]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Dump pipe config when intel_modeset_pipe_config fails.
[linux-beck.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
151                       const char *name, u32 reg, int ref_freq)
152 {
153         u32 val;
154         int divider;
155
156         mutex_lock(&dev_priv->sb_lock);
157         val = vlv_cck_read(dev_priv, reg);
158         mutex_unlock(&dev_priv->sb_lock);
159
160         divider = val & CCK_FREQUENCY_VALUES;
161
162         WARN((val & CCK_FREQUENCY_STATUS) !=
163              (divider << CCK_FREQUENCY_STATUS_SHIFT),
164              "%s change in progress\n", name);
165
166         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
167 }
168
169 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
170                                   const char *name, u32 reg)
171 {
172         if (dev_priv->hpll_freq == 0)
173                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
174
175         return vlv_get_cck_clock(dev_priv, name, reg,
176                                  dev_priv->hpll_freq);
177 }
178
179 static int
180 intel_pch_rawclk(struct drm_i915_private *dev_priv)
181 {
182         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
183 }
184
185 static int
186 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
187 {
188         /* RAWCLK_FREQ_VLV register updated from power well code */
189         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
190                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
191 }
192
193 static int
194 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
195 {
196         uint32_t clkcfg;
197
198         /* hrawclock is 1/4 the FSB frequency */
199         clkcfg = I915_READ(CLKCFG);
200         switch (clkcfg & CLKCFG_FSB_MASK) {
201         case CLKCFG_FSB_400:
202                 return 100000;
203         case CLKCFG_FSB_533:
204                 return 133333;
205         case CLKCFG_FSB_667:
206                 return 166667;
207         case CLKCFG_FSB_800:
208                 return 200000;
209         case CLKCFG_FSB_1067:
210                 return 266667;
211         case CLKCFG_FSB_1333:
212                 return 333333;
213         /* these two are just a guess; one of them might be right */
214         case CLKCFG_FSB_1600:
215         case CLKCFG_FSB_1600_ALT:
216                 return 400000;
217         default:
218                 return 133333;
219         }
220 }
221
222 void intel_update_rawclk(struct drm_i915_private *dev_priv)
223 {
224         if (HAS_PCH_SPLIT(dev_priv))
225                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
226         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
227                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
228         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
229                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
230         else
231                 return; /* no rawclk on other platforms, or no need to know it */
232
233         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
234 }
235
236 static void intel_update_czclk(struct drm_i915_private *dev_priv)
237 {
238         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
239                 return;
240
241         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
242                                                       CCK_CZ_CLOCK_CONTROL);
243
244         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
245 }
246
247 static inline u32 /* units of 100MHz */
248 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
249                     const struct intel_crtc_state *pipe_config)
250 {
251         if (HAS_DDI(dev_priv))
252                 return pipe_config->port_clock; /* SPLL */
253         else if (IS_GEN5(dev_priv))
254                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
255         else
256                 return 270000;
257 }
258
259 static const intel_limit_t intel_limits_i8xx_dac = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 908000, .max = 1512000 },
262         .n = { .min = 2, .max = 16 },
263         .m = { .min = 96, .max = 140 },
264         .m1 = { .min = 18, .max = 26 },
265         .m2 = { .min = 6, .max = 16 },
266         .p = { .min = 4, .max = 128 },
267         .p1 = { .min = 2, .max = 33 },
268         .p2 = { .dot_limit = 165000,
269                 .p2_slow = 4, .p2_fast = 2 },
270 };
271
272 static const intel_limit_t intel_limits_i8xx_dvo = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 908000, .max = 1512000 },
275         .n = { .min = 2, .max = 16 },
276         .m = { .min = 96, .max = 140 },
277         .m1 = { .min = 18, .max = 26 },
278         .m2 = { .min = 6, .max = 16 },
279         .p = { .min = 4, .max = 128 },
280         .p1 = { .min = 2, .max = 33 },
281         .p2 = { .dot_limit = 165000,
282                 .p2_slow = 4, .p2_fast = 4 },
283 };
284
285 static const intel_limit_t intel_limits_i8xx_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 908000, .max = 1512000 },
288         .n = { .min = 2, .max = 16 },
289         .m = { .min = 96, .max = 140 },
290         .m1 = { .min = 18, .max = 26 },
291         .m2 = { .min = 6, .max = 16 },
292         .p = { .min = 4, .max = 128 },
293         .p1 = { .min = 1, .max = 6 },
294         .p2 = { .dot_limit = 165000,
295                 .p2_slow = 14, .p2_fast = 7 },
296 };
297
298 static const intel_limit_t intel_limits_i9xx_sdvo = {
299         .dot = { .min = 20000, .max = 400000 },
300         .vco = { .min = 1400000, .max = 2800000 },
301         .n = { .min = 1, .max = 6 },
302         .m = { .min = 70, .max = 120 },
303         .m1 = { .min = 8, .max = 18 },
304         .m2 = { .min = 3, .max = 7 },
305         .p = { .min = 5, .max = 80 },
306         .p1 = { .min = 1, .max = 8 },
307         .p2 = { .dot_limit = 200000,
308                 .p2_slow = 10, .p2_fast = 5 },
309 };
310
311 static const intel_limit_t intel_limits_i9xx_lvds = {
312         .dot = { .min = 20000, .max = 400000 },
313         .vco = { .min = 1400000, .max = 2800000 },
314         .n = { .min = 1, .max = 6 },
315         .m = { .min = 70, .max = 120 },
316         .m1 = { .min = 8, .max = 18 },
317         .m2 = { .min = 3, .max = 7 },
318         .p = { .min = 7, .max = 98 },
319         .p1 = { .min = 1, .max = 8 },
320         .p2 = { .dot_limit = 112000,
321                 .p2_slow = 14, .p2_fast = 7 },
322 };
323
324
325 static const intel_limit_t intel_limits_g4x_sdvo = {
326         .dot = { .min = 25000, .max = 270000 },
327         .vco = { .min = 1750000, .max = 3500000},
328         .n = { .min = 1, .max = 4 },
329         .m = { .min = 104, .max = 138 },
330         .m1 = { .min = 17, .max = 23 },
331         .m2 = { .min = 5, .max = 11 },
332         .p = { .min = 10, .max = 30 },
333         .p1 = { .min = 1, .max = 3},
334         .p2 = { .dot_limit = 270000,
335                 .p2_slow = 10,
336                 .p2_fast = 10
337         },
338 };
339
340 static const intel_limit_t intel_limits_g4x_hdmi = {
341         .dot = { .min = 22000, .max = 400000 },
342         .vco = { .min = 1750000, .max = 3500000},
343         .n = { .min = 1, .max = 4 },
344         .m = { .min = 104, .max = 138 },
345         .m1 = { .min = 16, .max = 23 },
346         .m2 = { .min = 5, .max = 11 },
347         .p = { .min = 5, .max = 80 },
348         .p1 = { .min = 1, .max = 8},
349         .p2 = { .dot_limit = 165000,
350                 .p2_slow = 10, .p2_fast = 5 },
351 };
352
353 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
354         .dot = { .min = 20000, .max = 115000 },
355         .vco = { .min = 1750000, .max = 3500000 },
356         .n = { .min = 1, .max = 3 },
357         .m = { .min = 104, .max = 138 },
358         .m1 = { .min = 17, .max = 23 },
359         .m2 = { .min = 5, .max = 11 },
360         .p = { .min = 28, .max = 112 },
361         .p1 = { .min = 2, .max = 8 },
362         .p2 = { .dot_limit = 0,
363                 .p2_slow = 14, .p2_fast = 14
364         },
365 };
366
367 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
368         .dot = { .min = 80000, .max = 224000 },
369         .vco = { .min = 1750000, .max = 3500000 },
370         .n = { .min = 1, .max = 3 },
371         .m = { .min = 104, .max = 138 },
372         .m1 = { .min = 17, .max = 23 },
373         .m2 = { .min = 5, .max = 11 },
374         .p = { .min = 14, .max = 42 },
375         .p1 = { .min = 2, .max = 6 },
376         .p2 = { .dot_limit = 0,
377                 .p2_slow = 7, .p2_fast = 7
378         },
379 };
380
381 static const intel_limit_t intel_limits_pineview_sdvo = {
382         .dot = { .min = 20000, .max = 400000},
383         .vco = { .min = 1700000, .max = 3500000 },
384         /* Pineview's Ncounter is a ring counter */
385         .n = { .min = 3, .max = 6 },
386         .m = { .min = 2, .max = 256 },
387         /* Pineview only has one combined m divider, which we treat as m2. */
388         .m1 = { .min = 0, .max = 0 },
389         .m2 = { .min = 0, .max = 254 },
390         .p = { .min = 5, .max = 80 },
391         .p1 = { .min = 1, .max = 8 },
392         .p2 = { .dot_limit = 200000,
393                 .p2_slow = 10, .p2_fast = 5 },
394 };
395
396 static const intel_limit_t intel_limits_pineview_lvds = {
397         .dot = { .min = 20000, .max = 400000 },
398         .vco = { .min = 1700000, .max = 3500000 },
399         .n = { .min = 3, .max = 6 },
400         .m = { .min = 2, .max = 256 },
401         .m1 = { .min = 0, .max = 0 },
402         .m2 = { .min = 0, .max = 254 },
403         .p = { .min = 7, .max = 112 },
404         .p1 = { .min = 1, .max = 8 },
405         .p2 = { .dot_limit = 112000,
406                 .p2_slow = 14, .p2_fast = 14 },
407 };
408
409 /* Ironlake / Sandybridge
410  *
411  * We calculate clock using (register_value + 2) for N/M1/M2, so here
412  * the range value for them is (actual_value - 2).
413  */
414 static const intel_limit_t intel_limits_ironlake_dac = {
415         .dot = { .min = 25000, .max = 350000 },
416         .vco = { .min = 1760000, .max = 3510000 },
417         .n = { .min = 1, .max = 5 },
418         .m = { .min = 79, .max = 127 },
419         .m1 = { .min = 12, .max = 22 },
420         .m2 = { .min = 5, .max = 9 },
421         .p = { .min = 5, .max = 80 },
422         .p1 = { .min = 1, .max = 8 },
423         .p2 = { .dot_limit = 225000,
424                 .p2_slow = 10, .p2_fast = 5 },
425 };
426
427 static const intel_limit_t intel_limits_ironlake_single_lvds = {
428         .dot = { .min = 25000, .max = 350000 },
429         .vco = { .min = 1760000, .max = 3510000 },
430         .n = { .min = 1, .max = 3 },
431         .m = { .min = 79, .max = 118 },
432         .m1 = { .min = 12, .max = 22 },
433         .m2 = { .min = 5, .max = 9 },
434         .p = { .min = 28, .max = 112 },
435         .p1 = { .min = 2, .max = 8 },
436         .p2 = { .dot_limit = 225000,
437                 .p2_slow = 14, .p2_fast = 14 },
438 };
439
440 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
441         .dot = { .min = 25000, .max = 350000 },
442         .vco = { .min = 1760000, .max = 3510000 },
443         .n = { .min = 1, .max = 3 },
444         .m = { .min = 79, .max = 127 },
445         .m1 = { .min = 12, .max = 22 },
446         .m2 = { .min = 5, .max = 9 },
447         .p = { .min = 14, .max = 56 },
448         .p1 = { .min = 2, .max = 8 },
449         .p2 = { .dot_limit = 225000,
450                 .p2_slow = 7, .p2_fast = 7 },
451 };
452
453 /* LVDS 100mhz refclk limits. */
454 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
455         .dot = { .min = 25000, .max = 350000 },
456         .vco = { .min = 1760000, .max = 3510000 },
457         .n = { .min = 1, .max = 2 },
458         .m = { .min = 79, .max = 126 },
459         .m1 = { .min = 12, .max = 22 },
460         .m2 = { .min = 5, .max = 9 },
461         .p = { .min = 28, .max = 112 },
462         .p1 = { .min = 2, .max = 8 },
463         .p2 = { .dot_limit = 225000,
464                 .p2_slow = 14, .p2_fast = 14 },
465 };
466
467 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
468         .dot = { .min = 25000, .max = 350000 },
469         .vco = { .min = 1760000, .max = 3510000 },
470         .n = { .min = 1, .max = 3 },
471         .m = { .min = 79, .max = 126 },
472         .m1 = { .min = 12, .max = 22 },
473         .m2 = { .min = 5, .max = 9 },
474         .p = { .min = 14, .max = 42 },
475         .p1 = { .min = 2, .max = 6 },
476         .p2 = { .dot_limit = 225000,
477                 .p2_slow = 7, .p2_fast = 7 },
478 };
479
480 static const intel_limit_t intel_limits_vlv = {
481          /*
482           * These are the data rate limits (measured in fast clocks)
483           * since those are the strictest limits we have. The fast
484           * clock and actual rate limits are more relaxed, so checking
485           * them would make no difference.
486           */
487         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
488         .vco = { .min = 4000000, .max = 6000000 },
489         .n = { .min = 1, .max = 7 },
490         .m1 = { .min = 2, .max = 3 },
491         .m2 = { .min = 11, .max = 156 },
492         .p1 = { .min = 2, .max = 3 },
493         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
494 };
495
496 static const intel_limit_t intel_limits_chv = {
497         /*
498          * These are the data rate limits (measured in fast clocks)
499          * since those are the strictest limits we have.  The fast
500          * clock and actual rate limits are more relaxed, so checking
501          * them would make no difference.
502          */
503         .dot = { .min = 25000 * 5, .max = 540000 * 5},
504         .vco = { .min = 4800000, .max = 6480000 },
505         .n = { .min = 1, .max = 1 },
506         .m1 = { .min = 2, .max = 2 },
507         .m2 = { .min = 24 << 22, .max = 175 << 22 },
508         .p1 = { .min = 2, .max = 4 },
509         .p2 = { .p2_slow = 1, .p2_fast = 14 },
510 };
511
512 static const intel_limit_t intel_limits_bxt = {
513         /* FIXME: find real dot limits */
514         .dot = { .min = 0, .max = INT_MAX },
515         .vco = { .min = 4800000, .max = 6700000 },
516         .n = { .min = 1, .max = 1 },
517         .m1 = { .min = 2, .max = 2 },
518         /* FIXME: find real m2 limits */
519         .m2 = { .min = 2 << 22, .max = 255 << 22 },
520         .p1 = { .min = 2, .max = 4 },
521         .p2 = { .p2_slow = 1, .p2_fast = 20 },
522 };
523
524 static bool
525 needs_modeset(struct drm_crtc_state *state)
526 {
527         return drm_atomic_crtc_needs_modeset(state);
528 }
529
530 /**
531  * Returns whether any output on the specified pipe is of the specified type
532  */
533 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
534 {
535         struct drm_device *dev = crtc->base.dev;
536         struct intel_encoder *encoder;
537
538         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
539                 if (encoder->type == type)
540                         return true;
541
542         return false;
543 }
544
545 /**
546  * Returns whether any output on the specified pipe will have the specified
547  * type after a staged modeset is complete, i.e., the same as
548  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
549  * encoder->crtc.
550  */
551 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
552                                       int type)
553 {
554         struct drm_atomic_state *state = crtc_state->base.state;
555         struct drm_connector *connector;
556         struct drm_connector_state *connector_state;
557         struct intel_encoder *encoder;
558         int i, num_connectors = 0;
559
560         for_each_connector_in_state(state, connector, connector_state, i) {
561                 if (connector_state->crtc != crtc_state->base.crtc)
562                         continue;
563
564                 num_connectors++;
565
566                 encoder = to_intel_encoder(connector_state->best_encoder);
567                 if (encoder->type == type)
568                         return true;
569         }
570
571         WARN_ON(num_connectors == 0);
572
573         return false;
574 }
575
576 /*
577  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
578  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
579  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
580  * The helpers' return value is the rate of the clock that is fed to the
581  * display engine's pipe which can be the above fast dot clock rate or a
582  * divided-down version of it.
583  */
584 /* m1 is reserved as 0 in Pineview, n is a ring counter */
585 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
586 {
587         clock->m = clock->m2 + 2;
588         clock->p = clock->p1 * clock->p2;
589         if (WARN_ON(clock->n == 0 || clock->p == 0))
590                 return 0;
591         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
592         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594         return clock->dot;
595 }
596
597 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
598 {
599         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
600 }
601
602 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
603 {
604         clock->m = i9xx_dpll_compute_m(clock);
605         clock->p = clock->p1 * clock->p2;
606         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
607                 return 0;
608         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
609         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
610
611         return clock->dot;
612 }
613
614 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
615 {
616         clock->m = clock->m1 * clock->m2;
617         clock->p = clock->p1 * clock->p2;
618         if (WARN_ON(clock->n == 0 || clock->p == 0))
619                 return 0;
620         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
621         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
622
623         return clock->dot / 5;
624 }
625
626 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
627 {
628         clock->m = clock->m1 * clock->m2;
629         clock->p = clock->p1 * clock->p2;
630         if (WARN_ON(clock->n == 0 || clock->p == 0))
631                 return 0;
632         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
633                         clock->n << 22);
634         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
635
636         return clock->dot / 5;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
650                 INTELPllInvalid("n out of range\n");
651         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
652                 INTELPllInvalid("p1 out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657
658         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
659             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
660                 if (clock->m1 <= clock->m2)
661                         INTELPllInvalid("m1 <= m2\n");
662
663         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
664                 if (clock->p < limit->p.min || limit->p.max < clock->p)
665                         INTELPllInvalid("p out of range\n");
666                 if (clock->m < limit->m.min || limit->m.max < clock->m)
667                         INTELPllInvalid("m out of range\n");
668         }
669
670         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
671                 INTELPllInvalid("vco out of range\n");
672         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
673          * connector, etc., rather than just a single range.
674          */
675         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
676                 INTELPllInvalid("dot out of range\n");
677
678         return true;
679 }
680
681 static int
682 i9xx_select_p2_div(const intel_limit_t *limit,
683                    const struct intel_crtc_state *crtc_state,
684                    int target)
685 {
686         struct drm_device *dev = crtc_state->base.crtc->dev;
687
688         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
689                 /*
690                  * For LVDS just rely on its current settings for dual-channel.
691                  * We haven't figured out how to reliably set up different
692                  * single/dual channel state, if we even can.
693                  */
694                 if (intel_is_dual_link_lvds(dev))
695                         return limit->p2.p2_fast;
696                 else
697                         return limit->p2.p2_slow;
698         } else {
699                 if (target < limit->p2.dot_limit)
700                         return limit->p2.p2_slow;
701                 else
702                         return limit->p2.p2_fast;
703         }
704 }
705
706 /*
707  * Returns a set of divisors for the desired target clock with the given
708  * refclk, or FALSE.  The returned values represent the clock equation:
709  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
710  *
711  * Target and reference clocks are specified in kHz.
712  *
713  * If match_clock is provided, then best_clock P divider must match the P
714  * divider from @match_clock used for LVDS downclocking.
715  */
716 static bool
717 i9xx_find_best_dpll(const intel_limit_t *limit,
718                     struct intel_crtc_state *crtc_state,
719                     int target, int refclk, intel_clock_t *match_clock,
720                     intel_clock_t *best_clock)
721 {
722         struct drm_device *dev = crtc_state->base.crtc->dev;
723         intel_clock_t clock;
724         int err = target;
725
726         memset(best_clock, 0, sizeof(*best_clock));
727
728         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
729
730         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
731              clock.m1++) {
732                 for (clock.m2 = limit->m2.min;
733                      clock.m2 <= limit->m2.max; clock.m2++) {
734                         if (clock.m2 >= clock.m1)
735                                 break;
736                         for (clock.n = limit->n.min;
737                              clock.n <= limit->n.max; clock.n++) {
738                                 for (clock.p1 = limit->p1.min;
739                                         clock.p1 <= limit->p1.max; clock.p1++) {
740                                         int this_err;
741
742                                         i9xx_calc_dpll_params(refclk, &clock);
743                                         if (!intel_PLL_is_valid(dev, limit,
744                                                                 &clock))
745                                                 continue;
746                                         if (match_clock &&
747                                             clock.p != match_clock->p)
748                                                 continue;
749
750                                         this_err = abs(clock.dot - target);
751                                         if (this_err < err) {
752                                                 *best_clock = clock;
753                                                 err = this_err;
754                                         }
755                                 }
756                         }
757                 }
758         }
759
760         return (err != target);
761 }
762
763 /*
764  * Returns a set of divisors for the desired target clock with the given
765  * refclk, or FALSE.  The returned values represent the clock equation:
766  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
767  *
768  * Target and reference clocks are specified in kHz.
769  *
770  * If match_clock is provided, then best_clock P divider must match the P
771  * divider from @match_clock used for LVDS downclocking.
772  */
773 static bool
774 pnv_find_best_dpll(const intel_limit_t *limit,
775                    struct intel_crtc_state *crtc_state,
776                    int target, int refclk, intel_clock_t *match_clock,
777                    intel_clock_t *best_clock)
778 {
779         struct drm_device *dev = crtc_state->base.crtc->dev;
780         intel_clock_t clock;
781         int err = target;
782
783         memset(best_clock, 0, sizeof(*best_clock));
784
785         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
786
787         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
788              clock.m1++) {
789                 for (clock.m2 = limit->m2.min;
790                      clock.m2 <= limit->m2.max; clock.m2++) {
791                         for (clock.n = limit->n.min;
792                              clock.n <= limit->n.max; clock.n++) {
793                                 for (clock.p1 = limit->p1.min;
794                                         clock.p1 <= limit->p1.max; clock.p1++) {
795                                         int this_err;
796
797                                         pnv_calc_dpll_params(refclk, &clock);
798                                         if (!intel_PLL_is_valid(dev, limit,
799                                                                 &clock))
800                                                 continue;
801                                         if (match_clock &&
802                                             clock.p != match_clock->p)
803                                                 continue;
804
805                                         this_err = abs(clock.dot - target);
806                                         if (this_err < err) {
807                                                 *best_clock = clock;
808                                                 err = this_err;
809                                         }
810                                 }
811                         }
812                 }
813         }
814
815         return (err != target);
816 }
817
818 /*
819  * Returns a set of divisors for the desired target clock with the given
820  * refclk, or FALSE.  The returned values represent the clock equation:
821  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
822  *
823  * Target and reference clocks are specified in kHz.
824  *
825  * If match_clock is provided, then best_clock P divider must match the P
826  * divider from @match_clock used for LVDS downclocking.
827  */
828 static bool
829 g4x_find_best_dpll(const intel_limit_t *limit,
830                    struct intel_crtc_state *crtc_state,
831                    int target, int refclk, intel_clock_t *match_clock,
832                    intel_clock_t *best_clock)
833 {
834         struct drm_device *dev = crtc_state->base.crtc->dev;
835         intel_clock_t clock;
836         int max_n;
837         bool found = false;
838         /* approximately equals target * 0.00585 */
839         int err_most = (target >> 8) + (target >> 9);
840
841         memset(best_clock, 0, sizeof(*best_clock));
842
843         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
844
845         max_n = limit->n.max;
846         /* based on hardware requirement, prefer smaller n to precision */
847         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
848                 /* based on hardware requirement, prefere larger m1,m2 */
849                 for (clock.m1 = limit->m1.max;
850                      clock.m1 >= limit->m1.min; clock.m1--) {
851                         for (clock.m2 = limit->m2.max;
852                              clock.m2 >= limit->m2.min; clock.m2--) {
853                                 for (clock.p1 = limit->p1.max;
854                                      clock.p1 >= limit->p1.min; clock.p1--) {
855                                         int this_err;
856
857                                         i9xx_calc_dpll_params(refclk, &clock);
858                                         if (!intel_PLL_is_valid(dev, limit,
859                                                                 &clock))
860                                                 continue;
861
862                                         this_err = abs(clock.dot - target);
863                                         if (this_err < err_most) {
864                                                 *best_clock = clock;
865                                                 err_most = this_err;
866                                                 max_n = clock.n;
867                                                 found = true;
868                                         }
869                                 }
870                         }
871                 }
872         }
873         return found;
874 }
875
876 /*
877  * Check if the calculated PLL configuration is more optimal compared to the
878  * best configuration and error found so far. Return the calculated error.
879  */
880 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
881                                const intel_clock_t *calculated_clock,
882                                const intel_clock_t *best_clock,
883                                unsigned int best_error_ppm,
884                                unsigned int *error_ppm)
885 {
886         /*
887          * For CHV ignore the error and consider only the P value.
888          * Prefer a bigger P value based on HW requirements.
889          */
890         if (IS_CHERRYVIEW(dev)) {
891                 *error_ppm = 0;
892
893                 return calculated_clock->p > best_clock->p;
894         }
895
896         if (WARN_ON_ONCE(!target_freq))
897                 return false;
898
899         *error_ppm = div_u64(1000000ULL *
900                                 abs(target_freq - calculated_clock->dot),
901                              target_freq);
902         /*
903          * Prefer a better P value over a better (smaller) error if the error
904          * is small. Ensure this preference for future configurations too by
905          * setting the error to 0.
906          */
907         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
908                 *error_ppm = 0;
909
910                 return true;
911         }
912
913         return *error_ppm + 10 < best_error_ppm;
914 }
915
916 /*
917  * Returns a set of divisors for the desired target clock with the given
918  * refclk, or FALSE.  The returned values represent the clock equation:
919  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
920  */
921 static bool
922 vlv_find_best_dpll(const intel_limit_t *limit,
923                    struct intel_crtc_state *crtc_state,
924                    int target, int refclk, intel_clock_t *match_clock,
925                    intel_clock_t *best_clock)
926 {
927         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
928         struct drm_device *dev = crtc->base.dev;
929         intel_clock_t clock;
930         unsigned int bestppm = 1000000;
931         /* min update 19.2 MHz */
932         int max_n = min(limit->n.max, refclk / 19200);
933         bool found = false;
934
935         target *= 5; /* fast clock */
936
937         memset(best_clock, 0, sizeof(*best_clock));
938
939         /* based on hardware requirement, prefer smaller n to precision */
940         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
941                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
942                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
943                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
944                                 clock.p = clock.p1 * clock.p2;
945                                 /* based on hardware requirement, prefer bigger m1,m2 values */
946                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
947                                         unsigned int ppm;
948
949                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
950                                                                      refclk * clock.m1);
951
952                                         vlv_calc_dpll_params(refclk, &clock);
953
954                                         if (!intel_PLL_is_valid(dev, limit,
955                                                                 &clock))
956                                                 continue;
957
958                                         if (!vlv_PLL_is_optimal(dev, target,
959                                                                 &clock,
960                                                                 best_clock,
961                                                                 bestppm, &ppm))
962                                                 continue;
963
964                                         *best_clock = clock;
965                                         bestppm = ppm;
966                                         found = true;
967                                 }
968                         }
969                 }
970         }
971
972         return found;
973 }
974
975 /*
976  * Returns a set of divisors for the desired target clock with the given
977  * refclk, or FALSE.  The returned values represent the clock equation:
978  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
979  */
980 static bool
981 chv_find_best_dpll(const intel_limit_t *limit,
982                    struct intel_crtc_state *crtc_state,
983                    int target, int refclk, intel_clock_t *match_clock,
984                    intel_clock_t *best_clock)
985 {
986         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
987         struct drm_device *dev = crtc->base.dev;
988         unsigned int best_error_ppm;
989         intel_clock_t clock;
990         uint64_t m2;
991         int found = false;
992
993         memset(best_clock, 0, sizeof(*best_clock));
994         best_error_ppm = 1000000;
995
996         /*
997          * Based on hardware doc, the n always set to 1, and m1 always
998          * set to 2.  If requires to support 200Mhz refclk, we need to
999          * revisit this because n may not 1 anymore.
1000          */
1001         clock.n = 1, clock.m1 = 2;
1002         target *= 5;    /* fast clock */
1003
1004         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1005                 for (clock.p2 = limit->p2.p2_fast;
1006                                 clock.p2 >= limit->p2.p2_slow;
1007                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1008                         unsigned int error_ppm;
1009
1010                         clock.p = clock.p1 * clock.p2;
1011
1012                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1013                                         clock.n) << 22, refclk * clock.m1);
1014
1015                         if (m2 > INT_MAX/clock.m1)
1016                                 continue;
1017
1018                         clock.m2 = m2;
1019
1020                         chv_calc_dpll_params(refclk, &clock);
1021
1022                         if (!intel_PLL_is_valid(dev, limit, &clock))
1023                                 continue;
1024
1025                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1026                                                 best_error_ppm, &error_ppm))
1027                                 continue;
1028
1029                         *best_clock = clock;
1030                         best_error_ppm = error_ppm;
1031                         found = true;
1032                 }
1033         }
1034
1035         return found;
1036 }
1037
1038 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1039                         intel_clock_t *best_clock)
1040 {
1041         int refclk = 100000;
1042         const intel_limit_t *limit = &intel_limits_bxt;
1043
1044         return chv_find_best_dpll(limit, crtc_state,
1045                                   target_clock, refclk, NULL, best_clock);
1046 }
1047
1048 bool intel_crtc_active(struct drm_crtc *crtc)
1049 {
1050         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1051
1052         /* Be paranoid as we can arrive here with only partial
1053          * state retrieved from the hardware during setup.
1054          *
1055          * We can ditch the adjusted_mode.crtc_clock check as soon
1056          * as Haswell has gained clock readout/fastboot support.
1057          *
1058          * We can ditch the crtc->primary->fb check as soon as we can
1059          * properly reconstruct framebuffers.
1060          *
1061          * FIXME: The intel_crtc->active here should be switched to
1062          * crtc->state->active once we have proper CRTC states wired up
1063          * for atomic.
1064          */
1065         return intel_crtc->active && crtc->primary->state->fb &&
1066                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1067 }
1068
1069 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1070                                              enum pipe pipe)
1071 {
1072         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1074
1075         return intel_crtc->config->cpu_transcoder;
1076 }
1077
1078 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1079 {
1080         struct drm_i915_private *dev_priv = dev->dev_private;
1081         i915_reg_t reg = PIPEDSL(pipe);
1082         u32 line1, line2;
1083         u32 line_mask;
1084
1085         if (IS_GEN2(dev))
1086                 line_mask = DSL_LINEMASK_GEN2;
1087         else
1088                 line_mask = DSL_LINEMASK_GEN3;
1089
1090         line1 = I915_READ(reg) & line_mask;
1091         msleep(5);
1092         line2 = I915_READ(reg) & line_mask;
1093
1094         return line1 == line2;
1095 }
1096
1097 /*
1098  * intel_wait_for_pipe_off - wait for pipe to turn off
1099  * @crtc: crtc whose pipe to wait for
1100  *
1101  * After disabling a pipe, we can't wait for vblank in the usual way,
1102  * spinning on the vblank interrupt status bit, since we won't actually
1103  * see an interrupt when the pipe is disabled.
1104  *
1105  * On Gen4 and above:
1106  *   wait for the pipe register state bit to turn off
1107  *
1108  * Otherwise:
1109  *   wait for the display line value to settle (it usually
1110  *   ends up stopping at the start of the next frame).
1111  *
1112  */
1113 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1114 {
1115         struct drm_device *dev = crtc->base.dev;
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1118         enum pipe pipe = crtc->pipe;
1119
1120         if (INTEL_INFO(dev)->gen >= 4) {
1121                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1122
1123                 /* Wait for the Pipe State to go off */
1124                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1125                              100))
1126                         WARN(1, "pipe_off wait timed out\n");
1127         } else {
1128                 /* Wait for the display line to settle */
1129                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1130                         WARN(1, "pipe_off wait timed out\n");
1131         }
1132 }
1133
1134 /* Only for pre-ILK configs */
1135 void assert_pll(struct drm_i915_private *dev_priv,
1136                 enum pipe pipe, bool state)
1137 {
1138         u32 val;
1139         bool cur_state;
1140
1141         val = I915_READ(DPLL(pipe));
1142         cur_state = !!(val & DPLL_VCO_ENABLE);
1143         I915_STATE_WARN(cur_state != state,
1144              "PLL state assertion failure (expected %s, current %s)\n",
1145                         onoff(state), onoff(cur_state));
1146 }
1147
1148 /* XXX: the dsi pll is shared between MIPI DSI ports */
1149 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1150 {
1151         u32 val;
1152         bool cur_state;
1153
1154         mutex_lock(&dev_priv->sb_lock);
1155         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1156         mutex_unlock(&dev_priv->sb_lock);
1157
1158         cur_state = val & DSI_PLL_VCO_EN;
1159         I915_STATE_WARN(cur_state != state,
1160              "DSI PLL state assertion failure (expected %s, current %s)\n",
1161                         onoff(state), onoff(cur_state));
1162 }
1163
1164 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1165                           enum pipe pipe, bool state)
1166 {
1167         bool cur_state;
1168         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1169                                                                       pipe);
1170
1171         if (HAS_DDI(dev_priv)) {
1172                 /* DDI does not have a specific FDI_TX register */
1173                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1174                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1175         } else {
1176                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1177                 cur_state = !!(val & FDI_TX_ENABLE);
1178         }
1179         I915_STATE_WARN(cur_state != state,
1180              "FDI TX state assertion failure (expected %s, current %s)\n",
1181                         onoff(state), onoff(cur_state));
1182 }
1183 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1184 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1185
1186 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1187                           enum pipe pipe, bool state)
1188 {
1189         u32 val;
1190         bool cur_state;
1191
1192         val = I915_READ(FDI_RX_CTL(pipe));
1193         cur_state = !!(val & FDI_RX_ENABLE);
1194         I915_STATE_WARN(cur_state != state,
1195              "FDI RX state assertion failure (expected %s, current %s)\n",
1196                         onoff(state), onoff(cur_state));
1197 }
1198 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1199 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1200
1201 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1202                                       enum pipe pipe)
1203 {
1204         u32 val;
1205
1206         /* ILK FDI PLL is always enabled */
1207         if (INTEL_INFO(dev_priv)->gen == 5)
1208                 return;
1209
1210         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1211         if (HAS_DDI(dev_priv))
1212                 return;
1213
1214         val = I915_READ(FDI_TX_CTL(pipe));
1215         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1216 }
1217
1218 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1219                        enum pipe pipe, bool state)
1220 {
1221         u32 val;
1222         bool cur_state;
1223
1224         val = I915_READ(FDI_RX_CTL(pipe));
1225         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1226         I915_STATE_WARN(cur_state != state,
1227              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1228                         onoff(state), onoff(cur_state));
1229 }
1230
1231 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1232                            enum pipe pipe)
1233 {
1234         struct drm_device *dev = dev_priv->dev;
1235         i915_reg_t pp_reg;
1236         u32 val;
1237         enum pipe panel_pipe = PIPE_A;
1238         bool locked = true;
1239
1240         if (WARN_ON(HAS_DDI(dev)))
1241                 return;
1242
1243         if (HAS_PCH_SPLIT(dev)) {
1244                 u32 port_sel;
1245
1246                 pp_reg = PCH_PP_CONTROL;
1247                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1248
1249                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1250                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1251                         panel_pipe = PIPE_B;
1252                 /* XXX: else fix for eDP */
1253         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1254                 /* presumably write lock depends on pipe, not port select */
1255                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1256                 panel_pipe = pipe;
1257         } else {
1258                 pp_reg = PP_CONTROL;
1259                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1260                         panel_pipe = PIPE_B;
1261         }
1262
1263         val = I915_READ(pp_reg);
1264         if (!(val & PANEL_POWER_ON) ||
1265             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1266                 locked = false;
1267
1268         I915_STATE_WARN(panel_pipe == pipe && locked,
1269              "panel assertion failure, pipe %c regs locked\n",
1270              pipe_name(pipe));
1271 }
1272
1273 static void assert_cursor(struct drm_i915_private *dev_priv,
1274                           enum pipe pipe, bool state)
1275 {
1276         struct drm_device *dev = dev_priv->dev;
1277         bool cur_state;
1278
1279         if (IS_845G(dev) || IS_I865G(dev))
1280                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1281         else
1282                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1283
1284         I915_STATE_WARN(cur_state != state,
1285              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1286                         pipe_name(pipe), onoff(state), onoff(cur_state));
1287 }
1288 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1289 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1290
1291 void assert_pipe(struct drm_i915_private *dev_priv,
1292                  enum pipe pipe, bool state)
1293 {
1294         bool cur_state;
1295         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1296                                                                       pipe);
1297         enum intel_display_power_domain power_domain;
1298
1299         /* if we need the pipe quirk it must be always on */
1300         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1301             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1302                 state = true;
1303
1304         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1305         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1306                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1307                 cur_state = !!(val & PIPECONF_ENABLE);
1308
1309                 intel_display_power_put(dev_priv, power_domain);
1310         } else {
1311                 cur_state = false;
1312         }
1313
1314         I915_STATE_WARN(cur_state != state,
1315              "pipe %c assertion failure (expected %s, current %s)\n",
1316                         pipe_name(pipe), onoff(state), onoff(cur_state));
1317 }
1318
1319 static void assert_plane(struct drm_i915_private *dev_priv,
1320                          enum plane plane, bool state)
1321 {
1322         u32 val;
1323         bool cur_state;
1324
1325         val = I915_READ(DSPCNTR(plane));
1326         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1327         I915_STATE_WARN(cur_state != state,
1328              "plane %c assertion failure (expected %s, current %s)\n",
1329                         plane_name(plane), onoff(state), onoff(cur_state));
1330 }
1331
1332 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1333 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1334
1335 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1336                                    enum pipe pipe)
1337 {
1338         struct drm_device *dev = dev_priv->dev;
1339         int i;
1340
1341         /* Primary planes are fixed to pipes on gen4+ */
1342         if (INTEL_INFO(dev)->gen >= 4) {
1343                 u32 val = I915_READ(DSPCNTR(pipe));
1344                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1345                      "plane %c assertion failure, should be disabled but not\n",
1346                      plane_name(pipe));
1347                 return;
1348         }
1349
1350         /* Need to check both planes against the pipe */
1351         for_each_pipe(dev_priv, i) {
1352                 u32 val = I915_READ(DSPCNTR(i));
1353                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1354                         DISPPLANE_SEL_PIPE_SHIFT;
1355                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1356                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1357                      plane_name(i), pipe_name(pipe));
1358         }
1359 }
1360
1361 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1362                                     enum pipe pipe)
1363 {
1364         struct drm_device *dev = dev_priv->dev;
1365         int sprite;
1366
1367         if (INTEL_INFO(dev)->gen >= 9) {
1368                 for_each_sprite(dev_priv, pipe, sprite) {
1369                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1370                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1371                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1372                              sprite, pipe_name(pipe));
1373                 }
1374         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1375                 for_each_sprite(dev_priv, pipe, sprite) {
1376                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1377                         I915_STATE_WARN(val & SP_ENABLE,
1378                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1379                              sprite_name(pipe, sprite), pipe_name(pipe));
1380                 }
1381         } else if (INTEL_INFO(dev)->gen >= 7) {
1382                 u32 val = I915_READ(SPRCTL(pipe));
1383                 I915_STATE_WARN(val & SPRITE_ENABLE,
1384                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1385                      plane_name(pipe), pipe_name(pipe));
1386         } else if (INTEL_INFO(dev)->gen >= 5) {
1387                 u32 val = I915_READ(DVSCNTR(pipe));
1388                 I915_STATE_WARN(val & DVS_ENABLE,
1389                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1390                      plane_name(pipe), pipe_name(pipe));
1391         }
1392 }
1393
1394 static void assert_vblank_disabled(struct drm_crtc *crtc)
1395 {
1396         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1397                 drm_crtc_vblank_put(crtc);
1398 }
1399
1400 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1401                                     enum pipe pipe)
1402 {
1403         u32 val;
1404         bool enabled;
1405
1406         val = I915_READ(PCH_TRANSCONF(pipe));
1407         enabled = !!(val & TRANS_ENABLE);
1408         I915_STATE_WARN(enabled,
1409              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1410              pipe_name(pipe));
1411 }
1412
1413 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1414                             enum pipe pipe, u32 port_sel, u32 val)
1415 {
1416         if ((val & DP_PORT_EN) == 0)
1417                 return false;
1418
1419         if (HAS_PCH_CPT(dev_priv)) {
1420                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1421                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1422                         return false;
1423         } else if (IS_CHERRYVIEW(dev_priv)) {
1424                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1425                         return false;
1426         } else {
1427                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1428                         return false;
1429         }
1430         return true;
1431 }
1432
1433 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1434                               enum pipe pipe, u32 val)
1435 {
1436         if ((val & SDVO_ENABLE) == 0)
1437                 return false;
1438
1439         if (HAS_PCH_CPT(dev_priv)) {
1440                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1441                         return false;
1442         } else if (IS_CHERRYVIEW(dev_priv)) {
1443                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1444                         return false;
1445         } else {
1446                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1447                         return false;
1448         }
1449         return true;
1450 }
1451
1452 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1453                               enum pipe pipe, u32 val)
1454 {
1455         if ((val & LVDS_PORT_EN) == 0)
1456                 return false;
1457
1458         if (HAS_PCH_CPT(dev_priv)) {
1459                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1460                         return false;
1461         } else {
1462                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1463                         return false;
1464         }
1465         return true;
1466 }
1467
1468 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1469                               enum pipe pipe, u32 val)
1470 {
1471         if ((val & ADPA_DAC_ENABLE) == 0)
1472                 return false;
1473         if (HAS_PCH_CPT(dev_priv)) {
1474                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1475                         return false;
1476         } else {
1477                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1478                         return false;
1479         }
1480         return true;
1481 }
1482
1483 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1484                                    enum pipe pipe, i915_reg_t reg,
1485                                    u32 port_sel)
1486 {
1487         u32 val = I915_READ(reg);
1488         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1489              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1490              i915_mmio_reg_offset(reg), pipe_name(pipe));
1491
1492         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1493              && (val & DP_PIPEB_SELECT),
1494              "IBX PCH dp port still using transcoder B\n");
1495 }
1496
1497 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1498                                      enum pipe pipe, i915_reg_t reg)
1499 {
1500         u32 val = I915_READ(reg);
1501         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1502              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1503              i915_mmio_reg_offset(reg), pipe_name(pipe));
1504
1505         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1506              && (val & SDVO_PIPE_B_SELECT),
1507              "IBX PCH hdmi port still using transcoder B\n");
1508 }
1509
1510 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1511                                       enum pipe pipe)
1512 {
1513         u32 val;
1514
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1516         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1517         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1518
1519         val = I915_READ(PCH_ADPA);
1520         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1521              "PCH VGA enabled on transcoder %c, should be disabled\n",
1522              pipe_name(pipe));
1523
1524         val = I915_READ(PCH_LVDS);
1525         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1526              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1527              pipe_name(pipe));
1528
1529         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1531         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1532 }
1533
1534 static void _vlv_enable_pll(struct intel_crtc *crtc,
1535                             const struct intel_crtc_state *pipe_config)
1536 {
1537         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1538         enum pipe pipe = crtc->pipe;
1539
1540         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1541         POSTING_READ(DPLL(pipe));
1542         udelay(150);
1543
1544         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1545                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1546 }
1547
1548 static void vlv_enable_pll(struct intel_crtc *crtc,
1549                            const struct intel_crtc_state *pipe_config)
1550 {
1551         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1552         enum pipe pipe = crtc->pipe;
1553
1554         assert_pipe_disabled(dev_priv, pipe);
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         assert_panel_unlocked(dev_priv, pipe);
1558
1559         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1560                 _vlv_enable_pll(crtc, pipe_config);
1561
1562         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1563         POSTING_READ(DPLL_MD(pipe));
1564 }
1565
1566
1567 static void _chv_enable_pll(struct intel_crtc *crtc,
1568                             const struct intel_crtc_state *pipe_config)
1569 {
1570         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1571         enum pipe pipe = crtc->pipe;
1572         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1573         u32 tmp;
1574
1575         mutex_lock(&dev_priv->sb_lock);
1576
1577         /* Enable back the 10bit clock to display controller */
1578         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1579         tmp |= DPIO_DCLKP_EN;
1580         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1581
1582         mutex_unlock(&dev_priv->sb_lock);
1583
1584         /*
1585          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1586          */
1587         udelay(1);
1588
1589         /* Enable PLL */
1590         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1591
1592         /* Check PLL is locked */
1593         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1594                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1595 }
1596
1597 static void chv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1601         enum pipe pipe = crtc->pipe;
1602
1603         assert_pipe_disabled(dev_priv, pipe);
1604
1605         /* PLL is protected by panel, make sure we can write it */
1606         assert_panel_unlocked(dev_priv, pipe);
1607
1608         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1609                 _chv_enable_pll(crtc, pipe_config);
1610
1611         if (pipe != PIPE_A) {
1612                 /*
1613                  * WaPixelRepeatModeFixForC0:chv
1614                  *
1615                  * DPLLCMD is AWOL. Use chicken bits to propagate
1616                  * the value from DPLLBMD to either pipe B or C.
1617                  */
1618                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1619                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1620                 I915_WRITE(CBR4_VLV, 0);
1621                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1622
1623                 /*
1624                  * DPLLB VGA mode also seems to cause problems.
1625                  * We should always have it disabled.
1626                  */
1627                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1628         } else {
1629                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1630                 POSTING_READ(DPLL_MD(pipe));
1631         }
1632 }
1633
1634 static int intel_num_dvo_pipes(struct drm_device *dev)
1635 {
1636         struct intel_crtc *crtc;
1637         int count = 0;
1638
1639         for_each_intel_crtc(dev, crtc)
1640                 count += crtc->base.state->active &&
1641                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1642
1643         return count;
1644 }
1645
1646 static void i9xx_enable_pll(struct intel_crtc *crtc)
1647 {
1648         struct drm_device *dev = crtc->base.dev;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650         i915_reg_t reg = DPLL(crtc->pipe);
1651         u32 dpll = crtc->config->dpll_hw_state.dpll;
1652
1653         assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655         /* PLL is protected by panel, make sure we can write it */
1656         if (IS_MOBILE(dev) && !IS_I830(dev))
1657                 assert_panel_unlocked(dev_priv, crtc->pipe);
1658
1659         /* Enable DVO 2x clock on both PLLs if necessary */
1660         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1661                 /*
1662                  * It appears to be important that we don't enable this
1663                  * for the current pipe before otherwise configuring the
1664                  * PLL. No idea how this should be handled if multiple
1665                  * DVO outputs are enabled simultaneosly.
1666                  */
1667                 dpll |= DPLL_DVO_2X_MODE;
1668                 I915_WRITE(DPLL(!crtc->pipe),
1669                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1670         }
1671
1672         /*
1673          * Apparently we need to have VGA mode enabled prior to changing
1674          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1675          * dividers, even though the register value does change.
1676          */
1677         I915_WRITE(reg, 0);
1678
1679         I915_WRITE(reg, dpll);
1680
1681         /* Wait for the clocks to stabilize. */
1682         POSTING_READ(reg);
1683         udelay(150);
1684
1685         if (INTEL_INFO(dev)->gen >= 4) {
1686                 I915_WRITE(DPLL_MD(crtc->pipe),
1687                            crtc->config->dpll_hw_state.dpll_md);
1688         } else {
1689                 /* The pixel multiplier can only be updated once the
1690                  * DPLL is enabled and the clocks are stable.
1691                  *
1692                  * So write it again.
1693                  */
1694                 I915_WRITE(reg, dpll);
1695         }
1696
1697         /* We do this three times for luck */
1698         I915_WRITE(reg, dpll);
1699         POSTING_READ(reg);
1700         udelay(150); /* wait for warmup */
1701         I915_WRITE(reg, dpll);
1702         POSTING_READ(reg);
1703         udelay(150); /* wait for warmup */
1704         I915_WRITE(reg, dpll);
1705         POSTING_READ(reg);
1706         udelay(150); /* wait for warmup */
1707 }
1708
1709 /**
1710  * i9xx_disable_pll - disable a PLL
1711  * @dev_priv: i915 private structure
1712  * @pipe: pipe PLL to disable
1713  *
1714  * Disable the PLL for @pipe, making sure the pipe is off first.
1715  *
1716  * Note!  This is for pre-ILK only.
1717  */
1718 static void i9xx_disable_pll(struct intel_crtc *crtc)
1719 {
1720         struct drm_device *dev = crtc->base.dev;
1721         struct drm_i915_private *dev_priv = dev->dev_private;
1722         enum pipe pipe = crtc->pipe;
1723
1724         /* Disable DVO 2x clock on both PLLs if necessary */
1725         if (IS_I830(dev) &&
1726             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1727             !intel_num_dvo_pipes(dev)) {
1728                 I915_WRITE(DPLL(PIPE_B),
1729                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1730                 I915_WRITE(DPLL(PIPE_A),
1731                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1732         }
1733
1734         /* Don't disable pipe or pipe PLLs if needed */
1735         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1736             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1737                 return;
1738
1739         /* Make sure the pipe isn't still relying on us */
1740         assert_pipe_disabled(dev_priv, pipe);
1741
1742         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1743         POSTING_READ(DPLL(pipe));
1744 }
1745
1746 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1747 {
1748         u32 val;
1749
1750         /* Make sure the pipe isn't still relying on us */
1751         assert_pipe_disabled(dev_priv, pipe);
1752
1753         val = DPLL_INTEGRATED_REF_CLK_VLV |
1754                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1755         if (pipe != PIPE_A)
1756                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1757
1758         I915_WRITE(DPLL(pipe), val);
1759         POSTING_READ(DPLL(pipe));
1760 }
1761
1762 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1763 {
1764         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1765         u32 val;
1766
1767         /* Make sure the pipe isn't still relying on us */
1768         assert_pipe_disabled(dev_priv, pipe);
1769
1770         val = DPLL_SSC_REF_CLK_CHV |
1771                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1772         if (pipe != PIPE_A)
1773                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1774
1775         I915_WRITE(DPLL(pipe), val);
1776         POSTING_READ(DPLL(pipe));
1777
1778         mutex_lock(&dev_priv->sb_lock);
1779
1780         /* Disable 10bit clock to display controller */
1781         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1782         val &= ~DPIO_DCLKP_EN;
1783         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1784
1785         mutex_unlock(&dev_priv->sb_lock);
1786 }
1787
1788 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1789                          struct intel_digital_port *dport,
1790                          unsigned int expected_mask)
1791 {
1792         u32 port_mask;
1793         i915_reg_t dpll_reg;
1794
1795         switch (dport->port) {
1796         case PORT_B:
1797                 port_mask = DPLL_PORTB_READY_MASK;
1798                 dpll_reg = DPLL(0);
1799                 break;
1800         case PORT_C:
1801                 port_mask = DPLL_PORTC_READY_MASK;
1802                 dpll_reg = DPLL(0);
1803                 expected_mask <<= 4;
1804                 break;
1805         case PORT_D:
1806                 port_mask = DPLL_PORTD_READY_MASK;
1807                 dpll_reg = DPIO_PHY_STATUS;
1808                 break;
1809         default:
1810                 BUG();
1811         }
1812
1813         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1814                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1815                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1816 }
1817
1818 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1819                                            enum pipe pipe)
1820 {
1821         struct drm_device *dev = dev_priv->dev;
1822         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1823         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1824         i915_reg_t reg;
1825         uint32_t val, pipeconf_val;
1826
1827         /* Make sure PCH DPLL is enabled */
1828         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1829
1830         /* FDI must be feeding us bits for PCH ports */
1831         assert_fdi_tx_enabled(dev_priv, pipe);
1832         assert_fdi_rx_enabled(dev_priv, pipe);
1833
1834         if (HAS_PCH_CPT(dev)) {
1835                 /* Workaround: Set the timing override bit before enabling the
1836                  * pch transcoder. */
1837                 reg = TRANS_CHICKEN2(pipe);
1838                 val = I915_READ(reg);
1839                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1840                 I915_WRITE(reg, val);
1841         }
1842
1843         reg = PCH_TRANSCONF(pipe);
1844         val = I915_READ(reg);
1845         pipeconf_val = I915_READ(PIPECONF(pipe));
1846
1847         if (HAS_PCH_IBX(dev_priv)) {
1848                 /*
1849                  * Make the BPC in transcoder be consistent with
1850                  * that in pipeconf reg. For HDMI we must use 8bpc
1851                  * here for both 8bpc and 12bpc.
1852                  */
1853                 val &= ~PIPECONF_BPC_MASK;
1854                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1855                         val |= PIPECONF_8BPC;
1856                 else
1857                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1858         }
1859
1860         val &= ~TRANS_INTERLACE_MASK;
1861         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1862                 if (HAS_PCH_IBX(dev_priv) &&
1863                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1864                         val |= TRANS_LEGACY_INTERLACED_ILK;
1865                 else
1866                         val |= TRANS_INTERLACED;
1867         else
1868                 val |= TRANS_PROGRESSIVE;
1869
1870         I915_WRITE(reg, val | TRANS_ENABLE);
1871         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1872                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1873 }
1874
1875 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1876                                       enum transcoder cpu_transcoder)
1877 {
1878         u32 val, pipeconf_val;
1879
1880         /* FDI must be feeding us bits for PCH ports */
1881         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1882         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1883
1884         /* Workaround: set timing override bit. */
1885         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1886         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1888
1889         val = TRANS_ENABLE;
1890         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1891
1892         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1893             PIPECONF_INTERLACED_ILK)
1894                 val |= TRANS_INTERLACED;
1895         else
1896                 val |= TRANS_PROGRESSIVE;
1897
1898         I915_WRITE(LPT_TRANSCONF, val);
1899         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1900                 DRM_ERROR("Failed to enable PCH transcoder\n");
1901 }
1902
1903 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1904                                             enum pipe pipe)
1905 {
1906         struct drm_device *dev = dev_priv->dev;
1907         i915_reg_t reg;
1908         uint32_t val;
1909
1910         /* FDI relies on the transcoder */
1911         assert_fdi_tx_disabled(dev_priv, pipe);
1912         assert_fdi_rx_disabled(dev_priv, pipe);
1913
1914         /* Ports must be off as well */
1915         assert_pch_ports_disabled(dev_priv, pipe);
1916
1917         reg = PCH_TRANSCONF(pipe);
1918         val = I915_READ(reg);
1919         val &= ~TRANS_ENABLE;
1920         I915_WRITE(reg, val);
1921         /* wait for PCH transcoder off, transcoder state */
1922         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1923                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1924
1925         if (HAS_PCH_CPT(dev)) {
1926                 /* Workaround: Clear the timing override chicken bit again. */
1927                 reg = TRANS_CHICKEN2(pipe);
1928                 val = I915_READ(reg);
1929                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1930                 I915_WRITE(reg, val);
1931         }
1932 }
1933
1934 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1935 {
1936         u32 val;
1937
1938         val = I915_READ(LPT_TRANSCONF);
1939         val &= ~TRANS_ENABLE;
1940         I915_WRITE(LPT_TRANSCONF, val);
1941         /* wait for PCH transcoder off, transcoder state */
1942         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1943                 DRM_ERROR("Failed to disable PCH transcoder\n");
1944
1945         /* Workaround: clear timing override bit. */
1946         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1947         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1948         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1949 }
1950
1951 /**
1952  * intel_enable_pipe - enable a pipe, asserting requirements
1953  * @crtc: crtc responsible for the pipe
1954  *
1955  * Enable @crtc's pipe, making sure that various hardware specific requirements
1956  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1957  */
1958 static void intel_enable_pipe(struct intel_crtc *crtc)
1959 {
1960         struct drm_device *dev = crtc->base.dev;
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         enum pipe pipe = crtc->pipe;
1963         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1964         enum pipe pch_transcoder;
1965         i915_reg_t reg;
1966         u32 val;
1967
1968         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1969
1970         assert_planes_disabled(dev_priv, pipe);
1971         assert_cursor_disabled(dev_priv, pipe);
1972         assert_sprites_disabled(dev_priv, pipe);
1973
1974         if (HAS_PCH_LPT(dev_priv))
1975                 pch_transcoder = TRANSCODER_A;
1976         else
1977                 pch_transcoder = pipe;
1978
1979         /*
1980          * A pipe without a PLL won't actually be able to drive bits from
1981          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1982          * need the check.
1983          */
1984         if (HAS_GMCH_DISPLAY(dev_priv))
1985                 if (crtc->config->has_dsi_encoder)
1986                         assert_dsi_pll_enabled(dev_priv);
1987                 else
1988                         assert_pll_enabled(dev_priv, pipe);
1989         else {
1990                 if (crtc->config->has_pch_encoder) {
1991                         /* if driving the PCH, we need FDI enabled */
1992                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1993                         assert_fdi_tx_pll_enabled(dev_priv,
1994                                                   (enum pipe) cpu_transcoder);
1995                 }
1996                 /* FIXME: assert CPU port conditions for SNB+ */
1997         }
1998
1999         reg = PIPECONF(cpu_transcoder);
2000         val = I915_READ(reg);
2001         if (val & PIPECONF_ENABLE) {
2002                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2003                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2004                 return;
2005         }
2006
2007         I915_WRITE(reg, val | PIPECONF_ENABLE);
2008         POSTING_READ(reg);
2009
2010         /*
2011          * Until the pipe starts DSL will read as 0, which would cause
2012          * an apparent vblank timestamp jump, which messes up also the
2013          * frame count when it's derived from the timestamps. So let's
2014          * wait for the pipe to start properly before we call
2015          * drm_crtc_vblank_on()
2016          */
2017         if (dev->max_vblank_count == 0 &&
2018             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2019                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2020 }
2021
2022 /**
2023  * intel_disable_pipe - disable a pipe, asserting requirements
2024  * @crtc: crtc whose pipes is to be disabled
2025  *
2026  * Disable the pipe of @crtc, making sure that various hardware
2027  * specific requirements are met, if applicable, e.g. plane
2028  * disabled, panel fitter off, etc.
2029  *
2030  * Will wait until the pipe has shut down before returning.
2031  */
2032 static void intel_disable_pipe(struct intel_crtc *crtc)
2033 {
2034         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2035         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2036         enum pipe pipe = crtc->pipe;
2037         i915_reg_t reg;
2038         u32 val;
2039
2040         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2041
2042         /*
2043          * Make sure planes won't keep trying to pump pixels to us,
2044          * or we might hang the display.
2045          */
2046         assert_planes_disabled(dev_priv, pipe);
2047         assert_cursor_disabled(dev_priv, pipe);
2048         assert_sprites_disabled(dev_priv, pipe);
2049
2050         reg = PIPECONF(cpu_transcoder);
2051         val = I915_READ(reg);
2052         if ((val & PIPECONF_ENABLE) == 0)
2053                 return;
2054
2055         /*
2056          * Double wide has implications for planes
2057          * so best keep it disabled when not needed.
2058          */
2059         if (crtc->config->double_wide)
2060                 val &= ~PIPECONF_DOUBLE_WIDE;
2061
2062         /* Don't disable pipe or pipe PLLs if needed */
2063         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2064             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2065                 val &= ~PIPECONF_ENABLE;
2066
2067         I915_WRITE(reg, val);
2068         if ((val & PIPECONF_ENABLE) == 0)
2069                 intel_wait_for_pipe_off(crtc);
2070 }
2071
2072 static bool need_vtd_wa(struct drm_device *dev)
2073 {
2074 #ifdef CONFIG_INTEL_IOMMU
2075         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2076                 return true;
2077 #endif
2078         return false;
2079 }
2080
2081 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2082 {
2083         return IS_GEN2(dev_priv) ? 2048 : 4096;
2084 }
2085
2086 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2087                                            uint64_t fb_modifier, unsigned int cpp)
2088 {
2089         switch (fb_modifier) {
2090         case DRM_FORMAT_MOD_NONE:
2091                 return cpp;
2092         case I915_FORMAT_MOD_X_TILED:
2093                 if (IS_GEN2(dev_priv))
2094                         return 128;
2095                 else
2096                         return 512;
2097         case I915_FORMAT_MOD_Y_TILED:
2098                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2099                         return 128;
2100                 else
2101                         return 512;
2102         case I915_FORMAT_MOD_Yf_TILED:
2103                 switch (cpp) {
2104                 case 1:
2105                         return 64;
2106                 case 2:
2107                 case 4:
2108                         return 128;
2109                 case 8:
2110                 case 16:
2111                         return 256;
2112                 default:
2113                         MISSING_CASE(cpp);
2114                         return cpp;
2115                 }
2116                 break;
2117         default:
2118                 MISSING_CASE(fb_modifier);
2119                 return cpp;
2120         }
2121 }
2122
2123 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2124                                uint64_t fb_modifier, unsigned int cpp)
2125 {
2126         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2127                 return 1;
2128         else
2129                 return intel_tile_size(dev_priv) /
2130                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2131 }
2132
2133 /* Return the tile dimensions in pixel units */
2134 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2135                             unsigned int *tile_width,
2136                             unsigned int *tile_height,
2137                             uint64_t fb_modifier,
2138                             unsigned int cpp)
2139 {
2140         unsigned int tile_width_bytes =
2141                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2142
2143         *tile_width = tile_width_bytes / cpp;
2144         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2145 }
2146
2147 unsigned int
2148 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2149                       uint32_t pixel_format, uint64_t fb_modifier)
2150 {
2151         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2152         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2153
2154         return ALIGN(height, tile_height);
2155 }
2156
2157 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2158 {
2159         unsigned int size = 0;
2160         int i;
2161
2162         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2163                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2164
2165         return size;
2166 }
2167
2168 static void
2169 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2170                         const struct drm_framebuffer *fb,
2171                         unsigned int rotation)
2172 {
2173         if (intel_rotation_90_or_270(rotation)) {
2174                 *view = i915_ggtt_view_rotated;
2175                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2176         } else {
2177                 *view = i915_ggtt_view_normal;
2178         }
2179 }
2180
2181 static void
2182 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2183                    struct drm_framebuffer *fb)
2184 {
2185         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2186         unsigned int tile_size, tile_width, tile_height, cpp;
2187
2188         tile_size = intel_tile_size(dev_priv);
2189
2190         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2191         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2192                         fb->modifier[0], cpp);
2193
2194         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2195         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2196
2197         if (info->pixel_format == DRM_FORMAT_NV12) {
2198                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2199                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2200                                 fb->modifier[1], cpp);
2201
2202                 info->uv_offset = fb->offsets[1];
2203                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2204                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2205         }
2206 }
2207
2208 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2209 {
2210         if (INTEL_INFO(dev_priv)->gen >= 9)
2211                 return 256 * 1024;
2212         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2213                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2214                 return 128 * 1024;
2215         else if (INTEL_INFO(dev_priv)->gen >= 4)
2216                 return 4 * 1024;
2217         else
2218                 return 0;
2219 }
2220
2221 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2222                                          uint64_t fb_modifier)
2223 {
2224         switch (fb_modifier) {
2225         case DRM_FORMAT_MOD_NONE:
2226                 return intel_linear_alignment(dev_priv);
2227         case I915_FORMAT_MOD_X_TILED:
2228                 if (INTEL_INFO(dev_priv)->gen >= 9)
2229                         return 256 * 1024;
2230                 return 0;
2231         case I915_FORMAT_MOD_Y_TILED:
2232         case I915_FORMAT_MOD_Yf_TILED:
2233                 return 1 * 1024 * 1024;
2234         default:
2235                 MISSING_CASE(fb_modifier);
2236                 return 0;
2237         }
2238 }
2239
2240 int
2241 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2242                            unsigned int rotation)
2243 {
2244         struct drm_device *dev = fb->dev;
2245         struct drm_i915_private *dev_priv = dev->dev_private;
2246         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2247         struct i915_ggtt_view view;
2248         u32 alignment;
2249         int ret;
2250
2251         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2252
2253         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2254
2255         intel_fill_fb_ggtt_view(&view, fb, rotation);
2256
2257         /* Note that the w/a also requires 64 PTE of padding following the
2258          * bo. We currently fill all unused PTE with the shadow page and so
2259          * we should always have valid PTE following the scanout preventing
2260          * the VT-d warning.
2261          */
2262         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263                 alignment = 256 * 1024;
2264
2265         /*
2266          * Global gtt pte registers are special registers which actually forward
2267          * writes to a chunk of system memory. Which means that there is no risk
2268          * that the register values disappear as soon as we call
2269          * intel_runtime_pm_put(), so it is correct to wrap only the
2270          * pin/unpin/fence and not more.
2271          */
2272         intel_runtime_pm_get(dev_priv);
2273
2274         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2275                                                    &view);
2276         if (ret)
2277                 goto err_pm;
2278
2279         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280          * fence, whereas 965+ only requires a fence if using
2281          * framebuffer compression.  For simplicity, we always install
2282          * a fence as the cost is not that onerous.
2283          */
2284         if (view.type == I915_GGTT_VIEW_NORMAL) {
2285                 ret = i915_gem_object_get_fence(obj);
2286                 if (ret == -EDEADLK) {
2287                         /*
2288                          * -EDEADLK means there are no free fences
2289                          * no pending flips.
2290                          *
2291                          * This is propagated to atomic, but it uses
2292                          * -EDEADLK to force a locking recovery, so
2293                          * change the returned error to -EBUSY.
2294                          */
2295                         ret = -EBUSY;
2296                         goto err_unpin;
2297                 } else if (ret)
2298                         goto err_unpin;
2299
2300                 i915_gem_object_pin_fence(obj);
2301         }
2302
2303         intel_runtime_pm_put(dev_priv);
2304         return 0;
2305
2306 err_unpin:
2307         i915_gem_object_unpin_from_display_plane(obj, &view);
2308 err_pm:
2309         intel_runtime_pm_put(dev_priv);
2310         return ret;
2311 }
2312
2313 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2314 {
2315         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2316         struct i915_ggtt_view view;
2317
2318         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2319
2320         intel_fill_fb_ggtt_view(&view, fb, rotation);
2321
2322         if (view.type == I915_GGTT_VIEW_NORMAL)
2323                 i915_gem_object_unpin_fence(obj);
2324
2325         i915_gem_object_unpin_from_display_plane(obj, &view);
2326 }
2327
2328 /*
2329  * Adjust the tile offset by moving the difference into
2330  * the x/y offsets.
2331  *
2332  * Input tile dimensions and pitch must already be
2333  * rotated to match x and y, and in pixel units.
2334  */
2335 static u32 intel_adjust_tile_offset(int *x, int *y,
2336                                     unsigned int tile_width,
2337                                     unsigned int tile_height,
2338                                     unsigned int tile_size,
2339                                     unsigned int pitch_tiles,
2340                                     u32 old_offset,
2341                                     u32 new_offset)
2342 {
2343         unsigned int tiles;
2344
2345         WARN_ON(old_offset & (tile_size - 1));
2346         WARN_ON(new_offset & (tile_size - 1));
2347         WARN_ON(new_offset > old_offset);
2348
2349         tiles = (old_offset - new_offset) / tile_size;
2350
2351         *y += tiles / pitch_tiles * tile_height;
2352         *x += tiles % pitch_tiles * tile_width;
2353
2354         return new_offset;
2355 }
2356
2357 /*
2358  * Computes the linear offset to the base tile and adjusts
2359  * x, y. bytes per pixel is assumed to be a power-of-two.
2360  *
2361  * In the 90/270 rotated case, x and y are assumed
2362  * to be already rotated to match the rotated GTT view, and
2363  * pitch is the tile_height aligned framebuffer height.
2364  */
2365 u32 intel_compute_tile_offset(int *x, int *y,
2366                               const struct drm_framebuffer *fb, int plane,
2367                               unsigned int pitch,
2368                               unsigned int rotation)
2369 {
2370         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2371         uint64_t fb_modifier = fb->modifier[plane];
2372         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2373         u32 offset, offset_aligned, alignment;
2374
2375         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2376         if (alignment)
2377                 alignment--;
2378
2379         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2380                 unsigned int tile_size, tile_width, tile_height;
2381                 unsigned int tile_rows, tiles, pitch_tiles;
2382
2383                 tile_size = intel_tile_size(dev_priv);
2384                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2385                                 fb_modifier, cpp);
2386
2387                 if (intel_rotation_90_or_270(rotation)) {
2388                         pitch_tiles = pitch / tile_height;
2389                         swap(tile_width, tile_height);
2390                 } else {
2391                         pitch_tiles = pitch / (tile_width * cpp);
2392                 }
2393
2394                 tile_rows = *y / tile_height;
2395                 *y %= tile_height;
2396
2397                 tiles = *x / tile_width;
2398                 *x %= tile_width;
2399
2400                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2401                 offset_aligned = offset & ~alignment;
2402
2403                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2404                                          tile_size, pitch_tiles,
2405                                          offset, offset_aligned);
2406         } else {
2407                 offset = *y * pitch + *x * cpp;
2408                 offset_aligned = offset & ~alignment;
2409
2410                 *y = (offset & alignment) / pitch;
2411                 *x = ((offset & alignment) - *y * pitch) / cpp;
2412         }
2413
2414         return offset_aligned;
2415 }
2416
2417 static int i9xx_format_to_fourcc(int format)
2418 {
2419         switch (format) {
2420         case DISPPLANE_8BPP:
2421                 return DRM_FORMAT_C8;
2422         case DISPPLANE_BGRX555:
2423                 return DRM_FORMAT_XRGB1555;
2424         case DISPPLANE_BGRX565:
2425                 return DRM_FORMAT_RGB565;
2426         default:
2427         case DISPPLANE_BGRX888:
2428                 return DRM_FORMAT_XRGB8888;
2429         case DISPPLANE_RGBX888:
2430                 return DRM_FORMAT_XBGR8888;
2431         case DISPPLANE_BGRX101010:
2432                 return DRM_FORMAT_XRGB2101010;
2433         case DISPPLANE_RGBX101010:
2434                 return DRM_FORMAT_XBGR2101010;
2435         }
2436 }
2437
2438 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2439 {
2440         switch (format) {
2441         case PLANE_CTL_FORMAT_RGB_565:
2442                 return DRM_FORMAT_RGB565;
2443         default:
2444         case PLANE_CTL_FORMAT_XRGB_8888:
2445                 if (rgb_order) {
2446                         if (alpha)
2447                                 return DRM_FORMAT_ABGR8888;
2448                         else
2449                                 return DRM_FORMAT_XBGR8888;
2450                 } else {
2451                         if (alpha)
2452                                 return DRM_FORMAT_ARGB8888;
2453                         else
2454                                 return DRM_FORMAT_XRGB8888;
2455                 }
2456         case PLANE_CTL_FORMAT_XRGB_2101010:
2457                 if (rgb_order)
2458                         return DRM_FORMAT_XBGR2101010;
2459                 else
2460                         return DRM_FORMAT_XRGB2101010;
2461         }
2462 }
2463
2464 static bool
2465 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2466                               struct intel_initial_plane_config *plane_config)
2467 {
2468         struct drm_device *dev = crtc->base.dev;
2469         struct drm_i915_private *dev_priv = to_i915(dev);
2470         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2471         struct drm_i915_gem_object *obj = NULL;
2472         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2473         struct drm_framebuffer *fb = &plane_config->fb->base;
2474         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2475         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2476                                     PAGE_SIZE);
2477
2478         size_aligned -= base_aligned;
2479
2480         if (plane_config->size == 0)
2481                 return false;
2482
2483         /* If the FB is too big, just don't use it since fbdev is not very
2484          * important and we should probably use that space with FBC or other
2485          * features. */
2486         if (size_aligned * 2 > ggtt->stolen_usable_size)
2487                 return false;
2488
2489         mutex_lock(&dev->struct_mutex);
2490
2491         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2492                                                              base_aligned,
2493                                                              base_aligned,
2494                                                              size_aligned);
2495         if (!obj) {
2496                 mutex_unlock(&dev->struct_mutex);
2497                 return false;
2498         }
2499
2500         obj->tiling_mode = plane_config->tiling;
2501         if (obj->tiling_mode == I915_TILING_X)
2502                 obj->stride = fb->pitches[0];
2503
2504         mode_cmd.pixel_format = fb->pixel_format;
2505         mode_cmd.width = fb->width;
2506         mode_cmd.height = fb->height;
2507         mode_cmd.pitches[0] = fb->pitches[0];
2508         mode_cmd.modifier[0] = fb->modifier[0];
2509         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2510
2511         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2512                                    &mode_cmd, obj)) {
2513                 DRM_DEBUG_KMS("intel fb init failed\n");
2514                 goto out_unref_obj;
2515         }
2516
2517         mutex_unlock(&dev->struct_mutex);
2518
2519         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2520         return true;
2521
2522 out_unref_obj:
2523         drm_gem_object_unreference(&obj->base);
2524         mutex_unlock(&dev->struct_mutex);
2525         return false;
2526 }
2527
2528 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2529 static void
2530 update_state_fb(struct drm_plane *plane)
2531 {
2532         if (plane->fb == plane->state->fb)
2533                 return;
2534
2535         if (plane->state->fb)
2536                 drm_framebuffer_unreference(plane->state->fb);
2537         plane->state->fb = plane->fb;
2538         if (plane->state->fb)
2539                 drm_framebuffer_reference(plane->state->fb);
2540 }
2541
2542 static void
2543 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2544                              struct intel_initial_plane_config *plane_config)
2545 {
2546         struct drm_device *dev = intel_crtc->base.dev;
2547         struct drm_i915_private *dev_priv = dev->dev_private;
2548         struct drm_crtc *c;
2549         struct intel_crtc *i;
2550         struct drm_i915_gem_object *obj;
2551         struct drm_plane *primary = intel_crtc->base.primary;
2552         struct drm_plane_state *plane_state = primary->state;
2553         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2554         struct intel_plane *intel_plane = to_intel_plane(primary);
2555         struct intel_plane_state *intel_state =
2556                 to_intel_plane_state(plane_state);
2557         struct drm_framebuffer *fb;
2558
2559         if (!plane_config->fb)
2560                 return;
2561
2562         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2563                 fb = &plane_config->fb->base;
2564                 goto valid_fb;
2565         }
2566
2567         kfree(plane_config->fb);
2568
2569         /*
2570          * Failed to alloc the obj, check to see if we should share
2571          * an fb with another CRTC instead
2572          */
2573         for_each_crtc(dev, c) {
2574                 i = to_intel_crtc(c);
2575
2576                 if (c == &intel_crtc->base)
2577                         continue;
2578
2579                 if (!i->active)
2580                         continue;
2581
2582                 fb = c->primary->fb;
2583                 if (!fb)
2584                         continue;
2585
2586                 obj = intel_fb_obj(fb);
2587                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2588                         drm_framebuffer_reference(fb);
2589                         goto valid_fb;
2590                 }
2591         }
2592
2593         /*
2594          * We've failed to reconstruct the BIOS FB.  Current display state
2595          * indicates that the primary plane is visible, but has a NULL FB,
2596          * which will lead to problems later if we don't fix it up.  The
2597          * simplest solution is to just disable the primary plane now and
2598          * pretend the BIOS never had it enabled.
2599          */
2600         to_intel_plane_state(plane_state)->visible = false;
2601         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2602         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2603         intel_plane->disable_plane(primary, &intel_crtc->base);
2604
2605         return;
2606
2607 valid_fb:
2608         plane_state->src_x = 0;
2609         plane_state->src_y = 0;
2610         plane_state->src_w = fb->width << 16;
2611         plane_state->src_h = fb->height << 16;
2612
2613         plane_state->crtc_x = 0;
2614         plane_state->crtc_y = 0;
2615         plane_state->crtc_w = fb->width;
2616         plane_state->crtc_h = fb->height;
2617
2618         intel_state->src.x1 = plane_state->src_x;
2619         intel_state->src.y1 = plane_state->src_y;
2620         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2621         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2622         intel_state->dst.x1 = plane_state->crtc_x;
2623         intel_state->dst.y1 = plane_state->crtc_y;
2624         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2625         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2626
2627         obj = intel_fb_obj(fb);
2628         if (obj->tiling_mode != I915_TILING_NONE)
2629                 dev_priv->preserve_bios_swizzle = true;
2630
2631         drm_framebuffer_reference(fb);
2632         primary->fb = primary->state->fb = fb;
2633         primary->crtc = primary->state->crtc = &intel_crtc->base;
2634         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2635         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2636 }
2637
2638 static void i9xx_update_primary_plane(struct drm_plane *primary,
2639                                       const struct intel_crtc_state *crtc_state,
2640                                       const struct intel_plane_state *plane_state)
2641 {
2642         struct drm_device *dev = primary->dev;
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2645         struct drm_framebuffer *fb = plane_state->base.fb;
2646         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2647         int plane = intel_crtc->plane;
2648         u32 linear_offset;
2649         u32 dspcntr;
2650         i915_reg_t reg = DSPCNTR(plane);
2651         unsigned int rotation = plane_state->base.rotation;
2652         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2653         int x = plane_state->src.x1 >> 16;
2654         int y = plane_state->src.y1 >> 16;
2655
2656         dspcntr = DISPPLANE_GAMMA_ENABLE;
2657
2658         dspcntr |= DISPLAY_PLANE_ENABLE;
2659
2660         if (INTEL_INFO(dev)->gen < 4) {
2661                 if (intel_crtc->pipe == PIPE_B)
2662                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2663
2664                 /* pipesrc and dspsize control the size that is scaled from,
2665                  * which should always be the user's requested size.
2666                  */
2667                 I915_WRITE(DSPSIZE(plane),
2668                            ((crtc_state->pipe_src_h - 1) << 16) |
2669                            (crtc_state->pipe_src_w - 1));
2670                 I915_WRITE(DSPPOS(plane), 0);
2671         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2672                 I915_WRITE(PRIMSIZE(plane),
2673                            ((crtc_state->pipe_src_h - 1) << 16) |
2674                            (crtc_state->pipe_src_w - 1));
2675                 I915_WRITE(PRIMPOS(plane), 0);
2676                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2677         }
2678
2679         switch (fb->pixel_format) {
2680         case DRM_FORMAT_C8:
2681                 dspcntr |= DISPPLANE_8BPP;
2682                 break;
2683         case DRM_FORMAT_XRGB1555:
2684                 dspcntr |= DISPPLANE_BGRX555;
2685                 break;
2686         case DRM_FORMAT_RGB565:
2687                 dspcntr |= DISPPLANE_BGRX565;
2688                 break;
2689         case DRM_FORMAT_XRGB8888:
2690                 dspcntr |= DISPPLANE_BGRX888;
2691                 break;
2692         case DRM_FORMAT_XBGR8888:
2693                 dspcntr |= DISPPLANE_RGBX888;
2694                 break;
2695         case DRM_FORMAT_XRGB2101010:
2696                 dspcntr |= DISPPLANE_BGRX101010;
2697                 break;
2698         case DRM_FORMAT_XBGR2101010:
2699                 dspcntr |= DISPPLANE_RGBX101010;
2700                 break;
2701         default:
2702                 BUG();
2703         }
2704
2705         if (INTEL_INFO(dev)->gen >= 4 &&
2706             obj->tiling_mode != I915_TILING_NONE)
2707                 dspcntr |= DISPPLANE_TILED;
2708
2709         if (IS_G4X(dev))
2710                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2711
2712         linear_offset = y * fb->pitches[0] + x * cpp;
2713
2714         if (INTEL_INFO(dev)->gen >= 4) {
2715                 intel_crtc->dspaddr_offset =
2716                         intel_compute_tile_offset(&x, &y, fb, 0,
2717                                                   fb->pitches[0], rotation);
2718                 linear_offset -= intel_crtc->dspaddr_offset;
2719         } else {
2720                 intel_crtc->dspaddr_offset = linear_offset;
2721         }
2722
2723         if (rotation == BIT(DRM_ROTATE_180)) {
2724                 dspcntr |= DISPPLANE_ROTATE_180;
2725
2726                 x += (crtc_state->pipe_src_w - 1);
2727                 y += (crtc_state->pipe_src_h - 1);
2728
2729                 /* Finding the last pixel of the last line of the display
2730                 data and adding to linear_offset*/
2731                 linear_offset +=
2732                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2733                         (crtc_state->pipe_src_w - 1) * cpp;
2734         }
2735
2736         intel_crtc->adjusted_x = x;
2737         intel_crtc->adjusted_y = y;
2738
2739         I915_WRITE(reg, dspcntr);
2740
2741         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2742         if (INTEL_INFO(dev)->gen >= 4) {
2743                 I915_WRITE(DSPSURF(plane),
2744                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2745                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2746                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2747         } else
2748                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2749         POSTING_READ(reg);
2750 }
2751
2752 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2753                                        struct drm_crtc *crtc)
2754 {
2755         struct drm_device *dev = crtc->dev;
2756         struct drm_i915_private *dev_priv = dev->dev_private;
2757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2758         int plane = intel_crtc->plane;
2759
2760         I915_WRITE(DSPCNTR(plane), 0);
2761         if (INTEL_INFO(dev_priv)->gen >= 4)
2762                 I915_WRITE(DSPSURF(plane), 0);
2763         else
2764                 I915_WRITE(DSPADDR(plane), 0);
2765         POSTING_READ(DSPCNTR(plane));
2766 }
2767
2768 static void ironlake_update_primary_plane(struct drm_plane *primary,
2769                                           const struct intel_crtc_state *crtc_state,
2770                                           const struct intel_plane_state *plane_state)
2771 {
2772         struct drm_device *dev = primary->dev;
2773         struct drm_i915_private *dev_priv = dev->dev_private;
2774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2775         struct drm_framebuffer *fb = plane_state->base.fb;
2776         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2777         int plane = intel_crtc->plane;
2778         u32 linear_offset;
2779         u32 dspcntr;
2780         i915_reg_t reg = DSPCNTR(plane);
2781         unsigned int rotation = plane_state->base.rotation;
2782         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2783         int x = plane_state->src.x1 >> 16;
2784         int y = plane_state->src.y1 >> 16;
2785
2786         dspcntr = DISPPLANE_GAMMA_ENABLE;
2787         dspcntr |= DISPLAY_PLANE_ENABLE;
2788
2789         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2790                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2791
2792         switch (fb->pixel_format) {
2793         case DRM_FORMAT_C8:
2794                 dspcntr |= DISPPLANE_8BPP;
2795                 break;
2796         case DRM_FORMAT_RGB565:
2797                 dspcntr |= DISPPLANE_BGRX565;
2798                 break;
2799         case DRM_FORMAT_XRGB8888:
2800                 dspcntr |= DISPPLANE_BGRX888;
2801                 break;
2802         case DRM_FORMAT_XBGR8888:
2803                 dspcntr |= DISPPLANE_RGBX888;
2804                 break;
2805         case DRM_FORMAT_XRGB2101010:
2806                 dspcntr |= DISPPLANE_BGRX101010;
2807                 break;
2808         case DRM_FORMAT_XBGR2101010:
2809                 dspcntr |= DISPPLANE_RGBX101010;
2810                 break;
2811         default:
2812                 BUG();
2813         }
2814
2815         if (obj->tiling_mode != I915_TILING_NONE)
2816                 dspcntr |= DISPPLANE_TILED;
2817
2818         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2819                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2820
2821         linear_offset = y * fb->pitches[0] + x * cpp;
2822         intel_crtc->dspaddr_offset =
2823                 intel_compute_tile_offset(&x, &y, fb, 0,
2824                                           fb->pitches[0], rotation);
2825         linear_offset -= intel_crtc->dspaddr_offset;
2826         if (rotation == BIT(DRM_ROTATE_180)) {
2827                 dspcntr |= DISPPLANE_ROTATE_180;
2828
2829                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2830                         x += (crtc_state->pipe_src_w - 1);
2831                         y += (crtc_state->pipe_src_h - 1);
2832
2833                         /* Finding the last pixel of the last line of the display
2834                         data and adding to linear_offset*/
2835                         linear_offset +=
2836                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2837                                 (crtc_state->pipe_src_w - 1) * cpp;
2838                 }
2839         }
2840
2841         intel_crtc->adjusted_x = x;
2842         intel_crtc->adjusted_y = y;
2843
2844         I915_WRITE(reg, dspcntr);
2845
2846         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2847         I915_WRITE(DSPSURF(plane),
2848                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2849         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2850                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2851         } else {
2852                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2853                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2854         }
2855         POSTING_READ(reg);
2856 }
2857
2858 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2859                               uint64_t fb_modifier, uint32_t pixel_format)
2860 {
2861         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2862                 return 64;
2863         } else {
2864                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2865
2866                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2867         }
2868 }
2869
2870 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2871                            struct drm_i915_gem_object *obj,
2872                            unsigned int plane)
2873 {
2874         struct i915_ggtt_view view;
2875         struct i915_vma *vma;
2876         u64 offset;
2877
2878         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2879                                 intel_plane->base.state->rotation);
2880
2881         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2882         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2883                 view.type))
2884                 return -1;
2885
2886         offset = vma->node.start;
2887
2888         if (plane == 1) {
2889                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2890                           PAGE_SIZE;
2891         }
2892
2893         WARN_ON(upper_32_bits(offset));
2894
2895         return lower_32_bits(offset);
2896 }
2897
2898 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2899 {
2900         struct drm_device *dev = intel_crtc->base.dev;
2901         struct drm_i915_private *dev_priv = dev->dev_private;
2902
2903         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2904         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2905         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2906 }
2907
2908 /*
2909  * This function detaches (aka. unbinds) unused scalers in hardware
2910  */
2911 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2912 {
2913         struct intel_crtc_scaler_state *scaler_state;
2914         int i;
2915
2916         scaler_state = &intel_crtc->config->scaler_state;
2917
2918         /* loop through and disable scalers that aren't in use */
2919         for (i = 0; i < intel_crtc->num_scalers; i++) {
2920                 if (!scaler_state->scalers[i].in_use)
2921                         skl_detach_scaler(intel_crtc, i);
2922         }
2923 }
2924
2925 u32 skl_plane_ctl_format(uint32_t pixel_format)
2926 {
2927         switch (pixel_format) {
2928         case DRM_FORMAT_C8:
2929                 return PLANE_CTL_FORMAT_INDEXED;
2930         case DRM_FORMAT_RGB565:
2931                 return PLANE_CTL_FORMAT_RGB_565;
2932         case DRM_FORMAT_XBGR8888:
2933                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2934         case DRM_FORMAT_XRGB8888:
2935                 return PLANE_CTL_FORMAT_XRGB_8888;
2936         /*
2937          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2938          * to be already pre-multiplied. We need to add a knob (or a different
2939          * DRM_FORMAT) for user-space to configure that.
2940          */
2941         case DRM_FORMAT_ABGR8888:
2942                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2943                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2944         case DRM_FORMAT_ARGB8888:
2945                 return PLANE_CTL_FORMAT_XRGB_8888 |
2946                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2947         case DRM_FORMAT_XRGB2101010:
2948                 return PLANE_CTL_FORMAT_XRGB_2101010;
2949         case DRM_FORMAT_XBGR2101010:
2950                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2951         case DRM_FORMAT_YUYV:
2952                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2953         case DRM_FORMAT_YVYU:
2954                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2955         case DRM_FORMAT_UYVY:
2956                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2957         case DRM_FORMAT_VYUY:
2958                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2959         default:
2960                 MISSING_CASE(pixel_format);
2961         }
2962
2963         return 0;
2964 }
2965
2966 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2967 {
2968         switch (fb_modifier) {
2969         case DRM_FORMAT_MOD_NONE:
2970                 break;
2971         case I915_FORMAT_MOD_X_TILED:
2972                 return PLANE_CTL_TILED_X;
2973         case I915_FORMAT_MOD_Y_TILED:
2974                 return PLANE_CTL_TILED_Y;
2975         case I915_FORMAT_MOD_Yf_TILED:
2976                 return PLANE_CTL_TILED_YF;
2977         default:
2978                 MISSING_CASE(fb_modifier);
2979         }
2980
2981         return 0;
2982 }
2983
2984 u32 skl_plane_ctl_rotation(unsigned int rotation)
2985 {
2986         switch (rotation) {
2987         case BIT(DRM_ROTATE_0):
2988                 break;
2989         /*
2990          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2991          * while i915 HW rotation is clockwise, thats why this swapping.
2992          */
2993         case BIT(DRM_ROTATE_90):
2994                 return PLANE_CTL_ROTATE_270;
2995         case BIT(DRM_ROTATE_180):
2996                 return PLANE_CTL_ROTATE_180;
2997         case BIT(DRM_ROTATE_270):
2998                 return PLANE_CTL_ROTATE_90;
2999         default:
3000                 MISSING_CASE(rotation);
3001         }
3002
3003         return 0;
3004 }
3005
3006 static void skylake_update_primary_plane(struct drm_plane *plane,
3007                                          const struct intel_crtc_state *crtc_state,
3008                                          const struct intel_plane_state *plane_state)
3009 {
3010         struct drm_device *dev = plane->dev;
3011         struct drm_i915_private *dev_priv = dev->dev_private;
3012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3013         struct drm_framebuffer *fb = plane_state->base.fb;
3014         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3015         int pipe = intel_crtc->pipe;
3016         u32 plane_ctl, stride_div, stride;
3017         u32 tile_height, plane_offset, plane_size;
3018         unsigned int rotation = plane_state->base.rotation;
3019         int x_offset, y_offset;
3020         u32 surf_addr;
3021         int scaler_id = plane_state->scaler_id;
3022         int src_x = plane_state->src.x1 >> 16;
3023         int src_y = plane_state->src.y1 >> 16;
3024         int src_w = drm_rect_width(&plane_state->src) >> 16;
3025         int src_h = drm_rect_height(&plane_state->src) >> 16;
3026         int dst_x = plane_state->dst.x1;
3027         int dst_y = plane_state->dst.y1;
3028         int dst_w = drm_rect_width(&plane_state->dst);
3029         int dst_h = drm_rect_height(&plane_state->dst);
3030
3031         plane_ctl = PLANE_CTL_ENABLE |
3032                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3033                     PLANE_CTL_PIPE_CSC_ENABLE;
3034
3035         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3036         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3037         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3038         plane_ctl |= skl_plane_ctl_rotation(rotation);
3039
3040         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3041                                                fb->pixel_format);
3042         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3043
3044         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3045
3046         if (intel_rotation_90_or_270(rotation)) {
3047                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3048
3049                 /* stride = Surface height in tiles */
3050                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3051                 stride = DIV_ROUND_UP(fb->height, tile_height);
3052                 x_offset = stride * tile_height - src_y - src_h;
3053                 y_offset = src_x;
3054                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3055         } else {
3056                 stride = fb->pitches[0] / stride_div;
3057                 x_offset = src_x;
3058                 y_offset = src_y;
3059                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3060         }
3061         plane_offset = y_offset << 16 | x_offset;
3062
3063         intel_crtc->adjusted_x = x_offset;
3064         intel_crtc->adjusted_y = y_offset;
3065
3066         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3067         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3068         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3069         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3070
3071         if (scaler_id >= 0) {
3072                 uint32_t ps_ctrl = 0;
3073
3074                 WARN_ON(!dst_w || !dst_h);
3075                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3076                         crtc_state->scaler_state.scalers[scaler_id].mode;
3077                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3078                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3079                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3080                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3081                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3082         } else {
3083                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3084         }
3085
3086         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3087
3088         POSTING_READ(PLANE_SURF(pipe, 0));
3089 }
3090
3091 static void skylake_disable_primary_plane(struct drm_plane *primary,
3092                                           struct drm_crtc *crtc)
3093 {
3094         struct drm_device *dev = crtc->dev;
3095         struct drm_i915_private *dev_priv = dev->dev_private;
3096         int pipe = to_intel_crtc(crtc)->pipe;
3097
3098         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3099         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3100         POSTING_READ(PLANE_SURF(pipe, 0));
3101 }
3102
3103 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3104 static int
3105 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3106                            int x, int y, enum mode_set_atomic state)
3107 {
3108         /* Support for kgdboc is disabled, this needs a major rework. */
3109         DRM_ERROR("legacy panic handler not supported any more.\n");
3110
3111         return -ENODEV;
3112 }
3113
3114 static void intel_complete_page_flips(struct drm_device *dev)
3115 {
3116         struct drm_crtc *crtc;
3117
3118         for_each_crtc(dev, crtc) {
3119                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3120                 enum plane plane = intel_crtc->plane;
3121
3122                 intel_prepare_page_flip(dev, plane);
3123                 intel_finish_page_flip_plane(dev, plane);
3124         }
3125 }
3126
3127 static void intel_update_primary_planes(struct drm_device *dev)
3128 {
3129         struct drm_crtc *crtc;
3130
3131         for_each_crtc(dev, crtc) {
3132                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3133                 struct intel_plane_state *plane_state;
3134
3135                 drm_modeset_lock_crtc(crtc, &plane->base);
3136                 plane_state = to_intel_plane_state(plane->base.state);
3137
3138                 if (plane_state->visible)
3139                         plane->update_plane(&plane->base,
3140                                             to_intel_crtc_state(crtc->state),
3141                                             plane_state);
3142
3143                 drm_modeset_unlock_crtc(crtc);
3144         }
3145 }
3146
3147 void intel_prepare_reset(struct drm_device *dev)
3148 {
3149         /* no reset support for gen2 */
3150         if (IS_GEN2(dev))
3151                 return;
3152
3153         /* reset doesn't touch the display */
3154         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3155                 return;
3156
3157         drm_modeset_lock_all(dev);
3158         /*
3159          * Disabling the crtcs gracefully seems nicer. Also the
3160          * g33 docs say we should at least disable all the planes.
3161          */
3162         intel_display_suspend(dev);
3163 }
3164
3165 void intel_finish_reset(struct drm_device *dev)
3166 {
3167         struct drm_i915_private *dev_priv = to_i915(dev);
3168
3169         /*
3170          * Flips in the rings will be nuked by the reset,
3171          * so complete all pending flips so that user space
3172          * will get its events and not get stuck.
3173          */
3174         intel_complete_page_flips(dev);
3175
3176         /* no reset support for gen2 */
3177         if (IS_GEN2(dev))
3178                 return;
3179
3180         /* reset doesn't touch the display */
3181         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3182                 /*
3183                  * Flips in the rings have been nuked by the reset,
3184                  * so update the base address of all primary
3185                  * planes to the the last fb to make sure we're
3186                  * showing the correct fb after a reset.
3187                  *
3188                  * FIXME: Atomic will make this obsolete since we won't schedule
3189                  * CS-based flips (which might get lost in gpu resets) any more.
3190                  */
3191                 intel_update_primary_planes(dev);
3192                 return;
3193         }
3194
3195         /*
3196          * The display has been reset as well,
3197          * so need a full re-initialization.
3198          */
3199         intel_runtime_pm_disable_interrupts(dev_priv);
3200         intel_runtime_pm_enable_interrupts(dev_priv);
3201
3202         intel_modeset_init_hw(dev);
3203
3204         spin_lock_irq(&dev_priv->irq_lock);
3205         if (dev_priv->display.hpd_irq_setup)
3206                 dev_priv->display.hpd_irq_setup(dev);
3207         spin_unlock_irq(&dev_priv->irq_lock);
3208
3209         intel_display_resume(dev);
3210
3211         intel_hpd_init(dev_priv);
3212
3213         drm_modeset_unlock_all(dev);
3214 }
3215
3216 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3217 {
3218         struct drm_device *dev = crtc->dev;
3219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3220         unsigned reset_counter;
3221         bool pending;
3222
3223         reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3224         if (intel_crtc->reset_counter != reset_counter)
3225                 return false;
3226
3227         spin_lock_irq(&dev->event_lock);
3228         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3229         spin_unlock_irq(&dev->event_lock);
3230
3231         return pending;
3232 }
3233
3234 static void intel_update_pipe_config(struct intel_crtc *crtc,
3235                                      struct intel_crtc_state *old_crtc_state)
3236 {
3237         struct drm_device *dev = crtc->base.dev;
3238         struct drm_i915_private *dev_priv = dev->dev_private;
3239         struct intel_crtc_state *pipe_config =
3240                 to_intel_crtc_state(crtc->base.state);
3241
3242         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3243         crtc->base.mode = crtc->base.state->mode;
3244
3245         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3246                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3247                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3248
3249         /*
3250          * Update pipe size and adjust fitter if needed: the reason for this is
3251          * that in compute_mode_changes we check the native mode (not the pfit
3252          * mode) to see if we can flip rather than do a full mode set. In the
3253          * fastboot case, we'll flip, but if we don't update the pipesrc and
3254          * pfit state, we'll end up with a big fb scanned out into the wrong
3255          * sized surface.
3256          */
3257
3258         I915_WRITE(PIPESRC(crtc->pipe),
3259                    ((pipe_config->pipe_src_w - 1) << 16) |
3260                    (pipe_config->pipe_src_h - 1));
3261
3262         /* on skylake this is done by detaching scalers */
3263         if (INTEL_INFO(dev)->gen >= 9) {
3264                 skl_detach_scalers(crtc);
3265
3266                 if (pipe_config->pch_pfit.enabled)
3267                         skylake_pfit_enable(crtc);
3268         } else if (HAS_PCH_SPLIT(dev)) {
3269                 if (pipe_config->pch_pfit.enabled)
3270                         ironlake_pfit_enable(crtc);
3271                 else if (old_crtc_state->pch_pfit.enabled)
3272                         ironlake_pfit_disable(crtc, true);
3273         }
3274 }
3275
3276 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3277 {
3278         struct drm_device *dev = crtc->dev;
3279         struct drm_i915_private *dev_priv = dev->dev_private;
3280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3281         int pipe = intel_crtc->pipe;
3282         i915_reg_t reg;
3283         u32 temp;
3284
3285         /* enable normal train */
3286         reg = FDI_TX_CTL(pipe);
3287         temp = I915_READ(reg);
3288         if (IS_IVYBRIDGE(dev)) {
3289                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3290                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3291         } else {
3292                 temp &= ~FDI_LINK_TRAIN_NONE;
3293                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3294         }
3295         I915_WRITE(reg, temp);
3296
3297         reg = FDI_RX_CTL(pipe);
3298         temp = I915_READ(reg);
3299         if (HAS_PCH_CPT(dev)) {
3300                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3301                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3302         } else {
3303                 temp &= ~FDI_LINK_TRAIN_NONE;
3304                 temp |= FDI_LINK_TRAIN_NONE;
3305         }
3306         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3307
3308         /* wait one idle pattern time */
3309         POSTING_READ(reg);
3310         udelay(1000);
3311
3312         /* IVB wants error correction enabled */
3313         if (IS_IVYBRIDGE(dev))
3314                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3315                            FDI_FE_ERRC_ENABLE);
3316 }
3317
3318 /* The FDI link training functions for ILK/Ibexpeak. */
3319 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3320 {
3321         struct drm_device *dev = crtc->dev;
3322         struct drm_i915_private *dev_priv = dev->dev_private;
3323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3324         int pipe = intel_crtc->pipe;
3325         i915_reg_t reg;
3326         u32 temp, tries;
3327
3328         /* FDI needs bits from pipe first */
3329         assert_pipe_enabled(dev_priv, pipe);
3330
3331         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3332            for train result */
3333         reg = FDI_RX_IMR(pipe);
3334         temp = I915_READ(reg);
3335         temp &= ~FDI_RX_SYMBOL_LOCK;
3336         temp &= ~FDI_RX_BIT_LOCK;
3337         I915_WRITE(reg, temp);
3338         I915_READ(reg);
3339         udelay(150);
3340
3341         /* enable CPU FDI TX and PCH FDI RX */
3342         reg = FDI_TX_CTL(pipe);
3343         temp = I915_READ(reg);
3344         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3345         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3346         temp &= ~FDI_LINK_TRAIN_NONE;
3347         temp |= FDI_LINK_TRAIN_PATTERN_1;
3348         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3349
3350         reg = FDI_RX_CTL(pipe);
3351         temp = I915_READ(reg);
3352         temp &= ~FDI_LINK_TRAIN_NONE;
3353         temp |= FDI_LINK_TRAIN_PATTERN_1;
3354         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3355
3356         POSTING_READ(reg);
3357         udelay(150);
3358
3359         /* Ironlake workaround, enable clock pointer after FDI enable*/
3360         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3361         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3362                    FDI_RX_PHASE_SYNC_POINTER_EN);
3363
3364         reg = FDI_RX_IIR(pipe);
3365         for (tries = 0; tries < 5; tries++) {
3366                 temp = I915_READ(reg);
3367                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3368
3369                 if ((temp & FDI_RX_BIT_LOCK)) {
3370                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3371                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3372                         break;
3373                 }
3374         }
3375         if (tries == 5)
3376                 DRM_ERROR("FDI train 1 fail!\n");
3377
3378         /* Train 2 */
3379         reg = FDI_TX_CTL(pipe);
3380         temp = I915_READ(reg);
3381         temp &= ~FDI_LINK_TRAIN_NONE;
3382         temp |= FDI_LINK_TRAIN_PATTERN_2;
3383         I915_WRITE(reg, temp);
3384
3385         reg = FDI_RX_CTL(pipe);
3386         temp = I915_READ(reg);
3387         temp &= ~FDI_LINK_TRAIN_NONE;
3388         temp |= FDI_LINK_TRAIN_PATTERN_2;
3389         I915_WRITE(reg, temp);
3390
3391         POSTING_READ(reg);
3392         udelay(150);
3393
3394         reg = FDI_RX_IIR(pipe);
3395         for (tries = 0; tries < 5; tries++) {
3396                 temp = I915_READ(reg);
3397                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3398
3399                 if (temp & FDI_RX_SYMBOL_LOCK) {
3400                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3401                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3402                         break;
3403                 }
3404         }
3405         if (tries == 5)
3406                 DRM_ERROR("FDI train 2 fail!\n");
3407
3408         DRM_DEBUG_KMS("FDI train done\n");
3409
3410 }
3411
3412 static const int snb_b_fdi_train_param[] = {
3413         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3414         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3415         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3416         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3417 };
3418
3419 /* The FDI link training functions for SNB/Cougarpoint. */
3420 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3421 {
3422         struct drm_device *dev = crtc->dev;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3425         int pipe = intel_crtc->pipe;
3426         i915_reg_t reg;
3427         u32 temp, i, retry;
3428
3429         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3430            for train result */
3431         reg = FDI_RX_IMR(pipe);
3432         temp = I915_READ(reg);
3433         temp &= ~FDI_RX_SYMBOL_LOCK;
3434         temp &= ~FDI_RX_BIT_LOCK;
3435         I915_WRITE(reg, temp);
3436
3437         POSTING_READ(reg);
3438         udelay(150);
3439
3440         /* enable CPU FDI TX and PCH FDI RX */
3441         reg = FDI_TX_CTL(pipe);
3442         temp = I915_READ(reg);
3443         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3444         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3445         temp &= ~FDI_LINK_TRAIN_NONE;
3446         temp |= FDI_LINK_TRAIN_PATTERN_1;
3447         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3448         /* SNB-B */
3449         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3450         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3451
3452         I915_WRITE(FDI_RX_MISC(pipe),
3453                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3454
3455         reg = FDI_RX_CTL(pipe);
3456         temp = I915_READ(reg);
3457         if (HAS_PCH_CPT(dev)) {
3458                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3459                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3460         } else {
3461                 temp &= ~FDI_LINK_TRAIN_NONE;
3462                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3463         }
3464         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3465
3466         POSTING_READ(reg);
3467         udelay(150);
3468
3469         for (i = 0; i < 4; i++) {
3470                 reg = FDI_TX_CTL(pipe);
3471                 temp = I915_READ(reg);
3472                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3473                 temp |= snb_b_fdi_train_param[i];
3474                 I915_WRITE(reg, temp);
3475
3476                 POSTING_READ(reg);
3477                 udelay(500);
3478
3479                 for (retry = 0; retry < 5; retry++) {
3480                         reg = FDI_RX_IIR(pipe);
3481                         temp = I915_READ(reg);
3482                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3483                         if (temp & FDI_RX_BIT_LOCK) {
3484                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3485                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3486                                 break;
3487                         }
3488                         udelay(50);
3489                 }
3490                 if (retry < 5)
3491                         break;
3492         }
3493         if (i == 4)
3494                 DRM_ERROR("FDI train 1 fail!\n");
3495
3496         /* Train 2 */
3497         reg = FDI_TX_CTL(pipe);
3498         temp = I915_READ(reg);
3499         temp &= ~FDI_LINK_TRAIN_NONE;
3500         temp |= FDI_LINK_TRAIN_PATTERN_2;
3501         if (IS_GEN6(dev)) {
3502                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3503                 /* SNB-B */
3504                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3505         }
3506         I915_WRITE(reg, temp);
3507
3508         reg = FDI_RX_CTL(pipe);
3509         temp = I915_READ(reg);
3510         if (HAS_PCH_CPT(dev)) {
3511                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3512                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3513         } else {
3514                 temp &= ~FDI_LINK_TRAIN_NONE;
3515                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3516         }
3517         I915_WRITE(reg, temp);
3518
3519         POSTING_READ(reg);
3520         udelay(150);
3521
3522         for (i = 0; i < 4; i++) {
3523                 reg = FDI_TX_CTL(pipe);
3524                 temp = I915_READ(reg);
3525                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3526                 temp |= snb_b_fdi_train_param[i];
3527                 I915_WRITE(reg, temp);
3528
3529                 POSTING_READ(reg);
3530                 udelay(500);
3531
3532                 for (retry = 0; retry < 5; retry++) {
3533                         reg = FDI_RX_IIR(pipe);
3534                         temp = I915_READ(reg);
3535                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3536                         if (temp & FDI_RX_SYMBOL_LOCK) {
3537                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3538                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3539                                 break;
3540                         }
3541                         udelay(50);
3542                 }
3543                 if (retry < 5)
3544                         break;
3545         }
3546         if (i == 4)
3547                 DRM_ERROR("FDI train 2 fail!\n");
3548
3549         DRM_DEBUG_KMS("FDI train done.\n");
3550 }
3551
3552 /* Manual link training for Ivy Bridge A0 parts */
3553 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3554 {
3555         struct drm_device *dev = crtc->dev;
3556         struct drm_i915_private *dev_priv = dev->dev_private;
3557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3558         int pipe = intel_crtc->pipe;
3559         i915_reg_t reg;
3560         u32 temp, i, j;
3561
3562         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3563            for train result */
3564         reg = FDI_RX_IMR(pipe);
3565         temp = I915_READ(reg);
3566         temp &= ~FDI_RX_SYMBOL_LOCK;
3567         temp &= ~FDI_RX_BIT_LOCK;
3568         I915_WRITE(reg, temp);
3569
3570         POSTING_READ(reg);
3571         udelay(150);
3572
3573         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3574                       I915_READ(FDI_RX_IIR(pipe)));
3575
3576         /* Try each vswing and preemphasis setting twice before moving on */
3577         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3578                 /* disable first in case we need to retry */
3579                 reg = FDI_TX_CTL(pipe);
3580                 temp = I915_READ(reg);
3581                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3582                 temp &= ~FDI_TX_ENABLE;
3583                 I915_WRITE(reg, temp);
3584
3585                 reg = FDI_RX_CTL(pipe);
3586                 temp = I915_READ(reg);
3587                 temp &= ~FDI_LINK_TRAIN_AUTO;
3588                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3589                 temp &= ~FDI_RX_ENABLE;
3590                 I915_WRITE(reg, temp);
3591
3592                 /* enable CPU FDI TX and PCH FDI RX */
3593                 reg = FDI_TX_CTL(pipe);
3594                 temp = I915_READ(reg);
3595                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3596                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3597                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3598                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3599                 temp |= snb_b_fdi_train_param[j/2];
3600                 temp |= FDI_COMPOSITE_SYNC;
3601                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3602
3603                 I915_WRITE(FDI_RX_MISC(pipe),
3604                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3605
3606                 reg = FDI_RX_CTL(pipe);
3607                 temp = I915_READ(reg);
3608                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3609                 temp |= FDI_COMPOSITE_SYNC;
3610                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3611
3612                 POSTING_READ(reg);
3613                 udelay(1); /* should be 0.5us */
3614
3615                 for (i = 0; i < 4; i++) {
3616                         reg = FDI_RX_IIR(pipe);
3617                         temp = I915_READ(reg);
3618                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3619
3620                         if (temp & FDI_RX_BIT_LOCK ||
3621                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3622                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3623                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3624                                               i);
3625                                 break;
3626                         }
3627                         udelay(1); /* should be 0.5us */
3628                 }
3629                 if (i == 4) {
3630                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3631                         continue;
3632                 }
3633
3634                 /* Train 2 */
3635                 reg = FDI_TX_CTL(pipe);
3636                 temp = I915_READ(reg);
3637                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3638                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3639                 I915_WRITE(reg, temp);
3640
3641                 reg = FDI_RX_CTL(pipe);
3642                 temp = I915_READ(reg);
3643                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3644                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3645                 I915_WRITE(reg, temp);
3646
3647                 POSTING_READ(reg);
3648                 udelay(2); /* should be 1.5us */
3649
3650                 for (i = 0; i < 4; i++) {
3651                         reg = FDI_RX_IIR(pipe);
3652                         temp = I915_READ(reg);
3653                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3654
3655                         if (temp & FDI_RX_SYMBOL_LOCK ||
3656                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3657                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3658                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3659                                               i);
3660                                 goto train_done;
3661                         }
3662                         udelay(2); /* should be 1.5us */
3663                 }
3664                 if (i == 4)
3665                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3666         }
3667
3668 train_done:
3669         DRM_DEBUG_KMS("FDI train done.\n");
3670 }
3671
3672 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3673 {
3674         struct drm_device *dev = intel_crtc->base.dev;
3675         struct drm_i915_private *dev_priv = dev->dev_private;
3676         int pipe = intel_crtc->pipe;
3677         i915_reg_t reg;
3678         u32 temp;
3679
3680         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3681         reg = FDI_RX_CTL(pipe);
3682         temp = I915_READ(reg);
3683         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3684         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3685         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3686         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3687
3688         POSTING_READ(reg);
3689         udelay(200);
3690
3691         /* Switch from Rawclk to PCDclk */
3692         temp = I915_READ(reg);
3693         I915_WRITE(reg, temp | FDI_PCDCLK);
3694
3695         POSTING_READ(reg);
3696         udelay(200);
3697
3698         /* Enable CPU FDI TX PLL, always on for Ironlake */
3699         reg = FDI_TX_CTL(pipe);
3700         temp = I915_READ(reg);
3701         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3702                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3703
3704                 POSTING_READ(reg);
3705                 udelay(100);
3706         }
3707 }
3708
3709 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3710 {
3711         struct drm_device *dev = intel_crtc->base.dev;
3712         struct drm_i915_private *dev_priv = dev->dev_private;
3713         int pipe = intel_crtc->pipe;
3714         i915_reg_t reg;
3715         u32 temp;
3716
3717         /* Switch from PCDclk to Rawclk */
3718         reg = FDI_RX_CTL(pipe);
3719         temp = I915_READ(reg);
3720         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3721
3722         /* Disable CPU FDI TX PLL */
3723         reg = FDI_TX_CTL(pipe);
3724         temp = I915_READ(reg);
3725         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3726
3727         POSTING_READ(reg);
3728         udelay(100);
3729
3730         reg = FDI_RX_CTL(pipe);
3731         temp = I915_READ(reg);
3732         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3733
3734         /* Wait for the clocks to turn off. */
3735         POSTING_READ(reg);
3736         udelay(100);
3737 }
3738
3739 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3740 {
3741         struct drm_device *dev = crtc->dev;
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3744         int pipe = intel_crtc->pipe;
3745         i915_reg_t reg;
3746         u32 temp;
3747
3748         /* disable CPU FDI tx and PCH FDI rx */
3749         reg = FDI_TX_CTL(pipe);
3750         temp = I915_READ(reg);
3751         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3752         POSTING_READ(reg);
3753
3754         reg = FDI_RX_CTL(pipe);
3755         temp = I915_READ(reg);
3756         temp &= ~(0x7 << 16);
3757         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3758         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3759
3760         POSTING_READ(reg);
3761         udelay(100);
3762
3763         /* Ironlake workaround, disable clock pointer after downing FDI */
3764         if (HAS_PCH_IBX(dev))
3765                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3766
3767         /* still set train pattern 1 */
3768         reg = FDI_TX_CTL(pipe);
3769         temp = I915_READ(reg);
3770         temp &= ~FDI_LINK_TRAIN_NONE;
3771         temp |= FDI_LINK_TRAIN_PATTERN_1;
3772         I915_WRITE(reg, temp);
3773
3774         reg = FDI_RX_CTL(pipe);
3775         temp = I915_READ(reg);
3776         if (HAS_PCH_CPT(dev)) {
3777                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3778                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3779         } else {
3780                 temp &= ~FDI_LINK_TRAIN_NONE;
3781                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3782         }
3783         /* BPC in FDI rx is consistent with that in PIPECONF */
3784         temp &= ~(0x07 << 16);
3785         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3786         I915_WRITE(reg, temp);
3787
3788         POSTING_READ(reg);
3789         udelay(100);
3790 }
3791
3792 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3793 {
3794         struct intel_crtc *crtc;
3795
3796         /* Note that we don't need to be called with mode_config.lock here
3797          * as our list of CRTC objects is static for the lifetime of the
3798          * device and so cannot disappear as we iterate. Similarly, we can
3799          * happily treat the predicates as racy, atomic checks as userspace
3800          * cannot claim and pin a new fb without at least acquring the
3801          * struct_mutex and so serialising with us.
3802          */
3803         for_each_intel_crtc(dev, crtc) {
3804                 if (atomic_read(&crtc->unpin_work_count) == 0)
3805                         continue;
3806
3807                 if (crtc->unpin_work)
3808                         intel_wait_for_vblank(dev, crtc->pipe);
3809
3810                 return true;
3811         }
3812
3813         return false;
3814 }
3815
3816 static void page_flip_completed(struct intel_crtc *intel_crtc)
3817 {
3818         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3819         struct intel_unpin_work *work = intel_crtc->unpin_work;
3820
3821         /* ensure that the unpin work is consistent wrt ->pending. */
3822         smp_rmb();
3823         intel_crtc->unpin_work = NULL;
3824
3825         if (work->event)
3826                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3827
3828         drm_crtc_vblank_put(&intel_crtc->base);
3829
3830         wake_up_all(&dev_priv->pending_flip_queue);
3831         queue_work(dev_priv->wq, &work->work);
3832
3833         trace_i915_flip_complete(intel_crtc->plane,
3834                                  work->pending_flip_obj);
3835 }
3836
3837 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3838 {
3839         struct drm_device *dev = crtc->dev;
3840         struct drm_i915_private *dev_priv = dev->dev_private;
3841         long ret;
3842
3843         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3844
3845         ret = wait_event_interruptible_timeout(
3846                                         dev_priv->pending_flip_queue,
3847                                         !intel_crtc_has_pending_flip(crtc),
3848                                         60*HZ);
3849
3850         if (ret < 0)
3851                 return ret;
3852
3853         if (ret == 0) {
3854                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3855
3856                 spin_lock_irq(&dev->event_lock);
3857                 if (intel_crtc->unpin_work) {
3858                         WARN_ONCE(1, "Removing stuck page flip\n");
3859                         page_flip_completed(intel_crtc);
3860                 }
3861                 spin_unlock_irq(&dev->event_lock);
3862         }
3863
3864         return 0;
3865 }
3866
3867 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3868 {
3869         u32 temp;
3870
3871         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3872
3873         mutex_lock(&dev_priv->sb_lock);
3874
3875         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3876         temp |= SBI_SSCCTL_DISABLE;
3877         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3878
3879         mutex_unlock(&dev_priv->sb_lock);
3880 }
3881
3882 /* Program iCLKIP clock to the desired frequency */
3883 static void lpt_program_iclkip(struct drm_crtc *crtc)
3884 {
3885         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3886         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3887         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3888         u32 temp;
3889
3890         lpt_disable_iclkip(dev_priv);
3891
3892         /* The iCLK virtual clock root frequency is in MHz,
3893          * but the adjusted_mode->crtc_clock in in KHz. To get the
3894          * divisors, it is necessary to divide one by another, so we
3895          * convert the virtual clock precision to KHz here for higher
3896          * precision.
3897          */
3898         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3899                 u32 iclk_virtual_root_freq = 172800 * 1000;
3900                 u32 iclk_pi_range = 64;
3901                 u32 desired_divisor;
3902
3903                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3904                                                     clock << auxdiv);
3905                 divsel = (desired_divisor / iclk_pi_range) - 2;
3906                 phaseinc = desired_divisor % iclk_pi_range;
3907
3908                 /*
3909                  * Near 20MHz is a corner case which is
3910                  * out of range for the 7-bit divisor
3911                  */
3912                 if (divsel <= 0x7f)
3913                         break;
3914         }
3915
3916         /* This should not happen with any sane values */
3917         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3918                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3919         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3920                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3921
3922         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3923                         clock,
3924                         auxdiv,
3925                         divsel,
3926                         phasedir,
3927                         phaseinc);
3928
3929         mutex_lock(&dev_priv->sb_lock);
3930
3931         /* Program SSCDIVINTPHASE6 */
3932         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3933         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3934         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3935         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3936         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3937         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3938         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3939         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3940
3941         /* Program SSCAUXDIV */
3942         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3943         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3944         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3945         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3946
3947         /* Enable modulator and associated divider */
3948         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3949         temp &= ~SBI_SSCCTL_DISABLE;
3950         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3951
3952         mutex_unlock(&dev_priv->sb_lock);
3953
3954         /* Wait for initialization time */
3955         udelay(24);
3956
3957         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3958 }
3959
3960 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3961 {
3962         u32 divsel, phaseinc, auxdiv;
3963         u32 iclk_virtual_root_freq = 172800 * 1000;
3964         u32 iclk_pi_range = 64;
3965         u32 desired_divisor;
3966         u32 temp;
3967
3968         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3969                 return 0;
3970
3971         mutex_lock(&dev_priv->sb_lock);
3972
3973         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3974         if (temp & SBI_SSCCTL_DISABLE) {
3975                 mutex_unlock(&dev_priv->sb_lock);
3976                 return 0;
3977         }
3978
3979         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3980         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3981                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3982         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3983                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3984
3985         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3986         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3987                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3988
3989         mutex_unlock(&dev_priv->sb_lock);
3990
3991         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3992
3993         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3994                                  desired_divisor << auxdiv);
3995 }
3996
3997 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3998                                                 enum pipe pch_transcoder)
3999 {
4000         struct drm_device *dev = crtc->base.dev;
4001         struct drm_i915_private *dev_priv = dev->dev_private;
4002         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4003
4004         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4005                    I915_READ(HTOTAL(cpu_transcoder)));
4006         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4007                    I915_READ(HBLANK(cpu_transcoder)));
4008         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4009                    I915_READ(HSYNC(cpu_transcoder)));
4010
4011         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4012                    I915_READ(VTOTAL(cpu_transcoder)));
4013         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4014                    I915_READ(VBLANK(cpu_transcoder)));
4015         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4016                    I915_READ(VSYNC(cpu_transcoder)));
4017         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4018                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4019 }
4020
4021 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4022 {
4023         struct drm_i915_private *dev_priv = dev->dev_private;
4024         uint32_t temp;
4025
4026         temp = I915_READ(SOUTH_CHICKEN1);
4027         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4028                 return;
4029
4030         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4031         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4032
4033         temp &= ~FDI_BC_BIFURCATION_SELECT;
4034         if (enable)
4035                 temp |= FDI_BC_BIFURCATION_SELECT;
4036
4037         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4038         I915_WRITE(SOUTH_CHICKEN1, temp);
4039         POSTING_READ(SOUTH_CHICKEN1);
4040 }
4041
4042 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4043 {
4044         struct drm_device *dev = intel_crtc->base.dev;
4045
4046         switch (intel_crtc->pipe) {
4047         case PIPE_A:
4048                 break;
4049         case PIPE_B:
4050                 if (intel_crtc->config->fdi_lanes > 2)
4051                         cpt_set_fdi_bc_bifurcation(dev, false);
4052                 else
4053                         cpt_set_fdi_bc_bifurcation(dev, true);
4054
4055                 break;
4056         case PIPE_C:
4057                 cpt_set_fdi_bc_bifurcation(dev, true);
4058
4059                 break;
4060         default:
4061                 BUG();
4062         }
4063 }
4064
4065 /* Return which DP Port should be selected for Transcoder DP control */
4066 static enum port
4067 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4068 {
4069         struct drm_device *dev = crtc->dev;
4070         struct intel_encoder *encoder;
4071
4072         for_each_encoder_on_crtc(dev, crtc, encoder) {
4073                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4074                     encoder->type == INTEL_OUTPUT_EDP)
4075                         return enc_to_dig_port(&encoder->base)->port;
4076         }
4077
4078         return -1;
4079 }
4080
4081 /*
4082  * Enable PCH resources required for PCH ports:
4083  *   - PCH PLLs
4084  *   - FDI training & RX/TX
4085  *   - update transcoder timings
4086  *   - DP transcoding bits
4087  *   - transcoder
4088  */
4089 static void ironlake_pch_enable(struct drm_crtc *crtc)
4090 {
4091         struct drm_device *dev = crtc->dev;
4092         struct drm_i915_private *dev_priv = dev->dev_private;
4093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4094         int pipe = intel_crtc->pipe;
4095         u32 temp;
4096
4097         assert_pch_transcoder_disabled(dev_priv, pipe);
4098
4099         if (IS_IVYBRIDGE(dev))
4100                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4101
4102         /* Write the TU size bits before fdi link training, so that error
4103          * detection works. */
4104         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4105                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4106
4107         /* For PCH output, training FDI link */
4108         dev_priv->display.fdi_link_train(crtc);
4109
4110         /* We need to program the right clock selection before writing the pixel
4111          * mutliplier into the DPLL. */
4112         if (HAS_PCH_CPT(dev)) {
4113                 u32 sel;
4114
4115                 temp = I915_READ(PCH_DPLL_SEL);
4116                 temp |= TRANS_DPLL_ENABLE(pipe);
4117                 sel = TRANS_DPLLB_SEL(pipe);
4118                 if (intel_crtc->config->shared_dpll ==
4119                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4120                         temp |= sel;
4121                 else
4122                         temp &= ~sel;
4123                 I915_WRITE(PCH_DPLL_SEL, temp);
4124         }
4125
4126         /* XXX: pch pll's can be enabled any time before we enable the PCH
4127          * transcoder, and we actually should do this to not upset any PCH
4128          * transcoder that already use the clock when we share it.
4129          *
4130          * Note that enable_shared_dpll tries to do the right thing, but
4131          * get_shared_dpll unconditionally resets the pll - we need that to have
4132          * the right LVDS enable sequence. */
4133         intel_enable_shared_dpll(intel_crtc);
4134
4135         /* set transcoder timing, panel must allow it */
4136         assert_panel_unlocked(dev_priv, pipe);
4137         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4138
4139         intel_fdi_normal_train(crtc);
4140
4141         /* For PCH DP, enable TRANS_DP_CTL */
4142         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4143                 const struct drm_display_mode *adjusted_mode =
4144                         &intel_crtc->config->base.adjusted_mode;
4145                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4146                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4147                 temp = I915_READ(reg);
4148                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4149                           TRANS_DP_SYNC_MASK |
4150                           TRANS_DP_BPC_MASK);
4151                 temp |= TRANS_DP_OUTPUT_ENABLE;
4152                 temp |= bpc << 9; /* same format but at 11:9 */
4153
4154                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4155                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4156                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4157                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4158
4159                 switch (intel_trans_dp_port_sel(crtc)) {
4160                 case PORT_B:
4161                         temp |= TRANS_DP_PORT_SEL_B;
4162                         break;
4163                 case PORT_C:
4164                         temp |= TRANS_DP_PORT_SEL_C;
4165                         break;
4166                 case PORT_D:
4167                         temp |= TRANS_DP_PORT_SEL_D;
4168                         break;
4169                 default:
4170                         BUG();
4171                 }
4172
4173                 I915_WRITE(reg, temp);
4174         }
4175
4176         ironlake_enable_pch_transcoder(dev_priv, pipe);
4177 }
4178
4179 static void lpt_pch_enable(struct drm_crtc *crtc)
4180 {
4181         struct drm_device *dev = crtc->dev;
4182         struct drm_i915_private *dev_priv = dev->dev_private;
4183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4184         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4185
4186         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4187
4188         lpt_program_iclkip(crtc);
4189
4190         /* Set transcoder timing. */
4191         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4192
4193         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4194 }
4195
4196 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4197 {
4198         struct drm_i915_private *dev_priv = dev->dev_private;
4199         i915_reg_t dslreg = PIPEDSL(pipe);
4200         u32 temp;
4201
4202         temp = I915_READ(dslreg);
4203         udelay(500);
4204         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4205                 if (wait_for(I915_READ(dslreg) != temp, 5))
4206                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4207         }
4208 }
4209
4210 static int
4211 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4212                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4213                   int src_w, int src_h, int dst_w, int dst_h)
4214 {
4215         struct intel_crtc_scaler_state *scaler_state =
4216                 &crtc_state->scaler_state;
4217         struct intel_crtc *intel_crtc =
4218                 to_intel_crtc(crtc_state->base.crtc);
4219         int need_scaling;
4220
4221         need_scaling = intel_rotation_90_or_270(rotation) ?
4222                 (src_h != dst_w || src_w != dst_h):
4223                 (src_w != dst_w || src_h != dst_h);
4224
4225         /*
4226          * if plane is being disabled or scaler is no more required or force detach
4227          *  - free scaler binded to this plane/crtc
4228          *  - in order to do this, update crtc->scaler_usage
4229          *
4230          * Here scaler state in crtc_state is set free so that
4231          * scaler can be assigned to other user. Actual register
4232          * update to free the scaler is done in plane/panel-fit programming.
4233          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4234          */
4235         if (force_detach || !need_scaling) {
4236                 if (*scaler_id >= 0) {
4237                         scaler_state->scaler_users &= ~(1 << scaler_user);
4238                         scaler_state->scalers[*scaler_id].in_use = 0;
4239
4240                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4241                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4242                                 intel_crtc->pipe, scaler_user, *scaler_id,
4243                                 scaler_state->scaler_users);
4244                         *scaler_id = -1;
4245                 }
4246                 return 0;
4247         }
4248
4249         /* range checks */
4250         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4251                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4252
4253                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4254                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4255                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4256                         "size is out of scaler range\n",
4257                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4258                 return -EINVAL;
4259         }
4260
4261         /* mark this plane as a scaler user in crtc_state */
4262         scaler_state->scaler_users |= (1 << scaler_user);
4263         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4264                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4265                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4266                 scaler_state->scaler_users);
4267
4268         return 0;
4269 }
4270
4271 /**
4272  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4273  *
4274  * @state: crtc's scaler state
4275  *
4276  * Return
4277  *     0 - scaler_usage updated successfully
4278  *    error - requested scaling cannot be supported or other error condition
4279  */
4280 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4281 {
4282         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4283         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4284
4285         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4286                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4287
4288         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4289                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4290                 state->pipe_src_w, state->pipe_src_h,
4291                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4292 }
4293
4294 /**
4295  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4296  *
4297  * @state: crtc's scaler state
4298  * @plane_state: atomic plane state to update
4299  *
4300  * Return
4301  *     0 - scaler_usage updated successfully
4302  *    error - requested scaling cannot be supported or other error condition
4303  */
4304 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4305                                    struct intel_plane_state *plane_state)
4306 {
4307
4308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4309         struct intel_plane *intel_plane =
4310                 to_intel_plane(plane_state->base.plane);
4311         struct drm_framebuffer *fb = plane_state->base.fb;
4312         int ret;
4313
4314         bool force_detach = !fb || !plane_state->visible;
4315
4316         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4317                       intel_plane->base.base.id, intel_crtc->pipe,
4318                       drm_plane_index(&intel_plane->base));
4319
4320         ret = skl_update_scaler(crtc_state, force_detach,
4321                                 drm_plane_index(&intel_plane->base),
4322                                 &plane_state->scaler_id,
4323                                 plane_state->base.rotation,
4324                                 drm_rect_width(&plane_state->src) >> 16,
4325                                 drm_rect_height(&plane_state->src) >> 16,
4326                                 drm_rect_width(&plane_state->dst),
4327                                 drm_rect_height(&plane_state->dst));
4328
4329         if (ret || plane_state->scaler_id < 0)
4330                 return ret;
4331
4332         /* check colorkey */
4333         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4334                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4335                               intel_plane->base.base.id);
4336                 return -EINVAL;
4337         }
4338
4339         /* Check src format */
4340         switch (fb->pixel_format) {
4341         case DRM_FORMAT_RGB565:
4342         case DRM_FORMAT_XBGR8888:
4343         case DRM_FORMAT_XRGB8888:
4344         case DRM_FORMAT_ABGR8888:
4345         case DRM_FORMAT_ARGB8888:
4346         case DRM_FORMAT_XRGB2101010:
4347         case DRM_FORMAT_XBGR2101010:
4348         case DRM_FORMAT_YUYV:
4349         case DRM_FORMAT_YVYU:
4350         case DRM_FORMAT_UYVY:
4351         case DRM_FORMAT_VYUY:
4352                 break;
4353         default:
4354                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4355                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4356                 return -EINVAL;
4357         }
4358
4359         return 0;
4360 }
4361
4362 static void skylake_scaler_disable(struct intel_crtc *crtc)
4363 {
4364         int i;
4365
4366         for (i = 0; i < crtc->num_scalers; i++)
4367                 skl_detach_scaler(crtc, i);
4368 }
4369
4370 static void skylake_pfit_enable(struct intel_crtc *crtc)
4371 {
4372         struct drm_device *dev = crtc->base.dev;
4373         struct drm_i915_private *dev_priv = dev->dev_private;
4374         int pipe = crtc->pipe;
4375         struct intel_crtc_scaler_state *scaler_state =
4376                 &crtc->config->scaler_state;
4377
4378         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4379
4380         if (crtc->config->pch_pfit.enabled) {
4381                 int id;
4382
4383                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4384                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4385                         return;
4386                 }
4387
4388                 id = scaler_state->scaler_id;
4389                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4390                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4391                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4392                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4393
4394                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4395         }
4396 }
4397
4398 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4399 {
4400         struct drm_device *dev = crtc->base.dev;
4401         struct drm_i915_private *dev_priv = dev->dev_private;
4402         int pipe = crtc->pipe;
4403
4404         if (crtc->config->pch_pfit.enabled) {
4405                 /* Force use of hard-coded filter coefficients
4406                  * as some pre-programmed values are broken,
4407                  * e.g. x201.
4408                  */
4409                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4410                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4411                                                  PF_PIPE_SEL_IVB(pipe));
4412                 else
4413                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4414                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4415                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4416         }
4417 }
4418
4419 void hsw_enable_ips(struct intel_crtc *crtc)
4420 {
4421         struct drm_device *dev = crtc->base.dev;
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423
4424         if (!crtc->config->ips_enabled)
4425                 return;
4426
4427         /*
4428          * We can only enable IPS after we enable a plane and wait for a vblank
4429          * This function is called from post_plane_update, which is run after
4430          * a vblank wait.
4431          */
4432
4433         assert_plane_enabled(dev_priv, crtc->plane);
4434         if (IS_BROADWELL(dev)) {
4435                 mutex_lock(&dev_priv->rps.hw_lock);
4436                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4437                 mutex_unlock(&dev_priv->rps.hw_lock);
4438                 /* Quoting Art Runyan: "its not safe to expect any particular
4439                  * value in IPS_CTL bit 31 after enabling IPS through the
4440                  * mailbox." Moreover, the mailbox may return a bogus state,
4441                  * so we need to just enable it and continue on.
4442                  */
4443         } else {
4444                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4445                 /* The bit only becomes 1 in the next vblank, so this wait here
4446                  * is essentially intel_wait_for_vblank. If we don't have this
4447                  * and don't wait for vblanks until the end of crtc_enable, then
4448                  * the HW state readout code will complain that the expected
4449                  * IPS_CTL value is not the one we read. */
4450                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4451                         DRM_ERROR("Timed out waiting for IPS enable\n");
4452         }
4453 }
4454
4455 void hsw_disable_ips(struct intel_crtc *crtc)
4456 {
4457         struct drm_device *dev = crtc->base.dev;
4458         struct drm_i915_private *dev_priv = dev->dev_private;
4459
4460         if (!crtc->config->ips_enabled)
4461                 return;
4462
4463         assert_plane_enabled(dev_priv, crtc->plane);
4464         if (IS_BROADWELL(dev)) {
4465                 mutex_lock(&dev_priv->rps.hw_lock);
4466                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4467                 mutex_unlock(&dev_priv->rps.hw_lock);
4468                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4469                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4470                         DRM_ERROR("Timed out waiting for IPS disable\n");
4471         } else {
4472                 I915_WRITE(IPS_CTL, 0);
4473                 POSTING_READ(IPS_CTL);
4474         }
4475
4476         /* We need to wait for a vblank before we can disable the plane. */
4477         intel_wait_for_vblank(dev, crtc->pipe);
4478 }
4479
4480 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4481 {
4482         if (intel_crtc->overlay) {
4483                 struct drm_device *dev = intel_crtc->base.dev;
4484                 struct drm_i915_private *dev_priv = dev->dev_private;
4485
4486                 mutex_lock(&dev->struct_mutex);
4487                 dev_priv->mm.interruptible = false;
4488                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4489                 dev_priv->mm.interruptible = true;
4490                 mutex_unlock(&dev->struct_mutex);
4491         }
4492
4493         /* Let userspace switch the overlay on again. In most cases userspace
4494          * has to recompute where to put it anyway.
4495          */
4496 }
4497
4498 /**
4499  * intel_post_enable_primary - Perform operations after enabling primary plane
4500  * @crtc: the CRTC whose primary plane was just enabled
4501  *
4502  * Performs potentially sleeping operations that must be done after the primary
4503  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4504  * called due to an explicit primary plane update, or due to an implicit
4505  * re-enable that is caused when a sprite plane is updated to no longer
4506  * completely hide the primary plane.
4507  */
4508 static void
4509 intel_post_enable_primary(struct drm_crtc *crtc)
4510 {
4511         struct drm_device *dev = crtc->dev;
4512         struct drm_i915_private *dev_priv = dev->dev_private;
4513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514         int pipe = intel_crtc->pipe;
4515
4516         /*
4517          * FIXME IPS should be fine as long as one plane is
4518          * enabled, but in practice it seems to have problems
4519          * when going from primary only to sprite only and vice
4520          * versa.
4521          */
4522         hsw_enable_ips(intel_crtc);
4523
4524         /*
4525          * Gen2 reports pipe underruns whenever all planes are disabled.
4526          * So don't enable underrun reporting before at least some planes
4527          * are enabled.
4528          * FIXME: Need to fix the logic to work when we turn off all planes
4529          * but leave the pipe running.
4530          */
4531         if (IS_GEN2(dev))
4532                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4533
4534         /* Underruns don't always raise interrupts, so check manually. */
4535         intel_check_cpu_fifo_underruns(dev_priv);
4536         intel_check_pch_fifo_underruns(dev_priv);
4537 }
4538
4539 /* FIXME move all this to pre_plane_update() with proper state tracking */
4540 static void
4541 intel_pre_disable_primary(struct drm_crtc *crtc)
4542 {
4543         struct drm_device *dev = crtc->dev;
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4546         int pipe = intel_crtc->pipe;
4547
4548         /*
4549          * Gen2 reports pipe underruns whenever all planes are disabled.
4550          * So diasble underrun reporting before all the planes get disabled.
4551          * FIXME: Need to fix the logic to work when we turn off all planes
4552          * but leave the pipe running.
4553          */
4554         if (IS_GEN2(dev))
4555                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4556
4557         /*
4558          * FIXME IPS should be fine as long as one plane is
4559          * enabled, but in practice it seems to have problems
4560          * when going from primary only to sprite only and vice
4561          * versa.
4562          */
4563         hsw_disable_ips(intel_crtc);
4564 }
4565
4566 /* FIXME get rid of this and use pre_plane_update */
4567 static void
4568 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4569 {
4570         struct drm_device *dev = crtc->dev;
4571         struct drm_i915_private *dev_priv = dev->dev_private;
4572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4573         int pipe = intel_crtc->pipe;
4574
4575         intel_pre_disable_primary(crtc);
4576
4577         /*
4578          * Vblank time updates from the shadow to live plane control register
4579          * are blocked if the memory self-refresh mode is active at that
4580          * moment. So to make sure the plane gets truly disabled, disable
4581          * first the self-refresh mode. The self-refresh enable bit in turn
4582          * will be checked/applied by the HW only at the next frame start
4583          * event which is after the vblank start event, so we need to have a
4584          * wait-for-vblank between disabling the plane and the pipe.
4585          */
4586         if (HAS_GMCH_DISPLAY(dev)) {
4587                 intel_set_memory_cxsr(dev_priv, false);
4588                 dev_priv->wm.vlv.cxsr = false;
4589                 intel_wait_for_vblank(dev, pipe);
4590         }
4591 }
4592
4593 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4594 {
4595         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4596         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4597         struct intel_crtc_state *pipe_config =
4598                 to_intel_crtc_state(crtc->base.state);
4599         struct drm_device *dev = crtc->base.dev;
4600         struct drm_plane *primary = crtc->base.primary;
4601         struct drm_plane_state *old_pri_state =
4602                 drm_atomic_get_existing_plane_state(old_state, primary);
4603
4604         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4605
4606         crtc->wm.cxsr_allowed = true;
4607
4608         if (pipe_config->update_wm_post && pipe_config->base.active)
4609                 intel_update_watermarks(&crtc->base);
4610
4611         if (old_pri_state) {
4612                 struct intel_plane_state *primary_state =
4613                         to_intel_plane_state(primary->state);
4614                 struct intel_plane_state *old_primary_state =
4615                         to_intel_plane_state(old_pri_state);
4616
4617                 intel_fbc_post_update(crtc);
4618
4619                 if (primary_state->visible &&
4620                     (needs_modeset(&pipe_config->base) ||
4621                      !old_primary_state->visible))
4622                         intel_post_enable_primary(&crtc->base);
4623         }
4624 }
4625
4626 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4627 {
4628         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4629         struct drm_device *dev = crtc->base.dev;
4630         struct drm_i915_private *dev_priv = dev->dev_private;
4631         struct intel_crtc_state *pipe_config =
4632                 to_intel_crtc_state(crtc->base.state);
4633         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4634         struct drm_plane *primary = crtc->base.primary;
4635         struct drm_plane_state *old_pri_state =
4636                 drm_atomic_get_existing_plane_state(old_state, primary);
4637         bool modeset = needs_modeset(&pipe_config->base);
4638
4639         if (old_pri_state) {
4640                 struct intel_plane_state *primary_state =
4641                         to_intel_plane_state(primary->state);
4642                 struct intel_plane_state *old_primary_state =
4643                         to_intel_plane_state(old_pri_state);
4644
4645                 intel_fbc_pre_update(crtc);
4646
4647                 if (old_primary_state->visible &&
4648                     (modeset || !primary_state->visible))
4649                         intel_pre_disable_primary(&crtc->base);
4650         }
4651
4652         if (pipe_config->disable_cxsr) {
4653                 crtc->wm.cxsr_allowed = false;
4654
4655                 /*
4656                  * Vblank time updates from the shadow to live plane control register
4657                  * are blocked if the memory self-refresh mode is active at that
4658                  * moment. So to make sure the plane gets truly disabled, disable
4659                  * first the self-refresh mode. The self-refresh enable bit in turn
4660                  * will be checked/applied by the HW only at the next frame start
4661                  * event which is after the vblank start event, so we need to have a
4662                  * wait-for-vblank between disabling the plane and the pipe.
4663                  */
4664                 if (old_crtc_state->base.active) {
4665                         intel_set_memory_cxsr(dev_priv, false);
4666                         dev_priv->wm.vlv.cxsr = false;
4667                         intel_wait_for_vblank(dev, crtc->pipe);
4668                 }
4669         }
4670
4671         /*
4672          * IVB workaround: must disable low power watermarks for at least
4673          * one frame before enabling scaling.  LP watermarks can be re-enabled
4674          * when scaling is disabled.
4675          *
4676          * WaCxSRDisabledForSpriteScaling:ivb
4677          */
4678         if (pipe_config->disable_lp_wm) {
4679                 ilk_disable_lp_wm(dev);
4680                 intel_wait_for_vblank(dev, crtc->pipe);
4681         }
4682
4683         /*
4684          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4685          * watermark programming here.
4686          */
4687         if (needs_modeset(&pipe_config->base))
4688                 return;
4689
4690         /*
4691          * For platforms that support atomic watermarks, program the
4692          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4693          * will be the intermediate values that are safe for both pre- and
4694          * post- vblank; when vblank happens, the 'active' values will be set
4695          * to the final 'target' values and we'll do this again to get the
4696          * optimal watermarks.  For gen9+ platforms, the values we program here
4697          * will be the final target values which will get automatically latched
4698          * at vblank time; no further programming will be necessary.
4699          *
4700          * If a platform hasn't been transitioned to atomic watermarks yet,
4701          * we'll continue to update watermarks the old way, if flags tell
4702          * us to.
4703          */
4704         if (dev_priv->display.initial_watermarks != NULL)
4705                 dev_priv->display.initial_watermarks(pipe_config);
4706         else if (pipe_config->update_wm_pre)
4707                 intel_update_watermarks(&crtc->base);
4708 }
4709
4710 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4711 {
4712         struct drm_device *dev = crtc->dev;
4713         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4714         struct drm_plane *p;
4715         int pipe = intel_crtc->pipe;
4716
4717         intel_crtc_dpms_overlay_disable(intel_crtc);
4718
4719         drm_for_each_plane_mask(p, dev, plane_mask)
4720                 to_intel_plane(p)->disable_plane(p, crtc);
4721
4722         /*
4723          * FIXME: Once we grow proper nuclear flip support out of this we need
4724          * to compute the mask of flip planes precisely. For the time being
4725          * consider this a flip to a NULL plane.
4726          */
4727         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4728 }
4729
4730 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4731 {
4732         struct drm_device *dev = crtc->dev;
4733         struct drm_i915_private *dev_priv = dev->dev_private;
4734         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4735         struct intel_encoder *encoder;
4736         int pipe = intel_crtc->pipe;
4737         struct intel_crtc_state *pipe_config =
4738                 to_intel_crtc_state(crtc->state);
4739
4740         if (WARN_ON(intel_crtc->active))
4741                 return;
4742
4743         /*
4744          * Sometimes spurious CPU pipe underruns happen during FDI
4745          * training, at least with VGA+HDMI cloning. Suppress them.
4746          *
4747          * On ILK we get an occasional spurious CPU pipe underruns
4748          * between eDP port A enable and vdd enable. Also PCH port
4749          * enable seems to result in the occasional CPU pipe underrun.
4750          *
4751          * Spurious PCH underruns also occur during PCH enabling.
4752          */
4753         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4754                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4755         if (intel_crtc->config->has_pch_encoder)
4756                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4757
4758         if (intel_crtc->config->has_pch_encoder)
4759                 intel_prepare_shared_dpll(intel_crtc);
4760
4761         if (intel_crtc->config->has_dp_encoder)
4762                 intel_dp_set_m_n(intel_crtc, M1_N1);
4763
4764         intel_set_pipe_timings(intel_crtc);
4765         intel_set_pipe_src_size(intel_crtc);
4766
4767         if (intel_crtc->config->has_pch_encoder) {
4768                 intel_cpu_transcoder_set_m_n(intel_crtc,
4769                                      &intel_crtc->config->fdi_m_n, NULL);
4770         }
4771
4772         ironlake_set_pipeconf(crtc);
4773
4774         intel_crtc->active = true;
4775
4776         for_each_encoder_on_crtc(dev, crtc, encoder)
4777                 if (encoder->pre_enable)
4778                         encoder->pre_enable(encoder);
4779
4780         if (intel_crtc->config->has_pch_encoder) {
4781                 /* Note: FDI PLL enabling _must_ be done before we enable the
4782                  * cpu pipes, hence this is separate from all the other fdi/pch
4783                  * enabling. */
4784                 ironlake_fdi_pll_enable(intel_crtc);
4785         } else {
4786                 assert_fdi_tx_disabled(dev_priv, pipe);
4787                 assert_fdi_rx_disabled(dev_priv, pipe);
4788         }
4789
4790         ironlake_pfit_enable(intel_crtc);
4791
4792         /*
4793          * On ILK+ LUT must be loaded before the pipe is running but with
4794          * clocks enabled
4795          */
4796         intel_color_load_luts(&pipe_config->base);
4797
4798         if (dev_priv->display.initial_watermarks != NULL)
4799                 dev_priv->display.initial_watermarks(intel_crtc->config);
4800         intel_enable_pipe(intel_crtc);
4801
4802         if (intel_crtc->config->has_pch_encoder)
4803                 ironlake_pch_enable(crtc);
4804
4805         assert_vblank_disabled(crtc);
4806         drm_crtc_vblank_on(crtc);
4807
4808         for_each_encoder_on_crtc(dev, crtc, encoder)
4809                 encoder->enable(encoder);
4810
4811         if (HAS_PCH_CPT(dev))
4812                 cpt_verify_modeset(dev, intel_crtc->pipe);
4813
4814         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4815         if (intel_crtc->config->has_pch_encoder)
4816                 intel_wait_for_vblank(dev, pipe);
4817         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4818         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4819 }
4820
4821 /* IPS only exists on ULT machines and is tied to pipe A. */
4822 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4823 {
4824         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4825 }
4826
4827 static void haswell_crtc_enable(struct drm_crtc *crtc)
4828 {
4829         struct drm_device *dev = crtc->dev;
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4832         struct intel_encoder *encoder;
4833         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4834         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4835         struct intel_crtc_state *pipe_config =
4836                 to_intel_crtc_state(crtc->state);
4837
4838         if (WARN_ON(intel_crtc->active))
4839                 return;
4840
4841         if (intel_crtc->config->has_pch_encoder)
4842                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4843                                                       false);
4844
4845         if (intel_crtc->config->shared_dpll)
4846                 intel_enable_shared_dpll(intel_crtc);
4847
4848         if (intel_crtc->config->has_dp_encoder)
4849                 intel_dp_set_m_n(intel_crtc, M1_N1);
4850
4851         if (!intel_crtc->config->has_dsi_encoder)
4852                 intel_set_pipe_timings(intel_crtc);
4853
4854         intel_set_pipe_src_size(intel_crtc);
4855
4856         if (cpu_transcoder != TRANSCODER_EDP &&
4857             !transcoder_is_dsi(cpu_transcoder)) {
4858                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4859                            intel_crtc->config->pixel_multiplier - 1);
4860         }
4861
4862         if (intel_crtc->config->has_pch_encoder) {
4863                 intel_cpu_transcoder_set_m_n(intel_crtc,
4864                                      &intel_crtc->config->fdi_m_n, NULL);
4865         }
4866
4867         if (!intel_crtc->config->has_dsi_encoder)
4868                 haswell_set_pipeconf(crtc);
4869
4870         haswell_set_pipemisc(crtc);
4871
4872         intel_color_set_csc(&pipe_config->base);
4873
4874         intel_crtc->active = true;
4875
4876         if (intel_crtc->config->has_pch_encoder)
4877                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4878         else
4879                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4880
4881         for_each_encoder_on_crtc(dev, crtc, encoder) {
4882                 if (encoder->pre_enable)
4883                         encoder->pre_enable(encoder);
4884         }
4885
4886         if (intel_crtc->config->has_pch_encoder)
4887                 dev_priv->display.fdi_link_train(crtc);
4888
4889         if (!intel_crtc->config->has_dsi_encoder)
4890                 intel_ddi_enable_pipe_clock(intel_crtc);
4891
4892         if (INTEL_INFO(dev)->gen >= 9)
4893                 skylake_pfit_enable(intel_crtc);
4894         else
4895                 ironlake_pfit_enable(intel_crtc);
4896
4897         /*
4898          * On ILK+ LUT must be loaded before the pipe is running but with
4899          * clocks enabled
4900          */
4901         intel_color_load_luts(&pipe_config->base);
4902
4903         intel_ddi_set_pipe_settings(crtc);
4904         if (!intel_crtc->config->has_dsi_encoder)
4905                 intel_ddi_enable_transcoder_func(crtc);
4906
4907         if (dev_priv->display.initial_watermarks != NULL)
4908                 dev_priv->display.initial_watermarks(pipe_config);
4909         else
4910                 intel_update_watermarks(crtc);
4911
4912         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4913         if (!intel_crtc->config->has_dsi_encoder)
4914                 intel_enable_pipe(intel_crtc);
4915
4916         if (intel_crtc->config->has_pch_encoder)
4917                 lpt_pch_enable(crtc);
4918
4919         if (intel_crtc->config->dp_encoder_is_mst)
4920                 intel_ddi_set_vc_payload_alloc(crtc, true);
4921
4922         assert_vblank_disabled(crtc);
4923         drm_crtc_vblank_on(crtc);
4924
4925         for_each_encoder_on_crtc(dev, crtc, encoder) {
4926                 encoder->enable(encoder);
4927                 intel_opregion_notify_encoder(encoder, true);
4928         }
4929
4930         if (intel_crtc->config->has_pch_encoder) {
4931                 intel_wait_for_vblank(dev, pipe);
4932                 intel_wait_for_vblank(dev, pipe);
4933                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4934                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4935                                                       true);
4936         }
4937
4938         /* If we change the relative order between pipe/planes enabling, we need
4939          * to change the workaround. */
4940         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4941         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4942                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4943                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4944         }
4945 }
4946
4947 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4948 {
4949         struct drm_device *dev = crtc->base.dev;
4950         struct drm_i915_private *dev_priv = dev->dev_private;
4951         int pipe = crtc->pipe;
4952
4953         /* To avoid upsetting the power well on haswell only disable the pfit if
4954          * it's in use. The hw state code will make sure we get this right. */
4955         if (force || crtc->config->pch_pfit.enabled) {
4956                 I915_WRITE(PF_CTL(pipe), 0);
4957                 I915_WRITE(PF_WIN_POS(pipe), 0);
4958                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4959         }
4960 }
4961
4962 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4963 {
4964         struct drm_device *dev = crtc->dev;
4965         struct drm_i915_private *dev_priv = dev->dev_private;
4966         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4967         struct intel_encoder *encoder;
4968         int pipe = intel_crtc->pipe;
4969
4970         /*
4971          * Sometimes spurious CPU pipe underruns happen when the
4972          * pipe is already disabled, but FDI RX/TX is still enabled.
4973          * Happens at least with VGA+HDMI cloning. Suppress them.
4974          */
4975         if (intel_crtc->config->has_pch_encoder) {
4976                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4977                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4978         }
4979
4980         for_each_encoder_on_crtc(dev, crtc, encoder)
4981                 encoder->disable(encoder);
4982
4983         drm_crtc_vblank_off(crtc);
4984         assert_vblank_disabled(crtc);
4985
4986         intel_disable_pipe(intel_crtc);
4987
4988         ironlake_pfit_disable(intel_crtc, false);
4989
4990         if (intel_crtc->config->has_pch_encoder)
4991                 ironlake_fdi_disable(crtc);
4992
4993         for_each_encoder_on_crtc(dev, crtc, encoder)
4994                 if (encoder->post_disable)
4995                         encoder->post_disable(encoder);
4996
4997         if (intel_crtc->config->has_pch_encoder) {
4998                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4999
5000                 if (HAS_PCH_CPT(dev)) {
5001                         i915_reg_t reg;
5002                         u32 temp;
5003
5004                         /* disable TRANS_DP_CTL */
5005                         reg = TRANS_DP_CTL(pipe);
5006                         temp = I915_READ(reg);
5007                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5008                                   TRANS_DP_PORT_SEL_MASK);
5009                         temp |= TRANS_DP_PORT_SEL_NONE;
5010                         I915_WRITE(reg, temp);
5011
5012                         /* disable DPLL_SEL */
5013                         temp = I915_READ(PCH_DPLL_SEL);
5014                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5015                         I915_WRITE(PCH_DPLL_SEL, temp);
5016                 }
5017
5018                 ironlake_fdi_pll_disable(intel_crtc);
5019         }
5020
5021         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5022         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5023 }
5024
5025 static void haswell_crtc_disable(struct drm_crtc *crtc)
5026 {
5027         struct drm_device *dev = crtc->dev;
5028         struct drm_i915_private *dev_priv = dev->dev_private;
5029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5030         struct intel_encoder *encoder;
5031         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5032
5033         if (intel_crtc->config->has_pch_encoder)
5034                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5035                                                       false);
5036
5037         for_each_encoder_on_crtc(dev, crtc, encoder) {
5038                 intel_opregion_notify_encoder(encoder, false);
5039                 encoder->disable(encoder);
5040         }
5041
5042         drm_crtc_vblank_off(crtc);
5043         assert_vblank_disabled(crtc);
5044
5045         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5046         if (!intel_crtc->config->has_dsi_encoder)
5047                 intel_disable_pipe(intel_crtc);
5048
5049         if (intel_crtc->config->dp_encoder_is_mst)
5050                 intel_ddi_set_vc_payload_alloc(crtc, false);
5051
5052         if (!intel_crtc->config->has_dsi_encoder)
5053                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5054
5055         if (INTEL_INFO(dev)->gen >= 9)
5056                 skylake_scaler_disable(intel_crtc);
5057         else
5058                 ironlake_pfit_disable(intel_crtc, false);
5059
5060         if (!intel_crtc->config->has_dsi_encoder)
5061                 intel_ddi_disable_pipe_clock(intel_crtc);
5062
5063         for_each_encoder_on_crtc(dev, crtc, encoder)
5064                 if (encoder->post_disable)
5065                         encoder->post_disable(encoder);
5066
5067         if (intel_crtc->config->has_pch_encoder) {
5068                 lpt_disable_pch_transcoder(dev_priv);
5069                 lpt_disable_iclkip(dev_priv);
5070                 intel_ddi_fdi_disable(crtc);
5071
5072                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5073                                                       true);
5074         }
5075 }
5076
5077 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5078 {
5079         struct drm_device *dev = crtc->base.dev;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct intel_crtc_state *pipe_config = crtc->config;
5082
5083         if (!pipe_config->gmch_pfit.control)
5084                 return;
5085
5086         /*
5087          * The panel fitter should only be adjusted whilst the pipe is disabled,
5088          * according to register description and PRM.
5089          */
5090         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5091         assert_pipe_disabled(dev_priv, crtc->pipe);
5092
5093         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5094         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5095
5096         /* Border color in case we don't scale up to the full screen. Black by
5097          * default, change to something else for debugging. */
5098         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5099 }
5100
5101 static enum intel_display_power_domain port_to_power_domain(enum port port)
5102 {
5103         switch (port) {
5104         case PORT_A:
5105                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5106         case PORT_B:
5107                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5108         case PORT_C:
5109                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5110         case PORT_D:
5111                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5112         case PORT_E:
5113                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5114         default:
5115                 MISSING_CASE(port);
5116                 return POWER_DOMAIN_PORT_OTHER;
5117         }
5118 }
5119
5120 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5121 {
5122         switch (port) {
5123         case PORT_A:
5124                 return POWER_DOMAIN_AUX_A;
5125         case PORT_B:
5126                 return POWER_DOMAIN_AUX_B;
5127         case PORT_C:
5128                 return POWER_DOMAIN_AUX_C;
5129         case PORT_D:
5130                 return POWER_DOMAIN_AUX_D;
5131         case PORT_E:
5132                 /* FIXME: Check VBT for actual wiring of PORT E */
5133                 return POWER_DOMAIN_AUX_D;
5134         default:
5135                 MISSING_CASE(port);
5136                 return POWER_DOMAIN_AUX_A;
5137         }
5138 }
5139
5140 enum intel_display_power_domain
5141 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5142 {
5143         struct drm_device *dev = intel_encoder->base.dev;
5144         struct intel_digital_port *intel_dig_port;
5145
5146         switch (intel_encoder->type) {
5147         case INTEL_OUTPUT_UNKNOWN:
5148                 /* Only DDI platforms should ever use this output type */
5149                 WARN_ON_ONCE(!HAS_DDI(dev));
5150         case INTEL_OUTPUT_DISPLAYPORT:
5151         case INTEL_OUTPUT_HDMI:
5152         case INTEL_OUTPUT_EDP:
5153                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5154                 return port_to_power_domain(intel_dig_port->port);
5155         case INTEL_OUTPUT_DP_MST:
5156                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5157                 return port_to_power_domain(intel_dig_port->port);
5158         case INTEL_OUTPUT_ANALOG:
5159                 return POWER_DOMAIN_PORT_CRT;
5160         case INTEL_OUTPUT_DSI:
5161                 return POWER_DOMAIN_PORT_DSI;
5162         default:
5163                 return POWER_DOMAIN_PORT_OTHER;
5164         }
5165 }
5166
5167 enum intel_display_power_domain
5168 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5169 {
5170         struct drm_device *dev = intel_encoder->base.dev;
5171         struct intel_digital_port *intel_dig_port;
5172
5173         switch (intel_encoder->type) {
5174         case INTEL_OUTPUT_UNKNOWN:
5175         case INTEL_OUTPUT_HDMI:
5176                 /*
5177                  * Only DDI platforms should ever use these output types.
5178                  * We can get here after the HDMI detect code has already set
5179                  * the type of the shared encoder. Since we can't be sure
5180                  * what's the status of the given connectors, play safe and
5181                  * run the DP detection too.
5182                  */
5183                 WARN_ON_ONCE(!HAS_DDI(dev));
5184         case INTEL_OUTPUT_DISPLAYPORT:
5185         case INTEL_OUTPUT_EDP:
5186                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5187                 return port_to_aux_power_domain(intel_dig_port->port);
5188         case INTEL_OUTPUT_DP_MST:
5189                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5190                 return port_to_aux_power_domain(intel_dig_port->port);
5191         default:
5192                 MISSING_CASE(intel_encoder->type);
5193                 return POWER_DOMAIN_AUX_A;
5194         }
5195 }
5196
5197 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5198                                             struct intel_crtc_state *crtc_state)
5199 {
5200         struct drm_device *dev = crtc->dev;
5201         struct drm_encoder *encoder;
5202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5203         enum pipe pipe = intel_crtc->pipe;
5204         unsigned long mask;
5205         enum transcoder transcoder = crtc_state->cpu_transcoder;
5206
5207         if (!crtc_state->base.active)
5208                 return 0;
5209
5210         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5211         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5212         if (crtc_state->pch_pfit.enabled ||
5213             crtc_state->pch_pfit.force_thru)
5214                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5215
5216         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5217                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5218
5219                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5220         }
5221
5222         if (crtc_state->shared_dpll)
5223                 mask |= BIT(POWER_DOMAIN_PLLS);
5224
5225         return mask;
5226 }
5227
5228 static unsigned long
5229 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5230                                struct intel_crtc_state *crtc_state)
5231 {
5232         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5234         enum intel_display_power_domain domain;
5235         unsigned long domains, new_domains, old_domains;
5236
5237         old_domains = intel_crtc->enabled_power_domains;
5238         intel_crtc->enabled_power_domains = new_domains =
5239                 get_crtc_power_domains(crtc, crtc_state);
5240
5241         domains = new_domains & ~old_domains;
5242
5243         for_each_power_domain(domain, domains)
5244                 intel_display_power_get(dev_priv, domain);
5245
5246         return old_domains & ~new_domains;
5247 }
5248
5249 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5250                                       unsigned long domains)
5251 {
5252         enum intel_display_power_domain domain;
5253
5254         for_each_power_domain(domain, domains)
5255                 intel_display_power_put(dev_priv, domain);
5256 }
5257
5258 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5259 {
5260         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5261
5262         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5263             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5264                 return max_cdclk_freq;
5265         else if (IS_CHERRYVIEW(dev_priv))
5266                 return max_cdclk_freq*95/100;
5267         else if (INTEL_INFO(dev_priv)->gen < 4)
5268                 return 2*max_cdclk_freq*90/100;
5269         else
5270                 return max_cdclk_freq*90/100;
5271 }
5272
5273 static void intel_update_max_cdclk(struct drm_device *dev)
5274 {
5275         struct drm_i915_private *dev_priv = dev->dev_private;
5276
5277         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5278                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5279
5280                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5281                         dev_priv->max_cdclk_freq = 675000;
5282                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5283                         dev_priv->max_cdclk_freq = 540000;
5284                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5285                         dev_priv->max_cdclk_freq = 450000;
5286                 else
5287                         dev_priv->max_cdclk_freq = 337500;
5288         } else if (IS_BROXTON(dev)) {
5289                 dev_priv->max_cdclk_freq = 624000;
5290         } else if (IS_BROADWELL(dev))  {
5291                 /*
5292                  * FIXME with extra cooling we can allow
5293                  * 540 MHz for ULX and 675 Mhz for ULT.
5294                  * How can we know if extra cooling is
5295                  * available? PCI ID, VTB, something else?
5296                  */
5297                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5298                         dev_priv->max_cdclk_freq = 450000;
5299                 else if (IS_BDW_ULX(dev))
5300                         dev_priv->max_cdclk_freq = 450000;
5301                 else if (IS_BDW_ULT(dev))
5302                         dev_priv->max_cdclk_freq = 540000;
5303                 else
5304                         dev_priv->max_cdclk_freq = 675000;
5305         } else if (IS_CHERRYVIEW(dev)) {
5306                 dev_priv->max_cdclk_freq = 320000;
5307         } else if (IS_VALLEYVIEW(dev)) {
5308                 dev_priv->max_cdclk_freq = 400000;
5309         } else {
5310                 /* otherwise assume cdclk is fixed */
5311                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5312         }
5313
5314         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5315
5316         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5317                          dev_priv->max_cdclk_freq);
5318
5319         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5320                          dev_priv->max_dotclk_freq);
5321 }
5322
5323 static void intel_update_cdclk(struct drm_device *dev)
5324 {
5325         struct drm_i915_private *dev_priv = dev->dev_private;
5326
5327         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5328         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5329                          dev_priv->cdclk_freq);
5330
5331         /*
5332          * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5333          * Programmng [sic] note: bit[9:2] should be programmed to the number
5334          * of cdclk that generates 4MHz reference clock freq which is used to
5335          * generate GMBus clock. This will vary with the cdclk freq.
5336          */
5337         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5338                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5339
5340         if (dev_priv->max_cdclk_freq == 0)
5341                 intel_update_max_cdclk(dev);
5342 }
5343
5344 static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5345 {
5346         uint32_t divider;
5347         uint32_t ratio;
5348         uint32_t current_freq;
5349         int ret;
5350
5351         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5352         switch (frequency) {
5353         case 144000:
5354                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5355                 ratio = BXT_DE_PLL_RATIO(60);
5356                 break;
5357         case 288000:
5358                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5359                 ratio = BXT_DE_PLL_RATIO(60);
5360                 break;
5361         case 384000:
5362                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5363                 ratio = BXT_DE_PLL_RATIO(60);
5364                 break;
5365         case 576000:
5366                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5367                 ratio = BXT_DE_PLL_RATIO(60);
5368                 break;
5369         case 624000:
5370                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5371                 ratio = BXT_DE_PLL_RATIO(65);
5372                 break;
5373         case 19200:
5374                 /*
5375                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5376                  * to suppress GCC warning.
5377                  */
5378                 ratio = 0;
5379                 divider = 0;
5380                 break;
5381         default:
5382                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5383
5384                 return;
5385         }
5386
5387         mutex_lock(&dev_priv->rps.hw_lock);
5388         /* Inform power controller of upcoming frequency change */
5389         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5390                                       0x80000000);
5391         mutex_unlock(&dev_priv->rps.hw_lock);
5392
5393         if (ret) {
5394                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5395                           ret, frequency);
5396                 return;
5397         }
5398
5399         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5400         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5401         current_freq = current_freq * 500 + 1000;
5402
5403         /*
5404          * DE PLL has to be disabled when
5405          * - setting to 19.2MHz (bypass, PLL isn't used)
5406          * - before setting to 624MHz (PLL needs toggling)
5407          * - before setting to any frequency from 624MHz (PLL needs toggling)
5408          */
5409         if (frequency == 19200 || frequency == 624000 ||
5410             current_freq == 624000) {
5411                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5412                 /* Timeout 200us */
5413                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5414                              1))
5415                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5416         }
5417
5418         if (frequency != 19200) {
5419                 uint32_t val;
5420
5421                 val = I915_READ(BXT_DE_PLL_CTL);
5422                 val &= ~BXT_DE_PLL_RATIO_MASK;
5423                 val |= ratio;
5424                 I915_WRITE(BXT_DE_PLL_CTL, val);
5425
5426                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5427                 /* Timeout 200us */
5428                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5429                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5430
5431                 val = I915_READ(CDCLK_CTL);
5432                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5433                 val |= divider;
5434                 /*
5435                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5436                  * enable otherwise.
5437                  */
5438                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5439                 if (frequency >= 500000)
5440                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5441
5442                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5443                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5444                 val |= (frequency - 1000) / 500;
5445                 I915_WRITE(CDCLK_CTL, val);
5446         }
5447
5448         mutex_lock(&dev_priv->rps.hw_lock);
5449         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5450                                       DIV_ROUND_UP(frequency, 25000));
5451         mutex_unlock(&dev_priv->rps.hw_lock);
5452
5453         if (ret) {
5454                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5455                           ret, frequency);
5456                 return;
5457         }
5458
5459         intel_update_cdclk(dev_priv->dev);
5460 }
5461
5462 static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5463 {
5464         if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5465                 return false;
5466
5467         /* TODO: Check for a valid CDCLK rate */
5468
5469         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5470                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5471
5472                 return false;
5473         }
5474
5475         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5476                 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5477
5478                 return false;
5479         }
5480
5481         return true;
5482 }
5483
5484 bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5485 {
5486         return broxton_cdclk_is_enabled(dev_priv);
5487 }
5488
5489 void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5490 {
5491         /* check if cd clock is enabled */
5492         if (broxton_cdclk_is_enabled(dev_priv)) {
5493                 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5494                 return;
5495         }
5496
5497         DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5498
5499         /*
5500          * FIXME:
5501          * - The initial CDCLK needs to be read from VBT.
5502          *   Need to make this change after VBT has changes for BXT.
5503          * - check if setting the max (or any) cdclk freq is really necessary
5504          *   here, it belongs to modeset time
5505          */
5506         broxton_set_cdclk(dev_priv, 624000);
5507
5508         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5509         POSTING_READ(DBUF_CTL);
5510
5511         udelay(10);
5512
5513         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5514                 DRM_ERROR("DBuf power enable timeout!\n");
5515 }
5516
5517 void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5518 {
5519         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5520         POSTING_READ(DBUF_CTL);
5521
5522         udelay(10);
5523
5524         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5525                 DRM_ERROR("DBuf power disable timeout!\n");
5526
5527         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5528         broxton_set_cdclk(dev_priv, 19200);
5529 }
5530
5531 static const struct skl_cdclk_entry {
5532         unsigned int freq;
5533         unsigned int vco;
5534 } skl_cdclk_frequencies[] = {
5535         { .freq = 308570, .vco = 8640 },
5536         { .freq = 337500, .vco = 8100 },
5537         { .freq = 432000, .vco = 8640 },
5538         { .freq = 450000, .vco = 8100 },
5539         { .freq = 540000, .vco = 8100 },
5540         { .freq = 617140, .vco = 8640 },
5541         { .freq = 675000, .vco = 8100 },
5542 };
5543
5544 static unsigned int skl_cdclk_decimal(unsigned int freq)
5545 {
5546         return (freq - 1000) / 500;
5547 }
5548
5549 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5550 {
5551         unsigned int i;
5552
5553         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5554                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5555
5556                 if (e->freq == freq)
5557                         return e->vco;
5558         }
5559
5560         return 8100;
5561 }
5562
5563 static void
5564 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5565 {
5566         unsigned int min_freq;
5567         u32 val;
5568
5569         /* select the minimum CDCLK before enabling DPLL 0 */
5570         val = I915_READ(CDCLK_CTL);
5571         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5572         val |= CDCLK_FREQ_337_308;
5573
5574         if (required_vco == 8640)
5575                 min_freq = 308570;
5576         else
5577                 min_freq = 337500;
5578
5579         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5580
5581         I915_WRITE(CDCLK_CTL, val);
5582         POSTING_READ(CDCLK_CTL);
5583
5584         /*
5585          * We always enable DPLL0 with the lowest link rate possible, but still
5586          * taking into account the VCO required to operate the eDP panel at the
5587          * desired frequency. The usual DP link rates operate with a VCO of
5588          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5589          * The modeset code is responsible for the selection of the exact link
5590          * rate later on, with the constraint of choosing a frequency that
5591          * works with required_vco.
5592          */
5593         val = I915_READ(DPLL_CTRL1);
5594
5595         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5596                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5597         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5598         if (required_vco == 8640)
5599                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5600                                             SKL_DPLL0);
5601         else
5602                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5603                                             SKL_DPLL0);
5604
5605         I915_WRITE(DPLL_CTRL1, val);
5606         POSTING_READ(DPLL_CTRL1);
5607
5608         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5609
5610         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5611                 DRM_ERROR("DPLL0 not locked\n");
5612 }
5613
5614 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5615 {
5616         int ret;
5617         u32 val;
5618
5619         /* inform PCU we want to change CDCLK */
5620         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5621         mutex_lock(&dev_priv->rps.hw_lock);
5622         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5623         mutex_unlock(&dev_priv->rps.hw_lock);
5624
5625         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5626 }
5627
5628 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5629 {
5630         unsigned int i;
5631
5632         for (i = 0; i < 15; i++) {
5633                 if (skl_cdclk_pcu_ready(dev_priv))
5634                         return true;
5635                 udelay(10);
5636         }
5637
5638         return false;
5639 }
5640
5641 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5642 {
5643         struct drm_device *dev = dev_priv->dev;
5644         u32 freq_select, pcu_ack;
5645
5646         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5647
5648         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5649                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5650                 return;
5651         }
5652
5653         /* set CDCLK_CTL */
5654         switch(freq) {
5655         case 450000:
5656         case 432000:
5657                 freq_select = CDCLK_FREQ_450_432;
5658                 pcu_ack = 1;
5659                 break;
5660         case 540000:
5661                 freq_select = CDCLK_FREQ_540;
5662                 pcu_ack = 2;
5663                 break;
5664         case 308570:
5665         case 337500:
5666         default:
5667                 freq_select = CDCLK_FREQ_337_308;
5668                 pcu_ack = 0;
5669                 break;
5670         case 617140:
5671         case 675000:
5672                 freq_select = CDCLK_FREQ_675_617;
5673                 pcu_ack = 3;
5674                 break;
5675         }
5676
5677         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5678         POSTING_READ(CDCLK_CTL);
5679
5680         /* inform PCU of the change */
5681         mutex_lock(&dev_priv->rps.hw_lock);
5682         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5683         mutex_unlock(&dev_priv->rps.hw_lock);
5684
5685         intel_update_cdclk(dev);
5686 }
5687
5688 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5689 {
5690         /* disable DBUF power */
5691         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5692         POSTING_READ(DBUF_CTL);
5693
5694         udelay(10);
5695
5696         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5697                 DRM_ERROR("DBuf power disable timeout\n");
5698
5699         /* disable DPLL0 */
5700         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5701         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5702                 DRM_ERROR("Couldn't disable DPLL0\n");
5703 }
5704
5705 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5706 {
5707         unsigned int required_vco;
5708
5709         /* DPLL0 not enabled (happens on early BIOS versions) */
5710         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5711                 /* enable DPLL0 */
5712                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5713                 skl_dpll0_enable(dev_priv, required_vco);
5714         }
5715
5716         /* set CDCLK to the frequency the BIOS chose */
5717         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5718
5719         /* enable DBUF power */
5720         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5721         POSTING_READ(DBUF_CTL);
5722
5723         udelay(10);
5724
5725         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5726                 DRM_ERROR("DBuf power enable timeout\n");
5727 }
5728
5729 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5730 {
5731         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5732         uint32_t cdctl = I915_READ(CDCLK_CTL);
5733         int freq = dev_priv->skl_boot_cdclk;
5734
5735         /*
5736          * check if the pre-os intialized the display
5737          * There is SWF18 scratchpad register defined which is set by the
5738          * pre-os which can be used by the OS drivers to check the status
5739          */
5740         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5741                 goto sanitize;
5742
5743         /* Is PLL enabled and locked ? */
5744         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5745                 goto sanitize;
5746
5747         /* DPLL okay; verify the cdclock
5748          *
5749          * Noticed in some instances that the freq selection is correct but
5750          * decimal part is programmed wrong from BIOS where pre-os does not
5751          * enable display. Verify the same as well.
5752          */
5753         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5754                 /* All well; nothing to sanitize */
5755                 return false;
5756 sanitize:
5757         /*
5758          * As of now initialize with max cdclk till
5759          * we get dynamic cdclk support
5760          * */
5761         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5762         skl_init_cdclk(dev_priv);
5763
5764         /* we did have to sanitize */
5765         return true;
5766 }
5767
5768 /* Adjust CDclk dividers to allow high res or save power if possible */
5769 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5770 {
5771         struct drm_i915_private *dev_priv = dev->dev_private;
5772         u32 val, cmd;
5773
5774         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5775                                         != dev_priv->cdclk_freq);
5776
5777         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5778                 cmd = 2;
5779         else if (cdclk == 266667)
5780                 cmd = 1;
5781         else
5782                 cmd = 0;
5783
5784         mutex_lock(&dev_priv->rps.hw_lock);
5785         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5786         val &= ~DSPFREQGUAR_MASK;
5787         val |= (cmd << DSPFREQGUAR_SHIFT);
5788         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5789         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5790                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5791                      50)) {
5792                 DRM_ERROR("timed out waiting for CDclk change\n");
5793         }
5794         mutex_unlock(&dev_priv->rps.hw_lock);
5795
5796         mutex_lock(&dev_priv->sb_lock);
5797
5798         if (cdclk == 400000) {
5799                 u32 divider;
5800
5801                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5802
5803                 /* adjust cdclk divider */
5804                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5805                 val &= ~CCK_FREQUENCY_VALUES;
5806                 val |= divider;
5807                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5808
5809                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5810                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5811                              50))
5812                         DRM_ERROR("timed out waiting for CDclk change\n");
5813         }
5814
5815         /* adjust self-refresh exit latency value */
5816         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5817         val &= ~0x7f;
5818
5819         /*
5820          * For high bandwidth configs, we set a higher latency in the bunit
5821          * so that the core display fetch happens in time to avoid underruns.
5822          */
5823         if (cdclk == 400000)
5824                 val |= 4500 / 250; /* 4.5 usec */
5825         else
5826                 val |= 3000 / 250; /* 3.0 usec */
5827         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5828
5829         mutex_unlock(&dev_priv->sb_lock);
5830
5831         intel_update_cdclk(dev);
5832 }
5833
5834 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5835 {
5836         struct drm_i915_private *dev_priv = dev->dev_private;
5837         u32 val, cmd;
5838
5839         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5840                                                 != dev_priv->cdclk_freq);
5841
5842         switch (cdclk) {
5843         case 333333:
5844         case 320000:
5845         case 266667:
5846         case 200000:
5847                 break;
5848         default:
5849                 MISSING_CASE(cdclk);
5850                 return;
5851         }
5852
5853         /*
5854          * Specs are full of misinformation, but testing on actual
5855          * hardware has shown that we just need to write the desired
5856          * CCK divider into the Punit register.
5857          */
5858         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5859
5860         mutex_lock(&dev_priv->rps.hw_lock);
5861         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5862         val &= ~DSPFREQGUAR_MASK_CHV;
5863         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5864         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5865         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5866                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5867                      50)) {
5868                 DRM_ERROR("timed out waiting for CDclk change\n");
5869         }
5870         mutex_unlock(&dev_priv->rps.hw_lock);
5871
5872         intel_update_cdclk(dev);
5873 }
5874
5875 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5876                                  int max_pixclk)
5877 {
5878         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5879         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5880
5881         /*
5882          * Really only a few cases to deal with, as only 4 CDclks are supported:
5883          *   200MHz
5884          *   267MHz
5885          *   320/333MHz (depends on HPLL freq)
5886          *   400MHz (VLV only)
5887          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5888          * of the lower bin and adjust if needed.
5889          *
5890          * We seem to get an unstable or solid color picture at 200MHz.
5891          * Not sure what's wrong. For now use 200MHz only when all pipes
5892          * are off.
5893          */
5894         if (!IS_CHERRYVIEW(dev_priv) &&
5895             max_pixclk > freq_320*limit/100)
5896                 return 400000;
5897         else if (max_pixclk > 266667*limit/100)
5898                 return freq_320;
5899         else if (max_pixclk > 0)
5900                 return 266667;
5901         else
5902                 return 200000;
5903 }
5904
5905 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5906                               int max_pixclk)
5907 {
5908         /*
5909          * FIXME:
5910          * - remove the guardband, it's not needed on BXT
5911          * - set 19.2MHz bypass frequency if there are no active pipes
5912          */
5913         if (max_pixclk > 576000*9/10)
5914                 return 624000;
5915         else if (max_pixclk > 384000*9/10)
5916                 return 576000;
5917         else if (max_pixclk > 288000*9/10)
5918                 return 384000;
5919         else if (max_pixclk > 144000*9/10)
5920                 return 288000;
5921         else
5922                 return 144000;
5923 }
5924
5925 /* Compute the max pixel clock for new configuration. */
5926 static int intel_mode_max_pixclk(struct drm_device *dev,
5927                                  struct drm_atomic_state *state)
5928 {
5929         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5930         struct drm_i915_private *dev_priv = dev->dev_private;
5931         struct drm_crtc *crtc;
5932         struct drm_crtc_state *crtc_state;
5933         unsigned max_pixclk = 0, i;
5934         enum pipe pipe;
5935
5936         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5937                sizeof(intel_state->min_pixclk));
5938
5939         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5940                 int pixclk = 0;
5941
5942                 if (crtc_state->enable)
5943                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5944
5945                 intel_state->min_pixclk[i] = pixclk;
5946         }
5947
5948         for_each_pipe(dev_priv, pipe)
5949                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5950
5951         return max_pixclk;
5952 }
5953
5954 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5955 {
5956         struct drm_device *dev = state->dev;
5957         struct drm_i915_private *dev_priv = dev->dev_private;
5958         int max_pixclk = intel_mode_max_pixclk(dev, state);
5959         struct intel_atomic_state *intel_state =
5960                 to_intel_atomic_state(state);
5961
5962         if (max_pixclk < 0)
5963                 return max_pixclk;
5964
5965         intel_state->cdclk = intel_state->dev_cdclk =
5966                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5967
5968         if (!intel_state->active_crtcs)
5969                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5970
5971         return 0;
5972 }
5973
5974 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5975 {
5976         struct drm_device *dev = state->dev;
5977         struct drm_i915_private *dev_priv = dev->dev_private;
5978         int max_pixclk = intel_mode_max_pixclk(dev, state);
5979         struct intel_atomic_state *intel_state =
5980                 to_intel_atomic_state(state);
5981
5982         if (max_pixclk < 0)
5983                 return max_pixclk;
5984
5985         intel_state->cdclk = intel_state->dev_cdclk =
5986                 broxton_calc_cdclk(dev_priv, max_pixclk);
5987
5988         if (!intel_state->active_crtcs)
5989                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5990
5991         return 0;
5992 }
5993
5994 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5995 {
5996         unsigned int credits, default_credits;
5997
5998         if (IS_CHERRYVIEW(dev_priv))
5999                 default_credits = PFI_CREDIT(12);
6000         else
6001                 default_credits = PFI_CREDIT(8);
6002
6003         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6004                 /* CHV suggested value is 31 or 63 */
6005                 if (IS_CHERRYVIEW(dev_priv))
6006                         credits = PFI_CREDIT_63;
6007                 else
6008                         credits = PFI_CREDIT(15);
6009         } else {
6010                 credits = default_credits;
6011         }
6012
6013         /*
6014          * WA - write default credits before re-programming
6015          * FIXME: should we also set the resend bit here?
6016          */
6017         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6018                    default_credits);
6019
6020         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6021                    credits | PFI_CREDIT_RESEND);
6022
6023         /*
6024          * FIXME is this guaranteed to clear
6025          * immediately or should we poll for it?
6026          */
6027         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6028 }
6029
6030 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6031 {
6032         struct drm_device *dev = old_state->dev;
6033         struct drm_i915_private *dev_priv = dev->dev_private;
6034         struct intel_atomic_state *old_intel_state =
6035                 to_intel_atomic_state(old_state);
6036         unsigned req_cdclk = old_intel_state->dev_cdclk;
6037
6038         /*
6039          * FIXME: We can end up here with all power domains off, yet
6040          * with a CDCLK frequency other than the minimum. To account
6041          * for this take the PIPE-A power domain, which covers the HW
6042          * blocks needed for the following programming. This can be
6043          * removed once it's guaranteed that we get here either with
6044          * the minimum CDCLK set, or the required power domains
6045          * enabled.
6046          */
6047         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6048
6049         if (IS_CHERRYVIEW(dev))
6050                 cherryview_set_cdclk(dev, req_cdclk);
6051         else
6052                 valleyview_set_cdclk(dev, req_cdclk);
6053
6054         vlv_program_pfi_credits(dev_priv);
6055
6056         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6057 }
6058
6059 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6060 {
6061         struct drm_device *dev = crtc->dev;
6062         struct drm_i915_private *dev_priv = to_i915(dev);
6063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6064         struct intel_encoder *encoder;
6065         struct intel_crtc_state *pipe_config =
6066                 to_intel_crtc_state(crtc->state);
6067         int pipe = intel_crtc->pipe;
6068
6069         if (WARN_ON(intel_crtc->active))
6070                 return;
6071
6072         if (intel_crtc->config->has_dp_encoder)
6073                 intel_dp_set_m_n(intel_crtc, M1_N1);
6074
6075         intel_set_pipe_timings(intel_crtc);
6076         intel_set_pipe_src_size(intel_crtc);
6077
6078         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6079                 struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6082                 I915_WRITE(CHV_CANVAS(pipe), 0);
6083         }
6084
6085         i9xx_set_pipeconf(intel_crtc);
6086
6087         intel_crtc->active = true;
6088
6089         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6090
6091         for_each_encoder_on_crtc(dev, crtc, encoder)
6092                 if (encoder->pre_pll_enable)
6093                         encoder->pre_pll_enable(encoder);
6094
6095         if (IS_CHERRYVIEW(dev)) {
6096                 chv_prepare_pll(intel_crtc, intel_crtc->config);
6097                 chv_enable_pll(intel_crtc, intel_crtc->config);
6098         } else {
6099                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6100                 vlv_enable_pll(intel_crtc, intel_crtc->config);
6101         }
6102
6103         for_each_encoder_on_crtc(dev, crtc, encoder)
6104                 if (encoder->pre_enable)
6105                         encoder->pre_enable(encoder);
6106
6107         i9xx_pfit_enable(intel_crtc);
6108
6109         intel_color_load_luts(&pipe_config->base);
6110
6111         intel_update_watermarks(crtc);
6112         intel_enable_pipe(intel_crtc);
6113
6114         assert_vblank_disabled(crtc);
6115         drm_crtc_vblank_on(crtc);
6116
6117         for_each_encoder_on_crtc(dev, crtc, encoder)
6118                 encoder->enable(encoder);
6119 }
6120
6121 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6122 {
6123         struct drm_device *dev = crtc->base.dev;
6124         struct drm_i915_private *dev_priv = dev->dev_private;
6125
6126         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6127         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6128 }
6129
6130 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6131 {
6132         struct drm_device *dev = crtc->dev;
6133         struct drm_i915_private *dev_priv = to_i915(dev);
6134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6135         struct intel_encoder *encoder;
6136         struct intel_crtc_state *pipe_config =
6137                 to_intel_crtc_state(crtc->state);
6138         enum pipe pipe = intel_crtc->pipe;
6139
6140         if (WARN_ON(intel_crtc->active))
6141                 return;
6142
6143         i9xx_set_pll_dividers(intel_crtc);
6144
6145         if (intel_crtc->config->has_dp_encoder)
6146                 intel_dp_set_m_n(intel_crtc, M1_N1);
6147
6148         intel_set_pipe_timings(intel_crtc);
6149         intel_set_pipe_src_size(intel_crtc);
6150
6151         i9xx_set_pipeconf(intel_crtc);
6152
6153         intel_crtc->active = true;
6154
6155         if (!IS_GEN2(dev))
6156                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6157
6158         for_each_encoder_on_crtc(dev, crtc, encoder)
6159                 if (encoder->pre_enable)
6160                         encoder->pre_enable(encoder);
6161
6162         i9xx_enable_pll(intel_crtc);
6163
6164         i9xx_pfit_enable(intel_crtc);
6165
6166         intel_color_load_luts(&pipe_config->base);
6167
6168         intel_update_watermarks(crtc);
6169         intel_enable_pipe(intel_crtc);
6170
6171         assert_vblank_disabled(crtc);
6172         drm_crtc_vblank_on(crtc);
6173
6174         for_each_encoder_on_crtc(dev, crtc, encoder)
6175                 encoder->enable(encoder);
6176 }
6177
6178 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6179 {
6180         struct drm_device *dev = crtc->base.dev;
6181         struct drm_i915_private *dev_priv = dev->dev_private;
6182
6183         if (!crtc->config->gmch_pfit.control)
6184                 return;
6185
6186         assert_pipe_disabled(dev_priv, crtc->pipe);
6187
6188         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6189                          I915_READ(PFIT_CONTROL));
6190         I915_WRITE(PFIT_CONTROL, 0);
6191 }
6192
6193 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6194 {
6195         struct drm_device *dev = crtc->dev;
6196         struct drm_i915_private *dev_priv = dev->dev_private;
6197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6198         struct intel_encoder *encoder;
6199         int pipe = intel_crtc->pipe;
6200
6201         /*
6202          * On gen2 planes are double buffered but the pipe isn't, so we must
6203          * wait for planes to fully turn off before disabling the pipe.
6204          */
6205         if (IS_GEN2(dev))
6206                 intel_wait_for_vblank(dev, pipe);
6207
6208         for_each_encoder_on_crtc(dev, crtc, encoder)
6209                 encoder->disable(encoder);
6210
6211         drm_crtc_vblank_off(crtc);
6212         assert_vblank_disabled(crtc);
6213
6214         intel_disable_pipe(intel_crtc);
6215
6216         i9xx_pfit_disable(intel_crtc);
6217
6218         for_each_encoder_on_crtc(dev, crtc, encoder)
6219                 if (encoder->post_disable)
6220                         encoder->post_disable(encoder);
6221
6222         if (!intel_crtc->config->has_dsi_encoder) {
6223                 if (IS_CHERRYVIEW(dev))
6224                         chv_disable_pll(dev_priv, pipe);
6225                 else if (IS_VALLEYVIEW(dev))
6226                         vlv_disable_pll(dev_priv, pipe);
6227                 else
6228                         i9xx_disable_pll(intel_crtc);
6229         }
6230
6231         for_each_encoder_on_crtc(dev, crtc, encoder)
6232                 if (encoder->post_pll_disable)
6233                         encoder->post_pll_disable(encoder);
6234
6235         if (!IS_GEN2(dev))
6236                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6237 }
6238
6239 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6240 {
6241         struct intel_encoder *encoder;
6242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6243         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6244         enum intel_display_power_domain domain;
6245         unsigned long domains;
6246
6247         if (!intel_crtc->active)
6248                 return;
6249
6250         if (to_intel_plane_state(crtc->primary->state)->visible) {
6251                 WARN_ON(intel_crtc->unpin_work);
6252
6253                 intel_pre_disable_primary_noatomic(crtc);
6254
6255                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6256                 to_intel_plane_state(crtc->primary->state)->visible = false;
6257         }
6258
6259         dev_priv->display.crtc_disable(crtc);
6260
6261         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6262                       crtc->base.id);
6263
6264         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6265         crtc->state->active = false;
6266         intel_crtc->active = false;
6267         crtc->enabled = false;
6268         crtc->state->connector_mask = 0;
6269         crtc->state->encoder_mask = 0;
6270
6271         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6272                 encoder->base.crtc = NULL;
6273
6274         intel_fbc_disable(intel_crtc);
6275         intel_update_watermarks(crtc);
6276         intel_disable_shared_dpll(intel_crtc);
6277
6278         domains = intel_crtc->enabled_power_domains;
6279         for_each_power_domain(domain, domains)
6280                 intel_display_power_put(dev_priv, domain);
6281         intel_crtc->enabled_power_domains = 0;
6282
6283         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6284         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6285 }
6286
6287 /*
6288  * turn all crtc's off, but do not adjust state
6289  * This has to be paired with a call to intel_modeset_setup_hw_state.
6290  */
6291 int intel_display_suspend(struct drm_device *dev)
6292 {
6293         struct drm_i915_private *dev_priv = to_i915(dev);
6294         struct drm_atomic_state *state;
6295         int ret;
6296
6297         state = drm_atomic_helper_suspend(dev);
6298         ret = PTR_ERR_OR_ZERO(state);
6299         if (ret)
6300                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6301         else
6302                 dev_priv->modeset_restore_state = state;
6303         return ret;
6304 }
6305
6306 void intel_encoder_destroy(struct drm_encoder *encoder)
6307 {
6308         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6309
6310         drm_encoder_cleanup(encoder);
6311         kfree(intel_encoder);
6312 }
6313
6314 /* Cross check the actual hw state with our own modeset state tracking (and it's
6315  * internal consistency). */
6316 static void intel_connector_verify_state(struct intel_connector *connector)
6317 {
6318         struct drm_crtc *crtc = connector->base.state->crtc;
6319
6320         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6321                       connector->base.base.id,
6322                       connector->base.name);
6323
6324         if (connector->get_hw_state(connector)) {
6325                 struct intel_encoder *encoder = connector->encoder;
6326                 struct drm_connector_state *conn_state = connector->base.state;
6327
6328                 I915_STATE_WARN(!crtc,
6329                          "connector enabled without attached crtc\n");
6330
6331                 if (!crtc)
6332                         return;
6333
6334                 I915_STATE_WARN(!crtc->state->active,
6335                       "connector is active, but attached crtc isn't\n");
6336
6337                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6338                         return;
6339
6340                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6341                         "atomic encoder doesn't match attached encoder\n");
6342
6343                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6344                         "attached encoder crtc differs from connector crtc\n");
6345         } else {
6346                 I915_STATE_WARN(crtc && crtc->state->active,
6347                         "attached crtc is active, but connector isn't\n");
6348                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6349                         "best encoder set without crtc!\n");
6350         }
6351 }
6352
6353 int intel_connector_init(struct intel_connector *connector)
6354 {
6355         drm_atomic_helper_connector_reset(&connector->base);
6356
6357         if (!connector->base.state)
6358                 return -ENOMEM;
6359
6360         return 0;
6361 }
6362
6363 struct intel_connector *intel_connector_alloc(void)
6364 {
6365         struct intel_connector *connector;
6366
6367         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6368         if (!connector)
6369                 return NULL;
6370
6371         if (intel_connector_init(connector) < 0) {
6372                 kfree(connector);
6373                 return NULL;
6374         }
6375
6376         return connector;
6377 }
6378
6379 /* Simple connector->get_hw_state implementation for encoders that support only
6380  * one connector and no cloning and hence the encoder state determines the state
6381  * of the connector. */
6382 bool intel_connector_get_hw_state(struct intel_connector *connector)
6383 {
6384         enum pipe pipe = 0;
6385         struct intel_encoder *encoder = connector->encoder;
6386
6387         return encoder->get_hw_state(encoder, &pipe);
6388 }
6389
6390 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6391 {
6392         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6393                 return crtc_state->fdi_lanes;
6394
6395         return 0;
6396 }
6397
6398 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6399                                      struct intel_crtc_state *pipe_config)
6400 {
6401         struct drm_atomic_state *state = pipe_config->base.state;
6402         struct intel_crtc *other_crtc;
6403         struct intel_crtc_state *other_crtc_state;
6404
6405         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6406                       pipe_name(pipe), pipe_config->fdi_lanes);
6407         if (pipe_config->fdi_lanes > 4) {
6408                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6409                               pipe_name(pipe), pipe_config->fdi_lanes);
6410                 return -EINVAL;
6411         }
6412
6413         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6414                 if (pipe_config->fdi_lanes > 2) {
6415                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6416                                       pipe_config->fdi_lanes);
6417                         return -EINVAL;
6418                 } else {
6419                         return 0;
6420                 }
6421         }
6422
6423         if (INTEL_INFO(dev)->num_pipes == 2)
6424                 return 0;
6425
6426         /* Ivybridge 3 pipe is really complicated */
6427         switch (pipe) {
6428         case PIPE_A:
6429                 return 0;
6430         case PIPE_B:
6431                 if (pipe_config->fdi_lanes <= 2)
6432                         return 0;
6433
6434                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6435                 other_crtc_state =
6436                         intel_atomic_get_crtc_state(state, other_crtc);
6437                 if (IS_ERR(other_crtc_state))
6438                         return PTR_ERR(other_crtc_state);
6439
6440                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6441                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6442                                       pipe_name(pipe), pipe_config->fdi_lanes);
6443                         return -EINVAL;
6444                 }
6445                 return 0;
6446         case PIPE_C:
6447                 if (pipe_config->fdi_lanes > 2) {
6448                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6449                                       pipe_name(pipe), pipe_config->fdi_lanes);
6450                         return -EINVAL;
6451                 }
6452
6453                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6454                 other_crtc_state =
6455                         intel_atomic_get_crtc_state(state, other_crtc);
6456                 if (IS_ERR(other_crtc_state))
6457                         return PTR_ERR(other_crtc_state);
6458
6459                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6460                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6461                         return -EINVAL;
6462                 }
6463                 return 0;
6464         default:
6465                 BUG();
6466         }
6467 }
6468
6469 #define RETRY 1
6470 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6471                                        struct intel_crtc_state *pipe_config)
6472 {
6473         struct drm_device *dev = intel_crtc->base.dev;
6474         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6475         int lane, link_bw, fdi_dotclock, ret;
6476         bool needs_recompute = false;
6477
6478 retry:
6479         /* FDI is a binary signal running at ~2.7GHz, encoding
6480          * each output octet as 10 bits. The actual frequency
6481          * is stored as a divider into a 100MHz clock, and the
6482          * mode pixel clock is stored in units of 1KHz.
6483          * Hence the bw of each lane in terms of the mode signal
6484          * is:
6485          */
6486         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6487
6488         fdi_dotclock = adjusted_mode->crtc_clock;
6489
6490         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6491                                            pipe_config->pipe_bpp);
6492
6493         pipe_config->fdi_lanes = lane;
6494
6495         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6496                                link_bw, &pipe_config->fdi_m_n);
6497
6498         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6499         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6500                 pipe_config->pipe_bpp -= 2*3;
6501                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6502                               pipe_config->pipe_bpp);
6503                 needs_recompute = true;
6504                 pipe_config->bw_constrained = true;
6505
6506                 goto retry;
6507         }
6508
6509         if (needs_recompute)
6510                 return RETRY;
6511
6512         return ret;
6513 }
6514
6515 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6516                                      struct intel_crtc_state *pipe_config)
6517 {
6518         if (pipe_config->pipe_bpp > 24)
6519                 return false;
6520
6521         /* HSW can handle pixel rate up to cdclk? */
6522         if (IS_HASWELL(dev_priv))
6523                 return true;
6524
6525         /*
6526          * We compare against max which means we must take
6527          * the increased cdclk requirement into account when
6528          * calculating the new cdclk.
6529          *
6530          * Should measure whether using a lower cdclk w/o IPS
6531          */
6532         return ilk_pipe_pixel_rate(pipe_config) <=
6533                 dev_priv->max_cdclk_freq * 95 / 100;
6534 }
6535
6536 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6537                                    struct intel_crtc_state *pipe_config)
6538 {
6539         struct drm_device *dev = crtc->base.dev;
6540         struct drm_i915_private *dev_priv = dev->dev_private;
6541
6542         pipe_config->ips_enabled = i915.enable_ips &&
6543                 hsw_crtc_supports_ips(crtc) &&
6544                 pipe_config_supports_ips(dev_priv, pipe_config);
6545 }
6546
6547 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6548 {
6549         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6550
6551         /* GDG double wide on either pipe, otherwise pipe A only */
6552         return INTEL_INFO(dev_priv)->gen < 4 &&
6553                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6554 }
6555
6556 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6557                                      struct intel_crtc_state *pipe_config)
6558 {
6559         struct drm_device *dev = crtc->base.dev;
6560         struct drm_i915_private *dev_priv = dev->dev_private;
6561         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6562
6563         /* FIXME should check pixel clock limits on all platforms */
6564         if (INTEL_INFO(dev)->gen < 4) {
6565                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6566
6567                 /*
6568                  * Enable double wide mode when the dot clock
6569                  * is > 90% of the (display) core speed.
6570                  */
6571                 if (intel_crtc_supports_double_wide(crtc) &&
6572                     adjusted_mode->crtc_clock > clock_limit) {
6573                         clock_limit *= 2;
6574                         pipe_config->double_wide = true;
6575                 }
6576
6577                 if (adjusted_mode->crtc_clock > clock_limit) {
6578                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6579                                       adjusted_mode->crtc_clock, clock_limit,
6580                                       yesno(pipe_config->double_wide));
6581                         return -EINVAL;
6582                 }
6583         }
6584
6585         /*
6586          * Pipe horizontal size must be even in:
6587          * - DVO ganged mode
6588          * - LVDS dual channel mode
6589          * - Double wide pipe
6590          */
6591         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6592              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6593                 pipe_config->pipe_src_w &= ~1;
6594
6595         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6596          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6597          */
6598         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6599                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6600                 return -EINVAL;
6601
6602         if (HAS_IPS(dev))
6603                 hsw_compute_ips_config(crtc, pipe_config);
6604
6605         if (pipe_config->has_pch_encoder)
6606                 return ironlake_fdi_compute_config(crtc, pipe_config);
6607
6608         return 0;
6609 }
6610
6611 static int skylake_get_display_clock_speed(struct drm_device *dev)
6612 {
6613         struct drm_i915_private *dev_priv = to_i915(dev);
6614         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6615         uint32_t cdctl = I915_READ(CDCLK_CTL);
6616         uint32_t linkrate;
6617
6618         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6619                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6620
6621         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6622                 return 540000;
6623
6624         linkrate = (I915_READ(DPLL_CTRL1) &
6625                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6626
6627         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6628             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6629                 /* vco 8640 */
6630                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6631                 case CDCLK_FREQ_450_432:
6632                         return 432000;
6633                 case CDCLK_FREQ_337_308:
6634                         return 308570;
6635                 case CDCLK_FREQ_675_617:
6636                         return 617140;
6637                 default:
6638                         WARN(1, "Unknown cd freq selection\n");
6639                 }
6640         } else {
6641                 /* vco 8100 */
6642                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6643                 case CDCLK_FREQ_450_432:
6644                         return 450000;
6645                 case CDCLK_FREQ_337_308:
6646                         return 337500;
6647                 case CDCLK_FREQ_675_617:
6648                         return 675000;
6649                 default:
6650                         WARN(1, "Unknown cd freq selection\n");
6651                 }
6652         }
6653
6654         /* error case, do as if DPLL0 isn't enabled */
6655         return 24000;
6656 }
6657
6658 static int broxton_get_display_clock_speed(struct drm_device *dev)
6659 {
6660         struct drm_i915_private *dev_priv = to_i915(dev);
6661         uint32_t cdctl = I915_READ(CDCLK_CTL);
6662         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6663         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6664         int cdclk;
6665
6666         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6667                 return 19200;
6668
6669         cdclk = 19200 * pll_ratio / 2;
6670
6671         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6672         case BXT_CDCLK_CD2X_DIV_SEL_1:
6673                 return cdclk;  /* 576MHz or 624MHz */
6674         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6675                 return cdclk * 2 / 3; /* 384MHz */
6676         case BXT_CDCLK_CD2X_DIV_SEL_2:
6677                 return cdclk / 2; /* 288MHz */
6678         case BXT_CDCLK_CD2X_DIV_SEL_4:
6679                 return cdclk / 4; /* 144MHz */
6680         }
6681
6682         /* error case, do as if DE PLL isn't enabled */
6683         return 19200;
6684 }
6685
6686 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6687 {
6688         struct drm_i915_private *dev_priv = dev->dev_private;
6689         uint32_t lcpll = I915_READ(LCPLL_CTL);
6690         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6691
6692         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6693                 return 800000;
6694         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6695                 return 450000;
6696         else if (freq == LCPLL_CLK_FREQ_450)
6697                 return 450000;
6698         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6699                 return 540000;
6700         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6701                 return 337500;
6702         else
6703                 return 675000;
6704 }
6705
6706 static int haswell_get_display_clock_speed(struct drm_device *dev)
6707 {
6708         struct drm_i915_private *dev_priv = dev->dev_private;
6709         uint32_t lcpll = I915_READ(LCPLL_CTL);
6710         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6711
6712         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6713                 return 800000;
6714         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6715                 return 450000;
6716         else if (freq == LCPLL_CLK_FREQ_450)
6717                 return 450000;
6718         else if (IS_HSW_ULT(dev))
6719                 return 337500;
6720         else
6721                 return 540000;
6722 }
6723
6724 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6725 {
6726         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6727                                       CCK_DISPLAY_CLOCK_CONTROL);
6728 }
6729
6730 static int ilk_get_display_clock_speed(struct drm_device *dev)
6731 {
6732         return 450000;
6733 }
6734
6735 static int i945_get_display_clock_speed(struct drm_device *dev)
6736 {
6737         return 400000;
6738 }
6739
6740 static int i915_get_display_clock_speed(struct drm_device *dev)
6741 {
6742         return 333333;
6743 }
6744
6745 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6746 {
6747         return 200000;
6748 }
6749
6750 static int pnv_get_display_clock_speed(struct drm_device *dev)
6751 {
6752         u16 gcfgc = 0;
6753
6754         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6755
6756         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6757         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6758                 return 266667;
6759         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6760                 return 333333;
6761         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6762                 return 444444;
6763         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6764                 return 200000;
6765         default:
6766                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6767         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6768                 return 133333;
6769         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6770                 return 166667;
6771         }
6772 }
6773
6774 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6775 {
6776         u16 gcfgc = 0;
6777
6778         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6779
6780         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6781                 return 133333;
6782         else {
6783                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6784                 case GC_DISPLAY_CLOCK_333_MHZ:
6785                         return 333333;
6786                 default:
6787                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6788                         return 190000;
6789                 }
6790         }
6791 }
6792
6793 static int i865_get_display_clock_speed(struct drm_device *dev)
6794 {
6795         return 266667;
6796 }
6797
6798 static int i85x_get_display_clock_speed(struct drm_device *dev)
6799 {
6800         u16 hpllcc = 0;
6801
6802         /*
6803          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6804          * encoding is different :(
6805          * FIXME is this the right way to detect 852GM/852GMV?
6806          */
6807         if (dev->pdev->revision == 0x1)
6808                 return 133333;
6809
6810         pci_bus_read_config_word(dev->pdev->bus,
6811                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6812
6813         /* Assume that the hardware is in the high speed state.  This
6814          * should be the default.
6815          */
6816         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6817         case GC_CLOCK_133_200:
6818         case GC_CLOCK_133_200_2:
6819         case GC_CLOCK_100_200:
6820                 return 200000;
6821         case GC_CLOCK_166_250:
6822                 return 250000;
6823         case GC_CLOCK_100_133:
6824                 return 133333;
6825         case GC_CLOCK_133_266:
6826         case GC_CLOCK_133_266_2:
6827         case GC_CLOCK_166_266:
6828                 return 266667;
6829         }
6830
6831         /* Shouldn't happen */
6832         return 0;
6833 }
6834
6835 static int i830_get_display_clock_speed(struct drm_device *dev)
6836 {
6837         return 133333;
6838 }
6839
6840 static unsigned int intel_hpll_vco(struct drm_device *dev)
6841 {
6842         struct drm_i915_private *dev_priv = dev->dev_private;
6843         static const unsigned int blb_vco[8] = {
6844                 [0] = 3200000,
6845                 [1] = 4000000,
6846                 [2] = 5333333,
6847                 [3] = 4800000,
6848                 [4] = 6400000,
6849         };
6850         static const unsigned int pnv_vco[8] = {
6851                 [0] = 3200000,
6852                 [1] = 4000000,
6853                 [2] = 5333333,
6854                 [3] = 4800000,
6855                 [4] = 2666667,
6856         };
6857         static const unsigned int cl_vco[8] = {
6858                 [0] = 3200000,
6859                 [1] = 4000000,
6860                 [2] = 5333333,
6861                 [3] = 6400000,
6862                 [4] = 3333333,
6863                 [5] = 3566667,
6864                 [6] = 4266667,
6865         };
6866         static const unsigned int elk_vco[8] = {
6867                 [0] = 3200000,
6868                 [1] = 4000000,
6869                 [2] = 5333333,
6870                 [3] = 4800000,
6871         };
6872         static const unsigned int ctg_vco[8] = {
6873                 [0] = 3200000,
6874                 [1] = 4000000,
6875                 [2] = 5333333,
6876                 [3] = 6400000,
6877                 [4] = 2666667,
6878                 [5] = 4266667,
6879         };
6880         const unsigned int *vco_table;
6881         unsigned int vco;
6882         uint8_t tmp = 0;
6883
6884         /* FIXME other chipsets? */
6885         if (IS_GM45(dev))
6886                 vco_table = ctg_vco;
6887         else if (IS_G4X(dev))
6888                 vco_table = elk_vco;
6889         else if (IS_CRESTLINE(dev))
6890                 vco_table = cl_vco;
6891         else if (IS_PINEVIEW(dev))
6892                 vco_table = pnv_vco;
6893         else if (IS_G33(dev))
6894                 vco_table = blb_vco;
6895         else
6896                 return 0;
6897
6898         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6899
6900         vco = vco_table[tmp & 0x7];
6901         if (vco == 0)
6902                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6903         else
6904                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6905
6906         return vco;
6907 }
6908
6909 static int gm45_get_display_clock_speed(struct drm_device *dev)
6910 {
6911         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6912         uint16_t tmp = 0;
6913
6914         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6915
6916         cdclk_sel = (tmp >> 12) & 0x1;
6917
6918         switch (vco) {
6919         case 2666667:
6920         case 4000000:
6921         case 5333333:
6922                 return cdclk_sel ? 333333 : 222222;
6923         case 3200000:
6924                 return cdclk_sel ? 320000 : 228571;
6925         default:
6926                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6927                 return 222222;
6928         }
6929 }
6930
6931 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6932 {
6933         static const uint8_t div_3200[] = { 16, 10,  8 };
6934         static const uint8_t div_4000[] = { 20, 12, 10 };
6935         static const uint8_t div_5333[] = { 24, 16, 14 };
6936         const uint8_t *div_table;
6937         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6938         uint16_t tmp = 0;
6939
6940         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6941
6942         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6943
6944         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6945                 goto fail;
6946
6947         switch (vco) {
6948         case 3200000:
6949                 div_table = div_3200;
6950                 break;
6951         case 4000000:
6952                 div_table = div_4000;
6953                 break;
6954         case 5333333:
6955                 div_table = div_5333;
6956                 break;
6957         default:
6958                 goto fail;
6959         }
6960
6961         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6962
6963 fail:
6964         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6965         return 200000;
6966 }
6967
6968 static int g33_get_display_clock_speed(struct drm_device *dev)
6969 {
6970         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6971         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6972         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6973         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6974         const uint8_t *div_table;
6975         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6976         uint16_t tmp = 0;
6977
6978         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6979
6980         cdclk_sel = (tmp >> 4) & 0x7;
6981
6982         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6983                 goto fail;
6984
6985         switch (vco) {
6986         case 3200000:
6987                 div_table = div_3200;
6988                 break;
6989         case 4000000:
6990                 div_table = div_4000;
6991                 break;
6992         case 4800000:
6993                 div_table = div_4800;
6994                 break;
6995         case 5333333:
6996                 div_table = div_5333;
6997                 break;
6998         default:
6999                 goto fail;
7000         }
7001
7002         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7003
7004 fail:
7005         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7006         return 190476;
7007 }
7008
7009 static void
7010 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7011 {
7012         while (*num > DATA_LINK_M_N_MASK ||
7013                *den > DATA_LINK_M_N_MASK) {
7014                 *num >>= 1;
7015                 *den >>= 1;
7016         }
7017 }
7018
7019 static void compute_m_n(unsigned int m, unsigned int n,
7020                         uint32_t *ret_m, uint32_t *ret_n)
7021 {
7022         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7023         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7024         intel_reduce_m_n_ratio(ret_m, ret_n);
7025 }
7026
7027 void
7028 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7029                        int pixel_clock, int link_clock,
7030                        struct intel_link_m_n *m_n)
7031 {
7032         m_n->tu = 64;
7033
7034         compute_m_n(bits_per_pixel * pixel_clock,
7035                     link_clock * nlanes * 8,
7036                     &m_n->gmch_m, &m_n->gmch_n);
7037
7038         compute_m_n(pixel_clock, link_clock,
7039                     &m_n->link_m, &m_n->link_n);
7040 }
7041
7042 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7043 {
7044         if (i915.panel_use_ssc >= 0)
7045                 return i915.panel_use_ssc != 0;
7046         return dev_priv->vbt.lvds_use_ssc
7047                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7048 }
7049
7050 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7051 {
7052         return (1 << dpll->n) << 16 | dpll->m2;
7053 }
7054
7055 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7056 {
7057         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7058 }
7059
7060 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7061                                      struct intel_crtc_state *crtc_state,
7062                                      intel_clock_t *reduced_clock)
7063 {
7064         struct drm_device *dev = crtc->base.dev;
7065         u32 fp, fp2 = 0;
7066
7067         if (IS_PINEVIEW(dev)) {
7068                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7069                 if (reduced_clock)
7070                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7071         } else {
7072                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7073                 if (reduced_clock)
7074                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7075         }
7076
7077         crtc_state->dpll_hw_state.fp0 = fp;
7078
7079         crtc->lowfreq_avail = false;
7080         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7081             reduced_clock) {
7082                 crtc_state->dpll_hw_state.fp1 = fp2;
7083                 crtc->lowfreq_avail = true;
7084         } else {
7085                 crtc_state->dpll_hw_state.fp1 = fp;
7086         }
7087 }
7088
7089 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7090                 pipe)
7091 {
7092         u32 reg_val;
7093
7094         /*
7095          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7096          * and set it to a reasonable value instead.
7097          */
7098         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7099         reg_val &= 0xffffff00;
7100         reg_val |= 0x00000030;
7101         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7102
7103         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7104         reg_val &= 0x8cffffff;
7105         reg_val = 0x8c000000;
7106         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7107
7108         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7109         reg_val &= 0xffffff00;
7110         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7111
7112         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7113         reg_val &= 0x00ffffff;
7114         reg_val |= 0xb0000000;
7115         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7116 }
7117
7118 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7119                                          struct intel_link_m_n *m_n)
7120 {
7121         struct drm_device *dev = crtc->base.dev;
7122         struct drm_i915_private *dev_priv = dev->dev_private;
7123         int pipe = crtc->pipe;
7124
7125         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7126         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7127         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7128         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7129 }
7130
7131 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7132                                          struct intel_link_m_n *m_n,
7133                                          struct intel_link_m_n *m2_n2)
7134 {
7135         struct drm_device *dev = crtc->base.dev;
7136         struct drm_i915_private *dev_priv = dev->dev_private;
7137         int pipe = crtc->pipe;
7138         enum transcoder transcoder = crtc->config->cpu_transcoder;
7139
7140         if (INTEL_INFO(dev)->gen >= 5) {
7141                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7142                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7143                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7144                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7145                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7146                  * for gen < 8) and if DRRS is supported (to make sure the
7147                  * registers are not unnecessarily accessed).
7148                  */
7149                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7150                         crtc->config->has_drrs) {
7151                         I915_WRITE(PIPE_DATA_M2(transcoder),
7152                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7153                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7154                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7155                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7156                 }
7157         } else {
7158                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7159                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7160                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7161                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7162         }
7163 }
7164
7165 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7166 {
7167         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7168
7169         if (m_n == M1_N1) {
7170                 dp_m_n = &crtc->config->dp_m_n;
7171                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7172         } else if (m_n == M2_N2) {
7173
7174                 /*
7175                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7176                  * needs to be programmed into M1_N1.
7177                  */
7178                 dp_m_n = &crtc->config->dp_m2_n2;
7179         } else {
7180                 DRM_ERROR("Unsupported divider value\n");
7181                 return;
7182         }
7183
7184         if (crtc->config->has_pch_encoder)
7185                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7186         else
7187                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7188 }
7189
7190 static void vlv_compute_dpll(struct intel_crtc *crtc,
7191                              struct intel_crtc_state *pipe_config)
7192 {
7193         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7194                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7195         if (crtc->pipe != PIPE_A)
7196                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7197
7198         /* DPLL not used with DSI, but still need the rest set up */
7199         if (!pipe_config->has_dsi_encoder)
7200                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7201                         DPLL_EXT_BUFFER_ENABLE_VLV;
7202
7203         pipe_config->dpll_hw_state.dpll_md =
7204                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7205 }
7206
7207 static void chv_compute_dpll(struct intel_crtc *crtc,
7208                              struct intel_crtc_state *pipe_config)
7209 {
7210         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7211                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7212         if (crtc->pipe != PIPE_A)
7213                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7214
7215         /* DPLL not used with DSI, but still need the rest set up */
7216         if (!pipe_config->has_dsi_encoder)
7217                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7218
7219         pipe_config->dpll_hw_state.dpll_md =
7220                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7221 }
7222
7223 static void vlv_prepare_pll(struct intel_crtc *crtc,
7224                             const struct intel_crtc_state *pipe_config)
7225 {
7226         struct drm_device *dev = crtc->base.dev;
7227         struct drm_i915_private *dev_priv = dev->dev_private;
7228         enum pipe pipe = crtc->pipe;
7229         u32 mdiv;
7230         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7231         u32 coreclk, reg_val;
7232
7233         /* Enable Refclk */
7234         I915_WRITE(DPLL(pipe),
7235                    pipe_config->dpll_hw_state.dpll &
7236                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7237
7238         /* No need to actually set up the DPLL with DSI */
7239         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7240                 return;
7241
7242         mutex_lock(&dev_priv->sb_lock);
7243
7244         bestn = pipe_config->dpll.n;
7245         bestm1 = pipe_config->dpll.m1;
7246         bestm2 = pipe_config->dpll.m2;
7247         bestp1 = pipe_config->dpll.p1;
7248         bestp2 = pipe_config->dpll.p2;
7249
7250         /* See eDP HDMI DPIO driver vbios notes doc */
7251
7252         /* PLL B needs special handling */
7253         if (pipe == PIPE_B)
7254                 vlv_pllb_recal_opamp(dev_priv, pipe);
7255
7256         /* Set up Tx target for periodic Rcomp update */
7257         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7258
7259         /* Disable target IRef on PLL */
7260         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7261         reg_val &= 0x00ffffff;
7262         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7263
7264         /* Disable fast lock */
7265         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7266
7267         /* Set idtafcrecal before PLL is enabled */
7268         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7269         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7270         mdiv |= ((bestn << DPIO_N_SHIFT));
7271         mdiv |= (1 << DPIO_K_SHIFT);
7272
7273         /*
7274          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7275          * but we don't support that).
7276          * Note: don't use the DAC post divider as it seems unstable.
7277          */
7278         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7279         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7280
7281         mdiv |= DPIO_ENABLE_CALIBRATION;
7282         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7283
7284         /* Set HBR and RBR LPF coefficients */
7285         if (pipe_config->port_clock == 162000 ||
7286             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7287             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7288                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7289                                  0x009f0003);
7290         else
7291                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7292                                  0x00d0000f);
7293
7294         if (pipe_config->has_dp_encoder) {
7295                 /* Use SSC source */
7296                 if (pipe == PIPE_A)
7297                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7298                                          0x0df40000);
7299                 else
7300                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7301                                          0x0df70000);
7302         } else { /* HDMI or VGA */
7303                 /* Use bend source */
7304                 if (pipe == PIPE_A)
7305                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7306                                          0x0df70000);
7307                 else
7308                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7309                                          0x0df40000);
7310         }
7311
7312         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7313         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7314         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7315             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7316                 coreclk |= 0x01000000;
7317         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7318
7319         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7320         mutex_unlock(&dev_priv->sb_lock);
7321 }
7322
7323 static void chv_prepare_pll(struct intel_crtc *crtc,
7324                             const struct intel_crtc_state *pipe_config)
7325 {
7326         struct drm_device *dev = crtc->base.dev;
7327         struct drm_i915_private *dev_priv = dev->dev_private;
7328         enum pipe pipe = crtc->pipe;
7329         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7330         u32 loopfilter, tribuf_calcntr;
7331         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7332         u32 dpio_val;
7333         int vco;
7334
7335         /* Enable Refclk and SSC */
7336         I915_WRITE(DPLL(pipe),
7337                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7338
7339         /* No need to actually set up the DPLL with DSI */
7340         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7341                 return;
7342
7343         bestn = pipe_config->dpll.n;
7344         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7345         bestm1 = pipe_config->dpll.m1;
7346         bestm2 = pipe_config->dpll.m2 >> 22;
7347         bestp1 = pipe_config->dpll.p1;
7348         bestp2 = pipe_config->dpll.p2;
7349         vco = pipe_config->dpll.vco;
7350         dpio_val = 0;
7351         loopfilter = 0;
7352
7353         mutex_lock(&dev_priv->sb_lock);
7354
7355         /* p1 and p2 divider */
7356         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7357                         5 << DPIO_CHV_S1_DIV_SHIFT |
7358                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7359                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7360                         1 << DPIO_CHV_K_DIV_SHIFT);
7361
7362         /* Feedback post-divider - m2 */
7363         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7364
7365         /* Feedback refclk divider - n and m1 */
7366         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7367                         DPIO_CHV_M1_DIV_BY_2 |
7368                         1 << DPIO_CHV_N_DIV_SHIFT);
7369
7370         /* M2 fraction division */
7371         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7372
7373         /* M2 fraction division enable */
7374         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7375         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7376         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7377         if (bestm2_frac)
7378                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7379         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7380
7381         /* Program digital lock detect threshold */
7382         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7383         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7384                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7385         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7386         if (!bestm2_frac)
7387                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7388         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7389
7390         /* Loop filter */
7391         if (vco == 5400000) {
7392                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7393                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7394                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7395                 tribuf_calcntr = 0x9;
7396         } else if (vco <= 6200000) {
7397                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7398                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7399                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7400                 tribuf_calcntr = 0x9;
7401         } else if (vco <= 6480000) {
7402                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7403                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7404                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7405                 tribuf_calcntr = 0x8;
7406         } else {
7407                 /* Not supported. Apply the same limits as in the max case */
7408                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7409                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7410                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7411                 tribuf_calcntr = 0;
7412         }
7413         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7414
7415         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7416         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7417         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7418         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7419
7420         /* AFC Recal */
7421         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7422                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7423                         DPIO_AFC_RECAL);
7424
7425         mutex_unlock(&dev_priv->sb_lock);
7426 }
7427
7428 /**
7429  * vlv_force_pll_on - forcibly enable just the PLL
7430  * @dev_priv: i915 private structure
7431  * @pipe: pipe PLL to enable
7432  * @dpll: PLL configuration
7433  *
7434  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7435  * in cases where we need the PLL enabled even when @pipe is not going to
7436  * be enabled.
7437  */
7438 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7439                      const struct dpll *dpll)
7440 {
7441         struct intel_crtc *crtc =
7442                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7443         struct intel_crtc_state *pipe_config;
7444
7445         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7446         if (!pipe_config)
7447                 return -ENOMEM;
7448
7449         pipe_config->base.crtc = &crtc->base;
7450         pipe_config->pixel_multiplier = 1;
7451         pipe_config->dpll = *dpll;
7452
7453         if (IS_CHERRYVIEW(dev)) {
7454                 chv_compute_dpll(crtc, pipe_config);
7455                 chv_prepare_pll(crtc, pipe_config);
7456                 chv_enable_pll(crtc, pipe_config);
7457         } else {
7458                 vlv_compute_dpll(crtc, pipe_config);
7459                 vlv_prepare_pll(crtc, pipe_config);
7460                 vlv_enable_pll(crtc, pipe_config);
7461         }
7462
7463         kfree(pipe_config);
7464
7465         return 0;
7466 }
7467
7468 /**
7469  * vlv_force_pll_off - forcibly disable just the PLL
7470  * @dev_priv: i915 private structure
7471  * @pipe: pipe PLL to disable
7472  *
7473  * Disable the PLL for @pipe. To be used in cases where we need
7474  * the PLL enabled even when @pipe is not going to be enabled.
7475  */
7476 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7477 {
7478         if (IS_CHERRYVIEW(dev))
7479                 chv_disable_pll(to_i915(dev), pipe);
7480         else
7481                 vlv_disable_pll(to_i915(dev), pipe);
7482 }
7483
7484 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7485                               struct intel_crtc_state *crtc_state,
7486                               intel_clock_t *reduced_clock)
7487 {
7488         struct drm_device *dev = crtc->base.dev;
7489         struct drm_i915_private *dev_priv = dev->dev_private;
7490         u32 dpll;
7491         bool is_sdvo;
7492         struct dpll *clock = &crtc_state->dpll;
7493
7494         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7495
7496         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7497                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7498
7499         dpll = DPLL_VGA_MODE_DIS;
7500
7501         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7502                 dpll |= DPLLB_MODE_LVDS;
7503         else
7504                 dpll |= DPLLB_MODE_DAC_SERIAL;
7505
7506         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7507                 dpll |= (crtc_state->pixel_multiplier - 1)
7508                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7509         }
7510
7511         if (is_sdvo)
7512                 dpll |= DPLL_SDVO_HIGH_SPEED;
7513
7514         if (crtc_state->has_dp_encoder)
7515                 dpll |= DPLL_SDVO_HIGH_SPEED;
7516
7517         /* compute bitmask from p1 value */
7518         if (IS_PINEVIEW(dev))
7519                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7520         else {
7521                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7522                 if (IS_G4X(dev) && reduced_clock)
7523                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7524         }
7525         switch (clock->p2) {
7526         case 5:
7527                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7528                 break;
7529         case 7:
7530                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7531                 break;
7532         case 10:
7533                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7534                 break;
7535         case 14:
7536                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7537                 break;
7538         }
7539         if (INTEL_INFO(dev)->gen >= 4)
7540                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7541
7542         if (crtc_state->sdvo_tv_clock)
7543                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7544         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7545                  intel_panel_use_ssc(dev_priv))
7546                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7547         else
7548                 dpll |= PLL_REF_INPUT_DREFCLK;
7549
7550         dpll |= DPLL_VCO_ENABLE;
7551         crtc_state->dpll_hw_state.dpll = dpll;
7552
7553         if (INTEL_INFO(dev)->gen >= 4) {
7554                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7555                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7556                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7557         }
7558 }
7559
7560 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7561                               struct intel_crtc_state *crtc_state,
7562                               intel_clock_t *reduced_clock)
7563 {
7564         struct drm_device *dev = crtc->base.dev;
7565         struct drm_i915_private *dev_priv = dev->dev_private;
7566         u32 dpll;
7567         struct dpll *clock = &crtc_state->dpll;
7568
7569         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7570
7571         dpll = DPLL_VGA_MODE_DIS;
7572
7573         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7574                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7575         } else {
7576                 if (clock->p1 == 2)
7577                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7578                 else
7579                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7580                 if (clock->p2 == 4)
7581                         dpll |= PLL_P2_DIVIDE_BY_4;
7582         }
7583
7584         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7585                 dpll |= DPLL_DVO_2X_MODE;
7586
7587         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7588             intel_panel_use_ssc(dev_priv))
7589                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7590         else
7591                 dpll |= PLL_REF_INPUT_DREFCLK;
7592
7593         dpll |= DPLL_VCO_ENABLE;
7594         crtc_state->dpll_hw_state.dpll = dpll;
7595 }
7596
7597 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7598 {
7599         struct drm_device *dev = intel_crtc->base.dev;
7600         struct drm_i915_private *dev_priv = dev->dev_private;
7601         enum pipe pipe = intel_crtc->pipe;
7602         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7603         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7604         uint32_t crtc_vtotal, crtc_vblank_end;
7605         int vsyncshift = 0;
7606
7607         /* We need to be careful not to changed the adjusted mode, for otherwise
7608          * the hw state checker will get angry at the mismatch. */
7609         crtc_vtotal = adjusted_mode->crtc_vtotal;
7610         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7611
7612         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7613                 /* the chip adds 2 halflines automatically */
7614                 crtc_vtotal -= 1;
7615                 crtc_vblank_end -= 1;
7616
7617                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7618                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7619                 else
7620                         vsyncshift = adjusted_mode->crtc_hsync_start -
7621                                 adjusted_mode->crtc_htotal / 2;
7622                 if (vsyncshift < 0)
7623                         vsyncshift += adjusted_mode->crtc_htotal;
7624         }
7625
7626         if (INTEL_INFO(dev)->gen > 3)
7627                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7628
7629         I915_WRITE(HTOTAL(cpu_transcoder),
7630                    (adjusted_mode->crtc_hdisplay - 1) |
7631                    ((adjusted_mode->crtc_htotal - 1) << 16));
7632         I915_WRITE(HBLANK(cpu_transcoder),
7633                    (adjusted_mode->crtc_hblank_start - 1) |
7634                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7635         I915_WRITE(HSYNC(cpu_transcoder),
7636                    (adjusted_mode->crtc_hsync_start - 1) |
7637                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7638
7639         I915_WRITE(VTOTAL(cpu_transcoder),
7640                    (adjusted_mode->crtc_vdisplay - 1) |
7641                    ((crtc_vtotal - 1) << 16));
7642         I915_WRITE(VBLANK(cpu_transcoder),
7643                    (adjusted_mode->crtc_vblank_start - 1) |
7644                    ((crtc_vblank_end - 1) << 16));
7645         I915_WRITE(VSYNC(cpu_transcoder),
7646                    (adjusted_mode->crtc_vsync_start - 1) |
7647                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7648
7649         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7650          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7651          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7652          * bits. */
7653         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7654             (pipe == PIPE_B || pipe == PIPE_C))
7655                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7656
7657 }
7658
7659 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7660 {
7661         struct drm_device *dev = intel_crtc->base.dev;
7662         struct drm_i915_private *dev_priv = dev->dev_private;
7663         enum pipe pipe = intel_crtc->pipe;
7664
7665         /* pipesrc controls the size that is scaled from, which should
7666          * always be the user's requested size.
7667          */
7668         I915_WRITE(PIPESRC(pipe),
7669                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7670                    (intel_crtc->config->pipe_src_h - 1));
7671 }
7672
7673 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7674                                    struct intel_crtc_state *pipe_config)
7675 {
7676         struct drm_device *dev = crtc->base.dev;
7677         struct drm_i915_private *dev_priv = dev->dev_private;
7678         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7679         uint32_t tmp;
7680
7681         tmp = I915_READ(HTOTAL(cpu_transcoder));
7682         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7683         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7684         tmp = I915_READ(HBLANK(cpu_transcoder));
7685         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7686         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7687         tmp = I915_READ(HSYNC(cpu_transcoder));
7688         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7689         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7690
7691         tmp = I915_READ(VTOTAL(cpu_transcoder));
7692         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7693         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7694         tmp = I915_READ(VBLANK(cpu_transcoder));
7695         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7696         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7697         tmp = I915_READ(VSYNC(cpu_transcoder));
7698         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7699         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7700
7701         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7702                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7703                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7704                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7705         }
7706 }
7707
7708 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7709                                     struct intel_crtc_state *pipe_config)
7710 {
7711         struct drm_device *dev = crtc->base.dev;
7712         struct drm_i915_private *dev_priv = dev->dev_private;
7713         u32 tmp;
7714
7715         tmp = I915_READ(PIPESRC(crtc->pipe));
7716         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7717         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7718
7719         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7720         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7721 }
7722
7723 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7724                                  struct intel_crtc_state *pipe_config)
7725 {
7726         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7727         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7728         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7729         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7730
7731         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7732         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7733         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7734         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7735
7736         mode->flags = pipe_config->base.adjusted_mode.flags;
7737         mode->type = DRM_MODE_TYPE_DRIVER;
7738
7739         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7740         mode->flags |= pipe_config->base.adjusted_mode.flags;
7741
7742         mode->hsync = drm_mode_hsync(mode);
7743         mode->vrefresh = drm_mode_vrefresh(mode);
7744         drm_mode_set_name(mode);
7745 }
7746
7747 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7748 {
7749         struct drm_device *dev = intel_crtc->base.dev;
7750         struct drm_i915_private *dev_priv = dev->dev_private;
7751         uint32_t pipeconf;
7752
7753         pipeconf = 0;
7754
7755         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7756             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7757                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7758
7759         if (intel_crtc->config->double_wide)
7760                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7761
7762         /* only g4x and later have fancy bpc/dither controls */
7763         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7764                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7765                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7766                         pipeconf |= PIPECONF_DITHER_EN |
7767                                     PIPECONF_DITHER_TYPE_SP;
7768
7769                 switch (intel_crtc->config->pipe_bpp) {
7770                 case 18:
7771                         pipeconf |= PIPECONF_6BPC;
7772                         break;
7773                 case 24:
7774                         pipeconf |= PIPECONF_8BPC;
7775                         break;
7776                 case 30:
7777                         pipeconf |= PIPECONF_10BPC;
7778                         break;
7779                 default:
7780                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7781                         BUG();
7782                 }
7783         }
7784
7785         if (HAS_PIPE_CXSR(dev)) {
7786                 if (intel_crtc->lowfreq_avail) {
7787                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7788                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7789                 } else {
7790                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7791                 }
7792         }
7793
7794         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7795                 if (INTEL_INFO(dev)->gen < 4 ||
7796                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7797                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7798                 else
7799                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7800         } else
7801                 pipeconf |= PIPECONF_PROGRESSIVE;
7802
7803         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7804              intel_crtc->config->limited_color_range)
7805                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7806
7807         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7808         POSTING_READ(PIPECONF(intel_crtc->pipe));
7809 }
7810
7811 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7812                                    struct intel_crtc_state *crtc_state)
7813 {
7814         struct drm_device *dev = crtc->base.dev;
7815         struct drm_i915_private *dev_priv = dev->dev_private;
7816         const intel_limit_t *limit;
7817         int refclk = 48000;
7818
7819         memset(&crtc_state->dpll_hw_state, 0,
7820                sizeof(crtc_state->dpll_hw_state));
7821
7822         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7823                 if (intel_panel_use_ssc(dev_priv)) {
7824                         refclk = dev_priv->vbt.lvds_ssc_freq;
7825                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7826                 }
7827
7828                 limit = &intel_limits_i8xx_lvds;
7829         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7830                 limit = &intel_limits_i8xx_dvo;
7831         } else {
7832                 limit = &intel_limits_i8xx_dac;
7833         }
7834
7835         if (!crtc_state->clock_set &&
7836             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7837                                  refclk, NULL, &crtc_state->dpll)) {
7838                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7839                 return -EINVAL;
7840         }
7841
7842         i8xx_compute_dpll(crtc, crtc_state, NULL);
7843
7844         return 0;
7845 }
7846
7847 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7848                                   struct intel_crtc_state *crtc_state)
7849 {
7850         struct drm_device *dev = crtc->base.dev;
7851         struct drm_i915_private *dev_priv = dev->dev_private;
7852         const intel_limit_t *limit;
7853         int refclk = 96000;
7854
7855         memset(&crtc_state->dpll_hw_state, 0,
7856                sizeof(crtc_state->dpll_hw_state));
7857
7858         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7859                 if (intel_panel_use_ssc(dev_priv)) {
7860                         refclk = dev_priv->vbt.lvds_ssc_freq;
7861                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7862                 }
7863
7864                 if (intel_is_dual_link_lvds(dev))
7865                         limit = &intel_limits_g4x_dual_channel_lvds;
7866                 else
7867                         limit = &intel_limits_g4x_single_channel_lvds;
7868         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7869                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7870                 limit = &intel_limits_g4x_hdmi;
7871         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7872                 limit = &intel_limits_g4x_sdvo;
7873         } else {
7874                 /* The option is for other outputs */
7875                 limit = &intel_limits_i9xx_sdvo;
7876         }
7877
7878         if (!crtc_state->clock_set &&
7879             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7880                                 refclk, NULL, &crtc_state->dpll)) {
7881                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7882                 return -EINVAL;
7883         }
7884
7885         i9xx_compute_dpll(crtc, crtc_state, NULL);
7886
7887         return 0;
7888 }
7889
7890 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7891                                   struct intel_crtc_state *crtc_state)
7892 {
7893         struct drm_device *dev = crtc->base.dev;
7894         struct drm_i915_private *dev_priv = dev->dev_private;
7895         const intel_limit_t *limit;
7896         int refclk = 96000;
7897
7898         memset(&crtc_state->dpll_hw_state, 0,
7899                sizeof(crtc_state->dpll_hw_state));
7900
7901         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7902                 if (intel_panel_use_ssc(dev_priv)) {
7903                         refclk = dev_priv->vbt.lvds_ssc_freq;
7904                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7905                 }
7906
7907                 limit = &intel_limits_pineview_lvds;
7908         } else {
7909                 limit = &intel_limits_pineview_sdvo;
7910         }
7911
7912         if (!crtc_state->clock_set &&
7913             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7914                                 refclk, NULL, &crtc_state->dpll)) {
7915                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7916                 return -EINVAL;
7917         }
7918
7919         i9xx_compute_dpll(crtc, crtc_state, NULL);
7920
7921         return 0;
7922 }
7923
7924 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7925                                    struct intel_crtc_state *crtc_state)
7926 {
7927         struct drm_device *dev = crtc->base.dev;
7928         struct drm_i915_private *dev_priv = dev->dev_private;
7929         const intel_limit_t *limit;
7930         int refclk = 96000;
7931
7932         memset(&crtc_state->dpll_hw_state, 0,
7933                sizeof(crtc_state->dpll_hw_state));
7934
7935         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7936                 if (intel_panel_use_ssc(dev_priv)) {
7937                         refclk = dev_priv->vbt.lvds_ssc_freq;
7938                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7939                 }
7940
7941                 limit = &intel_limits_i9xx_lvds;
7942         } else {
7943                 limit = &intel_limits_i9xx_sdvo;
7944         }
7945
7946         if (!crtc_state->clock_set &&
7947             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7948                                  refclk, NULL, &crtc_state->dpll)) {
7949                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7950                 return -EINVAL;
7951         }
7952
7953         i9xx_compute_dpll(crtc, crtc_state, NULL);
7954
7955         return 0;
7956 }
7957
7958 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7959                                   struct intel_crtc_state *crtc_state)
7960 {
7961         int refclk = 100000;
7962         const intel_limit_t *limit = &intel_limits_chv;
7963
7964         memset(&crtc_state->dpll_hw_state, 0,
7965                sizeof(crtc_state->dpll_hw_state));
7966
7967         if (!crtc_state->clock_set &&
7968             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7969                                 refclk, NULL, &crtc_state->dpll)) {
7970                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7971                 return -EINVAL;
7972         }
7973
7974         chv_compute_dpll(crtc, crtc_state);
7975
7976         return 0;
7977 }
7978
7979 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7980                                   struct intel_crtc_state *crtc_state)
7981 {
7982         int refclk = 100000;
7983         const intel_limit_t *limit = &intel_limits_vlv;
7984
7985         memset(&crtc_state->dpll_hw_state, 0,
7986                sizeof(crtc_state->dpll_hw_state));
7987
7988         if (!crtc_state->clock_set &&
7989             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7990                                 refclk, NULL, &crtc_state->dpll)) {
7991                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7992                 return -EINVAL;
7993         }
7994
7995         vlv_compute_dpll(crtc, crtc_state);
7996
7997         return 0;
7998 }
7999
8000 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8001                                  struct intel_crtc_state *pipe_config)
8002 {
8003         struct drm_device *dev = crtc->base.dev;
8004         struct drm_i915_private *dev_priv = dev->dev_private;
8005         uint32_t tmp;
8006
8007         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8008                 return;
8009
8010         tmp = I915_READ(PFIT_CONTROL);
8011         if (!(tmp & PFIT_ENABLE))
8012                 return;
8013
8014         /* Check whether the pfit is attached to our pipe. */
8015         if (INTEL_INFO(dev)->gen < 4) {
8016                 if (crtc->pipe != PIPE_B)
8017                         return;
8018         } else {
8019                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8020                         return;
8021         }
8022
8023         pipe_config->gmch_pfit.control = tmp;
8024         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8025 }
8026
8027 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8028                                struct intel_crtc_state *pipe_config)
8029 {
8030         struct drm_device *dev = crtc->base.dev;
8031         struct drm_i915_private *dev_priv = dev->dev_private;
8032         int pipe = pipe_config->cpu_transcoder;
8033         intel_clock_t clock;
8034         u32 mdiv;
8035         int refclk = 100000;
8036
8037         /* In case of DSI, DPLL will not be used */
8038         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8039                 return;
8040
8041         mutex_lock(&dev_priv->sb_lock);
8042         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8043         mutex_unlock(&dev_priv->sb_lock);
8044
8045         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8046         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8047         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8048         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8049         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8050
8051         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8052 }
8053
8054 static void
8055 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8056                               struct intel_initial_plane_config *plane_config)
8057 {
8058         struct drm_device *dev = crtc->base.dev;
8059         struct drm_i915_private *dev_priv = dev->dev_private;
8060         u32 val, base, offset;
8061         int pipe = crtc->pipe, plane = crtc->plane;
8062         int fourcc, pixel_format;
8063         unsigned int aligned_height;
8064         struct drm_framebuffer *fb;
8065         struct intel_framebuffer *intel_fb;
8066
8067         val = I915_READ(DSPCNTR(plane));
8068         if (!(val & DISPLAY_PLANE_ENABLE))
8069                 return;
8070
8071         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8072         if (!intel_fb) {
8073                 DRM_DEBUG_KMS("failed to alloc fb\n");
8074                 return;
8075         }
8076
8077         fb = &intel_fb->base;
8078
8079         if (INTEL_INFO(dev)->gen >= 4) {
8080                 if (val & DISPPLANE_TILED) {
8081                         plane_config->tiling = I915_TILING_X;
8082                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8083                 }
8084         }
8085
8086         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8087         fourcc = i9xx_format_to_fourcc(pixel_format);
8088         fb->pixel_format = fourcc;
8089         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8090
8091         if (INTEL_INFO(dev)->gen >= 4) {
8092                 if (plane_config->tiling)
8093                         offset = I915_READ(DSPTILEOFF(plane));
8094                 else
8095                         offset = I915_READ(DSPLINOFF(plane));
8096                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8097         } else {
8098                 base = I915_READ(DSPADDR(plane));
8099         }
8100         plane_config->base = base;
8101
8102         val = I915_READ(PIPESRC(pipe));
8103         fb->width = ((val >> 16) & 0xfff) + 1;
8104         fb->height = ((val >> 0) & 0xfff) + 1;
8105
8106         val = I915_READ(DSPSTRIDE(pipe));
8107         fb->pitches[0] = val & 0xffffffc0;
8108
8109         aligned_height = intel_fb_align_height(dev, fb->height,
8110                                                fb->pixel_format,
8111                                                fb->modifier[0]);
8112
8113         plane_config->size = fb->pitches[0] * aligned_height;
8114
8115         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8116                       pipe_name(pipe), plane, fb->width, fb->height,
8117                       fb->bits_per_pixel, base, fb->pitches[0],
8118                       plane_config->size);
8119
8120         plane_config->fb = intel_fb;
8121 }
8122
8123 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8124                                struct intel_crtc_state *pipe_config)
8125 {
8126         struct drm_device *dev = crtc->base.dev;
8127         struct drm_i915_private *dev_priv = dev->dev_private;
8128         int pipe = pipe_config->cpu_transcoder;
8129         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8130         intel_clock_t clock;
8131         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8132         int refclk = 100000;
8133
8134         /* In case of DSI, DPLL will not be used */
8135         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8136                 return;
8137
8138         mutex_lock(&dev_priv->sb_lock);
8139         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8140         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8141         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8142         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8143         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8144         mutex_unlock(&dev_priv->sb_lock);
8145
8146         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8147         clock.m2 = (pll_dw0 & 0xff) << 22;
8148         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8149                 clock.m2 |= pll_dw2 & 0x3fffff;
8150         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8151         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8152         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8153
8154         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8155 }
8156
8157 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8158                                  struct intel_crtc_state *pipe_config)
8159 {
8160         struct drm_device *dev = crtc->base.dev;
8161         struct drm_i915_private *dev_priv = dev->dev_private;
8162         enum intel_display_power_domain power_domain;
8163         uint32_t tmp;
8164         bool ret;
8165
8166         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8167         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8168                 return false;
8169
8170         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8171         pipe_config->shared_dpll = NULL;
8172
8173         ret = false;
8174
8175         tmp = I915_READ(PIPECONF(crtc->pipe));
8176         if (!(tmp & PIPECONF_ENABLE))
8177                 goto out;
8178
8179         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8180                 switch (tmp & PIPECONF_BPC_MASK) {
8181                 case PIPECONF_6BPC:
8182                         pipe_config->pipe_bpp = 18;
8183                         break;
8184                 case PIPECONF_8BPC:
8185                         pipe_config->pipe_bpp = 24;
8186                         break;
8187                 case PIPECONF_10BPC:
8188                         pipe_config->pipe_bpp = 30;
8189                         break;
8190                 default:
8191                         break;
8192                 }
8193         }
8194
8195         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8196             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8197                 pipe_config->limited_color_range = true;
8198
8199         if (INTEL_INFO(dev)->gen < 4)
8200                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8201
8202         intel_get_pipe_timings(crtc, pipe_config);
8203         intel_get_pipe_src_size(crtc, pipe_config);
8204
8205         i9xx_get_pfit_config(crtc, pipe_config);
8206
8207         if (INTEL_INFO(dev)->gen >= 4) {
8208                 /* No way to read it out on pipes B and C */
8209                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8210                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8211                 else
8212                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8213                 pipe_config->pixel_multiplier =
8214                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8215                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8216                 pipe_config->dpll_hw_state.dpll_md = tmp;
8217         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8218                 tmp = I915_READ(DPLL(crtc->pipe));
8219                 pipe_config->pixel_multiplier =
8220                         ((tmp & SDVO_MULTIPLIER_MASK)
8221                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8222         } else {
8223                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8224                  * port and will be fixed up in the encoder->get_config
8225                  * function. */
8226                 pipe_config->pixel_multiplier = 1;
8227         }
8228         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8229         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8230                 /*
8231                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8232                  * on 830. Filter it out here so that we don't
8233                  * report errors due to that.
8234                  */
8235                 if (IS_I830(dev))
8236                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8237
8238                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8239                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8240         } else {
8241                 /* Mask out read-only status bits. */
8242                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8243                                                      DPLL_PORTC_READY_MASK |
8244                                                      DPLL_PORTB_READY_MASK);
8245         }
8246
8247         if (IS_CHERRYVIEW(dev))
8248                 chv_crtc_clock_get(crtc, pipe_config);
8249         else if (IS_VALLEYVIEW(dev))
8250                 vlv_crtc_clock_get(crtc, pipe_config);
8251         else
8252                 i9xx_crtc_clock_get(crtc, pipe_config);
8253
8254         /*
8255          * Normally the dotclock is filled in by the encoder .get_config()
8256          * but in case the pipe is enabled w/o any ports we need a sane
8257          * default.
8258          */
8259         pipe_config->base.adjusted_mode.crtc_clock =
8260                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8261
8262         ret = true;
8263
8264 out:
8265         intel_display_power_put(dev_priv, power_domain);
8266
8267         return ret;
8268 }
8269
8270 static void ironlake_init_pch_refclk(struct drm_device *dev)
8271 {
8272         struct drm_i915_private *dev_priv = dev->dev_private;
8273         struct intel_encoder *encoder;
8274         u32 val, final;
8275         bool has_lvds = false;
8276         bool has_cpu_edp = false;
8277         bool has_panel = false;
8278         bool has_ck505 = false;
8279         bool can_ssc = false;
8280
8281         /* We need to take the global config into account */
8282         for_each_intel_encoder(dev, encoder) {
8283                 switch (encoder->type) {
8284                 case INTEL_OUTPUT_LVDS:
8285                         has_panel = true;
8286                         has_lvds = true;
8287                         break;
8288                 case INTEL_OUTPUT_EDP:
8289                         has_panel = true;
8290                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8291                                 has_cpu_edp = true;
8292                         break;
8293                 default:
8294                         break;
8295                 }
8296         }
8297
8298         if (HAS_PCH_IBX(dev)) {
8299                 has_ck505 = dev_priv->vbt.display_clock_mode;
8300                 can_ssc = has_ck505;
8301         } else {
8302                 has_ck505 = false;
8303                 can_ssc = true;
8304         }
8305
8306         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8307                       has_panel, has_lvds, has_ck505);
8308
8309         /* Ironlake: try to setup display ref clock before DPLL
8310          * enabling. This is only under driver's control after
8311          * PCH B stepping, previous chipset stepping should be
8312          * ignoring this setting.
8313          */
8314         val = I915_READ(PCH_DREF_CONTROL);
8315
8316         /* As we must carefully and slowly disable/enable each source in turn,
8317          * compute the final state we want first and check if we need to
8318          * make any changes at all.
8319          */
8320         final = val;
8321         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8322         if (has_ck505)
8323                 final |= DREF_NONSPREAD_CK505_ENABLE;
8324         else
8325                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8326
8327         final &= ~DREF_SSC_SOURCE_MASK;
8328         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8329         final &= ~DREF_SSC1_ENABLE;
8330
8331         if (has_panel) {
8332                 final |= DREF_SSC_SOURCE_ENABLE;
8333
8334                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8335                         final |= DREF_SSC1_ENABLE;
8336
8337                 if (has_cpu_edp) {
8338                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8339                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8340                         else
8341                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8342                 } else
8343                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8344         } else {
8345                 final |= DREF_SSC_SOURCE_DISABLE;
8346                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8347         }
8348
8349         if (final == val)
8350                 return;
8351
8352         /* Always enable nonspread source */
8353         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8354
8355         if (has_ck505)
8356                 val |= DREF_NONSPREAD_CK505_ENABLE;
8357         else
8358                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8359
8360         if (has_panel) {
8361                 val &= ~DREF_SSC_SOURCE_MASK;
8362                 val |= DREF_SSC_SOURCE_ENABLE;
8363
8364                 /* SSC must be turned on before enabling the CPU output  */
8365                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8366                         DRM_DEBUG_KMS("Using SSC on panel\n");
8367                         val |= DREF_SSC1_ENABLE;
8368                 } else
8369                         val &= ~DREF_SSC1_ENABLE;
8370
8371                 /* Get SSC going before enabling the outputs */
8372                 I915_WRITE(PCH_DREF_CONTROL, val);
8373                 POSTING_READ(PCH_DREF_CONTROL);
8374                 udelay(200);
8375
8376                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8377
8378                 /* Enable CPU source on CPU attached eDP */
8379                 if (has_cpu_edp) {
8380                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8381                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8382                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8383                         } else
8384                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8385                 } else
8386                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8387
8388                 I915_WRITE(PCH_DREF_CONTROL, val);
8389                 POSTING_READ(PCH_DREF_CONTROL);
8390                 udelay(200);
8391         } else {
8392                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8393
8394                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8395
8396                 /* Turn off CPU output */
8397                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8398
8399                 I915_WRITE(PCH_DREF_CONTROL, val);
8400                 POSTING_READ(PCH_DREF_CONTROL);
8401                 udelay(200);
8402
8403                 /* Turn off the SSC source */
8404                 val &= ~DREF_SSC_SOURCE_MASK;
8405                 val |= DREF_SSC_SOURCE_DISABLE;
8406
8407                 /* Turn off SSC1 */
8408                 val &= ~DREF_SSC1_ENABLE;
8409
8410                 I915_WRITE(PCH_DREF_CONTROL, val);
8411                 POSTING_READ(PCH_DREF_CONTROL);
8412                 udelay(200);
8413         }
8414
8415         BUG_ON(val != final);
8416 }
8417
8418 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8419 {
8420         uint32_t tmp;
8421
8422         tmp = I915_READ(SOUTH_CHICKEN2);
8423         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8424         I915_WRITE(SOUTH_CHICKEN2, tmp);
8425
8426         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8427                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8428                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8429
8430         tmp = I915_READ(SOUTH_CHICKEN2);
8431         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8432         I915_WRITE(SOUTH_CHICKEN2, tmp);
8433
8434         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8435                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8436                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8437 }
8438
8439 /* WaMPhyProgramming:hsw */
8440 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8441 {
8442         uint32_t tmp;
8443
8444         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8445         tmp &= ~(0xFF << 24);
8446         tmp |= (0x12 << 24);
8447         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8448
8449         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8450         tmp |= (1 << 11);
8451         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8452
8453         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8454         tmp |= (1 << 11);
8455         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8456
8457         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8458         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8459         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8460
8461         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8462         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8463         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8464
8465         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8466         tmp &= ~(7 << 13);
8467         tmp |= (5 << 13);
8468         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8469
8470         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8471         tmp &= ~(7 << 13);
8472         tmp |= (5 << 13);
8473         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8474
8475         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8476         tmp &= ~0xFF;
8477         tmp |= 0x1C;
8478         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8479
8480         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8481         tmp &= ~0xFF;
8482         tmp |= 0x1C;
8483         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8484
8485         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8486         tmp &= ~(0xFF << 16);
8487         tmp |= (0x1C << 16);
8488         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8489
8490         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8491         tmp &= ~(0xFF << 16);
8492         tmp |= (0x1C << 16);
8493         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8494
8495         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8496         tmp |= (1 << 27);
8497         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8498
8499         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8500         tmp |= (1 << 27);
8501         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8502
8503         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8504         tmp &= ~(0xF << 28);
8505         tmp |= (4 << 28);
8506         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8507
8508         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8509         tmp &= ~(0xF << 28);
8510         tmp |= (4 << 28);
8511         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8512 }
8513
8514 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8515  * Programming" based on the parameters passed:
8516  * - Sequence to enable CLKOUT_DP
8517  * - Sequence to enable CLKOUT_DP without spread
8518  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8519  */
8520 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8521                                  bool with_fdi)
8522 {
8523         struct drm_i915_private *dev_priv = dev->dev_private;
8524         uint32_t reg, tmp;
8525
8526         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8527                 with_spread = true;
8528         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8529                 with_fdi = false;
8530
8531         mutex_lock(&dev_priv->sb_lock);
8532
8533         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8534         tmp &= ~SBI_SSCCTL_DISABLE;
8535         tmp |= SBI_SSCCTL_PATHALT;
8536         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8537
8538         udelay(24);
8539
8540         if (with_spread) {
8541                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8542                 tmp &= ~SBI_SSCCTL_PATHALT;
8543                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8544
8545                 if (with_fdi) {
8546                         lpt_reset_fdi_mphy(dev_priv);
8547                         lpt_program_fdi_mphy(dev_priv);
8548                 }
8549         }
8550
8551         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8552         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8553         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8554         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8555
8556         mutex_unlock(&dev_priv->sb_lock);
8557 }
8558
8559 /* Sequence to disable CLKOUT_DP */
8560 static void lpt_disable_clkout_dp(struct drm_device *dev)
8561 {
8562         struct drm_i915_private *dev_priv = dev->dev_private;
8563         uint32_t reg, tmp;
8564
8565         mutex_lock(&dev_priv->sb_lock);
8566
8567         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8568         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8569         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8570         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8571
8572         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8573         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8574                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8575                         tmp |= SBI_SSCCTL_PATHALT;
8576                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8577                         udelay(32);
8578                 }
8579                 tmp |= SBI_SSCCTL_DISABLE;
8580                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8581         }
8582
8583         mutex_unlock(&dev_priv->sb_lock);
8584 }
8585
8586 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8587
8588 static const uint16_t sscdivintphase[] = {
8589         [BEND_IDX( 50)] = 0x3B23,
8590         [BEND_IDX( 45)] = 0x3B23,
8591         [BEND_IDX( 40)] = 0x3C23,
8592         [BEND_IDX( 35)] = 0x3C23,
8593         [BEND_IDX( 30)] = 0x3D23,
8594         [BEND_IDX( 25)] = 0x3D23,
8595         [BEND_IDX( 20)] = 0x3E23,
8596         [BEND_IDX( 15)] = 0x3E23,
8597         [BEND_IDX( 10)] = 0x3F23,
8598         [BEND_IDX(  5)] = 0x3F23,
8599         [BEND_IDX(  0)] = 0x0025,
8600         [BEND_IDX( -5)] = 0x0025,
8601         [BEND_IDX(-10)] = 0x0125,
8602         [BEND_IDX(-15)] = 0x0125,
8603         [BEND_IDX(-20)] = 0x0225,
8604         [BEND_IDX(-25)] = 0x0225,
8605         [BEND_IDX(-30)] = 0x0325,
8606         [BEND_IDX(-35)] = 0x0325,
8607         [BEND_IDX(-40)] = 0x0425,
8608         [BEND_IDX(-45)] = 0x0425,
8609         [BEND_IDX(-50)] = 0x0525,
8610 };
8611
8612 /*
8613  * Bend CLKOUT_DP
8614  * steps -50 to 50 inclusive, in steps of 5
8615  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8616  * change in clock period = -(steps / 10) * 5.787 ps
8617  */
8618 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8619 {
8620         uint32_t tmp;
8621         int idx = BEND_IDX(steps);
8622
8623         if (WARN_ON(steps % 5 != 0))
8624                 return;
8625
8626         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8627                 return;
8628
8629         mutex_lock(&dev_priv->sb_lock);
8630
8631         if (steps % 10 != 0)
8632                 tmp = 0xAAAAAAAB;
8633         else
8634                 tmp = 0x00000000;
8635         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8636
8637         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8638         tmp &= 0xffff0000;
8639         tmp |= sscdivintphase[idx];
8640         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8641
8642         mutex_unlock(&dev_priv->sb_lock);
8643 }
8644
8645 #undef BEND_IDX
8646
8647 static void lpt_init_pch_refclk(struct drm_device *dev)
8648 {
8649         struct intel_encoder *encoder;
8650         bool has_vga = false;
8651
8652         for_each_intel_encoder(dev, encoder) {
8653                 switch (encoder->type) {
8654                 case INTEL_OUTPUT_ANALOG:
8655                         has_vga = true;
8656                         break;
8657                 default:
8658                         break;
8659                 }
8660         }
8661
8662         if (has_vga) {
8663                 lpt_bend_clkout_dp(to_i915(dev), 0);
8664                 lpt_enable_clkout_dp(dev, true, true);
8665         } else {
8666                 lpt_disable_clkout_dp(dev);
8667         }
8668 }
8669
8670 /*
8671  * Initialize reference clocks when the driver loads
8672  */
8673 void intel_init_pch_refclk(struct drm_device *dev)
8674 {
8675         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8676                 ironlake_init_pch_refclk(dev);
8677         else if (HAS_PCH_LPT(dev))
8678                 lpt_init_pch_refclk(dev);
8679 }
8680
8681 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8682 {
8683         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8684         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8685         int pipe = intel_crtc->pipe;
8686         uint32_t val;
8687
8688         val = 0;
8689
8690         switch (intel_crtc->config->pipe_bpp) {
8691         case 18:
8692                 val |= PIPECONF_6BPC;
8693                 break;
8694         case 24:
8695                 val |= PIPECONF_8BPC;
8696                 break;
8697         case 30:
8698                 val |= PIPECONF_10BPC;
8699                 break;
8700         case 36:
8701                 val |= PIPECONF_12BPC;
8702                 break;
8703         default:
8704                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8705                 BUG();
8706         }
8707
8708         if (intel_crtc->config->dither)
8709                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8710
8711         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8712                 val |= PIPECONF_INTERLACED_ILK;
8713         else
8714                 val |= PIPECONF_PROGRESSIVE;
8715
8716         if (intel_crtc->config->limited_color_range)
8717                 val |= PIPECONF_COLOR_RANGE_SELECT;
8718
8719         I915_WRITE(PIPECONF(pipe), val);
8720         POSTING_READ(PIPECONF(pipe));
8721 }
8722
8723 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8724 {
8725         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8727         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8728         u32 val = 0;
8729
8730         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8731                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8732
8733         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8734                 val |= PIPECONF_INTERLACED_ILK;
8735         else
8736                 val |= PIPECONF_PROGRESSIVE;
8737
8738         I915_WRITE(PIPECONF(cpu_transcoder), val);
8739         POSTING_READ(PIPECONF(cpu_transcoder));
8740 }
8741
8742 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8743 {
8744         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8746
8747         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8748                 u32 val = 0;
8749
8750                 switch (intel_crtc->config->pipe_bpp) {
8751                 case 18:
8752                         val |= PIPEMISC_DITHER_6_BPC;
8753                         break;
8754                 case 24:
8755                         val |= PIPEMISC_DITHER_8_BPC;
8756                         break;
8757                 case 30:
8758                         val |= PIPEMISC_DITHER_10_BPC;
8759                         break;
8760                 case 36:
8761                         val |= PIPEMISC_DITHER_12_BPC;
8762                         break;
8763                 default:
8764                         /* Case prevented by pipe_config_set_bpp. */
8765                         BUG();
8766                 }
8767
8768                 if (intel_crtc->config->dither)
8769                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8770
8771                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8772         }
8773 }
8774
8775 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8776 {
8777         /*
8778          * Account for spread spectrum to avoid
8779          * oversubscribing the link. Max center spread
8780          * is 2.5%; use 5% for safety's sake.
8781          */
8782         u32 bps = target_clock * bpp * 21 / 20;
8783         return DIV_ROUND_UP(bps, link_bw * 8);
8784 }
8785
8786 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8787 {
8788         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8789 }
8790
8791 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8792                                   struct intel_crtc_state *crtc_state,
8793                                   intel_clock_t *reduced_clock)
8794 {
8795         struct drm_crtc *crtc = &intel_crtc->base;
8796         struct drm_device *dev = crtc->dev;
8797         struct drm_i915_private *dev_priv = dev->dev_private;
8798         struct drm_atomic_state *state = crtc_state->base.state;
8799         struct drm_connector *connector;
8800         struct drm_connector_state *connector_state;
8801         struct intel_encoder *encoder;
8802         u32 dpll, fp, fp2;
8803         int factor, i;
8804         bool is_lvds = false, is_sdvo = false;
8805
8806         for_each_connector_in_state(state, connector, connector_state, i) {
8807                 if (connector_state->crtc != crtc_state->base.crtc)
8808                         continue;
8809
8810                 encoder = to_intel_encoder(connector_state->best_encoder);
8811
8812                 switch (encoder->type) {
8813                 case INTEL_OUTPUT_LVDS:
8814                         is_lvds = true;
8815                         break;
8816                 case INTEL_OUTPUT_SDVO:
8817                 case INTEL_OUTPUT_HDMI:
8818                         is_sdvo = true;
8819                         break;
8820                 default:
8821                         break;
8822                 }
8823         }
8824
8825         /* Enable autotuning of the PLL clock (if permissible) */
8826         factor = 21;
8827         if (is_lvds) {
8828                 if ((intel_panel_use_ssc(dev_priv) &&
8829                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8830                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8831                         factor = 25;
8832         } else if (crtc_state->sdvo_tv_clock)
8833                 factor = 20;
8834
8835         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8836
8837         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8838                 fp |= FP_CB_TUNE;
8839
8840         if (reduced_clock) {
8841                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8842
8843                 if (reduced_clock->m < factor * reduced_clock->n)
8844                         fp2 |= FP_CB_TUNE;
8845         } else {
8846                 fp2 = fp;
8847         }
8848
8849         dpll = 0;
8850
8851         if (is_lvds)
8852                 dpll |= DPLLB_MODE_LVDS;
8853         else
8854                 dpll |= DPLLB_MODE_DAC_SERIAL;
8855
8856         dpll |= (crtc_state->pixel_multiplier - 1)
8857                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8858
8859         if (is_sdvo)
8860                 dpll |= DPLL_SDVO_HIGH_SPEED;
8861         if (crtc_state->has_dp_encoder)
8862                 dpll |= DPLL_SDVO_HIGH_SPEED;
8863
8864         /* compute bitmask from p1 value */
8865         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8866         /* also FPA1 */
8867         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8868
8869         switch (crtc_state->dpll.p2) {
8870         case 5:
8871                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8872                 break;
8873         case 7:
8874                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8875                 break;
8876         case 10:
8877                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8878                 break;
8879         case 14:
8880                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8881                 break;
8882         }
8883
8884         if (is_lvds && intel_panel_use_ssc(dev_priv))
8885                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8886         else
8887                 dpll |= PLL_REF_INPUT_DREFCLK;
8888
8889         dpll |= DPLL_VCO_ENABLE;
8890
8891         crtc_state->dpll_hw_state.dpll = dpll;
8892         crtc_state->dpll_hw_state.fp0 = fp;
8893         crtc_state->dpll_hw_state.fp1 = fp2;
8894 }
8895
8896 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8897                                        struct intel_crtc_state *crtc_state)
8898 {
8899         struct drm_device *dev = crtc->base.dev;
8900         struct drm_i915_private *dev_priv = dev->dev_private;
8901         intel_clock_t reduced_clock;
8902         bool has_reduced_clock = false;
8903         struct intel_shared_dpll *pll;
8904         const intel_limit_t *limit;
8905         int refclk = 120000;
8906
8907         memset(&crtc_state->dpll_hw_state, 0,
8908                sizeof(crtc_state->dpll_hw_state));
8909
8910         crtc->lowfreq_avail = false;
8911
8912         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8913         if (!crtc_state->has_pch_encoder)
8914                 return 0;
8915
8916         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8917                 if (intel_panel_use_ssc(dev_priv)) {
8918                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8919                                       dev_priv->vbt.lvds_ssc_freq);
8920                         refclk = dev_priv->vbt.lvds_ssc_freq;
8921                 }
8922
8923                 if (intel_is_dual_link_lvds(dev)) {
8924                         if (refclk == 100000)
8925                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8926                         else
8927                                 limit = &intel_limits_ironlake_dual_lvds;
8928                 } else {
8929                         if (refclk == 100000)
8930                                 limit = &intel_limits_ironlake_single_lvds_100m;
8931                         else
8932                                 limit = &intel_limits_ironlake_single_lvds;
8933                 }
8934         } else {
8935                 limit = &intel_limits_ironlake_dac;
8936         }
8937
8938         if (!crtc_state->clock_set &&
8939             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8940                                 refclk, NULL, &crtc_state->dpll)) {
8941                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8942                 return -EINVAL;
8943         }
8944
8945         ironlake_compute_dpll(crtc, crtc_state,
8946                               has_reduced_clock ? &reduced_clock : NULL);
8947
8948         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8949         if (pll == NULL) {
8950                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8951                                  pipe_name(crtc->pipe));
8952                 return -EINVAL;
8953         }
8954
8955         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8956             has_reduced_clock)
8957                 crtc->lowfreq_avail = true;
8958
8959         return 0;
8960 }
8961
8962 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8963                                          struct intel_link_m_n *m_n)
8964 {
8965         struct drm_device *dev = crtc->base.dev;
8966         struct drm_i915_private *dev_priv = dev->dev_private;
8967         enum pipe pipe = crtc->pipe;
8968
8969         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8970         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8971         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8972                 & ~TU_SIZE_MASK;
8973         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8974         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8975                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8976 }
8977
8978 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8979                                          enum transcoder transcoder,
8980                                          struct intel_link_m_n *m_n,
8981                                          struct intel_link_m_n *m2_n2)
8982 {
8983         struct drm_device *dev = crtc->base.dev;
8984         struct drm_i915_private *dev_priv = dev->dev_private;
8985         enum pipe pipe = crtc->pipe;
8986
8987         if (INTEL_INFO(dev)->gen >= 5) {
8988                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8989                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8990                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8991                         & ~TU_SIZE_MASK;
8992                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8993                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8994                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8995                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8996                  * gen < 8) and if DRRS is supported (to make sure the
8997                  * registers are not unnecessarily read).
8998                  */
8999                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9000                         crtc->config->has_drrs) {
9001                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9002                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9003                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9004                                         & ~TU_SIZE_MASK;
9005                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9006                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9007                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9008                 }
9009         } else {
9010                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9011                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9012                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9013                         & ~TU_SIZE_MASK;
9014                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9015                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9016                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9017         }
9018 }
9019
9020 void intel_dp_get_m_n(struct intel_crtc *crtc,
9021                       struct intel_crtc_state *pipe_config)
9022 {
9023         if (pipe_config->has_pch_encoder)
9024                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9025         else
9026                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9027                                              &pipe_config->dp_m_n,
9028                                              &pipe_config->dp_m2_n2);
9029 }
9030
9031 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9032                                         struct intel_crtc_state *pipe_config)
9033 {
9034         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9035                                      &pipe_config->fdi_m_n, NULL);
9036 }
9037
9038 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9039                                     struct intel_crtc_state *pipe_config)
9040 {
9041         struct drm_device *dev = crtc->base.dev;
9042         struct drm_i915_private *dev_priv = dev->dev_private;
9043         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9044         uint32_t ps_ctrl = 0;
9045         int id = -1;
9046         int i;
9047
9048         /* find scaler attached to this pipe */
9049         for (i = 0; i < crtc->num_scalers; i++) {
9050                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9051                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9052                         id = i;
9053                         pipe_config->pch_pfit.enabled = true;
9054                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9055                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9056                         break;
9057                 }
9058         }
9059
9060         scaler_state->scaler_id = id;
9061         if (id >= 0) {
9062                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9063         } else {
9064                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9065         }
9066 }
9067
9068 static void
9069 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9070                                  struct intel_initial_plane_config *plane_config)
9071 {
9072         struct drm_device *dev = crtc->base.dev;
9073         struct drm_i915_private *dev_priv = dev->dev_private;
9074         u32 val, base, offset, stride_mult, tiling;
9075         int pipe = crtc->pipe;
9076         int fourcc, pixel_format;
9077         unsigned int aligned_height;
9078         struct drm_framebuffer *fb;
9079         struct intel_framebuffer *intel_fb;
9080
9081         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9082         if (!intel_fb) {
9083                 DRM_DEBUG_KMS("failed to alloc fb\n");
9084                 return;
9085         }
9086
9087         fb = &intel_fb->base;
9088
9089         val = I915_READ(PLANE_CTL(pipe, 0));
9090         if (!(val & PLANE_CTL_ENABLE))
9091                 goto error;
9092
9093         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9094         fourcc = skl_format_to_fourcc(pixel_format,
9095                                       val & PLANE_CTL_ORDER_RGBX,
9096                                       val & PLANE_CTL_ALPHA_MASK);
9097         fb->pixel_format = fourcc;
9098         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9099
9100         tiling = val & PLANE_CTL_TILED_MASK;
9101         switch (tiling) {
9102         case PLANE_CTL_TILED_LINEAR:
9103                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9104                 break;
9105         case PLANE_CTL_TILED_X:
9106                 plane_config->tiling = I915_TILING_X;
9107                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9108                 break;
9109         case PLANE_CTL_TILED_Y:
9110                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9111                 break;
9112         case PLANE_CTL_TILED_YF:
9113                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9114                 break;
9115         default:
9116                 MISSING_CASE(tiling);
9117                 goto error;
9118         }
9119
9120         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9121         plane_config->base = base;
9122
9123         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9124
9125         val = I915_READ(PLANE_SIZE(pipe, 0));
9126         fb->height = ((val >> 16) & 0xfff) + 1;
9127         fb->width = ((val >> 0) & 0x1fff) + 1;
9128
9129         val = I915_READ(PLANE_STRIDE(pipe, 0));
9130         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9131                                                 fb->pixel_format);
9132         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9133
9134         aligned_height = intel_fb_align_height(dev, fb->height,
9135                                                fb->pixel_format,
9136                                                fb->modifier[0]);
9137
9138         plane_config->size = fb->pitches[0] * aligned_height;
9139
9140         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9141                       pipe_name(pipe), fb->width, fb->height,
9142                       fb->bits_per_pixel, base, fb->pitches[0],
9143                       plane_config->size);
9144
9145         plane_config->fb = intel_fb;
9146         return;
9147
9148 error:
9149         kfree(fb);
9150 }
9151
9152 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9153                                      struct intel_crtc_state *pipe_config)
9154 {
9155         struct drm_device *dev = crtc->base.dev;
9156         struct drm_i915_private *dev_priv = dev->dev_private;
9157         uint32_t tmp;
9158
9159         tmp = I915_READ(PF_CTL(crtc->pipe));
9160
9161         if (tmp & PF_ENABLE) {
9162                 pipe_config->pch_pfit.enabled = true;
9163                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9164                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9165
9166                 /* We currently do not free assignements of panel fitters on
9167                  * ivb/hsw (since we don't use the higher upscaling modes which
9168                  * differentiates them) so just WARN about this case for now. */
9169                 if (IS_GEN7(dev)) {
9170                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9171                                 PF_PIPE_SEL_IVB(crtc->pipe));
9172                 }
9173         }
9174 }
9175
9176 static void
9177 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9178                                   struct intel_initial_plane_config *plane_config)
9179 {
9180         struct drm_device *dev = crtc->base.dev;
9181         struct drm_i915_private *dev_priv = dev->dev_private;
9182         u32 val, base, offset;
9183         int pipe = crtc->pipe;
9184         int fourcc, pixel_format;
9185         unsigned int aligned_height;
9186         struct drm_framebuffer *fb;
9187         struct intel_framebuffer *intel_fb;
9188
9189         val = I915_READ(DSPCNTR(pipe));
9190         if (!(val & DISPLAY_PLANE_ENABLE))
9191                 return;
9192
9193         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9194         if (!intel_fb) {
9195                 DRM_DEBUG_KMS("failed to alloc fb\n");
9196                 return;
9197         }
9198
9199         fb = &intel_fb->base;
9200
9201         if (INTEL_INFO(dev)->gen >= 4) {
9202                 if (val & DISPPLANE_TILED) {
9203                         plane_config->tiling = I915_TILING_X;
9204                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9205                 }
9206         }
9207
9208         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9209         fourcc = i9xx_format_to_fourcc(pixel_format);
9210         fb->pixel_format = fourcc;
9211         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9212
9213         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9214         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9215                 offset = I915_READ(DSPOFFSET(pipe));
9216         } else {
9217                 if (plane_config->tiling)
9218                         offset = I915_READ(DSPTILEOFF(pipe));
9219                 else
9220                         offset = I915_READ(DSPLINOFF(pipe));
9221         }
9222         plane_config->base = base;
9223
9224         val = I915_READ(PIPESRC(pipe));
9225         fb->width = ((val >> 16) & 0xfff) + 1;
9226         fb->height = ((val >> 0) & 0xfff) + 1;
9227
9228         val = I915_READ(DSPSTRIDE(pipe));
9229         fb->pitches[0] = val & 0xffffffc0;
9230
9231         aligned_height = intel_fb_align_height(dev, fb->height,
9232                                                fb->pixel_format,
9233                                                fb->modifier[0]);
9234
9235         plane_config->size = fb->pitches[0] * aligned_height;
9236
9237         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9238                       pipe_name(pipe), fb->width, fb->height,
9239                       fb->bits_per_pixel, base, fb->pitches[0],
9240                       plane_config->size);
9241
9242         plane_config->fb = intel_fb;
9243 }
9244
9245 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9246                                      struct intel_crtc_state *pipe_config)
9247 {
9248         struct drm_device *dev = crtc->base.dev;
9249         struct drm_i915_private *dev_priv = dev->dev_private;
9250         enum intel_display_power_domain power_domain;
9251         uint32_t tmp;
9252         bool ret;
9253
9254         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9255         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9256                 return false;
9257
9258         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9259         pipe_config->shared_dpll = NULL;
9260
9261         ret = false;
9262         tmp = I915_READ(PIPECONF(crtc->pipe));
9263         if (!(tmp & PIPECONF_ENABLE))
9264                 goto out;
9265
9266         switch (tmp & PIPECONF_BPC_MASK) {
9267         case PIPECONF_6BPC:
9268                 pipe_config->pipe_bpp = 18;
9269                 break;
9270         case PIPECONF_8BPC:
9271                 pipe_config->pipe_bpp = 24;
9272                 break;
9273         case PIPECONF_10BPC:
9274                 pipe_config->pipe_bpp = 30;
9275                 break;
9276         case PIPECONF_12BPC:
9277                 pipe_config->pipe_bpp = 36;
9278                 break;
9279         default:
9280                 break;
9281         }
9282
9283         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9284                 pipe_config->limited_color_range = true;
9285
9286         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9287                 struct intel_shared_dpll *pll;
9288                 enum intel_dpll_id pll_id;
9289
9290                 pipe_config->has_pch_encoder = true;
9291
9292                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9293                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9294                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9295
9296                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9297
9298                 if (HAS_PCH_IBX(dev_priv)) {
9299                         pll_id = (enum intel_dpll_id) crtc->pipe;
9300                 } else {
9301                         tmp = I915_READ(PCH_DPLL_SEL);
9302                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9303                                 pll_id = DPLL_ID_PCH_PLL_B;
9304                         else
9305                                 pll_id= DPLL_ID_PCH_PLL_A;
9306                 }
9307
9308                 pipe_config->shared_dpll =
9309                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9310                 pll = pipe_config->shared_dpll;
9311
9312                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9313                                                  &pipe_config->dpll_hw_state));
9314
9315                 tmp = pipe_config->dpll_hw_state.dpll;
9316                 pipe_config->pixel_multiplier =
9317                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9318                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9319
9320                 ironlake_pch_clock_get(crtc, pipe_config);
9321         } else {
9322                 pipe_config->pixel_multiplier = 1;
9323         }
9324
9325         intel_get_pipe_timings(crtc, pipe_config);
9326         intel_get_pipe_src_size(crtc, pipe_config);
9327
9328         ironlake_get_pfit_config(crtc, pipe_config);
9329
9330         ret = true;
9331
9332 out:
9333         intel_display_power_put(dev_priv, power_domain);
9334
9335         return ret;
9336 }
9337
9338 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9339 {
9340         struct drm_device *dev = dev_priv->dev;
9341         struct intel_crtc *crtc;
9342
9343         for_each_intel_crtc(dev, crtc)
9344                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9345                      pipe_name(crtc->pipe));
9346
9347         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9348         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9349         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9350         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9351         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9352         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9353              "CPU PWM1 enabled\n");
9354         if (IS_HASWELL(dev))
9355                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9356                      "CPU PWM2 enabled\n");
9357         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9358              "PCH PWM1 enabled\n");
9359         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9360              "Utility pin enabled\n");
9361         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9362
9363         /*
9364          * In theory we can still leave IRQs enabled, as long as only the HPD
9365          * interrupts remain enabled. We used to check for that, but since it's
9366          * gen-specific and since we only disable LCPLL after we fully disable
9367          * the interrupts, the check below should be enough.
9368          */
9369         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9370 }
9371
9372 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9373 {
9374         struct drm_device *dev = dev_priv->dev;
9375
9376         if (IS_HASWELL(dev))
9377                 return I915_READ(D_COMP_HSW);
9378         else
9379                 return I915_READ(D_COMP_BDW);
9380 }
9381
9382 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9383 {
9384         struct drm_device *dev = dev_priv->dev;
9385
9386         if (IS_HASWELL(dev)) {
9387                 mutex_lock(&dev_priv->rps.hw_lock);
9388                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9389                                             val))
9390                         DRM_ERROR("Failed to write to D_COMP\n");
9391                 mutex_unlock(&dev_priv->rps.hw_lock);
9392         } else {
9393                 I915_WRITE(D_COMP_BDW, val);
9394                 POSTING_READ(D_COMP_BDW);
9395         }
9396 }
9397
9398 /*
9399  * This function implements pieces of two sequences from BSpec:
9400  * - Sequence for display software to disable LCPLL
9401  * - Sequence for display software to allow package C8+
9402  * The steps implemented here are just the steps that actually touch the LCPLL
9403  * register. Callers should take care of disabling all the display engine
9404  * functions, doing the mode unset, fixing interrupts, etc.
9405  */
9406 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9407                               bool switch_to_fclk, bool allow_power_down)
9408 {
9409         uint32_t val;
9410
9411         assert_can_disable_lcpll(dev_priv);
9412
9413         val = I915_READ(LCPLL_CTL);
9414
9415         if (switch_to_fclk) {
9416                 val |= LCPLL_CD_SOURCE_FCLK;
9417                 I915_WRITE(LCPLL_CTL, val);
9418
9419                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9420                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9421                         DRM_ERROR("Switching to FCLK failed\n");
9422
9423                 val = I915_READ(LCPLL_CTL);
9424         }
9425
9426         val |= LCPLL_PLL_DISABLE;
9427         I915_WRITE(LCPLL_CTL, val);
9428         POSTING_READ(LCPLL_CTL);
9429
9430         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9431                 DRM_ERROR("LCPLL still locked\n");
9432
9433         val = hsw_read_dcomp(dev_priv);
9434         val |= D_COMP_COMP_DISABLE;
9435         hsw_write_dcomp(dev_priv, val);
9436         ndelay(100);
9437
9438         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9439                      1))
9440                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9441
9442         if (allow_power_down) {
9443                 val = I915_READ(LCPLL_CTL);
9444                 val |= LCPLL_POWER_DOWN_ALLOW;
9445                 I915_WRITE(LCPLL_CTL, val);
9446                 POSTING_READ(LCPLL_CTL);
9447         }
9448 }
9449
9450 /*
9451  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9452  * source.
9453  */
9454 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9455 {
9456         uint32_t val;
9457
9458         val = I915_READ(LCPLL_CTL);
9459
9460         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9461                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9462                 return;
9463
9464         /*
9465          * Make sure we're not on PC8 state before disabling PC8, otherwise
9466          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9467          */
9468         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9469
9470         if (val & LCPLL_POWER_DOWN_ALLOW) {
9471                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9472                 I915_WRITE(LCPLL_CTL, val);
9473                 POSTING_READ(LCPLL_CTL);
9474         }
9475
9476         val = hsw_read_dcomp(dev_priv);
9477         val |= D_COMP_COMP_FORCE;
9478         val &= ~D_COMP_COMP_DISABLE;
9479         hsw_write_dcomp(dev_priv, val);
9480
9481         val = I915_READ(LCPLL_CTL);
9482         val &= ~LCPLL_PLL_DISABLE;
9483         I915_WRITE(LCPLL_CTL, val);
9484
9485         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9486                 DRM_ERROR("LCPLL not locked yet\n");
9487
9488         if (val & LCPLL_CD_SOURCE_FCLK) {
9489                 val = I915_READ(LCPLL_CTL);
9490                 val &= ~LCPLL_CD_SOURCE_FCLK;
9491                 I915_WRITE(LCPLL_CTL, val);
9492
9493                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9494                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9495                         DRM_ERROR("Switching back to LCPLL failed\n");
9496         }
9497
9498         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9499         intel_update_cdclk(dev_priv->dev);
9500 }
9501
9502 /*
9503  * Package states C8 and deeper are really deep PC states that can only be
9504  * reached when all the devices on the system allow it, so even if the graphics
9505  * device allows PC8+, it doesn't mean the system will actually get to these
9506  * states. Our driver only allows PC8+ when going into runtime PM.
9507  *
9508  * The requirements for PC8+ are that all the outputs are disabled, the power
9509  * well is disabled and most interrupts are disabled, and these are also
9510  * requirements for runtime PM. When these conditions are met, we manually do
9511  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9512  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9513  * hang the machine.
9514  *
9515  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9516  * the state of some registers, so when we come back from PC8+ we need to
9517  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9518  * need to take care of the registers kept by RC6. Notice that this happens even
9519  * if we don't put the device in PCI D3 state (which is what currently happens
9520  * because of the runtime PM support).
9521  *
9522  * For more, read "Display Sequences for Package C8" on the hardware
9523  * documentation.
9524  */
9525 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9526 {
9527         struct drm_device *dev = dev_priv->dev;
9528         uint32_t val;
9529
9530         DRM_DEBUG_KMS("Enabling package C8+\n");
9531
9532         if (HAS_PCH_LPT_LP(dev)) {
9533                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9534                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9535                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9536         }
9537
9538         lpt_disable_clkout_dp(dev);
9539         hsw_disable_lcpll(dev_priv, true, true);
9540 }
9541
9542 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9543 {
9544         struct drm_device *dev = dev_priv->dev;
9545         uint32_t val;
9546
9547         DRM_DEBUG_KMS("Disabling package C8+\n");
9548
9549         hsw_restore_lcpll(dev_priv);
9550         lpt_init_pch_refclk(dev);
9551
9552         if (HAS_PCH_LPT_LP(dev)) {
9553                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9554                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9555                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9556         }
9557 }
9558
9559 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9560 {
9561         struct drm_device *dev = old_state->dev;
9562         struct intel_atomic_state *old_intel_state =
9563                 to_intel_atomic_state(old_state);
9564         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9565
9566         broxton_set_cdclk(to_i915(dev), req_cdclk);
9567 }
9568
9569 /* compute the max rate for new configuration */
9570 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9571 {
9572         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9573         struct drm_i915_private *dev_priv = state->dev->dev_private;
9574         struct drm_crtc *crtc;
9575         struct drm_crtc_state *cstate;
9576         struct intel_crtc_state *crtc_state;
9577         unsigned max_pixel_rate = 0, i;
9578         enum pipe pipe;
9579
9580         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9581                sizeof(intel_state->min_pixclk));
9582
9583         for_each_crtc_in_state(state, crtc, cstate, i) {
9584                 int pixel_rate;
9585
9586                 crtc_state = to_intel_crtc_state(cstate);
9587                 if (!crtc_state->base.enable) {
9588                         intel_state->min_pixclk[i] = 0;
9589                         continue;
9590                 }
9591
9592                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9593
9594                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9595                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9596                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9597
9598                 intel_state->min_pixclk[i] = pixel_rate;
9599         }
9600
9601         for_each_pipe(dev_priv, pipe)
9602                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9603
9604         return max_pixel_rate;
9605 }
9606
9607 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9608 {
9609         struct drm_i915_private *dev_priv = dev->dev_private;
9610         uint32_t val, data;
9611         int ret;
9612
9613         if (WARN((I915_READ(LCPLL_CTL) &
9614                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9615                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9616                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9617                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9618                  "trying to change cdclk frequency with cdclk not enabled\n"))
9619                 return;
9620
9621         mutex_lock(&dev_priv->rps.hw_lock);
9622         ret = sandybridge_pcode_write(dev_priv,
9623                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9624         mutex_unlock(&dev_priv->rps.hw_lock);
9625         if (ret) {
9626                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9627                 return;
9628         }
9629
9630         val = I915_READ(LCPLL_CTL);
9631         val |= LCPLL_CD_SOURCE_FCLK;
9632         I915_WRITE(LCPLL_CTL, val);
9633
9634         if (wait_for_us(I915_READ(LCPLL_CTL) &
9635                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9636                 DRM_ERROR("Switching to FCLK failed\n");
9637
9638         val = I915_READ(LCPLL_CTL);
9639         val &= ~LCPLL_CLK_FREQ_MASK;
9640
9641         switch (cdclk) {
9642         case 450000:
9643                 val |= LCPLL_CLK_FREQ_450;
9644                 data = 0;
9645                 break;
9646         case 540000:
9647                 val |= LCPLL_CLK_FREQ_54O_BDW;
9648                 data = 1;
9649                 break;
9650         case 337500:
9651                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9652                 data = 2;
9653                 break;
9654         case 675000:
9655                 val |= LCPLL_CLK_FREQ_675_BDW;
9656                 data = 3;
9657                 break;
9658         default:
9659                 WARN(1, "invalid cdclk frequency\n");
9660                 return;
9661         }
9662
9663         I915_WRITE(LCPLL_CTL, val);
9664
9665         val = I915_READ(LCPLL_CTL);
9666         val &= ~LCPLL_CD_SOURCE_FCLK;
9667         I915_WRITE(LCPLL_CTL, val);
9668
9669         if (wait_for_us((I915_READ(LCPLL_CTL) &
9670                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9671                 DRM_ERROR("Switching back to LCPLL failed\n");
9672
9673         mutex_lock(&dev_priv->rps.hw_lock);
9674         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9675         mutex_unlock(&dev_priv->rps.hw_lock);
9676
9677         I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9678
9679         intel_update_cdclk(dev);
9680
9681         WARN(cdclk != dev_priv->cdclk_freq,
9682              "cdclk requested %d kHz but got %d kHz\n",
9683              cdclk, dev_priv->cdclk_freq);
9684 }
9685
9686 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9687 {
9688         struct drm_i915_private *dev_priv = to_i915(state->dev);
9689         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9690         int max_pixclk = ilk_max_pixel_rate(state);
9691         int cdclk;
9692
9693         /*
9694          * FIXME should also account for plane ratio
9695          * once 64bpp pixel formats are supported.
9696          */
9697         if (max_pixclk > 540000)
9698                 cdclk = 675000;
9699         else if (max_pixclk > 450000)
9700                 cdclk = 540000;
9701         else if (max_pixclk > 337500)
9702                 cdclk = 450000;
9703         else
9704                 cdclk = 337500;
9705
9706         if (cdclk > dev_priv->max_cdclk_freq) {
9707                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9708                               cdclk, dev_priv->max_cdclk_freq);
9709                 return -EINVAL;
9710         }
9711
9712         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9713         if (!intel_state->active_crtcs)
9714                 intel_state->dev_cdclk = 337500;
9715
9716         return 0;
9717 }
9718
9719 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9720 {
9721         struct drm_device *dev = old_state->dev;
9722         struct intel_atomic_state *old_intel_state =
9723                 to_intel_atomic_state(old_state);
9724         unsigned req_cdclk = old_intel_state->dev_cdclk;
9725
9726         broadwell_set_cdclk(dev, req_cdclk);
9727 }
9728
9729 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9730                                       struct intel_crtc_state *crtc_state)
9731 {
9732         struct intel_encoder *intel_encoder =
9733                 intel_ddi_get_crtc_new_encoder(crtc_state);
9734
9735         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9736                 if (!intel_ddi_pll_select(crtc, crtc_state))
9737                         return -EINVAL;
9738         }
9739
9740         crtc->lowfreq_avail = false;
9741
9742         return 0;
9743 }
9744
9745 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9746                                 enum port port,
9747                                 struct intel_crtc_state *pipe_config)
9748 {
9749         enum intel_dpll_id id;
9750
9751         switch (port) {
9752         case PORT_A:
9753                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9754                 id = DPLL_ID_SKL_DPLL0;
9755                 break;
9756         case PORT_B:
9757                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9758                 id = DPLL_ID_SKL_DPLL1;
9759                 break;
9760         case PORT_C:
9761                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9762                 id = DPLL_ID_SKL_DPLL2;
9763                 break;
9764         default:
9765                 DRM_ERROR("Incorrect port type\n");
9766                 return;
9767         }
9768
9769         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9770 }
9771
9772 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9773                                 enum port port,
9774                                 struct intel_crtc_state *pipe_config)
9775 {
9776         enum intel_dpll_id id;
9777         u32 temp;
9778
9779         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9780         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9781
9782         switch (pipe_config->ddi_pll_sel) {
9783         case SKL_DPLL0:
9784                 id = DPLL_ID_SKL_DPLL0;
9785                 break;
9786         case SKL_DPLL1:
9787                 id = DPLL_ID_SKL_DPLL1;
9788                 break;
9789         case SKL_DPLL2:
9790                 id = DPLL_ID_SKL_DPLL2;
9791                 break;
9792         case SKL_DPLL3:
9793                 id = DPLL_ID_SKL_DPLL3;
9794                 break;
9795         default:
9796                 MISSING_CASE(pipe_config->ddi_pll_sel);
9797                 return;
9798         }
9799
9800         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9801 }
9802
9803 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9804                                 enum port port,
9805                                 struct intel_crtc_state *pipe_config)
9806 {
9807         enum intel_dpll_id id;
9808
9809         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9810
9811         switch (pipe_config->ddi_pll_sel) {
9812         case PORT_CLK_SEL_WRPLL1:
9813                 id = DPLL_ID_WRPLL1;
9814                 break;
9815         case PORT_CLK_SEL_WRPLL2:
9816                 id = DPLL_ID_WRPLL2;
9817                 break;
9818         case PORT_CLK_SEL_SPLL:
9819                 id = DPLL_ID_SPLL;
9820                 break;
9821         case PORT_CLK_SEL_LCPLL_810:
9822                 id = DPLL_ID_LCPLL_810;
9823                 break;
9824         case PORT_CLK_SEL_LCPLL_1350:
9825                 id = DPLL_ID_LCPLL_1350;
9826                 break;
9827         case PORT_CLK_SEL_LCPLL_2700:
9828                 id = DPLL_ID_LCPLL_2700;
9829                 break;
9830         default:
9831                 MISSING_CASE(pipe_config->ddi_pll_sel);
9832                 /* fall through */
9833         case PORT_CLK_SEL_NONE:
9834                 return;
9835         }
9836
9837         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9838 }
9839
9840 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9841                                      struct intel_crtc_state *pipe_config,
9842                                      unsigned long *power_domain_mask)
9843 {
9844         struct drm_device *dev = crtc->base.dev;
9845         struct drm_i915_private *dev_priv = dev->dev_private;
9846         enum intel_display_power_domain power_domain;
9847         u32 tmp;
9848
9849         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9850
9851         /*
9852          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9853          * consistency and less surprising code; it's in always on power).
9854          */
9855         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9856         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9857                 enum pipe trans_edp_pipe;
9858                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9859                 default:
9860                         WARN(1, "unknown pipe linked to edp transcoder\n");
9861                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9862                 case TRANS_DDI_EDP_INPUT_A_ON:
9863                         trans_edp_pipe = PIPE_A;
9864                         break;
9865                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9866                         trans_edp_pipe = PIPE_B;
9867                         break;
9868                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9869                         trans_edp_pipe = PIPE_C;
9870                         break;
9871                 }
9872
9873                 if (trans_edp_pipe == crtc->pipe)
9874                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9875         }
9876
9877         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9878         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9879                 return false;
9880         *power_domain_mask |= BIT(power_domain);
9881
9882         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9883
9884         return tmp & PIPECONF_ENABLE;
9885 }
9886
9887 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9888                                          struct intel_crtc_state *pipe_config,
9889                                          unsigned long *power_domain_mask)
9890 {
9891         struct drm_device *dev = crtc->base.dev;
9892         struct drm_i915_private *dev_priv = dev->dev_private;
9893         enum intel_display_power_domain power_domain;
9894         enum port port;
9895         enum transcoder cpu_transcoder;
9896         u32 tmp;
9897
9898         pipe_config->has_dsi_encoder = false;
9899
9900         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9901                 if (port == PORT_A)
9902                         cpu_transcoder = TRANSCODER_DSI_A;
9903                 else
9904                         cpu_transcoder = TRANSCODER_DSI_C;
9905
9906                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9907                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9908                         continue;
9909                 *power_domain_mask |= BIT(power_domain);
9910
9911                 /*
9912                  * The PLL needs to be enabled with a valid divider
9913                  * configuration, otherwise accessing DSI registers will hang
9914                  * the machine. See BSpec North Display Engine
9915                  * registers/MIPI[BXT]. We can break out here early, since we
9916                  * need the same DSI PLL to be enabled for both DSI ports.
9917                  */
9918                 if (!intel_dsi_pll_is_enabled(dev_priv))
9919                         break;
9920
9921                 /* XXX: this works for video mode only */
9922                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9923                 if (!(tmp & DPI_ENABLE))
9924                         continue;
9925
9926                 tmp = I915_READ(MIPI_CTRL(port));
9927                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9928                         continue;
9929
9930                 pipe_config->cpu_transcoder = cpu_transcoder;
9931                 pipe_config->has_dsi_encoder = true;
9932                 break;
9933         }
9934
9935         return pipe_config->has_dsi_encoder;
9936 }
9937
9938 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9939                                        struct intel_crtc_state *pipe_config)
9940 {
9941         struct drm_device *dev = crtc->base.dev;
9942         struct drm_i915_private *dev_priv = dev->dev_private;
9943         struct intel_shared_dpll *pll;
9944         enum port port;
9945         uint32_t tmp;
9946
9947         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9948
9949         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9950
9951         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9952                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9953         else if (IS_BROXTON(dev))
9954                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9955         else
9956                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9957
9958         pll = pipe_config->shared_dpll;
9959         if (pll) {
9960                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9961                                                  &pipe_config->dpll_hw_state));
9962         }
9963
9964         /*
9965          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9966          * DDI E. So just check whether this pipe is wired to DDI E and whether
9967          * the PCH transcoder is on.
9968          */
9969         if (INTEL_INFO(dev)->gen < 9 &&
9970             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9971                 pipe_config->has_pch_encoder = true;
9972
9973                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9974                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9975                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9976
9977                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9978         }
9979 }
9980
9981 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9982                                     struct intel_crtc_state *pipe_config)
9983 {
9984         struct drm_device *dev = crtc->base.dev;
9985         struct drm_i915_private *dev_priv = dev->dev_private;
9986         enum intel_display_power_domain power_domain;
9987         unsigned long power_domain_mask;
9988         bool active;
9989
9990         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9991         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9992                 return false;
9993         power_domain_mask = BIT(power_domain);
9994
9995         pipe_config->shared_dpll = NULL;
9996
9997         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9998
9999         if (IS_BROXTON(dev_priv)) {
10000                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10001                                              &power_domain_mask);
10002                 WARN_ON(active && pipe_config->has_dsi_encoder);
10003                 if (pipe_config->has_dsi_encoder)
10004                         active = true;
10005         }
10006
10007         if (!active)
10008                 goto out;
10009
10010         if (!pipe_config->has_dsi_encoder) {
10011                 haswell_get_ddi_port_state(crtc, pipe_config);
10012                 intel_get_pipe_timings(crtc, pipe_config);
10013         }
10014
10015         intel_get_pipe_src_size(crtc, pipe_config);
10016
10017         pipe_config->gamma_mode =
10018                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10019
10020         if (INTEL_INFO(dev)->gen >= 9) {
10021                 skl_init_scalers(dev, crtc, pipe_config);
10022         }
10023
10024         if (INTEL_INFO(dev)->gen >= 9) {
10025                 pipe_config->scaler_state.scaler_id = -1;
10026                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10027         }
10028
10029         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10030         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10031                 power_domain_mask |= BIT(power_domain);
10032                 if (INTEL_INFO(dev)->gen >= 9)
10033                         skylake_get_pfit_config(crtc, pipe_config);
10034                 else
10035                         ironlake_get_pfit_config(crtc, pipe_config);
10036         }
10037
10038         if (IS_HASWELL(dev))
10039                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10040                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10041
10042         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10043             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10044                 pipe_config->pixel_multiplier =
10045                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10046         } else {
10047                 pipe_config->pixel_multiplier = 1;
10048         }
10049
10050 out:
10051         for_each_power_domain(power_domain, power_domain_mask)
10052                 intel_display_power_put(dev_priv, power_domain);
10053
10054         return active;
10055 }
10056
10057 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10058                                const struct intel_plane_state *plane_state)
10059 {
10060         struct drm_device *dev = crtc->dev;
10061         struct drm_i915_private *dev_priv = dev->dev_private;
10062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10063         uint32_t cntl = 0, size = 0;
10064
10065         if (plane_state && plane_state->visible) {
10066                 unsigned int width = plane_state->base.crtc_w;
10067                 unsigned int height = plane_state->base.crtc_h;
10068                 unsigned int stride = roundup_pow_of_two(width) * 4;
10069
10070                 switch (stride) {
10071                 default:
10072                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10073                                   width, stride);
10074                         stride = 256;
10075                         /* fallthrough */
10076                 case 256:
10077                 case 512:
10078                 case 1024:
10079                 case 2048:
10080                         break;
10081                 }
10082
10083                 cntl |= CURSOR_ENABLE |
10084                         CURSOR_GAMMA_ENABLE |
10085                         CURSOR_FORMAT_ARGB |
10086                         CURSOR_STRIDE(stride);
10087
10088                 size = (height << 12) | width;
10089         }
10090
10091         if (intel_crtc->cursor_cntl != 0 &&
10092             (intel_crtc->cursor_base != base ||
10093              intel_crtc->cursor_size != size ||
10094              intel_crtc->cursor_cntl != cntl)) {
10095                 /* On these chipsets we can only modify the base/size/stride
10096                  * whilst the cursor is disabled.
10097                  */
10098                 I915_WRITE(CURCNTR(PIPE_A), 0);
10099                 POSTING_READ(CURCNTR(PIPE_A));
10100                 intel_crtc->cursor_cntl = 0;
10101         }
10102
10103         if (intel_crtc->cursor_base != base) {
10104                 I915_WRITE(CURBASE(PIPE_A), base);
10105                 intel_crtc->cursor_base = base;
10106         }
10107
10108         if (intel_crtc->cursor_size != size) {
10109                 I915_WRITE(CURSIZE, size);
10110                 intel_crtc->cursor_size = size;
10111         }
10112
10113         if (intel_crtc->cursor_cntl != cntl) {
10114                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10115                 POSTING_READ(CURCNTR(PIPE_A));
10116                 intel_crtc->cursor_cntl = cntl;
10117         }
10118 }
10119
10120 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10121                                const struct intel_plane_state *plane_state)
10122 {
10123         struct drm_device *dev = crtc->dev;
10124         struct drm_i915_private *dev_priv = dev->dev_private;
10125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10126         int pipe = intel_crtc->pipe;
10127         uint32_t cntl = 0;
10128
10129         if (plane_state && plane_state->visible) {
10130                 cntl = MCURSOR_GAMMA_ENABLE;
10131                 switch (plane_state->base.crtc_w) {
10132                         case 64:
10133                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10134                                 break;
10135                         case 128:
10136                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10137                                 break;
10138                         case 256:
10139                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10140                                 break;
10141                         default:
10142                                 MISSING_CASE(plane_state->base.crtc_w);
10143                                 return;
10144                 }
10145                 cntl |= pipe << 28; /* Connect to correct pipe */
10146
10147                 if (HAS_DDI(dev))
10148                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10149
10150                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10151                         cntl |= CURSOR_ROTATE_180;
10152         }
10153
10154         if (intel_crtc->cursor_cntl != cntl) {
10155                 I915_WRITE(CURCNTR(pipe), cntl);
10156                 POSTING_READ(CURCNTR(pipe));
10157                 intel_crtc->cursor_cntl = cntl;
10158         }
10159
10160         /* and commit changes on next vblank */
10161         I915_WRITE(CURBASE(pipe), base);
10162         POSTING_READ(CURBASE(pipe));
10163
10164         intel_crtc->cursor_base = base;
10165 }
10166
10167 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10168 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10169                                      const struct intel_plane_state *plane_state)
10170 {
10171         struct drm_device *dev = crtc->dev;
10172         struct drm_i915_private *dev_priv = dev->dev_private;
10173         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10174         int pipe = intel_crtc->pipe;
10175         u32 base = intel_crtc->cursor_addr;
10176         u32 pos = 0;
10177
10178         if (plane_state) {
10179                 int x = plane_state->base.crtc_x;
10180                 int y = plane_state->base.crtc_y;
10181
10182                 if (x < 0) {
10183                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10184                         x = -x;
10185                 }
10186                 pos |= x << CURSOR_X_SHIFT;
10187
10188                 if (y < 0) {
10189                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10190                         y = -y;
10191                 }
10192                 pos |= y << CURSOR_Y_SHIFT;
10193
10194                 /* ILK+ do this automagically */
10195                 if (HAS_GMCH_DISPLAY(dev) &&
10196                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10197                         base += (plane_state->base.crtc_h *
10198                                  plane_state->base.crtc_w - 1) * 4;
10199                 }
10200         }
10201
10202         I915_WRITE(CURPOS(pipe), pos);
10203
10204         if (IS_845G(dev) || IS_I865G(dev))
10205                 i845_update_cursor(crtc, base, plane_state);
10206         else
10207                 i9xx_update_cursor(crtc, base, plane_state);
10208 }
10209
10210 static bool cursor_size_ok(struct drm_device *dev,
10211                            uint32_t width, uint32_t height)
10212 {
10213         if (width == 0 || height == 0)
10214                 return false;
10215
10216         /*
10217          * 845g/865g are special in that they are only limited by
10218          * the width of their cursors, the height is arbitrary up to
10219          * the precision of the register. Everything else requires
10220          * square cursors, limited to a few power-of-two sizes.
10221          */
10222         if (IS_845G(dev) || IS_I865G(dev)) {
10223                 if ((width & 63) != 0)
10224                         return false;
10225
10226                 if (width > (IS_845G(dev) ? 64 : 512))
10227                         return false;
10228
10229                 if (height > 1023)
10230                         return false;
10231         } else {
10232                 switch (width | height) {
10233                 case 256:
10234                 case 128:
10235                         if (IS_GEN2(dev))
10236                                 return false;
10237                 case 64:
10238                         break;
10239                 default:
10240                         return false;
10241                 }
10242         }
10243
10244         return true;
10245 }
10246
10247 /* VESA 640x480x72Hz mode to set on the pipe */
10248 static struct drm_display_mode load_detect_mode = {
10249         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10250                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10251 };
10252
10253 struct drm_framebuffer *
10254 __intel_framebuffer_create(struct drm_device *dev,
10255                            struct drm_mode_fb_cmd2 *mode_cmd,
10256                            struct drm_i915_gem_object *obj)
10257 {
10258         struct intel_framebuffer *intel_fb;
10259         int ret;
10260
10261         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10262         if (!intel_fb)
10263                 return ERR_PTR(-ENOMEM);
10264
10265         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10266         if (ret)
10267                 goto err;
10268
10269         return &intel_fb->base;
10270
10271 err:
10272         kfree(intel_fb);
10273         return ERR_PTR(ret);
10274 }
10275
10276 static struct drm_framebuffer *
10277 intel_framebuffer_create(struct drm_device *dev,
10278                          struct drm_mode_fb_cmd2 *mode_cmd,
10279                          struct drm_i915_gem_object *obj)
10280 {
10281         struct drm_framebuffer *fb;
10282         int ret;
10283
10284         ret = i915_mutex_lock_interruptible(dev);
10285         if (ret)
10286                 return ERR_PTR(ret);
10287         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10288         mutex_unlock(&dev->struct_mutex);
10289
10290         return fb;
10291 }
10292
10293 static u32
10294 intel_framebuffer_pitch_for_width(int width, int bpp)
10295 {
10296         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10297         return ALIGN(pitch, 64);
10298 }
10299
10300 static u32
10301 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10302 {
10303         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10304         return PAGE_ALIGN(pitch * mode->vdisplay);
10305 }
10306
10307 static struct drm_framebuffer *
10308 intel_framebuffer_create_for_mode(struct drm_device *dev,
10309                                   struct drm_display_mode *mode,
10310                                   int depth, int bpp)
10311 {
10312         struct drm_framebuffer *fb;
10313         struct drm_i915_gem_object *obj;
10314         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10315
10316         obj = i915_gem_object_create(dev,
10317                                     intel_framebuffer_size_for_mode(mode, bpp));
10318         if (IS_ERR(obj))
10319                 return ERR_CAST(obj);
10320
10321         mode_cmd.width = mode->hdisplay;
10322         mode_cmd.height = mode->vdisplay;
10323         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10324                                                                 bpp);
10325         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10326
10327         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10328         if (IS_ERR(fb))
10329                 drm_gem_object_unreference_unlocked(&obj->base);
10330
10331         return fb;
10332 }
10333
10334 static struct drm_framebuffer *
10335 mode_fits_in_fbdev(struct drm_device *dev,
10336                    struct drm_display_mode *mode)
10337 {
10338 #ifdef CONFIG_DRM_FBDEV_EMULATION
10339         struct drm_i915_private *dev_priv = dev->dev_private;
10340         struct drm_i915_gem_object *obj;
10341         struct drm_framebuffer *fb;
10342
10343         if (!dev_priv->fbdev)
10344                 return NULL;
10345
10346         if (!dev_priv->fbdev->fb)
10347                 return NULL;
10348
10349         obj = dev_priv->fbdev->fb->obj;
10350         BUG_ON(!obj);
10351
10352         fb = &dev_priv->fbdev->fb->base;
10353         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10354                                                                fb->bits_per_pixel))
10355                 return NULL;
10356
10357         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10358                 return NULL;
10359
10360         drm_framebuffer_reference(fb);
10361         return fb;
10362 #else
10363         return NULL;
10364 #endif
10365 }
10366
10367 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10368                                            struct drm_crtc *crtc,
10369                                            struct drm_display_mode *mode,
10370                                            struct drm_framebuffer *fb,
10371                                            int x, int y)
10372 {
10373         struct drm_plane_state *plane_state;
10374         int hdisplay, vdisplay;
10375         int ret;
10376
10377         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10378         if (IS_ERR(plane_state))
10379                 return PTR_ERR(plane_state);
10380
10381         if (mode)
10382                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10383         else
10384                 hdisplay = vdisplay = 0;
10385
10386         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10387         if (ret)
10388                 return ret;
10389         drm_atomic_set_fb_for_plane(plane_state, fb);
10390         plane_state->crtc_x = 0;
10391         plane_state->crtc_y = 0;
10392         plane_state->crtc_w = hdisplay;
10393         plane_state->crtc_h = vdisplay;
10394         plane_state->src_x = x << 16;
10395         plane_state->src_y = y << 16;
10396         plane_state->src_w = hdisplay << 16;
10397         plane_state->src_h = vdisplay << 16;
10398
10399         return 0;
10400 }
10401
10402 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10403                                 struct drm_display_mode *mode,
10404                                 struct intel_load_detect_pipe *old,
10405                                 struct drm_modeset_acquire_ctx *ctx)
10406 {
10407         struct intel_crtc *intel_crtc;
10408         struct intel_encoder *intel_encoder =
10409                 intel_attached_encoder(connector);
10410         struct drm_crtc *possible_crtc;
10411         struct drm_encoder *encoder = &intel_encoder->base;
10412         struct drm_crtc *crtc = NULL;
10413         struct drm_device *dev = encoder->dev;
10414         struct drm_framebuffer *fb;
10415         struct drm_mode_config *config = &dev->mode_config;
10416         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10417         struct drm_connector_state *connector_state;
10418         struct intel_crtc_state *crtc_state;
10419         int ret, i = -1;
10420
10421         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10422                       connector->base.id, connector->name,
10423                       encoder->base.id, encoder->name);
10424
10425         old->restore_state = NULL;
10426
10427 retry:
10428         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10429         if (ret)
10430                 goto fail;
10431
10432         /*
10433          * Algorithm gets a little messy:
10434          *
10435          *   - if the connector already has an assigned crtc, use it (but make
10436          *     sure it's on first)
10437          *
10438          *   - try to find the first unused crtc that can drive this connector,
10439          *     and use that if we find one
10440          */
10441
10442         /* See if we already have a CRTC for this connector */
10443         if (connector->state->crtc) {
10444                 crtc = connector->state->crtc;
10445
10446                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10447                 if (ret)
10448                         goto fail;
10449
10450                 /* Make sure the crtc and connector are running */
10451                 goto found;
10452         }
10453
10454         /* Find an unused one (if possible) */
10455         for_each_crtc(dev, possible_crtc) {
10456                 i++;
10457                 if (!(encoder->possible_crtcs & (1 << i)))
10458                         continue;
10459
10460                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10461                 if (ret)
10462                         goto fail;
10463
10464                 if (possible_crtc->state->enable) {
10465                         drm_modeset_unlock(&possible_crtc->mutex);
10466                         continue;
10467                 }
10468
10469                 crtc = possible_crtc;
10470                 break;
10471         }
10472
10473         /*
10474          * If we didn't find an unused CRTC, don't use any.
10475          */
10476         if (!crtc) {
10477                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10478                 goto fail;
10479         }
10480
10481 found:
10482         intel_crtc = to_intel_crtc(crtc);
10483
10484         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10485         if (ret)
10486                 goto fail;
10487
10488         state = drm_atomic_state_alloc(dev);
10489         restore_state = drm_atomic_state_alloc(dev);
10490         if (!state || !restore_state) {
10491                 ret = -ENOMEM;
10492                 goto fail;
10493         }
10494
10495         state->acquire_ctx = ctx;
10496         restore_state->acquire_ctx = ctx;
10497
10498         connector_state = drm_atomic_get_connector_state(state, connector);
10499         if (IS_ERR(connector_state)) {
10500                 ret = PTR_ERR(connector_state);
10501                 goto fail;
10502         }
10503
10504         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10505         if (ret)
10506                 goto fail;
10507
10508         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10509         if (IS_ERR(crtc_state)) {
10510                 ret = PTR_ERR(crtc_state);
10511                 goto fail;
10512         }
10513
10514         crtc_state->base.active = crtc_state->base.enable = true;
10515
10516         if (!mode)
10517                 mode = &load_detect_mode;
10518
10519         /* We need a framebuffer large enough to accommodate all accesses
10520          * that the plane may generate whilst we perform load detection.
10521          * We can not rely on the fbcon either being present (we get called
10522          * during its initialisation to detect all boot displays, or it may
10523          * not even exist) or that it is large enough to satisfy the
10524          * requested mode.
10525          */
10526         fb = mode_fits_in_fbdev(dev, mode);
10527         if (fb == NULL) {
10528                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10529                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10530         } else
10531                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10532         if (IS_ERR(fb)) {
10533                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10534                 goto fail;
10535         }
10536
10537         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10538         if (ret)
10539                 goto fail;
10540
10541         drm_framebuffer_unreference(fb);
10542
10543         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10544         if (ret)
10545                 goto fail;
10546
10547         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10548         if (!ret)
10549                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10550         if (!ret)
10551                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10552         if (ret) {
10553                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10554                 goto fail;
10555         }
10556
10557         ret = drm_atomic_commit(state);
10558         if (ret) {
10559                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10560                 goto fail;
10561         }
10562
10563         old->restore_state = restore_state;
10564
10565         /* let the connector get through one full cycle before testing */
10566         intel_wait_for_vblank(dev, intel_crtc->pipe);
10567         return true;
10568
10569 fail:
10570         drm_atomic_state_free(state);
10571         drm_atomic_state_free(restore_state);
10572         restore_state = state = NULL;
10573
10574         if (ret == -EDEADLK) {
10575                 drm_modeset_backoff(ctx);
10576                 goto retry;
10577         }
10578
10579         return false;
10580 }
10581
10582 void intel_release_load_detect_pipe(struct drm_connector *connector,
10583                                     struct intel_load_detect_pipe *old,
10584                                     struct drm_modeset_acquire_ctx *ctx)
10585 {
10586         struct intel_encoder *intel_encoder =
10587                 intel_attached_encoder(connector);
10588         struct drm_encoder *encoder = &intel_encoder->base;
10589         struct drm_atomic_state *state = old->restore_state;
10590         int ret;
10591
10592         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10593                       connector->base.id, connector->name,
10594                       encoder->base.id, encoder->name);
10595
10596         if (!state)
10597                 return;
10598
10599         ret = drm_atomic_commit(state);
10600         if (ret) {
10601                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10602                 drm_atomic_state_free(state);
10603         }
10604 }
10605
10606 static int i9xx_pll_refclk(struct drm_device *dev,
10607                            const struct intel_crtc_state *pipe_config)
10608 {
10609         struct drm_i915_private *dev_priv = dev->dev_private;
10610         u32 dpll = pipe_config->dpll_hw_state.dpll;
10611
10612         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10613                 return dev_priv->vbt.lvds_ssc_freq;
10614         else if (HAS_PCH_SPLIT(dev))
10615                 return 120000;
10616         else if (!IS_GEN2(dev))
10617                 return 96000;
10618         else
10619                 return 48000;
10620 }
10621
10622 /* Returns the clock of the currently programmed mode of the given pipe. */
10623 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10624                                 struct intel_crtc_state *pipe_config)
10625 {
10626         struct drm_device *dev = crtc->base.dev;
10627         struct drm_i915_private *dev_priv = dev->dev_private;
10628         int pipe = pipe_config->cpu_transcoder;
10629         u32 dpll = pipe_config->dpll_hw_state.dpll;
10630         u32 fp;
10631         intel_clock_t clock;
10632         int port_clock;
10633         int refclk = i9xx_pll_refclk(dev, pipe_config);
10634
10635         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10636                 fp = pipe_config->dpll_hw_state.fp0;
10637         else
10638                 fp = pipe_config->dpll_hw_state.fp1;
10639
10640         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10641         if (IS_PINEVIEW(dev)) {
10642                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10643                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10644         } else {
10645                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10646                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10647         }
10648
10649         if (!IS_GEN2(dev)) {
10650                 if (IS_PINEVIEW(dev))
10651                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10652                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10653                 else
10654                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10655                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10656
10657                 switch (dpll & DPLL_MODE_MASK) {
10658                 case DPLLB_MODE_DAC_SERIAL:
10659                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10660                                 5 : 10;
10661                         break;
10662                 case DPLLB_MODE_LVDS:
10663                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10664                                 7 : 14;
10665                         break;
10666                 default:
10667                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10668                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10669                         return;
10670                 }
10671
10672                 if (IS_PINEVIEW(dev))
10673                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10674                 else
10675                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10676         } else {
10677                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10678                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10679
10680                 if (is_lvds) {
10681                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10682                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10683
10684                         if (lvds & LVDS_CLKB_POWER_UP)
10685                                 clock.p2 = 7;
10686                         else
10687                                 clock.p2 = 14;
10688                 } else {
10689                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10690                                 clock.p1 = 2;
10691                         else {
10692                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10693                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10694                         }
10695                         if (dpll & PLL_P2_DIVIDE_BY_4)
10696                                 clock.p2 = 4;
10697                         else
10698                                 clock.p2 = 2;
10699                 }
10700
10701                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10702         }
10703
10704         /*
10705          * This value includes pixel_multiplier. We will use
10706          * port_clock to compute adjusted_mode.crtc_clock in the
10707          * encoder's get_config() function.
10708          */
10709         pipe_config->port_clock = port_clock;
10710 }
10711
10712 int intel_dotclock_calculate(int link_freq,
10713                              const struct intel_link_m_n *m_n)
10714 {
10715         /*
10716          * The calculation for the data clock is:
10717          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10718          * But we want to avoid losing precison if possible, so:
10719          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10720          *
10721          * and the link clock is simpler:
10722          * link_clock = (m * link_clock) / n
10723          */
10724
10725         if (!m_n->link_n)
10726                 return 0;
10727
10728         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10729 }
10730
10731 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10732                                    struct intel_crtc_state *pipe_config)
10733 {
10734         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10735
10736         /* read out port_clock from the DPLL */
10737         i9xx_crtc_clock_get(crtc, pipe_config);
10738
10739         /*
10740          * In case there is an active pipe without active ports,
10741          * we may need some idea for the dotclock anyway.
10742          * Calculate one based on the FDI configuration.
10743          */
10744         pipe_config->base.adjusted_mode.crtc_clock =
10745                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10746                                          &pipe_config->fdi_m_n);
10747 }
10748
10749 /** Returns the currently programmed mode of the given pipe. */
10750 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10751                                              struct drm_crtc *crtc)
10752 {
10753         struct drm_i915_private *dev_priv = dev->dev_private;
10754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10755         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10756         struct drm_display_mode *mode;
10757         struct intel_crtc_state *pipe_config;
10758         int htot = I915_READ(HTOTAL(cpu_transcoder));
10759         int hsync = I915_READ(HSYNC(cpu_transcoder));
10760         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10761         int vsync = I915_READ(VSYNC(cpu_transcoder));
10762         enum pipe pipe = intel_crtc->pipe;
10763
10764         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10765         if (!mode)
10766                 return NULL;
10767
10768         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10769         if (!pipe_config) {
10770                 kfree(mode);
10771                 return NULL;
10772         }
10773
10774         /*
10775          * Construct a pipe_config sufficient for getting the clock info
10776          * back out of crtc_clock_get.
10777          *
10778          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10779          * to use a real value here instead.
10780          */
10781         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10782         pipe_config->pixel_multiplier = 1;
10783         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10784         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10785         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10786         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10787
10788         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10789         mode->hdisplay = (htot & 0xffff) + 1;
10790         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10791         mode->hsync_start = (hsync & 0xffff) + 1;
10792         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10793         mode->vdisplay = (vtot & 0xffff) + 1;
10794         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10795         mode->vsync_start = (vsync & 0xffff) + 1;
10796         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10797
10798         drm_mode_set_name(mode);
10799
10800         kfree(pipe_config);
10801
10802         return mode;
10803 }
10804
10805 void intel_mark_busy(struct drm_i915_private *dev_priv)
10806 {
10807         if (dev_priv->mm.busy)
10808                 return;
10809
10810         intel_runtime_pm_get(dev_priv);
10811         i915_update_gfx_val(dev_priv);
10812         if (INTEL_GEN(dev_priv) >= 6)
10813                 gen6_rps_busy(dev_priv);
10814         dev_priv->mm.busy = true;
10815 }
10816
10817 void intel_mark_idle(struct drm_i915_private *dev_priv)
10818 {
10819         if (!dev_priv->mm.busy)
10820                 return;
10821
10822         dev_priv->mm.busy = false;
10823
10824         if (INTEL_GEN(dev_priv) >= 6)
10825                 gen6_rps_idle(dev_priv);
10826
10827         intel_runtime_pm_put(dev_priv);
10828 }
10829
10830 static void intel_crtc_destroy(struct drm_crtc *crtc)
10831 {
10832         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10833         struct drm_device *dev = crtc->dev;
10834         struct intel_unpin_work *work;
10835
10836         spin_lock_irq(&dev->event_lock);
10837         work = intel_crtc->unpin_work;
10838         intel_crtc->unpin_work = NULL;
10839         spin_unlock_irq(&dev->event_lock);
10840
10841         if (work) {
10842                 cancel_work_sync(&work->work);
10843                 kfree(work);
10844         }
10845
10846         drm_crtc_cleanup(crtc);
10847
10848         kfree(intel_crtc);
10849 }
10850
10851 static void intel_unpin_work_fn(struct work_struct *__work)
10852 {
10853         struct intel_unpin_work *work =
10854                 container_of(__work, struct intel_unpin_work, work);
10855         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10856         struct drm_device *dev = crtc->base.dev;
10857         struct drm_plane *primary = crtc->base.primary;
10858
10859         mutex_lock(&dev->struct_mutex);
10860         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10861         drm_gem_object_unreference(&work->pending_flip_obj->base);
10862
10863         if (work->flip_queued_req)
10864                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10865         mutex_unlock(&dev->struct_mutex);
10866
10867         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10868         intel_fbc_post_update(crtc);
10869         drm_framebuffer_unreference(work->old_fb);
10870
10871         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10872         atomic_dec(&crtc->unpin_work_count);
10873
10874         kfree(work);
10875 }
10876
10877 static void do_intel_finish_page_flip(struct drm_device *dev,
10878                                       struct drm_crtc *crtc)
10879 {
10880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10881         struct intel_unpin_work *work;
10882         unsigned long flags;
10883
10884         /* Ignore early vblank irqs */
10885         if (intel_crtc == NULL)
10886                 return;
10887
10888         /*
10889          * This is called both by irq handlers and the reset code (to complete
10890          * lost pageflips) so needs the full irqsave spinlocks.
10891          */
10892         spin_lock_irqsave(&dev->event_lock, flags);
10893         work = intel_crtc->unpin_work;
10894
10895         /* Ensure we don't miss a work->pending update ... */
10896         smp_rmb();
10897
10898         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10899                 spin_unlock_irqrestore(&dev->event_lock, flags);
10900                 return;
10901         }
10902
10903         page_flip_completed(intel_crtc);
10904
10905         spin_unlock_irqrestore(&dev->event_lock, flags);
10906 }
10907
10908 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10909 {
10910         struct drm_i915_private *dev_priv = dev->dev_private;
10911         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10912
10913         do_intel_finish_page_flip(dev, crtc);
10914 }
10915
10916 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10917 {
10918         struct drm_i915_private *dev_priv = dev->dev_private;
10919         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10920
10921         do_intel_finish_page_flip(dev, crtc);
10922 }
10923
10924 /* Is 'a' after or equal to 'b'? */
10925 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10926 {
10927         return !((a - b) & 0x80000000);
10928 }
10929
10930 static bool page_flip_finished(struct intel_crtc *crtc)
10931 {
10932         struct drm_device *dev = crtc->base.dev;
10933         struct drm_i915_private *dev_priv = dev->dev_private;
10934         unsigned reset_counter;
10935
10936         reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10937         if (crtc->reset_counter != reset_counter)
10938                 return true;
10939
10940         /*
10941          * The relevant registers doen't exist on pre-ctg.
10942          * As the flip done interrupt doesn't trigger for mmio
10943          * flips on gmch platforms, a flip count check isn't
10944          * really needed there. But since ctg has the registers,
10945          * include it in the check anyway.
10946          */
10947         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10948                 return true;
10949
10950         /*
10951          * BDW signals flip done immediately if the plane
10952          * is disabled, even if the plane enable is already
10953          * armed to occur at the next vblank :(
10954          */
10955
10956         /*
10957          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10958          * used the same base address. In that case the mmio flip might
10959          * have completed, but the CS hasn't even executed the flip yet.
10960          *
10961          * A flip count check isn't enough as the CS might have updated
10962          * the base address just after start of vblank, but before we
10963          * managed to process the interrupt. This means we'd complete the
10964          * CS flip too soon.
10965          *
10966          * Combining both checks should get us a good enough result. It may
10967          * still happen that the CS flip has been executed, but has not
10968          * yet actually completed. But in case the base address is the same
10969          * anyway, we don't really care.
10970          */
10971         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10972                 crtc->unpin_work->gtt_offset &&
10973                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10974                                     crtc->unpin_work->flip_count);
10975 }
10976
10977 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10978 {
10979         struct drm_i915_private *dev_priv = dev->dev_private;
10980         struct intel_crtc *intel_crtc =
10981                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10982         unsigned long flags;
10983
10984
10985         /*
10986          * This is called both by irq handlers and the reset code (to complete
10987          * lost pageflips) so needs the full irqsave spinlocks.
10988          *
10989          * NB: An MMIO update of the plane base pointer will also
10990          * generate a page-flip completion irq, i.e. every modeset
10991          * is also accompanied by a spurious intel_prepare_page_flip().
10992          */
10993         spin_lock_irqsave(&dev->event_lock, flags);
10994         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10995                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10996         spin_unlock_irqrestore(&dev->event_lock, flags);
10997 }
10998
10999 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11000 {
11001         /* Ensure that the work item is consistent when activating it ... */
11002         smp_wmb();
11003         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11004         /* and that it is marked active as soon as the irq could fire. */
11005         smp_wmb();
11006 }
11007
11008 static int intel_gen2_queue_flip(struct drm_device *dev,
11009                                  struct drm_crtc *crtc,
11010                                  struct drm_framebuffer *fb,
11011                                  struct drm_i915_gem_object *obj,
11012                                  struct drm_i915_gem_request *req,
11013                                  uint32_t flags)
11014 {
11015         struct intel_engine_cs *engine = req->engine;
11016         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11017         u32 flip_mask;
11018         int ret;
11019
11020         ret = intel_ring_begin(req, 6);
11021         if (ret)
11022                 return ret;
11023
11024         /* Can't queue multiple flips, so wait for the previous
11025          * one to finish before executing the next.
11026          */
11027         if (intel_crtc->plane)
11028                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11029         else
11030                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11031         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11032         intel_ring_emit(engine, MI_NOOP);
11033         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11034                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11035         intel_ring_emit(engine, fb->pitches[0]);
11036         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11037         intel_ring_emit(engine, 0); /* aux display base address, unused */
11038
11039         intel_mark_page_flip_active(intel_crtc->unpin_work);
11040         return 0;
11041 }
11042
11043 static int intel_gen3_queue_flip(struct drm_device *dev,
11044                                  struct drm_crtc *crtc,
11045                                  struct drm_framebuffer *fb,
11046                                  struct drm_i915_gem_object *obj,
11047                                  struct drm_i915_gem_request *req,
11048                                  uint32_t flags)
11049 {
11050         struct intel_engine_cs *engine = req->engine;
11051         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11052         u32 flip_mask;
11053         int ret;
11054
11055         ret = intel_ring_begin(req, 6);
11056         if (ret)
11057                 return ret;
11058
11059         if (intel_crtc->plane)
11060                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11061         else
11062                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11063         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11064         intel_ring_emit(engine, MI_NOOP);
11065         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11066                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11067         intel_ring_emit(engine, fb->pitches[0]);
11068         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11069         intel_ring_emit(engine, MI_NOOP);
11070
11071         intel_mark_page_flip_active(intel_crtc->unpin_work);
11072         return 0;
11073 }
11074
11075 static int intel_gen4_queue_flip(struct drm_device *dev,
11076                                  struct drm_crtc *crtc,
11077                                  struct drm_framebuffer *fb,
11078                                  struct drm_i915_gem_object *obj,
11079                                  struct drm_i915_gem_request *req,
11080                                  uint32_t flags)
11081 {
11082         struct intel_engine_cs *engine = req->engine;
11083         struct drm_i915_private *dev_priv = dev->dev_private;
11084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11085         uint32_t pf, pipesrc;
11086         int ret;
11087
11088         ret = intel_ring_begin(req, 4);
11089         if (ret)
11090                 return ret;
11091
11092         /* i965+ uses the linear or tiled offsets from the
11093          * Display Registers (which do not change across a page-flip)
11094          * so we need only reprogram the base address.
11095          */
11096         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11097                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11098         intel_ring_emit(engine, fb->pitches[0]);
11099         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11100                         obj->tiling_mode);
11101
11102         /* XXX Enabling the panel-fitter across page-flip is so far
11103          * untested on non-native modes, so ignore it for now.
11104          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11105          */
11106         pf = 0;
11107         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11108         intel_ring_emit(engine, pf | pipesrc);
11109
11110         intel_mark_page_flip_active(intel_crtc->unpin_work);
11111         return 0;
11112 }
11113
11114 static int intel_gen6_queue_flip(struct drm_device *dev,
11115                                  struct drm_crtc *crtc,
11116                                  struct drm_framebuffer *fb,
11117                                  struct drm_i915_gem_object *obj,
11118                                  struct drm_i915_gem_request *req,
11119                                  uint32_t flags)
11120 {
11121         struct intel_engine_cs *engine = req->engine;
11122         struct drm_i915_private *dev_priv = dev->dev_private;
11123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11124         uint32_t pf, pipesrc;
11125         int ret;
11126
11127         ret = intel_ring_begin(req, 4);
11128         if (ret)
11129                 return ret;
11130
11131         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11132                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11133         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11134         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11135
11136         /* Contrary to the suggestions in the documentation,
11137          * "Enable Panel Fitter" does not seem to be required when page
11138          * flipping with a non-native mode, and worse causes a normal
11139          * modeset to fail.
11140          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11141          */
11142         pf = 0;
11143         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11144         intel_ring_emit(engine, pf | pipesrc);
11145
11146         intel_mark_page_flip_active(intel_crtc->unpin_work);
11147         return 0;
11148 }
11149
11150 static int intel_gen7_queue_flip(struct drm_device *dev,
11151                                  struct drm_crtc *crtc,
11152                                  struct drm_framebuffer *fb,
11153                                  struct drm_i915_gem_object *obj,
11154                                  struct drm_i915_gem_request *req,
11155                                  uint32_t flags)
11156 {
11157         struct intel_engine_cs *engine = req->engine;
11158         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11159         uint32_t plane_bit = 0;
11160         int len, ret;
11161
11162         switch (intel_crtc->plane) {
11163         case PLANE_A:
11164                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11165                 break;
11166         case PLANE_B:
11167                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11168                 break;
11169         case PLANE_C:
11170                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11171                 break;
11172         default:
11173                 WARN_ONCE(1, "unknown plane in flip command\n");
11174                 return -ENODEV;
11175         }
11176
11177         len = 4;
11178         if (engine->id == RCS) {
11179                 len += 6;
11180                 /*
11181                  * On Gen 8, SRM is now taking an extra dword to accommodate
11182                  * 48bits addresses, and we need a NOOP for the batch size to
11183                  * stay even.
11184                  */
11185                 if (IS_GEN8(dev))
11186                         len += 2;
11187         }
11188
11189         /*
11190          * BSpec MI_DISPLAY_FLIP for IVB:
11191          * "The full packet must be contained within the same cache line."
11192          *
11193          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11194          * cacheline, if we ever start emitting more commands before
11195          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11196          * then do the cacheline alignment, and finally emit the
11197          * MI_DISPLAY_FLIP.
11198          */
11199         ret = intel_ring_cacheline_align(req);
11200         if (ret)
11201                 return ret;
11202
11203         ret = intel_ring_begin(req, len);
11204         if (ret)
11205                 return ret;
11206
11207         /* Unmask the flip-done completion message. Note that the bspec says that
11208          * we should do this for both the BCS and RCS, and that we must not unmask
11209          * more than one flip event at any time (or ensure that one flip message
11210          * can be sent by waiting for flip-done prior to queueing new flips).
11211          * Experimentation says that BCS works despite DERRMR masking all
11212          * flip-done completion events and that unmasking all planes at once
11213          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11214          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11215          */
11216         if (engine->id == RCS) {
11217                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11218                 intel_ring_emit_reg(engine, DERRMR);
11219                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11220                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11221                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11222                 if (IS_GEN8(dev))
11223                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11224                                               MI_SRM_LRM_GLOBAL_GTT);
11225                 else
11226                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11227                                               MI_SRM_LRM_GLOBAL_GTT);
11228                 intel_ring_emit_reg(engine, DERRMR);
11229                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11230                 if (IS_GEN8(dev)) {
11231                         intel_ring_emit(engine, 0);
11232                         intel_ring_emit(engine, MI_NOOP);
11233                 }
11234         }
11235
11236         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11237         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11238         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11239         intel_ring_emit(engine, (MI_NOOP));
11240
11241         intel_mark_page_flip_active(intel_crtc->unpin_work);
11242         return 0;
11243 }
11244
11245 static bool use_mmio_flip(struct intel_engine_cs *engine,
11246                           struct drm_i915_gem_object *obj)
11247 {
11248         /*
11249          * This is not being used for older platforms, because
11250          * non-availability of flip done interrupt forces us to use
11251          * CS flips. Older platforms derive flip done using some clever
11252          * tricks involving the flip_pending status bits and vblank irqs.
11253          * So using MMIO flips there would disrupt this mechanism.
11254          */
11255
11256         if (engine == NULL)
11257                 return true;
11258
11259         if (INTEL_INFO(engine->dev)->gen < 5)
11260                 return false;
11261
11262         if (i915.use_mmio_flip < 0)
11263                 return false;
11264         else if (i915.use_mmio_flip > 0)
11265                 return true;
11266         else if (i915.enable_execlists)
11267                 return true;
11268         else if (obj->base.dma_buf &&
11269                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11270                                                        false))
11271                 return true;
11272         else
11273                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11274 }
11275
11276 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11277                              unsigned int rotation,
11278                              struct intel_unpin_work *work)
11279 {
11280         struct drm_device *dev = intel_crtc->base.dev;
11281         struct drm_i915_private *dev_priv = dev->dev_private;
11282         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11283         const enum pipe pipe = intel_crtc->pipe;
11284         u32 ctl, stride, tile_height;
11285
11286         ctl = I915_READ(PLANE_CTL(pipe, 0));
11287         ctl &= ~PLANE_CTL_TILED_MASK;
11288         switch (fb->modifier[0]) {
11289         case DRM_FORMAT_MOD_NONE:
11290                 break;
11291         case I915_FORMAT_MOD_X_TILED:
11292                 ctl |= PLANE_CTL_TILED_X;
11293                 break;
11294         case I915_FORMAT_MOD_Y_TILED:
11295                 ctl |= PLANE_CTL_TILED_Y;
11296                 break;
11297         case I915_FORMAT_MOD_Yf_TILED:
11298                 ctl |= PLANE_CTL_TILED_YF;
11299                 break;
11300         default:
11301                 MISSING_CASE(fb->modifier[0]);
11302         }
11303
11304         /*
11305          * The stride is either expressed as a multiple of 64 bytes chunks for
11306          * linear buffers or in number of tiles for tiled buffers.
11307          */
11308         if (intel_rotation_90_or_270(rotation)) {
11309                 /* stride = Surface height in tiles */
11310                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11311                 stride = DIV_ROUND_UP(fb->height, tile_height);
11312         } else {
11313                 stride = fb->pitches[0] /
11314                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11315                                                   fb->pixel_format);
11316         }
11317
11318         /*
11319          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11320          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11321          */
11322         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11323         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11324
11325         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11326         POSTING_READ(PLANE_SURF(pipe, 0));
11327 }
11328
11329 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11330                              struct intel_unpin_work *work)
11331 {
11332         struct drm_device *dev = intel_crtc->base.dev;
11333         struct drm_i915_private *dev_priv = dev->dev_private;
11334         struct intel_framebuffer *intel_fb =
11335                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11336         struct drm_i915_gem_object *obj = intel_fb->obj;
11337         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11338         u32 dspcntr;
11339
11340         dspcntr = I915_READ(reg);
11341
11342         if (obj->tiling_mode != I915_TILING_NONE)
11343                 dspcntr |= DISPPLANE_TILED;
11344         else
11345                 dspcntr &= ~DISPPLANE_TILED;
11346
11347         I915_WRITE(reg, dspcntr);
11348
11349         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11350         POSTING_READ(DSPSURF(intel_crtc->plane));
11351 }
11352
11353 /*
11354  * XXX: This is the temporary way to update the plane registers until we get
11355  * around to using the usual plane update functions for MMIO flips
11356  */
11357 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11358 {
11359         struct intel_crtc *crtc = mmio_flip->crtc;
11360         struct intel_unpin_work *work;
11361
11362         spin_lock_irq(&crtc->base.dev->event_lock);
11363         work = crtc->unpin_work;
11364         spin_unlock_irq(&crtc->base.dev->event_lock);
11365         if (work == NULL)
11366                 return;
11367
11368         intel_mark_page_flip_active(work);
11369
11370         intel_pipe_update_start(crtc);
11371
11372         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11373                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11374         else
11375                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11376                 ilk_do_mmio_flip(crtc, work);
11377
11378         intel_pipe_update_end(crtc);
11379 }
11380
11381 static void intel_mmio_flip_work_func(struct work_struct *work)
11382 {
11383         struct intel_mmio_flip *mmio_flip =
11384                 container_of(work, struct intel_mmio_flip, work);
11385         struct intel_framebuffer *intel_fb =
11386                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11387         struct drm_i915_gem_object *obj = intel_fb->obj;
11388
11389         if (mmio_flip->req) {
11390                 WARN_ON(__i915_wait_request(mmio_flip->req,
11391                                             false, NULL,
11392                                             &mmio_flip->i915->rps.mmioflips));
11393                 i915_gem_request_unreference(mmio_flip->req);
11394         }
11395
11396         /* For framebuffer backed by dmabuf, wait for fence */
11397         if (obj->base.dma_buf)
11398                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11399                                                             false, false,
11400                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11401
11402         intel_do_mmio_flip(mmio_flip);
11403         kfree(mmio_flip);
11404 }
11405
11406 static int intel_queue_mmio_flip(struct drm_device *dev,
11407                                  struct drm_crtc *crtc,
11408                                  struct drm_i915_gem_object *obj)
11409 {
11410         struct intel_mmio_flip *mmio_flip;
11411
11412         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11413         if (mmio_flip == NULL)
11414                 return -ENOMEM;
11415
11416         mmio_flip->i915 = to_i915(dev);
11417         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11418         mmio_flip->crtc = to_intel_crtc(crtc);
11419         mmio_flip->rotation = crtc->primary->state->rotation;
11420
11421         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11422         schedule_work(&mmio_flip->work);
11423
11424         return 0;
11425 }
11426
11427 static int intel_default_queue_flip(struct drm_device *dev,
11428                                     struct drm_crtc *crtc,
11429                                     struct drm_framebuffer *fb,
11430                                     struct drm_i915_gem_object *obj,
11431                                     struct drm_i915_gem_request *req,
11432                                     uint32_t flags)
11433 {
11434         return -ENODEV;
11435 }
11436
11437 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11438                                          struct drm_crtc *crtc)
11439 {
11440         struct drm_i915_private *dev_priv = dev->dev_private;
11441         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11442         struct intel_unpin_work *work = intel_crtc->unpin_work;
11443         u32 addr;
11444
11445         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11446                 return true;
11447
11448         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11449                 return false;
11450
11451         if (!work->enable_stall_check)
11452                 return false;
11453
11454         if (work->flip_ready_vblank == 0) {
11455                 if (work->flip_queued_req &&
11456                     !i915_gem_request_completed(work->flip_queued_req, true))
11457                         return false;
11458
11459                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11460         }
11461
11462         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11463                 return false;
11464
11465         /* Potential stall - if we see that the flip has happened,
11466          * assume a missed interrupt. */
11467         if (INTEL_INFO(dev)->gen >= 4)
11468                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11469         else
11470                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11471
11472         /* There is a potential issue here with a false positive after a flip
11473          * to the same address. We could address this by checking for a
11474          * non-incrementing frame counter.
11475          */
11476         return addr == work->gtt_offset;
11477 }
11478
11479 void intel_check_page_flip(struct drm_device *dev, int pipe)
11480 {
11481         struct drm_i915_private *dev_priv = dev->dev_private;
11482         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11484         struct intel_unpin_work *work;
11485
11486         WARN_ON(!in_interrupt());
11487
11488         if (crtc == NULL)
11489                 return;
11490
11491         spin_lock(&dev->event_lock);
11492         work = intel_crtc->unpin_work;
11493         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11494                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11495                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11496                 page_flip_completed(intel_crtc);
11497                 work = NULL;
11498         }
11499         if (work != NULL &&
11500             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11501                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11502         spin_unlock(&dev->event_lock);
11503 }
11504
11505 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11506                                 struct drm_framebuffer *fb,
11507                                 struct drm_pending_vblank_event *event,
11508                                 uint32_t page_flip_flags)
11509 {
11510         struct drm_device *dev = crtc->dev;
11511         struct drm_i915_private *dev_priv = dev->dev_private;
11512         struct drm_framebuffer *old_fb = crtc->primary->fb;
11513         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11515         struct drm_plane *primary = crtc->primary;
11516         enum pipe pipe = intel_crtc->pipe;
11517         struct intel_unpin_work *work;
11518         struct intel_engine_cs *engine;
11519         bool mmio_flip;
11520         struct drm_i915_gem_request *request = NULL;
11521         int ret;
11522
11523         /*
11524          * drm_mode_page_flip_ioctl() should already catch this, but double
11525          * check to be safe.  In the future we may enable pageflipping from
11526          * a disabled primary plane.
11527          */
11528         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11529                 return -EBUSY;
11530
11531         /* Can't change pixel format via MI display flips. */
11532         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11533                 return -EINVAL;
11534
11535         /*
11536          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11537          * Note that pitch changes could also affect these register.
11538          */
11539         if (INTEL_INFO(dev)->gen > 3 &&
11540             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11541              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11542                 return -EINVAL;
11543
11544         if (i915_terminally_wedged(&dev_priv->gpu_error))
11545                 goto out_hang;
11546
11547         work = kzalloc(sizeof(*work), GFP_KERNEL);
11548         if (work == NULL)
11549                 return -ENOMEM;
11550
11551         work->event = event;
11552         work->crtc = crtc;
11553         work->old_fb = old_fb;
11554         INIT_WORK(&work->work, intel_unpin_work_fn);
11555
11556         ret = drm_crtc_vblank_get(crtc);
11557         if (ret)
11558                 goto free_work;
11559
11560         /* We borrow the event spin lock for protecting unpin_work */
11561         spin_lock_irq(&dev->event_lock);
11562         if (intel_crtc->unpin_work) {
11563                 /* Before declaring the flip queue wedged, check if
11564                  * the hardware completed the operation behind our backs.
11565                  */
11566                 if (__intel_pageflip_stall_check(dev, crtc)) {
11567                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11568                         page_flip_completed(intel_crtc);
11569                 } else {
11570                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11571                         spin_unlock_irq(&dev->event_lock);
11572
11573                         drm_crtc_vblank_put(crtc);
11574                         kfree(work);
11575                         return -EBUSY;
11576                 }
11577         }
11578         intel_crtc->unpin_work = work;
11579         spin_unlock_irq(&dev->event_lock);
11580
11581         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11582                 flush_workqueue(dev_priv->wq);
11583
11584         /* Reference the objects for the scheduled work. */
11585         drm_framebuffer_reference(work->old_fb);
11586         drm_gem_object_reference(&obj->base);
11587
11588         crtc->primary->fb = fb;
11589         update_state_fb(crtc->primary);
11590         intel_fbc_pre_update(intel_crtc);
11591
11592         work->pending_flip_obj = obj;
11593
11594         ret = i915_mutex_lock_interruptible(dev);
11595         if (ret)
11596                 goto cleanup;
11597
11598         intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11599         if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11600                 ret = -EIO;
11601                 goto cleanup;
11602         }
11603
11604         atomic_inc(&intel_crtc->unpin_work_count);
11605
11606         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11607                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11608
11609         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11610                 engine = &dev_priv->engine[BCS];
11611                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11612                         /* vlv: DISPLAY_FLIP fails to change tiling */
11613                         engine = NULL;
11614         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11615                 engine = &dev_priv->engine[BCS];
11616         } else if (INTEL_INFO(dev)->gen >= 7) {
11617                 engine = i915_gem_request_get_engine(obj->last_write_req);
11618                 if (engine == NULL || engine->id != RCS)
11619                         engine = &dev_priv->engine[BCS];
11620         } else {
11621                 engine = &dev_priv->engine[RCS];
11622         }
11623
11624         mmio_flip = use_mmio_flip(engine, obj);
11625
11626         /* When using CS flips, we want to emit semaphores between rings.
11627          * However, when using mmio flips we will create a task to do the
11628          * synchronisation, so all we want here is to pin the framebuffer
11629          * into the display plane and skip any waits.
11630          */
11631         if (!mmio_flip) {
11632                 ret = i915_gem_object_sync(obj, engine, &request);
11633                 if (ret)
11634                         goto cleanup_pending;
11635         }
11636
11637         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11638         if (ret)
11639                 goto cleanup_pending;
11640
11641         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11642                                                   obj, 0);
11643         work->gtt_offset += intel_crtc->dspaddr_offset;
11644
11645         if (mmio_flip) {
11646                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11647                 if (ret)
11648                         goto cleanup_unpin;
11649
11650                 i915_gem_request_assign(&work->flip_queued_req,
11651                                         obj->last_write_req);
11652         } else {
11653                 if (!request) {
11654                         request = i915_gem_request_alloc(engine, NULL);
11655                         if (IS_ERR(request)) {
11656                                 ret = PTR_ERR(request);
11657                                 goto cleanup_unpin;
11658                         }
11659                 }
11660
11661                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11662                                                    page_flip_flags);
11663                 if (ret)
11664                         goto cleanup_unpin;
11665
11666                 i915_gem_request_assign(&work->flip_queued_req, request);
11667         }
11668
11669         if (request)
11670                 i915_add_request_no_flush(request);
11671
11672         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11673         work->enable_stall_check = true;
11674
11675         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11676                           to_intel_plane(primary)->frontbuffer_bit);
11677         mutex_unlock(&dev->struct_mutex);
11678
11679         intel_frontbuffer_flip_prepare(dev,
11680                                        to_intel_plane(primary)->frontbuffer_bit);
11681
11682         trace_i915_flip_request(intel_crtc->plane, obj);
11683
11684         return 0;
11685
11686 cleanup_unpin:
11687         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11688 cleanup_pending:
11689         if (!IS_ERR_OR_NULL(request))
11690                 i915_add_request_no_flush(request);
11691         atomic_dec(&intel_crtc->unpin_work_count);
11692         mutex_unlock(&dev->struct_mutex);
11693 cleanup:
11694         crtc->primary->fb = old_fb;
11695         update_state_fb(crtc->primary);
11696
11697         drm_gem_object_unreference_unlocked(&obj->base);
11698         drm_framebuffer_unreference(work->old_fb);
11699
11700         spin_lock_irq(&dev->event_lock);
11701         intel_crtc->unpin_work = NULL;
11702         spin_unlock_irq(&dev->event_lock);
11703
11704         drm_crtc_vblank_put(crtc);
11705 free_work:
11706         kfree(work);
11707
11708         if (ret == -EIO) {
11709                 struct drm_atomic_state *state;
11710                 struct drm_plane_state *plane_state;
11711
11712 out_hang:
11713                 state = drm_atomic_state_alloc(dev);
11714                 if (!state)
11715                         return -ENOMEM;
11716                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11717
11718 retry:
11719                 plane_state = drm_atomic_get_plane_state(state, primary);
11720                 ret = PTR_ERR_OR_ZERO(plane_state);
11721                 if (!ret) {
11722                         drm_atomic_set_fb_for_plane(plane_state, fb);
11723
11724                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11725                         if (!ret)
11726                                 ret = drm_atomic_commit(state);
11727                 }
11728
11729                 if (ret == -EDEADLK) {
11730                         drm_modeset_backoff(state->acquire_ctx);
11731                         drm_atomic_state_clear(state);
11732                         goto retry;
11733                 }
11734
11735                 if (ret)
11736                         drm_atomic_state_free(state);
11737
11738                 if (ret == 0 && event) {
11739                         spin_lock_irq(&dev->event_lock);
11740                         drm_crtc_send_vblank_event(crtc, event);
11741                         spin_unlock_irq(&dev->event_lock);
11742                 }
11743         }
11744         return ret;
11745 }
11746
11747
11748 /**
11749  * intel_wm_need_update - Check whether watermarks need updating
11750  * @plane: drm plane
11751  * @state: new plane state
11752  *
11753  * Check current plane state versus the new one to determine whether
11754  * watermarks need to be recalculated.
11755  *
11756  * Returns true or false.
11757  */
11758 static bool intel_wm_need_update(struct drm_plane *plane,
11759                                  struct drm_plane_state *state)
11760 {
11761         struct intel_plane_state *new = to_intel_plane_state(state);
11762         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11763
11764         /* Update watermarks on tiling or size changes. */
11765         if (new->visible != cur->visible)
11766                 return true;
11767
11768         if (!cur->base.fb || !new->base.fb)
11769                 return false;
11770
11771         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11772             cur->base.rotation != new->base.rotation ||
11773             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11774             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11775             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11776             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11777                 return true;
11778
11779         return false;
11780 }
11781
11782 static bool needs_scaling(struct intel_plane_state *state)
11783 {
11784         int src_w = drm_rect_width(&state->src) >> 16;
11785         int src_h = drm_rect_height(&state->src) >> 16;
11786         int dst_w = drm_rect_width(&state->dst);
11787         int dst_h = drm_rect_height(&state->dst);
11788
11789         return (src_w != dst_w || src_h != dst_h);
11790 }
11791
11792 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11793                                     struct drm_plane_state *plane_state)
11794 {
11795         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11796         struct drm_crtc *crtc = crtc_state->crtc;
11797         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11798         struct drm_plane *plane = plane_state->plane;
11799         struct drm_device *dev = crtc->dev;
11800         struct drm_i915_private *dev_priv = to_i915(dev);
11801         struct intel_plane_state *old_plane_state =
11802                 to_intel_plane_state(plane->state);
11803         int idx = intel_crtc->base.base.id, ret;
11804         bool mode_changed = needs_modeset(crtc_state);
11805         bool was_crtc_enabled = crtc->state->active;
11806         bool is_crtc_enabled = crtc_state->active;
11807         bool turn_off, turn_on, visible, was_visible;
11808         struct drm_framebuffer *fb = plane_state->fb;
11809
11810         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11811             plane->type != DRM_PLANE_TYPE_CURSOR) {
11812                 ret = skl_update_scaler_plane(
11813                         to_intel_crtc_state(crtc_state),
11814                         to_intel_plane_state(plane_state));
11815                 if (ret)
11816                         return ret;
11817         }
11818
11819         was_visible = old_plane_state->visible;
11820         visible = to_intel_plane_state(plane_state)->visible;
11821
11822         if (!was_crtc_enabled && WARN_ON(was_visible))
11823                 was_visible = false;
11824
11825         /*
11826          * Visibility is calculated as if the crtc was on, but
11827          * after scaler setup everything depends on it being off
11828          * when the crtc isn't active.
11829          */
11830         if (!is_crtc_enabled)
11831                 to_intel_plane_state(plane_state)->visible = visible = false;
11832
11833         if (!was_visible && !visible)
11834                 return 0;
11835
11836         if (fb != old_plane_state->base.fb)
11837                 pipe_config->fb_changed = true;
11838
11839         turn_off = was_visible && (!visible || mode_changed);
11840         turn_on = visible && (!was_visible || mode_changed);
11841
11842         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11843                          plane->base.id, fb ? fb->base.id : -1);
11844
11845         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11846                          plane->base.id, was_visible, visible,
11847                          turn_off, turn_on, mode_changed);
11848
11849         if (turn_on) {
11850                 pipe_config->update_wm_pre = true;
11851
11852                 /* must disable cxsr around plane enable/disable */
11853                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11854                         pipe_config->disable_cxsr = true;
11855         } else if (turn_off) {
11856                 pipe_config->update_wm_post = true;
11857
11858                 /* must disable cxsr around plane enable/disable */
11859                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11860                         pipe_config->disable_cxsr = true;
11861         } else if (intel_wm_need_update(plane, plane_state)) {
11862                 /* FIXME bollocks */
11863                 pipe_config->update_wm_pre = true;
11864                 pipe_config->update_wm_post = true;
11865         }
11866
11867         /* Pre-gen9 platforms need two-step watermark updates */
11868         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11869             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11870                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11871
11872         if (visible || was_visible)
11873                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11874
11875         /*
11876          * WaCxSRDisabledForSpriteScaling:ivb
11877          *
11878          * cstate->update_wm was already set above, so this flag will
11879          * take effect when we commit and program watermarks.
11880          */
11881         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11882             needs_scaling(to_intel_plane_state(plane_state)) &&
11883             !needs_scaling(old_plane_state))
11884                 pipe_config->disable_lp_wm = true;
11885
11886         return 0;
11887 }
11888
11889 static bool encoders_cloneable(const struct intel_encoder *a,
11890                                const struct intel_encoder *b)
11891 {
11892         /* masks could be asymmetric, so check both ways */
11893         return a == b || (a->cloneable & (1 << b->type) &&
11894                           b->cloneable & (1 << a->type));
11895 }
11896
11897 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11898                                          struct intel_crtc *crtc,
11899                                          struct intel_encoder *encoder)
11900 {
11901         struct intel_encoder *source_encoder;
11902         struct drm_connector *connector;
11903         struct drm_connector_state *connector_state;
11904         int i;
11905
11906         for_each_connector_in_state(state, connector, connector_state, i) {
11907                 if (connector_state->crtc != &crtc->base)
11908                         continue;
11909
11910                 source_encoder =
11911                         to_intel_encoder(connector_state->best_encoder);
11912                 if (!encoders_cloneable(encoder, source_encoder))
11913                         return false;
11914         }
11915
11916         return true;
11917 }
11918
11919 static bool check_encoder_cloning(struct drm_atomic_state *state,
11920                                   struct intel_crtc *crtc)
11921 {
11922         struct intel_encoder *encoder;
11923         struct drm_connector *connector;
11924         struct drm_connector_state *connector_state;
11925         int i;
11926
11927         for_each_connector_in_state(state, connector, connector_state, i) {
11928                 if (connector_state->crtc != &crtc->base)
11929                         continue;
11930
11931                 encoder = to_intel_encoder(connector_state->best_encoder);
11932                 if (!check_single_encoder_cloning(state, crtc, encoder))
11933                         return false;
11934         }
11935
11936         return true;
11937 }
11938
11939 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11940                                    struct drm_crtc_state *crtc_state)
11941 {
11942         struct drm_device *dev = crtc->dev;
11943         struct drm_i915_private *dev_priv = dev->dev_private;
11944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11945         struct intel_crtc_state *pipe_config =
11946                 to_intel_crtc_state(crtc_state);
11947         struct drm_atomic_state *state = crtc_state->state;
11948         int ret;
11949         bool mode_changed = needs_modeset(crtc_state);
11950
11951         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11952                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11953                 return -EINVAL;
11954         }
11955
11956         if (mode_changed && !crtc_state->active)
11957                 pipe_config->update_wm_post = true;
11958
11959         if (mode_changed && crtc_state->enable &&
11960             dev_priv->display.crtc_compute_clock &&
11961             !WARN_ON(pipe_config->shared_dpll)) {
11962                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11963                                                            pipe_config);
11964                 if (ret)
11965                         return ret;
11966         }
11967
11968         if (crtc_state->color_mgmt_changed) {
11969                 ret = intel_color_check(crtc, crtc_state);
11970                 if (ret)
11971                         return ret;
11972         }
11973
11974         ret = 0;
11975         if (dev_priv->display.compute_pipe_wm) {
11976                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11977                 if (ret) {
11978                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11979                         return ret;
11980                 }
11981         }
11982
11983         if (dev_priv->display.compute_intermediate_wm &&
11984             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11985                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11986                         return 0;
11987
11988                 /*
11989                  * Calculate 'intermediate' watermarks that satisfy both the
11990                  * old state and the new state.  We can program these
11991                  * immediately.
11992                  */
11993                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11994                                                                 intel_crtc,
11995                                                                 pipe_config);
11996                 if (ret) {
11997                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11998                         return ret;
11999                 }
12000         }
12001
12002         if (INTEL_INFO(dev)->gen >= 9) {
12003                 if (mode_changed)
12004                         ret = skl_update_scaler_crtc(pipe_config);
12005
12006                 if (!ret)
12007                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12008                                                          pipe_config);
12009         }
12010
12011         return ret;
12012 }
12013
12014 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12015         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12016         .atomic_begin = intel_begin_crtc_commit,
12017         .atomic_flush = intel_finish_crtc_commit,
12018         .atomic_check = intel_crtc_atomic_check,
12019 };
12020
12021 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12022 {
12023         struct intel_connector *connector;
12024
12025         for_each_intel_connector(dev, connector) {
12026                 if (connector->base.encoder) {
12027                         connector->base.state->best_encoder =
12028                                 connector->base.encoder;
12029                         connector->base.state->crtc =
12030                                 connector->base.encoder->crtc;
12031                 } else {
12032                         connector->base.state->best_encoder = NULL;
12033                         connector->base.state->crtc = NULL;
12034                 }
12035         }
12036 }
12037
12038 static void
12039 connected_sink_compute_bpp(struct intel_connector *connector,
12040                            struct intel_crtc_state *pipe_config)
12041 {
12042         int bpp = pipe_config->pipe_bpp;
12043
12044         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12045                 connector->base.base.id,
12046                 connector->base.name);
12047
12048         /* Don't use an invalid EDID bpc value */
12049         if (connector->base.display_info.bpc &&
12050             connector->base.display_info.bpc * 3 < bpp) {
12051                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12052                               bpp, connector->base.display_info.bpc*3);
12053                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12054         }
12055
12056         /* Clamp bpp to default limit on screens without EDID 1.4 */
12057         if (connector->base.display_info.bpc == 0) {
12058                 int type = connector->base.connector_type;
12059                 int clamp_bpp = 24;
12060
12061                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12062                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12063                     type == DRM_MODE_CONNECTOR_eDP)
12064                         clamp_bpp = 18;
12065
12066                 if (bpp > clamp_bpp) {
12067                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12068                                       bpp, clamp_bpp);
12069                         pipe_config->pipe_bpp = clamp_bpp;
12070                 }
12071         }
12072 }
12073
12074 static int
12075 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12076                           struct intel_crtc_state *pipe_config)
12077 {
12078         struct drm_device *dev = crtc->base.dev;
12079         struct drm_atomic_state *state;
12080         struct drm_connector *connector;
12081         struct drm_connector_state *connector_state;
12082         int bpp, i;
12083
12084         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12085                 bpp = 10*3;
12086         else if (INTEL_INFO(dev)->gen >= 5)
12087                 bpp = 12*3;
12088         else
12089                 bpp = 8*3;
12090
12091
12092         pipe_config->pipe_bpp = bpp;
12093
12094         state = pipe_config->base.state;
12095
12096         /* Clamp display bpp to EDID value */
12097         for_each_connector_in_state(state, connector, connector_state, i) {
12098                 if (connector_state->crtc != &crtc->base)
12099                         continue;
12100
12101                 connected_sink_compute_bpp(to_intel_connector(connector),
12102                                            pipe_config);
12103         }
12104
12105         return bpp;
12106 }
12107
12108 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12109 {
12110         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12111                         "type: 0x%x flags: 0x%x\n",
12112                 mode->crtc_clock,
12113                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12114                 mode->crtc_hsync_end, mode->crtc_htotal,
12115                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12116                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12117 }
12118
12119 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12120                                    struct intel_crtc_state *pipe_config,
12121                                    const char *context)
12122 {
12123         struct drm_device *dev = crtc->base.dev;
12124         struct drm_plane *plane;
12125         struct intel_plane *intel_plane;
12126         struct intel_plane_state *state;
12127         struct drm_framebuffer *fb;
12128
12129         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12130                       context, pipe_config, pipe_name(crtc->pipe));
12131
12132         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12133         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12134                       pipe_config->pipe_bpp, pipe_config->dither);
12135         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12136                       pipe_config->has_pch_encoder,
12137                       pipe_config->fdi_lanes,
12138                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12139                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12140                       pipe_config->fdi_m_n.tu);
12141         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12142                       pipe_config->has_dp_encoder,
12143                       pipe_config->lane_count,
12144                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12145                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12146                       pipe_config->dp_m_n.tu);
12147
12148         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12149                       pipe_config->has_dp_encoder,
12150                       pipe_config->lane_count,
12151                       pipe_config->dp_m2_n2.gmch_m,
12152                       pipe_config->dp_m2_n2.gmch_n,
12153                       pipe_config->dp_m2_n2.link_m,
12154                       pipe_config->dp_m2_n2.link_n,
12155                       pipe_config->dp_m2_n2.tu);
12156
12157         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12158                       pipe_config->has_audio,
12159                       pipe_config->has_infoframe);
12160
12161         DRM_DEBUG_KMS("requested mode:\n");
12162         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12163         DRM_DEBUG_KMS("adjusted mode:\n");
12164         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12165         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12166         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12167         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12168                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12169         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12170                       crtc->num_scalers,
12171                       pipe_config->scaler_state.scaler_users,
12172                       pipe_config->scaler_state.scaler_id);
12173         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12174                       pipe_config->gmch_pfit.control,
12175                       pipe_config->gmch_pfit.pgm_ratios,
12176                       pipe_config->gmch_pfit.lvds_border_bits);
12177         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12178                       pipe_config->pch_pfit.pos,
12179                       pipe_config->pch_pfit.size,
12180                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12181         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12182         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12183
12184         if (IS_BROXTON(dev)) {
12185                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12186                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12187                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12188                               pipe_config->ddi_pll_sel,
12189                               pipe_config->dpll_hw_state.ebb0,
12190                               pipe_config->dpll_hw_state.ebb4,
12191                               pipe_config->dpll_hw_state.pll0,
12192                               pipe_config->dpll_hw_state.pll1,
12193                               pipe_config->dpll_hw_state.pll2,
12194                               pipe_config->dpll_hw_state.pll3,
12195                               pipe_config->dpll_hw_state.pll6,
12196                               pipe_config->dpll_hw_state.pll8,
12197                               pipe_config->dpll_hw_state.pll9,
12198                               pipe_config->dpll_hw_state.pll10,
12199                               pipe_config->dpll_hw_state.pcsdw12);
12200         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12201                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12202                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12203                               pipe_config->ddi_pll_sel,
12204                               pipe_config->dpll_hw_state.ctrl1,
12205                               pipe_config->dpll_hw_state.cfgcr1,
12206                               pipe_config->dpll_hw_state.cfgcr2);
12207         } else if (HAS_DDI(dev)) {
12208                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12209                               pipe_config->ddi_pll_sel,
12210                               pipe_config->dpll_hw_state.wrpll,
12211                               pipe_config->dpll_hw_state.spll);
12212         } else {
12213                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12214                               "fp0: 0x%x, fp1: 0x%x\n",
12215                               pipe_config->dpll_hw_state.dpll,
12216                               pipe_config->dpll_hw_state.dpll_md,
12217                               pipe_config->dpll_hw_state.fp0,
12218                               pipe_config->dpll_hw_state.fp1);
12219         }
12220
12221         DRM_DEBUG_KMS("planes on this crtc\n");
12222         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12223                 intel_plane = to_intel_plane(plane);
12224                 if (intel_plane->pipe != crtc->pipe)
12225                         continue;
12226
12227                 state = to_intel_plane_state(plane->state);
12228                 fb = state->base.fb;
12229                 if (!fb) {
12230                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12231                                 "disabled, scaler_id = %d\n",
12232                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12233                                 plane->base.id, intel_plane->pipe,
12234                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12235                                 drm_plane_index(plane), state->scaler_id);
12236                         continue;
12237                 }
12238
12239                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12240                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12241                         plane->base.id, intel_plane->pipe,
12242                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12243                         drm_plane_index(plane));
12244                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12245                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12246                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12247                         state->scaler_id,
12248                         state->src.x1 >> 16, state->src.y1 >> 16,
12249                         drm_rect_width(&state->src) >> 16,
12250                         drm_rect_height(&state->src) >> 16,
12251                         state->dst.x1, state->dst.y1,
12252                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12253         }
12254 }
12255
12256 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12257 {
12258         struct drm_device *dev = state->dev;
12259         struct drm_connector *connector;
12260         unsigned int used_ports = 0;
12261
12262         /*
12263          * Walk the connector list instead of the encoder
12264          * list to detect the problem on ddi platforms
12265          * where there's just one encoder per digital port.
12266          */
12267         drm_for_each_connector(connector, dev) {
12268                 struct drm_connector_state *connector_state;
12269                 struct intel_encoder *encoder;
12270
12271                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12272                 if (!connector_state)
12273                         connector_state = connector->state;
12274
12275                 if (!connector_state->best_encoder)
12276                         continue;
12277
12278                 encoder = to_intel_encoder(connector_state->best_encoder);
12279
12280                 WARN_ON(!connector_state->crtc);
12281
12282                 switch (encoder->type) {
12283                         unsigned int port_mask;
12284                 case INTEL_OUTPUT_UNKNOWN:
12285                         if (WARN_ON(!HAS_DDI(dev)))
12286                                 break;
12287                 case INTEL_OUTPUT_DISPLAYPORT:
12288                 case INTEL_OUTPUT_HDMI:
12289                 case INTEL_OUTPUT_EDP:
12290                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12291
12292                         /* the same port mustn't appear more than once */
12293                         if (used_ports & port_mask)
12294                                 return false;
12295
12296                         used_ports |= port_mask;
12297                 default:
12298                         break;
12299                 }
12300         }
12301
12302         return true;
12303 }
12304
12305 static void
12306 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12307 {
12308         struct drm_crtc_state tmp_state;
12309         struct intel_crtc_scaler_state scaler_state;
12310         struct intel_dpll_hw_state dpll_hw_state;
12311         struct intel_shared_dpll *shared_dpll;
12312         uint32_t ddi_pll_sel;
12313         bool force_thru;
12314
12315         /* FIXME: before the switch to atomic started, a new pipe_config was
12316          * kzalloc'd. Code that depends on any field being zero should be
12317          * fixed, so that the crtc_state can be safely duplicated. For now,
12318          * only fields that are know to not cause problems are preserved. */
12319
12320         tmp_state = crtc_state->base;
12321         scaler_state = crtc_state->scaler_state;
12322         shared_dpll = crtc_state->shared_dpll;
12323         dpll_hw_state = crtc_state->dpll_hw_state;
12324         ddi_pll_sel = crtc_state->ddi_pll_sel;
12325         force_thru = crtc_state->pch_pfit.force_thru;
12326
12327         memset(crtc_state, 0, sizeof *crtc_state);
12328
12329         crtc_state->base = tmp_state;
12330         crtc_state->scaler_state = scaler_state;
12331         crtc_state->shared_dpll = shared_dpll;
12332         crtc_state->dpll_hw_state = dpll_hw_state;
12333         crtc_state->ddi_pll_sel = ddi_pll_sel;
12334         crtc_state->pch_pfit.force_thru = force_thru;
12335 }
12336
12337 static int
12338 intel_modeset_pipe_config(struct drm_crtc *crtc,
12339                           struct intel_crtc_state *pipe_config)
12340 {
12341         struct drm_atomic_state *state = pipe_config->base.state;
12342         struct intel_encoder *encoder;
12343         struct drm_connector *connector;
12344         struct drm_connector_state *connector_state;
12345         int base_bpp, ret = -EINVAL;
12346         int i;
12347         bool retry = true;
12348
12349         clear_intel_crtc_state(pipe_config);
12350
12351         pipe_config->cpu_transcoder =
12352                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12353
12354         /*
12355          * Sanitize sync polarity flags based on requested ones. If neither
12356          * positive or negative polarity is requested, treat this as meaning
12357          * negative polarity.
12358          */
12359         if (!(pipe_config->base.adjusted_mode.flags &
12360               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12361                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12362
12363         if (!(pipe_config->base.adjusted_mode.flags &
12364               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12365                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12366
12367         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12368                                              pipe_config);
12369         if (base_bpp < 0)
12370                 goto fail;
12371
12372         /*
12373          * Determine the real pipe dimensions. Note that stereo modes can
12374          * increase the actual pipe size due to the frame doubling and
12375          * insertion of additional space for blanks between the frame. This
12376          * is stored in the crtc timings. We use the requested mode to do this
12377          * computation to clearly distinguish it from the adjusted mode, which
12378          * can be changed by the connectors in the below retry loop.
12379          */
12380         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12381                                &pipe_config->pipe_src_w,
12382                                &pipe_config->pipe_src_h);
12383
12384 encoder_retry:
12385         /* Ensure the port clock defaults are reset when retrying. */
12386         pipe_config->port_clock = 0;
12387         pipe_config->pixel_multiplier = 1;
12388
12389         /* Fill in default crtc timings, allow encoders to overwrite them. */
12390         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12391                               CRTC_STEREO_DOUBLE);
12392
12393         /* Pass our mode to the connectors and the CRTC to give them a chance to
12394          * adjust it according to limitations or connector properties, and also
12395          * a chance to reject the mode entirely.
12396          */
12397         for_each_connector_in_state(state, connector, connector_state, i) {
12398                 if (connector_state->crtc != crtc)
12399                         continue;
12400
12401                 encoder = to_intel_encoder(connector_state->best_encoder);
12402
12403                 if (!(encoder->compute_config(encoder, pipe_config))) {
12404                         DRM_DEBUG_KMS("Encoder config failure\n");
12405                         goto fail;
12406                 }
12407         }
12408
12409         /* Set default port clock if not overwritten by the encoder. Needs to be
12410          * done afterwards in case the encoder adjusts the mode. */
12411         if (!pipe_config->port_clock)
12412                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12413                         * pipe_config->pixel_multiplier;
12414
12415         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12416         if (ret < 0) {
12417                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12418                 goto fail;
12419         }
12420
12421         if (ret == RETRY) {
12422                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12423                         ret = -EINVAL;
12424                         goto fail;
12425                 }
12426
12427                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12428                 retry = false;
12429                 goto encoder_retry;
12430         }
12431
12432         /* Dithering seems to not pass-through bits correctly when it should, so
12433          * only enable it on 6bpc panels. */
12434         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12435         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12436                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12437
12438 fail:
12439         return ret;
12440 }
12441
12442 static void
12443 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12444 {
12445         struct drm_crtc *crtc;
12446         struct drm_crtc_state *crtc_state;
12447         int i;
12448
12449         /* Double check state. */
12450         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12451                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12452
12453                 /* Update hwmode for vblank functions */
12454                 if (crtc->state->active)
12455                         crtc->hwmode = crtc->state->adjusted_mode;
12456                 else
12457                         crtc->hwmode.crtc_clock = 0;
12458
12459                 /*
12460                  * Update legacy state to satisfy fbc code. This can
12461                  * be removed when fbc uses the atomic state.
12462                  */
12463                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12464                         struct drm_plane_state *plane_state = crtc->primary->state;
12465
12466                         crtc->primary->fb = plane_state->fb;
12467                         crtc->x = plane_state->src_x >> 16;
12468                         crtc->y = plane_state->src_y >> 16;
12469                 }
12470         }
12471 }
12472
12473 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12474 {
12475         int diff;
12476
12477         if (clock1 == clock2)
12478                 return true;
12479
12480         if (!clock1 || !clock2)
12481                 return false;
12482
12483         diff = abs(clock1 - clock2);
12484
12485         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12486                 return true;
12487
12488         return false;
12489 }
12490
12491 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12492         list_for_each_entry((intel_crtc), \
12493                             &(dev)->mode_config.crtc_list, \
12494                             base.head) \
12495                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12496
12497 static bool
12498 intel_compare_m_n(unsigned int m, unsigned int n,
12499                   unsigned int m2, unsigned int n2,
12500                   bool exact)
12501 {
12502         if (m == m2 && n == n2)
12503                 return true;
12504
12505         if (exact || !m || !n || !m2 || !n2)
12506                 return false;
12507
12508         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12509
12510         if (n > n2) {
12511                 while (n > n2) {
12512                         m2 <<= 1;
12513                         n2 <<= 1;
12514                 }
12515         } else if (n < n2) {
12516                 while (n < n2) {
12517                         m <<= 1;
12518                         n <<= 1;
12519                 }
12520         }
12521
12522         if (n != n2)
12523                 return false;
12524
12525         return intel_fuzzy_clock_check(m, m2);
12526 }
12527
12528 static bool
12529 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12530                        struct intel_link_m_n *m2_n2,
12531                        bool adjust)
12532 {
12533         if (m_n->tu == m2_n2->tu &&
12534             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12535                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12536             intel_compare_m_n(m_n->link_m, m_n->link_n,
12537                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12538                 if (adjust)
12539                         *m2_n2 = *m_n;
12540
12541                 return true;
12542         }
12543
12544         return false;
12545 }
12546
12547 static bool
12548 intel_pipe_config_compare(struct drm_device *dev,
12549                           struct intel_crtc_state *current_config,
12550                           struct intel_crtc_state *pipe_config,
12551                           bool adjust)
12552 {
12553         bool ret = true;
12554
12555 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12556         do { \
12557                 if (!adjust) \
12558                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12559                 else \
12560                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12561         } while (0)
12562
12563 #define PIPE_CONF_CHECK_X(name) \
12564         if (current_config->name != pipe_config->name) { \
12565                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12566                           "(expected 0x%08x, found 0x%08x)\n", \
12567                           current_config->name, \
12568                           pipe_config->name); \
12569                 ret = false; \
12570         }
12571
12572 #define PIPE_CONF_CHECK_I(name) \
12573         if (current_config->name != pipe_config->name) { \
12574                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12575                           "(expected %i, found %i)\n", \
12576                           current_config->name, \
12577                           pipe_config->name); \
12578                 ret = false; \
12579         }
12580
12581 #define PIPE_CONF_CHECK_P(name) \
12582         if (current_config->name != pipe_config->name) { \
12583                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12584                           "(expected %p, found %p)\n", \
12585                           current_config->name, \
12586                           pipe_config->name); \
12587                 ret = false; \
12588         }
12589
12590 #define PIPE_CONF_CHECK_M_N(name) \
12591         if (!intel_compare_link_m_n(&current_config->name, \
12592                                     &pipe_config->name,\
12593                                     adjust)) { \
12594                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12595                           "(expected tu %i gmch %i/%i link %i/%i, " \
12596                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12597                           current_config->name.tu, \
12598                           current_config->name.gmch_m, \
12599                           current_config->name.gmch_n, \
12600                           current_config->name.link_m, \
12601                           current_config->name.link_n, \
12602                           pipe_config->name.tu, \
12603                           pipe_config->name.gmch_m, \
12604                           pipe_config->name.gmch_n, \
12605                           pipe_config->name.link_m, \
12606                           pipe_config->name.link_n); \
12607                 ret = false; \
12608         }
12609
12610 /* This is required for BDW+ where there is only one set of registers for
12611  * switching between high and low RR.
12612  * This macro can be used whenever a comparison has to be made between one
12613  * hw state and multiple sw state variables.
12614  */
12615 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12616         if (!intel_compare_link_m_n(&current_config->name, \
12617                                     &pipe_config->name, adjust) && \
12618             !intel_compare_link_m_n(&current_config->alt_name, \
12619                                     &pipe_config->name, adjust)) { \
12620                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12621                           "(expected tu %i gmch %i/%i link %i/%i, " \
12622                           "or tu %i gmch %i/%i link %i/%i, " \
12623                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12624                           current_config->name.tu, \
12625                           current_config->name.gmch_m, \
12626                           current_config->name.gmch_n, \
12627                           current_config->name.link_m, \
12628                           current_config->name.link_n, \
12629                           current_config->alt_name.tu, \
12630                           current_config->alt_name.gmch_m, \
12631                           current_config->alt_name.gmch_n, \
12632                           current_config->alt_name.link_m, \
12633                           current_config->alt_name.link_n, \
12634                           pipe_config->name.tu, \
12635                           pipe_config->name.gmch_m, \
12636                           pipe_config->name.gmch_n, \
12637                           pipe_config->name.link_m, \
12638                           pipe_config->name.link_n); \
12639                 ret = false; \
12640         }
12641
12642 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12643         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12644                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12645                           "(expected %i, found %i)\n", \
12646                           current_config->name & (mask), \
12647                           pipe_config->name & (mask)); \
12648                 ret = false; \
12649         }
12650
12651 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12652         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12653                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12654                           "(expected %i, found %i)\n", \
12655                           current_config->name, \
12656                           pipe_config->name); \
12657                 ret = false; \
12658         }
12659
12660 #define PIPE_CONF_QUIRK(quirk)  \
12661         ((current_config->quirks | pipe_config->quirks) & (quirk))
12662
12663         PIPE_CONF_CHECK_I(cpu_transcoder);
12664
12665         PIPE_CONF_CHECK_I(has_pch_encoder);
12666         PIPE_CONF_CHECK_I(fdi_lanes);
12667         PIPE_CONF_CHECK_M_N(fdi_m_n);
12668
12669         PIPE_CONF_CHECK_I(has_dp_encoder);
12670         PIPE_CONF_CHECK_I(lane_count);
12671
12672         if (INTEL_INFO(dev)->gen < 8) {
12673                 PIPE_CONF_CHECK_M_N(dp_m_n);
12674
12675                 if (current_config->has_drrs)
12676                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12677         } else
12678                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12679
12680         PIPE_CONF_CHECK_I(has_dsi_encoder);
12681
12682         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12683         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12684         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12685         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12686         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12687         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12688
12689         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12690         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12691         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12692         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12693         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12694         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12695
12696         PIPE_CONF_CHECK_I(pixel_multiplier);
12697         PIPE_CONF_CHECK_I(has_hdmi_sink);
12698         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12699             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12700                 PIPE_CONF_CHECK_I(limited_color_range);
12701         PIPE_CONF_CHECK_I(has_infoframe);
12702
12703         PIPE_CONF_CHECK_I(has_audio);
12704
12705         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12706                               DRM_MODE_FLAG_INTERLACE);
12707
12708         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12709                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12710                                       DRM_MODE_FLAG_PHSYNC);
12711                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12712                                       DRM_MODE_FLAG_NHSYNC);
12713                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12714                                       DRM_MODE_FLAG_PVSYNC);
12715                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12716                                       DRM_MODE_FLAG_NVSYNC);
12717         }
12718
12719         PIPE_CONF_CHECK_X(gmch_pfit.control);
12720         /* pfit ratios are autocomputed by the hw on gen4+ */
12721         if (INTEL_INFO(dev)->gen < 4)
12722                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12723         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12724
12725         if (!adjust) {
12726                 PIPE_CONF_CHECK_I(pipe_src_w);
12727                 PIPE_CONF_CHECK_I(pipe_src_h);
12728
12729                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12730                 if (current_config->pch_pfit.enabled) {
12731                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12732                         PIPE_CONF_CHECK_X(pch_pfit.size);
12733                 }
12734
12735                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12736         }
12737
12738         /* BDW+ don't expose a synchronous way to read the state */
12739         if (IS_HASWELL(dev))
12740                 PIPE_CONF_CHECK_I(ips_enabled);
12741
12742         PIPE_CONF_CHECK_I(double_wide);
12743
12744         PIPE_CONF_CHECK_X(ddi_pll_sel);
12745
12746         PIPE_CONF_CHECK_P(shared_dpll);
12747         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12748         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12749         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12750         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12751         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12752         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12753         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12754         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12755         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12756
12757         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12758         PIPE_CONF_CHECK_X(dsi_pll.div);
12759
12760         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12761                 PIPE_CONF_CHECK_I(pipe_bpp);
12762
12763         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12764         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12765
12766 #undef PIPE_CONF_CHECK_X
12767 #undef PIPE_CONF_CHECK_I
12768 #undef PIPE_CONF_CHECK_P
12769 #undef PIPE_CONF_CHECK_FLAGS
12770 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12771 #undef PIPE_CONF_QUIRK
12772 #undef INTEL_ERR_OR_DBG_KMS
12773
12774         return ret;
12775 }
12776
12777 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12778                                            const struct intel_crtc_state *pipe_config)
12779 {
12780         if (pipe_config->has_pch_encoder) {
12781                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12782                                                             &pipe_config->fdi_m_n);
12783                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12784
12785                 /*
12786                  * FDI already provided one idea for the dotclock.
12787                  * Yell if the encoder disagrees.
12788                  */
12789                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12790                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12791                      fdi_dotclock, dotclock);
12792         }
12793 }
12794
12795 static void verify_wm_state(struct drm_crtc *crtc,
12796                             struct drm_crtc_state *new_state)
12797 {
12798         struct drm_device *dev = crtc->dev;
12799         struct drm_i915_private *dev_priv = dev->dev_private;
12800         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12801         struct skl_ddb_entry *hw_entry, *sw_entry;
12802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12803         const enum pipe pipe = intel_crtc->pipe;
12804         int plane;
12805
12806         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12807                 return;
12808
12809         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12810         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12811
12812         /* planes */
12813         for_each_plane(dev_priv, pipe, plane) {
12814                 hw_entry = &hw_ddb.plane[pipe][plane];
12815                 sw_entry = &sw_ddb->plane[pipe][plane];
12816
12817                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12818                         continue;
12819
12820                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12821                           "(expected (%u,%u), found (%u,%u))\n",
12822                           pipe_name(pipe), plane + 1,
12823                           sw_entry->start, sw_entry->end,
12824                           hw_entry->start, hw_entry->end);
12825         }
12826
12827         /* cursor */
12828         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12829         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12830
12831         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12832                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12833                           "(expected (%u,%u), found (%u,%u))\n",
12834                           pipe_name(pipe),
12835                           sw_entry->start, sw_entry->end,
12836                           hw_entry->start, hw_entry->end);
12837         }
12838 }
12839
12840 static void
12841 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12842 {
12843         struct drm_connector *connector;
12844
12845         drm_for_each_connector(connector, dev) {
12846                 struct drm_encoder *encoder = connector->encoder;
12847                 struct drm_connector_state *state = connector->state;
12848
12849                 if (state->crtc != crtc)
12850                         continue;
12851
12852                 intel_connector_verify_state(to_intel_connector(connector));
12853
12854                 I915_STATE_WARN(state->best_encoder != encoder,
12855                      "connector's atomic encoder doesn't match legacy encoder\n");
12856         }
12857 }
12858
12859 static void
12860 verify_encoder_state(struct drm_device *dev)
12861 {
12862         struct intel_encoder *encoder;
12863         struct intel_connector *connector;
12864
12865         for_each_intel_encoder(dev, encoder) {
12866                 bool enabled = false;
12867                 enum pipe pipe;
12868
12869                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12870                               encoder->base.base.id,
12871                               encoder->base.name);
12872
12873                 for_each_intel_connector(dev, connector) {
12874                         if (connector->base.state->best_encoder != &encoder->base)
12875                                 continue;
12876                         enabled = true;
12877
12878                         I915_STATE_WARN(connector->base.state->crtc !=
12879                                         encoder->base.crtc,
12880                              "connector's crtc doesn't match encoder crtc\n");
12881                 }
12882
12883                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12884                      "encoder's enabled state mismatch "
12885                      "(expected %i, found %i)\n",
12886                      !!encoder->base.crtc, enabled);
12887
12888                 if (!encoder->base.crtc) {
12889                         bool active;
12890
12891                         active = encoder->get_hw_state(encoder, &pipe);
12892                         I915_STATE_WARN(active,
12893                              "encoder detached but still enabled on pipe %c.\n",
12894                              pipe_name(pipe));
12895                 }
12896         }
12897 }
12898
12899 static void
12900 verify_crtc_state(struct drm_crtc *crtc,
12901                   struct drm_crtc_state *old_crtc_state,
12902                   struct drm_crtc_state *new_crtc_state)
12903 {
12904         struct drm_device *dev = crtc->dev;
12905         struct drm_i915_private *dev_priv = dev->dev_private;
12906         struct intel_encoder *encoder;
12907         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12908         struct intel_crtc_state *pipe_config, *sw_config;
12909         struct drm_atomic_state *old_state;
12910         bool active;
12911
12912         old_state = old_crtc_state->state;
12913         __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12914         pipe_config = to_intel_crtc_state(old_crtc_state);
12915         memset(pipe_config, 0, sizeof(*pipe_config));
12916         pipe_config->base.crtc = crtc;
12917         pipe_config->base.state = old_state;
12918
12919         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12920
12921         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12922
12923         /* hw state is inconsistent with the pipe quirk */
12924         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12925             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12926                 active = new_crtc_state->active;
12927
12928         I915_STATE_WARN(new_crtc_state->active != active,
12929              "crtc active state doesn't match with hw state "
12930              "(expected %i, found %i)\n", new_crtc_state->active, active);
12931
12932         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12933              "transitional active state does not match atomic hw state "
12934              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12935
12936         for_each_encoder_on_crtc(dev, crtc, encoder) {
12937                 enum pipe pipe;
12938
12939                 active = encoder->get_hw_state(encoder, &pipe);
12940                 I915_STATE_WARN(active != new_crtc_state->active,
12941                         "[ENCODER:%i] active %i with crtc active %i\n",
12942                         encoder->base.base.id, active, new_crtc_state->active);
12943
12944                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12945                                 "Encoder connected to wrong pipe %c\n",
12946                                 pipe_name(pipe));
12947
12948                 if (active)
12949                         encoder->get_config(encoder, pipe_config);
12950         }
12951
12952         if (!new_crtc_state->active)
12953                 return;
12954
12955         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12956
12957         sw_config = to_intel_crtc_state(crtc->state);
12958         if (!intel_pipe_config_compare(dev, sw_config,
12959                                        pipe_config, false)) {
12960                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12961                 intel_dump_pipe_config(intel_crtc, pipe_config,
12962                                        "[hw state]");
12963                 intel_dump_pipe_config(intel_crtc, sw_config,
12964                                        "[sw state]");
12965         }
12966 }
12967
12968 static void
12969 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12970                          struct intel_shared_dpll *pll,
12971                          struct drm_crtc *crtc,
12972                          struct drm_crtc_state *new_state)
12973 {
12974         struct intel_dpll_hw_state dpll_hw_state;
12975         unsigned crtc_mask;
12976         bool active;
12977
12978         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12979
12980         DRM_DEBUG_KMS("%s\n", pll->name);
12981
12982         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12983
12984         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12985                 I915_STATE_WARN(!pll->on && pll->active_mask,
12986                      "pll in active use but not on in sw tracking\n");
12987                 I915_STATE_WARN(pll->on && !pll->active_mask,
12988                      "pll is on but not used by any active crtc\n");
12989                 I915_STATE_WARN(pll->on != active,
12990                      "pll on state mismatch (expected %i, found %i)\n",
12991                      pll->on, active);
12992         }
12993
12994         if (!crtc) {
12995                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12996                                 "more active pll users than references: %x vs %x\n",
12997                                 pll->active_mask, pll->config.crtc_mask);
12998
12999                 return;
13000         }
13001
13002         crtc_mask = 1 << drm_crtc_index(crtc);
13003
13004         if (new_state->active)
13005                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13006                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13007                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13008         else
13009                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13010                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13011                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13012
13013         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13014                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13015                         crtc_mask, pll->config.crtc_mask);
13016
13017         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13018                                           &dpll_hw_state,
13019                                           sizeof(dpll_hw_state)),
13020                         "pll hw state mismatch\n");
13021 }
13022
13023 static void
13024 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13025                          struct drm_crtc_state *old_crtc_state,
13026                          struct drm_crtc_state *new_crtc_state)
13027 {
13028         struct drm_i915_private *dev_priv = dev->dev_private;
13029         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13030         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13031
13032         if (new_state->shared_dpll)
13033                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13034
13035         if (old_state->shared_dpll &&
13036             old_state->shared_dpll != new_state->shared_dpll) {
13037                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13038                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13039
13040                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13041                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13042                                 pipe_name(drm_crtc_index(crtc)));
13043                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13044                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13045                                 pipe_name(drm_crtc_index(crtc)));
13046         }
13047 }
13048
13049 static void
13050 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13051                          struct drm_crtc_state *old_state,
13052                          struct drm_crtc_state *new_state)
13053 {
13054         if (!needs_modeset(new_state) &&
13055             !to_intel_crtc_state(new_state)->update_pipe)
13056                 return;
13057
13058         verify_wm_state(crtc, new_state);
13059         verify_connector_state(crtc->dev, crtc);
13060         verify_crtc_state(crtc, old_state, new_state);
13061         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13062 }
13063
13064 static void
13065 verify_disabled_dpll_state(struct drm_device *dev)
13066 {
13067         struct drm_i915_private *dev_priv = dev->dev_private;
13068         int i;
13069
13070         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13071                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13072 }
13073
13074 static void
13075 intel_modeset_verify_disabled(struct drm_device *dev)
13076 {
13077         verify_encoder_state(dev);
13078         verify_connector_state(dev, NULL);
13079         verify_disabled_dpll_state(dev);
13080 }
13081
13082 static void update_scanline_offset(struct intel_crtc *crtc)
13083 {
13084         struct drm_device *dev = crtc->base.dev;
13085
13086         /*
13087          * The scanline counter increments at the leading edge of hsync.
13088          *
13089          * On most platforms it starts counting from vtotal-1 on the
13090          * first active line. That means the scanline counter value is
13091          * always one less than what we would expect. Ie. just after
13092          * start of vblank, which also occurs at start of hsync (on the
13093          * last active line), the scanline counter will read vblank_start-1.
13094          *
13095          * On gen2 the scanline counter starts counting from 1 instead
13096          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13097          * to keep the value positive), instead of adding one.
13098          *
13099          * On HSW+ the behaviour of the scanline counter depends on the output
13100          * type. For DP ports it behaves like most other platforms, but on HDMI
13101          * there's an extra 1 line difference. So we need to add two instead of
13102          * one to the value.
13103          */
13104         if (IS_GEN2(dev)) {
13105                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13106                 int vtotal;
13107
13108                 vtotal = adjusted_mode->crtc_vtotal;
13109                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13110                         vtotal /= 2;
13111
13112                 crtc->scanline_offset = vtotal - 1;
13113         } else if (HAS_DDI(dev) &&
13114                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13115                 crtc->scanline_offset = 2;
13116         } else
13117                 crtc->scanline_offset = 1;
13118 }
13119
13120 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13121 {
13122         struct drm_device *dev = state->dev;
13123         struct drm_i915_private *dev_priv = to_i915(dev);
13124         struct intel_shared_dpll_config *shared_dpll = NULL;
13125         struct drm_crtc *crtc;
13126         struct drm_crtc_state *crtc_state;
13127         int i;
13128
13129         if (!dev_priv->display.crtc_compute_clock)
13130                 return;
13131
13132         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13133                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13134                 struct intel_shared_dpll *old_dpll =
13135                         to_intel_crtc_state(crtc->state)->shared_dpll;
13136
13137                 if (!needs_modeset(crtc_state))
13138                         continue;
13139
13140                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13141
13142                 if (!old_dpll)
13143                         continue;
13144
13145                 if (!shared_dpll)
13146                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13147
13148                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13149         }
13150 }
13151
13152 /*
13153  * This implements the workaround described in the "notes" section of the mode
13154  * set sequence documentation. When going from no pipes or single pipe to
13155  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13156  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13157  */
13158 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13159 {
13160         struct drm_crtc_state *crtc_state;
13161         struct intel_crtc *intel_crtc;
13162         struct drm_crtc *crtc;
13163         struct intel_crtc_state *first_crtc_state = NULL;
13164         struct intel_crtc_state *other_crtc_state = NULL;
13165         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13166         int i;
13167
13168         /* look at all crtc's that are going to be enabled in during modeset */
13169         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13170                 intel_crtc = to_intel_crtc(crtc);
13171
13172                 if (!crtc_state->active || !needs_modeset(crtc_state))
13173                         continue;
13174
13175                 if (first_crtc_state) {
13176                         other_crtc_state = to_intel_crtc_state(crtc_state);
13177                         break;
13178                 } else {
13179                         first_crtc_state = to_intel_crtc_state(crtc_state);
13180                         first_pipe = intel_crtc->pipe;
13181                 }
13182         }
13183
13184         /* No workaround needed? */
13185         if (!first_crtc_state)
13186                 return 0;
13187
13188         /* w/a possibly needed, check how many crtc's are already enabled. */
13189         for_each_intel_crtc(state->dev, intel_crtc) {
13190                 struct intel_crtc_state *pipe_config;
13191
13192                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13193                 if (IS_ERR(pipe_config))
13194                         return PTR_ERR(pipe_config);
13195
13196                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13197
13198                 if (!pipe_config->base.active ||
13199                     needs_modeset(&pipe_config->base))
13200                         continue;
13201
13202                 /* 2 or more enabled crtcs means no need for w/a */
13203                 if (enabled_pipe != INVALID_PIPE)
13204                         return 0;
13205
13206                 enabled_pipe = intel_crtc->pipe;
13207         }
13208
13209         if (enabled_pipe != INVALID_PIPE)
13210                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13211         else if (other_crtc_state)
13212                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13213
13214         return 0;
13215 }
13216
13217 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13218 {
13219         struct drm_crtc *crtc;
13220         struct drm_crtc_state *crtc_state;
13221         int ret = 0;
13222
13223         /* add all active pipes to the state */
13224         for_each_crtc(state->dev, crtc) {
13225                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13226                 if (IS_ERR(crtc_state))
13227                         return PTR_ERR(crtc_state);
13228
13229                 if (!crtc_state->active || needs_modeset(crtc_state))
13230                         continue;
13231
13232                 crtc_state->mode_changed = true;
13233
13234                 ret = drm_atomic_add_affected_connectors(state, crtc);
13235                 if (ret)
13236                         break;
13237
13238                 ret = drm_atomic_add_affected_planes(state, crtc);
13239                 if (ret)
13240                         break;
13241         }
13242
13243         return ret;
13244 }
13245
13246 static int intel_modeset_checks(struct drm_atomic_state *state)
13247 {
13248         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13249         struct drm_i915_private *dev_priv = state->dev->dev_private;
13250         struct drm_crtc *crtc;
13251         struct drm_crtc_state *crtc_state;
13252         int ret = 0, i;
13253
13254         if (!check_digital_port_conflicts(state)) {
13255                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13256                 return -EINVAL;
13257         }
13258
13259         intel_state->modeset = true;
13260         intel_state->active_crtcs = dev_priv->active_crtcs;
13261
13262         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13263                 if (crtc_state->active)
13264                         intel_state->active_crtcs |= 1 << i;
13265                 else
13266                         intel_state->active_crtcs &= ~(1 << i);
13267         }
13268
13269         /*
13270          * See if the config requires any additional preparation, e.g.
13271          * to adjust global state with pipes off.  We need to do this
13272          * here so we can get the modeset_pipe updated config for the new
13273          * mode set on this crtc.  For other crtcs we need to use the
13274          * adjusted_mode bits in the crtc directly.
13275          */
13276         if (dev_priv->display.modeset_calc_cdclk) {
13277                 ret = dev_priv->display.modeset_calc_cdclk(state);
13278
13279                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13280                         ret = intel_modeset_all_pipes(state);
13281
13282                 if (ret < 0)
13283                         return ret;
13284
13285                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13286                               intel_state->cdclk, intel_state->dev_cdclk);
13287         } else
13288                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13289
13290         intel_modeset_clear_plls(state);
13291
13292         if (IS_HASWELL(dev_priv))
13293                 return haswell_mode_set_planes_workaround(state);
13294
13295         return 0;
13296 }
13297
13298 /*
13299  * Handle calculation of various watermark data at the end of the atomic check
13300  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13301  * handlers to ensure that all derived state has been updated.
13302  */
13303 static void calc_watermark_data(struct drm_atomic_state *state)
13304 {
13305         struct drm_device *dev = state->dev;
13306         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13307         struct drm_crtc *crtc;
13308         struct drm_crtc_state *cstate;
13309         struct drm_plane *plane;
13310         struct drm_plane_state *pstate;
13311
13312         /*
13313          * Calculate watermark configuration details now that derived
13314          * plane/crtc state is all properly updated.
13315          */
13316         drm_for_each_crtc(crtc, dev) {
13317                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13318                         crtc->state;
13319
13320                 if (cstate->active)
13321                         intel_state->wm_config.num_pipes_active++;
13322         }
13323         drm_for_each_legacy_plane(plane, dev) {
13324                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13325                         plane->state;
13326
13327                 if (!to_intel_plane_state(pstate)->visible)
13328                         continue;
13329
13330                 intel_state->wm_config.sprites_enabled = true;
13331                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13332                     pstate->crtc_h != pstate->src_h >> 16)
13333                         intel_state->wm_config.sprites_scaled = true;
13334         }
13335 }
13336
13337 /**
13338  * intel_atomic_check - validate state object
13339  * @dev: drm device
13340  * @state: state to validate
13341  */
13342 static int intel_atomic_check(struct drm_device *dev,
13343                               struct drm_atomic_state *state)
13344 {
13345         struct drm_i915_private *dev_priv = to_i915(dev);
13346         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13347         struct drm_crtc *crtc;
13348         struct drm_crtc_state *crtc_state;
13349         int ret, i;
13350         bool any_ms = false;
13351
13352         ret = drm_atomic_helper_check_modeset(dev, state);
13353         if (ret)
13354                 return ret;
13355
13356         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13357                 struct intel_crtc_state *pipe_config =
13358                         to_intel_crtc_state(crtc_state);
13359
13360                 /* Catch I915_MODE_FLAG_INHERITED */
13361                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13362                         crtc_state->mode_changed = true;
13363
13364                 if (!crtc_state->enable) {
13365                         if (needs_modeset(crtc_state))
13366                                 any_ms = true;
13367                         continue;
13368                 }
13369
13370                 if (!needs_modeset(crtc_state))
13371                         continue;
13372
13373                 /* FIXME: For only active_changed we shouldn't need to do any
13374                  * state recomputation at all. */
13375
13376                 ret = drm_atomic_add_affected_connectors(state, crtc);
13377                 if (ret)
13378                         return ret;
13379
13380                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13381                 if (ret) {
13382                         intel_dump_pipe_config(to_intel_crtc(crtc),
13383                                                pipe_config, "[failed]");
13384                         return ret;
13385                 }
13386
13387                 if (i915.fastboot &&
13388                     intel_pipe_config_compare(dev,
13389                                         to_intel_crtc_state(crtc->state),
13390                                         pipe_config, true)) {
13391                         crtc_state->mode_changed = false;
13392                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13393                 }
13394
13395                 if (needs_modeset(crtc_state)) {
13396                         any_ms = true;
13397
13398                         ret = drm_atomic_add_affected_planes(state, crtc);
13399                         if (ret)
13400                                 return ret;
13401                 }
13402
13403                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13404                                        needs_modeset(crtc_state) ?
13405                                        "[modeset]" : "[fastset]");
13406         }
13407
13408         if (any_ms) {
13409                 ret = intel_modeset_checks(state);
13410
13411                 if (ret)
13412                         return ret;
13413         } else
13414                 intel_state->cdclk = dev_priv->cdclk_freq;
13415
13416         ret = drm_atomic_helper_check_planes(dev, state);
13417         if (ret)
13418                 return ret;
13419
13420         intel_fbc_choose_crtc(dev_priv, state);
13421         calc_watermark_data(state);
13422
13423         return 0;
13424 }
13425
13426 static int intel_atomic_prepare_commit(struct drm_device *dev,
13427                                        struct drm_atomic_state *state,
13428                                        bool async)
13429 {
13430         struct drm_i915_private *dev_priv = dev->dev_private;
13431         struct drm_plane_state *plane_state;
13432         struct drm_crtc_state *crtc_state;
13433         struct drm_plane *plane;
13434         struct drm_crtc *crtc;
13435         int i, ret;
13436
13437         if (async) {
13438                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13439                 return -EINVAL;
13440         }
13441
13442         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13443                 if (state->legacy_cursor_update)
13444                         continue;
13445
13446                 ret = intel_crtc_wait_for_pending_flips(crtc);
13447                 if (ret)
13448                         return ret;
13449
13450                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13451                         flush_workqueue(dev_priv->wq);
13452         }
13453
13454         ret = mutex_lock_interruptible(&dev->struct_mutex);
13455         if (ret)
13456                 return ret;
13457
13458         ret = drm_atomic_helper_prepare_planes(dev, state);
13459         mutex_unlock(&dev->struct_mutex);
13460
13461         if (!ret && !async) {
13462                 for_each_plane_in_state(state, plane, plane_state, i) {
13463                         struct intel_plane_state *intel_plane_state =
13464                                 to_intel_plane_state(plane_state);
13465
13466                         if (!intel_plane_state->wait_req)
13467                                 continue;
13468
13469                         ret = __i915_wait_request(intel_plane_state->wait_req,
13470                                                   true, NULL, NULL);
13471                         if (ret) {
13472                                 /* Any hang should be swallowed by the wait */
13473                                 WARN_ON(ret == -EIO);
13474                                 mutex_lock(&dev->struct_mutex);
13475                                 drm_atomic_helper_cleanup_planes(dev, state);
13476                                 mutex_unlock(&dev->struct_mutex);
13477                                 break;
13478                         }
13479                 }
13480         }
13481
13482         return ret;
13483 }
13484
13485 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13486                                           struct drm_i915_private *dev_priv,
13487                                           unsigned crtc_mask)
13488 {
13489         unsigned last_vblank_count[I915_MAX_PIPES];
13490         enum pipe pipe;
13491         int ret;
13492
13493         if (!crtc_mask)
13494                 return;
13495
13496         for_each_pipe(dev_priv, pipe) {
13497                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13498
13499                 if (!((1 << pipe) & crtc_mask))
13500                         continue;
13501
13502                 ret = drm_crtc_vblank_get(crtc);
13503                 if (WARN_ON(ret != 0)) {
13504                         crtc_mask &= ~(1 << pipe);
13505                         continue;
13506                 }
13507
13508                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13509         }
13510
13511         for_each_pipe(dev_priv, pipe) {
13512                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13513                 long lret;
13514
13515                 if (!((1 << pipe) & crtc_mask))
13516                         continue;
13517
13518                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13519                                 last_vblank_count[pipe] !=
13520                                         drm_crtc_vblank_count(crtc),
13521                                 msecs_to_jiffies(50));
13522
13523                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13524
13525                 drm_crtc_vblank_put(crtc);
13526         }
13527 }
13528
13529 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13530 {
13531         /* fb updated, need to unpin old fb */
13532         if (crtc_state->fb_changed)
13533                 return true;
13534
13535         /* wm changes, need vblank before final wm's */
13536         if (crtc_state->update_wm_post)
13537                 return true;
13538
13539         /*
13540          * cxsr is re-enabled after vblank.
13541          * This is already handled by crtc_state->update_wm_post,
13542          * but added for clarity.
13543          */
13544         if (crtc_state->disable_cxsr)
13545                 return true;
13546
13547         return false;
13548 }
13549
13550 /**
13551  * intel_atomic_commit - commit validated state object
13552  * @dev: DRM device
13553  * @state: the top-level driver state object
13554  * @async: asynchronous commit
13555  *
13556  * This function commits a top-level state object that has been validated
13557  * with drm_atomic_helper_check().
13558  *
13559  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13560  * we can only handle plane-related operations and do not yet support
13561  * asynchronous commit.
13562  *
13563  * RETURNS
13564  * Zero for success or -errno.
13565  */
13566 static int intel_atomic_commit(struct drm_device *dev,
13567                                struct drm_atomic_state *state,
13568                                bool async)
13569 {
13570         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13571         struct drm_i915_private *dev_priv = dev->dev_private;
13572         struct drm_crtc_state *old_crtc_state;
13573         struct drm_crtc *crtc;
13574         struct intel_crtc_state *intel_cstate;
13575         int ret = 0, i;
13576         bool hw_check = intel_state->modeset;
13577         unsigned long put_domains[I915_MAX_PIPES] = {};
13578         unsigned crtc_vblank_mask = 0;
13579
13580         ret = intel_atomic_prepare_commit(dev, state, async);
13581         if (ret) {
13582                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13583                 return ret;
13584         }
13585
13586         drm_atomic_helper_swap_state(dev, state);
13587         dev_priv->wm.config = intel_state->wm_config;
13588         intel_shared_dpll_commit(state);
13589
13590         if (intel_state->modeset) {
13591                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13592                        sizeof(intel_state->min_pixclk));
13593                 dev_priv->active_crtcs = intel_state->active_crtcs;
13594                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13595
13596                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13597         }
13598
13599         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13600                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13601
13602                 if (needs_modeset(crtc->state) ||
13603                     to_intel_crtc_state(crtc->state)->update_pipe) {
13604                         hw_check = true;
13605
13606                         put_domains[to_intel_crtc(crtc)->pipe] =
13607                                 modeset_get_crtc_power_domains(crtc,
13608                                         to_intel_crtc_state(crtc->state));
13609                 }
13610
13611                 if (!needs_modeset(crtc->state))
13612                         continue;
13613
13614                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13615
13616                 if (old_crtc_state->active) {
13617                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13618                         dev_priv->display.crtc_disable(crtc);
13619                         intel_crtc->active = false;
13620                         intel_fbc_disable(intel_crtc);
13621                         intel_disable_shared_dpll(intel_crtc);
13622
13623                         /*
13624                          * Underruns don't always raise
13625                          * interrupts, so check manually.
13626                          */
13627                         intel_check_cpu_fifo_underruns(dev_priv);
13628                         intel_check_pch_fifo_underruns(dev_priv);
13629
13630                         if (!crtc->state->active)
13631                                 intel_update_watermarks(crtc);
13632                 }
13633         }
13634
13635         /* Only after disabling all output pipelines that will be changed can we
13636          * update the the output configuration. */
13637         intel_modeset_update_crtc_state(state);
13638
13639         if (intel_state->modeset) {
13640                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13641
13642                 if (dev_priv->display.modeset_commit_cdclk &&
13643                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13644                         dev_priv->display.modeset_commit_cdclk(state);
13645
13646                 intel_modeset_verify_disabled(dev);
13647         }
13648
13649         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13650         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13651                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13652                 bool modeset = needs_modeset(crtc->state);
13653                 struct intel_crtc_state *pipe_config =
13654                         to_intel_crtc_state(crtc->state);
13655                 bool update_pipe = !modeset && pipe_config->update_pipe;
13656
13657                 if (modeset && crtc->state->active) {
13658                         update_scanline_offset(to_intel_crtc(crtc));
13659                         dev_priv->display.crtc_enable(crtc);
13660                 }
13661
13662                 if (!modeset)
13663                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13664
13665                 if (crtc->state->active &&
13666                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13667                         intel_fbc_enable(intel_crtc);
13668
13669                 if (crtc->state->active &&
13670                     (crtc->state->planes_changed || update_pipe))
13671                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13672
13673                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13674                         crtc_vblank_mask |= 1 << i;
13675         }
13676
13677         /* FIXME: add subpixel order */
13678
13679         if (!state->legacy_cursor_update)
13680                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13681
13682         /*
13683          * Now that the vblank has passed, we can go ahead and program the
13684          * optimal watermarks on platforms that need two-step watermark
13685          * programming.
13686          *
13687          * TODO: Move this (and other cleanup) to an async worker eventually.
13688          */
13689         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13690                 intel_cstate = to_intel_crtc_state(crtc->state);
13691
13692                 if (dev_priv->display.optimize_watermarks)
13693                         dev_priv->display.optimize_watermarks(intel_cstate);
13694         }
13695
13696         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13697                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13698
13699                 if (put_domains[i])
13700                         modeset_put_power_domains(dev_priv, put_domains[i]);
13701
13702                 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13703         }
13704
13705         if (intel_state->modeset)
13706                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13707
13708         mutex_lock(&dev->struct_mutex);
13709         drm_atomic_helper_cleanup_planes(dev, state);
13710         mutex_unlock(&dev->struct_mutex);
13711
13712         drm_atomic_state_free(state);
13713
13714         /* As one of the primary mmio accessors, KMS has a high likelihood
13715          * of triggering bugs in unclaimed access. After we finish
13716          * modesetting, see if an error has been flagged, and if so
13717          * enable debugging for the next modeset - and hope we catch
13718          * the culprit.
13719          *
13720          * XXX note that we assume display power is on at this point.
13721          * This might hold true now but we need to add pm helper to check
13722          * unclaimed only when the hardware is on, as atomic commits
13723          * can happen also when the device is completely off.
13724          */
13725         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13726
13727         return 0;
13728 }
13729
13730 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13731 {
13732         struct drm_device *dev = crtc->dev;
13733         struct drm_atomic_state *state;
13734         struct drm_crtc_state *crtc_state;
13735         int ret;
13736
13737         state = drm_atomic_state_alloc(dev);
13738         if (!state) {
13739                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13740                               crtc->base.id);
13741                 return;
13742         }
13743
13744         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13745
13746 retry:
13747         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13748         ret = PTR_ERR_OR_ZERO(crtc_state);
13749         if (!ret) {
13750                 if (!crtc_state->active)
13751                         goto out;
13752
13753                 crtc_state->mode_changed = true;
13754                 ret = drm_atomic_commit(state);
13755         }
13756
13757         if (ret == -EDEADLK) {
13758                 drm_atomic_state_clear(state);
13759                 drm_modeset_backoff(state->acquire_ctx);
13760                 goto retry;
13761         }
13762
13763         if (ret)
13764 out:
13765                 drm_atomic_state_free(state);
13766 }
13767
13768 #undef for_each_intel_crtc_masked
13769
13770 static const struct drm_crtc_funcs intel_crtc_funcs = {
13771         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13772         .set_config = drm_atomic_helper_set_config,
13773         .set_property = drm_atomic_helper_crtc_set_property,
13774         .destroy = intel_crtc_destroy,
13775         .page_flip = intel_crtc_page_flip,
13776         .atomic_duplicate_state = intel_crtc_duplicate_state,
13777         .atomic_destroy_state = intel_crtc_destroy_state,
13778 };
13779
13780 /**
13781  * intel_prepare_plane_fb - Prepare fb for usage on plane
13782  * @plane: drm plane to prepare for
13783  * @fb: framebuffer to prepare for presentation
13784  *
13785  * Prepares a framebuffer for usage on a display plane.  Generally this
13786  * involves pinning the underlying object and updating the frontbuffer tracking
13787  * bits.  Some older platforms need special physical address handling for
13788  * cursor planes.
13789  *
13790  * Must be called with struct_mutex held.
13791  *
13792  * Returns 0 on success, negative error code on failure.
13793  */
13794 int
13795 intel_prepare_plane_fb(struct drm_plane *plane,
13796                        const struct drm_plane_state *new_state)
13797 {
13798         struct drm_device *dev = plane->dev;
13799         struct drm_framebuffer *fb = new_state->fb;
13800         struct intel_plane *intel_plane = to_intel_plane(plane);
13801         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13802         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13803         int ret = 0;
13804
13805         if (!obj && !old_obj)
13806                 return 0;
13807
13808         if (old_obj) {
13809                 struct drm_crtc_state *crtc_state =
13810                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13811
13812                 /* Big Hammer, we also need to ensure that any pending
13813                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13814                  * current scanout is retired before unpinning the old
13815                  * framebuffer. Note that we rely on userspace rendering
13816                  * into the buffer attached to the pipe they are waiting
13817                  * on. If not, userspace generates a GPU hang with IPEHR
13818                  * point to the MI_WAIT_FOR_EVENT.
13819                  *
13820                  * This should only fail upon a hung GPU, in which case we
13821                  * can safely continue.
13822                  */
13823                 if (needs_modeset(crtc_state))
13824                         ret = i915_gem_object_wait_rendering(old_obj, true);
13825                 if (ret) {
13826                         /* GPU hangs should have been swallowed by the wait */
13827                         WARN_ON(ret == -EIO);
13828                         return ret;
13829                 }
13830         }
13831
13832         /* For framebuffer backed by dmabuf, wait for fence */
13833         if (obj && obj->base.dma_buf) {
13834                 long lret;
13835
13836                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13837                                                            false, true,
13838                                                            MAX_SCHEDULE_TIMEOUT);
13839                 if (lret == -ERESTARTSYS)
13840                         return lret;
13841
13842                 WARN(lret < 0, "waiting returns %li\n", lret);
13843         }
13844
13845         if (!obj) {
13846                 ret = 0;
13847         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13848             INTEL_INFO(dev)->cursor_needs_physical) {
13849                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13850                 ret = i915_gem_object_attach_phys(obj, align);
13851                 if (ret)
13852                         DRM_DEBUG_KMS("failed to attach phys object\n");
13853         } else {
13854                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13855         }
13856
13857         if (ret == 0) {
13858                 if (obj) {
13859                         struct intel_plane_state *plane_state =
13860                                 to_intel_plane_state(new_state);
13861
13862                         i915_gem_request_assign(&plane_state->wait_req,
13863                                                 obj->last_write_req);
13864                 }
13865
13866                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13867         }
13868
13869         return ret;
13870 }
13871
13872 /**
13873  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13874  * @plane: drm plane to clean up for
13875  * @fb: old framebuffer that was on plane
13876  *
13877  * Cleans up a framebuffer that has just been removed from a plane.
13878  *
13879  * Must be called with struct_mutex held.
13880  */
13881 void
13882 intel_cleanup_plane_fb(struct drm_plane *plane,
13883                        const struct drm_plane_state *old_state)
13884 {
13885         struct drm_device *dev = plane->dev;
13886         struct intel_plane *intel_plane = to_intel_plane(plane);
13887         struct intel_plane_state *old_intel_state;
13888         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13889         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13890
13891         old_intel_state = to_intel_plane_state(old_state);
13892
13893         if (!obj && !old_obj)
13894                 return;
13895
13896         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13897             !INTEL_INFO(dev)->cursor_needs_physical))
13898                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13899
13900         /* prepare_fb aborted? */
13901         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13902             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13903                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13904
13905         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13906 }
13907
13908 int
13909 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13910 {
13911         int max_scale;
13912         struct drm_device *dev;
13913         struct drm_i915_private *dev_priv;
13914         int crtc_clock, cdclk;
13915
13916         if (!intel_crtc || !crtc_state->base.enable)
13917                 return DRM_PLANE_HELPER_NO_SCALING;
13918
13919         dev = intel_crtc->base.dev;
13920         dev_priv = dev->dev_private;
13921         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13922         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13923
13924         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13925                 return DRM_PLANE_HELPER_NO_SCALING;
13926
13927         /*
13928          * skl max scale is lower of:
13929          *    close to 3 but not 3, -1 is for that purpose
13930          *            or
13931          *    cdclk/crtc_clock
13932          */
13933         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13934
13935         return max_scale;
13936 }
13937
13938 static int
13939 intel_check_primary_plane(struct drm_plane *plane,
13940                           struct intel_crtc_state *crtc_state,
13941                           struct intel_plane_state *state)
13942 {
13943         struct drm_crtc *crtc = state->base.crtc;
13944         struct drm_framebuffer *fb = state->base.fb;
13945         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13946         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13947         bool can_position = false;
13948
13949         if (INTEL_INFO(plane->dev)->gen >= 9) {
13950                 /* use scaler when colorkey is not required */
13951                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13952                         min_scale = 1;
13953                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13954                 }
13955                 can_position = true;
13956         }
13957
13958         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13959                                              &state->dst, &state->clip,
13960                                              min_scale, max_scale,
13961                                              can_position, true,
13962                                              &state->visible);
13963 }
13964
13965 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13966                                     struct drm_crtc_state *old_crtc_state)
13967 {
13968         struct drm_device *dev = crtc->dev;
13969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13970         struct intel_crtc_state *old_intel_state =
13971                 to_intel_crtc_state(old_crtc_state);
13972         bool modeset = needs_modeset(crtc->state);
13973
13974         /* Perform vblank evasion around commit operation */
13975         intel_pipe_update_start(intel_crtc);
13976
13977         if (modeset)
13978                 return;
13979
13980         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13981                 intel_color_set_csc(crtc->state);
13982                 intel_color_load_luts(crtc->state);
13983         }
13984
13985         if (to_intel_crtc_state(crtc->state)->update_pipe)
13986                 intel_update_pipe_config(intel_crtc, old_intel_state);
13987         else if (INTEL_INFO(dev)->gen >= 9)
13988                 skl_detach_scalers(intel_crtc);
13989 }
13990
13991 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13992                                      struct drm_crtc_state *old_crtc_state)
13993 {
13994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13995
13996         intel_pipe_update_end(intel_crtc);
13997 }
13998
13999 /**
14000  * intel_plane_destroy - destroy a plane
14001  * @plane: plane to destroy
14002  *
14003  * Common destruction function for all types of planes (primary, cursor,
14004  * sprite).
14005  */
14006 void intel_plane_destroy(struct drm_plane *plane)
14007 {
14008         struct intel_plane *intel_plane = to_intel_plane(plane);
14009         drm_plane_cleanup(plane);
14010         kfree(intel_plane);
14011 }
14012
14013 const struct drm_plane_funcs intel_plane_funcs = {
14014         .update_plane = drm_atomic_helper_update_plane,
14015         .disable_plane = drm_atomic_helper_disable_plane,
14016         .destroy = intel_plane_destroy,
14017         .set_property = drm_atomic_helper_plane_set_property,
14018         .atomic_get_property = intel_plane_atomic_get_property,
14019         .atomic_set_property = intel_plane_atomic_set_property,
14020         .atomic_duplicate_state = intel_plane_duplicate_state,
14021         .atomic_destroy_state = intel_plane_destroy_state,
14022
14023 };
14024
14025 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14026                                                     int pipe)
14027 {
14028         struct intel_plane *primary = NULL;
14029         struct intel_plane_state *state = NULL;
14030         const uint32_t *intel_primary_formats;
14031         unsigned int num_formats;
14032         int ret;
14033
14034         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14035         if (!primary)
14036                 goto fail;
14037
14038         state = intel_create_plane_state(&primary->base);
14039         if (!state)
14040                 goto fail;
14041         primary->base.state = &state->base;
14042
14043         primary->can_scale = false;
14044         primary->max_downscale = 1;
14045         if (INTEL_INFO(dev)->gen >= 9) {
14046                 primary->can_scale = true;
14047                 state->scaler_id = -1;
14048         }
14049         primary->pipe = pipe;
14050         primary->plane = pipe;
14051         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14052         primary->check_plane = intel_check_primary_plane;
14053         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14054                 primary->plane = !pipe;
14055
14056         if (INTEL_INFO(dev)->gen >= 9) {
14057                 intel_primary_formats = skl_primary_formats;
14058                 num_formats = ARRAY_SIZE(skl_primary_formats);
14059
14060                 primary->update_plane = skylake_update_primary_plane;
14061                 primary->disable_plane = skylake_disable_primary_plane;
14062         } else if (HAS_PCH_SPLIT(dev)) {
14063                 intel_primary_formats = i965_primary_formats;
14064                 num_formats = ARRAY_SIZE(i965_primary_formats);
14065
14066                 primary->update_plane = ironlake_update_primary_plane;
14067                 primary->disable_plane = i9xx_disable_primary_plane;
14068         } else if (INTEL_INFO(dev)->gen >= 4) {
14069                 intel_primary_formats = i965_primary_formats;
14070                 num_formats = ARRAY_SIZE(i965_primary_formats);
14071
14072                 primary->update_plane = i9xx_update_primary_plane;
14073                 primary->disable_plane = i9xx_disable_primary_plane;
14074         } else {
14075                 intel_primary_formats = i8xx_primary_formats;
14076                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14077
14078                 primary->update_plane = i9xx_update_primary_plane;
14079                 primary->disable_plane = i9xx_disable_primary_plane;
14080         }
14081
14082         ret = drm_universal_plane_init(dev, &primary->base, 0,
14083                                        &intel_plane_funcs,
14084                                        intel_primary_formats, num_formats,
14085                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14086         if (ret)
14087                 goto fail;
14088
14089         if (INTEL_INFO(dev)->gen >= 4)
14090                 intel_create_rotation_property(dev, primary);
14091
14092         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14093
14094         return &primary->base;
14095
14096 fail:
14097         kfree(state);
14098         kfree(primary);
14099
14100         return NULL;
14101 }
14102
14103 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14104 {
14105         if (!dev->mode_config.rotation_property) {
14106                 unsigned long flags = BIT(DRM_ROTATE_0) |
14107                         BIT(DRM_ROTATE_180);
14108
14109                 if (INTEL_INFO(dev)->gen >= 9)
14110                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14111
14112                 dev->mode_config.rotation_property =
14113                         drm_mode_create_rotation_property(dev, flags);
14114         }
14115         if (dev->mode_config.rotation_property)
14116                 drm_object_attach_property(&plane->base.base,
14117                                 dev->mode_config.rotation_property,
14118                                 plane->base.state->rotation);
14119 }
14120
14121 static int
14122 intel_check_cursor_plane(struct drm_plane *plane,
14123                          struct intel_crtc_state *crtc_state,
14124                          struct intel_plane_state *state)
14125 {
14126         struct drm_crtc *crtc = crtc_state->base.crtc;
14127         struct drm_framebuffer *fb = state->base.fb;
14128         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14129         enum pipe pipe = to_intel_plane(plane)->pipe;
14130         unsigned stride;
14131         int ret;
14132
14133         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14134                                             &state->dst, &state->clip,
14135                                             DRM_PLANE_HELPER_NO_SCALING,
14136                                             DRM_PLANE_HELPER_NO_SCALING,
14137                                             true, true, &state->visible);
14138         if (ret)
14139                 return ret;
14140
14141         /* if we want to turn off the cursor ignore width and height */
14142         if (!obj)
14143                 return 0;
14144
14145         /* Check for which cursor types we support */
14146         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14147                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14148                           state->base.crtc_w, state->base.crtc_h);
14149                 return -EINVAL;
14150         }
14151
14152         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14153         if (obj->base.size < stride * state->base.crtc_h) {
14154                 DRM_DEBUG_KMS("buffer is too small\n");
14155                 return -ENOMEM;
14156         }
14157
14158         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14159                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14160                 return -EINVAL;
14161         }
14162
14163         /*
14164          * There's something wrong with the cursor on CHV pipe C.
14165          * If it straddles the left edge of the screen then
14166          * moving it away from the edge or disabling it often
14167          * results in a pipe underrun, and often that can lead to
14168          * dead pipe (constant underrun reported, and it scans
14169          * out just a solid color). To recover from that, the
14170          * display power well must be turned off and on again.
14171          * Refuse the put the cursor into that compromised position.
14172          */
14173         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14174             state->visible && state->base.crtc_x < 0) {
14175                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14176                 return -EINVAL;
14177         }
14178
14179         return 0;
14180 }
14181
14182 static void
14183 intel_disable_cursor_plane(struct drm_plane *plane,
14184                            struct drm_crtc *crtc)
14185 {
14186         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14187
14188         intel_crtc->cursor_addr = 0;
14189         intel_crtc_update_cursor(crtc, NULL);
14190 }
14191
14192 static void
14193 intel_update_cursor_plane(struct drm_plane *plane,
14194                           const struct intel_crtc_state *crtc_state,
14195                           const struct intel_plane_state *state)
14196 {
14197         struct drm_crtc *crtc = crtc_state->base.crtc;
14198         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14199         struct drm_device *dev = plane->dev;
14200         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14201         uint32_t addr;
14202
14203         if (!obj)
14204                 addr = 0;
14205         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14206                 addr = i915_gem_obj_ggtt_offset(obj);
14207         else
14208                 addr = obj->phys_handle->busaddr;
14209
14210         intel_crtc->cursor_addr = addr;
14211         intel_crtc_update_cursor(crtc, state);
14212 }
14213
14214 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14215                                                    int pipe)
14216 {
14217         struct intel_plane *cursor = NULL;
14218         struct intel_plane_state *state = NULL;
14219         int ret;
14220
14221         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14222         if (!cursor)
14223                 goto fail;
14224
14225         state = intel_create_plane_state(&cursor->base);
14226         if (!state)
14227                 goto fail;
14228         cursor->base.state = &state->base;
14229
14230         cursor->can_scale = false;
14231         cursor->max_downscale = 1;
14232         cursor->pipe = pipe;
14233         cursor->plane = pipe;
14234         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14235         cursor->check_plane = intel_check_cursor_plane;
14236         cursor->update_plane = intel_update_cursor_plane;
14237         cursor->disable_plane = intel_disable_cursor_plane;
14238
14239         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14240                                        &intel_plane_funcs,
14241                                        intel_cursor_formats,
14242                                        ARRAY_SIZE(intel_cursor_formats),
14243                                        DRM_PLANE_TYPE_CURSOR, NULL);
14244         if (ret)
14245                 goto fail;
14246
14247         if (INTEL_INFO(dev)->gen >= 4) {
14248                 if (!dev->mode_config.rotation_property)
14249                         dev->mode_config.rotation_property =
14250                                 drm_mode_create_rotation_property(dev,
14251                                                         BIT(DRM_ROTATE_0) |
14252                                                         BIT(DRM_ROTATE_180));
14253                 if (dev->mode_config.rotation_property)
14254                         drm_object_attach_property(&cursor->base.base,
14255                                 dev->mode_config.rotation_property,
14256                                 state->base.rotation);
14257         }
14258
14259         if (INTEL_INFO(dev)->gen >=9)
14260                 state->scaler_id = -1;
14261
14262         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14263
14264         return &cursor->base;
14265
14266 fail:
14267         kfree(state);
14268         kfree(cursor);
14269
14270         return NULL;
14271 }
14272
14273 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14274         struct intel_crtc_state *crtc_state)
14275 {
14276         int i;
14277         struct intel_scaler *intel_scaler;
14278         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14279
14280         for (i = 0; i < intel_crtc->num_scalers; i++) {
14281                 intel_scaler = &scaler_state->scalers[i];
14282                 intel_scaler->in_use = 0;
14283                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14284         }
14285
14286         scaler_state->scaler_id = -1;
14287 }
14288
14289 static void intel_crtc_init(struct drm_device *dev, int pipe)
14290 {
14291         struct drm_i915_private *dev_priv = dev->dev_private;
14292         struct intel_crtc *intel_crtc;
14293         struct intel_crtc_state *crtc_state = NULL;
14294         struct drm_plane *primary = NULL;
14295         struct drm_plane *cursor = NULL;
14296         int ret;
14297
14298         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14299         if (intel_crtc == NULL)
14300                 return;
14301
14302         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14303         if (!crtc_state)
14304                 goto fail;
14305         intel_crtc->config = crtc_state;
14306         intel_crtc->base.state = &crtc_state->base;
14307         crtc_state->base.crtc = &intel_crtc->base;
14308
14309         /* initialize shared scalers */
14310         if (INTEL_INFO(dev)->gen >= 9) {
14311                 if (pipe == PIPE_C)
14312                         intel_crtc->num_scalers = 1;
14313                 else
14314                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14315
14316                 skl_init_scalers(dev, intel_crtc, crtc_state);
14317         }
14318
14319         primary = intel_primary_plane_create(dev, pipe);
14320         if (!primary)
14321                 goto fail;
14322
14323         cursor = intel_cursor_plane_create(dev, pipe);
14324         if (!cursor)
14325                 goto fail;
14326
14327         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14328                                         cursor, &intel_crtc_funcs, NULL);
14329         if (ret)
14330                 goto fail;
14331
14332         /*
14333          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14334          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14335          */
14336         intel_crtc->pipe = pipe;
14337         intel_crtc->plane = pipe;
14338         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14339                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14340                 intel_crtc->plane = !pipe;
14341         }
14342
14343         intel_crtc->cursor_base = ~0;
14344         intel_crtc->cursor_cntl = ~0;
14345         intel_crtc->cursor_size = ~0;
14346
14347         intel_crtc->wm.cxsr_allowed = true;
14348
14349         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14350                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14351         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14352         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14353
14354         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14355
14356         intel_color_init(&intel_crtc->base);
14357
14358         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14359         return;
14360
14361 fail:
14362         if (primary)
14363                 drm_plane_cleanup(primary);
14364         if (cursor)
14365                 drm_plane_cleanup(cursor);
14366         kfree(crtc_state);
14367         kfree(intel_crtc);
14368 }
14369
14370 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14371 {
14372         struct drm_encoder *encoder = connector->base.encoder;
14373         struct drm_device *dev = connector->base.dev;
14374
14375         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14376
14377         if (!encoder || WARN_ON(!encoder->crtc))
14378                 return INVALID_PIPE;
14379
14380         return to_intel_crtc(encoder->crtc)->pipe;
14381 }
14382
14383 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14384                                 struct drm_file *file)
14385 {
14386         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14387         struct drm_crtc *drmmode_crtc;
14388         struct intel_crtc *crtc;
14389
14390         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14391
14392         if (!drmmode_crtc) {
14393                 DRM_ERROR("no such CRTC id\n");
14394                 return -ENOENT;
14395         }
14396
14397         crtc = to_intel_crtc(drmmode_crtc);
14398         pipe_from_crtc_id->pipe = crtc->pipe;
14399
14400         return 0;
14401 }
14402
14403 static int intel_encoder_clones(struct intel_encoder *encoder)
14404 {
14405         struct drm_device *dev = encoder->base.dev;
14406         struct intel_encoder *source_encoder;
14407         int index_mask = 0;
14408         int entry = 0;
14409
14410         for_each_intel_encoder(dev, source_encoder) {
14411                 if (encoders_cloneable(encoder, source_encoder))
14412                         index_mask |= (1 << entry);
14413
14414                 entry++;
14415         }
14416
14417         return index_mask;
14418 }
14419
14420 static bool has_edp_a(struct drm_device *dev)
14421 {
14422         struct drm_i915_private *dev_priv = dev->dev_private;
14423
14424         if (!IS_MOBILE(dev))
14425                 return false;
14426
14427         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14428                 return false;
14429
14430         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14431                 return false;
14432
14433         return true;
14434 }
14435
14436 static bool intel_crt_present(struct drm_device *dev)
14437 {
14438         struct drm_i915_private *dev_priv = dev->dev_private;
14439
14440         if (INTEL_INFO(dev)->gen >= 9)
14441                 return false;
14442
14443         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14444                 return false;
14445
14446         if (IS_CHERRYVIEW(dev))
14447                 return false;
14448
14449         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14450                 return false;
14451
14452         /* DDI E can't be used if DDI A requires 4 lanes */
14453         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14454                 return false;
14455
14456         if (!dev_priv->vbt.int_crt_support)
14457                 return false;
14458
14459         return true;
14460 }
14461
14462 static void intel_setup_outputs(struct drm_device *dev)
14463 {
14464         struct drm_i915_private *dev_priv = dev->dev_private;
14465         struct intel_encoder *encoder;
14466         bool dpd_is_edp = false;
14467
14468         intel_lvds_init(dev);
14469
14470         if (intel_crt_present(dev))
14471                 intel_crt_init(dev);
14472
14473         if (IS_BROXTON(dev)) {
14474                 /*
14475                  * FIXME: Broxton doesn't support port detection via the
14476                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14477                  * detect the ports.
14478                  */
14479                 intel_ddi_init(dev, PORT_A);
14480                 intel_ddi_init(dev, PORT_B);
14481                 intel_ddi_init(dev, PORT_C);
14482
14483                 intel_dsi_init(dev);
14484         } else if (HAS_DDI(dev)) {
14485                 int found;
14486
14487                 /*
14488                  * Haswell uses DDI functions to detect digital outputs.
14489                  * On SKL pre-D0 the strap isn't connected, so we assume
14490                  * it's there.
14491                  */
14492                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14493                 /* WaIgnoreDDIAStrap: skl */
14494                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14495                         intel_ddi_init(dev, PORT_A);
14496
14497                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14498                  * register */
14499                 found = I915_READ(SFUSE_STRAP);
14500
14501                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14502                         intel_ddi_init(dev, PORT_B);
14503                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14504                         intel_ddi_init(dev, PORT_C);
14505                 if (found & SFUSE_STRAP_DDID_DETECTED)
14506                         intel_ddi_init(dev, PORT_D);
14507                 /*
14508                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14509                  */
14510                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14511                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14512                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14513                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14514                         intel_ddi_init(dev, PORT_E);
14515
14516         } else if (HAS_PCH_SPLIT(dev)) {
14517                 int found;
14518                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14519
14520                 if (has_edp_a(dev))
14521                         intel_dp_init(dev, DP_A, PORT_A);
14522
14523                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14524                         /* PCH SDVOB multiplex with HDMIB */
14525                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14526                         if (!found)
14527                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14528                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14529                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14530                 }
14531
14532                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14533                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14534
14535                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14536                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14537
14538                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14539                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14540
14541                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14542                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14543         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14544                 /*
14545                  * The DP_DETECTED bit is the latched state of the DDC
14546                  * SDA pin at boot. However since eDP doesn't require DDC
14547                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14548                  * eDP ports may have been muxed to an alternate function.
14549                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14550                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14551                  * detect eDP ports.
14552                  */
14553                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14554                     !intel_dp_is_edp(dev, PORT_B))
14555                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14556                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14557                     intel_dp_is_edp(dev, PORT_B))
14558                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14559
14560                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14561                     !intel_dp_is_edp(dev, PORT_C))
14562                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14563                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14564                     intel_dp_is_edp(dev, PORT_C))
14565                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14566
14567                 if (IS_CHERRYVIEW(dev)) {
14568                         /* eDP not supported on port D, so don't check VBT */
14569                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14570                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14571                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14572                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14573                 }
14574
14575                 intel_dsi_init(dev);
14576         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14577                 bool found = false;
14578
14579                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14580                         DRM_DEBUG_KMS("probing SDVOB\n");
14581                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14582                         if (!found && IS_G4X(dev)) {
14583                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14584                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14585                         }
14586
14587                         if (!found && IS_G4X(dev))
14588                                 intel_dp_init(dev, DP_B, PORT_B);
14589                 }
14590
14591                 /* Before G4X SDVOC doesn't have its own detect register */
14592
14593                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14594                         DRM_DEBUG_KMS("probing SDVOC\n");
14595                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14596                 }
14597
14598                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14599
14600                         if (IS_G4X(dev)) {
14601                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14602                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14603                         }
14604                         if (IS_G4X(dev))
14605                                 intel_dp_init(dev, DP_C, PORT_C);
14606                 }
14607
14608                 if (IS_G4X(dev) &&
14609                     (I915_READ(DP_D) & DP_DETECTED))
14610                         intel_dp_init(dev, DP_D, PORT_D);
14611         } else if (IS_GEN2(dev))
14612                 intel_dvo_init(dev);
14613
14614         if (SUPPORTS_TV(dev))
14615                 intel_tv_init(dev);
14616
14617         intel_psr_init(dev);
14618
14619         for_each_intel_encoder(dev, encoder) {
14620                 encoder->base.possible_crtcs = encoder->crtc_mask;
14621                 encoder->base.possible_clones =
14622                         intel_encoder_clones(encoder);
14623         }
14624
14625         intel_init_pch_refclk(dev);
14626
14627         drm_helper_move_panel_connectors_to_head(dev);
14628 }
14629
14630 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14631 {
14632         struct drm_device *dev = fb->dev;
14633         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14634
14635         drm_framebuffer_cleanup(fb);
14636         mutex_lock(&dev->struct_mutex);
14637         WARN_ON(!intel_fb->obj->framebuffer_references--);
14638         drm_gem_object_unreference(&intel_fb->obj->base);
14639         mutex_unlock(&dev->struct_mutex);
14640         kfree(intel_fb);
14641 }
14642
14643 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14644                                                 struct drm_file *file,
14645                                                 unsigned int *handle)
14646 {
14647         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14648         struct drm_i915_gem_object *obj = intel_fb->obj;
14649
14650         if (obj->userptr.mm) {
14651                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14652                 return -EINVAL;
14653         }
14654
14655         return drm_gem_handle_create(file, &obj->base, handle);
14656 }
14657
14658 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14659                                         struct drm_file *file,
14660                                         unsigned flags, unsigned color,
14661                                         struct drm_clip_rect *clips,
14662                                         unsigned num_clips)
14663 {
14664         struct drm_device *dev = fb->dev;
14665         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14666         struct drm_i915_gem_object *obj = intel_fb->obj;
14667
14668         mutex_lock(&dev->struct_mutex);
14669         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14670         mutex_unlock(&dev->struct_mutex);
14671
14672         return 0;
14673 }
14674
14675 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14676         .destroy = intel_user_framebuffer_destroy,
14677         .create_handle = intel_user_framebuffer_create_handle,
14678         .dirty = intel_user_framebuffer_dirty,
14679 };
14680
14681 static
14682 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14683                          uint32_t pixel_format)
14684 {
14685         u32 gen = INTEL_INFO(dev)->gen;
14686
14687         if (gen >= 9) {
14688                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14689
14690                 /* "The stride in bytes must not exceed the of the size of 8K
14691                  *  pixels and 32K bytes."
14692                  */
14693                 return min(8192 * cpp, 32768);
14694         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14695                 return 32*1024;
14696         } else if (gen >= 4) {
14697                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14698                         return 16*1024;
14699                 else
14700                         return 32*1024;
14701         } else if (gen >= 3) {
14702                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14703                         return 8*1024;
14704                 else
14705                         return 16*1024;
14706         } else {
14707                 /* XXX DSPC is limited to 4k tiled */
14708                 return 8*1024;
14709         }
14710 }
14711
14712 static int intel_framebuffer_init(struct drm_device *dev,
14713                                   struct intel_framebuffer *intel_fb,
14714                                   struct drm_mode_fb_cmd2 *mode_cmd,
14715                                   struct drm_i915_gem_object *obj)
14716 {
14717         struct drm_i915_private *dev_priv = to_i915(dev);
14718         unsigned int aligned_height;
14719         int ret;
14720         u32 pitch_limit, stride_alignment;
14721
14722         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14723
14724         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14725                 /* Enforce that fb modifier and tiling mode match, but only for
14726                  * X-tiled. This is needed for FBC. */
14727                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14728                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14729                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14730                         return -EINVAL;
14731                 }
14732         } else {
14733                 if (obj->tiling_mode == I915_TILING_X)
14734                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14735                 else if (obj->tiling_mode == I915_TILING_Y) {
14736                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14737                         return -EINVAL;
14738                 }
14739         }
14740
14741         /* Passed in modifier sanity checking. */
14742         switch (mode_cmd->modifier[0]) {
14743         case I915_FORMAT_MOD_Y_TILED:
14744         case I915_FORMAT_MOD_Yf_TILED:
14745                 if (INTEL_INFO(dev)->gen < 9) {
14746                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14747                                   mode_cmd->modifier[0]);
14748                         return -EINVAL;
14749                 }
14750         case DRM_FORMAT_MOD_NONE:
14751         case I915_FORMAT_MOD_X_TILED:
14752                 break;
14753         default:
14754                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14755                           mode_cmd->modifier[0]);
14756                 return -EINVAL;
14757         }
14758
14759         stride_alignment = intel_fb_stride_alignment(dev_priv,
14760                                                      mode_cmd->modifier[0],
14761                                                      mode_cmd->pixel_format);
14762         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14763                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14764                           mode_cmd->pitches[0], stride_alignment);
14765                 return -EINVAL;
14766         }
14767
14768         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14769                                            mode_cmd->pixel_format);
14770         if (mode_cmd->pitches[0] > pitch_limit) {
14771                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14772                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14773                           "tiled" : "linear",
14774                           mode_cmd->pitches[0], pitch_limit);
14775                 return -EINVAL;
14776         }
14777
14778         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14779             mode_cmd->pitches[0] != obj->stride) {
14780                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14781                           mode_cmd->pitches[0], obj->stride);
14782                 return -EINVAL;
14783         }
14784
14785         /* Reject formats not supported by any plane early. */
14786         switch (mode_cmd->pixel_format) {
14787         case DRM_FORMAT_C8:
14788         case DRM_FORMAT_RGB565:
14789         case DRM_FORMAT_XRGB8888:
14790         case DRM_FORMAT_ARGB8888:
14791                 break;
14792         case DRM_FORMAT_XRGB1555:
14793                 if (INTEL_INFO(dev)->gen > 3) {
14794                         DRM_DEBUG("unsupported pixel format: %s\n",
14795                                   drm_get_format_name(mode_cmd->pixel_format));
14796                         return -EINVAL;
14797                 }
14798                 break;
14799         case DRM_FORMAT_ABGR8888:
14800                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14801                     INTEL_INFO(dev)->gen < 9) {
14802                         DRM_DEBUG("unsupported pixel format: %s\n",
14803                                   drm_get_format_name(mode_cmd->pixel_format));
14804                         return -EINVAL;
14805                 }
14806                 break;
14807         case DRM_FORMAT_XBGR8888:
14808         case DRM_FORMAT_XRGB2101010:
14809         case DRM_FORMAT_XBGR2101010:
14810                 if (INTEL_INFO(dev)->gen < 4) {
14811                         DRM_DEBUG("unsupported pixel format: %s\n",
14812                                   drm_get_format_name(mode_cmd->pixel_format));
14813                         return -EINVAL;
14814                 }
14815                 break;
14816         case DRM_FORMAT_ABGR2101010:
14817                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14818                         DRM_DEBUG("unsupported pixel format: %s\n",
14819                                   drm_get_format_name(mode_cmd->pixel_format));
14820                         return -EINVAL;
14821                 }
14822                 break;
14823         case DRM_FORMAT_YUYV:
14824         case DRM_FORMAT_UYVY:
14825         case DRM_FORMAT_YVYU:
14826         case DRM_FORMAT_VYUY:
14827                 if (INTEL_INFO(dev)->gen < 5) {
14828                         DRM_DEBUG("unsupported pixel format: %s\n",
14829                                   drm_get_format_name(mode_cmd->pixel_format));
14830                         return -EINVAL;
14831                 }
14832                 break;
14833         default:
14834                 DRM_DEBUG("unsupported pixel format: %s\n",
14835                           drm_get_format_name(mode_cmd->pixel_format));
14836                 return -EINVAL;
14837         }
14838
14839         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14840         if (mode_cmd->offsets[0] != 0)
14841                 return -EINVAL;
14842
14843         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14844                                                mode_cmd->pixel_format,
14845                                                mode_cmd->modifier[0]);
14846         /* FIXME drm helper for size checks (especially planar formats)? */
14847         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14848                 return -EINVAL;
14849
14850         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14851         intel_fb->obj = obj;
14852
14853         intel_fill_fb_info(dev_priv, &intel_fb->base);
14854
14855         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14856         if (ret) {
14857                 DRM_ERROR("framebuffer init failed %d\n", ret);
14858                 return ret;
14859         }
14860
14861         intel_fb->obj->framebuffer_references++;
14862
14863         return 0;
14864 }
14865
14866 static struct drm_framebuffer *
14867 intel_user_framebuffer_create(struct drm_device *dev,
14868                               struct drm_file *filp,
14869                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14870 {
14871         struct drm_framebuffer *fb;
14872         struct drm_i915_gem_object *obj;
14873         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14874
14875         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14876                                                 mode_cmd.handles[0]));
14877         if (&obj->base == NULL)
14878                 return ERR_PTR(-ENOENT);
14879
14880         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14881         if (IS_ERR(fb))
14882                 drm_gem_object_unreference_unlocked(&obj->base);
14883
14884         return fb;
14885 }
14886
14887 #ifndef CONFIG_DRM_FBDEV_EMULATION
14888 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14889 {
14890 }
14891 #endif
14892
14893 static const struct drm_mode_config_funcs intel_mode_funcs = {
14894         .fb_create = intel_user_framebuffer_create,
14895         .output_poll_changed = intel_fbdev_output_poll_changed,
14896         .atomic_check = intel_atomic_check,
14897         .atomic_commit = intel_atomic_commit,
14898         .atomic_state_alloc = intel_atomic_state_alloc,
14899         .atomic_state_clear = intel_atomic_state_clear,
14900 };
14901
14902 /**
14903  * intel_init_display_hooks - initialize the display modesetting hooks
14904  * @dev_priv: device private
14905  */
14906 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14907 {
14908         if (INTEL_INFO(dev_priv)->gen >= 9) {
14909                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14910                 dev_priv->display.get_initial_plane_config =
14911                         skylake_get_initial_plane_config;
14912                 dev_priv->display.crtc_compute_clock =
14913                         haswell_crtc_compute_clock;
14914                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14915                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14916         } else if (HAS_DDI(dev_priv)) {
14917                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14918                 dev_priv->display.get_initial_plane_config =
14919                         ironlake_get_initial_plane_config;
14920                 dev_priv->display.crtc_compute_clock =
14921                         haswell_crtc_compute_clock;
14922                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14923                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14924         } else if (HAS_PCH_SPLIT(dev_priv)) {
14925                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14926                 dev_priv->display.get_initial_plane_config =
14927                         ironlake_get_initial_plane_config;
14928                 dev_priv->display.crtc_compute_clock =
14929                         ironlake_crtc_compute_clock;
14930                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14931                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14932         } else if (IS_CHERRYVIEW(dev_priv)) {
14933                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14934                 dev_priv->display.get_initial_plane_config =
14935                         i9xx_get_initial_plane_config;
14936                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14937                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14938                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14939         } else if (IS_VALLEYVIEW(dev_priv)) {
14940                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14941                 dev_priv->display.get_initial_plane_config =
14942                         i9xx_get_initial_plane_config;
14943                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14944                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14945                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14946         } else if (IS_G4X(dev_priv)) {
14947                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14948                 dev_priv->display.get_initial_plane_config =
14949                         i9xx_get_initial_plane_config;
14950                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14951                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14952                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14953         } else if (IS_PINEVIEW(dev_priv)) {
14954                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14955                 dev_priv->display.get_initial_plane_config =
14956                         i9xx_get_initial_plane_config;
14957                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14958                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14959                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14960         } else if (!IS_GEN2(dev_priv)) {
14961                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14962                 dev_priv->display.get_initial_plane_config =
14963                         i9xx_get_initial_plane_config;
14964                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14965                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14966                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14967         } else {
14968                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14969                 dev_priv->display.get_initial_plane_config =
14970                         i9xx_get_initial_plane_config;
14971                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14972                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14973                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14974         }
14975
14976         /* Returns the core display clock speed */
14977         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14978                 dev_priv->display.get_display_clock_speed =
14979                         skylake_get_display_clock_speed;
14980         else if (IS_BROXTON(dev_priv))
14981                 dev_priv->display.get_display_clock_speed =
14982                         broxton_get_display_clock_speed;
14983         else if (IS_BROADWELL(dev_priv))
14984                 dev_priv->display.get_display_clock_speed =
14985                         broadwell_get_display_clock_speed;
14986         else if (IS_HASWELL(dev_priv))
14987                 dev_priv->display.get_display_clock_speed =
14988                         haswell_get_display_clock_speed;
14989         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14990                 dev_priv->display.get_display_clock_speed =
14991                         valleyview_get_display_clock_speed;
14992         else if (IS_GEN5(dev_priv))
14993                 dev_priv->display.get_display_clock_speed =
14994                         ilk_get_display_clock_speed;
14995         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14996                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14997                 dev_priv->display.get_display_clock_speed =
14998                         i945_get_display_clock_speed;
14999         else if (IS_GM45(dev_priv))
15000                 dev_priv->display.get_display_clock_speed =
15001                         gm45_get_display_clock_speed;
15002         else if (IS_CRESTLINE(dev_priv))
15003                 dev_priv->display.get_display_clock_speed =
15004                         i965gm_get_display_clock_speed;
15005         else if (IS_PINEVIEW(dev_priv))
15006                 dev_priv->display.get_display_clock_speed =
15007                         pnv_get_display_clock_speed;
15008         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15009                 dev_priv->display.get_display_clock_speed =
15010                         g33_get_display_clock_speed;
15011         else if (IS_I915G(dev_priv))
15012                 dev_priv->display.get_display_clock_speed =
15013                         i915_get_display_clock_speed;
15014         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15015                 dev_priv->display.get_display_clock_speed =
15016                         i9xx_misc_get_display_clock_speed;
15017         else if (IS_I915GM(dev_priv))
15018                 dev_priv->display.get_display_clock_speed =
15019                         i915gm_get_display_clock_speed;
15020         else if (IS_I865G(dev_priv))
15021                 dev_priv->display.get_display_clock_speed =
15022                         i865_get_display_clock_speed;
15023         else if (IS_I85X(dev_priv))
15024                 dev_priv->display.get_display_clock_speed =
15025                         i85x_get_display_clock_speed;
15026         else { /* 830 */
15027                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15028                 dev_priv->display.get_display_clock_speed =
15029                         i830_get_display_clock_speed;
15030         }
15031
15032         if (IS_GEN5(dev_priv)) {
15033                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15034         } else if (IS_GEN6(dev_priv)) {
15035                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15036         } else if (IS_IVYBRIDGE(dev_priv)) {
15037                 /* FIXME: detect B0+ stepping and use auto training */
15038                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15039         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15040                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15041                 if (IS_BROADWELL(dev_priv)) {
15042                         dev_priv->display.modeset_commit_cdclk =
15043                                 broadwell_modeset_commit_cdclk;
15044                         dev_priv->display.modeset_calc_cdclk =
15045                                 broadwell_modeset_calc_cdclk;
15046                 }
15047         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15048                 dev_priv->display.modeset_commit_cdclk =
15049                         valleyview_modeset_commit_cdclk;
15050                 dev_priv->display.modeset_calc_cdclk =
15051                         valleyview_modeset_calc_cdclk;
15052         } else if (IS_BROXTON(dev_priv)) {
15053                 dev_priv->display.modeset_commit_cdclk =
15054                         broxton_modeset_commit_cdclk;
15055                 dev_priv->display.modeset_calc_cdclk =
15056                         broxton_modeset_calc_cdclk;
15057         }
15058
15059         switch (INTEL_INFO(dev_priv)->gen) {
15060         case 2:
15061                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15062                 break;
15063
15064         case 3:
15065                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15066                 break;
15067
15068         case 4:
15069         case 5:
15070                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15071                 break;
15072
15073         case 6:
15074                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15075                 break;
15076         case 7:
15077         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15078                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15079                 break;
15080         case 9:
15081                 /* Drop through - unsupported since execlist only. */
15082         default:
15083                 /* Default just returns -ENODEV to indicate unsupported */
15084                 dev_priv->display.queue_flip = intel_default_queue_flip;
15085         }
15086 }
15087
15088 /*
15089  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15090  * resume, or other times.  This quirk makes sure that's the case for
15091  * affected systems.
15092  */
15093 static void quirk_pipea_force(struct drm_device *dev)
15094 {
15095         struct drm_i915_private *dev_priv = dev->dev_private;
15096
15097         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15098         DRM_INFO("applying pipe a force quirk\n");
15099 }
15100
15101 static void quirk_pipeb_force(struct drm_device *dev)
15102 {
15103         struct drm_i915_private *dev_priv = dev->dev_private;
15104
15105         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15106         DRM_INFO("applying pipe b force quirk\n");
15107 }
15108
15109 /*
15110  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15111  */
15112 static void quirk_ssc_force_disable(struct drm_device *dev)
15113 {
15114         struct drm_i915_private *dev_priv = dev->dev_private;
15115         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15116         DRM_INFO("applying lvds SSC disable quirk\n");
15117 }
15118
15119 /*
15120  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15121  * brightness value
15122  */
15123 static void quirk_invert_brightness(struct drm_device *dev)
15124 {
15125         struct drm_i915_private *dev_priv = dev->dev_private;
15126         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15127         DRM_INFO("applying inverted panel brightness quirk\n");
15128 }
15129
15130 /* Some VBT's incorrectly indicate no backlight is present */
15131 static void quirk_backlight_present(struct drm_device *dev)
15132 {
15133         struct drm_i915_private *dev_priv = dev->dev_private;
15134         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15135         DRM_INFO("applying backlight present quirk\n");
15136 }
15137
15138 struct intel_quirk {
15139         int device;
15140         int subsystem_vendor;
15141         int subsystem_device;
15142         void (*hook)(struct drm_device *dev);
15143 };
15144
15145 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15146 struct intel_dmi_quirk {
15147         void (*hook)(struct drm_device *dev);
15148         const struct dmi_system_id (*dmi_id_list)[];
15149 };
15150
15151 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15152 {
15153         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15154         return 1;
15155 }
15156
15157 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15158         {
15159                 .dmi_id_list = &(const struct dmi_system_id[]) {
15160                         {
15161                                 .callback = intel_dmi_reverse_brightness,
15162                                 .ident = "NCR Corporation",
15163                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15164                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15165                                 },
15166                         },
15167                         { }  /* terminating entry */
15168                 },
15169                 .hook = quirk_invert_brightness,
15170         },
15171 };
15172
15173 static struct intel_quirk intel_quirks[] = {
15174         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15175         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15176
15177         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15178         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15179
15180         /* 830 needs to leave pipe A & dpll A up */
15181         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15182
15183         /* 830 needs to leave pipe B & dpll B up */
15184         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15185
15186         /* Lenovo U160 cannot use SSC on LVDS */
15187         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15188
15189         /* Sony Vaio Y cannot use SSC on LVDS */
15190         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15191
15192         /* Acer Aspire 5734Z must invert backlight brightness */
15193         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15194
15195         /* Acer/eMachines G725 */
15196         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15197
15198         /* Acer/eMachines e725 */
15199         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15200
15201         /* Acer/Packard Bell NCL20 */
15202         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15203
15204         /* Acer Aspire 4736Z */
15205         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15206
15207         /* Acer Aspire 5336 */
15208         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15209
15210         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15211         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15212
15213         /* Acer C720 Chromebook (Core i3 4005U) */
15214         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15215
15216         /* Apple Macbook 2,1 (Core 2 T7400) */
15217         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15218
15219         /* Apple Macbook 4,1 */
15220         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15221
15222         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15223         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15224
15225         /* HP Chromebook 14 (Celeron 2955U) */
15226         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15227
15228         /* Dell Chromebook 11 */
15229         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15230
15231         /* Dell Chromebook 11 (2015 version) */
15232         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15233 };
15234
15235 static void intel_init_quirks(struct drm_device *dev)
15236 {
15237         struct pci_dev *d = dev->pdev;
15238         int i;
15239
15240         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15241                 struct intel_quirk *q = &intel_quirks[i];
15242
15243                 if (d->device == q->device &&
15244                     (d->subsystem_vendor == q->subsystem_vendor ||
15245                      q->subsystem_vendor == PCI_ANY_ID) &&
15246                     (d->subsystem_device == q->subsystem_device ||
15247                      q->subsystem_device == PCI_ANY_ID))
15248                         q->hook(dev);
15249         }
15250         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15251                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15252                         intel_dmi_quirks[i].hook(dev);
15253         }
15254 }
15255
15256 /* Disable the VGA plane that we never use */
15257 static void i915_disable_vga(struct drm_device *dev)
15258 {
15259         struct drm_i915_private *dev_priv = dev->dev_private;
15260         u8 sr1;
15261         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15262
15263         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15264         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15265         outb(SR01, VGA_SR_INDEX);
15266         sr1 = inb(VGA_SR_DATA);
15267         outb(sr1 | 1<<5, VGA_SR_DATA);
15268         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15269         udelay(300);
15270
15271         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15272         POSTING_READ(vga_reg);
15273 }
15274
15275 void intel_modeset_init_hw(struct drm_device *dev)
15276 {
15277         struct drm_i915_private *dev_priv = dev->dev_private;
15278
15279         intel_update_cdclk(dev);
15280
15281         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15282
15283         intel_init_clock_gating(dev);
15284         intel_enable_gt_powersave(dev);
15285 }
15286
15287 /*
15288  * Calculate what we think the watermarks should be for the state we've read
15289  * out of the hardware and then immediately program those watermarks so that
15290  * we ensure the hardware settings match our internal state.
15291  *
15292  * We can calculate what we think WM's should be by creating a duplicate of the
15293  * current state (which was constructed during hardware readout) and running it
15294  * through the atomic check code to calculate new watermark values in the
15295  * state object.
15296  */
15297 static void sanitize_watermarks(struct drm_device *dev)
15298 {
15299         struct drm_i915_private *dev_priv = to_i915(dev);
15300         struct drm_atomic_state *state;
15301         struct drm_crtc *crtc;
15302         struct drm_crtc_state *cstate;
15303         struct drm_modeset_acquire_ctx ctx;
15304         int ret;
15305         int i;
15306
15307         /* Only supported on platforms that use atomic watermark design */
15308         if (!dev_priv->display.optimize_watermarks)
15309                 return;
15310
15311         /*
15312          * We need to hold connection_mutex before calling duplicate_state so
15313          * that the connector loop is protected.
15314          */
15315         drm_modeset_acquire_init(&ctx, 0);
15316 retry:
15317         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15318         if (ret == -EDEADLK) {
15319                 drm_modeset_backoff(&ctx);
15320                 goto retry;
15321         } else if (WARN_ON(ret)) {
15322                 goto fail;
15323         }
15324
15325         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15326         if (WARN_ON(IS_ERR(state)))
15327                 goto fail;
15328
15329         /*
15330          * Hardware readout is the only time we don't want to calculate
15331          * intermediate watermarks (since we don't trust the current
15332          * watermarks).
15333          */
15334         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15335
15336         ret = intel_atomic_check(dev, state);
15337         if (ret) {
15338                 /*
15339                  * If we fail here, it means that the hardware appears to be
15340                  * programmed in a way that shouldn't be possible, given our
15341                  * understanding of watermark requirements.  This might mean a
15342                  * mistake in the hardware readout code or a mistake in the
15343                  * watermark calculations for a given platform.  Raise a WARN
15344                  * so that this is noticeable.
15345                  *
15346                  * If this actually happens, we'll have to just leave the
15347                  * BIOS-programmed watermarks untouched and hope for the best.
15348                  */
15349                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15350                 goto fail;
15351         }
15352
15353         /* Write calculated watermark values back */
15354         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15355         for_each_crtc_in_state(state, crtc, cstate, i) {
15356                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15357
15358                 cs->wm.need_postvbl_update = true;
15359                 dev_priv->display.optimize_watermarks(cs);
15360         }
15361
15362         drm_atomic_state_free(state);
15363 fail:
15364         drm_modeset_drop_locks(&ctx);
15365         drm_modeset_acquire_fini(&ctx);
15366 }
15367
15368 void intel_modeset_init(struct drm_device *dev)
15369 {
15370         struct drm_i915_private *dev_priv = to_i915(dev);
15371         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15372         int sprite, ret;
15373         enum pipe pipe;
15374         struct intel_crtc *crtc;
15375
15376         drm_mode_config_init(dev);
15377
15378         dev->mode_config.min_width = 0;
15379         dev->mode_config.min_height = 0;
15380
15381         dev->mode_config.preferred_depth = 24;
15382         dev->mode_config.prefer_shadow = 1;
15383
15384         dev->mode_config.allow_fb_modifiers = true;
15385
15386         dev->mode_config.funcs = &intel_mode_funcs;
15387
15388         intel_init_quirks(dev);
15389
15390         intel_init_pm(dev);
15391
15392         if (INTEL_INFO(dev)->num_pipes == 0)
15393                 return;
15394
15395         /*
15396          * There may be no VBT; and if the BIOS enabled SSC we can
15397          * just keep using it to avoid unnecessary flicker.  Whereas if the
15398          * BIOS isn't using it, don't assume it will work even if the VBT
15399          * indicates as much.
15400          */
15401         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15402                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15403                                             DREF_SSC1_ENABLE);
15404
15405                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15406                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15407                                      bios_lvds_use_ssc ? "en" : "dis",
15408                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15409                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15410                 }
15411         }
15412
15413         if (IS_GEN2(dev)) {
15414                 dev->mode_config.max_width = 2048;
15415                 dev->mode_config.max_height = 2048;
15416         } else if (IS_GEN3(dev)) {
15417                 dev->mode_config.max_width = 4096;
15418                 dev->mode_config.max_height = 4096;
15419         } else {
15420                 dev->mode_config.max_width = 8192;
15421                 dev->mode_config.max_height = 8192;
15422         }
15423
15424         if (IS_845G(dev) || IS_I865G(dev)) {
15425                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15426                 dev->mode_config.cursor_height = 1023;
15427         } else if (IS_GEN2(dev)) {
15428                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15429                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15430         } else {
15431                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15432                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15433         }
15434
15435         dev->mode_config.fb_base = ggtt->mappable_base;
15436
15437         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15438                       INTEL_INFO(dev)->num_pipes,
15439                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15440
15441         for_each_pipe(dev_priv, pipe) {
15442                 intel_crtc_init(dev, pipe);
15443                 for_each_sprite(dev_priv, pipe, sprite) {
15444                         ret = intel_plane_init(dev, pipe, sprite);
15445                         if (ret)
15446                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15447                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15448                 }
15449         }
15450
15451         intel_update_czclk(dev_priv);
15452         intel_update_cdclk(dev);
15453
15454         intel_shared_dpll_init(dev);
15455
15456         /* Just disable it once at startup */
15457         i915_disable_vga(dev);
15458         intel_setup_outputs(dev);
15459
15460         drm_modeset_lock_all(dev);
15461         intel_modeset_setup_hw_state(dev);
15462         drm_modeset_unlock_all(dev);
15463
15464         for_each_intel_crtc(dev, crtc) {
15465                 struct intel_initial_plane_config plane_config = {};
15466
15467                 if (!crtc->active)
15468                         continue;
15469
15470                 /*
15471                  * Note that reserving the BIOS fb up front prevents us
15472                  * from stuffing other stolen allocations like the ring
15473                  * on top.  This prevents some ugliness at boot time, and
15474                  * can even allow for smooth boot transitions if the BIOS
15475                  * fb is large enough for the active pipe configuration.
15476                  */
15477                 dev_priv->display.get_initial_plane_config(crtc,
15478                                                            &plane_config);
15479
15480                 /*
15481                  * If the fb is shared between multiple heads, we'll
15482                  * just get the first one.
15483                  */
15484                 intel_find_initial_plane_obj(crtc, &plane_config);
15485         }
15486
15487         /*
15488          * Make sure hardware watermarks really match the state we read out.
15489          * Note that we need to do this after reconstructing the BIOS fb's
15490          * since the watermark calculation done here will use pstate->fb.
15491          */
15492         sanitize_watermarks(dev);
15493 }
15494
15495 static void intel_enable_pipe_a(struct drm_device *dev)
15496 {
15497         struct intel_connector *connector;
15498         struct drm_connector *crt = NULL;
15499         struct intel_load_detect_pipe load_detect_temp;
15500         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15501
15502         /* We can't just switch on the pipe A, we need to set things up with a
15503          * proper mode and output configuration. As a gross hack, enable pipe A
15504          * by enabling the load detect pipe once. */
15505         for_each_intel_connector(dev, connector) {
15506                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15507                         crt = &connector->base;
15508                         break;
15509                 }
15510         }
15511
15512         if (!crt)
15513                 return;
15514
15515         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15516                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15517 }
15518
15519 static bool
15520 intel_check_plane_mapping(struct intel_crtc *crtc)
15521 {
15522         struct drm_device *dev = crtc->base.dev;
15523         struct drm_i915_private *dev_priv = dev->dev_private;
15524         u32 val;
15525
15526         if (INTEL_INFO(dev)->num_pipes == 1)
15527                 return true;
15528
15529         val = I915_READ(DSPCNTR(!crtc->plane));
15530
15531         if ((val & DISPLAY_PLANE_ENABLE) &&
15532             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15533                 return false;
15534
15535         return true;
15536 }
15537
15538 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15539 {
15540         struct drm_device *dev = crtc->base.dev;
15541         struct intel_encoder *encoder;
15542
15543         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15544                 return true;
15545
15546         return false;
15547 }
15548
15549 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15550 {
15551         struct drm_device *dev = encoder->base.dev;
15552         struct intel_connector *connector;
15553
15554         for_each_connector_on_encoder(dev, &encoder->base, connector)
15555                 return true;
15556
15557         return false;
15558 }
15559
15560 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15561 {
15562         struct drm_device *dev = crtc->base.dev;
15563         struct drm_i915_private *dev_priv = dev->dev_private;
15564         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15565
15566         /* Clear any frame start delays used for debugging left by the BIOS */
15567         if (!transcoder_is_dsi(cpu_transcoder)) {
15568                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15569
15570                 I915_WRITE(reg,
15571                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15572         }
15573
15574         /* restore vblank interrupts to correct state */
15575         drm_crtc_vblank_reset(&crtc->base);
15576         if (crtc->active) {
15577                 struct intel_plane *plane;
15578
15579                 drm_crtc_vblank_on(&crtc->base);
15580
15581                 /* Disable everything but the primary plane */
15582                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15583                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15584                                 continue;
15585
15586                         plane->disable_plane(&plane->base, &crtc->base);
15587                 }
15588         }
15589
15590         /* We need to sanitize the plane -> pipe mapping first because this will
15591          * disable the crtc (and hence change the state) if it is wrong. Note
15592          * that gen4+ has a fixed plane -> pipe mapping.  */
15593         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15594                 bool plane;
15595
15596                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15597                               crtc->base.base.id);
15598
15599                 /* Pipe has the wrong plane attached and the plane is active.
15600                  * Temporarily change the plane mapping and disable everything
15601                  * ...  */
15602                 plane = crtc->plane;
15603                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15604                 crtc->plane = !plane;
15605                 intel_crtc_disable_noatomic(&crtc->base);
15606                 crtc->plane = plane;
15607         }
15608
15609         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15610             crtc->pipe == PIPE_A && !crtc->active) {
15611                 /* BIOS forgot to enable pipe A, this mostly happens after
15612                  * resume. Force-enable the pipe to fix this, the update_dpms
15613                  * call below we restore the pipe to the right state, but leave
15614                  * the required bits on. */
15615                 intel_enable_pipe_a(dev);
15616         }
15617
15618         /* Adjust the state of the output pipe according to whether we
15619          * have active connectors/encoders. */
15620         if (crtc->active && !intel_crtc_has_encoders(crtc))
15621                 intel_crtc_disable_noatomic(&crtc->base);
15622
15623         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15624                 /*
15625                  * We start out with underrun reporting disabled to avoid races.
15626                  * For correct bookkeeping mark this on active crtcs.
15627                  *
15628                  * Also on gmch platforms we dont have any hardware bits to
15629                  * disable the underrun reporting. Which means we need to start
15630                  * out with underrun reporting disabled also on inactive pipes,
15631                  * since otherwise we'll complain about the garbage we read when
15632                  * e.g. coming up after runtime pm.
15633                  *
15634                  * No protection against concurrent access is required - at
15635                  * worst a fifo underrun happens which also sets this to false.
15636                  */
15637                 crtc->cpu_fifo_underrun_disabled = true;
15638                 crtc->pch_fifo_underrun_disabled = true;
15639         }
15640 }
15641
15642 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15643 {
15644         struct intel_connector *connector;
15645         struct drm_device *dev = encoder->base.dev;
15646
15647         /* We need to check both for a crtc link (meaning that the
15648          * encoder is active and trying to read from a pipe) and the
15649          * pipe itself being active. */
15650         bool has_active_crtc = encoder->base.crtc &&
15651                 to_intel_crtc(encoder->base.crtc)->active;
15652
15653         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15654                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15655                               encoder->base.base.id,
15656                               encoder->base.name);
15657
15658                 /* Connector is active, but has no active pipe. This is
15659                  * fallout from our resume register restoring. Disable
15660                  * the encoder manually again. */
15661                 if (encoder->base.crtc) {
15662                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15663                                       encoder->base.base.id,
15664                                       encoder->base.name);
15665                         encoder->disable(encoder);
15666                         if (encoder->post_disable)
15667                                 encoder->post_disable(encoder);
15668                 }
15669                 encoder->base.crtc = NULL;
15670
15671                 /* Inconsistent output/port/pipe state happens presumably due to
15672                  * a bug in one of the get_hw_state functions. Or someplace else
15673                  * in our code, like the register restore mess on resume. Clamp
15674                  * things to off as a safer default. */
15675                 for_each_intel_connector(dev, connector) {
15676                         if (connector->encoder != encoder)
15677                                 continue;
15678                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15679                         connector->base.encoder = NULL;
15680                 }
15681         }
15682         /* Enabled encoders without active connectors will be fixed in
15683          * the crtc fixup. */
15684 }
15685
15686 void i915_redisable_vga_power_on(struct drm_device *dev)
15687 {
15688         struct drm_i915_private *dev_priv = dev->dev_private;
15689         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15690
15691         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15692                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15693                 i915_disable_vga(dev);
15694         }
15695 }
15696
15697 void i915_redisable_vga(struct drm_device *dev)
15698 {
15699         struct drm_i915_private *dev_priv = dev->dev_private;
15700
15701         /* This function can be called both from intel_modeset_setup_hw_state or
15702          * at a very early point in our resume sequence, where the power well
15703          * structures are not yet restored. Since this function is at a very
15704          * paranoid "someone might have enabled VGA while we were not looking"
15705          * level, just check if the power well is enabled instead of trying to
15706          * follow the "don't touch the power well if we don't need it" policy
15707          * the rest of the driver uses. */
15708         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15709                 return;
15710
15711         i915_redisable_vga_power_on(dev);
15712
15713         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15714 }
15715
15716 static bool primary_get_hw_state(struct intel_plane *plane)
15717 {
15718         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15719
15720         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15721 }
15722
15723 /* FIXME read out full plane state for all planes */
15724 static void readout_plane_state(struct intel_crtc *crtc)
15725 {
15726         struct drm_plane *primary = crtc->base.primary;
15727         struct intel_plane_state *plane_state =
15728                 to_intel_plane_state(primary->state);
15729
15730         plane_state->visible = crtc->active &&
15731                 primary_get_hw_state(to_intel_plane(primary));
15732
15733         if (plane_state->visible)
15734                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15735 }
15736
15737 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15738 {
15739         struct drm_i915_private *dev_priv = dev->dev_private;
15740         enum pipe pipe;
15741         struct intel_crtc *crtc;
15742         struct intel_encoder *encoder;
15743         struct intel_connector *connector;
15744         int i;
15745
15746         dev_priv->active_crtcs = 0;
15747
15748         for_each_intel_crtc(dev, crtc) {
15749                 struct intel_crtc_state *crtc_state = crtc->config;
15750                 int pixclk = 0;
15751
15752                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15753                 memset(crtc_state, 0, sizeof(*crtc_state));
15754                 crtc_state->base.crtc = &crtc->base;
15755
15756                 crtc_state->base.active = crtc_state->base.enable =
15757                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15758
15759                 crtc->base.enabled = crtc_state->base.enable;
15760                 crtc->active = crtc_state->base.active;
15761
15762                 if (crtc_state->base.active) {
15763                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15764
15765                         if (IS_BROADWELL(dev_priv)) {
15766                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15767
15768                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15769                                 if (crtc_state->ips_enabled)
15770                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15771                         } else if (IS_VALLEYVIEW(dev_priv) ||
15772                                    IS_CHERRYVIEW(dev_priv) ||
15773                                    IS_BROXTON(dev_priv))
15774                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15775                         else
15776                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15777                 }
15778
15779                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15780
15781                 readout_plane_state(crtc);
15782
15783                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15784                               crtc->base.base.id,
15785                               crtc->active ? "enabled" : "disabled");
15786         }
15787
15788         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15789                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15790
15791                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15792                                                   &pll->config.hw_state);
15793                 pll->config.crtc_mask = 0;
15794                 for_each_intel_crtc(dev, crtc) {
15795                         if (crtc->active && crtc->config->shared_dpll == pll)
15796                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15797                 }
15798                 pll->active_mask = pll->config.crtc_mask;
15799
15800                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15801                               pll->name, pll->config.crtc_mask, pll->on);
15802         }
15803
15804         for_each_intel_encoder(dev, encoder) {
15805                 pipe = 0;
15806
15807                 if (encoder->get_hw_state(encoder, &pipe)) {
15808                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15809                         encoder->base.crtc = &crtc->base;
15810                         encoder->get_config(encoder, crtc->config);
15811                 } else {
15812                         encoder->base.crtc = NULL;
15813                 }
15814
15815                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15816                               encoder->base.base.id,
15817                               encoder->base.name,
15818                               encoder->base.crtc ? "enabled" : "disabled",
15819                               pipe_name(pipe));
15820         }
15821
15822         for_each_intel_connector(dev, connector) {
15823                 if (connector->get_hw_state(connector)) {
15824                         connector->base.dpms = DRM_MODE_DPMS_ON;
15825
15826                         encoder = connector->encoder;
15827                         connector->base.encoder = &encoder->base;
15828
15829                         if (encoder->base.crtc &&
15830                             encoder->base.crtc->state->active) {
15831                                 /*
15832                                  * This has to be done during hardware readout
15833                                  * because anything calling .crtc_disable may
15834                                  * rely on the connector_mask being accurate.
15835                                  */
15836                                 encoder->base.crtc->state->connector_mask |=
15837                                         1 << drm_connector_index(&connector->base);
15838                                 encoder->base.crtc->state->encoder_mask |=
15839                                         1 << drm_encoder_index(&encoder->base);
15840                         }
15841
15842                 } else {
15843                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15844                         connector->base.encoder = NULL;
15845                 }
15846                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15847                               connector->base.base.id,
15848                               connector->base.name,
15849                               connector->base.encoder ? "enabled" : "disabled");
15850         }
15851
15852         for_each_intel_crtc(dev, crtc) {
15853                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15854
15855                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15856                 if (crtc->base.state->active) {
15857                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15858                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15859                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15860
15861                         /*
15862                          * The initial mode needs to be set in order to keep
15863                          * the atomic core happy. It wants a valid mode if the
15864                          * crtc's enabled, so we do the above call.
15865                          *
15866                          * At this point some state updated by the connectors
15867                          * in their ->detect() callback has not run yet, so
15868                          * no recalculation can be done yet.
15869                          *
15870                          * Even if we could do a recalculation and modeset
15871                          * right now it would cause a double modeset if
15872                          * fbdev or userspace chooses a different initial mode.
15873                          *
15874                          * If that happens, someone indicated they wanted a
15875                          * mode change, which means it's safe to do a full
15876                          * recalculation.
15877                          */
15878                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15879
15880                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15881                         update_scanline_offset(crtc);
15882                 }
15883
15884                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15885         }
15886 }
15887
15888 /* Scan out the current hw modeset state,
15889  * and sanitizes it to the current state
15890  */
15891 static void
15892 intel_modeset_setup_hw_state(struct drm_device *dev)
15893 {
15894         struct drm_i915_private *dev_priv = dev->dev_private;
15895         enum pipe pipe;
15896         struct intel_crtc *crtc;
15897         struct intel_encoder *encoder;
15898         int i;
15899
15900         intel_modeset_readout_hw_state(dev);
15901
15902         /* HW state is read out, now we need to sanitize this mess. */
15903         for_each_intel_encoder(dev, encoder) {
15904                 intel_sanitize_encoder(encoder);
15905         }
15906
15907         for_each_pipe(dev_priv, pipe) {
15908                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15909                 intel_sanitize_crtc(crtc);
15910                 intel_dump_pipe_config(crtc, crtc->config,
15911                                        "[setup_hw_state]");
15912         }
15913
15914         intel_modeset_update_connector_atomic_state(dev);
15915
15916         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15917                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15918
15919                 if (!pll->on || pll->active_mask)
15920                         continue;
15921
15922                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15923
15924                 pll->funcs.disable(dev_priv, pll);
15925                 pll->on = false;
15926         }
15927
15928         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15929                 vlv_wm_get_hw_state(dev);
15930         else if (IS_GEN9(dev))
15931                 skl_wm_get_hw_state(dev);
15932         else if (HAS_PCH_SPLIT(dev))
15933                 ilk_wm_get_hw_state(dev);
15934
15935         for_each_intel_crtc(dev, crtc) {
15936                 unsigned long put_domains;
15937
15938                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15939                 if (WARN_ON(put_domains))
15940                         modeset_put_power_domains(dev_priv, put_domains);
15941         }
15942         intel_display_set_init_power(dev_priv, false);
15943
15944         intel_fbc_init_pipe_state(dev_priv);
15945 }
15946
15947 void intel_display_resume(struct drm_device *dev)
15948 {
15949         struct drm_i915_private *dev_priv = to_i915(dev);
15950         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15951         struct drm_modeset_acquire_ctx ctx;
15952         int ret;
15953         bool setup = false;
15954
15955         dev_priv->modeset_restore_state = NULL;
15956
15957         /*
15958          * This is a cludge because with real atomic modeset mode_config.mutex
15959          * won't be taken. Unfortunately some probed state like
15960          * audio_codec_enable is still protected by mode_config.mutex, so lock
15961          * it here for now.
15962          */
15963         mutex_lock(&dev->mode_config.mutex);
15964         drm_modeset_acquire_init(&ctx, 0);
15965
15966 retry:
15967         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15968
15969         if (ret == 0 && !setup) {
15970                 setup = true;
15971
15972                 intel_modeset_setup_hw_state(dev);
15973                 i915_redisable_vga(dev);
15974         }
15975
15976         if (ret == 0 && state) {
15977                 struct drm_crtc_state *crtc_state;
15978                 struct drm_crtc *crtc;
15979                 int i;
15980
15981                 state->acquire_ctx = &ctx;
15982
15983                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15984                         /*
15985                          * Force recalculation even if we restore
15986                          * current state. With fast modeset this may not result
15987                          * in a modeset when the state is compatible.
15988                          */
15989                         crtc_state->mode_changed = true;
15990                 }
15991
15992                 ret = drm_atomic_commit(state);
15993         }
15994
15995         if (ret == -EDEADLK) {
15996                 drm_modeset_backoff(&ctx);
15997                 goto retry;
15998         }
15999
16000         drm_modeset_drop_locks(&ctx);
16001         drm_modeset_acquire_fini(&ctx);
16002         mutex_unlock(&dev->mode_config.mutex);
16003
16004         if (ret) {
16005                 DRM_ERROR("Restoring old state failed with %i\n", ret);
16006                 drm_atomic_state_free(state);
16007         }
16008 }
16009
16010 void intel_modeset_gem_init(struct drm_device *dev)
16011 {
16012         struct drm_crtc *c;
16013         struct drm_i915_gem_object *obj;
16014         int ret;
16015
16016         intel_init_gt_powersave(dev);
16017
16018         intel_modeset_init_hw(dev);
16019
16020         intel_setup_overlay(dev);
16021
16022         /*
16023          * Make sure any fbs we allocated at startup are properly
16024          * pinned & fenced.  When we do the allocation it's too early
16025          * for this.
16026          */
16027         for_each_crtc(dev, c) {
16028                 obj = intel_fb_obj(c->primary->fb);
16029                 if (obj == NULL)
16030                         continue;
16031
16032                 mutex_lock(&dev->struct_mutex);
16033                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16034                                                  c->primary->state->rotation);
16035                 mutex_unlock(&dev->struct_mutex);
16036                 if (ret) {
16037                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16038                                   to_intel_crtc(c)->pipe);
16039                         drm_framebuffer_unreference(c->primary->fb);
16040                         c->primary->fb = NULL;
16041                         c->primary->crtc = c->primary->state->crtc = NULL;
16042                         update_state_fb(c->primary);
16043                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16044                 }
16045         }
16046
16047         intel_backlight_register(dev);
16048 }
16049
16050 void intel_connector_unregister(struct intel_connector *intel_connector)
16051 {
16052         struct drm_connector *connector = &intel_connector->base;
16053
16054         intel_panel_destroy_backlight(connector);
16055         drm_connector_unregister(connector);
16056 }
16057
16058 void intel_modeset_cleanup(struct drm_device *dev)
16059 {
16060         struct drm_i915_private *dev_priv = dev->dev_private;
16061         struct intel_connector *connector;
16062
16063         intel_disable_gt_powersave(dev);
16064
16065         intel_backlight_unregister(dev);
16066
16067         /*
16068          * Interrupts and polling as the first thing to avoid creating havoc.
16069          * Too much stuff here (turning of connectors, ...) would
16070          * experience fancy races otherwise.
16071          */
16072         intel_irq_uninstall(dev_priv);
16073
16074         /*
16075          * Due to the hpd irq storm handling the hotplug work can re-arm the
16076          * poll handlers. Hence disable polling after hpd handling is shut down.
16077          */
16078         drm_kms_helper_poll_fini(dev);
16079
16080         intel_unregister_dsm_handler();
16081
16082         intel_fbc_global_disable(dev_priv);
16083
16084         /* flush any delayed tasks or pending work */
16085         flush_scheduled_work();
16086
16087         /* destroy the backlight and sysfs files before encoders/connectors */
16088         for_each_intel_connector(dev, connector)
16089                 connector->unregister(connector);
16090
16091         drm_mode_config_cleanup(dev);
16092
16093         intel_cleanup_overlay(dev);
16094
16095         intel_cleanup_gt_powersave(dev);
16096
16097         intel_teardown_gmbus(dev);
16098 }
16099
16100 /*
16101  * Return which encoder is currently attached for connector.
16102  */
16103 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16104 {
16105         return &intel_attached_encoder(connector)->base;
16106 }
16107
16108 void intel_connector_attach_encoder(struct intel_connector *connector,
16109                                     struct intel_encoder *encoder)
16110 {
16111         connector->encoder = encoder;
16112         drm_mode_connector_attach_encoder(&connector->base,
16113                                           &encoder->base);
16114 }
16115
16116 /*
16117  * set vga decode state - true == enable VGA decode
16118  */
16119 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16120 {
16121         struct drm_i915_private *dev_priv = dev->dev_private;
16122         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16123         u16 gmch_ctrl;
16124
16125         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16126                 DRM_ERROR("failed to read control word\n");
16127                 return -EIO;
16128         }
16129
16130         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16131                 return 0;
16132
16133         if (state)
16134                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16135         else
16136                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16137
16138         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16139                 DRM_ERROR("failed to write control word\n");
16140                 return -EIO;
16141         }
16142
16143         return 0;
16144 }
16145
16146 struct intel_display_error_state {
16147
16148         u32 power_well_driver;
16149
16150         int num_transcoders;
16151
16152         struct intel_cursor_error_state {
16153                 u32 control;
16154                 u32 position;
16155                 u32 base;
16156                 u32 size;
16157         } cursor[I915_MAX_PIPES];
16158
16159         struct intel_pipe_error_state {
16160                 bool power_domain_on;
16161                 u32 source;
16162                 u32 stat;
16163         } pipe[I915_MAX_PIPES];
16164
16165         struct intel_plane_error_state {
16166                 u32 control;
16167                 u32 stride;
16168                 u32 size;
16169                 u32 pos;
16170                 u32 addr;
16171                 u32 surface;
16172                 u32 tile_offset;
16173         } plane[I915_MAX_PIPES];
16174
16175         struct intel_transcoder_error_state {
16176                 bool power_domain_on;
16177                 enum transcoder cpu_transcoder;
16178
16179                 u32 conf;
16180
16181                 u32 htotal;
16182                 u32 hblank;
16183                 u32 hsync;
16184                 u32 vtotal;
16185                 u32 vblank;
16186                 u32 vsync;
16187         } transcoder[4];
16188 };
16189
16190 struct intel_display_error_state *
16191 intel_display_capture_error_state(struct drm_device *dev)
16192 {
16193         struct drm_i915_private *dev_priv = dev->dev_private;
16194         struct intel_display_error_state *error;
16195         int transcoders[] = {
16196                 TRANSCODER_A,
16197                 TRANSCODER_B,
16198                 TRANSCODER_C,
16199                 TRANSCODER_EDP,
16200         };
16201         int i;
16202
16203         if (INTEL_INFO(dev)->num_pipes == 0)
16204                 return NULL;
16205
16206         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16207         if (error == NULL)
16208                 return NULL;
16209
16210         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16211                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16212
16213         for_each_pipe(dev_priv, i) {
16214                 error->pipe[i].power_domain_on =
16215                         __intel_display_power_is_enabled(dev_priv,
16216                                                          POWER_DOMAIN_PIPE(i));
16217                 if (!error->pipe[i].power_domain_on)
16218                         continue;
16219
16220                 error->cursor[i].control = I915_READ(CURCNTR(i));
16221                 error->cursor[i].position = I915_READ(CURPOS(i));
16222                 error->cursor[i].base = I915_READ(CURBASE(i));
16223
16224                 error->plane[i].control = I915_READ(DSPCNTR(i));
16225                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16226                 if (INTEL_INFO(dev)->gen <= 3) {
16227                         error->plane[i].size = I915_READ(DSPSIZE(i));
16228                         error->plane[i].pos = I915_READ(DSPPOS(i));
16229                 }
16230                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16231                         error->plane[i].addr = I915_READ(DSPADDR(i));
16232                 if (INTEL_INFO(dev)->gen >= 4) {
16233                         error->plane[i].surface = I915_READ(DSPSURF(i));
16234                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16235                 }
16236
16237                 error->pipe[i].source = I915_READ(PIPESRC(i));
16238
16239                 if (HAS_GMCH_DISPLAY(dev))
16240                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16241         }
16242
16243         /* Note: this does not include DSI transcoders. */
16244         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16245         if (HAS_DDI(dev_priv))
16246                 error->num_transcoders++; /* Account for eDP. */
16247
16248         for (i = 0; i < error->num_transcoders; i++) {
16249                 enum transcoder cpu_transcoder = transcoders[i];
16250
16251                 error->transcoder[i].power_domain_on =
16252                         __intel_display_power_is_enabled(dev_priv,
16253                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16254                 if (!error->transcoder[i].power_domain_on)
16255                         continue;
16256
16257                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16258
16259                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16260                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16261                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16262                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16263                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16264                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16265                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16266         }
16267
16268         return error;
16269 }
16270
16271 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16272
16273 void
16274 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16275                                 struct drm_device *dev,
16276                                 struct intel_display_error_state *error)
16277 {
16278         struct drm_i915_private *dev_priv = dev->dev_private;
16279         int i;
16280
16281         if (!error)
16282                 return;
16283
16284         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16285         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16286                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16287                            error->power_well_driver);
16288         for_each_pipe(dev_priv, i) {
16289                 err_printf(m, "Pipe [%d]:\n", i);
16290                 err_printf(m, "  Power: %s\n",
16291                            onoff(error->pipe[i].power_domain_on));
16292                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16293                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16294
16295                 err_printf(m, "Plane [%d]:\n", i);
16296                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16297                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16298                 if (INTEL_INFO(dev)->gen <= 3) {
16299                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16300                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16301                 }
16302                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16303                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16304                 if (INTEL_INFO(dev)->gen >= 4) {
16305                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16306                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16307                 }
16308
16309                 err_printf(m, "Cursor [%d]:\n", i);
16310                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16311                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16312                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16313         }
16314
16315         for (i = 0; i < error->num_transcoders; i++) {
16316                 err_printf(m, "CPU transcoder: %s\n",
16317                            transcoder_name(error->transcoder[i].cpu_transcoder));
16318                 err_printf(m, "  Power: %s\n",
16319                            onoff(error->transcoder[i].power_domain_on));
16320                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16321                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16322                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16323                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16324                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16325                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16326                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16327         }
16328 }