtc;
7635
7636         hsw_package_c8_gpu_idle(dev_priv);
7637
7638         if (!i915_powersave)
7639                 return;
7640
7641         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7642                 if (!crtc->fb)
7643                         continue;
7644
7645                 intel_decrease_pllclock(crtc);
7646         }
7647 }
7648
7649 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7650                         struct intel_ring_buffer *ring)
7651 {
7652         struct drm_device *dev = obj->base.dev;
7653         struct drm_crtc *crtc;
7654
7655         if (!i915_powersave)
7656                 return;
7657
7658         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7659                 if (!crtc->fb)
7660                         continue;
7661
7662                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7663                         continue;
7664
7665                 intel_increase_pllclock(crtc);
7666                 if (ring && intel_fbc_enabled(dev))
7667                         ring->fbc_dirty = true;
7668         }
7669 }
7670
7671 static void intel_crtc_destroy(struct drm_crtc *crtc)
7672 {
7673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7674         struct drm_device *dev = crtc->dev;
7675         struct intel_unpin_work *work;
7676         unsigned long flags;
7677
7678         spin_lock_irqsave(&dev->event_lock, flags);
7679         work = intel_crtc->unpin_work;
7680         intel_crtc->unpin_work = NULL;
7681         spin_unlock_irqrestore(&dev->event_lock, flags);
7682
7683         if (work) {
7684                 cancel_work_sync(&work->work);
7685                 kfree(work);
7686         }
7687
7688         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7689
7690         drm_crtc_cleanup(crtc);
7691
7692         kfree(intel_crtc);
7693 }
7694
7695 static void intel_unpin_work_fn(struct work_struct *__work)
7696 {
7697         struct intel_unpin_work *work =
7698                 container_of(__work, struct intel_unpin_work, work);
7699         struct drm_device *dev = work->crtc->dev;
7700
7701         mutex_lock(&dev->struct_mutex);
7702         intel_unpin_fb_obj(work->old_fb_obj);
7703         drm_gem_object_unreference(&work->pending_flip_obj->base);
7704         drm_gem_object_unreference(&work->old_fb_obj->base);
7705
7706         intel_update_fbc(dev);
7707         mutex_unlock(&dev->struct_mutex);
7708
7709         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7710         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7711
7712         kfree(work);
7713 }
7714
7715 static void do_intel_finish_page_flip(struct drm_device *dev,
7716                                       struct drm_crtc *crtc)
7717 {
7718         drm_i915_private_t *dev_priv = dev->dev_private;
7719         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7720         struct intel_unpin_work *work;
7721         unsigned long flags;
7722
7723         /* Ignore early vblank irqs */
7724         if (intel_crtc == NULL)
7725                 return;
7726
7727         spin_lock_irqsave(&dev->event_lock, flags);
7728         work = intel_crtc->unpin_work;
7729
7730         /* Ensure we don't miss a work->pending update ... */
7731         smp_rmb();
7732
7733         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7734                 spin_unlock_irqrestore(&dev->event_lock, flags);
7735                 return;
7736         }
7737
7738         /* and that the unpin work is consistent wrt ->pending. */
7739         smp_rmb();
7740
7741         intel_crtc->unpin_work = NULL;
7742
7743         if (work->event)
7744                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7745
7746         drm_vblank_put(dev, intel_crtc->pipe);
7747
7748         spin_unlock_irqrestore(&dev->event_lock, flags);
7749
7750         wake_up_all(&dev_priv->pending_flip_queue);
7751
7752         queue_work(dev_priv->wq, &work->work);
7753
7754         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7755 }
7756
7757 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7758 {
7759         drm_i915_private_t *dev_priv = dev->dev_private;
7760         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7761
7762         do_intel_finish_page_flip(dev, crtc);
7763 }
7764
7765 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7766 {
7767         drm_i915_private_t *dev_priv = dev->dev_private;
7768         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7769
7770         do_intel_finish_page_flip(dev, crtc);
7771 }
7772
7773 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7774 {
7775         drm_i915_private_t *dev_priv = dev->dev_private;
7776         struct intel_crtc *intel_crtc =
7777                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7778         unsigned long flags;
7779
7780         /* NB: An MMIO update of the plane base pointer will also
7781          * generate a page-flip completion irq, i.e. every modeset
7782          * is also accompanied by a spurious intel_prepare_page_flip().
7783          */
7784         spin_lock_irqsave(&dev->event_lock, flags);
7785         if (intel_crtc->unpin_work)
7786                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7787         spin_unlock_irqrestore(&dev->event_lock, flags);
7788 }
7789
7790 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7791 {
7792         /* Ensure that the work item is consistent when activating it ... */
7793         smp_wmb();
7794         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7795         /* and that it is marked active as soon as the irq could fire. */
7796         smp_wmb();
7797 }
7798
7799 static int intel_gen2_queue_flip(struct drm_device *dev,
7800                                  struct drm_crtc *crtc,
7801                                  struct drm_framebuffer *fb,
7802                                  struct drm_i915_gem_object *obj,
7803                                  uint32_t flags)
7804 {
7805         struct drm_i915_private *dev_priv = dev->dev_private;
7806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7807         u32 flip_mask;
7808         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7809         int ret;
7810
7811         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7812         if (ret)
7813                 goto err;
7814
7815         ret = intel_ring_begin(ring, 6);
7816         if (ret)
7817                 goto err_unpin;
7818
7819         /* Can't queue multiple flips, so wait for the previous
7820          * one to finish before executing the next.
7821          */
7822         if (intel_crtc->plane)
7823                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7824         else
7825                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7826         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7827         intel_ring_emit(ring, MI_NOOP);
7828         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7829                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7830         intel_ring_emit(ring, fb->pitches[0]);
7831         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7832         intel_ring_emit(ring, 0); /* aux display base address, unused */
7833
7834         intel_mark_page_flip_active(intel_crtc);
7835         __intel_ring_advance(ring);
7836         return 0;
7837
7838 err_unpin:
7839         intel_unpin_fb_obj(obj);
7840 err:
7841         return ret;
7842 }
7843
7844 static int intel_gen3_queue_flip(struct drm_device *dev,
7845                                  struct drm_crtc *crtc,
7846                                  struct drm_framebuffer *fb,
7847                                  struct drm_i915_gem_object *obj,
7848                                  uint32_t flags)
7849 {
7850         struct drm_i915_private *dev_priv = dev->dev_private;
7851         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7852         u32 flip_mask;
7853         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7854         int ret;
7855
7856         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7857         if (ret)
7858                 goto err;
7859
7860         ret = intel_ring_begin(ring, 6);
7861         if (ret)
7862                 goto err_unpin;
7863
7864         if (intel_crtc->plane)
7865                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7866         else
7867                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7868         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7869         intel_ring_emit(ring, MI_NOOP);
7870         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7871                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7872         intel_ring_emit(ring, fb->pitches[0]);
7873         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7874         intel_ring_emit(ring, MI_NOOP);
7875
7876         intel_mark_page_flip_active(intel_crtc);
7877         __intel_ring_advance(ring);
7878         return 0;
7879
7880 err_unpin:
7881         intel_unpin_fb_obj(obj);
7882 err:
7883         return ret;
7884 }
7885
7886 static int intel_gen4_queue_flip(struct drm_device *dev,
7887                                  struct drm_crtc *crtc,
7888                                  struct drm_framebuffer *fb,
7889                                  struct drm_i915_gem_object *obj,
7890                                  uint32_t flags)
7891 {
7892         struct drm_i915_private *dev_priv = dev->dev_private;
7893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7894         uint32_t pf, pipesrc;
7895         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7896         int ret;
7897
7898         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7899         if (ret)
7900                 goto err;
7901
7902         ret = intel_ring_begin(ring, 4);
7903         if (ret)
7904                 goto err_unpin;
7905
7906         /* i965+ uses the linear or tiled offsets from the
7907          * Display Registers (which do not change across a page-flip)
7908          * so we need only reprogram the base address.
7909          */
7910         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7911                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7912         intel_ring_emit(ring, fb->pitches[0]);
7913         intel_ring_emit(ring,
7914                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7915                         obj->tiling_mode);
7916
7917         /* XXX Enabling the panel-fitter across page-flip is so far
7918          * untested on non-native modes, so ignore it for now.
7919          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7920          */
7921         pf = 0;
7922         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7923         intel_ring_emit(ring, pf | pipesrc);
7924
7925         intel_mark_page_flip_active(intel_crtc);
7926         __intel_ring_advance(ring);
7927         return 0;
7928
7929 err_unpin:
7930         intel_unpin_fb_obj(obj);
7931 err:
7932         return ret;
7933 }
7934
7935 static int intel_gen6_queue_flip(struct drm_device *dev,
7936                                  struct drm_crtc *crtc,
7937                                  struct drm_framebuffer *fb,
7938                                  struct drm_i915_gem_object *obj,
7939                                  uint32_t flags)
7940 {
7941         struct drm_i915_private *dev_priv = dev->dev_private;
7942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7943         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7944         uint32_t pf, pipesrc;
7945         int ret;
7946
7947         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7948         if (ret)
7949                 goto err;
7950
7951         ret = intel_ring_begin(ring, 4);
7952         if (ret)
7953                 goto err_unpin;
7954
7955         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7956                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7957         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7958         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7959
7960         /* Contrary to the suggestions in the documentation,
7961          * "Enable Panel Fitter" does not seem to be required when page
7962          * flipping with a non-native mode, and worse causes a normal
7963          * modeset to fail.
7964          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7965          */
7966         pf = 0;
7967         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7968         intel_ring_emit(ring, pf | pipesrc);
7969
7970         intel_mark_page_flip_active(intel_crtc);
7971         __intel_ring_advance(ring);
7972         return 0;
7973
7974 err_unpin:
7975         intel_unpin_fb_obj(obj);
7976 err:
7977         return ret;
7978 }
7979
7980 static int intel_gen7_queue_flip(struct drm_device *dev,
7981                                  struct drm_crtc *crtc,
7982                                  struct drm_framebuffer *fb,
7983                                  struct drm_i915_gem_object *obj,
7984                                  uint32_t flags)
7985 {
7986         struct drm_i915_private *dev_priv = dev->dev_private;
7987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7988         struct intel_ring_buffer *ring;
7989         uint32_t plane_bit = 0;
7990         int len, ret;
7991
7992         ring = obj->ring;
7993         if (ring == NULL || ring->id != RCS)
7994                 ring = &dev_priv->ring[BCS];
7995
7996         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7997         if (ret)
7998                 goto err;
7999
8000         switch(intel_crtc->plane) {
8001         case PLANE_A:
8002                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8003                 break;
8004         case PLANE_B:
8005                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8006                 break;
8007         case PLANE_C:
8008                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8009                 break;
8010         default:
8011                 WARN_ONCE(1, "unknown plane in flip command\n");
8012                 ret = -ENODEV;
8013                 goto err_unpin;
8014         }
8015
8016         len = 4;
8017         if (ring->id == RCS)
8018                 len += 6;
8019
8020         ret = intel_ring_begin(ring, len);
8021         if (ret)
8022                 goto err_unpin;
8023
8024         /* Unmask the flip-done completion message. Note that the bspec says that
8025          * we should do this for both the BCS and RCS, and that we must not unmask
8026          * more than one flip event at any time (or ensure that one flip message
8027          * can be sent by waiting for flip-done prior to queueing new flips).
8028          * Experimentation says that BCS works despite DERRMR masking all
8029          * flip-done completion events and that unmasking all planes at once
8030          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8031          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8032          */
8033         if (ring->id == RCS) {
8034                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8035                 intel_ring_emit(ring, DERRMR);
8036                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8037                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8038                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8039                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8040                 intel_ring_emit(ring, DERRMR);
8041                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8042         }
8043
8044         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8045         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8046         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8047         intel_ring_emit(ring, (MI_NOOP));
8048
8049         intel_mark_page_flip_active(intel_crtc);
8050         __intel_ring_advance(ring);
8051         return 0;
8052
8053 err_unpin:
8054         intel_unpin_fb_obj(obj);
8055 err:
8056         return ret;
8057 }
8058
8059 static int intel_default_queue_flip(struct drm_device *dev,
8060                                     struct drm_crtc *crtc,
8061                                     struct drm_framebuffer *fb,
8062                                     struct drm_i915_gem_object *obj,
8063                                     uint32_t flags)
8064 {
8065         return -ENODEV;
8066 }
8067
8068 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8069                                 struct drm_framebuffer *fb,
8070                                 struct drm_pending_vblank_event *event,
8071                                 uint32_t page_flip_flags)
8072 {
8073         struct drm_device *dev = crtc->dev;
8074         struct drm_i915_private *dev_priv = dev->dev_private;
8075         struct drm_framebuffer *old_fb = crtc->fb;
8076         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8078         struct intel_unpin_work *work;
8079         unsigned long flags;
8080         int ret;
8081
8082         /* Can't change pixel format via MI display flips. */
8083         if (fb->pixel_format != crtc->fb->pixel_format)
8084                 return -EINVAL;
8085
8086         /*
8087          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8088          * Note that pitch changes could also affect these register.
8089          */
8090         if (INTEL_INFO(dev)->gen > 3 &&
8091             (fb->offsets[0] != crtc->fb->offsets[0] ||
8092              fb->pitches[0] != crtc->fb->pitches[0]))
8093                 return -EINVAL;
8094
8095         work = kzalloc(sizeof *work, GFP_KERNEL);
8096         if (work == NULL)
8097                 return -ENOMEM;
8098
8099         work->event = event;
8100         work->crtc = crtc;
8101         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8102         INIT_WORK(&work->work, intel_unpin_work_fn);
8103
8104         ret = drm_vblank_get(dev, intel_crtc->pipe);
8105         if (ret)
8106                 goto free_work;
8107
8108         /* We borrow the event spin lock for protecting unpin_work */
8109         spin_lock_irqsave(&dev->event_lock, flags);
8110         if (intel_crtc->unpin_work) {
8111                 spin_unlock_irqrestore(&dev->event_lock, flags);
8112                 kfree(work);
8113                 drm_vblank_put(dev, intel_crtc->pipe);
8114
8115                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8116                 return -EBUSY;
8117         }
8118         intel_crtc->unpin_work = work;
8119         spin_unlock_irqrestore(&dev->event_lock, flags);
8120
8121         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8122                 flush_workqueue(dev_priv->wq);
8123
8124         ret = i915_mutex_lock_interruptible(dev);
8125         if (ret)
8126                 goto cleanup;
8127
8128         /* Reference the objects for the scheduled work. */
8129         drm_gem_object_reference(&work->old_fb_obj->base);
8130         drm_gem_object_reference(&obj->base);
8131
8132         crtc->fb = fb;
8133
8134         work->pending_flip_obj = obj;
8135
8136         work->enable_stall_check = true;
8137
8138         atomic_inc(&intel_crtc->unpin_work_count);
8139         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8140
8141         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8142         if (ret)
8143                 goto cleanup_pending;
8144
8145         intel_disable_fbc(dev);
8146         intel_mark_fb_busy(obj, NULL);
8147         mutex_unlock(&dev->struct_mutex);
8148
8149         trace_i915_flip_request(intel_crtc->plane, obj);
8150
8151         return 0;
8152
8153 cleanup_pending:
8154         atomic_dec(&intel_crtc->unpin_work_count);
8155         crtc->fb = old_fb;
8156         drm_gem_object_unreference(&work->old_fb_obj->base);
8157         drm_gem_object_unreference(&obj->base);
8158         mutex_unlock(&dev->struct_mutex);
8159
8160 cleanup:
8161         spin_lock_irqsave(&dev->event_lock, flags);
8162         intel_crtc->unpin_work = NULL;
8163         spin_unlock_irqrestore(&dev->event_lock, flags);
8164
8165         drm_vblank_put(dev, intel_crtc->pipe);
8166 free_work:
8167         kfree(work);
8168
8169         return ret;
8170 }
8171
8172 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8173         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8174         .load_lut = intel_crtc_load_lut,
8175 };
8176
8177 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8178                                   struct drm_crtc *crtc)
8179 {
8180         struct drm_device *dev;
8181         struct drm_crtc *tmp;
8182         int crtc_mask = 1;
8183
8184         WARN(!crtc, "checking null crtc?\n");
8185
8186         dev = crtc->dev;
8187
8188         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8189                 if (tmp == crtc)
8190                         break;
8191                 crtc_mask <<= 1;
8192         }
8193
8194         if (encoder->possible_crtcs & crtc_mask)
8195                 return true;
8196         return false;
8197 }
8198
8199 /**
8200  * intel_modeset_update_staged_output_state
8201  *
8202  * Updates the staged output configuration state, e.g. after we've read out the
8203  * current hw state.
8204  */
8205 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8206 {
8207         struct intel_encoder *encoder;
8208         struct intel_connector *connector;
8209
8210         list_for_each_entry(connector, &dev->mode_config.connector_list,
8211                             base.head) {
8212                 connector->new_encoder =
8213                         to_intel_encoder(connector->base.encoder);
8214         }
8215
8216         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8217                             base.head) {
8218                 encoder->new_crtc =
8219                         to_intel_crtc(encoder->base.crtc);
8220         }
8221 }
8222
8223 /**
8224  * intel_modeset_commit_output_state
8225  *
8226  * This function copies the stage display pipe configuration to the real one.
8227  */
8228 static void intel_modeset_commit_output_state(struct drm_device *dev)
8229 {
8230         struct intel_encoder *encoder;
8231         struct intel_connector *connector;
8232
8233         list_for_each_entry(connector, &dev->mode_config.connector_list,
8234                             base.head) {
8235                 connector->base.encoder = &connector->new_encoder->base;
8236         }
8237
8238         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8239                             base.head) {
8240                 encoder->base.crtc = &encoder->new_crtc->base;
8241         }
8242 }
8243
8244 static void
8245 connected_sink_compute_bpp(struct intel_connector * connector,
8246                            struct intel_crtc_config *pipe_config)
8247 {
8248         int bpp = pipe_config->pipe_bpp;
8249
8250         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8251                 connector->base.base.id,
8252                 drm_get_connector_name(&connector->base));
8253
8254         /* Don't use an invalid EDID bpc value */
8255         if (connector->base.display_info.bpc &&
8256             connector->base.display_info.bpc * 3 < bpp) {
8257                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8258                               bpp, connector->base.display_info.bpc*3);
8259                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8260         }
8261
8262         /* Clamp bpp to 8 on screens without EDID 1.4 */
8263         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8264                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8265                               bpp);
8266                 pipe_config->pipe_bpp = 24;
8267         }
8268 }
8269
8270 static int
8271 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8272                           struct drm_framebuffer *fb,
8273                           struct intel_crtc_config *pipe_config)
8274 {
8275         struct drm_device *dev = crtc->base.dev;
8276         struct intel_connector *connector;
8277         int bpp;
8278
8279         switch (fb->pixel_format) {
8280         case DRM_FORMAT_C8:
8281                 bpp = 8*3; /* since we go through a colormap */
8282                 break;
8283         case DRM_FORMAT_XRGB1555:
8284         case DRM_FORMAT_ARGB1555:
8285                 /* checked in intel_framebuffer_init already */
8286                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8287                         return -EINVAL;
8288         case DRM_FORMAT_RGB565:
8289                 bpp = 6*3; /* min is 18bpp */
8290                 break;
8291         case DRM_FORMAT_XBGR8888:
8292         case DRM_FORMAT_ABGR8888:
8293                 /* checked in intel_framebuffer_init already */
8294                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8295                         return -EINVAL;
8296         case DRM_FORMAT_XRGB8888:
8297         case DRM_FORMAT_ARGB8888:
8298                 bpp = 8*3;
8299                 break;
8300         case DRM_FORMAT_XRGB2101010:
8301         case DRM_FORMAT_ARGB2101010:
8302         case DRM_FORMAT_XBGR2101010:
8303         case DRM_FORMAT_ABGR2101010:
8304                 /* checked in intel_framebuffer_init already */
8305                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8306                         return -EINVAL;
8307                 bpp = 10*3;
8308                 break;
8309         /* TODO: gen4+ supports 16 bpc floating point, too. */
8310         default:
8311                 DRM_DEBUG_KMS("unsupported depth\n");
8312                 return -EINVAL;
8313         }
8314
8315         pipe_config->pipe_bpp = bpp;
8316
8317         /* Clamp display bpp to EDID value */
8318         list_for_each_entry(connector, &dev->mode_config.connector_list,
8319                             base.head) {
8320                 if (!connector->new_encoder ||
8321                     connector->new_encoder->new_crtc != crtc)
8322                         continue;
8323
8324                 connected_sink_compute_bpp(connector, pipe_config);
8325         }
8326
8327         return bpp;
8328 }
8329
8330 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8331                                    struct intel_crtc_config *pipe_config,
8332                                    const char *context)
8333 {
8334         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8335                       context, pipe_name(crtc->pipe));
8336
8337         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8338         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8339                       pipe_config->pipe_bpp, pipe_config->dither);
8340         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8341                       pipe_config->has_pch_encoder,
8342                       pipe_config->fdi_lanes,
8343                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8344                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8345                       pipe_config->fdi_m_n.tu);
8346         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8347                       pipe_config->has_dp_encoder,
8348                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8349                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8350                       pipe_config->dp_m_n.tu);
8351         DRM_DEBUG_KMS("requested mode:\n");
8352         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8353         DRM_DEBUG_KMS("adjusted mode:\n");
8354         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8355         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8356         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8357                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8358         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8359                       pipe_config->gmch_pfit.control,
8360                       pipe_config->gmch_pfit.pgm_ratios,
8361                       pipe_config->gmch_pfit.lvds_border_bits);
8362         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8363                       pipe_config->pch_pfit.pos,
8364                       pipe_config->pch_pfit.size);
8365         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8366         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8367 }
8368
8369 static bool check_encoder_cloning(struct drm_crtc *crtc)
8370 {
8371         int num_encoders = 0;
8372         bool uncloneable_encoders = false;
8373         struct intel_encoder *encoder;
8374
8375         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8376                             base.head) {
8377                 if (&encoder->new_crtc->base != crtc)
8378                         continue;
8379
8380                 num_encoders++;
8381                 if (!encoder->cloneable)
8382                         uncloneable_encoders = true;
8383         }
8384
8385         return !(num_encoders > 1 && uncloneable_encoders);
8386 }
8387
8388 static struct intel_crtc_config *
8389 intel_modeset_pipe_config(struct drm_crtc *crtc,
8390                           struct drm_framebuffer *fb,
8391                           struct drm_display_mode *mode)
8392 {
8393         struct drm_device *dev = crtc->dev;
8394         struct intel_encoder *encoder;
8395         struct intel_crtc_config *pipe_config;
8396         int plane_bpp, ret = -EINVAL;
8397         bool retry = true;
8398
8399         if (!check_encoder_cloning(crtc)) {
8400                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8401                 return ERR_PTR(-EINVAL);
8402         }
8403
8404         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8405         if (!pipe_config)
8406                 return ERR_PTR(-ENOMEM);
8407
8408         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8409         drm_mode_copy(&pipe_config->requested_mode, mode);
8410
8411         pipe_config->pipe_src_w = mode->hdisplay;
8412         pipe_config->pipe_src_h = mode->vdisplay;
8413
8414         pipe_config->cpu_transcoder =
8415                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8416         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8417
8418         /*
8419          * Sanitize sync polarity flags based on requested ones. If neither
8420          * positive or negative polarity is requested, treat this as meaning
8421          * negative polarity.
8422          */
8423         if (!(pipe_config->adjusted_mode.flags &
8424               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8425                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8426
8427         if (!(pipe_config->adjusted_mode.flags &
8428               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8429                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8430
8431         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8432          * plane pixel format and any sink constraints into account. Returns the
8433          * source plane bpp so that dithering can be selected on mismatches
8434          * after encoders and crtc also have had their say. */
8435         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8436                                               fb, pipe_config);
8437         if (plane_bpp < 0)
8438                 goto fail;
8439
8440 encoder_retry:
8441         /* Ensure the port clock defaults are reset when retrying. */
8442         pipe_config->port_clock = 0;
8443         pipe_config->pixel_multiplier = 1;
8444
8445         /* Fill in default crtc timings, allow encoders to overwrite them. */
8446         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8447
8448         /* Pass our mode to the connectors and the CRTC to give them a chance to
8449          * adjust it according to limitations or connector properties, and also
8450          * a chance to reject the mode entirely.
8451          */
8452         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8453                             base.head) {
8454
8455                 if (&encoder->new_crtc->base != crtc)
8456                         continue;
8457
8458                 if (!(encoder->compute_config(encoder, pipe_config))) {
8459                         DRM_DEBUG_KMS("Encoder config failure\n");
8460                         goto fail;
8461                 }
8462         }
8463
8464         /* Set default port clock if not overwritten by the encoder. Needs to be
8465          * done afterwards in case the encoder adjusts the mode. */
8466         if (!pipe_config->port_clock)
8467                 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8468                         pipe_config->pixel_multiplier;
8469
8470         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8471         if (ret < 0) {
8472                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8473                 goto fail;
8474         }
8475
8476         if (ret == RETRY) {
8477                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8478                         ret = -EINVAL;
8479                         goto fail;
8480                 }
8481
8482                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8483                 retry = false;
8484                 goto encoder_retry;
8485         }
8486
8487         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8488         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8489                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8490
8491         return pipe_config;
8492 fail:
8493         kfree(pipe_config);
8494         return ERR_PTR(ret);
8495 }
8496
8497 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8498  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8499 static void
8500 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8501                              unsigned *prepare_pipes, unsigned *disable_pipes)
8502 {
8503         struct intel_crtc *intel_crtc;
8504         struct drm_device *dev = crtc->dev;
8505         struct intel_encoder *encoder;
8506         struct intel_connector *connector;
8507         struct drm_crtc *tmp_crtc;
8508
8509         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8510
8511         /* Check which crtcs have changed outputs connected to them, these need
8512          * to be part of the prepare_pipes mask. We don't (yet) support global
8513          * modeset across multiple crtcs, so modeset_pipes will only have one
8514          * bit set at most. */
8515         list_for_each_entry(connector, &dev->mode_config.connector_list,
8516                             base.head) {
8517                 if (connector->base.encoder == &connector->new_encoder->base)
8518                         continue;
8519
8520                 if (connector->base.encoder) {
8521                         tmp_crtc = connector->base.encoder->crtc;
8522
8523                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8524                 }
8525
8526                 if (connector->new_encoder)
8527                         *prepare_pipes |=
8528                                 1 << connector->new_encoder->new_crtc->pipe;
8529         }
8530
8531         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8532                             base.head) {
8533                 if (encoder->base.crtc == &encoder->new_crtc->base)
8534                         continue;
8535
8536                 if (encoder->base.crtc) {
8537                         tmp_crtc = encoder->base.crtc;
8538
8539                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8540                 }
8541
8542                 if (encoder->new_crtc)
8543                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8544         }
8545
8546         /* Check for any pipes that will be fully disabled ... */
8547         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8548                             base.head) {
8549                 bool used = false;
8550
8551                 /* Don't try to disable disabled crtcs. */
8552                 if (!intel_crtc->base.enabled)
8553                         continue;
8554
8555                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8556                                     base.head) {
8557                         if (encoder->new_crtc == intel_crtc)
8558                                 used = true;
8559                 }
8560
8561                 if (!used)
8562                         *disable_pipes |= 1 << intel_crtc->pipe;
8563         }
8564
8565
8566         /* set_mode is also used to update properties on life display pipes. */
8567         intel_crtc = to_intel_crtc(crtc);
8568         if (crtc->enabled)
8569                 *prepare_pipes |= 1 << intel_crtc->pipe;
8570
8571         /*
8572          * For simplicity do a full modeset on any pipe where the output routing
8573          * changed. We could be more clever, but that would require us to be
8574          * more careful with calling the relevant encoder->mode_set functions.
8575          */
8576         if (*prepare_pipes)
8577                 *modeset_pipes = *prepare_pipes;
8578
8579         /* ... and mask these out. */
8580         *modeset_pipes &= ~(*disable_pipes);
8581         *prepare_pipes &= ~(*disable_pipes);
8582
8583         /*
8584          * HACK: We don't (yet) fully support global modesets. intel_set_config
8585          * obies this rule, but the modeset restore mode of
8586          * intel_modeset_setup_hw_state does not.
8587          */
8588         *modeset_pipes &= 1 << intel_crtc->pipe;
8589         *prepare_pipes &= 1 << intel_crtc->pipe;
8590
8591         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8592                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8593 }
8594
8595 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8596 {
8597         struct drm_encoder *encoder;
8598         struct drm_device *dev = crtc->dev;
8599
8600         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8601                 if (encoder->crtc == crtc)
8602                         return true;
8603
8604         return false;
8605 }
8606
8607 static void
8608 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8609 {
8610         struct intel_encoder *intel_encoder;
8611         struct intel_crtc *intel_crtc;
8612         struct drm_connector *connector;
8613
8614         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8615                             base.head) {
8616                 if (!intel_encoder->base.crtc)
8617                         continue;
8618
8619                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8620
8621                 if (prepare_pipes & (1 << intel_crtc->pipe))
8622                         intel_encoder->connectors_active = false;
8623         }
8624
8625         intel_modeset_commit_output_state(dev);
8626
8627         /* Update computed state. */
8628         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8629                             base.head) {
8630                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8631         }
8632
8633         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8634                 if (!connector->encoder || !connector->encoder->crtc)
8635                         continue;
8636
8637                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8638
8639                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8640                         struct drm_property *dpms_property =
8641                                 dev->mode_config.dpms_property;
8642
8643                         connector->dpms = DRM_MODE_DPMS_ON;
8644                         drm_object_property_set_value(&connector->base,
8645                                                          dpms_property,
8646                                                          DRM_MODE_DPMS_ON);
8647
8648                         intel_encoder = to_intel_encoder(connector->encoder);
8649                         intel_encoder->connectors_active = true;
8650                 }
8651         }
8652
8653 }
8654
8655 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8656 {
8657         int diff;
8658
8659         if (clock1 == clock2)
8660                 return true;
8661
8662         if (!clock1 || !clock2)
8663                 return false;
8664
8665         diff = abs(clock1 - clock2);
8666
8667         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8668                 return true;
8669
8670         return false;
8671 }
8672
8673 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8674         list_for_each_entry((intel_crtc), \
8675                             &(dev)->mode_config.crtc_list, \
8676                             base.head) \
8677                 if (mask & (1 <<(intel_crtc)->pipe))
8678
8679 static bool
8680 intel_pipe_config_compare(struct drm_device *dev,
8681                           struct intel_crtc_config *current_config,
8682                           struct intel_crtc_config *pipe_config)
8683 {
8684 #define PIPE_CONF_CHECK_X(name) \
8685         if (current_config->name != pipe_config->name) { \
8686                 DRM_ERROR("mismatch in " #name " " \
8687                           "(expected 0x%08x, found 0x%08x)\n", \
8688                           current_config->name, \
8689                           pipe_config->name); \
8690                 return false; \
8691         }
8692
8693 #define PIPE_CONF_CHECK_I(name) \
8694         if (current_config->name != pipe_config->name) { \
8695                 DRM_ERROR("mismatch in " #name " " \
8696                           "(expected %i, found %i)\n", \
8697                           current_config->name, \
8698                           pipe_config->name); \
8699                 return false; \
8700         }
8701
8702 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8703         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8704                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8705                           "(expected %i, found %i)\n", \
8706                           current_config->name & (mask), \
8707                           pipe_config->name & (mask)); \
8708                 return false; \
8709         }
8710
8711 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8712         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8713                 DRM_ERROR("mismatch in " #name " " \
8714                           "(expected %i, found %i)\n", \
8715                           current_config->name, \
8716                           pipe_config->name); \
8717                 return false; \
8718         }
8719
8720 #define PIPE_CONF_QUIRK(quirk)  \
8721         ((current_config->quirks | pipe_config->quirks) & (quirk))
8722
8723         PIPE_CONF_CHECK_I(cpu_transcoder);
8724
8725         PIPE_CONF_CHECK_I(has_pch_encoder);
8726         PIPE_CONF_CHECK_I(fdi_lanes);
8727         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8728         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8729         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8730         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8731         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8732
8733         PIPE_CONF_CHECK_I(has_dp_encoder);
8734         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8735         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8736         PIPE_CONF_CHECK_I(dp_m_n.link_m);
8737         PIPE_CONF_CHECK_I(dp_m_n.link_n);
8738         PIPE_CONF_CHECK_I(dp_m_n.tu);
8739
8740         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8741         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8742         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8743         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8744         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8745         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8746
8747         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8748         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8749         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8750         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8751         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8752         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8753
8754         PIPE_CONF_CHECK_I(pixel_multiplier);
8755
8756         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8757                               DRM_MODE_FLAG_INTERLACE);
8758
8759         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8760                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8761                                       DRM_MODE_FLAG_PHSYNC);
8762                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8763                                       DRM_MODE_FLAG_NHSYNC);
8764                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8765                                       DRM_MODE_FLAG_PVSYNC);
8766                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8767                                       DRM_MODE_FLAG_NVSYNC);
8768         }
8769
8770         PIPE_CONF_CHECK_I(pipe_src_w);
8771         PIPE_CONF_CHECK_I(pipe_src_h);
8772
8773         PIPE_CONF_CHECK_I(gmch_pfit.control);
8774         /* pfit ratios are autocomputed by the hw on gen4+ */
8775         if (INTEL_INFO(dev)->gen < 4)
8776                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8777         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8778         PIPE_CONF_CHECK_I(pch_pfit.pos);
8779         PIPE_CONF_CHECK_I(pch_pfit.size);
8780
8781         PIPE_CONF_CHECK_I(ips_enabled);
8782
8783         PIPE_CONF_CHECK_I(double_wide);
8784
8785         PIPE_CONF_CHECK_I(shared_dpll);
8786         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8787         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8788         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8789         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8790
8791         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8792                 PIPE_CONF_CHECK_I(pipe_bpp);
8793
8794         if (!IS_HASWELL(dev)) {
8795                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8796                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8797         }
8798
8799 #undef PIPE_CONF_CHECK_X
8800 #undef PIPE_CONF_CHECK_I
8801 #undef PIPE_CONF_CHECK_FLAGS
8802 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8803 #undef PIPE_CONF_QUIRK
8804
8805         return true;
8806 }
8807
8808 static void
8809 check_connector_state(struct drm_device *dev)
8810 {
8811         struct intel_connector *connector;
8812
8813         list_for_each_entry(connector, &dev->mode_config.connector_list,
8814                             base.head) {
8815                 /* This also checks the encoder/connector hw state with the
8816                  * ->get_hw_state callbacks. */
8817                 intel_connector_check_state(connector);
8818
8819                 WARN(&connector->new_encoder->base != connector->base.encoder,
8820                      "connector's staged encoder doesn't match current encoder\n");
8821         }
8822 }
8823
8824 static void
8825 check_encoder_state(struct drm_device *dev)
8826 {
8827         struct intel_encoder *encoder;
8828         struct intel_connector *connector;
8829
8830         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8831                             base.head) {
8832                 bool enabled = false;
8833                 bool active = false;
8834                 enum pipe pipe, tracked_pipe;
8835
8836                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8837                               encoder->base.base.id,
8838                               drm_get_encoder_name(&encoder->base));
8839
8840                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8841                      "encoder's stage crtc doesn't match current crtc\n");
8842                 WARN(encoder->connectors_active && !encoder->base.crtc,
8843                      "encoder's active_connectors set, but no crtc\n");
8844
8845                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8846                                     base.head) {
8847                         if (connector->base.encoder != &encoder->base)
8848                                 continue;
8849                         enabled = true;
8850                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8851                                 active = true;
8852                 }
8853                 WARN(!!encoder->base.crtc != enabled,
8854                      "encoder's enabled state mismatch "
8855                      "(expected %i, found %i)\n",
8856                      !!encoder->base.crtc, enabled);
8857                 WARN(active && !encoder->base.crtc,
8858                      "active encoder with no crtc\n");
8859
8860                 WARN(encoder->connectors_active != active,
8861                      "encoder's computed active state doesn't match tracked active state "
8862                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8863
8864                 active = encoder->get_hw_state(encoder, &pipe);
8865                 WARN(active != encoder->connectors_active,
8866                      "encoder's hw state doesn't match sw tracking "
8867                      "(expected %i, found %i)\n",
8868                      encoder->connectors_active, active);
8869
8870                 if (!encoder->base.crtc)
8871                         continue;
8872
8873                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8874                 WARN(active && pipe != tracked_pipe,
8875                      "active encoder's pipe doesn't match"
8876                      "(expected %i, found %i)\n",
8877                      tracked_pipe, pipe);
8878
8879         }
8880 }
8881
8882 static void
8883 check_crtc_state(struct drm_device *dev)
8884 {
8885         drm_i915_private_t *dev_priv = dev->dev_private;
8886         struct intel_crtc *crtc;
8887         struct intel_encoder *encoder;
8888         struct intel_crtc_config pipe_config;
8889
8890         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8891                             base.head) {
8892                 bool enabled = false;
8893                 bool active = false;
8894
8895                 memset(&pipe_config, 0, sizeof(pipe_config));
8896
8897                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8898                               crtc->base.base.id);
8899
8900                 WARN(crtc->active && !crtc->base.enabled,
8901                      "active crtc, but not enabled in sw tracking\n");
8902
8903                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8904                                     base.head) {
8905                         if (encoder->base.crtc != &crtc->base)
8906                                 continue;
8907                         enabled = true;
8908                         if (encoder->connectors_active)
8909                                 active = true;
8910                 }
8911
8912                 WARN(active != crtc->active,
8913                      "crtc's computed active state doesn't match tracked active state "
8914                      "(expected %i, found %i)\n", active, crtc->active);
8915                 WARN(enabled != crtc->base.enabled,
8916                      "crtc's computed enabled state doesn't match tracked enabled state "
8917                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8918
8919                 active = dev_priv->display.get_pipe_config(crtc,
8920                                                            &pipe_config);
8921
8922                 /* hw state is inconsistent with the pipe A quirk */
8923                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8924                         active = crtc->active;
8925
8926                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8927                                     base.head) {
8928                         enum pipe pipe;
8929                         if (encoder->base.crtc != &crtc->base)
8930                                 continue;
8931                         if (encoder->get_config &&
8932                             encoder->get_hw_state(encoder, &pipe))
8933                                 encoder->get_config(encoder, &pipe_config);
8934                 }
8935
8936                 WARN(crtc->active != active,
8937                      "crtc active state doesn't match with hw state "
8938                      "(expected %i, found %i)\n", crtc->active, active);
8939
8940                 if (active &&
8941                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8942                         WARN(1, "pipe state doesn't match!\n");
8943                         intel_dump_pipe_config(crtc, &pipe_config,
8944                                                "[hw state]");
8945                         intel_dump_pipe_config(crtc, &crtc->config,
8946                                                "[sw state]");
8947                 }
8948         }
8949 }
8950
8951 static void
8952 check_shared_dpll_state(struct drm_device *dev)
8953 {
8954         drm_i915_private_t *dev_priv = dev->dev_private;
8955         struct intel_crtc *crtc;
8956         struct intel_dpll_hw_state dpll_hw_state;
8957         int i;
8958
8959         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8960                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8961                 int enabled_crtcs = 0, active_crtcs = 0;
8962                 bool active;
8963
8964                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8965
8966                 DRM_DEBUG_KMS("%s\n", pll->name);
8967
8968                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8969
8970                 WARN(pll->active > pll->refcount,
8971                      "more active pll users than references: %i vs %i\n",
8972                      pll->active, pll->refcount);
8973                 WARN(pll->active && !pll->on,
8974                      "pll in active use but not on in sw tracking\n");
8975                 WARN(pll->on && !pll->active,
8976                      "pll in on but not on in use in sw tracking\n");
8977                 WARN(pll->on != active,
8978                      "pll on state mismatch (expected %i, found %i)\n",
8979                      pll->on, active);
8980
8981                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8982                                     base.head) {
8983                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8984                                 enabled_crtcs++;
8985                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8986                                 active_crtcs++;
8987                 }
8988                 WARN(pll->active != active_crtcs,
8989                      "pll active crtcs mismatch (expected %i, found %i)\n",
8990                      pll->active, active_crtcs);
8991                 WARN(pll->refcount != enabled_crtcs,
8992                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8993                      pll->refcount, enabled_crtcs);
8994
8995                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8996                                        sizeof(dpll_hw_state)),
8997                      "pll hw state mismatch\n");
8998         }
8999 }
9000
9001 void
9002 intel_modeset_check_state(struct drm_device *dev)
9003 {
9004         check_connector_state(dev);
9005         check_encoder_state(dev);
9006         check_crtc_state(dev);
9007         check_shared_dpll_state(dev);
9008 }
9009
9010 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9011                                      int dotclock)
9012 {
9013         /*
9014          * FDI already provided one idea for the dotclock.
9015          * Yell if the encoder disagrees.
9016          */
9017         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9018              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9019              pipe_config->adjusted_mode.clock, dotclock);
9020 }
9021
9022 static int __intel_set_mode(struct drm_crtc *crtc,
9023                             struct drm_display_mode *mode,
9024                             int x, int y, struct drm_framebuffer *fb)
9025 {
9026         struct drm_device *dev = crtc->dev;
9027         drm_i915_private_t *dev_priv = dev->dev_private;
9028         struct drm_display_mode *saved_mode, *saved_hwmode;
9029         struct intel_crtc_config *pipe_config = NULL;
9030         struct intel_crtc *intel_crtc;
9031         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9032         int ret = 0;
9033
9034         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
9035         if (!saved_mode)
9036                 return -ENOMEM;
9037         saved_hwmode = saved_mode + 1;
9038
9039         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9040                                      &prepare_pipes, &disable_pipes);
9041
9042         *saved_hwmode = crtc->hwmode;
9043         *saved_mode = crtc->mode;
9044
9045         /* Hack: Because we don't (yet) support global modeset on multiple
9046          * crtcs, we don't keep track of the new mode for more than one crtc.
9047          * Hence simply check whether any bit is set in modeset_pipes in all the
9048          * pieces of code that are not yet converted to deal with mutliple crtcs
9049          * changing their mode at the same time. */
9050         if (modeset_pipes) {
9051                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9052                 if (IS_ERR(pipe_config)) {
9053                         ret = PTR_ERR(pipe_config);
9054                         pipe_config = NULL;
9055
9056                         goto out;
9057                 }
9058                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9059                                        "[modeset]");
9060         }
9061
9062         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9063                 intel_crtc_disable(&intel_crtc->base);
9064
9065         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9066                 if (intel_crtc->base.enabled)
9067                         dev_priv->display.crtc_disable(&intel_crtc->base);
9068         }
9069
9070         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9071          * to set it here already despite that we pass it down the callchain.
9072          */
9073         if (modeset_pipes) {
9074                 crtc->mode = *mode;
9075                 /* mode_set/enable/disable functions rely on a correct pipe
9076                  * config. */
9077                 to_intel_crtc(crtc)->config = *pipe_config;
9078         }
9079
9080         /* Only after disabling all output pipelines that will be changed can we
9081          * update the the output configuration. */
9082         intel_modeset_update_state(dev, prepare_pipes);
9083
9084         if (dev_priv->display.modeset_global_resources)
9085                 dev_priv->display.modeset_global_resources(dev);
9086
9087         /* Set up the DPLL and any encoders state that needs to adjust or depend
9088          * on the DPLL.
9089          */
9090         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9091                 ret = intel_crtc_mode_set(&intel_crtc->base,
9092                                           x, y, fb);
9093                 if (ret)
9094                         goto done;
9095         }
9096
9097         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9098         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9099                 dev_priv->display.crtc_enable(&intel_crtc->base);
9100
9101         if (modeset_pipes) {
9102                 /* Store real post-adjustment hardware mode. */
9103                 crtc->hwmode = pipe_config->adjusted_mode;
9104
9105                 /* Calculate and store various constants which
9106                  * are later needed by vblank and swap-completion
9107                  * timestamping. They are derived from true hwmode.
9108                  */
9109                 drm_calc_timestamping_constants(crtc);
9110         }
9111
9112         /* FIXME: add subpixel order */
9113 done:
9114         if (ret && crtc->enabled) {
9115                 crtc->hwmode = *saved_hwmode;
9116                 crtc->mode = *saved_mode;
9117         }
9118
9119 out:
9120         kfree(pipe_config);
9121         kfree(saved_mode);
9122         return ret;
9123 }
9124
9125 static int intel_set_mode(struct drm_crtc *crtc,
9126                           struct drm_display_mode *mode,
9127                           int x, int y, struct drm_framebuffer *fb)
9128 {
9129         int ret;
9130
9131         ret = __intel_set_mode(crtc, mode, x, y, fb);
9132
9133         if (ret == 0)
9134                 intel_modeset_check_state(crtc->dev);
9135
9136         return ret;
9137 }
9138
9139 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9140 {
9141         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9142 }
9143
9144 #undef for_each_intel_crtc_masked
9145
9146 static void intel_set_config_free(struct intel_set_config *config)
9147 {
9148         if (!config)
9149                 return;
9150
9151         kfree(config->save_connector_encoders);
9152         kfree(config->save_encoder_crtcs);
9153         kfree(config);
9154 }
9155
9156 static int intel_set_config_save_state(struct drm_device *dev,
9157                                        struct intel_set_config *config)
9158 {
9159         struct drm_encoder *encoder;
9160         struct drm_connector *connector;
9161         int count;
9162
9163         config->save_encoder_crtcs =
9164                 kcalloc(dev->mode_config.num_encoder,
9165                         sizeof(struct drm_crtc *), GFP_KERNEL);
9166         if (!config->save_encoder_crtcs)
9167                 return -ENOMEM;
9168
9169         config->save_connector_encoders =
9170                 kcalloc(dev->mode_config.num_connector,
9171                         sizeof(struct drm_encoder *), GFP_KERNEL);
9172         if (!config->save_connector_encoders)
9173                 return -ENOMEM;
9174
9175         /* Copy data. Note that driver private data is not affected.
9176          * Should anything bad happen only the expected state is
9177          * restored, not the drivers personal bookkeeping.
9178          */
9179         count = 0;
9180         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9181                 config->save_encoder_crtcs[count++] = encoder->crtc;
9182         }
9183
9184         count = 0;
9185         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9186                 config->save_connector_encoders[count++] = connector->encoder;
9187         }
9188
9189         return 0;
9190 }
9191
9192 static void intel_set_config_restore_state(struct drm_device *dev,
9193                                            struct intel_set_config *config)
9194 {
9195         struct intel_encoder *encoder;
9196         struct intel_connector *connector;
9197         int count;
9198
9199         count = 0;
9200         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9201                 encoder->new_crtc =
9202                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9203         }
9204
9205         count = 0;
9206         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9207                 connector->new_encoder =
9208                         to_intel_encoder(config->save_connector_encoders[count++]);
9209         }
9210 }
9211
9212 static bool
9213 is_crtc_connector_off(struct drm_mode_set *set)
9214 {
9215         int i;
9216
9217         if (set->num_connectors == 0)
9218                 return false;
9219
9220         if (WARN_ON(set->connectors == NULL))
9221                 return false;
9222
9223         for (i = 0; i < set->num_connectors; i++)
9224                 if (set->connectors[i]->encoder &&
9225                     set->connectors[i]->encoder->crtc == set->crtc &&
9226                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9227                         return true;
9228
9229         return false;
9230 }
9231
9232 static void
9233 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9234                                       struct intel_set_config *config)
9235 {
9236
9237         /* We should be able to check here if the fb has the same properties
9238          * and then just flip_or_move it */
9239         if (is_crtc_connector_off(set)) {
9240                 config->mode_changed = true;
9241         } else if (set->crtc->fb != set->fb) {
9242                 /* If we have no fb then treat it as a full mode set */
9243                 if (set->crtc->fb == NULL) {
9244                         struct intel_crtc *intel_crtc =
9245                                 to_intel_crtc(set->crtc);
9246
9247                         if (intel_crtc->active && i915_fastboot) {
9248                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9249                                 config->fb_changed = true;
9250                         } else {
9251                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9252                                 config->mode_changed = true;
9253                         }
9254                 } else if (set->fb == NULL) {
9255                         config->mode_changed = true;
9256                 } else if (set->fb->pixel_format !=
9257                            set->crtc->fb->pixel_format) {
9258                         config->mode_changed = true;
9259                 } else {
9260                         config->fb_changed = true;
9261                 }
9262         }
9263
9264         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9265                 config->fb_changed = true;
9266
9267         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9268                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9269                 drm_mode_debug_printmodeline(&set->crtc->mode);
9270                 drm_mode_debug_printmodeline(set->mode);
9271                 config->mode_changed = true;
9272         }
9273
9274         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9275                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9276 }
9277
9278 static int
9279 intel_modeset_stage_output_state(struct drm_device *dev,
9280                                  struct drm_mode_set *set,
9281                                  struct intel_set_config *config)
9282 {
9283         struct drm_crtc *new_crtc;
9284         struct intel_connector *connector;
9285         struct intel_encoder *encoder;
9286         int ro;
9287
9288         /* The upper layers ensure that we either disable a crtc or have a list
9289          * of connectors. For paranoia, double-check this. */
9290         WARN_ON(!set->fb && (set->num_connectors != 0));
9291         WARN_ON(set->fb && (set->num_connectors == 0));
9292
9293         list_for_each_entry(connector, &dev->mode_config.connector_list,
9294                             base.head) {
9295                 /* Otherwise traverse passed in connector list and get encoders
9296                  * for them. */
9297                 for (ro = 0; ro < set->num_connectors; ro++) {
9298                         if (set->connectors[ro] == &connector->base) {
9299                                 connector->new_encoder = connector->encoder;
9300                                 break;
9301                         }
9302                 }
9303
9304                 /* If we disable the crtc, disable all its connectors. Also, if
9305                  * the connector is on the changing crtc but not on the new
9306                  * connector list, disable it. */
9307                 if ((!set->fb || ro == set->num_connectors) &&
9308                     connector->base.encoder &&
9309                     connector->base.encoder->crtc == set->crtc) {
9310                         connector->new_encoder = NULL;
9311
9312                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9313                                 connector->base.base.id,
9314                                 drm_get_connector_name(&connector->base));
9315                 }
9316
9317
9318                 if (&connector->new_encoder->base != connector->base.encoder) {
9319                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9320                         config->mode_changed = true;
9321                 }
9322         }
9323         /* connector->new_encoder is now updated for all connectors. */
9324
9325         /* Update crtc of enabled connectors. */
9326         list_for_each_entry(connector, &dev->mode_config.connector_list,
9327                             base.head) {
9328                 if (!connector->new_encoder)
9329                         continue;
9330
9331                 new_crtc = connector->new_encoder->base.crtc;
9332
9333                 for (ro = 0; ro < set->num_connectors; ro++) {
9334                         if (set->connectors[ro] == &connector->base)
9335                                 new_crtc = set->crtc;
9336                 }
9337
9338                 /* Make sure the new CRTC will work with the encoder */
9339                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9340                                            new_crtc)) {
9341                         return -EINVAL;
9342                 }
9343                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9344
9345                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9346                         connector->base.base.id,
9347                         drm_get_connector_name(&connector->base),
9348                         new_crtc->base.id);
9349         }
9350
9351         /* Check for any encoders that needs to be disabled. */
9352         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9353                             base.head) {
9354                 list_for_each_entry(connector,
9355                                     &dev->mode_config.connector_list,
9356                                     base.head) {
9357                         if (connector->new_encoder == encoder) {
9358                                 WARN_ON(!connector->new_encoder->new_crtc);
9359
9360                                 goto next_encoder;
9361                         }
9362                 }
9363                 encoder->new_crtc = NULL;
9364 next_encoder:
9365                 /* Only now check for crtc changes so we don't miss encoders
9366                  * that will be disabled. */
9367                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9368                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9369                         config->mode_changed = true;
9370                 }
9371         }
9372         /* Now we've also updated encoder->new_crtc for all encoders. */
9373
9374         return 0;
9375 }
9376
9377 static int intel_crtc_set_config(struct drm_mode_set *set)
9378 {
9379         struct drm_device *dev;
9380         struct drm_mode_set save_set;
9381         struct intel_set_config *config;
9382         int ret;
9383
9384         BUG_ON(!set);
9385         BUG_ON(!set->crtc);
9386         BUG_ON(!set->crtc->helper_private);
9387
9388         /* Enforce sane interface api - has been abused by the fb helper. */
9389         BUG_ON(!set->mode && set->fb);
9390         BUG_ON(set->fb && set->num_connectors == 0);
9391
9392         if (set->fb) {
9393                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9394                                 set->crtc->base.id, set->fb->base.id,
9395                                 (int)set->num_connectors, set->x, set->y);
9396         } else {
9397                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9398         }
9399
9400         dev = set->crtc->dev;
9401
9402         ret = -ENOMEM;
9403         config = kzalloc(sizeof(*config), GFP_KERNEL);
9404         if (!config)
9405                 goto out_config;
9406
9407         ret = intel_set_config_save_state(dev, config);
9408         if (ret)
9409                 goto out_config;
9410
9411         save_set.crtc = set->crtc;
9412         save_set.mode = &set->crtc->mode;
9413         save_set.x = set->crtc->x;
9414         save_set.y = set->crtc->y;
9415         save_set.fb = set->crtc->fb;
9416
9417         /* Compute whether we need a full modeset, only an fb base update or no
9418          * change at all. In the future we might also check whether only the
9419          * mode changed, e.g. for LVDS where we only change the panel fitter in
9420          * such cases. */
9421         intel_set_config_compute_mode_changes(set, config);
9422
9423         ret = intel_modeset_stage_output_state(dev, set, config);
9424         if (ret)
9425                 goto fail;
9426
9427         if (config->mode_changed) {
9428                 ret = intel_set_mode(set->crtc, set->mode,
9429                                      set->x, set->y, set->fb);
9430         } else if (config->fb_changed) {
9431                 intel_crtc_wait_for_pending_flips(set->crtc);
9432
9433                 ret = intel_pipe_set_base(set->crtc,
9434                                           set->x, set->y, set->fb);
9435         }
9436
9437         if (ret) {
9438                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9439                               set->crtc->base.id, ret);
9440 fail:
9441                 intel_set_config_restore_state(dev, config);
9442
9443                 /* Try to restore the config */
9444                 if (config->mode_changed &&
9445                     intel_set_mode(save_set.crtc, save_set.mode,
9446                                    save_set.x, save_set.y, save_set.fb))
9447                         DRM_ERROR("failed to restore config after modeset failure\n");
9448         }
9449
9450 out_config:
9451         intel_set_config_free(config);
9452         return ret;
9453 }
9454
9455 static const struct drm_crtc_funcs intel_crtc_funcs = {
9456         .cursor_set = intel_crtc_cursor_set,
9457         .cursor_move = intel_crtc_cursor_move,
9458         .gamma_set = intel_crtc_gamma_set,
9459         .set_config = intel_crtc_set_config,
9460         .destroy = intel_crtc_destroy,
9461         .page_flip = intel_crtc_page_flip,
9462 };
9463
9464 static void intel_cpu_pll_init(struct drm_device *dev)
9465 {
9466         if (HAS_DDI(dev))
9467                 intel_ddi_pll_init(dev);
9468 }
9469
9470 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9471                                       struct intel_shared_dpll *pll,
9472                                       struct intel_dpll_hw_state *hw_state)
9473 {
9474         uint32_t val;
9475
9476         val = I915_READ(PCH_DPLL(pll->id));
9477         hw_state->dpll = val;
9478         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9479         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9480
9481         return val & DPLL_VCO_ENABLE;
9482 }
9483
9484 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9485                                   struct intel_shared_dpll *pll)
9486 {
9487         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9488         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9489 }
9490
9491 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9492                                 struct intel_shared_dpll *pll)
9493 {
9494         /* PCH refclock must be enabled first */
9495         assert_pch_refclk_enabled(dev_priv);
9496
9497         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9498
9499         /* Wait for the clocks to stabilize. */
9500         POSTING_READ(PCH_DPLL(pll->id));
9501         udelay(150);
9502
9503         /* The pixel multiplier can only be updated once the
9504          * DPLL is enabled and the clocks are stable.
9505          *
9506          * So write it again.
9507          */
9508         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9509         POSTING_READ(PCH_DPLL(pll->id));
9510         udelay(200);
9511 }
9512
9513 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9514                                  struct intel_shared_dpll *pll)
9515 {
9516         struct drm_device *dev = dev_priv->dev;
9517         struct intel_crtc *crtc;
9518
9519         /* Make sure no transcoder isn't still depending on us. */
9520         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9521                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9522                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9523         }
9524
9525         I915_WRITE(PCH_DPLL(pll->id), 0);
9526         POSTING_READ(PCH_DPLL(pll->id));
9527         udelay(200);
9528 }
9529
9530 static char *ibx_pch_dpll_names[] = {
9531         "PCH DPLL A",
9532         "PCH DPLL B",
9533 };
9534
9535 static void ibx_pch_dpll_init(struct drm_device *dev)
9536 {
9537         struct drm_i915_private *dev_priv = dev->dev_private;
9538         int i;
9539
9540         dev_priv->num_shared_dpll = 2;
9541
9542         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9543                 dev_priv->shared_dplls[i].id = i;
9544                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9545                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9546                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9547                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9548                 dev_priv->shared_dplls[i].get_hw_state =
9549                         ibx_pch_dpll_get_hw_state;
9550         }
9551 }
9552
9553 static void intel_shared_dpll_init(struct drm_device *dev)
9554 {
9555         struct drm_i915_private *dev_priv = dev->dev_private;
9556
9557         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9558                 ibx_pch_dpll_init(dev);
9559         else
9560                 dev_priv->num_shared_dpll = 0;
9561
9562         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9563         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9564                       dev_priv->num_shared_dpll);
9565 }
9566
9567 static void intel_crtc_init(struct drm_device *dev, int pipe)
9568 {
9569         drm_i915_private_t *dev_priv = dev->dev_private;
9570         struct intel_crtc *intel_crtc;
9571         int i;
9572
9573         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9574         if (intel_crtc == NULL)
9575                 return;
9576
9577         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9578
9579         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9580         for (i = 0; i < 256; i++) {
9581                 intel_crtc->lut_r[i] = i;
9582                 intel_crtc->lut_g[i] = i;
9583                 intel_crtc->lut_b[i] = i;
9584         }
9585
9586         /* Swap pipes & planes for FBC on pre-965 */
9587         intel_crtc->pipe = pipe;
9588         intel_crtc->plane = pipe;
9589         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9590                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9591                 intel_crtc->plane = !pipe;
9592         }
9593
9594         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9595                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9596         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9597         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9598
9599         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9600 }
9601
9602 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9603                                 struct drm_file *file)
9604 {
9605         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9606         struct drm_mode_object *drmmode_obj;
9607         struct intel_crtc *crtc;
9608
9609         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9610                 return -ENODEV;
9611
9612         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9613                         DRM_MODE_OBJECT_CRTC);
9614
9615         if (!drmmode_obj) {
9616                 DRM_ERROR("no such CRTC id\n");
9617                 return -EINVAL;
9618         }
9619
9620         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9621         pipe_from_crtc_id->pipe = crtc->pipe;
9622
9623         return 0;
9624 }
9625
9626 static int intel_encoder_clones(struct intel_encoder *encoder)
9627 {
9628         struct drm_device *dev = encoder->base.dev;
9629         struct intel_encoder *source_encoder;
9630         int index_mask = 0;
9631         int entry = 0;
9632
9633         list_for_each_entry(source_encoder,
9634                             &dev->mode_config.encoder_list, base.head) {
9635
9636                 if (encoder == source_encoder)
9637                         index_mask |= (1 << entry);
9638
9639                 /* Intel hw has only one MUX where enocoders could be cloned. */
9640                 if (encoder->cloneable && source_encoder->cloneable)
9641                         index_mask |= (1 << entry);
9642
9643                 entry++;
9644         }
9645
9646         return index_mask;
9647 }
9648
9649 static bool has_edp_a(struct drm_device *dev)
9650 {
9651         struct drm_i915_private *dev_priv = dev->dev_private;
9652
9653         if (!IS_MOBILE(dev))
9654                 return false;
9655
9656         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9657                 return false;
9658
9659         if (IS_GEN5(dev) &&
9660             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9661                 return false;
9662
9663         return true;
9664 }
9665
9666 static void intel_setup_outputs(struct drm_device *dev)
9667 {
9668         struct drm_i915_private *dev_priv = dev->dev_private;
9669         struct intel_encoder *encoder;
9670         bool dpd_is_edp = false;
9671
9672         intel_lvds_init(dev);
9673
9674         if (!IS_ULT(dev))
9675                 intel_crt_init(dev);
9676
9677         if (HAS_DDI(dev)) {
9678                 int found;
9679
9680                 /* Haswell uses DDI functions to detect digital outputs */
9681                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9682                 /* DDI A only supports eDP */
9683                 if (found)
9684                         intel_ddi_init(dev, PORT_A);
9685
9686                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9687                  * register */
9688                 found = I915_READ(SFUSE_STRAP);
9689
9690                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9691                         intel_ddi_init(dev, PORT_B);
9692                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9693                         intel_ddi_init(dev, PORT_C);
9694                 if (found & SFUSE_STRAP_DDID_DETECTED)
9695                         intel_ddi_init(dev, PORT_D);
9696         } else if (HAS_PCH_SPLIT(dev)) {
9697                 int found;
9698                 dpd_is_edp = intel_dpd_is_edp(dev);
9699
9700                 if (has_edp_a(dev))
9701                         intel_dp_init(dev, DP_A, PORT_A);
9702
9703                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9704                         /* PCH SDVOB multiplex with HDMIB */
9705                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9706                         if (!found)
9707                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9708                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9709                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9710                 }
9711
9712                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9713                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9714
9715                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9716                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9717
9718                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9719                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9720
9721                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9722                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9723         } else if (IS_VALLEYVIEW(dev)) {
9724                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9725                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9726                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9727                                         PORT_C);
9728                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9729                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9730                                               PORT_C);
9731                 }
9732
9733                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9734                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9735                                         PORT_B);
9736                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9737                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9738                 }
9739
9740                 intel_dsi_init(dev);
9741         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9742                 bool found = false;
9743
9744                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9745                         DRM_DEBUG_KMS("probing SDVOB\n");
9746                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9747                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9748                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9749                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9750                         }
9751
9752                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9753                                 intel_dp_init(dev, DP_B, PORT_B);
9754                 }
9755
9756                 /* Before G4X SDVOC doesn't have its own detect register */
9757
9758                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9759                         DRM_DEBUG_KMS("probing SDVOC\n");
9760                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9761                 }
9762
9763                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9764
9765                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9766                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9767                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9768                         }
9769                         if (SUPPORTS_INTEGRATED_DP(dev))
9770                                 intel_dp_init(dev, DP_C, PORT_C);
9771                 }
9772
9773                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9774                     (I915_READ(DP_D) & DP_DETECTED))
9775                         intel_dp_init(dev, DP_D, PORT_D);
9776         } else if (IS_GEN2(dev))
9777                 intel_dvo_init(dev);
9778
9779         if (SUPPORTS_TV(dev))
9780                 intel_tv_init(dev);
9781
9782         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9783                 encoder->base.possible_crtcs = encoder->crtc_mask;
9784                 encoder->base.possible_clones =
9785                         intel_encoder_clones(encoder);
9786         }
9787
9788         intel_init_pch_refclk(dev);
9789
9790         drm_helper_move_panel_connectors_to_head(dev);
9791 }
9792
9793 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9794 {
9795         drm_framebuffer_cleanup(&fb->base);
9796         drm_gem_object_unreference_unlocked(&fb->obj->base);
9797 }
9798
9799 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9800 {
9801         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9802
9803         intel_framebuffer_fini(intel_fb);
9804         kfree(intel_fb);
9805 }
9806
9807 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9808                                                 struct drm_file *file,
9809                                                 unsigned int *handle)
9810 {
9811         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9812         struct drm_i915_gem_object *obj = intel_fb->obj;
9813
9814         return drm_gem_handle_create(file, &obj->base, handle);
9815 }
9816
9817 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9818         .destroy = intel_user_framebuffer_destroy,
9819         .create_handle = intel_user_framebuffer_create_handle,
9820 };
9821
9822 int intel_framebuffer_init(struct drm_device *dev,
9823                            struct intel_framebuffer *intel_fb,
9824                            struct drm_mode_fb_cmd2 *mode_cmd,
9825                            struct drm_i915_gem_object *obj)
9826 {
9827         int pitch_limit;
9828         int ret;
9829
9830         if (obj->tiling_mode == I915_TILING_Y) {
9831                 DRM_DEBUG("hardware does not support tiling Y\n");
9832                 return -EINVAL;
9833         }
9834
9835         if (mode_cmd->pitches[0] & 63) {
9836                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9837                           mode_cmd->pitches[0]);
9838                 return -EINVAL;
9839         }
9840
9841         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9842                 pitch_limit = 32*1024;
9843         } else if (INTEL_INFO(dev)->gen >= 4) {
9844                 if (obj->tiling_mode)
9845                         pitch_limit = 16*1024;
9846                 else
9847                         pitch_limit = 32*1024;
9848         } else if (INTEL_INFO(dev)->gen >= 3) {
9849                 if (obj->tiling_mode)
9850                         pitch_limit = 8*1024;
9851                 else
9852                         pitch_limit = 16*1024;
9853         } else
9854                 /* XXX DSPC is limited to 4k tiled */
9855                 pitch_limit = 8*1024;
9856
9857         if (mode_cmd->pitches[0] > pitch_limit) {
9858                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9859                           obj->tiling_mode ? "tiled" : "linear",
9860                           mode_cmd->pitches[0], pitch_limit);
9861                 return -EINVAL;
9862         }
9863
9864         if (obj->tiling_mode != I915_TILING_NONE &&
9865             mode_cmd->pitches[0] != obj->stride) {
9866                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9867                           mode_cmd->pitches[0], obj->stride);
9868                 return -EINVAL;
9869         }
9870
9871         /* Reject formats not supported by any plane early. */
9872         switch (mode_cmd->pixel_format) {
9873         case DRM_FORMAT_C8:
9874         case DRM_FORMAT_RGB565:
9875         case DRM_FORMAT_XRGB8888:
9876         case DRM_FORMAT_ARGB8888:
9877                 break;
9878         case DRM_FORMAT_XRGB1555:
9879         case DRM_FORMAT_ARGB1555:
9880                 if (INTEL_INFO(dev)->gen > 3) {
9881                         DRM_DEBUG("unsupported pixel format: %s\n",
9882                                   drm_get_format_name(mode_cmd->pixel_format));
9883                         return -EINVAL;
9884                 }
9885                 break;
9886         case DRM_FORMAT_XBGR8888:
9887         case DRM_FORMAT_ABGR8888:
9888         case DRM_FORMAT_XRGB2101010:
9889         case DRM_FORMAT_ARGB2101010:
9890         case DRM_FORMAT_XBGR2101010:
9891         case DRM_FORMAT_ABGR2101010:
9892                 if (INTEL_INFO(dev)->gen < 4) {
9893                         DRM_DEBUG("unsupported pixel format: %s\n",
9894                                   drm_get_format_name(mode_cmd->pixel_format));
9895                         return -EINVAL;
9896                 }
9897                 break;
9898         case DRM_FORMAT_YUYV:
9899         case DRM_FORMAT_UYVY:
9900         case DRM_FORMAT_YVYU:
9901         case DRM_FORMAT_VYUY:
9902                 if (INTEL_INFO(dev)->gen < 5) {
9903                         DRM_DEBUG("unsupported pixel format: %s\n",
9904                                   drm_get_format_name(mode_cmd->pixel_format));
9905                         return -EINVAL;
9906                 }
9907                 break;
9908         default:
9909                 DRM_DEBUG("unsupported pixel format: %s\n",
9910                           drm_get_format_name(mode_cmd->pixel_format));
9911                 return -EINVAL;
9912         }
9913
9914         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9915         if (mode_cmd->offsets[0] != 0)
9916                 return -EINVAL;
9917
9918         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9919         intel_fb->obj = obj;
9920
9921         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9922         if (ret) {
9923                 DRM_ERROR("framebuffer init failed %d\n", ret);
9924                 return ret;
9925         }
9926
9927         return 0;
9928 }
9929
9930 static struct drm_framebuffer *
9931 intel_user_framebuffer_create(struct drm_device *dev,
9932                               struct drm_file *filp,
9933                               struct drm_mode_fb_cmd2 *mode_cmd)
9934 {
9935         struct drm_i915_gem_object *obj;
9936
9937         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9938                                                 mode_cmd->handles[0]));
9939         if (&obj->base == NULL)
9940                 return ERR_PTR(-ENOENT);
9941
9942         return intel_framebuffer_create(dev, mode_cmd, obj);
9943 }
9944
9945 static const struct drm_mode_config_funcs intel_mode_funcs = {
9946         .fb_create = intel_user_framebuffer_create,
9947         .output_poll_changed = intel_fb_output_poll_changed,
9948 };
9949
9950 /* Set up chip specific display functions */
9951 static void intel_init_display(struct drm_device *dev)
9952 {
9953         struct drm_i915_private *dev_priv = dev->dev_private;
9954
9955         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9956                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9957         else if (IS_VALLEYVIEW(dev))
9958                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9959         else if (IS_PINEVIEW(dev))
9960                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9961         else
9962                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9963
9964         if (HAS_DDI(dev)) {
9965                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9966                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9967                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9968                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9969                 dev_priv->display.off = haswell_crtc_off;
9970                 dev_priv->display.update_plane = ironlake_update_plane;
9971         } else if (HAS_PCH_SPLIT(dev)) {
9972                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9973                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9974                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9975                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9976                 dev_priv->display.off = ironlake_crtc_off;
9977                 dev_priv->display.update_plane = ironlake_update_plane;
9978         } else if (IS_VALLEYVIEW(dev)) {
9979                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9980                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9981                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9982                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9983                 dev_priv->display.off = i9xx_crtc_off;
9984                 dev_priv->display.update_plane = i9xx_update_plane;
9985         } else {
9986                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9987                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9988                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9989                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9990                 dev_priv->display.off = i9xx_crtc_off;
9991                 dev_priv->display.update_plane = i9xx_update_plane;
9992         }
9993
9994         /* Returns the core display clock speed */
9995         if (IS_VALLEYVIEW(dev))
9996                 dev_priv->display.get_display_clock_speed =
9997                         valleyview_get_display_clock_speed;
9998         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9999                 dev_priv->display.get_display_clock_speed =
10000                         i945_get_display_clock_speed;
10001         else if (IS_I915G(dev))
10002                 dev_priv->display.get_display_clock_speed =
10003                         i915_get_display_clock_speed;
10004         else if (IS_I945GM(dev) || IS_845G(dev))
10005                 dev_priv->display.get_display_clock_speed =
10006                         i9xx_misc_get_display_clock_speed;
10007         else if (IS_PINEVIEW(dev))
10008                 dev_priv->display.get_display_clock_speed =
10009                         pnv_get_display_clock_speed;
10010         else if (IS_I915GM(dev))
10011                 dev_priv->display.get_display_clock_speed =
10012                         i915gm_get_display_clock_speed;
10013         else if (IS_I865G(dev))
10014                 dev_priv->display.get_display_clock_speed =
10015                         i865_get_display_clock_speed;
10016         else if (IS_I85X(dev))
10017                 dev_priv->display.get_display_clock_speed =
10018                         i855_get_display_clock_speed;
10019         else /* 852, 830 */
10020                 dev_priv->display.get_display_clock_speed =
10021                         i830_get_display_clock_speed;
10022
10023         if (HAS_PCH_SPLIT(dev)) {
10024                 if (IS_GEN5(dev)) {
10025                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10026                         dev_priv->display.write_eld = ironlake_write_eld;
10027                 } else if (IS_GEN6(dev)) {
10028                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10029                         dev_priv->display.write_eld = ironlake_write_eld;
10030                 } else if (IS_IVYBRIDGE(dev)) {
10031                         /* FIXME: detect B0+ stepping and use auto training */
10032                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10033                         dev_priv->display.write_eld = ironlake_write_eld;
10034                         dev_priv->display.modeset_global_resources =
10035                                 ivb_modeset_global_resources;
10036                 } else if (IS_HASWELL(dev)) {
10037                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10038                         dev_priv->display.write_eld = haswell_write_eld;
10039                         dev_priv->display.modeset_global_resources =
10040                                 haswell_modeset_global_resources;
10041                 }
10042         } else if (IS_G4X(dev)) {
10043                 dev_priv->display.write_eld = g4x_write_eld;
10044         }
10045
10046         /* Default just returns -ENODEV to indicate unsupported */
10047         dev_priv->display.queue_flip = intel_default_queue_flip;
10048
10049         switch (INTEL_INFO(dev)->gen) {
10050         case 2:
10051                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10052                 break;
10053
10054         case 3:
10055                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10056                 break;
10057
10058         case 4:
10059         case 5:
10060                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10061                 break;
10062
10063         case 6:
10064                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10065                 break;
10066         case 7:
10067                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10068                 break;
10069         }
10070 }
10071
10072 /*
10073  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10074  * resume, or other times.  This quirk makes sure that's the case for
10075  * affected systems.
10076  */
10077 static void quirk_pipea_force(struct drm_device *dev)
10078 {
10079         struct drm_i915_private *dev_priv = dev->dev_private;
10080
10081         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10082         DRM_INFO("applying pipe a force quirk\n");
10083 }
10084
10085 /*
10086  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10087  */
10088 static void quirk_ssc_force_disable(struct drm_device *dev)
10089 {
10090         struct drm_i915_private *dev_priv = dev->dev_private;
10091         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10092         DRM_INFO("applying lvds SSC disable quirk\n");
10093 }
10094
10095 /*
10096  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10097  * brightness value
10098  */
10099 static void quirk_invert_brightness(struct drm_device *dev)
10100 {
10101         struct drm_i915_private *dev_priv = dev->dev_private;
10102         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10103         DRM_INFO("applying inverted panel brightness quirk\n");
10104 }
10105
10106 /*
10107  * Some machines (Dell XPS13) suffer broken backlight controls if
10108  * BLM_PCH_PWM_ENABLE is set.
10109  */
10110 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10111 {
10112         struct drm_i915_private *dev_priv = dev->dev_private;
10113         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10114         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10115 }
10116
10117 struct intel_quirk {
10118         int device;
10119         int subsystem_vendor;
10120         int subsystem_device;
10121         void (*hook)(struct drm_device *dev);
10122 };
10123
10124 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10125 struct intel_dmi_quirk {
10126         void (*hook)(struct drm_device *dev);
10127         const struct dmi_system_id (*dmi_id_list)[];
10128 };
10129
10130 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10131 {
10132         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10133         return 1;
10134 }
10135
10136 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10137         {
10138                 .dmi_id_list = &(const struct dmi_system_id[]) {
10139                         {
10140                                 .callback = intel_dmi_reverse_brightness,
10141                                 .ident = "NCR Corporation",
10142                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10143                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10144                                 },
10145                         },
10146                         { }  /* terminating entry */
10147                 },
10148                 .hook = quirk_invert_brightness,
10149         },
10150 };
10151
10152 static struct intel_quirk intel_quirks[] = {
10153         /* HP Mini needs pipe A force quirk (LP: #322104) */
10154         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10155
10156         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10157         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10158
10159         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10160         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10161
10162         /* 830/845 need to leave pipe A & dpll A up */
10163         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10164         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10165
10166         /* Lenovo U160 cannot use SSC on LVDS */
10167         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10168
10169         /* Sony Vaio Y cannot use SSC on LVDS */
10170         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10171
10172         /* Acer Aspire 5734Z must invert backlight brightness */
10173         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10174
10175         /* Acer/eMachines G725 */
10176         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10177
10178         /* Acer/eMachines e725 */
10179         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10180
10181         /* Acer/Packard Bell NCL20 */
10182         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10183
10184         /* Acer Aspire 4736Z */
10185         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10186
10187         /* Dell XPS13 HD Sandy Bridge */
10188         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10189         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10190         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10191 };
10192
10193 static void intel_init_quirks(struct drm_device *dev)
10194 {
10195         struct pci_dev *d = dev->pdev;
10196         int i;
10197
10198         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10199                 struct intel_quirk *q = &intel_quirks[i];
10200
10201                 if (d->device == q->device &&
10202                     (d->subsystem_vendor == q->subsystem_vendor ||
10203                      q->subsystem_vendor == PCI_ANY_ID) &&
10204                     (d->subsystem_device == q->subsystem_device ||
10205                      q->subsystem_device == PCI_ANY_ID))
10206                         q->hook(dev);
10207         }
10208         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10209                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10210                         intel_dmi_quirks[i].hook(dev);
10211         }
10212 }
10213
10214 /* Disable the VGA plane that we never use */
10215 static void i915_disable_vga(struct drm_device *dev)
10216 {
10217         struct drm_i915_private *dev_priv = dev->dev_private;
10218         u8 sr1;
10219         u32 vga_reg = i915_vgacntrl_reg(dev);
10220
10221         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10222         outb(SR01, VGA_SR_INDEX);
10223         sr1 = inb(VGA_SR_DATA);
10224         outb(sr1 | 1<<5, VGA_SR_DATA);
10225
10226         /* Disable VGA memory on Intel HD */
10227         if (HAS_PCH_SPLIT(dev)) {
10228                 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10229                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10230                                                    VGA_RSRC_NORMAL_IO |
10231                                                    VGA_RSRC_NORMAL_MEM);
10232         }
10233
10234         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10235         udelay(300);
10236
10237         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10238         POSTING_READ(vga_reg);
10239 }
10240
10241 static void i915_enable_vga(struct drm_device *dev)
10242 {
10243         /* Enable VGA memory on Intel HD */
10244         if (HAS_PCH_SPLIT(dev)) {
10245                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10246                 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10247                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10248                                                    VGA_RSRC_LEGACY_MEM |
10249                                                    VGA_RSRC_NORMAL_IO |
10250                                                    VGA_RSRC_NORMAL_MEM);
10251                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10252         }
10253 }
10254
10255 void intel_modeset_init_hw(struct drm_device *dev)
10256 {
10257         intel_init_power_well(dev);
10258
10259         intel_prepare_ddi(dev);
10260
10261         intel_init_clock_gating(dev);
10262
10263         mutex_lock(&dev->struct_mutex);
10264         intel_enable_gt_powersave(dev);
10265         mutex_unlock(&dev->struct_mutex);
10266 }
10267
10268 void intel_modeset_suspend_hw(struct drm_device *dev)
10269 {
10270         intel_suspend_hw(dev);
10271 }
10272
10273 void intel_modeset_init(struct drm_device *dev)
10274 {
10275         struct drm_i915_private *dev_priv = dev->dev_private;
10276         int i, j, ret;
10277
10278         drm_mode_config_init(dev);
10279
10280         dev->mode_config.min_width = 0;
10281         dev->mode_config.min_height = 0;
10282
10283         dev->mode_config.preferred_depth = 24;
10284         dev->mode_config.prefer_shadow = 1;
10285
10286         dev->mode_config.funcs = &intel_mode_funcs;
10287
10288         intel_init_quirks(dev);
10289
10290         intel_init_pm(dev);
10291
10292         if (INTEL_INFO(dev)->num_pipes == 0)
10293                 return;
10294
10295         intel_init_display(dev);
10296
10297         if (IS_GEN2(dev)) {
10298                 dev->mode_config.max_width = 2048;
10299                 dev->mode_config.max_height = 2048;
10300         } else if (IS_GEN3(dev)) {
10301                 dev->mode_config.max_width = 4096;
10302                 dev->mode_config.max_height = 4096;
10303         } else {
10304                 dev->mode_config.max_width = 8192;
10305                 dev->mode_config.max_height = 8192;
10306         }
10307         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10308
10309         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10310                       INTEL_INFO(dev)->num_pipes,
10311                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10312
10313         for_each_pipe(i) {
10314                 intel_crtc_init(dev, i);
10315                 for (j = 0; j < dev_priv->num_plane; j++) {
10316                         ret = intel_plane_init(dev, i, j);
10317                         if (ret)
10318                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10319                                               pipe_name(i), sprite_name(i, j), ret);
10320                 }
10321         }
10322
10323         intel_cpu_pll_init(dev);
10324         intel_shared_dpll_init(dev);
10325
10326         /* Just disable it once at startup */
10327         i915_disable_vga(dev);
10328         intel_setup_outputs(dev);
10329
10330         /* Just in case the BIOS is doing something questionable. */
10331         intel_disable_fbc(dev);
10332 }
10333
10334 static void
10335 intel_connector_break_all_links(struct intel_connector *connector)
10336 {
10337         connector->base.dpms = DRM_MODE_DPMS_OFF;
10338         connector->base.encoder = NULL;
10339         connector->encoder->connectors_active = false;
10340         connector->encoder->base.crtc = NULL;
10341 }
10342
10343 static void intel_enable_pipe_a(struct drm_device *dev)
10344 {
10345         struct intel_connector *connector;
10346         struct drm_connector *crt = NULL;
10347         struct intel_load_detect_pipe load_detect_temp;
10348
10349         /* We can't just switch on the pipe A, we need to set things up with a
10350          * proper mode and output configuration. As a gross hack, enable pipe A
10351          * by enabling the load detect pipe once. */
10352         list_for_each_entry(connector,
10353                             &dev->mode_config.connector_list,
10354                             base.head) {
10355                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10356                         crt = &connector->base;
10357                         break;
10358                 }
10359         }
10360
10361         if (!crt)
10362                 return;
10363
10364         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10365                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10366
10367
10368 }
10369
10370 static bool
10371 intel_check_plane_mapping(struct intel_crtc *crtc)
10372 {
10373         struct drm_device *dev = crtc->base.dev;
10374         struct drm_i915_private *dev_priv = dev->dev_private;
10375         u32 reg, val;
10376
10377         if (INTEL_INFO(dev)->num_pipes == 1)
10378                 return true;
10379
10380         reg = DSPCNTR(!crtc->plane);
10381         val = I915_READ(reg);
10382
10383         if ((val & DISPLAY_PLANE_ENABLE) &&
10384             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10385                 return false;
10386
10387         return true;
10388 }
10389
10390 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10391 {
10392         struct drm_device *dev = crtc->base.dev;
10393         struct drm_i915_private *dev_priv = dev->dev_private;
10394         u32 reg;
10395
10396         /* Clear any frame start delays used for debugging left by the BIOS */
10397         reg = PIPECONF(crtc->config.cpu_transcoder);
10398         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10399
10400         /* We need to sanitize the plane -> pipe mapping first because this will
10401          * disable the crtc (and hence change the state) if it is wrong. Note
10402          * that gen4+ has a fixed plane -> pipe mapping.  */
10403         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10404                 struct intel_connector *connector;
10405                 bool plane;
10406
10407                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10408                               crtc->base.base.id);
10409
10410                 /* Pipe has the wrong plane attached and the plane is active.
10411                  * Temporarily change the plane mapping and disable everything
10412                  * ...  */
10413                 plane = crtc->plane;
10414                 crtc->plane = !plane;
10415                 dev_priv->display.crtc_disable(&crtc->base);
10416                 crtc->plane = plane;
10417
10418                 /* ... and break all links. */
10419                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10420                                     base.head) {
10421                         if (connector->encoder->base.crtc != &crtc->base)
10422                                 continue;
10423
10424                         intel_connector_break_all_links(connector);
10425                 }
10426
10427                 WARN_ON(crtc->active);
10428                 crtc->base.enabled = false;
10429         }
10430
10431         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10432             crtc->pipe == PIPE_A && !crtc->active) {
10433                 /* BIOS forgot to enable pipe A, this mostly happens after
10434                  * resume. Force-enable the pipe to fix this, the update_dpms
10435                  * call below we restore the pipe to the right state, but leave
10436                  * the required bits on. */
10437                 intel_enable_pipe_a(dev);
10438         }
10439
10440         /* Adjust the state of the output pipe according to whether we
10441          * have active connectors/encoders. */
10442         intel_crtc_update_dpms(&crtc->base);
10443
10444         if (crtc->active != crtc->base.enabled) {
10445                 struct intel_encoder *encoder;
10446
10447                 /* This can happen either due to bugs in the get_hw_state
10448                  * functions or because the pipe is force-enabled due to the
10449                  * pipe A quirk. */
10450                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10451                               crtc->base.base.id,
10452                               crtc->base.enabled ? "enabled" : "disabled",
10453                               crtc->active ? "enabled" : "disabled");
10454
10455                 crtc->base.enabled = crtc->active;
10456
10457                 /* Because we only establish the connector -> encoder ->
10458                  * crtc links if something is active, this means the
10459                  * crtc is now deactivated. Break the links. connector
10460                  * -> encoder links are only establish when things are
10461                  *  actually up, hence no need to break them. */
10462                 WARN_ON(crtc->active);
10463
10464                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10465                         WARN_ON(encoder->connectors_active);
10466                         encoder->base.crtc = NULL;
10467                 }
10468         }
10469 }
10470
10471 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10472 {
10473         struct intel_connector *connector;
10474         struct drm_device *dev = encoder->base.dev;
10475
10476         /* We need to check both for a crtc link (meaning that the
10477          * encoder is active and trying to read from a pipe) and the
10478          * pipe itself being active. */
10479         bool has_active_crtc = encoder->base.crtc &&
10480                 to_intel_crtc(encoder->base.crtc)->active;
10481
10482         if (encoder->connectors_active && !has_active_crtc) {
10483                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10484                               encoder->base.base.id,
10485                               drm_get_encoder_name(&encoder->base));
10486
10487                 /* Connector is active, but has no active pipe. This is
10488                  * fallout from our resume register restoring. Disable
10489                  * the encoder manually again. */
10490                 if (encoder->base.crtc) {
10491                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10492                                       encoder->base.base.id,
10493                                       drm_get_encoder_name(&encoder->base));
10494                         encoder->disable(encoder);
10495                 }
10496
10497                 /* Inconsistent output/port/pipe state happens presumably due to
10498                  * a bug in one of the get_hw_state functions. Or someplace else
10499                  * in our code, like the register restore mess on resume. Clamp
10500                  * things to off as a safer default. */
10501                 list_for_each_entry(connector,
10502                                     &dev->mode_config.connector_list,
10503                                     base.head) {
10504                         if (connector->encoder != encoder)
10505                                 continue;
10506
10507                         intel_connector_break_all_links(connector);
10508                 }
10509         }
10510         /* Enabled encoders without active connectors will be fixed in
10511          * the crtc fixup. */
10512 }
10513
10514 void i915_redisable_vga(struct drm_device *dev)
10515 {
10516         struct drm_i915_private *dev_priv = dev->dev_private;
10517         u32 vga_reg = i915_vgacntrl_reg(dev);
10518
10519         /* This function can be called both from intel_modeset_setup_hw_state or
10520          * at a very early point in our resume sequence, where the power well
10521          * structures are not yet restored. Since this function is at a very
10522          * paranoid "someone might have enabled VGA while we were not looking"
10523          * level, just check if the power well is enabled instead of trying to
10524          * follow the "don't touch the power well if we don't need it" policy
10525          * the rest of the driver uses. */
10526         if (HAS_POWER_WELL(dev) &&
10527             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10528                 return;
10529
10530         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10531                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10532                 i915_disable_vga(dev);
10533         }
10534 }
10535
10536 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10537 {
10538         struct drm_i915_private *dev_priv = dev->dev_private;
10539         enum pipe pipe;
10540         struct intel_crtc *crtc;
10541         struct intel_encoder *encoder;
10542         struct intel_connector *connector;
10543         int i;
10544
10545         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10546                             base.head) {
10547                 memset(&crtc->config, 0, sizeof(crtc->config));
10548
10549                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10550                                                                  &crtc->config);
10551
10552                 crtc->base.enabled = crtc->active;
10553
10554                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10555                               crtc->base.base.id,
10556                               crtc->active ? "enabled" : "disabled");
10557         }
10558
10559         /* FIXME: Smash this into the new shared dpll infrastructure. */
10560         if (HAS_DDI(dev))
10561                 intel_ddi_setup_hw_pll_state(dev);
10562
10563         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10564                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10565
10566                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10567                 pll->active = 0;
10568                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10569                                     base.head) {
10570                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10571                                 pll->active++;
10572                 }
10573                 pll->refcount = pll->active;
10574
10575                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10576                               pll->name, pll->refcount, pll->on);
10577         }
10578
10579         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10580                             base.head) {
10581                 pipe = 0;
10582
10583                 if (encoder->get_hw_state(encoder, &pipe)) {
10584                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10585                         encoder->base.crtc = &crtc->base;
10586                         if (encoder->get_config)
10587                                 encoder->get_config(encoder, &crtc->config);
10588                 } else {
10589                         encoder->base.crtc = NULL;
10590                 }
10591
10592                 encoder->connectors_active = false;
10593                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10594                               encoder->base.base.id,
10595                               drm_get_encoder_name(&encoder->base),
10596                               encoder->base.crtc ? "enabled" : "disabled",
10597                               pipe);
10598         }
10599
10600         list_for_each_entry(connector, &dev->mode_config.connector_list,
10601                             base.head) {
10602                 if (connector->get_hw_state(connector)) {
10603                         connector->base.dpms = DRM_MODE_DPMS_ON;
10604                         connector->encoder->connectors_active = true;
10605                         connector->base.encoder = &connector->encoder->base;
10606                 } else {
10607                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10608                         connector->base.encoder = NULL;
10609                 }
10610                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10611                               connector->base.base.id,
10612                               drm_get_connector_name(&connector->base),
10613                               connector->base.encoder ? "enabled" : "disabled");
10614         }
10615 }
10616
10617 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10618  * and i915 state tracking structures. */
10619 void intel_modeset_setup_hw_state(struct drm_device *dev,
10620                                   bool force_restore)
10621 {
10622         struct drm_i915_private *dev_priv = dev->dev_private;
10623         enum pipe pipe;
10624         struct drm_plane *plane;
10625         struct intel_crtc *crtc;
10626         struct intel_encoder *encoder;
10627         int i;
10628
10629         intel_modeset_readout_hw_state(dev);
10630
10631         /*
10632          * Now that we have the config, copy it to each CRTC struct
10633          * Note that this could go away if we move to using crtc_config
10634          * checking everywhere.
10635          */
10636         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10637                             base.head) {
10638                 if (crtc->active && i915_fastboot) {
10639                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10640
10641                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10642                                       crtc->base.base.id);
10643                         drm_mode_debug_printmodeline(&crtc->base.mode);
10644                 }
10645         }
10646
10647         /* HW state is read out, now we need to sanitize this mess. */
10648         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10649                             base.head) {
10650                 intel_sanitize_encoder(encoder);
10651         }
10652
10653         for_each_pipe(pipe) {
10654                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10655                 intel_sanitize_crtc(crtc);
10656                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10657         }
10658
10659         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10660                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10661
10662                 if (!pll->on || pll->active)
10663                         continue;
10664
10665                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10666
10667                 pll->disable(dev_priv, pll);
10668                 pll->on = false;
10669         }
10670
10671         if (force_restore) {
10672                 /*
10673                  * We need to use raw interfaces for restoring state to avoid
10674                  * checking (bogus) intermediate states.
10675                  */
10676                 for_each_pipe(pipe) {
10677                         struct drm_crtc *crtc =
10678                                 dev_priv->pipe_to_crtc_mapping[pipe];
10679
10680                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10681                                          crtc->fb);
10682                 }
10683                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10684                         intel_plane_restore(plane);
10685
10686                 i915_redisable_vga(dev);
10687         } else {
10688                 intel_modeset_update_staged_output_state(dev);
10689         }
10690
10691         intel_modeset_check_state(dev);
10692
10693         drm_mode_config_reset(dev);
10694 }
10695
10696 void intel_modeset_gem_init(struct drm_device *dev)
10697 {
10698         intel_modeset_init_hw(dev);
10699
10700         intel_setup_overlay(dev);
10701
10702         intel_modeset_setup_hw_state(dev, false);
10703 }
10704
10705 void intel_modeset_cleanup(struct drm_device *dev)
10706 {
10707         struct drm_i915_private *dev_priv = dev->dev_private;
10708         struct drm_crtc *crtc;
10709
10710         /*
10711          * Interrupts and polling as the first thing to avoid creating havoc.
10712          * Too much stuff here (turning of rps, connectors, ...) would
10713          * experience fancy races otherwise.
10714          */
10715         drm_irq_uninstall(dev);
10716         cancel_work_sync(&dev_priv->hotplug_work);
10717         /*
10718          * Due to the hpd irq storm handling the hotplug work can re-arm the
10719          * poll handlers. Hence disable polling after hpd handling is shut down.
10720          */
10721         drm_kms_helper_poll_fini(dev);
10722
10723         mutex_lock(&dev->struct_mutex);
10724
10725         intel_unregister_dsm_handler();
10726
10727         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10728                 /* Skip inactive CRTCs */
10729                 if (!crtc->fb)
10730                         continue;
10731
10732                 intel_increase_pllclock(crtc);
10733         }
10734
10735         intel_disable_fbc(dev);
10736
10737         i915_enable_vga(dev);
10738
10739         intel_disable_gt_powersave(dev);
10740
10741         ironlake_teardown_rc6(dev);
10742
10743         mutex_unlock(&dev->struct_mutex);
10744
10745         /* flush any delayed tasks or pending work */
10746         flush_scheduled_work();
10747
10748         /* destroy backlight, if any, before the connectors */
10749         intel_panel_destroy_backlight(dev);
10750
10751         drm_mode_config_cleanup(dev);
10752
10753         intel_cleanup_overlay(dev);
10754 }
10755
10756 /*
10757  * Return which encoder is currently attached for connector.
10758  */
10759 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10760 {
10761         return &intel_attached_encoder(connector)->base;
10762 }
10763
10764 void intel_connector_attach_encoder(struct intel_connector *connector,
10765                                     struct intel_encoder *encoder)
10766 {
10767         connector->encoder = encoder;
10768         drm_mode_connector_attach_encoder(&connector->base,
10769                                           &encoder->base);
10770 }
10771
10772 /*
10773  * set vga decode state - true == enable VGA decode
10774  */
10775 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10776 {
10777         struct drm_i915_private *dev_priv = dev->dev_private;
10778         u16 gmch_ctrl;
10779
10780         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10781         if (state)
10782                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10783         else
10784                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10785         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10786         return 0;
10787 }
10788
10789 struct intel_display_error_state {
10790
10791         u32 power_well_driver;
10792
10793         int num_transcoders;
10794
10795         struct intel_cursor_error_state {
10796                 u32 control;
10797                 u32 position;
10798                 u32 base;
10799                 u32 size;
10800         } cursor[I915_MAX_PIPES];
10801
10802         struct intel_pipe_error_state {
10803                 u32 source;
10804         } pipe[I915_MAX_PIPES];
10805
10806         struct intel_plane_error_state {
10807                 u32 control;
10808                 u32 stride;
10809                 u32 size;
10810                 u32 pos;
10811                 u32 addr;
10812                 u32 surface;
10813                 u32 tile_offset;
10814         } plane[I915_MAX_PIPES];
10815
10816         struct intel_transcoder_error_state {
10817                 enum transcoder cpu_transcoder;
10818
10819                 u32 conf;
10820
10821                 u32 htotal;
10822                 u32 hblank;
10823                 u32 hsync;
10824                 u32 vtotal;
10825                 u32 vblank;
10826                 u32 vsync;
10827         } transcoder[4];
10828 };
10829
10830 struct intel_display_error_state *
10831 intel_display_capture_error_state(struct drm_device *dev)
10832 {
10833         drm_i915_private_t *dev_priv = dev->dev_private;
10834         struct intel_display_error_state *error;
10835         int transcoders[] = {
10836                 TRANSCODER_A,
10837                 TRANSCODER_B,
10838                 TRANSCODER_C,
10839                 TRANSCODER_EDP,
10840         };
10841         int i;
10842
10843         if (INTEL_INFO(dev)->num_pipes == 0)
10844                 return NULL;
10845
10846         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10847         if (error == NULL)
10848                 return NULL;
10849
10850         if (HAS_POWER_WELL(dev))
10851                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10852
10853         for_each_pipe(i) {
10854                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10855                         error->cursor[i].control = I915_READ(CURCNTR(i));
10856                         error->cursor[i].position = I915_READ(CURPOS(i));
10857                         error->cursor[i].base = I915_READ(CURBASE(i));
10858                 } else {
10859                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10860                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10861                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10862                 }
10863
10864                 error->plane[i].control = I915_READ(DSPCNTR(i));
10865                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10866                 if (INTEL_INFO(dev)->gen <= 3) {
10867                         error->plane[i].size = I915_READ(DSPSIZE(i));
10868                         error->plane[i].pos = I915_READ(DSPPOS(i));
10869                 }
10870                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10871                         error->plane[i].addr = I915_READ(DSPADDR(i));
10872                 if (INTEL_INFO(dev)->gen >= 4) {
10873                         error->plane[i].surface = I915_READ(DSPSURF(i));
10874                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10875                 }
10876
10877                 error->pipe[i].source = I915_READ(PIPESRC(i));
10878         }
10879
10880         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10881         if (HAS_DDI(dev_priv->dev))
10882                 error->num_transcoders++; /* Account for eDP. */
10883
10884         for (i = 0; i < error->num_transcoders; i++) {
10885                 enum transcoder cpu_transcoder = transcoders[i];
10886
10887                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10888
10889                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10890                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10891                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10892                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10893                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10894                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10895                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10896         }
10897
10898         /* In the code above we read the registers without checking if the power
10899          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10900          * prevent the next I915_WRITE from detecting it and printing an error
10901          * message. */
10902         intel_uncore_clear_errors(dev);
10903
10904         return error;
10905 }
10906
10907 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10908
10909 void
10910 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10911                                 struct drm_device *dev,
10912                                 struct intel_display_error_state *error)
10913 {
10914         int i;
10915
10916         if (!error)
10917                 return;
10918
10919         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10920         if (HAS_POWER_WELL(dev))
10921                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10922                            error->power_well_driver);
10923         for_each_pipe(i) {
10924                 err_printf(m, "Pipe [%d]:\n", i);
10925                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10926
10927                 err_printf(m, "Plane [%d]:\n", i);
10928                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10929                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10930                 if (INTEL_INFO(dev)->gen <= 3) {
10931                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10932                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10933                 }
10934                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10935                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10936                 if (INTEL_INFO(dev)->gen >= 4) {
10937                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10938                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10939                 }
10940
10941                 err_printf(m, "Cursor [%d]:\n", i);
10942                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10943                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10944                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10945         }
10946
10947         for (i = 0; i < error->num_transcoders; i++) {
10948                 err_printf(m, "  CPU transcoder: %c\n",
10949                            transcoder_name(error->transcoder[i].cpu_transcoder));
10950                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10951                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10952                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10953                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10954                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10955                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10956                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10957         }
10958 }