]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: rip out an unused lvds_reg variable
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62         /**
63          * find_pll() - Find the best values for the PLL
64          * @limit: limits for the PLL
65          * @crtc: current CRTC
66          * @target: target frequency in kHz
67          * @refclk: reference clock frequency in kHz
68          * @match_clock: if provided, @best_clock P divider must
69          *               match the P divider from @match_clock
70          *               used for LVDS downclocking
71          * @best_clock: best PLL values found
72          *
73          * Returns true on success, false on failure.
74          */
75         bool (*find_pll)(const intel_limit_t *limit,
76                          struct drm_crtc *crtc,
77                          int target, int refclk,
78                          intel_clock_t *match_clock,
79                          intel_clock_t *best_clock);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
84
85 int
86 intel_pch_rawclk(struct drm_device *dev)
87 {
88         struct drm_i915_private *dev_priv = dev->dev_private;
89
90         WARN_ON(!HAS_PCH_SPLIT(dev));
91
92         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 }
94
95 static bool
96 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                     int target, int refclk, intel_clock_t *match_clock,
98                     intel_clock_t *best_clock);
99 static bool
100 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
101                         int target, int refclk, intel_clock_t *match_clock,
102                         intel_clock_t *best_clock);
103
104 static bool
105 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
106                         int target, int refclk, intel_clock_t *match_clock,
107                         intel_clock_t *best_clock);
108
109 static inline u32 /* units of 100MHz */
110 intel_fdi_link_freq(struct drm_device *dev)
111 {
112         if (IS_GEN5(dev)) {
113                 struct drm_i915_private *dev_priv = dev->dev_private;
114                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
115         } else
116                 return 27;
117 }
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 930000, .max = 1400000 },
122         .n = { .min = 3, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 2 },
130         .find_pll = intel_find_best_PLL,
131 };
132
133 static const intel_limit_t intel_limits_i8xx_lvds = {
134         .dot = { .min = 25000, .max = 350000 },
135         .vco = { .min = 930000, .max = 1400000 },
136         .n = { .min = 3, .max = 16 },
137         .m = { .min = 96, .max = 140 },
138         .m1 = { .min = 18, .max = 26 },
139         .m2 = { .min = 6, .max = 16 },
140         .p = { .min = 4, .max = 128 },
141         .p1 = { .min = 1, .max = 6 },
142         .p2 = { .dot_limit = 165000,
143                 .p2_slow = 14, .p2_fast = 7 },
144         .find_pll = intel_find_best_PLL,
145 };
146
147 static const intel_limit_t intel_limits_i9xx_sdvo = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 5, .max = 80 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 200000,
157                 .p2_slow = 10, .p2_fast = 5 },
158         .find_pll = intel_find_best_PLL,
159 };
160
161 static const intel_limit_t intel_limits_i9xx_lvds = {
162         .dot = { .min = 20000, .max = 400000 },
163         .vco = { .min = 1400000, .max = 2800000 },
164         .n = { .min = 1, .max = 6 },
165         .m = { .min = 70, .max = 120 },
166         .m1 = { .min = 8, .max = 18 },
167         .m2 = { .min = 3, .max = 7 },
168         .p = { .min = 7, .max = 98 },
169         .p1 = { .min = 1, .max = 8 },
170         .p2 = { .dot_limit = 112000,
171                 .p2_slow = 14, .p2_fast = 7 },
172         .find_pll = intel_find_best_PLL,
173 };
174
175
176 static const intel_limit_t intel_limits_g4x_sdvo = {
177         .dot = { .min = 25000, .max = 270000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 17, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 10, .max = 30 },
184         .p1 = { .min = 1, .max = 3},
185         .p2 = { .dot_limit = 270000,
186                 .p2_slow = 10,
187                 .p2_fast = 10
188         },
189         .find_pll = intel_g4x_find_best_PLL,
190 };
191
192 static const intel_limit_t intel_limits_g4x_hdmi = {
193         .dot = { .min = 22000, .max = 400000 },
194         .vco = { .min = 1750000, .max = 3500000},
195         .n = { .min = 1, .max = 4 },
196         .m = { .min = 104, .max = 138 },
197         .m1 = { .min = 16, .max = 23 },
198         .m2 = { .min = 5, .max = 11 },
199         .p = { .min = 5, .max = 80 },
200         .p1 = { .min = 1, .max = 8},
201         .p2 = { .dot_limit = 165000,
202                 .p2_slow = 10, .p2_fast = 5 },
203         .find_pll = intel_g4x_find_best_PLL,
204 };
205
206 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
207         .dot = { .min = 20000, .max = 115000 },
208         .vco = { .min = 1750000, .max = 3500000 },
209         .n = { .min = 1, .max = 3 },
210         .m = { .min = 104, .max = 138 },
211         .m1 = { .min = 17, .max = 23 },
212         .m2 = { .min = 5, .max = 11 },
213         .p = { .min = 28, .max = 112 },
214         .p1 = { .min = 2, .max = 8 },
215         .p2 = { .dot_limit = 0,
216                 .p2_slow = 14, .p2_fast = 14
217         },
218         .find_pll = intel_g4x_find_best_PLL,
219 };
220
221 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
222         .dot = { .min = 80000, .max = 224000 },
223         .vco = { .min = 1750000, .max = 3500000 },
224         .n = { .min = 1, .max = 3 },
225         .m = { .min = 104, .max = 138 },
226         .m1 = { .min = 17, .max = 23 },
227         .m2 = { .min = 5, .max = 11 },
228         .p = { .min = 14, .max = 42 },
229         .p1 = { .min = 2, .max = 6 },
230         .p2 = { .dot_limit = 0,
231                 .p2_slow = 7, .p2_fast = 7
232         },
233         .find_pll = intel_g4x_find_best_PLL,
234 };
235
236 static const intel_limit_t intel_limits_pineview_sdvo = {
237         .dot = { .min = 20000, .max = 400000},
238         .vco = { .min = 1700000, .max = 3500000 },
239         /* Pineview's Ncounter is a ring counter */
240         .n = { .min = 3, .max = 6 },
241         .m = { .min = 2, .max = 256 },
242         /* Pineview only has one combined m divider, which we treat as m2. */
243         .m1 = { .min = 0, .max = 0 },
244         .m2 = { .min = 0, .max = 254 },
245         .p = { .min = 5, .max = 80 },
246         .p1 = { .min = 1, .max = 8 },
247         .p2 = { .dot_limit = 200000,
248                 .p2_slow = 10, .p2_fast = 5 },
249         .find_pll = intel_find_best_PLL,
250 };
251
252 static const intel_limit_t intel_limits_pineview_lvds = {
253         .dot = { .min = 20000, .max = 400000 },
254         .vco = { .min = 1700000, .max = 3500000 },
255         .n = { .min = 3, .max = 6 },
256         .m = { .min = 2, .max = 256 },
257         .m1 = { .min = 0, .max = 0 },
258         .m2 = { .min = 0, .max = 254 },
259         .p = { .min = 7, .max = 112 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 112000,
262                 .p2_slow = 14, .p2_fast = 14 },
263         .find_pll = intel_find_best_PLL,
264 };
265
266 /* Ironlake / Sandybridge
267  *
268  * We calculate clock using (register_value + 2) for N/M1/M2, so here
269  * the range value for them is (actual_value - 2).
270  */
271 static const intel_limit_t intel_limits_ironlake_dac = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 1760000, .max = 3510000 },
274         .n = { .min = 1, .max = 5 },
275         .m = { .min = 79, .max = 127 },
276         .m1 = { .min = 12, .max = 22 },
277         .m2 = { .min = 5, .max = 9 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 225000,
281                 .p2_slow = 10, .p2_fast = 5 },
282         .find_pll = intel_g4x_find_best_PLL,
283 };
284
285 static const intel_limit_t intel_limits_ironlake_single_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 1760000, .max = 3510000 },
288         .n = { .min = 1, .max = 3 },
289         .m = { .min = 79, .max = 118 },
290         .m1 = { .min = 12, .max = 22 },
291         .m2 = { .min = 5, .max = 9 },
292         .p = { .min = 28, .max = 112 },
293         .p1 = { .min = 2, .max = 8 },
294         .p2 = { .dot_limit = 225000,
295                 .p2_slow = 14, .p2_fast = 14 },
296         .find_pll = intel_g4x_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 127 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 56 },
307         .p1 = { .min = 2, .max = 8 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310         .find_pll = intel_g4x_find_best_PLL,
311 };
312
313 /* LVDS 100mhz refclk limits. */
314 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 2 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 28, .max = 112 },
322         .p1 = { .min = 2, .max = 8 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 14, .p2_fast = 14 },
325         .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 126 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 42 },
336         .p1 = { .min = 2, .max = 6 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339         .find_pll = intel_g4x_find_best_PLL,
340 };
341
342 static const intel_limit_t intel_limits_vlv_dac = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 }, /* guess */
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353         .find_pll = intel_vlv_find_best_pll,
354 };
355
356 static const intel_limit_t intel_limits_vlv_hdmi = {
357         .dot = { .min = 25000, .max = 270000 },
358         .vco = { .min = 4000000, .max = 6000000 },
359         .n = { .min = 1, .max = 7 },
360         .m = { .min = 60, .max = 300 }, /* guess */
361         .m1 = { .min = 2, .max = 3 },
362         .m2 = { .min = 11, .max = 156 },
363         .p = { .min = 10, .max = 30 },
364         .p1 = { .min = 2, .max = 3 },
365         .p2 = { .dot_limit = 270000,
366                 .p2_slow = 2, .p2_fast = 20 },
367         .find_pll = intel_vlv_find_best_pll,
368 };
369
370 static const intel_limit_t intel_limits_vlv_dp = {
371         .dot = { .min = 25000, .max = 270000 },
372         .vco = { .min = 4000000, .max = 6000000 },
373         .n = { .min = 1, .max = 7 },
374         .m = { .min = 22, .max = 450 },
375         .m1 = { .min = 2, .max = 3 },
376         .m2 = { .min = 11, .max = 156 },
377         .p = { .min = 10, .max = 30 },
378         .p1 = { .min = 1, .max = 3 },
379         .p2 = { .dot_limit = 270000,
380                 .p2_slow = 2, .p2_fast = 20 },
381         .find_pll = intel_vlv_find_best_pll,
382 };
383
384 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
385 {
386         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
387
388         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
389                 DRM_ERROR("DPIO idle wait timed out\n");
390                 return 0;
391         }
392
393         I915_WRITE(DPIO_REG, reg);
394         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
395                    DPIO_BYTE);
396         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
397                 DRM_ERROR("DPIO read wait timed out\n");
398                 return 0;
399         }
400
401         return I915_READ(DPIO_DATA);
402 }
403
404 void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
405 {
406         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
407
408         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
409                 DRM_ERROR("DPIO idle wait timed out\n");
410                 return;
411         }
412
413         I915_WRITE(DPIO_DATA, val);
414         I915_WRITE(DPIO_REG, reg);
415         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
416                    DPIO_BYTE);
417         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
418                 DRM_ERROR("DPIO write wait timed out\n");
419 }
420
421 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
422                                                 int refclk)
423 {
424         struct drm_device *dev = crtc->dev;
425         const intel_limit_t *limit;
426
427         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
428                 if (intel_is_dual_link_lvds(dev)) {
429                         if (refclk == 100000)
430                                 limit = &intel_limits_ironlake_dual_lvds_100m;
431                         else
432                                 limit = &intel_limits_ironlake_dual_lvds;
433                 } else {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_single_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_single_lvds;
438                 }
439         } else
440                 limit = &intel_limits_ironlake_dac;
441
442         return limit;
443 }
444
445 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
446 {
447         struct drm_device *dev = crtc->dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev))
452                         limit = &intel_limits_g4x_dual_channel_lvds;
453                 else
454                         limit = &intel_limits_g4x_single_channel_lvds;
455         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
457                 limit = &intel_limits_g4x_hdmi;
458         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
459                 limit = &intel_limits_g4x_sdvo;
460         } else /* The option is for other outputs */
461                 limit = &intel_limits_i9xx_sdvo;
462
463         return limit;
464 }
465
466 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
467 {
468         struct drm_device *dev = crtc->dev;
469         const intel_limit_t *limit;
470
471         if (HAS_PCH_SPLIT(dev))
472                 limit = intel_ironlake_limit(crtc, refclk);
473         else if (IS_G4X(dev)) {
474                 limit = intel_g4x_limit(crtc);
475         } else if (IS_PINEVIEW(dev)) {
476                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
477                         limit = &intel_limits_pineview_lvds;
478                 else
479                         limit = &intel_limits_pineview_sdvo;
480         } else if (IS_VALLEYVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
482                         limit = &intel_limits_vlv_dac;
483                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
484                         limit = &intel_limits_vlv_hdmi;
485                 else
486                         limit = &intel_limits_vlv_dp;
487         } else if (!IS_GEN2(dev)) {
488                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
489                         limit = &intel_limits_i9xx_lvds;
490                 else
491                         limit = &intel_limits_i9xx_sdvo;
492         } else {
493                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
494                         limit = &intel_limits_i8xx_lvds;
495                 else
496                         limit = &intel_limits_i8xx_dvo;
497         }
498         return limit;
499 }
500
501 /* m1 is reserved as 0 in Pineview, n is a ring counter */
502 static void pineview_clock(int refclk, intel_clock_t *clock)
503 {
504         clock->m = clock->m2 + 2;
505         clock->p = clock->p1 * clock->p2;
506         clock->vco = refclk * clock->m / clock->n;
507         clock->dot = clock->vco / clock->p;
508 }
509
510 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
511 {
512         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
513 }
514
515 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
516 {
517         if (IS_PINEVIEW(dev)) {
518                 pineview_clock(refclk, clock);
519                 return;
520         }
521         clock->m = i9xx_dpll_compute_m(clock);
522         clock->p = clock->p1 * clock->p2;
523         clock->vco = refclk * clock->m / (clock->n + 2);
524         clock->dot = clock->vco / clock->p;
525 }
526
527 /**
528  * Returns whether any output on the specified pipe is of the specified type
529  */
530 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
531 {
532         struct drm_device *dev = crtc->dev;
533         struct intel_encoder *encoder;
534
535         for_each_encoder_on_crtc(dev, crtc, encoder)
536                 if (encoder->type == type)
537                         return true;
538
539         return false;
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
553                 INTELPllInvalid("p1 out of range\n");
554         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
555                 INTELPllInvalid("p out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
561                 INTELPllInvalid("m1 <= m2\n");
562         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
563                 INTELPllInvalid("m out of range\n");
564         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
565                 INTELPllInvalid("n out of range\n");
566         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
567                 INTELPllInvalid("vco out of range\n");
568         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
569          * connector, etc., rather than just a single range.
570          */
571         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
572                 INTELPllInvalid("dot out of range\n");
573
574         return true;
575 }
576
577 static bool
578 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                     int target, int refclk, intel_clock_t *match_clock,
580                     intel_clock_t *best_clock)
581
582 {
583         struct drm_device *dev = crtc->dev;
584         intel_clock_t clock;
585         int err = target;
586
587         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         clock.p2 = limit->p2.p2_fast;
595                 else
596                         clock.p2 = limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         clock.p2 = limit->p2.p2_slow;
600                 else
601                         clock.p2 = limit->p2.p2_fast;
602         }
603
604         memset(best_clock, 0, sizeof(*best_clock));
605
606         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607              clock.m1++) {
608                 for (clock.m2 = limit->m2.min;
609                      clock.m2 <= limit->m2.max; clock.m2++) {
610                         /* m1 is always 0 in Pineview */
611                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
612                                 break;
613                         for (clock.n = limit->n.min;
614                              clock.n <= limit->n.max; clock.n++) {
615                                 for (clock.p1 = limit->p1.min;
616                                         clock.p1 <= limit->p1.max; clock.p1++) {
617                                         int this_err;
618
619                                         intel_clock(dev, refclk, &clock);
620                                         if (!intel_PLL_is_valid(dev, limit,
621                                                                 &clock))
622                                                 continue;
623                                         if (match_clock &&
624                                             clock.p != match_clock->p)
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err) {
629                                                 *best_clock = clock;
630                                                 err = this_err;
631                                         }
632                                 }
633                         }
634                 }
635         }
636
637         return (err != target);
638 }
639
640 static bool
641 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
642                         int target, int refclk, intel_clock_t *match_clock,
643                         intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647         int max_n;
648         bool found;
649         /* approximately equals target * 0.00585 */
650         int err_most = (target >> 8) + (target >> 9);
651         found = false;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666         max_n = limit->n.max;
667         /* based on hardware requirement, prefer smaller n to precision */
668         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
669                 /* based on hardware requirement, prefere larger m1,m2 */
670                 for (clock.m1 = limit->m1.max;
671                      clock.m1 >= limit->m1.min; clock.m1--) {
672                         for (clock.m2 = limit->m2.max;
673                              clock.m2 >= limit->m2.min; clock.m2--) {
674                                 for (clock.p1 = limit->p1.max;
675                                      clock.p1 >= limit->p1.min; clock.p1--) {
676                                         int this_err;
677
678                                         intel_clock(dev, refclk, &clock);
679                                         if (!intel_PLL_is_valid(dev, limit,
680                                                                 &clock))
681                                                 continue;
682
683                                         this_err = abs(clock.dot - target);
684                                         if (this_err < err_most) {
685                                                 *best_clock = clock;
686                                                 err_most = this_err;
687                                                 max_n = clock.n;
688                                                 found = true;
689                                         }
690                                 }
691                         }
692                 }
693         }
694         return found;
695 }
696
697 static bool
698 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
699                         int target, int refclk, intel_clock_t *match_clock,
700                         intel_clock_t *best_clock)
701 {
702         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
703         u32 m, n, fastclk;
704         u32 updrate, minupdate, fracbits, p;
705         unsigned long bestppm, ppm, absppm;
706         int dotclk, flag;
707
708         flag = 0;
709         dotclk = target * 1000;
710         bestppm = 1000000;
711         ppm = absppm = 0;
712         fastclk = dotclk / (2*100);
713         updrate = 0;
714         minupdate = 19200;
715         fracbits = 1;
716         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
717         bestm1 = bestm2 = bestp1 = bestp2 = 0;
718
719         /* based on hardware requirement, prefer smaller n to precision */
720         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
721                 updrate = refclk / n;
722                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
723                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
724                                 if (p2 > 10)
725                                         p2 = p2 - 1;
726                                 p = p1 * p2;
727                                 /* based on hardware requirement, prefer bigger m1,m2 values */
728                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
729                                         m2 = (((2*(fastclk * p * n / m1 )) +
730                                                refclk) / (2*refclk));
731                                         m = m1 * m2;
732                                         vco = updrate * m;
733                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
734                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
735                                                 absppm = (ppm > 0) ? ppm : (-ppm);
736                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
737                                                         bestppm = 0;
738                                                         flag = 1;
739                                                 }
740                                                 if (absppm < bestppm - 10) {
741                                                         bestppm = absppm;
742                                                         flag = 1;
743                                                 }
744                                                 if (flag) {
745                                                         bestn = n;
746                                                         bestm1 = m1;
747                                                         bestm2 = m2;
748                                                         bestp1 = p1;
749                                                         bestp2 = p2;
750                                                         flag = 0;
751                                                 }
752                                         }
753                                 }
754                         }
755                 }
756         }
757         best_clock->n = bestn;
758         best_clock->m1 = bestm1;
759         best_clock->m2 = bestm2;
760         best_clock->p1 = bestp1;
761         best_clock->p2 = bestp2;
762
763         return true;
764 }
765
766 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
767                                              enum pipe pipe)
768 {
769         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
770         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
771
772         return intel_crtc->config.cpu_transcoder;
773 }
774
775 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
776 {
777         struct drm_i915_private *dev_priv = dev->dev_private;
778         u32 frame, frame_reg = PIPEFRAME(pipe);
779
780         frame = I915_READ(frame_reg);
781
782         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
783                 DRM_DEBUG_KMS("vblank wait timed out\n");
784 }
785
786 /**
787  * intel_wait_for_vblank - wait for vblank on a given pipe
788  * @dev: drm device
789  * @pipe: pipe to wait for
790  *
791  * Wait for vblank to occur on a given pipe.  Needed for various bits of
792  * mode setting code.
793  */
794 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
795 {
796         struct drm_i915_private *dev_priv = dev->dev_private;
797         int pipestat_reg = PIPESTAT(pipe);
798
799         if (INTEL_INFO(dev)->gen >= 5) {
800                 ironlake_wait_for_vblank(dev, pipe);
801                 return;
802         }
803
804         /* Clear existing vblank status. Note this will clear any other
805          * sticky status fields as well.
806          *
807          * This races with i915_driver_irq_handler() with the result
808          * that either function could miss a vblank event.  Here it is not
809          * fatal, as we will either wait upon the next vblank interrupt or
810          * timeout.  Generally speaking intel_wait_for_vblank() is only
811          * called during modeset at which time the GPU should be idle and
812          * should *not* be performing page flips and thus not waiting on
813          * vblanks...
814          * Currently, the result of us stealing a vblank from the irq
815          * handler is that a single frame will be skipped during swapbuffers.
816          */
817         I915_WRITE(pipestat_reg,
818                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
819
820         /* Wait for vblank interrupt bit to set */
821         if (wait_for(I915_READ(pipestat_reg) &
822                      PIPE_VBLANK_INTERRUPT_STATUS,
823                      50))
824                 DRM_DEBUG_KMS("vblank wait timed out\n");
825 }
826
827 /*
828  * intel_wait_for_pipe_off - wait for pipe to turn off
829  * @dev: drm device
830  * @pipe: pipe to wait for
831  *
832  * After disabling a pipe, we can't wait for vblank in the usual way,
833  * spinning on the vblank interrupt status bit, since we won't actually
834  * see an interrupt when the pipe is disabled.
835  *
836  * On Gen4 and above:
837  *   wait for the pipe register state bit to turn off
838  *
839  * Otherwise:
840  *   wait for the display line value to settle (it usually
841  *   ends up stopping at the start of the next frame).
842  *
843  */
844 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
845 {
846         struct drm_i915_private *dev_priv = dev->dev_private;
847         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
848                                                                       pipe);
849
850         if (INTEL_INFO(dev)->gen >= 4) {
851                 int reg = PIPECONF(cpu_transcoder);
852
853                 /* Wait for the Pipe State to go off */
854                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
855                              100))
856                         WARN(1, "pipe_off wait timed out\n");
857         } else {
858                 u32 last_line, line_mask;
859                 int reg = PIPEDSL(pipe);
860                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
861
862                 if (IS_GEN2(dev))
863                         line_mask = DSL_LINEMASK_GEN2;
864                 else
865                         line_mask = DSL_LINEMASK_GEN3;
866
867                 /* Wait for the display line to settle */
868                 do {
869                         last_line = I915_READ(reg) & line_mask;
870                         mdelay(5);
871                 } while (((I915_READ(reg) & line_mask) != last_line) &&
872                          time_after(timeout, jiffies));
873                 if (time_after(jiffies, timeout))
874                         WARN(1, "pipe_off wait timed out\n");
875         }
876 }
877
878 /*
879  * ibx_digital_port_connected - is the specified port connected?
880  * @dev_priv: i915 private structure
881  * @port: the port to test
882  *
883  * Returns true if @port is connected, false otherwise.
884  */
885 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
886                                 struct intel_digital_port *port)
887 {
888         u32 bit;
889
890         if (HAS_PCH_IBX(dev_priv->dev)) {
891                 switch(port->port) {
892                 case PORT_B:
893                         bit = SDE_PORTB_HOTPLUG;
894                         break;
895                 case PORT_C:
896                         bit = SDE_PORTC_HOTPLUG;
897                         break;
898                 case PORT_D:
899                         bit = SDE_PORTD_HOTPLUG;
900                         break;
901                 default:
902                         return true;
903                 }
904         } else {
905                 switch(port->port) {
906                 case PORT_B:
907                         bit = SDE_PORTB_HOTPLUG_CPT;
908                         break;
909                 case PORT_C:
910                         bit = SDE_PORTC_HOTPLUG_CPT;
911                         break;
912                 case PORT_D:
913                         bit = SDE_PORTD_HOTPLUG_CPT;
914                         break;
915                 default:
916                         return true;
917                 }
918         }
919
920         return I915_READ(SDEISR) & bit;
921 }
922
923 static const char *state_string(bool enabled)
924 {
925         return enabled ? "on" : "off";
926 }
927
928 /* Only for pre-ILK configs */
929 static void assert_pll(struct drm_i915_private *dev_priv,
930                        enum pipe pipe, bool state)
931 {
932         int reg;
933         u32 val;
934         bool cur_state;
935
936         reg = DPLL(pipe);
937         val = I915_READ(reg);
938         cur_state = !!(val & DPLL_VCO_ENABLE);
939         WARN(cur_state != state,
940              "PLL state assertion failure (expected %s, current %s)\n",
941              state_string(state), state_string(cur_state));
942 }
943 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
944 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
945
946 /* For ILK+ */
947 static void assert_pch_pll(struct drm_i915_private *dev_priv,
948                            struct intel_pch_pll *pll,
949                            struct intel_crtc *crtc,
950                            bool state)
951 {
952         u32 val;
953         bool cur_state;
954
955         if (HAS_PCH_LPT(dev_priv->dev)) {
956                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
957                 return;
958         }
959
960         if (WARN (!pll,
961                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
962                 return;
963
964         val = I915_READ(pll->pll_reg);
965         cur_state = !!(val & DPLL_VCO_ENABLE);
966         WARN(cur_state != state,
967              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
968              pll->pll_reg, state_string(state), state_string(cur_state), val);
969
970         /* Make sure the selected PLL is correctly attached to the transcoder */
971         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
972                 u32 pch_dpll;
973
974                 pch_dpll = I915_READ(PCH_DPLL_SEL);
975                 cur_state = pll->pll_reg == _PCH_DPLL_B;
976                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
977                           "PLL[%d] not attached to this transcoder %c: %08x\n",
978                           cur_state, pipe_name(crtc->pipe), pch_dpll)) {
979                         cur_state = !!(val >> (4*crtc->pipe + 3));
980                         WARN(cur_state != state,
981                              "PLL[%d] not %s on this transcoder %c: %08x\n",
982                              pll->pll_reg == _PCH_DPLL_B,
983                              state_string(state),
984                              pipe_name(crtc->pipe),
985                              val);
986                 }
987         }
988 }
989 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
990 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
991
992 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
993                           enum pipe pipe, bool state)
994 {
995         int reg;
996         u32 val;
997         bool cur_state;
998         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
999                                                                       pipe);
1000
1001         if (HAS_DDI(dev_priv->dev)) {
1002                 /* DDI does not have a specific FDI_TX register */
1003                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1004                 val = I915_READ(reg);
1005                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1006         } else {
1007                 reg = FDI_TX_CTL(pipe);
1008                 val = I915_READ(reg);
1009                 cur_state = !!(val & FDI_TX_ENABLE);
1010         }
1011         WARN(cur_state != state,
1012              "FDI TX state assertion failure (expected %s, current %s)\n",
1013              state_string(state), state_string(cur_state));
1014 }
1015 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1016 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1017
1018 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1019                           enum pipe pipe, bool state)
1020 {
1021         int reg;
1022         u32 val;
1023         bool cur_state;
1024
1025         reg = FDI_RX_CTL(pipe);
1026         val = I915_READ(reg);
1027         cur_state = !!(val & FDI_RX_ENABLE);
1028         WARN(cur_state != state,
1029              "FDI RX state assertion failure (expected %s, current %s)\n",
1030              state_string(state), state_string(cur_state));
1031 }
1032 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1033 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1034
1035 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1036                                       enum pipe pipe)
1037 {
1038         int reg;
1039         u32 val;
1040
1041         /* ILK FDI PLL is always enabled */
1042         if (dev_priv->info->gen == 5)
1043                 return;
1044
1045         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1046         if (HAS_DDI(dev_priv->dev))
1047                 return;
1048
1049         reg = FDI_TX_CTL(pipe);
1050         val = I915_READ(reg);
1051         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1052 }
1053
1054 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1055                                       enum pipe pipe)
1056 {
1057         int reg;
1058         u32 val;
1059
1060         reg = FDI_RX_CTL(pipe);
1061         val = I915_READ(reg);
1062         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1063 }
1064
1065 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1066                                   enum pipe pipe)
1067 {
1068         int pp_reg, lvds_reg;
1069         u32 val;
1070         enum pipe panel_pipe = PIPE_A;
1071         bool locked = true;
1072
1073         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1074                 pp_reg = PCH_PP_CONTROL;
1075                 lvds_reg = PCH_LVDS;
1076         } else {
1077                 pp_reg = PP_CONTROL;
1078                 lvds_reg = LVDS;
1079         }
1080
1081         val = I915_READ(pp_reg);
1082         if (!(val & PANEL_POWER_ON) ||
1083             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1084                 locked = false;
1085
1086         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1087                 panel_pipe = PIPE_B;
1088
1089         WARN(panel_pipe == pipe && locked,
1090              "panel assertion failure, pipe %c regs locked\n",
1091              pipe_name(pipe));
1092 }
1093
1094 void assert_pipe(struct drm_i915_private *dev_priv,
1095                  enum pipe pipe, bool state)
1096 {
1097         int reg;
1098         u32 val;
1099         bool cur_state;
1100         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1101                                                                       pipe);
1102
1103         /* if we need the pipe A quirk it must be always on */
1104         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1105                 state = true;
1106
1107         if (!intel_display_power_enabled(dev_priv->dev,
1108                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1109                 cur_state = false;
1110         } else {
1111                 reg = PIPECONF(cpu_transcoder);
1112                 val = I915_READ(reg);
1113                 cur_state = !!(val & PIPECONF_ENABLE);
1114         }
1115
1116         WARN(cur_state != state,
1117              "pipe %c assertion failure (expected %s, current %s)\n",
1118              pipe_name(pipe), state_string(state), state_string(cur_state));
1119 }
1120
1121 static void assert_plane(struct drm_i915_private *dev_priv,
1122                          enum plane plane, bool state)
1123 {
1124         int reg;
1125         u32 val;
1126         bool cur_state;
1127
1128         reg = DSPCNTR(plane);
1129         val = I915_READ(reg);
1130         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1131         WARN(cur_state != state,
1132              "plane %c assertion failure (expected %s, current %s)\n",
1133              plane_name(plane), state_string(state), state_string(cur_state));
1134 }
1135
1136 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1137 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1138
1139 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1140                                    enum pipe pipe)
1141 {
1142         int reg, i;
1143         u32 val;
1144         int cur_pipe;
1145
1146         /* Planes are fixed to pipes on ILK+ */
1147         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1148                 reg = DSPCNTR(pipe);
1149                 val = I915_READ(reg);
1150                 WARN((val & DISPLAY_PLANE_ENABLE),
1151                      "plane %c assertion failure, should be disabled but not\n",
1152                      plane_name(pipe));
1153                 return;
1154         }
1155
1156         /* Need to check both planes against the pipe */
1157         for (i = 0; i < 2; i++) {
1158                 reg = DSPCNTR(i);
1159                 val = I915_READ(reg);
1160                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1161                         DISPPLANE_SEL_PIPE_SHIFT;
1162                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1163                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1164                      plane_name(i), pipe_name(pipe));
1165         }
1166 }
1167
1168 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1169                                     enum pipe pipe)
1170 {
1171         int reg, i;
1172         u32 val;
1173
1174         if (!IS_VALLEYVIEW(dev_priv->dev))
1175                 return;
1176
1177         /* Need to check both planes against the pipe */
1178         for (i = 0; i < dev_priv->num_plane; i++) {
1179                 reg = SPCNTR(pipe, i);
1180                 val = I915_READ(reg);
1181                 WARN((val & SP_ENABLE),
1182                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1183                      sprite_name(pipe, i), pipe_name(pipe));
1184         }
1185 }
1186
1187 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1188 {
1189         u32 val;
1190         bool enabled;
1191
1192         if (HAS_PCH_LPT(dev_priv->dev)) {
1193                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1194                 return;
1195         }
1196
1197         val = I915_READ(PCH_DREF_CONTROL);
1198         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1199                             DREF_SUPERSPREAD_SOURCE_MASK));
1200         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1204                                            enum pipe pipe)
1205 {
1206         int reg;
1207         u32 val;
1208         bool enabled;
1209
1210         reg = PCH_TRANSCONF(pipe);
1211         val = I915_READ(reg);
1212         enabled = !!(val & TRANS_ENABLE);
1213         WARN(enabled,
1214              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1215              pipe_name(pipe));
1216 }
1217
1218 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1219                             enum pipe pipe, u32 port_sel, u32 val)
1220 {
1221         if ((val & DP_PORT_EN) == 0)
1222                 return false;
1223
1224         if (HAS_PCH_CPT(dev_priv->dev)) {
1225                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1226                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1227                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1228                         return false;
1229         } else {
1230                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1231                         return false;
1232         }
1233         return true;
1234 }
1235
1236 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1237                               enum pipe pipe, u32 val)
1238 {
1239         if ((val & SDVO_ENABLE) == 0)
1240                 return false;
1241
1242         if (HAS_PCH_CPT(dev_priv->dev)) {
1243                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1244                         return false;
1245         } else {
1246                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1247                         return false;
1248         }
1249         return true;
1250 }
1251
1252 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1253                               enum pipe pipe, u32 val)
1254 {
1255         if ((val & LVDS_PORT_EN) == 0)
1256                 return false;
1257
1258         if (HAS_PCH_CPT(dev_priv->dev)) {
1259                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1260                         return false;
1261         } else {
1262                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1263                         return false;
1264         }
1265         return true;
1266 }
1267
1268 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1269                               enum pipe pipe, u32 val)
1270 {
1271         if ((val & ADPA_DAC_ENABLE) == 0)
1272                 return false;
1273         if (HAS_PCH_CPT(dev_priv->dev)) {
1274                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1275                         return false;
1276         } else {
1277                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1278                         return false;
1279         }
1280         return true;
1281 }
1282
1283 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1284                                    enum pipe pipe, int reg, u32 port_sel)
1285 {
1286         u32 val = I915_READ(reg);
1287         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1288              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1289              reg, pipe_name(pipe));
1290
1291         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1292              && (val & DP_PIPEB_SELECT),
1293              "IBX PCH dp port still using transcoder B\n");
1294 }
1295
1296 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1297                                      enum pipe pipe, int reg)
1298 {
1299         u32 val = I915_READ(reg);
1300         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1301              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1302              reg, pipe_name(pipe));
1303
1304         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1305              && (val & SDVO_PIPE_B_SELECT),
1306              "IBX PCH hdmi port still using transcoder B\n");
1307 }
1308
1309 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1310                                       enum pipe pipe)
1311 {
1312         int reg;
1313         u32 val;
1314
1315         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1316         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1317         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1318
1319         reg = PCH_ADPA;
1320         val = I915_READ(reg);
1321         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1322              "PCH VGA enabled on transcoder %c, should be disabled\n",
1323              pipe_name(pipe));
1324
1325         reg = PCH_LVDS;
1326         val = I915_READ(reg);
1327         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1328              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1329              pipe_name(pipe));
1330
1331         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1332         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1333         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1334 }
1335
1336 /**
1337  * intel_enable_pll - enable a PLL
1338  * @dev_priv: i915 private structure
1339  * @pipe: pipe PLL to enable
1340  *
1341  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1342  * make sure the PLL reg is writable first though, since the panel write
1343  * protect mechanism may be enabled.
1344  *
1345  * Note!  This is for pre-ILK only.
1346  *
1347  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1348  */
1349 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1350 {
1351         int reg;
1352         u32 val;
1353
1354         assert_pipe_disabled(dev_priv, pipe);
1355
1356         /* No really, not for ILK+ */
1357         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1358
1359         /* PLL is protected by panel, make sure we can write it */
1360         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1361                 assert_panel_unlocked(dev_priv, pipe);
1362
1363         reg = DPLL(pipe);
1364         val = I915_READ(reg);
1365         val |= DPLL_VCO_ENABLE;
1366
1367         /* We do this three times for luck */
1368         I915_WRITE(reg, val);
1369         POSTING_READ(reg);
1370         udelay(150); /* wait for warmup */
1371         I915_WRITE(reg, val);
1372         POSTING_READ(reg);
1373         udelay(150); /* wait for warmup */
1374         I915_WRITE(reg, val);
1375         POSTING_READ(reg);
1376         udelay(150); /* wait for warmup */
1377 }
1378
1379 /**
1380  * intel_disable_pll - disable a PLL
1381  * @dev_priv: i915 private structure
1382  * @pipe: pipe PLL to disable
1383  *
1384  * Disable the PLL for @pipe, making sure the pipe is off first.
1385  *
1386  * Note!  This is for pre-ILK only.
1387  */
1388 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1389 {
1390         int reg;
1391         u32 val;
1392
1393         /* Don't disable pipe A or pipe A PLLs if needed */
1394         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1395                 return;
1396
1397         /* Make sure the pipe isn't still relying on us */
1398         assert_pipe_disabled(dev_priv, pipe);
1399
1400         reg = DPLL(pipe);
1401         val = I915_READ(reg);
1402         val &= ~DPLL_VCO_ENABLE;
1403         I915_WRITE(reg, val);
1404         POSTING_READ(reg);
1405 }
1406
1407 /* SBI access */
1408 static void
1409 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1410                 enum intel_sbi_destination destination)
1411 {
1412         u32 tmp;
1413
1414         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1415
1416         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1417                                 100)) {
1418                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1419                 return;
1420         }
1421
1422         I915_WRITE(SBI_ADDR, (reg << 16));
1423         I915_WRITE(SBI_DATA, value);
1424
1425         if (destination == SBI_ICLK)
1426                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1427         else
1428                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1429         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1430
1431         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1432                                 100)) {
1433                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1434                 return;
1435         }
1436 }
1437
1438 static u32
1439 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1440                enum intel_sbi_destination destination)
1441 {
1442         u32 value = 0;
1443         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1444
1445         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1446                                 100)) {
1447                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1448                 return 0;
1449         }
1450
1451         I915_WRITE(SBI_ADDR, (reg << 16));
1452
1453         if (destination == SBI_ICLK)
1454                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1455         else
1456                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1457         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1458
1459         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1460                                 100)) {
1461                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1462                 return 0;
1463         }
1464
1465         return I915_READ(SBI_DATA);
1466 }
1467
1468 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1469 {
1470         u32 port_mask;
1471
1472         if (!port)
1473                 port_mask = DPLL_PORTB_READY_MASK;
1474         else
1475                 port_mask = DPLL_PORTC_READY_MASK;
1476
1477         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1478                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1479                      'B' + port, I915_READ(DPLL(0)));
1480 }
1481
1482 /**
1483  * ironlake_enable_pch_pll - enable PCH PLL
1484  * @dev_priv: i915 private structure
1485  * @pipe: pipe PLL to enable
1486  *
1487  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1488  * drives the transcoder clock.
1489  */
1490 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1491 {
1492         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1493         struct intel_pch_pll *pll;
1494         int reg;
1495         u32 val;
1496
1497         /* PCH PLLs only available on ILK, SNB and IVB */
1498         BUG_ON(dev_priv->info->gen < 5);
1499         pll = intel_crtc->pch_pll;
1500         if (pll == NULL)
1501                 return;
1502
1503         if (WARN_ON(pll->refcount == 0))
1504                 return;
1505
1506         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1507                       pll->pll_reg, pll->active, pll->on,
1508                       intel_crtc->base.base.id);
1509
1510         /* PCH refclock must be enabled first */
1511         assert_pch_refclk_enabled(dev_priv);
1512
1513         if (pll->active++ && pll->on) {
1514                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1515                 return;
1516         }
1517
1518         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1519
1520         reg = pll->pll_reg;
1521         val = I915_READ(reg);
1522         val |= DPLL_VCO_ENABLE;
1523         I915_WRITE(reg, val);
1524         POSTING_READ(reg);
1525         udelay(200);
1526
1527         pll->on = true;
1528 }
1529
1530 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1531 {
1532         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1533         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1534         int reg;
1535         u32 val;
1536
1537         /* PCH only available on ILK+ */
1538         BUG_ON(dev_priv->info->gen < 5);
1539         if (pll == NULL)
1540                return;
1541
1542         if (WARN_ON(pll->refcount == 0))
1543                 return;
1544
1545         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1546                       pll->pll_reg, pll->active, pll->on,
1547                       intel_crtc->base.base.id);
1548
1549         if (WARN_ON(pll->active == 0)) {
1550                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1551                 return;
1552         }
1553
1554         if (--pll->active) {
1555                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1556                 return;
1557         }
1558
1559         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1560
1561         /* Make sure transcoder isn't still depending on us */
1562         assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
1563
1564         reg = pll->pll_reg;
1565         val = I915_READ(reg);
1566         val &= ~DPLL_VCO_ENABLE;
1567         I915_WRITE(reg, val);
1568         POSTING_READ(reg);
1569         udelay(200);
1570
1571         pll->on = false;
1572 }
1573
1574 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1575                                            enum pipe pipe)
1576 {
1577         struct drm_device *dev = dev_priv->dev;
1578         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1579         uint32_t reg, val, pipeconf_val;
1580
1581         /* PCH only available on ILK+ */
1582         BUG_ON(dev_priv->info->gen < 5);
1583
1584         /* Make sure PCH DPLL is enabled */
1585         assert_pch_pll_enabled(dev_priv,
1586                                to_intel_crtc(crtc)->pch_pll,
1587                                to_intel_crtc(crtc));
1588
1589         /* FDI must be feeding us bits for PCH ports */
1590         assert_fdi_tx_enabled(dev_priv, pipe);
1591         assert_fdi_rx_enabled(dev_priv, pipe);
1592
1593         if (HAS_PCH_CPT(dev)) {
1594                 /* Workaround: Set the timing override bit before enabling the
1595                  * pch transcoder. */
1596                 reg = TRANS_CHICKEN2(pipe);
1597                 val = I915_READ(reg);
1598                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1599                 I915_WRITE(reg, val);
1600         }
1601
1602         reg = PCH_TRANSCONF(pipe);
1603         val = I915_READ(reg);
1604         pipeconf_val = I915_READ(PIPECONF(pipe));
1605
1606         if (HAS_PCH_IBX(dev_priv->dev)) {
1607                 /*
1608                  * make the BPC in transcoder be consistent with
1609                  * that in pipeconf reg.
1610                  */
1611                 val &= ~PIPECONF_BPC_MASK;
1612                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1613         }
1614
1615         val &= ~TRANS_INTERLACE_MASK;
1616         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1617                 if (HAS_PCH_IBX(dev_priv->dev) &&
1618                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1619                         val |= TRANS_LEGACY_INTERLACED_ILK;
1620                 else
1621                         val |= TRANS_INTERLACED;
1622         else
1623                 val |= TRANS_PROGRESSIVE;
1624
1625         I915_WRITE(reg, val | TRANS_ENABLE);
1626         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1627                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1628 }
1629
1630 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1631                                       enum transcoder cpu_transcoder)
1632 {
1633         u32 val, pipeconf_val;
1634
1635         /* PCH only available on ILK+ */
1636         BUG_ON(dev_priv->info->gen < 5);
1637
1638         /* FDI must be feeding us bits for PCH ports */
1639         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1640         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1641
1642         /* Workaround: set timing override bit. */
1643         val = I915_READ(_TRANSA_CHICKEN2);
1644         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1645         I915_WRITE(_TRANSA_CHICKEN2, val);
1646
1647         val = TRANS_ENABLE;
1648         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1649
1650         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1651             PIPECONF_INTERLACED_ILK)
1652                 val |= TRANS_INTERLACED;
1653         else
1654                 val |= TRANS_PROGRESSIVE;
1655
1656         I915_WRITE(LPT_TRANSCONF, val);
1657         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1658                 DRM_ERROR("Failed to enable PCH transcoder\n");
1659 }
1660
1661 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1662                                             enum pipe pipe)
1663 {
1664         struct drm_device *dev = dev_priv->dev;
1665         uint32_t reg, val;
1666
1667         /* FDI relies on the transcoder */
1668         assert_fdi_tx_disabled(dev_priv, pipe);
1669         assert_fdi_rx_disabled(dev_priv, pipe);
1670
1671         /* Ports must be off as well */
1672         assert_pch_ports_disabled(dev_priv, pipe);
1673
1674         reg = PCH_TRANSCONF(pipe);
1675         val = I915_READ(reg);
1676         val &= ~TRANS_ENABLE;
1677         I915_WRITE(reg, val);
1678         /* wait for PCH transcoder off, transcoder state */
1679         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1680                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1681
1682         if (!HAS_PCH_IBX(dev)) {
1683                 /* Workaround: Clear the timing override chicken bit again. */
1684                 reg = TRANS_CHICKEN2(pipe);
1685                 val = I915_READ(reg);
1686                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1687                 I915_WRITE(reg, val);
1688         }
1689 }
1690
1691 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1692 {
1693         u32 val;
1694
1695         val = I915_READ(LPT_TRANSCONF);
1696         val &= ~TRANS_ENABLE;
1697         I915_WRITE(LPT_TRANSCONF, val);
1698         /* wait for PCH transcoder off, transcoder state */
1699         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1700                 DRM_ERROR("Failed to disable PCH transcoder\n");
1701
1702         /* Workaround: clear timing override bit. */
1703         val = I915_READ(_TRANSA_CHICKEN2);
1704         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1705         I915_WRITE(_TRANSA_CHICKEN2, val);
1706 }
1707
1708 /**
1709  * intel_enable_pipe - enable a pipe, asserting requirements
1710  * @dev_priv: i915 private structure
1711  * @pipe: pipe to enable
1712  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1713  *
1714  * Enable @pipe, making sure that various hardware specific requirements
1715  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1716  *
1717  * @pipe should be %PIPE_A or %PIPE_B.
1718  *
1719  * Will wait until the pipe is actually running (i.e. first vblank) before
1720  * returning.
1721  */
1722 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1723                               bool pch_port)
1724 {
1725         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1726                                                                       pipe);
1727         enum pipe pch_transcoder;
1728         int reg;
1729         u32 val;
1730
1731         assert_planes_disabled(dev_priv, pipe);
1732         assert_sprites_disabled(dev_priv, pipe);
1733
1734         if (HAS_PCH_LPT(dev_priv->dev))
1735                 pch_transcoder = TRANSCODER_A;
1736         else
1737                 pch_transcoder = pipe;
1738
1739         /*
1740          * A pipe without a PLL won't actually be able to drive bits from
1741          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1742          * need the check.
1743          */
1744         if (!HAS_PCH_SPLIT(dev_priv->dev))
1745                 assert_pll_enabled(dev_priv, pipe);
1746         else {
1747                 if (pch_port) {
1748                         /* if driving the PCH, we need FDI enabled */
1749                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1750                         assert_fdi_tx_pll_enabled(dev_priv,
1751                                                   (enum pipe) cpu_transcoder);
1752                 }
1753                 /* FIXME: assert CPU port conditions for SNB+ */
1754         }
1755
1756         reg = PIPECONF(cpu_transcoder);
1757         val = I915_READ(reg);
1758         if (val & PIPECONF_ENABLE)
1759                 return;
1760
1761         I915_WRITE(reg, val | PIPECONF_ENABLE);
1762         intel_wait_for_vblank(dev_priv->dev, pipe);
1763 }
1764
1765 /**
1766  * intel_disable_pipe - disable a pipe, asserting requirements
1767  * @dev_priv: i915 private structure
1768  * @pipe: pipe to disable
1769  *
1770  * Disable @pipe, making sure that various hardware specific requirements
1771  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1772  *
1773  * @pipe should be %PIPE_A or %PIPE_B.
1774  *
1775  * Will wait until the pipe has shut down before returning.
1776  */
1777 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1778                                enum pipe pipe)
1779 {
1780         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1781                                                                       pipe);
1782         int reg;
1783         u32 val;
1784
1785         /*
1786          * Make sure planes won't keep trying to pump pixels to us,
1787          * or we might hang the display.
1788          */
1789         assert_planes_disabled(dev_priv, pipe);
1790         assert_sprites_disabled(dev_priv, pipe);
1791
1792         /* Don't disable pipe A or pipe A PLLs if needed */
1793         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1794                 return;
1795
1796         reg = PIPECONF(cpu_transcoder);
1797         val = I915_READ(reg);
1798         if ((val & PIPECONF_ENABLE) == 0)
1799                 return;
1800
1801         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1802         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1803 }
1804
1805 /*
1806  * Plane regs are double buffered, going from enabled->disabled needs a
1807  * trigger in order to latch.  The display address reg provides this.
1808  */
1809 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1810                                       enum plane plane)
1811 {
1812         if (dev_priv->info->gen >= 4)
1813                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1814         else
1815                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1816 }
1817
1818 /**
1819  * intel_enable_plane - enable a display plane on a given pipe
1820  * @dev_priv: i915 private structure
1821  * @plane: plane to enable
1822  * @pipe: pipe being fed
1823  *
1824  * Enable @plane on @pipe, making sure that @pipe is running first.
1825  */
1826 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1827                                enum plane plane, enum pipe pipe)
1828 {
1829         int reg;
1830         u32 val;
1831
1832         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1833         assert_pipe_enabled(dev_priv, pipe);
1834
1835         reg = DSPCNTR(plane);
1836         val = I915_READ(reg);
1837         if (val & DISPLAY_PLANE_ENABLE)
1838                 return;
1839
1840         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1841         intel_flush_display_plane(dev_priv, plane);
1842         intel_wait_for_vblank(dev_priv->dev, pipe);
1843 }
1844
1845 /**
1846  * intel_disable_plane - disable a display plane
1847  * @dev_priv: i915 private structure
1848  * @plane: plane to disable
1849  * @pipe: pipe consuming the data
1850  *
1851  * Disable @plane; should be an independent operation.
1852  */
1853 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1854                                 enum plane plane, enum pipe pipe)
1855 {
1856         int reg;
1857         u32 val;
1858
1859         reg = DSPCNTR(plane);
1860         val = I915_READ(reg);
1861         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1862                 return;
1863
1864         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1865         intel_flush_display_plane(dev_priv, plane);
1866         intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 static bool need_vtd_wa(struct drm_device *dev)
1870 {
1871 #ifdef CONFIG_INTEL_IOMMU
1872         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1873                 return true;
1874 #endif
1875         return false;
1876 }
1877
1878 int
1879 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1880                            struct drm_i915_gem_object *obj,
1881                            struct intel_ring_buffer *pipelined)
1882 {
1883         struct drm_i915_private *dev_priv = dev->dev_private;
1884         u32 alignment;
1885         int ret;
1886
1887         switch (obj->tiling_mode) {
1888         case I915_TILING_NONE:
1889                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1890                         alignment = 128 * 1024;
1891                 else if (INTEL_INFO(dev)->gen >= 4)
1892                         alignment = 4 * 1024;
1893                 else
1894                         alignment = 64 * 1024;
1895                 break;
1896         case I915_TILING_X:
1897                 /* pin() will align the object as required by fence */
1898                 alignment = 0;
1899                 break;
1900         case I915_TILING_Y:
1901                 /* Despite that we check this in framebuffer_init userspace can
1902                  * screw us over and change the tiling after the fact. Only
1903                  * pinned buffers can't change their tiling. */
1904                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1905                 return -EINVAL;
1906         default:
1907                 BUG();
1908         }
1909
1910         /* Note that the w/a also requires 64 PTE of padding following the
1911          * bo. We currently fill all unused PTE with the shadow page and so
1912          * we should always have valid PTE following the scanout preventing
1913          * the VT-d warning.
1914          */
1915         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1916                 alignment = 256 * 1024;
1917
1918         dev_priv->mm.interruptible = false;
1919         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1920         if (ret)
1921                 goto err_interruptible;
1922
1923         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1924          * fence, whereas 965+ only requires a fence if using
1925          * framebuffer compression.  For simplicity, we always install
1926          * a fence as the cost is not that onerous.
1927          */
1928         ret = i915_gem_object_get_fence(obj);
1929         if (ret)
1930                 goto err_unpin;
1931
1932         i915_gem_object_pin_fence(obj);
1933
1934         dev_priv->mm.interruptible = true;
1935         return 0;
1936
1937 err_unpin:
1938         i915_gem_object_unpin(obj);
1939 err_interruptible:
1940         dev_priv->mm.interruptible = true;
1941         return ret;
1942 }
1943
1944 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1945 {
1946         i915_gem_object_unpin_fence(obj);
1947         i915_gem_object_unpin(obj);
1948 }
1949
1950 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1951  * is assumed to be a power-of-two. */
1952 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1953                                              unsigned int tiling_mode,
1954                                              unsigned int cpp,
1955                                              unsigned int pitch)
1956 {
1957         if (tiling_mode != I915_TILING_NONE) {
1958                 unsigned int tile_rows, tiles;
1959
1960                 tile_rows = *y / 8;
1961                 *y %= 8;
1962
1963                 tiles = *x / (512/cpp);
1964                 *x %= 512/cpp;
1965
1966                 return tile_rows * pitch * 8 + tiles * 4096;
1967         } else {
1968                 unsigned int offset;
1969
1970                 offset = *y * pitch + *x * cpp;
1971                 *y = 0;
1972                 *x = (offset & 4095) / cpp;
1973                 return offset & -4096;
1974         }
1975 }
1976
1977 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1978                              int x, int y)
1979 {
1980         struct drm_device *dev = crtc->dev;
1981         struct drm_i915_private *dev_priv = dev->dev_private;
1982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983         struct intel_framebuffer *intel_fb;
1984         struct drm_i915_gem_object *obj;
1985         int plane = intel_crtc->plane;
1986         unsigned long linear_offset;
1987         u32 dspcntr;
1988         u32 reg;
1989
1990         switch (plane) {
1991         case 0:
1992         case 1:
1993                 break;
1994         default:
1995                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1996                 return -EINVAL;
1997         }
1998
1999         intel_fb = to_intel_framebuffer(fb);
2000         obj = intel_fb->obj;
2001
2002         reg = DSPCNTR(plane);
2003         dspcntr = I915_READ(reg);
2004         /* Mask out pixel format bits in case we change it */
2005         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2006         switch (fb->pixel_format) {
2007         case DRM_FORMAT_C8:
2008                 dspcntr |= DISPPLANE_8BPP;
2009                 break;
2010         case DRM_FORMAT_XRGB1555:
2011         case DRM_FORMAT_ARGB1555:
2012                 dspcntr |= DISPPLANE_BGRX555;
2013                 break;
2014         case DRM_FORMAT_RGB565:
2015                 dspcntr |= DISPPLANE_BGRX565;
2016                 break;
2017         case DRM_FORMAT_XRGB8888:
2018         case DRM_FORMAT_ARGB8888:
2019                 dspcntr |= DISPPLANE_BGRX888;
2020                 break;
2021         case DRM_FORMAT_XBGR8888:
2022         case DRM_FORMAT_ABGR8888:
2023                 dspcntr |= DISPPLANE_RGBX888;
2024                 break;
2025         case DRM_FORMAT_XRGB2101010:
2026         case DRM_FORMAT_ARGB2101010:
2027                 dspcntr |= DISPPLANE_BGRX101010;
2028                 break;
2029         case DRM_FORMAT_XBGR2101010:
2030         case DRM_FORMAT_ABGR2101010:
2031                 dspcntr |= DISPPLANE_RGBX101010;
2032                 break;
2033         default:
2034                 BUG();
2035         }
2036
2037         if (INTEL_INFO(dev)->gen >= 4) {
2038                 if (obj->tiling_mode != I915_TILING_NONE)
2039                         dspcntr |= DISPPLANE_TILED;
2040                 else
2041                         dspcntr &= ~DISPPLANE_TILED;
2042         }
2043
2044         I915_WRITE(reg, dspcntr);
2045
2046         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2047
2048         if (INTEL_INFO(dev)->gen >= 4) {
2049                 intel_crtc->dspaddr_offset =
2050                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2051                                                        fb->bits_per_pixel / 8,
2052                                                        fb->pitches[0]);
2053                 linear_offset -= intel_crtc->dspaddr_offset;
2054         } else {
2055                 intel_crtc->dspaddr_offset = linear_offset;
2056         }
2057
2058         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2059                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2060         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2061         if (INTEL_INFO(dev)->gen >= 4) {
2062                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2063                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2064                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2065                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2066         } else
2067                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2068         POSTING_READ(reg);
2069
2070         return 0;
2071 }
2072
2073 static int ironlake_update_plane(struct drm_crtc *crtc,
2074                                  struct drm_framebuffer *fb, int x, int y)
2075 {
2076         struct drm_device *dev = crtc->dev;
2077         struct drm_i915_private *dev_priv = dev->dev_private;
2078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2079         struct intel_framebuffer *intel_fb;
2080         struct drm_i915_gem_object *obj;
2081         int plane = intel_crtc->plane;
2082         unsigned long linear_offset;
2083         u32 dspcntr;
2084         u32 reg;
2085
2086         switch (plane) {
2087         case 0:
2088         case 1:
2089         case 2:
2090                 break;
2091         default:
2092                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2093                 return -EINVAL;
2094         }
2095
2096         intel_fb = to_intel_framebuffer(fb);
2097         obj = intel_fb->obj;
2098
2099         reg = DSPCNTR(plane);
2100         dspcntr = I915_READ(reg);
2101         /* Mask out pixel format bits in case we change it */
2102         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2103         switch (fb->pixel_format) {
2104         case DRM_FORMAT_C8:
2105                 dspcntr |= DISPPLANE_8BPP;
2106                 break;
2107         case DRM_FORMAT_RGB565:
2108                 dspcntr |= DISPPLANE_BGRX565;
2109                 break;
2110         case DRM_FORMAT_XRGB8888:
2111         case DRM_FORMAT_ARGB8888:
2112                 dspcntr |= DISPPLANE_BGRX888;
2113                 break;
2114         case DRM_FORMAT_XBGR8888:
2115         case DRM_FORMAT_ABGR8888:
2116                 dspcntr |= DISPPLANE_RGBX888;
2117                 break;
2118         case DRM_FORMAT_XRGB2101010:
2119         case DRM_FORMAT_ARGB2101010:
2120                 dspcntr |= DISPPLANE_BGRX101010;
2121                 break;
2122         case DRM_FORMAT_XBGR2101010:
2123         case DRM_FORMAT_ABGR2101010:
2124                 dspcntr |= DISPPLANE_RGBX101010;
2125                 break;
2126         default:
2127                 BUG();
2128         }
2129
2130         if (obj->tiling_mode != I915_TILING_NONE)
2131                 dspcntr |= DISPPLANE_TILED;
2132         else
2133                 dspcntr &= ~DISPPLANE_TILED;
2134
2135         /* must disable */
2136         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2137
2138         I915_WRITE(reg, dspcntr);
2139
2140         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2141         intel_crtc->dspaddr_offset =
2142                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2143                                                fb->bits_per_pixel / 8,
2144                                                fb->pitches[0]);
2145         linear_offset -= intel_crtc->dspaddr_offset;
2146
2147         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2148                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2149         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2150         I915_MODIFY_DISPBASE(DSPSURF(plane),
2151                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2152         if (IS_HASWELL(dev)) {
2153                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2154         } else {
2155                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2156                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2157         }
2158         POSTING_READ(reg);
2159
2160         return 0;
2161 }
2162
2163 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2164 static int
2165 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2166                            int x, int y, enum mode_set_atomic state)
2167 {
2168         struct drm_device *dev = crtc->dev;
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170
2171         if (dev_priv->display.disable_fbc)
2172                 dev_priv->display.disable_fbc(dev);
2173         intel_increase_pllclock(crtc);
2174
2175         return dev_priv->display.update_plane(crtc, fb, x, y);
2176 }
2177
2178 void intel_display_handle_reset(struct drm_device *dev)
2179 {
2180         struct drm_i915_private *dev_priv = dev->dev_private;
2181         struct drm_crtc *crtc;
2182
2183         /*
2184          * Flips in the rings have been nuked by the reset,
2185          * so complete all pending flips so that user space
2186          * will get its events and not get stuck.
2187          *
2188          * Also update the base address of all primary
2189          * planes to the the last fb to make sure we're
2190          * showing the correct fb after a reset.
2191          *
2192          * Need to make two loops over the crtcs so that we
2193          * don't try to grab a crtc mutex before the
2194          * pending_flip_queue really got woken up.
2195          */
2196
2197         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2198                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2199                 enum plane plane = intel_crtc->plane;
2200
2201                 intel_prepare_page_flip(dev, plane);
2202                 intel_finish_page_flip_plane(dev, plane);
2203         }
2204
2205         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2206                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2207
2208                 mutex_lock(&crtc->mutex);
2209                 if (intel_crtc->active)
2210                         dev_priv->display.update_plane(crtc, crtc->fb,
2211                                                        crtc->x, crtc->y);
2212                 mutex_unlock(&crtc->mutex);
2213         }
2214 }
2215
2216 static int
2217 intel_finish_fb(struct drm_framebuffer *old_fb)
2218 {
2219         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2220         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2221         bool was_interruptible = dev_priv->mm.interruptible;
2222         int ret;
2223
2224         /* Big Hammer, we also need to ensure that any pending
2225          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2226          * current scanout is retired before unpinning the old
2227          * framebuffer.
2228          *
2229          * This should only fail upon a hung GPU, in which case we
2230          * can safely continue.
2231          */
2232         dev_priv->mm.interruptible = false;
2233         ret = i915_gem_object_finish_gpu(obj);
2234         dev_priv->mm.interruptible = was_interruptible;
2235
2236         return ret;
2237 }
2238
2239 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2240 {
2241         struct drm_device *dev = crtc->dev;
2242         struct drm_i915_master_private *master_priv;
2243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2244
2245         if (!dev->primary->master)
2246                 return;
2247
2248         master_priv = dev->primary->master->driver_priv;
2249         if (!master_priv->sarea_priv)
2250                 return;
2251
2252         switch (intel_crtc->pipe) {
2253         case 0:
2254                 master_priv->sarea_priv->pipeA_x = x;
2255                 master_priv->sarea_priv->pipeA_y = y;
2256                 break;
2257         case 1:
2258                 master_priv->sarea_priv->pipeB_x = x;
2259                 master_priv->sarea_priv->pipeB_y = y;
2260                 break;
2261         default:
2262                 break;
2263         }
2264 }
2265
2266 static int
2267 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2268                     struct drm_framebuffer *fb)
2269 {
2270         struct drm_device *dev = crtc->dev;
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2273         struct drm_framebuffer *old_fb;
2274         int ret;
2275
2276         /* no fb bound */
2277         if (!fb) {
2278                 DRM_ERROR("No FB bound\n");
2279                 return 0;
2280         }
2281
2282         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2283                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2284                           plane_name(intel_crtc->plane),
2285                           INTEL_INFO(dev)->num_pipes);
2286                 return -EINVAL;
2287         }
2288
2289         mutex_lock(&dev->struct_mutex);
2290         ret = intel_pin_and_fence_fb_obj(dev,
2291                                          to_intel_framebuffer(fb)->obj,
2292                                          NULL);
2293         if (ret != 0) {
2294                 mutex_unlock(&dev->struct_mutex);
2295                 DRM_ERROR("pin & fence failed\n");
2296                 return ret;
2297         }
2298
2299         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2300         if (ret) {
2301                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2302                 mutex_unlock(&dev->struct_mutex);
2303                 DRM_ERROR("failed to update base address\n");
2304                 return ret;
2305         }
2306
2307         old_fb = crtc->fb;
2308         crtc->fb = fb;
2309         crtc->x = x;
2310         crtc->y = y;
2311
2312         if (old_fb) {
2313                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2314                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2315         }
2316
2317         intel_update_fbc(dev);
2318         mutex_unlock(&dev->struct_mutex);
2319
2320         intel_crtc_update_sarea_pos(crtc, x, y);
2321
2322         return 0;
2323 }
2324
2325 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2326 {
2327         struct drm_device *dev = crtc->dev;
2328         struct drm_i915_private *dev_priv = dev->dev_private;
2329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2330         int pipe = intel_crtc->pipe;
2331         u32 reg, temp;
2332
2333         /* enable normal train */
2334         reg = FDI_TX_CTL(pipe);
2335         temp = I915_READ(reg);
2336         if (IS_IVYBRIDGE(dev)) {
2337                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2338                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2339         } else {
2340                 temp &= ~FDI_LINK_TRAIN_NONE;
2341                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2342         }
2343         I915_WRITE(reg, temp);
2344
2345         reg = FDI_RX_CTL(pipe);
2346         temp = I915_READ(reg);
2347         if (HAS_PCH_CPT(dev)) {
2348                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2349                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2350         } else {
2351                 temp &= ~FDI_LINK_TRAIN_NONE;
2352                 temp |= FDI_LINK_TRAIN_NONE;
2353         }
2354         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2355
2356         /* wait one idle pattern time */
2357         POSTING_READ(reg);
2358         udelay(1000);
2359
2360         /* IVB wants error correction enabled */
2361         if (IS_IVYBRIDGE(dev))
2362                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2363                            FDI_FE_ERRC_ENABLE);
2364 }
2365
2366 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2367 {
2368         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2369 }
2370
2371 static void ivb_modeset_global_resources(struct drm_device *dev)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         struct intel_crtc *pipe_B_crtc =
2375                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2376         struct intel_crtc *pipe_C_crtc =
2377                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2378         uint32_t temp;
2379
2380         /*
2381          * When everything is off disable fdi C so that we could enable fdi B
2382          * with all lanes. Note that we don't care about enabled pipes without
2383          * an enabled pch encoder.
2384          */
2385         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2386             !pipe_has_enabled_pch(pipe_C_crtc)) {
2387                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2388                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2389
2390                 temp = I915_READ(SOUTH_CHICKEN1);
2391                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2392                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2393                 I915_WRITE(SOUTH_CHICKEN1, temp);
2394         }
2395 }
2396
2397 /* The FDI link training functions for ILK/Ibexpeak. */
2398 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2399 {
2400         struct drm_device *dev = crtc->dev;
2401         struct drm_i915_private *dev_priv = dev->dev_private;
2402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2403         int pipe = intel_crtc->pipe;
2404         int plane = intel_crtc->plane;
2405         u32 reg, temp, tries;
2406
2407         /* FDI needs bits from pipe & plane first */
2408         assert_pipe_enabled(dev_priv, pipe);
2409         assert_plane_enabled(dev_priv, plane);
2410
2411         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2412            for train result */
2413         reg = FDI_RX_IMR(pipe);
2414         temp = I915_READ(reg);
2415         temp &= ~FDI_RX_SYMBOL_LOCK;
2416         temp &= ~FDI_RX_BIT_LOCK;
2417         I915_WRITE(reg, temp);
2418         I915_READ(reg);
2419         udelay(150);
2420
2421         /* enable CPU FDI TX and PCH FDI RX */
2422         reg = FDI_TX_CTL(pipe);
2423         temp = I915_READ(reg);
2424         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2425         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2426         temp &= ~FDI_LINK_TRAIN_NONE;
2427         temp |= FDI_LINK_TRAIN_PATTERN_1;
2428         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2429
2430         reg = FDI_RX_CTL(pipe);
2431         temp = I915_READ(reg);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_1;
2434         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2435
2436         POSTING_READ(reg);
2437         udelay(150);
2438
2439         /* Ironlake workaround, enable clock pointer after FDI enable*/
2440         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2441         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2442                    FDI_RX_PHASE_SYNC_POINTER_EN);
2443
2444         reg = FDI_RX_IIR(pipe);
2445         for (tries = 0; tries < 5; tries++) {
2446                 temp = I915_READ(reg);
2447                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2448
2449                 if ((temp & FDI_RX_BIT_LOCK)) {
2450                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2451                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2452                         break;
2453                 }
2454         }
2455         if (tries == 5)
2456                 DRM_ERROR("FDI train 1 fail!\n");
2457
2458         /* Train 2 */
2459         reg = FDI_TX_CTL(pipe);
2460         temp = I915_READ(reg);
2461         temp &= ~FDI_LINK_TRAIN_NONE;
2462         temp |= FDI_LINK_TRAIN_PATTERN_2;
2463         I915_WRITE(reg, temp);
2464
2465         reg = FDI_RX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         temp &= ~FDI_LINK_TRAIN_NONE;
2468         temp |= FDI_LINK_TRAIN_PATTERN_2;
2469         I915_WRITE(reg, temp);
2470
2471         POSTING_READ(reg);
2472         udelay(150);
2473
2474         reg = FDI_RX_IIR(pipe);
2475         for (tries = 0; tries < 5; tries++) {
2476                 temp = I915_READ(reg);
2477                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2478
2479                 if (temp & FDI_RX_SYMBOL_LOCK) {
2480                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2481                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2482                         break;
2483                 }
2484         }
2485         if (tries == 5)
2486                 DRM_ERROR("FDI train 2 fail!\n");
2487
2488         DRM_DEBUG_KMS("FDI train done\n");
2489
2490 }
2491
2492 static const int snb_b_fdi_train_param[] = {
2493         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2494         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2495         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2496         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2497 };
2498
2499 /* The FDI link training functions for SNB/Cougarpoint. */
2500 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2501 {
2502         struct drm_device *dev = crtc->dev;
2503         struct drm_i915_private *dev_priv = dev->dev_private;
2504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2505         int pipe = intel_crtc->pipe;
2506         u32 reg, temp, i, retry;
2507
2508         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2509            for train result */
2510         reg = FDI_RX_IMR(pipe);
2511         temp = I915_READ(reg);
2512         temp &= ~FDI_RX_SYMBOL_LOCK;
2513         temp &= ~FDI_RX_BIT_LOCK;
2514         I915_WRITE(reg, temp);
2515
2516         POSTING_READ(reg);
2517         udelay(150);
2518
2519         /* enable CPU FDI TX and PCH FDI RX */
2520         reg = FDI_TX_CTL(pipe);
2521         temp = I915_READ(reg);
2522         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2523         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2524         temp &= ~FDI_LINK_TRAIN_NONE;
2525         temp |= FDI_LINK_TRAIN_PATTERN_1;
2526         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527         /* SNB-B */
2528         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2529         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2530
2531         I915_WRITE(FDI_RX_MISC(pipe),
2532                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2533
2534         reg = FDI_RX_CTL(pipe);
2535         temp = I915_READ(reg);
2536         if (HAS_PCH_CPT(dev)) {
2537                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2538                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2539         } else {
2540                 temp &= ~FDI_LINK_TRAIN_NONE;
2541                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2542         }
2543         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2544
2545         POSTING_READ(reg);
2546         udelay(150);
2547
2548         for (i = 0; i < 4; i++) {
2549                 reg = FDI_TX_CTL(pipe);
2550                 temp = I915_READ(reg);
2551                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2552                 temp |= snb_b_fdi_train_param[i];
2553                 I915_WRITE(reg, temp);
2554
2555                 POSTING_READ(reg);
2556                 udelay(500);
2557
2558                 for (retry = 0; retry < 5; retry++) {
2559                         reg = FDI_RX_IIR(pipe);
2560                         temp = I915_READ(reg);
2561                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2562                         if (temp & FDI_RX_BIT_LOCK) {
2563                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2564                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2565                                 break;
2566                         }
2567                         udelay(50);
2568                 }
2569                 if (retry < 5)
2570                         break;
2571         }
2572         if (i == 4)
2573                 DRM_ERROR("FDI train 1 fail!\n");
2574
2575         /* Train 2 */
2576         reg = FDI_TX_CTL(pipe);
2577         temp = I915_READ(reg);
2578         temp &= ~FDI_LINK_TRAIN_NONE;
2579         temp |= FDI_LINK_TRAIN_PATTERN_2;
2580         if (IS_GEN6(dev)) {
2581                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2582                 /* SNB-B */
2583                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2584         }
2585         I915_WRITE(reg, temp);
2586
2587         reg = FDI_RX_CTL(pipe);
2588         temp = I915_READ(reg);
2589         if (HAS_PCH_CPT(dev)) {
2590                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2591                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2592         } else {
2593                 temp &= ~FDI_LINK_TRAIN_NONE;
2594                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2595         }
2596         I915_WRITE(reg, temp);
2597
2598         POSTING_READ(reg);
2599         udelay(150);
2600
2601         for (i = 0; i < 4; i++) {
2602                 reg = FDI_TX_CTL(pipe);
2603                 temp = I915_READ(reg);
2604                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2605                 temp |= snb_b_fdi_train_param[i];
2606                 I915_WRITE(reg, temp);
2607
2608                 POSTING_READ(reg);
2609                 udelay(500);
2610
2611                 for (retry = 0; retry < 5; retry++) {
2612                         reg = FDI_RX_IIR(pipe);
2613                         temp = I915_READ(reg);
2614                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2615                         if (temp & FDI_RX_SYMBOL_LOCK) {
2616                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2617                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2618                                 break;
2619                         }
2620                         udelay(50);
2621                 }
2622                 if (retry < 5)
2623                         break;
2624         }
2625         if (i == 4)
2626                 DRM_ERROR("FDI train 2 fail!\n");
2627
2628         DRM_DEBUG_KMS("FDI train done.\n");
2629 }
2630
2631 /* Manual link training for Ivy Bridge A0 parts */
2632 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2633 {
2634         struct drm_device *dev = crtc->dev;
2635         struct drm_i915_private *dev_priv = dev->dev_private;
2636         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2637         int pipe = intel_crtc->pipe;
2638         u32 reg, temp, i;
2639
2640         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2641            for train result */
2642         reg = FDI_RX_IMR(pipe);
2643         temp = I915_READ(reg);
2644         temp &= ~FDI_RX_SYMBOL_LOCK;
2645         temp &= ~FDI_RX_BIT_LOCK;
2646         I915_WRITE(reg, temp);
2647
2648         POSTING_READ(reg);
2649         udelay(150);
2650
2651         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2652                       I915_READ(FDI_RX_IIR(pipe)));
2653
2654         /* enable CPU FDI TX and PCH FDI RX */
2655         reg = FDI_TX_CTL(pipe);
2656         temp = I915_READ(reg);
2657         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2658         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2659         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2660         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2661         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2662         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2663         temp |= FDI_COMPOSITE_SYNC;
2664         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2665
2666         I915_WRITE(FDI_RX_MISC(pipe),
2667                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2668
2669         reg = FDI_RX_CTL(pipe);
2670         temp = I915_READ(reg);
2671         temp &= ~FDI_LINK_TRAIN_AUTO;
2672         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2674         temp |= FDI_COMPOSITE_SYNC;
2675         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2676
2677         POSTING_READ(reg);
2678         udelay(150);
2679
2680         for (i = 0; i < 4; i++) {
2681                 reg = FDI_TX_CTL(pipe);
2682                 temp = I915_READ(reg);
2683                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2684                 temp |= snb_b_fdi_train_param[i];
2685                 I915_WRITE(reg, temp);
2686
2687                 POSTING_READ(reg);
2688                 udelay(500);
2689
2690                 reg = FDI_RX_IIR(pipe);
2691                 temp = I915_READ(reg);
2692                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2693
2694                 if (temp & FDI_RX_BIT_LOCK ||
2695                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2696                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2697                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2698                         break;
2699                 }
2700         }
2701         if (i == 4)
2702                 DRM_ERROR("FDI train 1 fail!\n");
2703
2704         /* Train 2 */
2705         reg = FDI_TX_CTL(pipe);
2706         temp = I915_READ(reg);
2707         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2708         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2709         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2710         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2711         I915_WRITE(reg, temp);
2712
2713         reg = FDI_RX_CTL(pipe);
2714         temp = I915_READ(reg);
2715         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2716         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2717         I915_WRITE(reg, temp);
2718
2719         POSTING_READ(reg);
2720         udelay(150);
2721
2722         for (i = 0; i < 4; i++) {
2723                 reg = FDI_TX_CTL(pipe);
2724                 temp = I915_READ(reg);
2725                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2726                 temp |= snb_b_fdi_train_param[i];
2727                 I915_WRITE(reg, temp);
2728
2729                 POSTING_READ(reg);
2730                 udelay(500);
2731
2732                 reg = FDI_RX_IIR(pipe);
2733                 temp = I915_READ(reg);
2734                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2735
2736                 if (temp & FDI_RX_SYMBOL_LOCK) {
2737                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2738                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2739                         break;
2740                 }
2741         }
2742         if (i == 4)
2743                 DRM_ERROR("FDI train 2 fail!\n");
2744
2745         DRM_DEBUG_KMS("FDI train done.\n");
2746 }
2747
2748 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2749 {
2750         struct drm_device *dev = intel_crtc->base.dev;
2751         struct drm_i915_private *dev_priv = dev->dev_private;
2752         int pipe = intel_crtc->pipe;
2753         u32 reg, temp;
2754
2755
2756         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2757         reg = FDI_RX_CTL(pipe);
2758         temp = I915_READ(reg);
2759         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2760         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2761         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2762         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2763
2764         POSTING_READ(reg);
2765         udelay(200);
2766
2767         /* Switch from Rawclk to PCDclk */
2768         temp = I915_READ(reg);
2769         I915_WRITE(reg, temp | FDI_PCDCLK);
2770
2771         POSTING_READ(reg);
2772         udelay(200);
2773
2774         /* Enable CPU FDI TX PLL, always on for Ironlake */
2775         reg = FDI_TX_CTL(pipe);
2776         temp = I915_READ(reg);
2777         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2778                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2779
2780                 POSTING_READ(reg);
2781                 udelay(100);
2782         }
2783 }
2784
2785 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2786 {
2787         struct drm_device *dev = intel_crtc->base.dev;
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         int pipe = intel_crtc->pipe;
2790         u32 reg, temp;
2791
2792         /* Switch from PCDclk to Rawclk */
2793         reg = FDI_RX_CTL(pipe);
2794         temp = I915_READ(reg);
2795         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2796
2797         /* Disable CPU FDI TX PLL */
2798         reg = FDI_TX_CTL(pipe);
2799         temp = I915_READ(reg);
2800         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2801
2802         POSTING_READ(reg);
2803         udelay(100);
2804
2805         reg = FDI_RX_CTL(pipe);
2806         temp = I915_READ(reg);
2807         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2808
2809         /* Wait for the clocks to turn off. */
2810         POSTING_READ(reg);
2811         udelay(100);
2812 }
2813
2814 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2815 {
2816         struct drm_device *dev = crtc->dev;
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819         int pipe = intel_crtc->pipe;
2820         u32 reg, temp;
2821
2822         /* disable CPU FDI tx and PCH FDI rx */
2823         reg = FDI_TX_CTL(pipe);
2824         temp = I915_READ(reg);
2825         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2826         POSTING_READ(reg);
2827
2828         reg = FDI_RX_CTL(pipe);
2829         temp = I915_READ(reg);
2830         temp &= ~(0x7 << 16);
2831         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2832         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2833
2834         POSTING_READ(reg);
2835         udelay(100);
2836
2837         /* Ironlake workaround, disable clock pointer after downing FDI */
2838         if (HAS_PCH_IBX(dev)) {
2839                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2840         }
2841
2842         /* still set train pattern 1 */
2843         reg = FDI_TX_CTL(pipe);
2844         temp = I915_READ(reg);
2845         temp &= ~FDI_LINK_TRAIN_NONE;
2846         temp |= FDI_LINK_TRAIN_PATTERN_1;
2847         I915_WRITE(reg, temp);
2848
2849         reg = FDI_RX_CTL(pipe);
2850         temp = I915_READ(reg);
2851         if (HAS_PCH_CPT(dev)) {
2852                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2853                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2854         } else {
2855                 temp &= ~FDI_LINK_TRAIN_NONE;
2856                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2857         }
2858         /* BPC in FDI rx is consistent with that in PIPECONF */
2859         temp &= ~(0x07 << 16);
2860         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2861         I915_WRITE(reg, temp);
2862
2863         POSTING_READ(reg);
2864         udelay(100);
2865 }
2866
2867 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2868 {
2869         struct drm_device *dev = crtc->dev;
2870         struct drm_i915_private *dev_priv = dev->dev_private;
2871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2872         unsigned long flags;
2873         bool pending;
2874
2875         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2876             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2877                 return false;
2878
2879         spin_lock_irqsave(&dev->event_lock, flags);
2880         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2881         spin_unlock_irqrestore(&dev->event_lock, flags);
2882
2883         return pending;
2884 }
2885
2886 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2887 {
2888         struct drm_device *dev = crtc->dev;
2889         struct drm_i915_private *dev_priv = dev->dev_private;
2890
2891         if (crtc->fb == NULL)
2892                 return;
2893
2894         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2895
2896         wait_event(dev_priv->pending_flip_queue,
2897                    !intel_crtc_has_pending_flip(crtc));
2898
2899         mutex_lock(&dev->struct_mutex);
2900         intel_finish_fb(crtc->fb);
2901         mutex_unlock(&dev->struct_mutex);
2902 }
2903
2904 /* Program iCLKIP clock to the desired frequency */
2905 static void lpt_program_iclkip(struct drm_crtc *crtc)
2906 {
2907         struct drm_device *dev = crtc->dev;
2908         struct drm_i915_private *dev_priv = dev->dev_private;
2909         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2910         u32 temp;
2911
2912         mutex_lock(&dev_priv->dpio_lock);
2913
2914         /* It is necessary to ungate the pixclk gate prior to programming
2915          * the divisors, and gate it back when it is done.
2916          */
2917         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2918
2919         /* Disable SSCCTL */
2920         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2921                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2922                                 SBI_SSCCTL_DISABLE,
2923                         SBI_ICLK);
2924
2925         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2926         if (crtc->mode.clock == 20000) {
2927                 auxdiv = 1;
2928                 divsel = 0x41;
2929                 phaseinc = 0x20;
2930         } else {
2931                 /* The iCLK virtual clock root frequency is in MHz,
2932                  * but the crtc->mode.clock in in KHz. To get the divisors,
2933                  * it is necessary to divide one by another, so we
2934                  * convert the virtual clock precision to KHz here for higher
2935                  * precision.
2936                  */
2937                 u32 iclk_virtual_root_freq = 172800 * 1000;
2938                 u32 iclk_pi_range = 64;
2939                 u32 desired_divisor, msb_divisor_value, pi_value;
2940
2941                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2942                 msb_divisor_value = desired_divisor / iclk_pi_range;
2943                 pi_value = desired_divisor % iclk_pi_range;
2944
2945                 auxdiv = 0;
2946                 divsel = msb_divisor_value - 2;
2947                 phaseinc = pi_value;
2948         }
2949
2950         /* This should not happen with any sane values */
2951         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2952                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2953         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2954                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2955
2956         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2957                         crtc->mode.clock,
2958                         auxdiv,
2959                         divsel,
2960                         phasedir,
2961                         phaseinc);
2962
2963         /* Program SSCDIVINTPHASE6 */
2964         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2965         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2966         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2967         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2968         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2969         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2970         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2971         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2972
2973         /* Program SSCAUXDIV */
2974         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2975         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2976         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2977         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2978
2979         /* Enable modulator and associated divider */
2980         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2981         temp &= ~SBI_SSCCTL_DISABLE;
2982         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2983
2984         /* Wait for initialization time */
2985         udelay(24);
2986
2987         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2988
2989         mutex_unlock(&dev_priv->dpio_lock);
2990 }
2991
2992 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2993                                                 enum pipe pch_transcoder)
2994 {
2995         struct drm_device *dev = crtc->base.dev;
2996         struct drm_i915_private *dev_priv = dev->dev_private;
2997         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2998
2999         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3000                    I915_READ(HTOTAL(cpu_transcoder)));
3001         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3002                    I915_READ(HBLANK(cpu_transcoder)));
3003         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3004                    I915_READ(HSYNC(cpu_transcoder)));
3005
3006         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3007                    I915_READ(VTOTAL(cpu_transcoder)));
3008         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3009                    I915_READ(VBLANK(cpu_transcoder)));
3010         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3011                    I915_READ(VSYNC(cpu_transcoder)));
3012         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3013                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3014 }
3015
3016 /*
3017  * Enable PCH resources required for PCH ports:
3018  *   - PCH PLLs
3019  *   - FDI training & RX/TX
3020  *   - update transcoder timings
3021  *   - DP transcoding bits
3022  *   - transcoder
3023  */
3024 static void ironlake_pch_enable(struct drm_crtc *crtc)
3025 {
3026         struct drm_device *dev = crtc->dev;
3027         struct drm_i915_private *dev_priv = dev->dev_private;
3028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3029         int pipe = intel_crtc->pipe;
3030         u32 reg, temp;
3031
3032         assert_pch_transcoder_disabled(dev_priv, pipe);
3033
3034         /* Write the TU size bits before fdi link training, so that error
3035          * detection works. */
3036         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3037                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3038
3039         /* For PCH output, training FDI link */
3040         dev_priv->display.fdi_link_train(crtc);
3041
3042         /* XXX: pch pll's can be enabled any time before we enable the PCH
3043          * transcoder, and we actually should do this to not upset any PCH
3044          * transcoder that already use the clock when we share it.
3045          *
3046          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3047          * unconditionally resets the pll - we need that to have the right LVDS
3048          * enable sequence. */
3049         ironlake_enable_pch_pll(intel_crtc);
3050
3051         if (HAS_PCH_CPT(dev)) {
3052                 u32 sel;
3053
3054                 temp = I915_READ(PCH_DPLL_SEL);
3055                 switch (pipe) {
3056                 default:
3057                 case 0:
3058                         temp |= TRANSA_DPLL_ENABLE;
3059                         sel = TRANSA_DPLLB_SEL;
3060                         break;
3061                 case 1:
3062                         temp |= TRANSB_DPLL_ENABLE;
3063                         sel = TRANSB_DPLLB_SEL;
3064                         break;
3065                 case 2:
3066                         temp |= TRANSC_DPLL_ENABLE;
3067                         sel = TRANSC_DPLLB_SEL;
3068                         break;
3069                 }
3070                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3071                         temp |= sel;
3072                 else
3073                         temp &= ~sel;
3074                 I915_WRITE(PCH_DPLL_SEL, temp);
3075         }
3076
3077         /* set transcoder timing, panel must allow it */
3078         assert_panel_unlocked(dev_priv, pipe);
3079         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3080
3081         intel_fdi_normal_train(crtc);
3082
3083         /* For PCH DP, enable TRANS_DP_CTL */
3084         if (HAS_PCH_CPT(dev) &&
3085             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3086              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3087                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3088                 reg = TRANS_DP_CTL(pipe);
3089                 temp = I915_READ(reg);
3090                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3091                           TRANS_DP_SYNC_MASK |
3092                           TRANS_DP_BPC_MASK);
3093                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3094                          TRANS_DP_ENH_FRAMING);
3095                 temp |= bpc << 9; /* same format but at 11:9 */
3096
3097                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3098                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3099                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3100                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3101
3102                 switch (intel_trans_dp_port_sel(crtc)) {
3103                 case PCH_DP_B:
3104                         temp |= TRANS_DP_PORT_SEL_B;
3105                         break;
3106                 case PCH_DP_C:
3107                         temp |= TRANS_DP_PORT_SEL_C;
3108                         break;
3109                 case PCH_DP_D:
3110                         temp |= TRANS_DP_PORT_SEL_D;
3111                         break;
3112                 default:
3113                         BUG();
3114                 }
3115
3116                 I915_WRITE(reg, temp);
3117         }
3118
3119         ironlake_enable_pch_transcoder(dev_priv, pipe);
3120 }
3121
3122 static void lpt_pch_enable(struct drm_crtc *crtc)
3123 {
3124         struct drm_device *dev = crtc->dev;
3125         struct drm_i915_private *dev_priv = dev->dev_private;
3126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3127         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3128
3129         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3130
3131         lpt_program_iclkip(crtc);
3132
3133         /* Set transcoder timing. */
3134         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3135
3136         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3137 }
3138
3139 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3140 {
3141         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3142
3143         if (pll == NULL)
3144                 return;
3145
3146         if (pll->refcount == 0) {
3147                 WARN(1, "bad PCH PLL refcount\n");
3148                 return;
3149         }
3150
3151         --pll->refcount;
3152         intel_crtc->pch_pll = NULL;
3153 }
3154
3155 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3156 {
3157         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3158         struct intel_pch_pll *pll;
3159         int i;
3160
3161         pll = intel_crtc->pch_pll;
3162         if (pll) {
3163                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3164                               intel_crtc->base.base.id, pll->pll_reg);
3165                 goto prepare;
3166         }
3167
3168         if (HAS_PCH_IBX(dev_priv->dev)) {
3169                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3170                 i = intel_crtc->pipe;
3171                 pll = &dev_priv->pch_plls[i];
3172
3173                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3174                               intel_crtc->base.base.id, pll->pll_reg);
3175
3176                 goto found;
3177         }
3178
3179         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3180                 pll = &dev_priv->pch_plls[i];
3181
3182                 /* Only want to check enabled timings first */
3183                 if (pll->refcount == 0)
3184                         continue;
3185
3186                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3187                     fp == I915_READ(pll->fp0_reg)) {
3188                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3189                                       intel_crtc->base.base.id,
3190                                       pll->pll_reg, pll->refcount, pll->active);
3191
3192                         goto found;
3193                 }
3194         }
3195
3196         /* Ok no matching timings, maybe there's a free one? */
3197         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3198                 pll = &dev_priv->pch_plls[i];
3199                 if (pll->refcount == 0) {
3200                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3201                                       intel_crtc->base.base.id, pll->pll_reg);
3202                         goto found;
3203                 }
3204         }
3205
3206         return NULL;
3207
3208 found:
3209         intel_crtc->pch_pll = pll;
3210         pll->refcount++;
3211         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3212 prepare: /* separate function? */
3213         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3214
3215         /* Wait for the clocks to stabilize before rewriting the regs */
3216         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3217         POSTING_READ(pll->pll_reg);
3218         udelay(150);
3219
3220         I915_WRITE(pll->fp0_reg, fp);
3221         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3222         pll->on = false;
3223         return pll;
3224 }
3225
3226 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3227 {
3228         struct drm_i915_private *dev_priv = dev->dev_private;
3229         int dslreg = PIPEDSL(pipe);
3230         u32 temp;
3231
3232         temp = I915_READ(dslreg);
3233         udelay(500);
3234         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3235                 if (wait_for(I915_READ(dslreg) != temp, 5))
3236                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3237         }
3238 }
3239
3240 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3241 {
3242         struct drm_device *dev = crtc->base.dev;
3243         struct drm_i915_private *dev_priv = dev->dev_private;
3244         int pipe = crtc->pipe;
3245
3246         if (crtc->config.pch_pfit.size) {
3247                 /* Force use of hard-coded filter coefficients
3248                  * as some pre-programmed values are broken,
3249                  * e.g. x201.
3250                  */
3251                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3252                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3253                                                  PF_PIPE_SEL_IVB(pipe));
3254                 else
3255                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3256                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3257                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3258         }
3259 }
3260
3261 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3262 {
3263         struct drm_device *dev = crtc->dev;
3264         struct drm_i915_private *dev_priv = dev->dev_private;
3265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3266         struct intel_encoder *encoder;
3267         int pipe = intel_crtc->pipe;
3268         int plane = intel_crtc->plane;
3269         u32 temp;
3270
3271         WARN_ON(!crtc->enabled);
3272
3273         if (intel_crtc->active)
3274                 return;
3275
3276         intel_crtc->active = true;
3277
3278         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3279         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3280
3281         intel_update_watermarks(dev);
3282
3283         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3284                 temp = I915_READ(PCH_LVDS);
3285                 if ((temp & LVDS_PORT_EN) == 0)
3286                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3287         }
3288
3289
3290         if (intel_crtc->config.has_pch_encoder) {
3291                 /* Note: FDI PLL enabling _must_ be done before we enable the
3292                  * cpu pipes, hence this is separate from all the other fdi/pch
3293                  * enabling. */
3294                 ironlake_fdi_pll_enable(intel_crtc);
3295         } else {
3296                 assert_fdi_tx_disabled(dev_priv, pipe);
3297                 assert_fdi_rx_disabled(dev_priv, pipe);
3298         }
3299
3300         for_each_encoder_on_crtc(dev, crtc, encoder)
3301                 if (encoder->pre_enable)
3302                         encoder->pre_enable(encoder);
3303
3304         /* Enable panel fitting for LVDS */
3305         ironlake_pfit_enable(intel_crtc);
3306
3307         /*
3308          * On ILK+ LUT must be loaded before the pipe is running but with
3309          * clocks enabled
3310          */
3311         intel_crtc_load_lut(crtc);
3312
3313         intel_enable_pipe(dev_priv, pipe,
3314                           intel_crtc->config.has_pch_encoder);
3315         intel_enable_plane(dev_priv, plane, pipe);
3316
3317         if (intel_crtc->config.has_pch_encoder)
3318                 ironlake_pch_enable(crtc);
3319
3320         mutex_lock(&dev->struct_mutex);
3321         intel_update_fbc(dev);
3322         mutex_unlock(&dev->struct_mutex);
3323
3324         intel_crtc_update_cursor(crtc, true);
3325
3326         for_each_encoder_on_crtc(dev, crtc, encoder)
3327                 encoder->enable(encoder);
3328
3329         if (HAS_PCH_CPT(dev))
3330                 cpt_verify_modeset(dev, intel_crtc->pipe);
3331
3332         /*
3333          * There seems to be a race in PCH platform hw (at least on some
3334          * outputs) where an enabled pipe still completes any pageflip right
3335          * away (as if the pipe is off) instead of waiting for vblank. As soon
3336          * as the first vblank happend, everything works as expected. Hence just
3337          * wait for one vblank before returning to avoid strange things
3338          * happening.
3339          */
3340         intel_wait_for_vblank(dev, intel_crtc->pipe);
3341 }
3342
3343 static void haswell_crtc_enable(struct drm_crtc *crtc)
3344 {
3345         struct drm_device *dev = crtc->dev;
3346         struct drm_i915_private *dev_priv = dev->dev_private;
3347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3348         struct intel_encoder *encoder;
3349         int pipe = intel_crtc->pipe;
3350         int plane = intel_crtc->plane;
3351
3352         WARN_ON(!crtc->enabled);
3353
3354         if (intel_crtc->active)
3355                 return;
3356
3357         intel_crtc->active = true;
3358
3359         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3360         if (intel_crtc->config.has_pch_encoder)
3361                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3362
3363         intel_update_watermarks(dev);
3364
3365         if (intel_crtc->config.has_pch_encoder)
3366                 dev_priv->display.fdi_link_train(crtc);
3367
3368         for_each_encoder_on_crtc(dev, crtc, encoder)
3369                 if (encoder->pre_enable)
3370                         encoder->pre_enable(encoder);
3371
3372         intel_ddi_enable_pipe_clock(intel_crtc);
3373
3374         /* Enable panel fitting for eDP */
3375         ironlake_pfit_enable(intel_crtc);
3376
3377         /*
3378          * On ILK+ LUT must be loaded before the pipe is running but with
3379          * clocks enabled
3380          */
3381         intel_crtc_load_lut(crtc);
3382
3383         intel_ddi_set_pipe_settings(crtc);
3384         intel_ddi_enable_transcoder_func(crtc);
3385
3386         intel_enable_pipe(dev_priv, pipe,
3387                           intel_crtc->config.has_pch_encoder);
3388         intel_enable_plane(dev_priv, plane, pipe);
3389
3390         if (intel_crtc->config.has_pch_encoder)
3391                 lpt_pch_enable(crtc);
3392
3393         mutex_lock(&dev->struct_mutex);
3394         intel_update_fbc(dev);
3395         mutex_unlock(&dev->struct_mutex);
3396
3397         intel_crtc_update_cursor(crtc, true);
3398
3399         for_each_encoder_on_crtc(dev, crtc, encoder)
3400                 encoder->enable(encoder);
3401
3402         /*
3403          * There seems to be a race in PCH platform hw (at least on some
3404          * outputs) where an enabled pipe still completes any pageflip right
3405          * away (as if the pipe is off) instead of waiting for vblank. As soon
3406          * as the first vblank happend, everything works as expected. Hence just
3407          * wait for one vblank before returning to avoid strange things
3408          * happening.
3409          */
3410         intel_wait_for_vblank(dev, intel_crtc->pipe);
3411 }
3412
3413 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3414 {
3415         struct drm_device *dev = crtc->dev;
3416         struct drm_i915_private *dev_priv = dev->dev_private;
3417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3418         struct intel_encoder *encoder;
3419         int pipe = intel_crtc->pipe;
3420         int plane = intel_crtc->plane;
3421         u32 reg, temp;
3422
3423
3424         if (!intel_crtc->active)
3425                 return;
3426
3427         for_each_encoder_on_crtc(dev, crtc, encoder)
3428                 encoder->disable(encoder);
3429
3430         intel_crtc_wait_for_pending_flips(crtc);
3431         drm_vblank_off(dev, pipe);
3432         intel_crtc_update_cursor(crtc, false);
3433
3434         intel_disable_plane(dev_priv, plane, pipe);
3435
3436         if (dev_priv->cfb_plane == plane)
3437                 intel_disable_fbc(dev);
3438
3439         intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3440         intel_disable_pipe(dev_priv, pipe);
3441
3442         /* Disable PF */
3443         I915_WRITE(PF_CTL(pipe), 0);
3444         I915_WRITE(PF_WIN_SZ(pipe), 0);
3445
3446         for_each_encoder_on_crtc(dev, crtc, encoder)
3447                 if (encoder->post_disable)
3448                         encoder->post_disable(encoder);
3449
3450         ironlake_fdi_disable(crtc);
3451
3452         ironlake_disable_pch_transcoder(dev_priv, pipe);
3453         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3454
3455         if (HAS_PCH_CPT(dev)) {
3456                 /* disable TRANS_DP_CTL */
3457                 reg = TRANS_DP_CTL(pipe);
3458                 temp = I915_READ(reg);
3459                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3460                 temp |= TRANS_DP_PORT_SEL_NONE;
3461                 I915_WRITE(reg, temp);
3462
3463                 /* disable DPLL_SEL */
3464                 temp = I915_READ(PCH_DPLL_SEL);
3465                 switch (pipe) {
3466                 case 0:
3467                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3468                         break;
3469                 case 1:
3470                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3471                         break;
3472                 case 2:
3473                         /* C shares PLL A or B */
3474                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3475                         break;
3476                 default:
3477                         BUG(); /* wtf */
3478                 }
3479                 I915_WRITE(PCH_DPLL_SEL, temp);
3480         }
3481
3482         /* disable PCH DPLL */
3483         intel_disable_pch_pll(intel_crtc);
3484
3485         ironlake_fdi_pll_disable(intel_crtc);
3486
3487         intel_crtc->active = false;
3488         intel_update_watermarks(dev);
3489
3490         mutex_lock(&dev->struct_mutex);
3491         intel_update_fbc(dev);
3492         mutex_unlock(&dev->struct_mutex);
3493 }
3494
3495 static void haswell_crtc_disable(struct drm_crtc *crtc)
3496 {
3497         struct drm_device *dev = crtc->dev;
3498         struct drm_i915_private *dev_priv = dev->dev_private;
3499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3500         struct intel_encoder *encoder;
3501         int pipe = intel_crtc->pipe;
3502         int plane = intel_crtc->plane;
3503         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3504
3505         if (!intel_crtc->active)
3506                 return;
3507
3508         for_each_encoder_on_crtc(dev, crtc, encoder)
3509                 encoder->disable(encoder);
3510
3511         intel_crtc_wait_for_pending_flips(crtc);
3512         drm_vblank_off(dev, pipe);
3513         intel_crtc_update_cursor(crtc, false);
3514
3515         /* FBC must be disabled before disabling the plane on HSW. */
3516         if (dev_priv->cfb_plane == plane)
3517                 intel_disable_fbc(dev);
3518
3519         intel_disable_plane(dev_priv, plane, pipe);
3520
3521         if (intel_crtc->config.has_pch_encoder)
3522                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3523         intel_disable_pipe(dev_priv, pipe);
3524
3525         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3526
3527         /* XXX: Once we have proper panel fitter state tracking implemented with
3528          * hardware state read/check support we should switch to only disable
3529          * the panel fitter when we know it's used. */
3530         if (intel_display_power_enabled(dev,
3531                                         POWER_DOMAIN_PIPE_PANEL_FITTER(pipe))) {
3532                 I915_WRITE(PF_CTL(pipe), 0);
3533                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3534         }
3535
3536         intel_ddi_disable_pipe_clock(intel_crtc);
3537
3538         for_each_encoder_on_crtc(dev, crtc, encoder)
3539                 if (encoder->post_disable)
3540                         encoder->post_disable(encoder);
3541
3542         if (intel_crtc->config.has_pch_encoder) {
3543                 lpt_disable_pch_transcoder(dev_priv);
3544                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3545                 intel_ddi_fdi_disable(crtc);
3546         }
3547
3548         intel_crtc->active = false;
3549         intel_update_watermarks(dev);
3550
3551         mutex_lock(&dev->struct_mutex);
3552         intel_update_fbc(dev);
3553         mutex_unlock(&dev->struct_mutex);
3554 }
3555
3556 static void ironlake_crtc_off(struct drm_crtc *crtc)
3557 {
3558         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559         intel_put_pch_pll(intel_crtc);
3560 }
3561
3562 static void haswell_crtc_off(struct drm_crtc *crtc)
3563 {
3564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565
3566         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3567          * start using it. */
3568         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3569
3570         intel_ddi_put_crtc_pll(crtc);
3571 }
3572
3573 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3574 {
3575         if (!enable && intel_crtc->overlay) {
3576                 struct drm_device *dev = intel_crtc->base.dev;
3577                 struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579                 mutex_lock(&dev->struct_mutex);
3580                 dev_priv->mm.interruptible = false;
3581                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3582                 dev_priv->mm.interruptible = true;
3583                 mutex_unlock(&dev->struct_mutex);
3584         }
3585
3586         /* Let userspace switch the overlay on again. In most cases userspace
3587          * has to recompute where to put it anyway.
3588          */
3589 }
3590
3591 /**
3592  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3593  * cursor plane briefly if not already running after enabling the display
3594  * plane.
3595  * This workaround avoids occasional blank screens when self refresh is
3596  * enabled.
3597  */
3598 static void
3599 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3600 {
3601         u32 cntl = I915_READ(CURCNTR(pipe));
3602
3603         if ((cntl & CURSOR_MODE) == 0) {
3604                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3605
3606                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3607                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3608                 intel_wait_for_vblank(dev_priv->dev, pipe);
3609                 I915_WRITE(CURCNTR(pipe), cntl);
3610                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3611                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3612         }
3613 }
3614
3615 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3616 {
3617         struct drm_device *dev = crtc->base.dev;
3618         struct drm_i915_private *dev_priv = dev->dev_private;
3619         struct intel_crtc_config *pipe_config = &crtc->config;
3620
3621         if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
3622               intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
3623                 return;
3624
3625         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3626         assert_pipe_disabled(dev_priv, crtc->pipe);
3627
3628         /*
3629          * Enable automatic panel scaling so that non-native modes
3630          * fill the screen.  The panel fitter should only be
3631          * adjusted whilst the pipe is disabled, according to
3632          * register description and PRM.
3633          */
3634         DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
3635                       pipe_config->gmch_pfit.control,
3636                       pipe_config->gmch_pfit.pgm_ratios);
3637
3638         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3639         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3640
3641         /* Border color in case we don't scale up to the full screen. Black by
3642          * default, change to something else for debugging. */
3643         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3644 }
3645
3646 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3647 {
3648         struct drm_device *dev = crtc->dev;
3649         struct drm_i915_private *dev_priv = dev->dev_private;
3650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651         struct intel_encoder *encoder;
3652         int pipe = intel_crtc->pipe;
3653         int plane = intel_crtc->plane;
3654
3655         WARN_ON(!crtc->enabled);
3656
3657         if (intel_crtc->active)
3658                 return;
3659
3660         intel_crtc->active = true;
3661         intel_update_watermarks(dev);
3662
3663         mutex_lock(&dev_priv->dpio_lock);
3664
3665         for_each_encoder_on_crtc(dev, crtc, encoder)
3666                 if (encoder->pre_pll_enable)
3667                         encoder->pre_pll_enable(encoder);
3668
3669         intel_enable_pll(dev_priv, pipe);
3670
3671         for_each_encoder_on_crtc(dev, crtc, encoder)
3672                 if (encoder->pre_enable)
3673                         encoder->pre_enable(encoder);
3674
3675         /* VLV wants encoder enabling _before_ the pipe is up. */
3676         for_each_encoder_on_crtc(dev, crtc, encoder)
3677                 encoder->enable(encoder);
3678
3679         /* Enable panel fitting for eDP */
3680         i9xx_pfit_enable(intel_crtc);
3681
3682         intel_enable_pipe(dev_priv, pipe, false);
3683         intel_enable_plane(dev_priv, plane, pipe);
3684
3685         intel_crtc_load_lut(crtc);
3686         intel_update_fbc(dev);
3687
3688         /* Give the overlay scaler a chance to enable if it's on this pipe */
3689         intel_crtc_dpms_overlay(intel_crtc, true);
3690         intel_crtc_update_cursor(crtc, true);
3691
3692         mutex_unlock(&dev_priv->dpio_lock);
3693 }
3694
3695 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3696 {
3697         struct drm_device *dev = crtc->dev;
3698         struct drm_i915_private *dev_priv = dev->dev_private;
3699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3700         struct intel_encoder *encoder;
3701         int pipe = intel_crtc->pipe;
3702         int plane = intel_crtc->plane;
3703
3704         WARN_ON(!crtc->enabled);
3705
3706         if (intel_crtc->active)
3707                 return;
3708
3709         intel_crtc->active = true;
3710         intel_update_watermarks(dev);
3711
3712         intel_enable_pll(dev_priv, pipe);
3713
3714         for_each_encoder_on_crtc(dev, crtc, encoder)
3715                 if (encoder->pre_enable)
3716                         encoder->pre_enable(encoder);
3717
3718         /* Enable panel fitting for LVDS */
3719         i9xx_pfit_enable(intel_crtc);
3720
3721         intel_enable_pipe(dev_priv, pipe, false);
3722         intel_enable_plane(dev_priv, plane, pipe);
3723         if (IS_G4X(dev))
3724                 g4x_fixup_plane(dev_priv, pipe);
3725
3726         intel_crtc_load_lut(crtc);
3727         intel_update_fbc(dev);
3728
3729         /* Give the overlay scaler a chance to enable if it's on this pipe */
3730         intel_crtc_dpms_overlay(intel_crtc, true);
3731         intel_crtc_update_cursor(crtc, true);
3732
3733         for_each_encoder_on_crtc(dev, crtc, encoder)
3734                 encoder->enable(encoder);
3735 }
3736
3737 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->base.dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         enum pipe pipe;
3742         uint32_t pctl = I915_READ(PFIT_CONTROL);
3743
3744         assert_pipe_disabled(dev_priv, crtc->pipe);
3745
3746         if (INTEL_INFO(dev)->gen >= 4)
3747                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3748         else
3749                 pipe = PIPE_B;
3750
3751         if (pipe == crtc->pipe) {
3752                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3753                 I915_WRITE(PFIT_CONTROL, 0);
3754         }
3755 }
3756
3757 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3758 {
3759         struct drm_device *dev = crtc->dev;
3760         struct drm_i915_private *dev_priv = dev->dev_private;
3761         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3762         struct intel_encoder *encoder;
3763         int pipe = intel_crtc->pipe;
3764         int plane = intel_crtc->plane;
3765
3766         if (!intel_crtc->active)
3767                 return;
3768
3769         for_each_encoder_on_crtc(dev, crtc, encoder)
3770                 encoder->disable(encoder);
3771
3772         /* Give the overlay scaler a chance to disable if it's on this pipe */
3773         intel_crtc_wait_for_pending_flips(crtc);
3774         drm_vblank_off(dev, pipe);
3775         intel_crtc_dpms_overlay(intel_crtc, false);
3776         intel_crtc_update_cursor(crtc, false);
3777
3778         if (dev_priv->cfb_plane == plane)
3779                 intel_disable_fbc(dev);
3780
3781         intel_disable_plane(dev_priv, plane, pipe);
3782         intel_disable_pipe(dev_priv, pipe);
3783
3784         i9xx_pfit_disable(intel_crtc);
3785
3786         for_each_encoder_on_crtc(dev, crtc, encoder)
3787                 if (encoder->post_disable)
3788                         encoder->post_disable(encoder);
3789
3790         intel_disable_pll(dev_priv, pipe);
3791
3792         intel_crtc->active = false;
3793         intel_update_fbc(dev);
3794         intel_update_watermarks(dev);
3795 }
3796
3797 static void i9xx_crtc_off(struct drm_crtc *crtc)
3798 {
3799 }
3800
3801 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3802                                     bool enabled)
3803 {
3804         struct drm_device *dev = crtc->dev;
3805         struct drm_i915_master_private *master_priv;
3806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3807         int pipe = intel_crtc->pipe;
3808
3809         if (!dev->primary->master)
3810                 return;
3811
3812         master_priv = dev->primary->master->driver_priv;
3813         if (!master_priv->sarea_priv)
3814                 return;
3815
3816         switch (pipe) {
3817         case 0:
3818                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3819                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3820                 break;
3821         case 1:
3822                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3823                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3824                 break;
3825         default:
3826                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3827                 break;
3828         }
3829 }
3830
3831 /**
3832  * Sets the power management mode of the pipe and plane.
3833  */
3834 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3835 {
3836         struct drm_device *dev = crtc->dev;
3837         struct drm_i915_private *dev_priv = dev->dev_private;
3838         struct intel_encoder *intel_encoder;
3839         bool enable = false;
3840
3841         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3842                 enable |= intel_encoder->connectors_active;
3843
3844         if (enable)
3845                 dev_priv->display.crtc_enable(crtc);
3846         else
3847                 dev_priv->display.crtc_disable(crtc);
3848
3849         intel_crtc_update_sarea(crtc, enable);
3850 }
3851
3852 static void intel_crtc_disable(struct drm_crtc *crtc)
3853 {
3854         struct drm_device *dev = crtc->dev;
3855         struct drm_connector *connector;
3856         struct drm_i915_private *dev_priv = dev->dev_private;
3857         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3858
3859         /* crtc should still be enabled when we disable it. */
3860         WARN_ON(!crtc->enabled);
3861
3862         dev_priv->display.crtc_disable(crtc);
3863         intel_crtc->eld_vld = false;
3864         intel_crtc_update_sarea(crtc, false);
3865         dev_priv->display.off(crtc);
3866
3867         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3868         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3869
3870         if (crtc->fb) {
3871                 mutex_lock(&dev->struct_mutex);
3872                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3873                 mutex_unlock(&dev->struct_mutex);
3874                 crtc->fb = NULL;
3875         }
3876
3877         /* Update computed state. */
3878         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3879                 if (!connector->encoder || !connector->encoder->crtc)
3880                         continue;
3881
3882                 if (connector->encoder->crtc != crtc)
3883                         continue;
3884
3885                 connector->dpms = DRM_MODE_DPMS_OFF;
3886                 to_intel_encoder(connector->encoder)->connectors_active = false;
3887         }
3888 }
3889
3890 void intel_modeset_disable(struct drm_device *dev)
3891 {
3892         struct drm_crtc *crtc;
3893
3894         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3895                 if (crtc->enabled)
3896                         intel_crtc_disable(crtc);
3897         }
3898 }
3899
3900 void intel_encoder_destroy(struct drm_encoder *encoder)
3901 {
3902         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3903
3904         drm_encoder_cleanup(encoder);
3905         kfree(intel_encoder);
3906 }
3907
3908 /* Simple dpms helper for encodres with just one connector, no cloning and only
3909  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3910  * state of the entire output pipe. */
3911 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3912 {
3913         if (mode == DRM_MODE_DPMS_ON) {
3914                 encoder->connectors_active = true;
3915
3916                 intel_crtc_update_dpms(encoder->base.crtc);
3917         } else {
3918                 encoder->connectors_active = false;
3919
3920                 intel_crtc_update_dpms(encoder->base.crtc);
3921         }
3922 }
3923
3924 /* Cross check the actual hw state with our own modeset state tracking (and it's
3925  * internal consistency). */
3926 static void intel_connector_check_state(struct intel_connector *connector)
3927 {
3928         if (connector->get_hw_state(connector)) {
3929                 struct intel_encoder *encoder = connector->encoder;
3930                 struct drm_crtc *crtc;
3931                 bool encoder_enabled;
3932                 enum pipe pipe;
3933
3934                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3935                               connector->base.base.id,
3936                               drm_get_connector_name(&connector->base));
3937
3938                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3939                      "wrong connector dpms state\n");
3940                 WARN(connector->base.encoder != &encoder->base,
3941                      "active connector not linked to encoder\n");
3942                 WARN(!encoder->connectors_active,
3943                      "encoder->connectors_active not set\n");
3944
3945                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3946                 WARN(!encoder_enabled, "encoder not enabled\n");
3947                 if (WARN_ON(!encoder->base.crtc))
3948                         return;
3949
3950                 crtc = encoder->base.crtc;
3951
3952                 WARN(!crtc->enabled, "crtc not enabled\n");
3953                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3954                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3955                      "encoder active on the wrong pipe\n");
3956         }
3957 }
3958
3959 /* Even simpler default implementation, if there's really no special case to
3960  * consider. */
3961 void intel_connector_dpms(struct drm_connector *connector, int mode)
3962 {
3963         struct intel_encoder *encoder = intel_attached_encoder(connector);
3964
3965         /* All the simple cases only support two dpms states. */
3966         if (mode != DRM_MODE_DPMS_ON)
3967                 mode = DRM_MODE_DPMS_OFF;
3968
3969         if (mode == connector->dpms)
3970                 return;
3971
3972         connector->dpms = mode;
3973
3974         /* Only need to change hw state when actually enabled */
3975         if (encoder->base.crtc)
3976                 intel_encoder_dpms(encoder, mode);
3977         else
3978                 WARN_ON(encoder->connectors_active != false);
3979
3980         intel_modeset_check_state(connector->dev);
3981 }
3982
3983 /* Simple connector->get_hw_state implementation for encoders that support only
3984  * one connector and no cloning and hence the encoder state determines the state
3985  * of the connector. */
3986 bool intel_connector_get_hw_state(struct intel_connector *connector)
3987 {
3988         enum pipe pipe = 0;
3989         struct intel_encoder *encoder = connector->encoder;
3990
3991         return encoder->get_hw_state(encoder, &pipe);
3992 }
3993
3994 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3995                                      struct intel_crtc_config *pipe_config)
3996 {
3997         struct drm_i915_private *dev_priv = dev->dev_private;
3998         struct intel_crtc *pipe_B_crtc =
3999                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4000
4001         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4002                       pipe_name(pipe), pipe_config->fdi_lanes);
4003         if (pipe_config->fdi_lanes > 4) {
4004                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4005                               pipe_name(pipe), pipe_config->fdi_lanes);
4006                 return false;
4007         }
4008
4009         if (IS_HASWELL(dev)) {
4010                 if (pipe_config->fdi_lanes > 2) {
4011                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4012                                       pipe_config->fdi_lanes);
4013                         return false;
4014                 } else {
4015                         return true;
4016                 }
4017         }
4018
4019         if (INTEL_INFO(dev)->num_pipes == 2)
4020                 return true;
4021
4022         /* Ivybridge 3 pipe is really complicated */
4023         switch (pipe) {
4024         case PIPE_A:
4025                 return true;
4026         case PIPE_B:
4027                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4028                     pipe_config->fdi_lanes > 2) {
4029                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4030                                       pipe_name(pipe), pipe_config->fdi_lanes);
4031                         return false;
4032                 }
4033                 return true;
4034         case PIPE_C:
4035                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4036                     pipe_B_crtc->config.fdi_lanes <= 2) {
4037                         if (pipe_config->fdi_lanes > 2) {
4038                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4039                                               pipe_name(pipe), pipe_config->fdi_lanes);
4040                                 return false;
4041                         }
4042                 } else {
4043                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4044                         return false;
4045                 }
4046                 return true;
4047         default:
4048                 BUG();
4049         }
4050 }
4051
4052 #define RETRY 1
4053 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4054                                        struct intel_crtc_config *pipe_config)
4055 {
4056         struct drm_device *dev = intel_crtc->base.dev;
4057         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4058         int target_clock, lane, link_bw;
4059         bool setup_ok, needs_recompute = false;
4060
4061 retry:
4062         /* FDI is a binary signal running at ~2.7GHz, encoding
4063          * each output octet as 10 bits. The actual frequency
4064          * is stored as a divider into a 100MHz clock, and the
4065          * mode pixel clock is stored in units of 1KHz.
4066          * Hence the bw of each lane in terms of the mode signal
4067          * is:
4068          */
4069         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4070
4071         if (pipe_config->pixel_target_clock)
4072                 target_clock = pipe_config->pixel_target_clock;
4073         else
4074                 target_clock = adjusted_mode->clock;
4075
4076         lane = ironlake_get_lanes_required(target_clock, link_bw,
4077                                            pipe_config->pipe_bpp);
4078
4079         pipe_config->fdi_lanes = lane;
4080
4081         if (pipe_config->pixel_multiplier > 1)
4082                 link_bw *= pipe_config->pixel_multiplier;
4083         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
4084                                link_bw, &pipe_config->fdi_m_n);
4085
4086         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4087                                             intel_crtc->pipe, pipe_config);
4088         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4089                 pipe_config->pipe_bpp -= 2*3;
4090                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4091                               pipe_config->pipe_bpp);
4092                 needs_recompute = true;
4093                 pipe_config->bw_constrained = true;
4094
4095                 goto retry;
4096         }
4097
4098         if (needs_recompute)
4099                 return RETRY;
4100
4101         return setup_ok ? 0 : -EINVAL;
4102 }
4103
4104 static int intel_crtc_compute_config(struct drm_crtc *crtc,
4105                                      struct intel_crtc_config *pipe_config)
4106 {
4107         struct drm_device *dev = crtc->dev;
4108         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4109
4110         if (HAS_PCH_SPLIT(dev)) {
4111                 /* FDI link clock is fixed at 2.7G */
4112                 if (pipe_config->requested_mode.clock * 3
4113                     > IRONLAKE_FDI_FREQ * 4)
4114                         return -EINVAL;
4115         }
4116
4117         /* All interlaced capable intel hw wants timings in frames. Note though
4118          * that intel_lvds_mode_fixup does some funny tricks with the crtc
4119          * timings, so we need to be careful not to clobber these.*/
4120         if (!pipe_config->timings_set)
4121                 drm_mode_set_crtcinfo(adjusted_mode, 0);
4122
4123         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4124          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4125          */
4126         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4127                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4128                 return -EINVAL;
4129
4130         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4131                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4132         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4133                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4134                  * for lvds. */
4135                 pipe_config->pipe_bpp = 8*3;
4136         }
4137
4138         if (pipe_config->has_pch_encoder)
4139                 return ironlake_fdi_compute_config(to_intel_crtc(crtc), pipe_config);
4140
4141         return 0;
4142 }
4143
4144 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4145 {
4146         return 400000; /* FIXME */
4147 }
4148
4149 static int i945_get_display_clock_speed(struct drm_device *dev)
4150 {
4151         return 400000;
4152 }
4153
4154 static int i915_get_display_clock_speed(struct drm_device *dev)
4155 {
4156         return 333000;
4157 }
4158
4159 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4160 {
4161         return 200000;
4162 }
4163
4164 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4165 {
4166         u16 gcfgc = 0;
4167
4168         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4169
4170         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4171                 return 133000;
4172         else {
4173                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4174                 case GC_DISPLAY_CLOCK_333_MHZ:
4175                         return 333000;
4176                 default:
4177                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4178                         return 190000;
4179                 }
4180         }
4181 }
4182
4183 static int i865_get_display_clock_speed(struct drm_device *dev)
4184 {
4185         return 266000;
4186 }
4187
4188 static int i855_get_display_clock_speed(struct drm_device *dev)
4189 {
4190         u16 hpllcc = 0;
4191         /* Assume that the hardware is in the high speed state.  This
4192          * should be the default.
4193          */
4194         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4195         case GC_CLOCK_133_200:
4196         case GC_CLOCK_100_200:
4197                 return 200000;
4198         case GC_CLOCK_166_250:
4199                 return 250000;
4200         case GC_CLOCK_100_133:
4201                 return 133000;
4202         }
4203
4204         /* Shouldn't happen */
4205         return 0;
4206 }
4207
4208 static int i830_get_display_clock_speed(struct drm_device *dev)
4209 {
4210         return 133000;
4211 }
4212
4213 static void
4214 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4215 {
4216         while (*num > 0xffffff || *den > 0xffffff) {
4217                 *num >>= 1;
4218                 *den >>= 1;
4219         }
4220 }
4221
4222 void
4223 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4224                        int pixel_clock, int link_clock,
4225                        struct intel_link_m_n *m_n)
4226 {
4227         m_n->tu = 64;
4228         m_n->gmch_m = bits_per_pixel * pixel_clock;
4229         m_n->gmch_n = link_clock * nlanes * 8;
4230         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4231         m_n->link_m = pixel_clock;
4232         m_n->link_n = link_clock;
4233         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4234 }
4235
4236 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4237 {
4238         if (i915_panel_use_ssc >= 0)
4239                 return i915_panel_use_ssc != 0;
4240         return dev_priv->vbt.lvds_use_ssc
4241                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4242 }
4243
4244 static int vlv_get_refclk(struct drm_crtc *crtc)
4245 {
4246         struct drm_device *dev = crtc->dev;
4247         struct drm_i915_private *dev_priv = dev->dev_private;
4248         int refclk = 27000; /* for DP & HDMI */
4249
4250         return 100000; /* only one validated so far */
4251
4252         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4253                 refclk = 96000;
4254         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4255                 if (intel_panel_use_ssc(dev_priv))
4256                         refclk = 100000;
4257                 else
4258                         refclk = 96000;
4259         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4260                 refclk = 100000;
4261         }
4262
4263         return refclk;
4264 }
4265
4266 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4267 {
4268         struct drm_device *dev = crtc->dev;
4269         struct drm_i915_private *dev_priv = dev->dev_private;
4270         int refclk;
4271
4272         if (IS_VALLEYVIEW(dev)) {
4273                 refclk = vlv_get_refclk(crtc);
4274         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4275             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4276                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4277                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4278                               refclk / 1000);
4279         } else if (!IS_GEN2(dev)) {
4280                 refclk = 96000;
4281         } else {
4282                 refclk = 48000;
4283         }
4284
4285         return refclk;
4286 }
4287
4288 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4289 {
4290         return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4291 }
4292
4293 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4294 {
4295         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4296 }
4297
4298 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4299                                      intel_clock_t *reduced_clock)
4300 {
4301         struct drm_device *dev = crtc->base.dev;
4302         struct drm_i915_private *dev_priv = dev->dev_private;
4303         int pipe = crtc->pipe;
4304         u32 fp, fp2 = 0;
4305
4306         if (IS_PINEVIEW(dev)) {
4307                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4308                 if (reduced_clock)
4309                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4310         } else {
4311                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4312                 if (reduced_clock)
4313                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4314         }
4315
4316         I915_WRITE(FP0(pipe), fp);
4317
4318         crtc->lowfreq_avail = false;
4319         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4320             reduced_clock && i915_powersave) {
4321                 I915_WRITE(FP1(pipe), fp2);
4322                 crtc->lowfreq_avail = true;
4323         } else {
4324                 I915_WRITE(FP1(pipe), fp);
4325         }
4326 }
4327
4328 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4329 {
4330         u32 reg_val;
4331
4332         /*
4333          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4334          * and set it to a reasonable value instead.
4335          */
4336         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4337         reg_val &= 0xffffff00;
4338         reg_val |= 0x00000030;
4339         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4340
4341         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4342         reg_val &= 0x8cffffff;
4343         reg_val = 0x8c000000;
4344         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4345
4346         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4347         reg_val &= 0xffffff00;
4348         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4349
4350         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4351         reg_val &= 0x00ffffff;
4352         reg_val |= 0xb0000000;
4353         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4354 }
4355
4356 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4357                                          struct intel_link_m_n *m_n)
4358 {
4359         struct drm_device *dev = crtc->base.dev;
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361         int pipe = crtc->pipe;
4362
4363         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4364         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4365         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4366         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4367 }
4368
4369 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4370                                          struct intel_link_m_n *m_n)
4371 {
4372         struct drm_device *dev = crtc->base.dev;
4373         struct drm_i915_private *dev_priv = dev->dev_private;
4374         int pipe = crtc->pipe;
4375         enum transcoder transcoder = crtc->config.cpu_transcoder;
4376
4377         if (INTEL_INFO(dev)->gen >= 5) {
4378                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4379                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4380                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4381                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4382         } else {
4383                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4384                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4385                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4386                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4387         }
4388 }
4389
4390 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4391 {
4392         if (crtc->config.has_pch_encoder)
4393                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4394         else
4395                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4396 }
4397
4398 static void vlv_update_pll(struct intel_crtc *crtc)
4399 {
4400         struct drm_device *dev = crtc->base.dev;
4401         struct drm_i915_private *dev_priv = dev->dev_private;
4402         struct drm_display_mode *adjusted_mode =
4403                 &crtc->config.adjusted_mode;
4404         struct intel_encoder *encoder;
4405         int pipe = crtc->pipe;
4406         u32 dpll, mdiv;
4407         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4408         bool is_hdmi;
4409         u32 coreclk, reg_val, dpll_md;
4410
4411         mutex_lock(&dev_priv->dpio_lock);
4412
4413         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4414
4415         bestn = crtc->config.dpll.n;
4416         bestm1 = crtc->config.dpll.m1;
4417         bestm2 = crtc->config.dpll.m2;
4418         bestp1 = crtc->config.dpll.p1;
4419         bestp2 = crtc->config.dpll.p2;
4420
4421         /* See eDP HDMI DPIO driver vbios notes doc */
4422
4423         /* PLL B needs special handling */
4424         if (pipe)
4425                 vlv_pllb_recal_opamp(dev_priv);
4426
4427         /* Set up Tx target for periodic Rcomp update */
4428         intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4429
4430         /* Disable target IRef on PLL */
4431         reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4432         reg_val &= 0x00ffffff;
4433         intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4434
4435         /* Disable fast lock */
4436         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4437
4438         /* Set idtafcrecal before PLL is enabled */
4439         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4440         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4441         mdiv |= ((bestn << DPIO_N_SHIFT));
4442         mdiv |= (1 << DPIO_K_SHIFT);
4443
4444         /*
4445          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4446          * but we don't support that).
4447          * Note: don't use the DAC post divider as it seems unstable.
4448          */
4449         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4450         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4451
4452         mdiv |= DPIO_ENABLE_CALIBRATION;
4453         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4454
4455         /* Set HBR and RBR LPF coefficients */
4456         if (adjusted_mode->clock == 162000 ||
4457             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4458                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4459                                  0x005f0021);
4460         else
4461                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4462                                  0x00d0000f);
4463
4464         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4465             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4466                 /* Use SSC source */
4467                 if (!pipe)
4468                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4469                                          0x0df40000);
4470                 else
4471                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4472                                          0x0df70000);
4473         } else { /* HDMI or VGA */
4474                 /* Use bend source */
4475                 if (!pipe)
4476                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4477                                          0x0df70000);
4478                 else
4479                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4480                                          0x0df40000);
4481         }
4482
4483         coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4484         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4485         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4486             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4487                 coreclk |= 0x01000000;
4488         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4489
4490         intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4491
4492         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4493                 if (encoder->pre_pll_enable)
4494                         encoder->pre_pll_enable(encoder);
4495
4496         /* Enable DPIO clock input */
4497         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4498                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4499         if (pipe)
4500                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4501
4502         dpll |= DPLL_VCO_ENABLE;
4503         I915_WRITE(DPLL(pipe), dpll);
4504         POSTING_READ(DPLL(pipe));
4505         udelay(150);
4506
4507         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4508                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4509
4510         dpll_md = 0;
4511         if (crtc->config.pixel_multiplier > 1) {
4512                 dpll_md = (crtc->config.pixel_multiplier - 1)
4513                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4514         }
4515         I915_WRITE(DPLL_MD(pipe), dpll_md);
4516         POSTING_READ(DPLL_MD(pipe));
4517
4518         if (crtc->config.has_dp_encoder)
4519                 intel_dp_set_m_n(crtc);
4520
4521         mutex_unlock(&dev_priv->dpio_lock);
4522 }
4523
4524 static void i9xx_update_pll(struct intel_crtc *crtc,
4525                             intel_clock_t *reduced_clock,
4526                             int num_connectors)
4527 {
4528         struct drm_device *dev = crtc->base.dev;
4529         struct drm_i915_private *dev_priv = dev->dev_private;
4530         struct intel_encoder *encoder;
4531         int pipe = crtc->pipe;
4532         u32 dpll;
4533         bool is_sdvo;
4534         struct dpll *clock = &crtc->config.dpll;
4535
4536         i9xx_update_pll_dividers(crtc, reduced_clock);
4537
4538         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4539                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4540
4541         dpll = DPLL_VGA_MODE_DIS;
4542
4543         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4544                 dpll |= DPLLB_MODE_LVDS;
4545         else
4546                 dpll |= DPLLB_MODE_DAC_SERIAL;
4547
4548         if ((crtc->config.pixel_multiplier > 1) &&
4549             (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4550                 dpll |= (crtc->config.pixel_multiplier - 1)
4551                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4552         }
4553
4554         if (is_sdvo)
4555                 dpll |= DPLL_DVO_HIGH_SPEED;
4556
4557         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4558                 dpll |= DPLL_DVO_HIGH_SPEED;
4559
4560         /* compute bitmask from p1 value */
4561         if (IS_PINEVIEW(dev))
4562                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4563         else {
4564                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4565                 if (IS_G4X(dev) && reduced_clock)
4566                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4567         }
4568         switch (clock->p2) {
4569         case 5:
4570                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4571                 break;
4572         case 7:
4573                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4574                 break;
4575         case 10:
4576                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4577                 break;
4578         case 14:
4579                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4580                 break;
4581         }
4582         if (INTEL_INFO(dev)->gen >= 4)
4583                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4584
4585         if (crtc->config.sdvo_tv_clock)
4586                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4587         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4588                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4589                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4590         else
4591                 dpll |= PLL_REF_INPUT_DREFCLK;
4592
4593         dpll |= DPLL_VCO_ENABLE;
4594         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4595         POSTING_READ(DPLL(pipe));
4596         udelay(150);
4597
4598         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4599                 if (encoder->pre_pll_enable)
4600                         encoder->pre_pll_enable(encoder);
4601
4602         if (crtc->config.has_dp_encoder)
4603                 intel_dp_set_m_n(crtc);
4604
4605         I915_WRITE(DPLL(pipe), dpll);
4606
4607         /* Wait for the clocks to stabilize. */
4608         POSTING_READ(DPLL(pipe));
4609         udelay(150);
4610
4611         if (INTEL_INFO(dev)->gen >= 4) {
4612                 u32 dpll_md = 0;
4613                 if (crtc->config.pixel_multiplier > 1) {
4614                         dpll_md = (crtc->config.pixel_multiplier - 1)
4615                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4616                 }
4617                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4618         } else {
4619                 /* The pixel multiplier can only be updated once the
4620                  * DPLL is enabled and the clocks are stable.
4621                  *
4622                  * So write it again.
4623                  */
4624                 I915_WRITE(DPLL(pipe), dpll);
4625         }
4626 }
4627
4628 static void i8xx_update_pll(struct intel_crtc *crtc,
4629                             struct drm_display_mode *adjusted_mode,
4630                             intel_clock_t *reduced_clock,
4631                             int num_connectors)
4632 {
4633         struct drm_device *dev = crtc->base.dev;
4634         struct drm_i915_private *dev_priv = dev->dev_private;
4635         struct intel_encoder *encoder;
4636         int pipe = crtc->pipe;
4637         u32 dpll;
4638         struct dpll *clock = &crtc->config.dpll;
4639
4640         i9xx_update_pll_dividers(crtc, reduced_clock);
4641
4642         dpll = DPLL_VGA_MODE_DIS;
4643
4644         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4645                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4646         } else {
4647                 if (clock->p1 == 2)
4648                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4649                 else
4650                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4651                 if (clock->p2 == 4)
4652                         dpll |= PLL_P2_DIVIDE_BY_4;
4653         }
4654
4655         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4656                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4657                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4658         else
4659                 dpll |= PLL_REF_INPUT_DREFCLK;
4660
4661         dpll |= DPLL_VCO_ENABLE;
4662         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4663         POSTING_READ(DPLL(pipe));
4664         udelay(150);
4665
4666         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4667                 if (encoder->pre_pll_enable)
4668                         encoder->pre_pll_enable(encoder);
4669
4670         I915_WRITE(DPLL(pipe), dpll);
4671
4672         /* Wait for the clocks to stabilize. */
4673         POSTING_READ(DPLL(pipe));
4674         udelay(150);
4675
4676         /* The pixel multiplier can only be updated once the
4677          * DPLL is enabled and the clocks are stable.
4678          *
4679          * So write it again.
4680          */
4681         I915_WRITE(DPLL(pipe), dpll);
4682 }
4683
4684 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4685                                    struct drm_display_mode *mode,
4686                                    struct drm_display_mode *adjusted_mode)
4687 {
4688         struct drm_device *dev = intel_crtc->base.dev;
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690         enum pipe pipe = intel_crtc->pipe;
4691         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4692         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4693
4694         /* We need to be careful not to changed the adjusted mode, for otherwise
4695          * the hw state checker will get angry at the mismatch. */
4696         crtc_vtotal = adjusted_mode->crtc_vtotal;
4697         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4698
4699         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4700                 /* the chip adds 2 halflines automatically */
4701                 crtc_vtotal -= 1;
4702                 crtc_vblank_end -= 1;
4703                 vsyncshift = adjusted_mode->crtc_hsync_start
4704                              - adjusted_mode->crtc_htotal / 2;
4705         } else {
4706                 vsyncshift = 0;
4707         }
4708
4709         if (INTEL_INFO(dev)->gen > 3)
4710                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4711
4712         I915_WRITE(HTOTAL(cpu_transcoder),
4713                    (adjusted_mode->crtc_hdisplay - 1) |
4714                    ((adjusted_mode->crtc_htotal - 1) << 16));
4715         I915_WRITE(HBLANK(cpu_transcoder),
4716                    (adjusted_mode->crtc_hblank_start - 1) |
4717                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4718         I915_WRITE(HSYNC(cpu_transcoder),
4719                    (adjusted_mode->crtc_hsync_start - 1) |
4720                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4721
4722         I915_WRITE(VTOTAL(cpu_transcoder),
4723                    (adjusted_mode->crtc_vdisplay - 1) |
4724                    ((crtc_vtotal - 1) << 16));
4725         I915_WRITE(VBLANK(cpu_transcoder),
4726                    (adjusted_mode->crtc_vblank_start - 1) |
4727                    ((crtc_vblank_end - 1) << 16));
4728         I915_WRITE(VSYNC(cpu_transcoder),
4729                    (adjusted_mode->crtc_vsync_start - 1) |
4730                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4731
4732         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4733          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4734          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4735          * bits. */
4736         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4737             (pipe == PIPE_B || pipe == PIPE_C))
4738                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4739
4740         /* pipesrc controls the size that is scaled from, which should
4741          * always be the user's requested size.
4742          */
4743         I915_WRITE(PIPESRC(pipe),
4744                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4745 }
4746
4747 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4748                                    struct intel_crtc_config *pipe_config)
4749 {
4750         struct drm_device *dev = crtc->base.dev;
4751         struct drm_i915_private *dev_priv = dev->dev_private;
4752         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4753         uint32_t tmp;
4754
4755         tmp = I915_READ(HTOTAL(cpu_transcoder));
4756         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4757         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4758         tmp = I915_READ(HBLANK(cpu_transcoder));
4759         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4760         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4761         tmp = I915_READ(HSYNC(cpu_transcoder));
4762         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4763         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4764
4765         tmp = I915_READ(VTOTAL(cpu_transcoder));
4766         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4767         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4768         tmp = I915_READ(VBLANK(cpu_transcoder));
4769         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4770         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4771         tmp = I915_READ(VSYNC(cpu_transcoder));
4772         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4773         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4774
4775         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4776                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4777                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4778                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4779         }
4780
4781         tmp = I915_READ(PIPESRC(crtc->pipe));
4782         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4783         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4784 }
4785
4786 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4787 {
4788         struct drm_device *dev = intel_crtc->base.dev;
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790         uint32_t pipeconf;
4791
4792         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4793
4794         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4795                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4796                  * core speed.
4797                  *
4798                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4799                  * pipe == 0 check?
4800                  */
4801                 if (intel_crtc->config.requested_mode.clock >
4802                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4803                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4804                 else
4805                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4806         }
4807
4808         /* only g4x and later have fancy bpc/dither controls */
4809         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4810                 pipeconf &= ~(PIPECONF_BPC_MASK |
4811                               PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4812
4813                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4814                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4815                         pipeconf |= PIPECONF_DITHER_EN |
4816                                     PIPECONF_DITHER_TYPE_SP;
4817
4818                 switch (intel_crtc->config.pipe_bpp) {
4819                 case 18:
4820                         pipeconf |= PIPECONF_6BPC;
4821                         break;
4822                 case 24:
4823                         pipeconf |= PIPECONF_8BPC;
4824                         break;
4825                 case 30:
4826                         pipeconf |= PIPECONF_10BPC;
4827                         break;
4828                 default:
4829                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4830                         BUG();
4831                 }
4832         }
4833
4834         if (HAS_PIPE_CXSR(dev)) {
4835                 if (intel_crtc->lowfreq_avail) {
4836                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4837                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4838                 } else {
4839                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4840                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4841                 }
4842         }
4843
4844         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4845         if (!IS_GEN2(dev) &&
4846             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4847                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4848         else
4849                 pipeconf |= PIPECONF_PROGRESSIVE;
4850
4851         if (IS_VALLEYVIEW(dev)) {
4852                 if (intel_crtc->config.limited_color_range)
4853                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4854                 else
4855                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4856         }
4857
4858         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4859         POSTING_READ(PIPECONF(intel_crtc->pipe));
4860 }
4861
4862 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4863                               int x, int y,
4864                               struct drm_framebuffer *fb)
4865 {
4866         struct drm_device *dev = crtc->dev;
4867         struct drm_i915_private *dev_priv = dev->dev_private;
4868         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4869         struct drm_display_mode *adjusted_mode =
4870                 &intel_crtc->config.adjusted_mode;
4871         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4872         int pipe = intel_crtc->pipe;
4873         int plane = intel_crtc->plane;
4874         int refclk, num_connectors = 0;
4875         intel_clock_t clock, reduced_clock;
4876         u32 dspcntr;
4877         bool ok, has_reduced_clock = false;
4878         bool is_lvds = false;
4879         struct intel_encoder *encoder;
4880         const intel_limit_t *limit;
4881         int ret;
4882
4883         for_each_encoder_on_crtc(dev, crtc, encoder) {
4884                 switch (encoder->type) {
4885                 case INTEL_OUTPUT_LVDS:
4886                         is_lvds = true;
4887                         break;
4888                 }
4889
4890                 num_connectors++;
4891         }
4892
4893         refclk = i9xx_get_refclk(crtc, num_connectors);
4894
4895         /*
4896          * Returns a set of divisors for the desired target clock with the given
4897          * refclk, or FALSE.  The returned values represent the clock equation:
4898          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4899          */
4900         limit = intel_limit(crtc, refclk);
4901         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4902                              &clock);
4903         if (!ok) {
4904                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4905                 return -EINVAL;
4906         }
4907
4908         /* Ensure that the cursor is valid for the new mode before changing... */
4909         intel_crtc_update_cursor(crtc, true);
4910
4911         if (is_lvds && dev_priv->lvds_downclock_avail) {
4912                 /*
4913                  * Ensure we match the reduced clock's P to the target clock.
4914                  * If the clocks don't match, we can't switch the display clock
4915                  * by using the FP0/FP1. In such case we will disable the LVDS
4916                  * downclock feature.
4917                 */
4918                 has_reduced_clock = limit->find_pll(limit, crtc,
4919                                                     dev_priv->lvds_downclock,
4920                                                     refclk,
4921                                                     &clock,
4922                                                     &reduced_clock);
4923         }
4924         /* Compat-code for transition, will disappear. */
4925         if (!intel_crtc->config.clock_set) {
4926                 intel_crtc->config.dpll.n = clock.n;
4927                 intel_crtc->config.dpll.m1 = clock.m1;
4928                 intel_crtc->config.dpll.m2 = clock.m2;
4929                 intel_crtc->config.dpll.p1 = clock.p1;
4930                 intel_crtc->config.dpll.p2 = clock.p2;
4931         }
4932
4933         if (IS_GEN2(dev))
4934                 i8xx_update_pll(intel_crtc, adjusted_mode,
4935                                 has_reduced_clock ? &reduced_clock : NULL,
4936                                 num_connectors);
4937         else if (IS_VALLEYVIEW(dev))
4938                 vlv_update_pll(intel_crtc);
4939         else
4940                 i9xx_update_pll(intel_crtc,
4941                                 has_reduced_clock ? &reduced_clock : NULL,
4942                                 num_connectors);
4943
4944         /* Set up the display plane register */
4945         dspcntr = DISPPLANE_GAMMA_ENABLE;
4946
4947         if (!IS_VALLEYVIEW(dev)) {
4948                 if (pipe == 0)
4949                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4950                 else
4951                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4952         }
4953
4954         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
4955         drm_mode_debug_printmodeline(mode);
4956
4957         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4958
4959         /* pipesrc and dspsize control the size that is scaled from,
4960          * which should always be the user's requested size.
4961          */
4962         I915_WRITE(DSPSIZE(plane),
4963                    ((mode->vdisplay - 1) << 16) |
4964                    (mode->hdisplay - 1));
4965         I915_WRITE(DSPPOS(plane), 0);
4966
4967         i9xx_set_pipeconf(intel_crtc);
4968
4969         I915_WRITE(DSPCNTR(plane), dspcntr);
4970         POSTING_READ(DSPCNTR(plane));
4971
4972         ret = intel_pipe_set_base(crtc, x, y, fb);
4973
4974         intel_update_watermarks(dev);
4975
4976         return ret;
4977 }
4978
4979 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4980                                  struct intel_crtc_config *pipe_config)
4981 {
4982         struct drm_device *dev = crtc->base.dev;
4983         struct drm_i915_private *dev_priv = dev->dev_private;
4984         uint32_t tmp;
4985
4986         tmp = I915_READ(PIPECONF(crtc->pipe));
4987         if (!(tmp & PIPECONF_ENABLE))
4988                 return false;
4989
4990         intel_get_pipe_timings(crtc, pipe_config);
4991
4992         return true;
4993 }
4994
4995 static void ironlake_init_pch_refclk(struct drm_device *dev)
4996 {
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         struct drm_mode_config *mode_config = &dev->mode_config;
4999         struct intel_encoder *encoder;
5000         u32 val, final;
5001         bool has_lvds = false;
5002         bool has_cpu_edp = false;
5003         bool has_panel = false;
5004         bool has_ck505 = false;
5005         bool can_ssc = false;
5006
5007         /* We need to take the global config into account */
5008         list_for_each_entry(encoder, &mode_config->encoder_list,
5009                             base.head) {
5010                 switch (encoder->type) {
5011                 case INTEL_OUTPUT_LVDS:
5012                         has_panel = true;
5013                         has_lvds = true;
5014                         break;
5015                 case INTEL_OUTPUT_EDP:
5016                         has_panel = true;
5017                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5018                                 has_cpu_edp = true;
5019                         break;
5020                 }
5021         }
5022
5023         if (HAS_PCH_IBX(dev)) {
5024                 has_ck505 = dev_priv->vbt.display_clock_mode;
5025                 can_ssc = has_ck505;
5026         } else {
5027                 has_ck505 = false;
5028                 can_ssc = true;
5029         }
5030
5031         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5032                       has_panel, has_lvds, has_ck505);
5033
5034         /* Ironlake: try to setup display ref clock before DPLL
5035          * enabling. This is only under driver's control after
5036          * PCH B stepping, previous chipset stepping should be
5037          * ignoring this setting.
5038          */
5039         val = I915_READ(PCH_DREF_CONTROL);
5040
5041         /* As we must carefully and slowly disable/enable each source in turn,
5042          * compute the final state we want first and check if we need to
5043          * make any changes at all.
5044          */
5045         final = val;
5046         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5047         if (has_ck505)
5048                 final |= DREF_NONSPREAD_CK505_ENABLE;
5049         else
5050                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5051
5052         final &= ~DREF_SSC_SOURCE_MASK;
5053         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5054         final &= ~DREF_SSC1_ENABLE;
5055
5056         if (has_panel) {
5057                 final |= DREF_SSC_SOURCE_ENABLE;
5058
5059                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5060                         final |= DREF_SSC1_ENABLE;
5061
5062                 if (has_cpu_edp) {
5063                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5064                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5065                         else
5066                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5067                 } else
5068                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5069         } else {
5070                 final |= DREF_SSC_SOURCE_DISABLE;
5071                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5072         }
5073
5074         if (final == val)
5075                 return;
5076
5077         /* Always enable nonspread source */
5078         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5079
5080         if (has_ck505)
5081                 val |= DREF_NONSPREAD_CK505_ENABLE;
5082         else
5083                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5084
5085         if (has_panel) {
5086                 val &= ~DREF_SSC_SOURCE_MASK;
5087                 val |= DREF_SSC_SOURCE_ENABLE;
5088
5089                 /* SSC must be turned on before enabling the CPU output  */
5090                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5091                         DRM_DEBUG_KMS("Using SSC on panel\n");
5092                         val |= DREF_SSC1_ENABLE;
5093                 } else
5094                         val &= ~DREF_SSC1_ENABLE;
5095
5096                 /* Get SSC going before enabling the outputs */
5097                 I915_WRITE(PCH_DREF_CONTROL, val);
5098                 POSTING_READ(PCH_DREF_CONTROL);
5099                 udelay(200);
5100
5101                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5102
5103                 /* Enable CPU source on CPU attached eDP */
5104                 if (has_cpu_edp) {
5105                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5106                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5107                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5108                         }
5109                         else
5110                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5111                 } else
5112                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5113
5114                 I915_WRITE(PCH_DREF_CONTROL, val);
5115                 POSTING_READ(PCH_DREF_CONTROL);
5116                 udelay(200);
5117         } else {
5118                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5119
5120                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5121
5122                 /* Turn off CPU output */
5123                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5124
5125                 I915_WRITE(PCH_DREF_CONTROL, val);
5126                 POSTING_READ(PCH_DREF_CONTROL);
5127                 udelay(200);
5128
5129                 /* Turn off the SSC source */
5130                 val &= ~DREF_SSC_SOURCE_MASK;
5131                 val |= DREF_SSC_SOURCE_DISABLE;
5132
5133                 /* Turn off SSC1 */
5134                 val &= ~DREF_SSC1_ENABLE;
5135
5136                 I915_WRITE(PCH_DREF_CONTROL, val);
5137                 POSTING_READ(PCH_DREF_CONTROL);
5138                 udelay(200);
5139         }
5140
5141         BUG_ON(val != final);
5142 }
5143
5144 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5145 static void lpt_init_pch_refclk(struct drm_device *dev)
5146 {
5147         struct drm_i915_private *dev_priv = dev->dev_private;
5148         struct drm_mode_config *mode_config = &dev->mode_config;
5149         struct intel_encoder *encoder;
5150         bool has_vga = false;
5151         bool is_sdv = false;
5152         u32 tmp;
5153
5154         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5155                 switch (encoder->type) {
5156                 case INTEL_OUTPUT_ANALOG:
5157                         has_vga = true;
5158                         break;
5159                 }
5160         }
5161
5162         if (!has_vga)
5163                 return;
5164
5165         mutex_lock(&dev_priv->dpio_lock);
5166
5167         /* XXX: Rip out SDV support once Haswell ships for real. */
5168         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5169                 is_sdv = true;
5170
5171         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5172         tmp &= ~SBI_SSCCTL_DISABLE;
5173         tmp |= SBI_SSCCTL_PATHALT;
5174         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5175
5176         udelay(24);
5177
5178         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5179         tmp &= ~SBI_SSCCTL_PATHALT;
5180         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5181
5182         if (!is_sdv) {
5183                 tmp = I915_READ(SOUTH_CHICKEN2);
5184                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5185                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5186
5187                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5188                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5189                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5190
5191                 tmp = I915_READ(SOUTH_CHICKEN2);
5192                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5193                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5194
5195                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5196                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5197                                        100))
5198                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5199         }
5200
5201         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5202         tmp &= ~(0xFF << 24);
5203         tmp |= (0x12 << 24);
5204         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5205
5206         if (is_sdv) {
5207                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5208                 tmp |= 0x7FFF;
5209                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5210         }
5211
5212         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5213         tmp |= (1 << 11);
5214         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5215
5216         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5217         tmp |= (1 << 11);
5218         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5219
5220         if (is_sdv) {
5221                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5222                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5223                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5224
5225                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5226                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5227                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5228
5229                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5230                 tmp |= (0x3F << 8);
5231                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5232
5233                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5234                 tmp |= (0x3F << 8);
5235                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5236         }
5237
5238         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5239         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5240         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5241
5242         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5243         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5244         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5245
5246         if (!is_sdv) {
5247                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5248                 tmp &= ~(7 << 13);
5249                 tmp |= (5 << 13);
5250                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5251
5252                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5253                 tmp &= ~(7 << 13);
5254                 tmp |= (5 << 13);
5255                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5256         }
5257
5258         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5259         tmp &= ~0xFF;
5260         tmp |= 0x1C;
5261         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5262
5263         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5264         tmp &= ~0xFF;
5265         tmp |= 0x1C;
5266         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5267
5268         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5269         tmp &= ~(0xFF << 16);
5270         tmp |= (0x1C << 16);
5271         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5272
5273         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5274         tmp &= ~(0xFF << 16);
5275         tmp |= (0x1C << 16);
5276         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5277
5278         if (!is_sdv) {
5279                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5280                 tmp |= (1 << 27);
5281                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5282
5283                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5284                 tmp |= (1 << 27);
5285                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5286
5287                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5288                 tmp &= ~(0xF << 28);
5289                 tmp |= (4 << 28);
5290                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5291
5292                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5293                 tmp &= ~(0xF << 28);
5294                 tmp |= (4 << 28);
5295                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5296         }
5297
5298         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5299         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5300         tmp |= SBI_DBUFF0_ENABLE;
5301         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5302
5303         mutex_unlock(&dev_priv->dpio_lock);
5304 }
5305
5306 /*
5307  * Initialize reference clocks when the driver loads
5308  */
5309 void intel_init_pch_refclk(struct drm_device *dev)
5310 {
5311         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5312                 ironlake_init_pch_refclk(dev);
5313         else if (HAS_PCH_LPT(dev))
5314                 lpt_init_pch_refclk(dev);
5315 }
5316
5317 static int ironlake_get_refclk(struct drm_crtc *crtc)
5318 {
5319         struct drm_device *dev = crtc->dev;
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321         struct intel_encoder *encoder;
5322         int num_connectors = 0;
5323         bool is_lvds = false;
5324
5325         for_each_encoder_on_crtc(dev, crtc, encoder) {
5326                 switch (encoder->type) {
5327                 case INTEL_OUTPUT_LVDS:
5328                         is_lvds = true;
5329                         break;
5330                 }
5331                 num_connectors++;
5332         }
5333
5334         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5335                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5336                               dev_priv->vbt.lvds_ssc_freq);
5337                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5338         }
5339
5340         return 120000;
5341 }
5342
5343 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5344 {
5345         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5346         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5347         int pipe = intel_crtc->pipe;
5348         uint32_t val;
5349
5350         val = I915_READ(PIPECONF(pipe));
5351
5352         val &= ~PIPECONF_BPC_MASK;
5353         switch (intel_crtc->config.pipe_bpp) {
5354         case 18:
5355                 val |= PIPECONF_6BPC;
5356                 break;
5357         case 24:
5358                 val |= PIPECONF_8BPC;
5359                 break;
5360         case 30:
5361                 val |= PIPECONF_10BPC;
5362                 break;
5363         case 36:
5364                 val |= PIPECONF_12BPC;
5365                 break;
5366         default:
5367                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5368                 BUG();
5369         }
5370
5371         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5372         if (intel_crtc->config.dither)
5373                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5374
5375         val &= ~PIPECONF_INTERLACE_MASK;
5376         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5377                 val |= PIPECONF_INTERLACED_ILK;
5378         else
5379                 val |= PIPECONF_PROGRESSIVE;
5380
5381         if (intel_crtc->config.limited_color_range)
5382                 val |= PIPECONF_COLOR_RANGE_SELECT;
5383         else
5384                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5385
5386         I915_WRITE(PIPECONF(pipe), val);
5387         POSTING_READ(PIPECONF(pipe));
5388 }
5389
5390 /*
5391  * Set up the pipe CSC unit.
5392  *
5393  * Currently only full range RGB to limited range RGB conversion
5394  * is supported, but eventually this should handle various
5395  * RGB<->YCbCr scenarios as well.
5396  */
5397 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5398 {
5399         struct drm_device *dev = crtc->dev;
5400         struct drm_i915_private *dev_priv = dev->dev_private;
5401         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5402         int pipe = intel_crtc->pipe;
5403         uint16_t coeff = 0x7800; /* 1.0 */
5404
5405         /*
5406          * TODO: Check what kind of values actually come out of the pipe
5407          * with these coeff/postoff values and adjust to get the best
5408          * accuracy. Perhaps we even need to take the bpc value into
5409          * consideration.
5410          */
5411
5412         if (intel_crtc->config.limited_color_range)
5413                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5414
5415         /*
5416          * GY/GU and RY/RU should be the other way around according
5417          * to BSpec, but reality doesn't agree. Just set them up in
5418          * a way that results in the correct picture.
5419          */
5420         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5421         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5422
5423         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5424         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5425
5426         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5427         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5428
5429         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5430         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5431         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5432
5433         if (INTEL_INFO(dev)->gen > 6) {
5434                 uint16_t postoff = 0;
5435
5436                 if (intel_crtc->config.limited_color_range)
5437                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5438
5439                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5440                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5441                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5442
5443                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5444         } else {
5445                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5446
5447                 if (intel_crtc->config.limited_color_range)
5448                         mode |= CSC_BLACK_SCREEN_OFFSET;
5449
5450                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5451         }
5452 }
5453
5454 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5455 {
5456         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5459         uint32_t val;
5460
5461         val = I915_READ(PIPECONF(cpu_transcoder));
5462
5463         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5464         if (intel_crtc->config.dither)
5465                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5466
5467         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5468         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5469                 val |= PIPECONF_INTERLACED_ILK;
5470         else
5471                 val |= PIPECONF_PROGRESSIVE;
5472
5473         I915_WRITE(PIPECONF(cpu_transcoder), val);
5474         POSTING_READ(PIPECONF(cpu_transcoder));
5475 }
5476
5477 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5478                                     struct drm_display_mode *adjusted_mode,
5479                                     intel_clock_t *clock,
5480                                     bool *has_reduced_clock,
5481                                     intel_clock_t *reduced_clock)
5482 {
5483         struct drm_device *dev = crtc->dev;
5484         struct drm_i915_private *dev_priv = dev->dev_private;
5485         struct intel_encoder *intel_encoder;
5486         int refclk;
5487         const intel_limit_t *limit;
5488         bool ret, is_lvds = false;
5489
5490         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5491                 switch (intel_encoder->type) {
5492                 case INTEL_OUTPUT_LVDS:
5493                         is_lvds = true;
5494                         break;
5495                 }
5496         }
5497
5498         refclk = ironlake_get_refclk(crtc);
5499
5500         /*
5501          * Returns a set of divisors for the desired target clock with the given
5502          * refclk, or FALSE.  The returned values represent the clock equation:
5503          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5504          */
5505         limit = intel_limit(crtc, refclk);
5506         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5507                               clock);
5508         if (!ret)
5509                 return false;
5510
5511         if (is_lvds && dev_priv->lvds_downclock_avail) {
5512                 /*
5513                  * Ensure we match the reduced clock's P to the target clock.
5514                  * If the clocks don't match, we can't switch the display clock
5515                  * by using the FP0/FP1. In such case we will disable the LVDS
5516                  * downclock feature.
5517                 */
5518                 *has_reduced_clock = limit->find_pll(limit, crtc,
5519                                                      dev_priv->lvds_downclock,
5520                                                      refclk,
5521                                                      clock,
5522                                                      reduced_clock);
5523         }
5524
5525         return true;
5526 }
5527
5528 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5529 {
5530         struct drm_i915_private *dev_priv = dev->dev_private;
5531         uint32_t temp;
5532
5533         temp = I915_READ(SOUTH_CHICKEN1);
5534         if (temp & FDI_BC_BIFURCATION_SELECT)
5535                 return;
5536
5537         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5538         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5539
5540         temp |= FDI_BC_BIFURCATION_SELECT;
5541         DRM_DEBUG_KMS("enabling fdi C rx\n");
5542         I915_WRITE(SOUTH_CHICKEN1, temp);
5543         POSTING_READ(SOUTH_CHICKEN1);
5544 }
5545
5546 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5547 {
5548         struct drm_device *dev = intel_crtc->base.dev;
5549         struct drm_i915_private *dev_priv = dev->dev_private;
5550
5551         switch (intel_crtc->pipe) {
5552         case PIPE_A:
5553                 break;
5554         case PIPE_B:
5555                 if (intel_crtc->config.fdi_lanes > 2)
5556                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5557                 else
5558                         cpt_enable_fdi_bc_bifurcation(dev);
5559
5560                 break;
5561         case PIPE_C:
5562                 cpt_enable_fdi_bc_bifurcation(dev);
5563
5564                 break;
5565         default:
5566                 BUG();
5567         }
5568 }
5569
5570 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5571 {
5572         /*
5573          * Account for spread spectrum to avoid
5574          * oversubscribing the link. Max center spread
5575          * is 2.5%; use 5% for safety's sake.
5576          */
5577         u32 bps = target_clock * bpp * 21 / 20;
5578         return bps / (link_bw * 8) + 1;
5579 }
5580
5581 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5582 {
5583         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5584 }
5585
5586 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5587                                       u32 *fp,
5588                                       intel_clock_t *reduced_clock, u32 *fp2)
5589 {
5590         struct drm_crtc *crtc = &intel_crtc->base;
5591         struct drm_device *dev = crtc->dev;
5592         struct drm_i915_private *dev_priv = dev->dev_private;
5593         struct intel_encoder *intel_encoder;
5594         uint32_t dpll;
5595         int factor, num_connectors = 0;
5596         bool is_lvds = false, is_sdvo = false;
5597
5598         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5599                 switch (intel_encoder->type) {
5600                 case INTEL_OUTPUT_LVDS:
5601                         is_lvds = true;
5602                         break;
5603                 case INTEL_OUTPUT_SDVO:
5604                 case INTEL_OUTPUT_HDMI:
5605                         is_sdvo = true;
5606                         break;
5607                 }
5608
5609                 num_connectors++;
5610         }
5611
5612         /* Enable autotuning of the PLL clock (if permissible) */
5613         factor = 21;
5614         if (is_lvds) {
5615                 if ((intel_panel_use_ssc(dev_priv) &&
5616                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5617                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5618                         factor = 25;
5619         } else if (intel_crtc->config.sdvo_tv_clock)
5620                 factor = 20;
5621
5622         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5623                 *fp |= FP_CB_TUNE;
5624
5625         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5626                 *fp2 |= FP_CB_TUNE;
5627
5628         dpll = 0;
5629
5630         if (is_lvds)
5631                 dpll |= DPLLB_MODE_LVDS;
5632         else
5633                 dpll |= DPLLB_MODE_DAC_SERIAL;
5634
5635         if (intel_crtc->config.pixel_multiplier > 1) {
5636                 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5637                         << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5638         }
5639
5640         if (is_sdvo)
5641                 dpll |= DPLL_DVO_HIGH_SPEED;
5642         if (intel_crtc->config.has_dp_encoder)
5643                 dpll |= DPLL_DVO_HIGH_SPEED;
5644
5645         /* compute bitmask from p1 value */
5646         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5647         /* also FPA1 */
5648         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5649
5650         switch (intel_crtc->config.dpll.p2) {
5651         case 5:
5652                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5653                 break;
5654         case 7:
5655                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5656                 break;
5657         case 10:
5658                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5659                 break;
5660         case 14:
5661                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5662                 break;
5663         }
5664
5665         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5666                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5667         else
5668                 dpll |= PLL_REF_INPUT_DREFCLK;
5669
5670         return dpll;
5671 }
5672
5673 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5674                                   int x, int y,
5675                                   struct drm_framebuffer *fb)
5676 {
5677         struct drm_device *dev = crtc->dev;
5678         struct drm_i915_private *dev_priv = dev->dev_private;
5679         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5680         struct drm_display_mode *adjusted_mode =
5681                 &intel_crtc->config.adjusted_mode;
5682         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5683         int pipe = intel_crtc->pipe;
5684         int plane = intel_crtc->plane;
5685         int num_connectors = 0;
5686         intel_clock_t clock, reduced_clock;
5687         u32 dpll = 0, fp = 0, fp2 = 0;
5688         bool ok, has_reduced_clock = false;
5689         bool is_lvds = false;
5690         struct intel_encoder *encoder;
5691         int ret;
5692
5693         for_each_encoder_on_crtc(dev, crtc, encoder) {
5694                 switch (encoder->type) {
5695                 case INTEL_OUTPUT_LVDS:
5696                         is_lvds = true;
5697                         break;
5698                 }
5699
5700                 num_connectors++;
5701         }
5702
5703         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5704              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5705
5706         intel_crtc->config.cpu_transcoder = pipe;
5707
5708         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5709                                      &has_reduced_clock, &reduced_clock);
5710         if (!ok) {
5711                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5712                 return -EINVAL;
5713         }
5714         /* Compat-code for transition, will disappear. */
5715         if (!intel_crtc->config.clock_set) {
5716                 intel_crtc->config.dpll.n = clock.n;
5717                 intel_crtc->config.dpll.m1 = clock.m1;
5718                 intel_crtc->config.dpll.m2 = clock.m2;
5719                 intel_crtc->config.dpll.p1 = clock.p1;
5720                 intel_crtc->config.dpll.p2 = clock.p2;
5721         }
5722
5723         /* Ensure that the cursor is valid for the new mode before changing... */
5724         intel_crtc_update_cursor(crtc, true);
5725
5726         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5727         drm_mode_debug_printmodeline(mode);
5728
5729         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5730         if (intel_crtc->config.has_pch_encoder) {
5731                 struct intel_pch_pll *pll;
5732
5733                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5734                 if (has_reduced_clock)
5735                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5736
5737                 dpll = ironlake_compute_dpll(intel_crtc,
5738                                              &fp, &reduced_clock,
5739                                              has_reduced_clock ? &fp2 : NULL);
5740
5741                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5742                 if (pll == NULL) {
5743                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5744                                          pipe_name(pipe));
5745                         return -EINVAL;
5746                 }
5747         } else
5748                 intel_put_pch_pll(intel_crtc);
5749
5750         if (intel_crtc->config.has_dp_encoder)
5751                 intel_dp_set_m_n(intel_crtc);
5752
5753         for_each_encoder_on_crtc(dev, crtc, encoder)
5754                 if (encoder->pre_pll_enable)
5755                         encoder->pre_pll_enable(encoder);
5756
5757         if (intel_crtc->pch_pll) {
5758                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5759
5760                 /* Wait for the clocks to stabilize. */
5761                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5762                 udelay(150);
5763
5764                 /* The pixel multiplier can only be updated once the
5765                  * DPLL is enabled and the clocks are stable.
5766                  *
5767                  * So write it again.
5768                  */
5769                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5770         }
5771
5772         intel_crtc->lowfreq_avail = false;
5773         if (intel_crtc->pch_pll) {
5774                 if (is_lvds && has_reduced_clock && i915_powersave) {
5775                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5776                         intel_crtc->lowfreq_avail = true;
5777                 } else {
5778                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5779                 }
5780         }
5781
5782         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5783
5784         if (intel_crtc->config.has_pch_encoder) {
5785                 intel_cpu_transcoder_set_m_n(intel_crtc,
5786                                              &intel_crtc->config.fdi_m_n);
5787         }
5788
5789         if (IS_IVYBRIDGE(dev))
5790                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5791
5792         ironlake_set_pipeconf(crtc);
5793
5794         /* Set up the display plane register */
5795         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5796         POSTING_READ(DSPCNTR(plane));
5797
5798         ret = intel_pipe_set_base(crtc, x, y, fb);
5799
5800         intel_update_watermarks(dev);
5801
5802         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5803
5804         return ret;
5805 }
5806
5807 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5808                                         struct intel_crtc_config *pipe_config)
5809 {
5810         struct drm_device *dev = crtc->base.dev;
5811         struct drm_i915_private *dev_priv = dev->dev_private;
5812         enum transcoder transcoder = pipe_config->cpu_transcoder;
5813
5814         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5815         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5816         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5817                                         & ~TU_SIZE_MASK;
5818         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5819         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5820                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5821 }
5822
5823 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5824                                      struct intel_crtc_config *pipe_config)
5825 {
5826         struct drm_device *dev = crtc->base.dev;
5827         struct drm_i915_private *dev_priv = dev->dev_private;
5828         uint32_t tmp;
5829
5830         tmp = I915_READ(PIPECONF(crtc->pipe));
5831         if (!(tmp & PIPECONF_ENABLE))
5832                 return false;
5833
5834         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5835                 pipe_config->has_pch_encoder = true;
5836
5837                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5838                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5839                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5840
5841                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5842         }
5843
5844         intel_get_pipe_timings(crtc, pipe_config);
5845
5846         return true;
5847 }
5848
5849 static void haswell_modeset_global_resources(struct drm_device *dev)
5850 {
5851         bool enable = false;
5852         struct intel_crtc *crtc;
5853         struct intel_encoder *encoder;
5854
5855         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5856                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5857                         enable = true;
5858                 /* XXX: Should check for edp transcoder here, but thanks to init
5859                  * sequence that's not yet available. Just in case desktop eDP
5860                  * on PORT D is possible on haswell, too. */
5861                 /* Even the eDP panel fitter is outside the always-on well. */
5862                 if (crtc->config.pch_pfit.size && crtc->base.enabled)
5863                         enable = true;
5864         }
5865
5866         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5867                             base.head) {
5868                 if (encoder->type != INTEL_OUTPUT_EDP &&
5869                     encoder->connectors_active)
5870                         enable = true;
5871         }
5872
5873         intel_set_power_well(dev, enable);
5874 }
5875
5876 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5877                                  int x, int y,
5878                                  struct drm_framebuffer *fb)
5879 {
5880         struct drm_device *dev = crtc->dev;
5881         struct drm_i915_private *dev_priv = dev->dev_private;
5882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5883         struct drm_display_mode *adjusted_mode =
5884                 &intel_crtc->config.adjusted_mode;
5885         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5886         int pipe = intel_crtc->pipe;
5887         int plane = intel_crtc->plane;
5888         int num_connectors = 0;
5889         bool is_cpu_edp = false;
5890         struct intel_encoder *encoder;
5891         int ret;
5892
5893         for_each_encoder_on_crtc(dev, crtc, encoder) {
5894                 switch (encoder->type) {
5895                 case INTEL_OUTPUT_EDP:
5896                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5897                                 is_cpu_edp = true;
5898                         break;
5899                 }
5900
5901                 num_connectors++;
5902         }
5903
5904         if (is_cpu_edp)
5905                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5906         else
5907                 intel_crtc->config.cpu_transcoder = pipe;
5908
5909         /* We are not sure yet this won't happen. */
5910         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5911              INTEL_PCH_TYPE(dev));
5912
5913         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5914              num_connectors, pipe_name(pipe));
5915
5916         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5917                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5918
5919         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5920
5921         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5922                 return -EINVAL;
5923
5924         /* Ensure that the cursor is valid for the new mode before changing... */
5925         intel_crtc_update_cursor(crtc, true);
5926
5927         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5928         drm_mode_debug_printmodeline(mode);
5929
5930         if (intel_crtc->config.has_dp_encoder)
5931                 intel_dp_set_m_n(intel_crtc);
5932
5933         intel_crtc->lowfreq_avail = false;
5934
5935         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5936
5937         if (intel_crtc->config.has_pch_encoder) {
5938                 intel_cpu_transcoder_set_m_n(intel_crtc,
5939                                              &intel_crtc->config.fdi_m_n);
5940         }
5941
5942         haswell_set_pipeconf(crtc);
5943
5944         intel_set_pipe_csc(crtc);
5945
5946         /* Set up the display plane register */
5947         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5948         POSTING_READ(DSPCNTR(plane));
5949
5950         ret = intel_pipe_set_base(crtc, x, y, fb);
5951
5952         intel_update_watermarks(dev);
5953
5954         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5955
5956         return ret;
5957 }
5958
5959 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5960                                     struct intel_crtc_config *pipe_config)
5961 {
5962         struct drm_device *dev = crtc->base.dev;
5963         struct drm_i915_private *dev_priv = dev->dev_private;
5964         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
5965         uint32_t tmp;
5966
5967         if (!intel_display_power_enabled(dev,
5968                         POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
5969                 return false;
5970
5971         tmp = I915_READ(PIPECONF(cpu_transcoder));
5972         if (!(tmp & PIPECONF_ENABLE))
5973                 return false;
5974
5975         /*
5976          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5977          * DDI E. So just check whether this pipe is wired to DDI E and whether
5978          * the PCH transcoder is on.
5979          */
5980         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
5981         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5982             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5983                 pipe_config->has_pch_encoder = true;
5984
5985                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5986                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5987                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5988
5989                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5990         }
5991
5992         intel_get_pipe_timings(crtc, pipe_config);
5993
5994         return true;
5995 }
5996
5997 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5998                                int x, int y,
5999                                struct drm_framebuffer *fb)
6000 {
6001         struct drm_device *dev = crtc->dev;
6002         struct drm_i915_private *dev_priv = dev->dev_private;
6003         struct drm_encoder_helper_funcs *encoder_funcs;
6004         struct intel_encoder *encoder;
6005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6006         struct drm_display_mode *adjusted_mode =
6007                 &intel_crtc->config.adjusted_mode;
6008         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6009         int pipe = intel_crtc->pipe;
6010         int ret;
6011
6012         drm_vblank_pre_modeset(dev, pipe);
6013
6014         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6015
6016         drm_vblank_post_modeset(dev, pipe);
6017
6018         if (ret != 0)
6019                 return ret;
6020
6021         for_each_encoder_on_crtc(dev, crtc, encoder) {
6022                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6023                         encoder->base.base.id,
6024                         drm_get_encoder_name(&encoder->base),
6025                         mode->base.id, mode->name);
6026                 if (encoder->mode_set) {
6027                         encoder->mode_set(encoder);
6028                 } else {
6029                         encoder_funcs = encoder->base.helper_private;
6030                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6031                 }
6032         }
6033
6034         return 0;
6035 }
6036
6037 static bool intel_eld_uptodate(struct drm_connector *connector,
6038                                int reg_eldv, uint32_t bits_eldv,
6039                                int reg_elda, uint32_t bits_elda,
6040                                int reg_edid)
6041 {
6042         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6043         uint8_t *eld = connector->eld;
6044         uint32_t i;
6045
6046         i = I915_READ(reg_eldv);
6047         i &= bits_eldv;
6048
6049         if (!eld[0])
6050                 return !i;
6051
6052         if (!i)
6053                 return false;
6054
6055         i = I915_READ(reg_elda);
6056         i &= ~bits_elda;
6057         I915_WRITE(reg_elda, i);
6058
6059         for (i = 0; i < eld[2]; i++)
6060                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6061                         return false;
6062
6063         return true;
6064 }
6065
6066 static void g4x_write_eld(struct drm_connector *connector,
6067                           struct drm_crtc *crtc)
6068 {
6069         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6070         uint8_t *eld = connector->eld;
6071         uint32_t eldv;
6072         uint32_t len;
6073         uint32_t i;
6074
6075         i = I915_READ(G4X_AUD_VID_DID);
6076
6077         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6078                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6079         else
6080                 eldv = G4X_ELDV_DEVCTG;
6081
6082         if (intel_eld_uptodate(connector,
6083                                G4X_AUD_CNTL_ST, eldv,
6084                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6085                                G4X_HDMIW_HDMIEDID))
6086                 return;
6087
6088         i = I915_READ(G4X_AUD_CNTL_ST);
6089         i &= ~(eldv | G4X_ELD_ADDR);
6090         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6091         I915_WRITE(G4X_AUD_CNTL_ST, i);
6092
6093         if (!eld[0])
6094                 return;
6095
6096         len = min_t(uint8_t, eld[2], len);
6097         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6098         for (i = 0; i < len; i++)
6099                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6100
6101         i = I915_READ(G4X_AUD_CNTL_ST);
6102         i |= eldv;
6103         I915_WRITE(G4X_AUD_CNTL_ST, i);
6104 }
6105
6106 static void haswell_write_eld(struct drm_connector *connector,
6107                                      struct drm_crtc *crtc)
6108 {
6109         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6110         uint8_t *eld = connector->eld;
6111         struct drm_device *dev = crtc->dev;
6112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6113         uint32_t eldv;
6114         uint32_t i;
6115         int len;
6116         int pipe = to_intel_crtc(crtc)->pipe;
6117         int tmp;
6118
6119         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6120         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6121         int aud_config = HSW_AUD_CFG(pipe);
6122         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6123
6124
6125         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6126
6127         /* Audio output enable */
6128         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6129         tmp = I915_READ(aud_cntrl_st2);
6130         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6131         I915_WRITE(aud_cntrl_st2, tmp);
6132
6133         /* Wait for 1 vertical blank */
6134         intel_wait_for_vblank(dev, pipe);
6135
6136         /* Set ELD valid state */
6137         tmp = I915_READ(aud_cntrl_st2);
6138         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6139         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6140         I915_WRITE(aud_cntrl_st2, tmp);
6141         tmp = I915_READ(aud_cntrl_st2);
6142         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6143
6144         /* Enable HDMI mode */
6145         tmp = I915_READ(aud_config);
6146         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6147         /* clear N_programing_enable and N_value_index */
6148         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6149         I915_WRITE(aud_config, tmp);
6150
6151         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6152
6153         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6154         intel_crtc->eld_vld = true;
6155
6156         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6157                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6158                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6159                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6160         } else
6161                 I915_WRITE(aud_config, 0);
6162
6163         if (intel_eld_uptodate(connector,
6164                                aud_cntrl_st2, eldv,
6165                                aud_cntl_st, IBX_ELD_ADDRESS,
6166                                hdmiw_hdmiedid))
6167                 return;
6168
6169         i = I915_READ(aud_cntrl_st2);
6170         i &= ~eldv;
6171         I915_WRITE(aud_cntrl_st2, i);
6172
6173         if (!eld[0])
6174                 return;
6175
6176         i = I915_READ(aud_cntl_st);
6177         i &= ~IBX_ELD_ADDRESS;
6178         I915_WRITE(aud_cntl_st, i);
6179         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6180         DRM_DEBUG_DRIVER("port num:%d\n", i);
6181
6182         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6183         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6184         for (i = 0; i < len; i++)
6185                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6186
6187         i = I915_READ(aud_cntrl_st2);
6188         i |= eldv;
6189         I915_WRITE(aud_cntrl_st2, i);
6190
6191 }
6192
6193 static void ironlake_write_eld(struct drm_connector *connector,
6194                                      struct drm_crtc *crtc)
6195 {
6196         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6197         uint8_t *eld = connector->eld;
6198         uint32_t eldv;
6199         uint32_t i;
6200         int len;
6201         int hdmiw_hdmiedid;
6202         int aud_config;
6203         int aud_cntl_st;
6204         int aud_cntrl_st2;
6205         int pipe = to_intel_crtc(crtc)->pipe;
6206
6207         if (HAS_PCH_IBX(connector->dev)) {
6208                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6209                 aud_config = IBX_AUD_CFG(pipe);
6210                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6211                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6212         } else {
6213                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6214                 aud_config = CPT_AUD_CFG(pipe);
6215                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6216                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6217         }
6218
6219         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6220
6221         i = I915_READ(aud_cntl_st);
6222         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6223         if (!i) {
6224                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6225                 /* operate blindly on all ports */
6226                 eldv = IBX_ELD_VALIDB;
6227                 eldv |= IBX_ELD_VALIDB << 4;
6228                 eldv |= IBX_ELD_VALIDB << 8;
6229         } else {
6230                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6231                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6232         }
6233
6234         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6235                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6236                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6237                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6238         } else
6239                 I915_WRITE(aud_config, 0);
6240
6241         if (intel_eld_uptodate(connector,
6242                                aud_cntrl_st2, eldv,
6243                                aud_cntl_st, IBX_ELD_ADDRESS,
6244                                hdmiw_hdmiedid))
6245                 return;
6246
6247         i = I915_READ(aud_cntrl_st2);
6248         i &= ~eldv;
6249         I915_WRITE(aud_cntrl_st2, i);
6250
6251         if (!eld[0])
6252                 return;
6253
6254         i = I915_READ(aud_cntl_st);
6255         i &= ~IBX_ELD_ADDRESS;
6256         I915_WRITE(aud_cntl_st, i);
6257
6258         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6259         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6260         for (i = 0; i < len; i++)
6261                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6262
6263         i = I915_READ(aud_cntrl_st2);
6264         i |= eldv;
6265         I915_WRITE(aud_cntrl_st2, i);
6266 }
6267
6268 void intel_write_eld(struct drm_encoder *encoder,
6269                      struct drm_display_mode *mode)
6270 {
6271         struct drm_crtc *crtc = encoder->crtc;
6272         struct drm_connector *connector;
6273         struct drm_device *dev = encoder->dev;
6274         struct drm_i915_private *dev_priv = dev->dev_private;
6275
6276         connector = drm_select_eld(encoder, mode);
6277         if (!connector)
6278                 return;
6279
6280         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6281                          connector->base.id,
6282                          drm_get_connector_name(connector),
6283                          connector->encoder->base.id,
6284                          drm_get_encoder_name(connector->encoder));
6285
6286         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6287
6288         if (dev_priv->display.write_eld)
6289                 dev_priv->display.write_eld(connector, crtc);
6290 }
6291
6292 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6293 void intel_crtc_load_lut(struct drm_crtc *crtc)
6294 {
6295         struct drm_device *dev = crtc->dev;
6296         struct drm_i915_private *dev_priv = dev->dev_private;
6297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6298         int palreg = PALETTE(intel_crtc->pipe);
6299         int i;
6300
6301         /* The clocks have to be on to load the palette. */
6302         if (!crtc->enabled || !intel_crtc->active)
6303                 return;
6304
6305         /* use legacy palette for Ironlake */
6306         if (HAS_PCH_SPLIT(dev))
6307                 palreg = LGC_PALETTE(intel_crtc->pipe);
6308
6309         for (i = 0; i < 256; i++) {
6310                 I915_WRITE(palreg + 4 * i,
6311                            (intel_crtc->lut_r[i] << 16) |
6312                            (intel_crtc->lut_g[i] << 8) |
6313                            intel_crtc->lut_b[i]);
6314         }
6315 }
6316
6317 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6318 {
6319         struct drm_device *dev = crtc->dev;
6320         struct drm_i915_private *dev_priv = dev->dev_private;
6321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6322         bool visible = base != 0;
6323         u32 cntl;
6324
6325         if (intel_crtc->cursor_visible == visible)
6326                 return;
6327
6328         cntl = I915_READ(_CURACNTR);
6329         if (visible) {
6330                 /* On these chipsets we can only modify the base whilst
6331                  * the cursor is disabled.
6332                  */
6333                 I915_WRITE(_CURABASE, base);
6334
6335                 cntl &= ~(CURSOR_FORMAT_MASK);
6336                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6337                 cntl |= CURSOR_ENABLE |
6338                         CURSOR_GAMMA_ENABLE |
6339                         CURSOR_FORMAT_ARGB;
6340         } else
6341                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6342         I915_WRITE(_CURACNTR, cntl);
6343
6344         intel_crtc->cursor_visible = visible;
6345 }
6346
6347 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6348 {
6349         struct drm_device *dev = crtc->dev;
6350         struct drm_i915_private *dev_priv = dev->dev_private;
6351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6352         int pipe = intel_crtc->pipe;
6353         bool visible = base != 0;
6354
6355         if (intel_crtc->cursor_visible != visible) {
6356                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6357                 if (base) {
6358                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6359                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6360                         cntl |= pipe << 28; /* Connect to correct pipe */
6361                 } else {
6362                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6363                         cntl |= CURSOR_MODE_DISABLE;
6364                 }
6365                 I915_WRITE(CURCNTR(pipe), cntl);
6366
6367                 intel_crtc->cursor_visible = visible;
6368         }
6369         /* and commit changes on next vblank */
6370         I915_WRITE(CURBASE(pipe), base);
6371 }
6372
6373 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6374 {
6375         struct drm_device *dev = crtc->dev;
6376         struct drm_i915_private *dev_priv = dev->dev_private;
6377         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6378         int pipe = intel_crtc->pipe;
6379         bool visible = base != 0;
6380
6381         if (intel_crtc->cursor_visible != visible) {
6382                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6383                 if (base) {
6384                         cntl &= ~CURSOR_MODE;
6385                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6386                 } else {
6387                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6388                         cntl |= CURSOR_MODE_DISABLE;
6389                 }
6390                 if (IS_HASWELL(dev))
6391                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6392                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6393
6394                 intel_crtc->cursor_visible = visible;
6395         }
6396         /* and commit changes on next vblank */
6397         I915_WRITE(CURBASE_IVB(pipe), base);
6398 }
6399
6400 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6401 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6402                                      bool on)
6403 {
6404         struct drm_device *dev = crtc->dev;
6405         struct drm_i915_private *dev_priv = dev->dev_private;
6406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6407         int pipe = intel_crtc->pipe;
6408         int x = intel_crtc->cursor_x;
6409         int y = intel_crtc->cursor_y;
6410         u32 base, pos;
6411         bool visible;
6412
6413         pos = 0;
6414
6415         if (on && crtc->enabled && crtc->fb) {
6416                 base = intel_crtc->cursor_addr;
6417                 if (x > (int) crtc->fb->width)
6418                         base = 0;
6419
6420                 if (y > (int) crtc->fb->height)
6421                         base = 0;
6422         } else
6423                 base = 0;
6424
6425         if (x < 0) {
6426                 if (x + intel_crtc->cursor_width < 0)
6427                         base = 0;
6428
6429                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6430                 x = -x;
6431         }
6432         pos |= x << CURSOR_X_SHIFT;
6433
6434         if (y < 0) {
6435                 if (y + intel_crtc->cursor_height < 0)
6436                         base = 0;
6437
6438                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6439                 y = -y;
6440         }
6441         pos |= y << CURSOR_Y_SHIFT;
6442
6443         visible = base != 0;
6444         if (!visible && !intel_crtc->cursor_visible)
6445                 return;
6446
6447         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6448                 I915_WRITE(CURPOS_IVB(pipe), pos);
6449                 ivb_update_cursor(crtc, base);
6450         } else {
6451                 I915_WRITE(CURPOS(pipe), pos);
6452                 if (IS_845G(dev) || IS_I865G(dev))
6453                         i845_update_cursor(crtc, base);
6454                 else
6455                         i9xx_update_cursor(crtc, base);
6456         }
6457 }
6458
6459 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6460                                  struct drm_file *file,
6461                                  uint32_t handle,
6462                                  uint32_t width, uint32_t height)
6463 {
6464         struct drm_device *dev = crtc->dev;
6465         struct drm_i915_private *dev_priv = dev->dev_private;
6466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6467         struct drm_i915_gem_object *obj;
6468         uint32_t addr;
6469         int ret;
6470
6471         /* if we want to turn off the cursor ignore width and height */
6472         if (!handle) {
6473                 DRM_DEBUG_KMS("cursor off\n");
6474                 addr = 0;
6475                 obj = NULL;
6476                 mutex_lock(&dev->struct_mutex);
6477                 goto finish;
6478         }
6479
6480         /* Currently we only support 64x64 cursors */
6481         if (width != 64 || height != 64) {
6482                 DRM_ERROR("we currently only support 64x64 cursors\n");
6483                 return -EINVAL;
6484         }
6485
6486         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6487         if (&obj->base == NULL)
6488                 return -ENOENT;
6489
6490         if (obj->base.size < width * height * 4) {
6491                 DRM_ERROR("buffer is to small\n");
6492                 ret = -ENOMEM;
6493                 goto fail;
6494         }
6495
6496         /* we only need to pin inside GTT if cursor is non-phy */
6497         mutex_lock(&dev->struct_mutex);
6498         if (!dev_priv->info->cursor_needs_physical) {
6499                 unsigned alignment;
6500
6501                 if (obj->tiling_mode) {
6502                         DRM_ERROR("cursor cannot be tiled\n");
6503                         ret = -EINVAL;
6504                         goto fail_locked;
6505                 }
6506
6507                 /* Note that the w/a also requires 2 PTE of padding following
6508                  * the bo. We currently fill all unused PTE with the shadow
6509                  * page and so we should always have valid PTE following the
6510                  * cursor preventing the VT-d warning.
6511                  */
6512                 alignment = 0;
6513                 if (need_vtd_wa(dev))
6514                         alignment = 64*1024;
6515
6516                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6517                 if (ret) {
6518                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6519                         goto fail_locked;
6520                 }
6521
6522                 ret = i915_gem_object_put_fence(obj);
6523                 if (ret) {
6524                         DRM_ERROR("failed to release fence for cursor");
6525                         goto fail_unpin;
6526                 }
6527
6528                 addr = obj->gtt_offset;
6529         } else {
6530                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6531                 ret = i915_gem_attach_phys_object(dev, obj,
6532                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6533                                                   align);
6534                 if (ret) {
6535                         DRM_ERROR("failed to attach phys object\n");
6536                         goto fail_locked;
6537                 }
6538                 addr = obj->phys_obj->handle->busaddr;
6539         }
6540
6541         if (IS_GEN2(dev))
6542                 I915_WRITE(CURSIZE, (height << 12) | width);
6543
6544  finish:
6545         if (intel_crtc->cursor_bo) {
6546                 if (dev_priv->info->cursor_needs_physical) {
6547                         if (intel_crtc->cursor_bo != obj)
6548                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6549                 } else
6550                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6551                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6552         }
6553
6554         mutex_unlock(&dev->struct_mutex);
6555
6556         intel_crtc->cursor_addr = addr;
6557         intel_crtc->cursor_bo = obj;
6558         intel_crtc->cursor_width = width;
6559         intel_crtc->cursor_height = height;
6560
6561         intel_crtc_update_cursor(crtc, true);
6562
6563         return 0;
6564 fail_unpin:
6565         i915_gem_object_unpin(obj);
6566 fail_locked:
6567         mutex_unlock(&dev->struct_mutex);
6568 fail:
6569         drm_gem_object_unreference_unlocked(&obj->base);
6570         return ret;
6571 }
6572
6573 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6574 {
6575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6576
6577         intel_crtc->cursor_x = x;
6578         intel_crtc->cursor_y = y;
6579
6580         intel_crtc_update_cursor(crtc, true);
6581
6582         return 0;
6583 }
6584
6585 /** Sets the color ramps on behalf of RandR */
6586 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6587                                  u16 blue, int regno)
6588 {
6589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6590
6591         intel_crtc->lut_r[regno] = red >> 8;
6592         intel_crtc->lut_g[regno] = green >> 8;
6593         intel_crtc->lut_b[regno] = blue >> 8;
6594 }
6595
6596 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6597                              u16 *blue, int regno)
6598 {
6599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6600
6601         *red = intel_crtc->lut_r[regno] << 8;
6602         *green = intel_crtc->lut_g[regno] << 8;
6603         *blue = intel_crtc->lut_b[regno] << 8;
6604 }
6605
6606 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6607                                  u16 *blue, uint32_t start, uint32_t size)
6608 {
6609         int end = (start + size > 256) ? 256 : start + size, i;
6610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6611
6612         for (i = start; i < end; i++) {
6613                 intel_crtc->lut_r[i] = red[i] >> 8;
6614                 intel_crtc->lut_g[i] = green[i] >> 8;
6615                 intel_crtc->lut_b[i] = blue[i] >> 8;
6616         }
6617
6618         intel_crtc_load_lut(crtc);
6619 }
6620
6621 /* VESA 640x480x72Hz mode to set on the pipe */
6622 static struct drm_display_mode load_detect_mode = {
6623         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6624                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6625 };
6626
6627 static struct drm_framebuffer *
6628 intel_framebuffer_create(struct drm_device *dev,
6629                          struct drm_mode_fb_cmd2 *mode_cmd,
6630                          struct drm_i915_gem_object *obj)
6631 {
6632         struct intel_framebuffer *intel_fb;
6633         int ret;
6634
6635         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6636         if (!intel_fb) {
6637                 drm_gem_object_unreference_unlocked(&obj->base);
6638                 return ERR_PTR(-ENOMEM);
6639         }
6640
6641         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6642         if (ret) {
6643                 drm_gem_object_unreference_unlocked(&obj->base);
6644                 kfree(intel_fb);
6645                 return ERR_PTR(ret);
6646         }
6647
6648         return &intel_fb->base;
6649 }
6650
6651 static u32
6652 intel_framebuffer_pitch_for_width(int width, int bpp)
6653 {
6654         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6655         return ALIGN(pitch, 64);
6656 }
6657
6658 static u32
6659 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6660 {
6661         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6662         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6663 }
6664
6665 static struct drm_framebuffer *
6666 intel_framebuffer_create_for_mode(struct drm_device *dev,
6667                                   struct drm_display_mode *mode,
6668                                   int depth, int bpp)
6669 {
6670         struct drm_i915_gem_object *obj;
6671         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6672
6673         obj = i915_gem_alloc_object(dev,
6674                                     intel_framebuffer_size_for_mode(mode, bpp));
6675         if (obj == NULL)
6676                 return ERR_PTR(-ENOMEM);
6677
6678         mode_cmd.width = mode->hdisplay;
6679         mode_cmd.height = mode->vdisplay;
6680         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6681                                                                 bpp);
6682         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6683
6684         return intel_framebuffer_create(dev, &mode_cmd, obj);
6685 }
6686
6687 static struct drm_framebuffer *
6688 mode_fits_in_fbdev(struct drm_device *dev,
6689                    struct drm_display_mode *mode)
6690 {
6691         struct drm_i915_private *dev_priv = dev->dev_private;
6692         struct drm_i915_gem_object *obj;
6693         struct drm_framebuffer *fb;
6694
6695         if (dev_priv->fbdev == NULL)
6696                 return NULL;
6697
6698         obj = dev_priv->fbdev->ifb.obj;
6699         if (obj == NULL)
6700                 return NULL;
6701
6702         fb = &dev_priv->fbdev->ifb.base;
6703         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6704                                                                fb->bits_per_pixel))
6705                 return NULL;
6706
6707         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6708                 return NULL;
6709
6710         return fb;
6711 }
6712
6713 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6714                                 struct drm_display_mode *mode,
6715                                 struct intel_load_detect_pipe *old)
6716 {
6717         struct intel_crtc *intel_crtc;
6718         struct intel_encoder *intel_encoder =
6719                 intel_attached_encoder(connector);
6720         struct drm_crtc *possible_crtc;
6721         struct drm_encoder *encoder = &intel_encoder->base;
6722         struct drm_crtc *crtc = NULL;
6723         struct drm_device *dev = encoder->dev;
6724         struct drm_framebuffer *fb;
6725         int i = -1;
6726
6727         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6728                       connector->base.id, drm_get_connector_name(connector),
6729                       encoder->base.id, drm_get_encoder_name(encoder));
6730
6731         /*
6732          * Algorithm gets a little messy:
6733          *
6734          *   - if the connector already has an assigned crtc, use it (but make
6735          *     sure it's on first)
6736          *
6737          *   - try to find the first unused crtc that can drive this connector,
6738          *     and use that if we find one
6739          */
6740
6741         /* See if we already have a CRTC for this connector */
6742         if (encoder->crtc) {
6743                 crtc = encoder->crtc;
6744
6745                 mutex_lock(&crtc->mutex);
6746
6747                 old->dpms_mode = connector->dpms;
6748                 old->load_detect_temp = false;
6749
6750                 /* Make sure the crtc and connector are running */
6751                 if (connector->dpms != DRM_MODE_DPMS_ON)
6752                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6753
6754                 return true;
6755         }
6756
6757         /* Find an unused one (if possible) */
6758         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6759                 i++;
6760                 if (!(encoder->possible_crtcs & (1 << i)))
6761                         continue;
6762                 if (!possible_crtc->enabled) {
6763                         crtc = possible_crtc;
6764                         break;
6765                 }
6766         }
6767
6768         /*
6769          * If we didn't find an unused CRTC, don't use any.
6770          */
6771         if (!crtc) {
6772                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6773                 return false;
6774         }
6775
6776         mutex_lock(&crtc->mutex);
6777         intel_encoder->new_crtc = to_intel_crtc(crtc);
6778         to_intel_connector(connector)->new_encoder = intel_encoder;
6779
6780         intel_crtc = to_intel_crtc(crtc);
6781         old->dpms_mode = connector->dpms;
6782         old->load_detect_temp = true;
6783         old->release_fb = NULL;
6784
6785         if (!mode)
6786                 mode = &load_detect_mode;
6787
6788         /* We need a framebuffer large enough to accommodate all accesses
6789          * that the plane may generate whilst we perform load detection.
6790          * We can not rely on the fbcon either being present (we get called
6791          * during its initialisation to detect all boot displays, or it may
6792          * not even exist) or that it is large enough to satisfy the
6793          * requested mode.
6794          */
6795         fb = mode_fits_in_fbdev(dev, mode);
6796         if (fb == NULL) {
6797                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6798                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6799                 old->release_fb = fb;
6800         } else
6801                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6802         if (IS_ERR(fb)) {
6803                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6804                 mutex_unlock(&crtc->mutex);
6805                 return false;
6806         }
6807
6808         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6809                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6810                 if (old->release_fb)
6811                         old->release_fb->funcs->destroy(old->release_fb);
6812                 mutex_unlock(&crtc->mutex);
6813                 return false;
6814         }
6815
6816         /* let the connector get through one full cycle before testing */
6817         intel_wait_for_vblank(dev, intel_crtc->pipe);
6818         return true;
6819 }
6820
6821 void intel_release_load_detect_pipe(struct drm_connector *connector,
6822                                     struct intel_load_detect_pipe *old)
6823 {
6824         struct intel_encoder *intel_encoder =
6825                 intel_attached_encoder(connector);
6826         struct drm_encoder *encoder = &intel_encoder->base;
6827         struct drm_crtc *crtc = encoder->crtc;
6828
6829         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6830                       connector->base.id, drm_get_connector_name(connector),
6831                       encoder->base.id, drm_get_encoder_name(encoder));
6832
6833         if (old->load_detect_temp) {
6834                 to_intel_connector(connector)->new_encoder = NULL;
6835                 intel_encoder->new_crtc = NULL;
6836                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6837
6838                 if (old->release_fb) {
6839                         drm_framebuffer_unregister_private(old->release_fb);
6840                         drm_framebuffer_unreference(old->release_fb);
6841                 }
6842
6843                 mutex_unlock(&crtc->mutex);
6844                 return;
6845         }
6846
6847         /* Switch crtc and encoder back off if necessary */
6848         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6849                 connector->funcs->dpms(connector, old->dpms_mode);
6850
6851         mutex_unlock(&crtc->mutex);
6852 }
6853
6854 /* Returns the clock of the currently programmed mode of the given pipe. */
6855 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6856 {
6857         struct drm_i915_private *dev_priv = dev->dev_private;
6858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6859         int pipe = intel_crtc->pipe;
6860         u32 dpll = I915_READ(DPLL(pipe));
6861         u32 fp;
6862         intel_clock_t clock;
6863
6864         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6865                 fp = I915_READ(FP0(pipe));
6866         else
6867                 fp = I915_READ(FP1(pipe));
6868
6869         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6870         if (IS_PINEVIEW(dev)) {
6871                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6872                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6873         } else {
6874                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6875                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6876         }
6877
6878         if (!IS_GEN2(dev)) {
6879                 if (IS_PINEVIEW(dev))
6880                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6881                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6882                 else
6883                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6884                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6885
6886                 switch (dpll & DPLL_MODE_MASK) {
6887                 case DPLLB_MODE_DAC_SERIAL:
6888                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6889                                 5 : 10;
6890                         break;
6891                 case DPLLB_MODE_LVDS:
6892                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6893                                 7 : 14;
6894                         break;
6895                 default:
6896                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6897                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6898                         return 0;
6899                 }
6900
6901                 /* XXX: Handle the 100Mhz refclk */
6902                 intel_clock(dev, 96000, &clock);
6903         } else {
6904                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6905
6906                 if (is_lvds) {
6907                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6908                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6909                         clock.p2 = 14;
6910
6911                         if ((dpll & PLL_REF_INPUT_MASK) ==
6912                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6913                                 /* XXX: might not be 66MHz */
6914                                 intel_clock(dev, 66000, &clock);
6915                         } else
6916                                 intel_clock(dev, 48000, &clock);
6917                 } else {
6918                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6919                                 clock.p1 = 2;
6920                         else {
6921                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6922                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6923                         }
6924                         if (dpll & PLL_P2_DIVIDE_BY_4)
6925                                 clock.p2 = 4;
6926                         else
6927                                 clock.p2 = 2;
6928
6929                         intel_clock(dev, 48000, &clock);
6930                 }
6931         }
6932
6933         /* XXX: It would be nice to validate the clocks, but we can't reuse
6934          * i830PllIsValid() because it relies on the xf86_config connector
6935          * configuration being accurate, which it isn't necessarily.
6936          */
6937
6938         return clock.dot;
6939 }
6940
6941 /** Returns the currently programmed mode of the given pipe. */
6942 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6943                                              struct drm_crtc *crtc)
6944 {
6945         struct drm_i915_private *dev_priv = dev->dev_private;
6946         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6947         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6948         struct drm_display_mode *mode;
6949         int htot = I915_READ(HTOTAL(cpu_transcoder));
6950         int hsync = I915_READ(HSYNC(cpu_transcoder));
6951         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6952         int vsync = I915_READ(VSYNC(cpu_transcoder));
6953
6954         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6955         if (!mode)
6956                 return NULL;
6957
6958         mode->clock = intel_crtc_clock_get(dev, crtc);
6959         mode->hdisplay = (htot & 0xffff) + 1;
6960         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6961         mode->hsync_start = (hsync & 0xffff) + 1;
6962         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6963         mode->vdisplay = (vtot & 0xffff) + 1;
6964         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6965         mode->vsync_start = (vsync & 0xffff) + 1;
6966         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6967
6968         drm_mode_set_name(mode);
6969
6970         return mode;
6971 }
6972
6973 static void intel_increase_pllclock(struct drm_crtc *crtc)
6974 {
6975         struct drm_device *dev = crtc->dev;
6976         drm_i915_private_t *dev_priv = dev->dev_private;
6977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6978         int pipe = intel_crtc->pipe;
6979         int dpll_reg = DPLL(pipe);
6980         int dpll;
6981
6982         if (HAS_PCH_SPLIT(dev))
6983                 return;
6984
6985         if (!dev_priv->lvds_downclock_avail)
6986                 return;
6987
6988         dpll = I915_READ(dpll_reg);
6989         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6990                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6991
6992                 assert_panel_unlocked(dev_priv, pipe);
6993
6994                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6995                 I915_WRITE(dpll_reg, dpll);
6996                 intel_wait_for_vblank(dev, pipe);
6997
6998                 dpll = I915_READ(dpll_reg);
6999                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7000                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7001         }
7002 }
7003
7004 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7005 {
7006         struct drm_device *dev = crtc->dev;
7007         drm_i915_private_t *dev_priv = dev->dev_private;
7008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7009
7010         if (HAS_PCH_SPLIT(dev))
7011                 return;
7012
7013         if (!dev_priv->lvds_downclock_avail)
7014                 return;
7015
7016         /*
7017          * Since this is called by a timer, we should never get here in
7018          * the manual case.
7019          */
7020         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7021                 int pipe = intel_crtc->pipe;
7022                 int dpll_reg = DPLL(pipe);
7023                 int dpll;
7024
7025                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7026
7027                 assert_panel_unlocked(dev_priv, pipe);
7028
7029                 dpll = I915_READ(dpll_reg);
7030                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7031                 I915_WRITE(dpll_reg, dpll);
7032                 intel_wait_for_vblank(dev, pipe);
7033                 dpll = I915_READ(dpll_reg);
7034                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7035                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7036         }
7037
7038 }
7039
7040 void intel_mark_busy(struct drm_device *dev)
7041 {
7042         i915_update_gfx_val(dev->dev_private);
7043 }
7044
7045 void intel_mark_idle(struct drm_device *dev)
7046 {
7047         struct drm_crtc *crtc;
7048
7049         if (!i915_powersave)
7050                 return;
7051
7052         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7053                 if (!crtc->fb)
7054                         continue;
7055
7056                 intel_decrease_pllclock(crtc);
7057         }
7058 }
7059
7060 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7061 {
7062         struct drm_device *dev = obj->base.dev;
7063         struct drm_crtc *crtc;
7064
7065         if (!i915_powersave)
7066                 return;
7067
7068         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7069                 if (!crtc->fb)
7070                         continue;
7071
7072                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7073                         intel_increase_pllclock(crtc);
7074         }
7075 }
7076
7077 static void intel_crtc_destroy(struct drm_crtc *crtc)
7078 {
7079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7080         struct drm_device *dev = crtc->dev;
7081         struct intel_unpin_work *work;
7082         unsigned long flags;
7083
7084         spin_lock_irqsave(&dev->event_lock, flags);
7085         work = intel_crtc->unpin_work;
7086         intel_crtc->unpin_work = NULL;
7087         spin_unlock_irqrestore(&dev->event_lock, flags);
7088
7089         if (work) {
7090                 cancel_work_sync(&work->work);
7091                 kfree(work);
7092         }
7093
7094         drm_crtc_cleanup(crtc);
7095
7096         kfree(intel_crtc);
7097 }
7098
7099 static void intel_unpin_work_fn(struct work_struct *__work)
7100 {
7101         struct intel_unpin_work *work =
7102                 container_of(__work, struct intel_unpin_work, work);
7103         struct drm_device *dev = work->crtc->dev;
7104
7105         mutex_lock(&dev->struct_mutex);
7106         intel_unpin_fb_obj(work->old_fb_obj);
7107         drm_gem_object_unreference(&work->pending_flip_obj->base);
7108         drm_gem_object_unreference(&work->old_fb_obj->base);
7109
7110         intel_update_fbc(dev);
7111         mutex_unlock(&dev->struct_mutex);
7112
7113         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7114         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7115
7116         kfree(work);
7117 }
7118
7119 static void do_intel_finish_page_flip(struct drm_device *dev,
7120                                       struct drm_crtc *crtc)
7121 {
7122         drm_i915_private_t *dev_priv = dev->dev_private;
7123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7124         struct intel_unpin_work *work;
7125         unsigned long flags;
7126
7127         /* Ignore early vblank irqs */
7128         if (intel_crtc == NULL)
7129                 return;
7130
7131         spin_lock_irqsave(&dev->event_lock, flags);
7132         work = intel_crtc->unpin_work;
7133
7134         /* Ensure we don't miss a work->pending update ... */
7135         smp_rmb();
7136
7137         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7138                 spin_unlock_irqrestore(&dev->event_lock, flags);
7139                 return;
7140         }
7141
7142         /* and that the unpin work is consistent wrt ->pending. */
7143         smp_rmb();
7144
7145         intel_crtc->unpin_work = NULL;
7146
7147         if (work->event)
7148                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7149
7150         drm_vblank_put(dev, intel_crtc->pipe);
7151
7152         spin_unlock_irqrestore(&dev->event_lock, flags);
7153
7154         wake_up_all(&dev_priv->pending_flip_queue);
7155
7156         queue_work(dev_priv->wq, &work->work);
7157
7158         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7159 }
7160
7161 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7162 {
7163         drm_i915_private_t *dev_priv = dev->dev_private;
7164         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7165
7166         do_intel_finish_page_flip(dev, crtc);
7167 }
7168
7169 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7170 {
7171         drm_i915_private_t *dev_priv = dev->dev_private;
7172         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7173
7174         do_intel_finish_page_flip(dev, crtc);
7175 }
7176
7177 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7178 {
7179         drm_i915_private_t *dev_priv = dev->dev_private;
7180         struct intel_crtc *intel_crtc =
7181                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7182         unsigned long flags;
7183
7184         /* NB: An MMIO update of the plane base pointer will also
7185          * generate a page-flip completion irq, i.e. every modeset
7186          * is also accompanied by a spurious intel_prepare_page_flip().
7187          */
7188         spin_lock_irqsave(&dev->event_lock, flags);
7189         if (intel_crtc->unpin_work)
7190                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7191         spin_unlock_irqrestore(&dev->event_lock, flags);
7192 }
7193
7194 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7195 {
7196         /* Ensure that the work item is consistent when activating it ... */
7197         smp_wmb();
7198         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7199         /* and that it is marked active as soon as the irq could fire. */
7200         smp_wmb();
7201 }
7202
7203 static int intel_gen2_queue_flip(struct drm_device *dev,
7204                                  struct drm_crtc *crtc,
7205                                  struct drm_framebuffer *fb,
7206                                  struct drm_i915_gem_object *obj)
7207 {
7208         struct drm_i915_private *dev_priv = dev->dev_private;
7209         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7210         u32 flip_mask;
7211         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7212         int ret;
7213
7214         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7215         if (ret)
7216                 goto err;
7217
7218         ret = intel_ring_begin(ring, 6);
7219         if (ret)
7220                 goto err_unpin;
7221
7222         /* Can't queue multiple flips, so wait for the previous
7223          * one to finish before executing the next.
7224          */
7225         if (intel_crtc->plane)
7226                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7227         else
7228                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7229         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7230         intel_ring_emit(ring, MI_NOOP);
7231         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7232                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7233         intel_ring_emit(ring, fb->pitches[0]);
7234         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7235         intel_ring_emit(ring, 0); /* aux display base address, unused */
7236
7237         intel_mark_page_flip_active(intel_crtc);
7238         intel_ring_advance(ring);
7239         return 0;
7240
7241 err_unpin:
7242         intel_unpin_fb_obj(obj);
7243 err:
7244         return ret;
7245 }
7246
7247 static int intel_gen3_queue_flip(struct drm_device *dev,
7248                                  struct drm_crtc *crtc,
7249                                  struct drm_framebuffer *fb,
7250                                  struct drm_i915_gem_object *obj)
7251 {
7252         struct drm_i915_private *dev_priv = dev->dev_private;
7253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7254         u32 flip_mask;
7255         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7256         int ret;
7257
7258         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7259         if (ret)
7260                 goto err;
7261
7262         ret = intel_ring_begin(ring, 6);
7263         if (ret)
7264                 goto err_unpin;
7265
7266         if (intel_crtc->plane)
7267                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7268         else
7269                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7270         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7271         intel_ring_emit(ring, MI_NOOP);
7272         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7273                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7274         intel_ring_emit(ring, fb->pitches[0]);
7275         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7276         intel_ring_emit(ring, MI_NOOP);
7277
7278         intel_mark_page_flip_active(intel_crtc);
7279         intel_ring_advance(ring);
7280         return 0;
7281
7282 err_unpin:
7283         intel_unpin_fb_obj(obj);
7284 err:
7285         return ret;
7286 }
7287
7288 static int intel_gen4_queue_flip(struct drm_device *dev,
7289                                  struct drm_crtc *crtc,
7290                                  struct drm_framebuffer *fb,
7291                                  struct drm_i915_gem_object *obj)
7292 {
7293         struct drm_i915_private *dev_priv = dev->dev_private;
7294         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7295         uint32_t pf, pipesrc;
7296         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7297         int ret;
7298
7299         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7300         if (ret)
7301                 goto err;
7302
7303         ret = intel_ring_begin(ring, 4);
7304         if (ret)
7305                 goto err_unpin;
7306
7307         /* i965+ uses the linear or tiled offsets from the
7308          * Display Registers (which do not change across a page-flip)
7309          * so we need only reprogram the base address.
7310          */
7311         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7312                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7313         intel_ring_emit(ring, fb->pitches[0]);
7314         intel_ring_emit(ring,
7315                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7316                         obj->tiling_mode);
7317
7318         /* XXX Enabling the panel-fitter across page-flip is so far
7319          * untested on non-native modes, so ignore it for now.
7320          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7321          */
7322         pf = 0;
7323         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7324         intel_ring_emit(ring, pf | pipesrc);
7325
7326         intel_mark_page_flip_active(intel_crtc);
7327         intel_ring_advance(ring);
7328         return 0;
7329
7330 err_unpin:
7331         intel_unpin_fb_obj(obj);
7332 err:
7333         return ret;
7334 }
7335
7336 static int intel_gen6_queue_flip(struct drm_device *dev,
7337                                  struct drm_crtc *crtc,
7338                                  struct drm_framebuffer *fb,
7339                                  struct drm_i915_gem_object *obj)
7340 {
7341         struct drm_i915_private *dev_priv = dev->dev_private;
7342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7343         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7344         uint32_t pf, pipesrc;
7345         int ret;
7346
7347         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7348         if (ret)
7349                 goto err;
7350
7351         ret = intel_ring_begin(ring, 4);
7352         if (ret)
7353                 goto err_unpin;
7354
7355         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7356                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7357         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7358         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7359
7360         /* Contrary to the suggestions in the documentation,
7361          * "Enable Panel Fitter" does not seem to be required when page
7362          * flipping with a non-native mode, and worse causes a normal
7363          * modeset to fail.
7364          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7365          */
7366         pf = 0;
7367         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7368         intel_ring_emit(ring, pf | pipesrc);
7369
7370         intel_mark_page_flip_active(intel_crtc);
7371         intel_ring_advance(ring);
7372         return 0;
7373
7374 err_unpin:
7375         intel_unpin_fb_obj(obj);
7376 err:
7377         return ret;
7378 }
7379
7380 /*
7381  * On gen7 we currently use the blit ring because (in early silicon at least)
7382  * the render ring doesn't give us interrpts for page flip completion, which
7383  * means clients will hang after the first flip is queued.  Fortunately the
7384  * blit ring generates interrupts properly, so use it instead.
7385  */
7386 static int intel_gen7_queue_flip(struct drm_device *dev,
7387                                  struct drm_crtc *crtc,
7388                                  struct drm_framebuffer *fb,
7389                                  struct drm_i915_gem_object *obj)
7390 {
7391         struct drm_i915_private *dev_priv = dev->dev_private;
7392         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7393         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7394         uint32_t plane_bit = 0;
7395         int ret;
7396
7397         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7398         if (ret)
7399                 goto err;
7400
7401         switch(intel_crtc->plane) {
7402         case PLANE_A:
7403                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7404                 break;
7405         case PLANE_B:
7406                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7407                 break;
7408         case PLANE_C:
7409                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7410                 break;
7411         default:
7412                 WARN_ONCE(1, "unknown plane in flip command\n");
7413                 ret = -ENODEV;
7414                 goto err_unpin;
7415         }
7416
7417         ret = intel_ring_begin(ring, 4);
7418         if (ret)
7419                 goto err_unpin;
7420
7421         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7422         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7423         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7424         intel_ring_emit(ring, (MI_NOOP));
7425
7426         intel_mark_page_flip_active(intel_crtc);
7427         intel_ring_advance(ring);
7428         return 0;
7429
7430 err_unpin:
7431         intel_unpin_fb_obj(obj);
7432 err:
7433         return ret;
7434 }
7435
7436 static int intel_default_queue_flip(struct drm_device *dev,
7437                                     struct drm_crtc *crtc,
7438                                     struct drm_framebuffer *fb,
7439                                     struct drm_i915_gem_object *obj)
7440 {
7441         return -ENODEV;
7442 }
7443
7444 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7445                                 struct drm_framebuffer *fb,
7446                                 struct drm_pending_vblank_event *event)
7447 {
7448         struct drm_device *dev = crtc->dev;
7449         struct drm_i915_private *dev_priv = dev->dev_private;
7450         struct drm_framebuffer *old_fb = crtc->fb;
7451         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7452         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7453         struct intel_unpin_work *work;
7454         unsigned long flags;
7455         int ret;
7456
7457         /* Can't change pixel format via MI display flips. */
7458         if (fb->pixel_format != crtc->fb->pixel_format)
7459                 return -EINVAL;
7460
7461         /*
7462          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7463          * Note that pitch changes could also affect these register.
7464          */
7465         if (INTEL_INFO(dev)->gen > 3 &&
7466             (fb->offsets[0] != crtc->fb->offsets[0] ||
7467              fb->pitches[0] != crtc->fb->pitches[0]))
7468                 return -EINVAL;
7469
7470         work = kzalloc(sizeof *work, GFP_KERNEL);
7471         if (work == NULL)
7472                 return -ENOMEM;
7473
7474         work->event = event;
7475         work->crtc = crtc;
7476         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7477         INIT_WORK(&work->work, intel_unpin_work_fn);
7478
7479         ret = drm_vblank_get(dev, intel_crtc->pipe);
7480         if (ret)
7481                 goto free_work;
7482
7483         /* We borrow the event spin lock for protecting unpin_work */
7484         spin_lock_irqsave(&dev->event_lock, flags);
7485         if (intel_crtc->unpin_work) {
7486                 spin_unlock_irqrestore(&dev->event_lock, flags);
7487                 kfree(work);
7488                 drm_vblank_put(dev, intel_crtc->pipe);
7489
7490                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7491                 return -EBUSY;
7492         }
7493         intel_crtc->unpin_work = work;
7494         spin_unlock_irqrestore(&dev->event_lock, flags);
7495
7496         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7497                 flush_workqueue(dev_priv->wq);
7498
7499         ret = i915_mutex_lock_interruptible(dev);
7500         if (ret)
7501                 goto cleanup;
7502
7503         /* Reference the objects for the scheduled work. */
7504         drm_gem_object_reference(&work->old_fb_obj->base);
7505         drm_gem_object_reference(&obj->base);
7506
7507         crtc->fb = fb;
7508
7509         work->pending_flip_obj = obj;
7510
7511         work->enable_stall_check = true;
7512
7513         atomic_inc(&intel_crtc->unpin_work_count);
7514         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7515
7516         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7517         if (ret)
7518                 goto cleanup_pending;
7519
7520         intel_disable_fbc(dev);
7521         intel_mark_fb_busy(obj);
7522         mutex_unlock(&dev->struct_mutex);
7523
7524         trace_i915_flip_request(intel_crtc->plane, obj);
7525
7526         return 0;
7527
7528 cleanup_pending:
7529         atomic_dec(&intel_crtc->unpin_work_count);
7530         crtc->fb = old_fb;
7531         drm_gem_object_unreference(&work->old_fb_obj->base);
7532         drm_gem_object_unreference(&obj->base);
7533         mutex_unlock(&dev->struct_mutex);
7534
7535 cleanup:
7536         spin_lock_irqsave(&dev->event_lock, flags);
7537         intel_crtc->unpin_work = NULL;
7538         spin_unlock_irqrestore(&dev->event_lock, flags);
7539
7540         drm_vblank_put(dev, intel_crtc->pipe);
7541 free_work:
7542         kfree(work);
7543
7544         return ret;
7545 }
7546
7547 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7548         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7549         .load_lut = intel_crtc_load_lut,
7550 };
7551
7552 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7553 {
7554         struct intel_encoder *other_encoder;
7555         struct drm_crtc *crtc = &encoder->new_crtc->base;
7556
7557         if (WARN_ON(!crtc))
7558                 return false;
7559
7560         list_for_each_entry(other_encoder,
7561                             &crtc->dev->mode_config.encoder_list,
7562                             base.head) {
7563
7564                 if (&other_encoder->new_crtc->base != crtc ||
7565                     encoder == other_encoder)
7566                         continue;
7567                 else
7568                         return true;
7569         }
7570
7571         return false;
7572 }
7573
7574 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7575                                   struct drm_crtc *crtc)
7576 {
7577         struct drm_device *dev;
7578         struct drm_crtc *tmp;
7579         int crtc_mask = 1;
7580
7581         WARN(!crtc, "checking null crtc?\n");
7582
7583         dev = crtc->dev;
7584
7585         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7586                 if (tmp == crtc)
7587                         break;
7588                 crtc_mask <<= 1;
7589         }
7590
7591         if (encoder->possible_crtcs & crtc_mask)
7592                 return true;
7593         return false;
7594 }
7595
7596 /**
7597  * intel_modeset_update_staged_output_state
7598  *
7599  * Updates the staged output configuration state, e.g. after we've read out the
7600  * current hw state.
7601  */
7602 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7603 {
7604         struct intel_encoder *encoder;
7605         struct intel_connector *connector;
7606
7607         list_for_each_entry(connector, &dev->mode_config.connector_list,
7608                             base.head) {
7609                 connector->new_encoder =
7610                         to_intel_encoder(connector->base.encoder);
7611         }
7612
7613         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7614                             base.head) {
7615                 encoder->new_crtc =
7616                         to_intel_crtc(encoder->base.crtc);
7617         }
7618 }
7619
7620 /**
7621  * intel_modeset_commit_output_state
7622  *
7623  * This function copies the stage display pipe configuration to the real one.
7624  */
7625 static void intel_modeset_commit_output_state(struct drm_device *dev)
7626 {
7627         struct intel_encoder *encoder;
7628         struct intel_connector *connector;
7629
7630         list_for_each_entry(connector, &dev->mode_config.connector_list,
7631                             base.head) {
7632                 connector->base.encoder = &connector->new_encoder->base;
7633         }
7634
7635         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7636                             base.head) {
7637                 encoder->base.crtc = &encoder->new_crtc->base;
7638         }
7639 }
7640
7641 static int
7642 pipe_config_set_bpp(struct drm_crtc *crtc,
7643                     struct drm_framebuffer *fb,
7644                     struct intel_crtc_config *pipe_config)
7645 {
7646         struct drm_device *dev = crtc->dev;
7647         struct drm_connector *connector;
7648         int bpp;
7649
7650         switch (fb->pixel_format) {
7651         case DRM_FORMAT_C8:
7652                 bpp = 8*3; /* since we go through a colormap */
7653                 break;
7654         case DRM_FORMAT_XRGB1555:
7655         case DRM_FORMAT_ARGB1555:
7656                 /* checked in intel_framebuffer_init already */
7657                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7658                         return -EINVAL;
7659         case DRM_FORMAT_RGB565:
7660                 bpp = 6*3; /* min is 18bpp */
7661                 break;
7662         case DRM_FORMAT_XBGR8888:
7663         case DRM_FORMAT_ABGR8888:
7664                 /* checked in intel_framebuffer_init already */
7665                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7666                         return -EINVAL;
7667         case DRM_FORMAT_XRGB8888:
7668         case DRM_FORMAT_ARGB8888:
7669                 bpp = 8*3;
7670                 break;
7671         case DRM_FORMAT_XRGB2101010:
7672         case DRM_FORMAT_ARGB2101010:
7673         case DRM_FORMAT_XBGR2101010:
7674         case DRM_FORMAT_ABGR2101010:
7675                 /* checked in intel_framebuffer_init already */
7676                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7677                         return -EINVAL;
7678                 bpp = 10*3;
7679                 break;
7680         /* TODO: gen4+ supports 16 bpc floating point, too. */
7681         default:
7682                 DRM_DEBUG_KMS("unsupported depth\n");
7683                 return -EINVAL;
7684         }
7685
7686         pipe_config->pipe_bpp = bpp;
7687
7688         /* Clamp display bpp to EDID value */
7689         list_for_each_entry(connector, &dev->mode_config.connector_list,
7690                             head) {
7691                 if (connector->encoder && connector->encoder->crtc != crtc)
7692                         continue;
7693
7694                 /* Don't use an invalid EDID bpc value */
7695                 if (connector->display_info.bpc &&
7696                     connector->display_info.bpc * 3 < bpp) {
7697                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7698                                       bpp, connector->display_info.bpc*3);
7699                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7700                 }
7701
7702                 /* Clamp bpp to 8 on screens without EDID 1.4 */
7703                 if (connector->display_info.bpc == 0 && bpp > 24) {
7704                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7705                                       bpp);
7706                         pipe_config->pipe_bpp = 24;
7707                 }
7708         }
7709
7710         return bpp;
7711 }
7712
7713 static struct intel_crtc_config *
7714 intel_modeset_pipe_config(struct drm_crtc *crtc,
7715                           struct drm_framebuffer *fb,
7716                           struct drm_display_mode *mode)
7717 {
7718         struct drm_device *dev = crtc->dev;
7719         struct drm_encoder_helper_funcs *encoder_funcs;
7720         struct intel_encoder *encoder;
7721         struct intel_crtc_config *pipe_config;
7722         int plane_bpp, ret = -EINVAL;
7723         bool retry = true;
7724
7725         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7726         if (!pipe_config)
7727                 return ERR_PTR(-ENOMEM);
7728
7729         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7730         drm_mode_copy(&pipe_config->requested_mode, mode);
7731
7732         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7733         if (plane_bpp < 0)
7734                 goto fail;
7735
7736 encoder_retry:
7737         /* Pass our mode to the connectors and the CRTC to give them a chance to
7738          * adjust it according to limitations or connector properties, and also
7739          * a chance to reject the mode entirely.
7740          */
7741         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7742                             base.head) {
7743
7744                 if (&encoder->new_crtc->base != crtc)
7745                         continue;
7746
7747                 if (encoder->compute_config) {
7748                         if (!(encoder->compute_config(encoder, pipe_config))) {
7749                                 DRM_DEBUG_KMS("Encoder config failure\n");
7750                                 goto fail;
7751                         }
7752
7753                         continue;
7754                 }
7755
7756                 encoder_funcs = encoder->base.helper_private;
7757                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7758                                                 &pipe_config->requested_mode,
7759                                                 &pipe_config->adjusted_mode))) {
7760                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7761                         goto fail;
7762                 }
7763         }
7764
7765         ret = intel_crtc_compute_config(crtc, pipe_config);
7766         if (ret < 0) {
7767                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7768                 goto fail;
7769         }
7770
7771         if (ret == RETRY) {
7772                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7773                         ret = -EINVAL;
7774                         goto fail;
7775                 }
7776
7777                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7778                 retry = false;
7779                 goto encoder_retry;
7780         }
7781
7782         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7783
7784         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7785         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7786                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7787
7788         return pipe_config;
7789 fail:
7790         kfree(pipe_config);
7791         return ERR_PTR(ret);
7792 }
7793
7794 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7795  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7796 static void
7797 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7798                              unsigned *prepare_pipes, unsigned *disable_pipes)
7799 {
7800         struct intel_crtc *intel_crtc;
7801         struct drm_device *dev = crtc->dev;
7802         struct intel_encoder *encoder;
7803         struct intel_connector *connector;
7804         struct drm_crtc *tmp_crtc;
7805
7806         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7807
7808         /* Check which crtcs have changed outputs connected to them, these need
7809          * to be part of the prepare_pipes mask. We don't (yet) support global
7810          * modeset across multiple crtcs, so modeset_pipes will only have one
7811          * bit set at most. */
7812         list_for_each_entry(connector, &dev->mode_config.connector_list,
7813                             base.head) {
7814                 if (connector->base.encoder == &connector->new_encoder->base)
7815                         continue;
7816
7817                 if (connector->base.encoder) {
7818                         tmp_crtc = connector->base.encoder->crtc;
7819
7820                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7821                 }
7822
7823                 if (connector->new_encoder)
7824                         *prepare_pipes |=
7825                                 1 << connector->new_encoder->new_crtc->pipe;
7826         }
7827
7828         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7829                             base.head) {
7830                 if (encoder->base.crtc == &encoder->new_crtc->base)
7831                         continue;
7832
7833                 if (encoder->base.crtc) {
7834                         tmp_crtc = encoder->base.crtc;
7835
7836                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7837                 }
7838
7839                 if (encoder->new_crtc)
7840                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7841         }
7842
7843         /* Check for any pipes that will be fully disabled ... */
7844         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7845                             base.head) {
7846                 bool used = false;
7847
7848                 /* Don't try to disable disabled crtcs. */
7849                 if (!intel_crtc->base.enabled)
7850                         continue;
7851
7852                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7853                                     base.head) {
7854                         if (encoder->new_crtc == intel_crtc)
7855                                 used = true;
7856                 }
7857
7858                 if (!used)
7859                         *disable_pipes |= 1 << intel_crtc->pipe;
7860         }
7861
7862
7863         /* set_mode is also used to update properties on life display pipes. */
7864         intel_crtc = to_intel_crtc(crtc);
7865         if (crtc->enabled)
7866                 *prepare_pipes |= 1 << intel_crtc->pipe;
7867
7868         /*
7869          * For simplicity do a full modeset on any pipe where the output routing
7870          * changed. We could be more clever, but that would require us to be
7871          * more careful with calling the relevant encoder->mode_set functions.
7872          */
7873         if (*prepare_pipes)
7874                 *modeset_pipes = *prepare_pipes;
7875
7876         /* ... and mask these out. */
7877         *modeset_pipes &= ~(*disable_pipes);
7878         *prepare_pipes &= ~(*disable_pipes);
7879
7880         /*
7881          * HACK: We don't (yet) fully support global modesets. intel_set_config
7882          * obies this rule, but the modeset restore mode of
7883          * intel_modeset_setup_hw_state does not.
7884          */
7885         *modeset_pipes &= 1 << intel_crtc->pipe;
7886         *prepare_pipes &= 1 << intel_crtc->pipe;
7887
7888         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7889                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7890 }
7891
7892 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7893 {
7894         struct drm_encoder *encoder;
7895         struct drm_device *dev = crtc->dev;
7896
7897         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7898                 if (encoder->crtc == crtc)
7899                         return true;
7900
7901         return false;
7902 }
7903
7904 static void
7905 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7906 {
7907         struct intel_encoder *intel_encoder;
7908         struct intel_crtc *intel_crtc;
7909         struct drm_connector *connector;
7910
7911         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7912                             base.head) {
7913                 if (!intel_encoder->base.crtc)
7914                         continue;
7915
7916                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7917
7918                 if (prepare_pipes & (1 << intel_crtc->pipe))
7919                         intel_encoder->connectors_active = false;
7920         }
7921
7922         intel_modeset_commit_output_state(dev);
7923
7924         /* Update computed state. */
7925         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7926                             base.head) {
7927                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7928         }
7929
7930         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7931                 if (!connector->encoder || !connector->encoder->crtc)
7932                         continue;
7933
7934                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7935
7936                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7937                         struct drm_property *dpms_property =
7938                                 dev->mode_config.dpms_property;
7939
7940                         connector->dpms = DRM_MODE_DPMS_ON;
7941                         drm_object_property_set_value(&connector->base,
7942                                                          dpms_property,
7943                                                          DRM_MODE_DPMS_ON);
7944
7945                         intel_encoder = to_intel_encoder(connector->encoder);
7946                         intel_encoder->connectors_active = true;
7947                 }
7948         }
7949
7950 }
7951
7952 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7953         list_for_each_entry((intel_crtc), \
7954                             &(dev)->mode_config.crtc_list, \
7955                             base.head) \
7956                 if (mask & (1 <<(intel_crtc)->pipe))
7957
7958 static bool
7959 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7960                           struct intel_crtc_config *pipe_config)
7961 {
7962 #define PIPE_CONF_CHECK_I(name) \
7963         if (current_config->name != pipe_config->name) { \
7964                 DRM_ERROR("mismatch in " #name " " \
7965                           "(expected %i, found %i)\n", \
7966                           current_config->name, \
7967                           pipe_config->name); \
7968                 return false; \
7969         }
7970
7971 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
7972         if ((current_config->name ^ pipe_config->name) & (mask)) { \
7973                 DRM_ERROR("mismatch in " #name " " \
7974                           "(expected %i, found %i)\n", \
7975                           current_config->name & (mask), \
7976                           pipe_config->name & (mask)); \
7977                 return false; \
7978         }
7979
7980         PIPE_CONF_CHECK_I(has_pch_encoder);
7981         PIPE_CONF_CHECK_I(fdi_lanes);
7982         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
7983         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
7984         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
7985         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
7986         PIPE_CONF_CHECK_I(fdi_m_n.tu);
7987
7988         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
7989         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
7990         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
7991         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
7992         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
7993         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
7994
7995         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
7996         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
7997         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
7998         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
7999         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8000         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8001
8002         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8003                               DRM_MODE_FLAG_INTERLACE);
8004
8005         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8006         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8007
8008 #undef PIPE_CONF_CHECK_I
8009 #undef PIPE_CONF_CHECK_FLAGS
8010
8011         return true;
8012 }
8013
8014 void
8015 intel_modeset_check_state(struct drm_device *dev)
8016 {
8017         drm_i915_private_t *dev_priv = dev->dev_private;
8018         struct intel_crtc *crtc;
8019         struct intel_encoder *encoder;
8020         struct intel_connector *connector;
8021         struct intel_crtc_config pipe_config;
8022
8023         list_for_each_entry(connector, &dev->mode_config.connector_list,
8024                             base.head) {
8025                 /* This also checks the encoder/connector hw state with the
8026                  * ->get_hw_state callbacks. */
8027                 intel_connector_check_state(connector);
8028
8029                 WARN(&connector->new_encoder->base != connector->base.encoder,
8030                      "connector's staged encoder doesn't match current encoder\n");
8031         }
8032
8033         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8034                             base.head) {
8035                 bool enabled = false;
8036                 bool active = false;
8037                 enum pipe pipe, tracked_pipe;
8038
8039                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8040                               encoder->base.base.id,
8041                               drm_get_encoder_name(&encoder->base));
8042
8043                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8044                      "encoder's stage crtc doesn't match current crtc\n");
8045                 WARN(encoder->connectors_active && !encoder->base.crtc,
8046                      "encoder's active_connectors set, but no crtc\n");
8047
8048                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8049                                     base.head) {
8050                         if (connector->base.encoder != &encoder->base)
8051                                 continue;
8052                         enabled = true;
8053                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8054                                 active = true;
8055                 }
8056                 WARN(!!encoder->base.crtc != enabled,
8057                      "encoder's enabled state mismatch "
8058                      "(expected %i, found %i)\n",
8059                      !!encoder->base.crtc, enabled);
8060                 WARN(active && !encoder->base.crtc,
8061                      "active encoder with no crtc\n");
8062
8063                 WARN(encoder->connectors_active != active,
8064                      "encoder's computed active state doesn't match tracked active state "
8065                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8066
8067                 active = encoder->get_hw_state(encoder, &pipe);
8068                 WARN(active != encoder->connectors_active,
8069                      "encoder's hw state doesn't match sw tracking "
8070                      "(expected %i, found %i)\n",
8071                      encoder->connectors_active, active);
8072
8073                 if (!encoder->base.crtc)
8074                         continue;
8075
8076                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8077                 WARN(active && pipe != tracked_pipe,
8078                      "active encoder's pipe doesn't match"
8079                      "(expected %i, found %i)\n",
8080                      tracked_pipe, pipe);
8081
8082         }
8083
8084         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8085                             base.head) {
8086                 bool enabled = false;
8087                 bool active = false;
8088
8089                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8090                               crtc->base.base.id);
8091
8092                 WARN(crtc->active && !crtc->base.enabled,
8093                      "active crtc, but not enabled in sw tracking\n");
8094
8095                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8096                                     base.head) {
8097                         if (encoder->base.crtc != &crtc->base)
8098                                 continue;
8099                         enabled = true;
8100                         if (encoder->connectors_active)
8101                                 active = true;
8102                 }
8103                 WARN(active != crtc->active,
8104                      "crtc's computed active state doesn't match tracked active state "
8105                      "(expected %i, found %i)\n", active, crtc->active);
8106                 WARN(enabled != crtc->base.enabled,
8107                      "crtc's computed enabled state doesn't match tracked enabled state "
8108                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8109
8110                 memset(&pipe_config, 0, sizeof(pipe_config));
8111                 pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
8112                 active = dev_priv->display.get_pipe_config(crtc,
8113                                                            &pipe_config);
8114                 WARN(crtc->active != active,
8115                      "crtc active state doesn't match with hw state "
8116                      "(expected %i, found %i)\n", crtc->active, active);
8117
8118                 WARN(active &&
8119                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
8120                      "pipe state doesn't match!\n");
8121         }
8122 }
8123
8124 static int __intel_set_mode(struct drm_crtc *crtc,
8125                             struct drm_display_mode *mode,
8126                             int x, int y, struct drm_framebuffer *fb)
8127 {
8128         struct drm_device *dev = crtc->dev;
8129         drm_i915_private_t *dev_priv = dev->dev_private;
8130         struct drm_display_mode *saved_mode, *saved_hwmode;
8131         struct intel_crtc_config *pipe_config = NULL;
8132         struct intel_crtc *intel_crtc;
8133         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8134         int ret = 0;
8135
8136         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8137         if (!saved_mode)
8138                 return -ENOMEM;
8139         saved_hwmode = saved_mode + 1;
8140
8141         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8142                                      &prepare_pipes, &disable_pipes);
8143
8144         *saved_hwmode = crtc->hwmode;
8145         *saved_mode = crtc->mode;
8146
8147         /* Hack: Because we don't (yet) support global modeset on multiple
8148          * crtcs, we don't keep track of the new mode for more than one crtc.
8149          * Hence simply check whether any bit is set in modeset_pipes in all the
8150          * pieces of code that are not yet converted to deal with mutliple crtcs
8151          * changing their mode at the same time. */
8152         if (modeset_pipes) {
8153                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8154                 if (IS_ERR(pipe_config)) {
8155                         ret = PTR_ERR(pipe_config);
8156                         pipe_config = NULL;
8157
8158                         goto out;
8159                 }
8160         }
8161
8162         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8163                 intel_crtc_disable(&intel_crtc->base);
8164
8165         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8166                 if (intel_crtc->base.enabled)
8167                         dev_priv->display.crtc_disable(&intel_crtc->base);
8168         }
8169
8170         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8171          * to set it here already despite that we pass it down the callchain.
8172          */
8173         if (modeset_pipes) {
8174                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8175                 crtc->mode = *mode;
8176                 /* mode_set/enable/disable functions rely on a correct pipe
8177                  * config. */
8178                 to_intel_crtc(crtc)->config = *pipe_config;
8179                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8180         }
8181
8182         /* Only after disabling all output pipelines that will be changed can we
8183          * update the the output configuration. */
8184         intel_modeset_update_state(dev, prepare_pipes);
8185
8186         if (dev_priv->display.modeset_global_resources)
8187                 dev_priv->display.modeset_global_resources(dev);
8188
8189         /* Set up the DPLL and any encoders state that needs to adjust or depend
8190          * on the DPLL.
8191          */
8192         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8193                 ret = intel_crtc_mode_set(&intel_crtc->base,
8194                                           x, y, fb);
8195                 if (ret)
8196                         goto done;
8197         }
8198
8199         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8200         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8201                 dev_priv->display.crtc_enable(&intel_crtc->base);
8202
8203         if (modeset_pipes) {
8204                 /* Store real post-adjustment hardware mode. */
8205                 crtc->hwmode = pipe_config->adjusted_mode;
8206
8207                 /* Calculate and store various constants which
8208                  * are later needed by vblank and swap-completion
8209                  * timestamping. They are derived from true hwmode.
8210                  */
8211                 drm_calc_timestamping_constants(crtc);
8212         }
8213
8214         /* FIXME: add subpixel order */
8215 done:
8216         if (ret && crtc->enabled) {
8217                 crtc->hwmode = *saved_hwmode;
8218                 crtc->mode = *saved_mode;
8219         }
8220
8221 out:
8222         kfree(pipe_config);
8223         kfree(saved_mode);
8224         return ret;
8225 }
8226
8227 int intel_set_mode(struct drm_crtc *crtc,
8228                      struct drm_display_mode *mode,
8229                      int x, int y, struct drm_framebuffer *fb)
8230 {
8231         int ret;
8232
8233         ret = __intel_set_mode(crtc, mode, x, y, fb);
8234
8235         if (ret == 0)
8236                 intel_modeset_check_state(crtc->dev);
8237
8238         return ret;
8239 }
8240
8241 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8242 {
8243         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8244 }
8245
8246 #undef for_each_intel_crtc_masked
8247
8248 static void intel_set_config_free(struct intel_set_config *config)
8249 {
8250         if (!config)
8251                 return;
8252
8253         kfree(config->save_connector_encoders);
8254         kfree(config->save_encoder_crtcs);
8255         kfree(config);
8256 }
8257
8258 static int intel_set_config_save_state(struct drm_device *dev,
8259                                        struct intel_set_config *config)
8260 {
8261         struct drm_encoder *encoder;
8262         struct drm_connector *connector;
8263         int count;
8264
8265         config->save_encoder_crtcs =
8266                 kcalloc(dev->mode_config.num_encoder,
8267                         sizeof(struct drm_crtc *), GFP_KERNEL);
8268         if (!config->save_encoder_crtcs)
8269                 return -ENOMEM;
8270
8271         config->save_connector_encoders =
8272                 kcalloc(dev->mode_config.num_connector,
8273                         sizeof(struct drm_encoder *), GFP_KERNEL);
8274         if (!config->save_connector_encoders)
8275                 return -ENOMEM;
8276
8277         /* Copy data. Note that driver private data is not affected.
8278          * Should anything bad happen only the expected state is
8279          * restored, not the drivers personal bookkeeping.
8280          */
8281         count = 0;
8282         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8283                 config->save_encoder_crtcs[count++] = encoder->crtc;
8284         }
8285
8286         count = 0;
8287         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8288                 config->save_connector_encoders[count++] = connector->encoder;
8289         }
8290
8291         return 0;
8292 }
8293
8294 static void intel_set_config_restore_state(struct drm_device *dev,
8295                                            struct intel_set_config *config)
8296 {
8297         struct intel_encoder *encoder;
8298         struct intel_connector *connector;
8299         int count;
8300
8301         count = 0;
8302         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8303                 encoder->new_crtc =
8304                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8305         }
8306
8307         count = 0;
8308         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8309                 connector->new_encoder =
8310                         to_intel_encoder(config->save_connector_encoders[count++]);
8311         }
8312 }
8313
8314 static void
8315 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8316                                       struct intel_set_config *config)
8317 {
8318
8319         /* We should be able to check here if the fb has the same properties
8320          * and then just flip_or_move it */
8321         if (set->crtc->fb != set->fb) {
8322                 /* If we have no fb then treat it as a full mode set */
8323                 if (set->crtc->fb == NULL) {
8324                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8325                         config->mode_changed = true;
8326                 } else if (set->fb == NULL) {
8327                         config->mode_changed = true;
8328                 } else if (set->fb->pixel_format !=
8329                            set->crtc->fb->pixel_format) {
8330                         config->mode_changed = true;
8331                 } else
8332                         config->fb_changed = true;
8333         }
8334
8335         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8336                 config->fb_changed = true;
8337
8338         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8339                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8340                 drm_mode_debug_printmodeline(&set->crtc->mode);
8341                 drm_mode_debug_printmodeline(set->mode);
8342                 config->mode_changed = true;
8343         }
8344 }
8345
8346 static int
8347 intel_modeset_stage_output_state(struct drm_device *dev,
8348                                  struct drm_mode_set *set,
8349                                  struct intel_set_config *config)
8350 {
8351         struct drm_crtc *new_crtc;
8352         struct intel_connector *connector;
8353         struct intel_encoder *encoder;
8354         int count, ro;
8355
8356         /* The upper layers ensure that we either disable a crtc or have a list
8357          * of connectors. For paranoia, double-check this. */
8358         WARN_ON(!set->fb && (set->num_connectors != 0));
8359         WARN_ON(set->fb && (set->num_connectors == 0));
8360
8361         count = 0;
8362         list_for_each_entry(connector, &dev->mode_config.connector_list,
8363                             base.head) {
8364                 /* Otherwise traverse passed in connector list and get encoders
8365                  * for them. */
8366                 for (ro = 0; ro < set->num_connectors; ro++) {
8367                         if (set->connectors[ro] == &connector->base) {
8368                                 connector->new_encoder = connector->encoder;
8369                                 break;
8370                         }
8371                 }
8372
8373                 /* If we disable the crtc, disable all its connectors. Also, if
8374                  * the connector is on the changing crtc but not on the new
8375                  * connector list, disable it. */
8376                 if ((!set->fb || ro == set->num_connectors) &&
8377                     connector->base.encoder &&
8378                     connector->base.encoder->crtc == set->crtc) {
8379                         connector->new_encoder = NULL;
8380
8381                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8382                                 connector->base.base.id,
8383                                 drm_get_connector_name(&connector->base));
8384                 }
8385
8386
8387                 if (&connector->new_encoder->base != connector->base.encoder) {
8388                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8389                         config->mode_changed = true;
8390                 }
8391         }
8392         /* connector->new_encoder is now updated for all connectors. */
8393
8394         /* Update crtc of enabled connectors. */
8395         count = 0;
8396         list_for_each_entry(connector, &dev->mode_config.connector_list,
8397                             base.head) {
8398                 if (!connector->new_encoder)
8399                         continue;
8400
8401                 new_crtc = connector->new_encoder->base.crtc;
8402
8403                 for (ro = 0; ro < set->num_connectors; ro++) {
8404                         if (set->connectors[ro] == &connector->base)
8405                                 new_crtc = set->crtc;
8406                 }
8407
8408                 /* Make sure the new CRTC will work with the encoder */
8409                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8410                                            new_crtc)) {
8411                         return -EINVAL;
8412                 }
8413                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8414
8415                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8416                         connector->base.base.id,
8417                         drm_get_connector_name(&connector->base),
8418                         new_crtc->base.id);
8419         }
8420
8421         /* Check for any encoders that needs to be disabled. */
8422         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8423                             base.head) {
8424                 list_for_each_entry(connector,
8425                                     &dev->mode_config.connector_list,
8426                                     base.head) {
8427                         if (connector->new_encoder == encoder) {
8428                                 WARN_ON(!connector->new_encoder->new_crtc);
8429
8430                                 goto next_encoder;
8431                         }
8432                 }
8433                 encoder->new_crtc = NULL;
8434 next_encoder:
8435                 /* Only now check for crtc changes so we don't miss encoders
8436                  * that will be disabled. */
8437                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8438                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8439                         config->mode_changed = true;
8440                 }
8441         }
8442         /* Now we've also updated encoder->new_crtc for all encoders. */
8443
8444         return 0;
8445 }
8446
8447 static int intel_crtc_set_config(struct drm_mode_set *set)
8448 {
8449         struct drm_device *dev;
8450         struct drm_mode_set save_set;
8451         struct intel_set_config *config;
8452         int ret;
8453
8454         BUG_ON(!set);
8455         BUG_ON(!set->crtc);
8456         BUG_ON(!set->crtc->helper_private);
8457
8458         /* Enforce sane interface api - has been abused by the fb helper. */
8459         BUG_ON(!set->mode && set->fb);
8460         BUG_ON(set->fb && set->num_connectors == 0);
8461
8462         if (set->fb) {
8463                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8464                                 set->crtc->base.id, set->fb->base.id,
8465                                 (int)set->num_connectors, set->x, set->y);
8466         } else {
8467                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8468         }
8469
8470         dev = set->crtc->dev;
8471
8472         ret = -ENOMEM;
8473         config = kzalloc(sizeof(*config), GFP_KERNEL);
8474         if (!config)
8475                 goto out_config;
8476
8477         ret = intel_set_config_save_state(dev, config);
8478         if (ret)
8479                 goto out_config;
8480
8481         save_set.crtc = set->crtc;
8482         save_set.mode = &set->crtc->mode;
8483         save_set.x = set->crtc->x;
8484         save_set.y = set->crtc->y;
8485         save_set.fb = set->crtc->fb;
8486
8487         /* Compute whether we need a full modeset, only an fb base update or no
8488          * change at all. In the future we might also check whether only the
8489          * mode changed, e.g. for LVDS where we only change the panel fitter in
8490          * such cases. */
8491         intel_set_config_compute_mode_changes(set, config);
8492
8493         ret = intel_modeset_stage_output_state(dev, set, config);
8494         if (ret)
8495                 goto fail;
8496
8497         if (config->mode_changed) {
8498                 if (set->mode) {
8499                         DRM_DEBUG_KMS("attempting to set mode from"
8500                                         " userspace\n");
8501                         drm_mode_debug_printmodeline(set->mode);
8502                 }
8503
8504                 ret = intel_set_mode(set->crtc, set->mode,
8505                                      set->x, set->y, set->fb);
8506                 if (ret) {
8507                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8508                                   set->crtc->base.id, ret);
8509                         goto fail;
8510                 }
8511         } else if (config->fb_changed) {
8512                 intel_crtc_wait_for_pending_flips(set->crtc);
8513
8514                 ret = intel_pipe_set_base(set->crtc,
8515                                           set->x, set->y, set->fb);
8516         }
8517
8518         intel_set_config_free(config);
8519
8520         return 0;
8521
8522 fail:
8523         intel_set_config_restore_state(dev, config);
8524
8525         /* Try to restore the config */
8526         if (config->mode_changed &&
8527             intel_set_mode(save_set.crtc, save_set.mode,
8528                            save_set.x, save_set.y, save_set.fb))
8529                 DRM_ERROR("failed to restore config after modeset failure\n");
8530
8531 out_config:
8532         intel_set_config_free(config);
8533         return ret;
8534 }
8535
8536 static const struct drm_crtc_funcs intel_crtc_funcs = {
8537         .cursor_set = intel_crtc_cursor_set,
8538         .cursor_move = intel_crtc_cursor_move,
8539         .gamma_set = intel_crtc_gamma_set,
8540         .set_config = intel_crtc_set_config,
8541         .destroy = intel_crtc_destroy,
8542         .page_flip = intel_crtc_page_flip,
8543 };
8544
8545 static void intel_cpu_pll_init(struct drm_device *dev)
8546 {
8547         if (HAS_DDI(dev))
8548                 intel_ddi_pll_init(dev);
8549 }
8550
8551 static void intel_pch_pll_init(struct drm_device *dev)
8552 {
8553         drm_i915_private_t *dev_priv = dev->dev_private;
8554         int i;
8555
8556         if (dev_priv->num_pch_pll == 0) {
8557                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8558                 return;
8559         }
8560
8561         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8562                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8563                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8564                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8565         }
8566 }
8567
8568 static void intel_crtc_init(struct drm_device *dev, int pipe)
8569 {
8570         drm_i915_private_t *dev_priv = dev->dev_private;
8571         struct intel_crtc *intel_crtc;
8572         int i;
8573
8574         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8575         if (intel_crtc == NULL)
8576                 return;
8577
8578         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8579
8580         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8581         for (i = 0; i < 256; i++) {
8582                 intel_crtc->lut_r[i] = i;
8583                 intel_crtc->lut_g[i] = i;
8584                 intel_crtc->lut_b[i] = i;
8585         }
8586
8587         /* Swap pipes & planes for FBC on pre-965 */
8588         intel_crtc->pipe = pipe;
8589         intel_crtc->plane = pipe;
8590         intel_crtc->config.cpu_transcoder = pipe;
8591         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8592                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8593                 intel_crtc->plane = !pipe;
8594         }
8595
8596         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8597                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8598         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8599         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8600
8601         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8602 }
8603
8604 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8605                                 struct drm_file *file)
8606 {
8607         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8608         struct drm_mode_object *drmmode_obj;
8609         struct intel_crtc *crtc;
8610
8611         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8612                 return -ENODEV;
8613
8614         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8615                         DRM_MODE_OBJECT_CRTC);
8616
8617         if (!drmmode_obj) {
8618                 DRM_ERROR("no such CRTC id\n");
8619                 return -EINVAL;
8620         }
8621
8622         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8623         pipe_from_crtc_id->pipe = crtc->pipe;
8624
8625         return 0;
8626 }
8627
8628 static int intel_encoder_clones(struct intel_encoder *encoder)
8629 {
8630         struct drm_device *dev = encoder->base.dev;
8631         struct intel_encoder *source_encoder;
8632         int index_mask = 0;
8633         int entry = 0;
8634
8635         list_for_each_entry(source_encoder,
8636                             &dev->mode_config.encoder_list, base.head) {
8637
8638                 if (encoder == source_encoder)
8639                         index_mask |= (1 << entry);
8640
8641                 /* Intel hw has only one MUX where enocoders could be cloned. */
8642                 if (encoder->cloneable && source_encoder->cloneable)
8643                         index_mask |= (1 << entry);
8644
8645                 entry++;
8646         }
8647
8648         return index_mask;
8649 }
8650
8651 static bool has_edp_a(struct drm_device *dev)
8652 {
8653         struct drm_i915_private *dev_priv = dev->dev_private;
8654
8655         if (!IS_MOBILE(dev))
8656                 return false;
8657
8658         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8659                 return false;
8660
8661         if (IS_GEN5(dev) &&
8662             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8663                 return false;
8664
8665         return true;
8666 }
8667
8668 static void intel_setup_outputs(struct drm_device *dev)
8669 {
8670         struct drm_i915_private *dev_priv = dev->dev_private;
8671         struct intel_encoder *encoder;
8672         bool dpd_is_edp = false;
8673         bool has_lvds;
8674
8675         has_lvds = intel_lvds_init(dev);
8676         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8677                 /* disable the panel fitter on everything but LVDS */
8678                 I915_WRITE(PFIT_CONTROL, 0);
8679         }
8680
8681         if (!IS_ULT(dev))
8682                 intel_crt_init(dev);
8683
8684         if (HAS_DDI(dev)) {
8685                 int found;
8686
8687                 /* Haswell uses DDI functions to detect digital outputs */
8688                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8689                 /* DDI A only supports eDP */
8690                 if (found)
8691                         intel_ddi_init(dev, PORT_A);
8692
8693                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8694                  * register */
8695                 found = I915_READ(SFUSE_STRAP);
8696
8697                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8698                         intel_ddi_init(dev, PORT_B);
8699                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8700                         intel_ddi_init(dev, PORT_C);
8701                 if (found & SFUSE_STRAP_DDID_DETECTED)
8702                         intel_ddi_init(dev, PORT_D);
8703         } else if (HAS_PCH_SPLIT(dev)) {
8704                 int found;
8705                 dpd_is_edp = intel_dpd_is_edp(dev);
8706
8707                 if (has_edp_a(dev))
8708                         intel_dp_init(dev, DP_A, PORT_A);
8709
8710                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8711                         /* PCH SDVOB multiplex with HDMIB */
8712                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8713                         if (!found)
8714                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8715                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8716                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8717                 }
8718
8719                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8720                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8721
8722                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8723                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8724
8725                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8726                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8727
8728                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8729                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8730         } else if (IS_VALLEYVIEW(dev)) {
8731                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8732                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8733                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8734
8735                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8736                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8737                                         PORT_B);
8738                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8739                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8740                 }
8741         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8742                 bool found = false;
8743
8744                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8745                         DRM_DEBUG_KMS("probing SDVOB\n");
8746                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8747                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8748                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8749                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8750                         }
8751
8752                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
8753                                 intel_dp_init(dev, DP_B, PORT_B);
8754                 }
8755
8756                 /* Before G4X SDVOC doesn't have its own detect register */
8757
8758                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8759                         DRM_DEBUG_KMS("probing SDVOC\n");
8760                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8761                 }
8762
8763                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8764
8765                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8766                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8767                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8768                         }
8769                         if (SUPPORTS_INTEGRATED_DP(dev))
8770                                 intel_dp_init(dev, DP_C, PORT_C);
8771                 }
8772
8773                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8774                     (I915_READ(DP_D) & DP_DETECTED))
8775                         intel_dp_init(dev, DP_D, PORT_D);
8776         } else if (IS_GEN2(dev))
8777                 intel_dvo_init(dev);
8778
8779         if (SUPPORTS_TV(dev))
8780                 intel_tv_init(dev);
8781
8782         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8783                 encoder->base.possible_crtcs = encoder->crtc_mask;
8784                 encoder->base.possible_clones =
8785                         intel_encoder_clones(encoder);
8786         }
8787
8788         intel_init_pch_refclk(dev);
8789
8790         drm_helper_move_panel_connectors_to_head(dev);
8791 }
8792
8793 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8794 {
8795         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8796
8797         drm_framebuffer_cleanup(fb);
8798         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8799
8800         kfree(intel_fb);
8801 }
8802
8803 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8804                                                 struct drm_file *file,
8805                                                 unsigned int *handle)
8806 {
8807         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8808         struct drm_i915_gem_object *obj = intel_fb->obj;
8809
8810         return drm_gem_handle_create(file, &obj->base, handle);
8811 }
8812
8813 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8814         .destroy = intel_user_framebuffer_destroy,
8815         .create_handle = intel_user_framebuffer_create_handle,
8816 };
8817
8818 int intel_framebuffer_init(struct drm_device *dev,
8819                            struct intel_framebuffer *intel_fb,
8820                            struct drm_mode_fb_cmd2 *mode_cmd,
8821                            struct drm_i915_gem_object *obj)
8822 {
8823         int ret;
8824
8825         if (obj->tiling_mode == I915_TILING_Y) {
8826                 DRM_DEBUG("hardware does not support tiling Y\n");
8827                 return -EINVAL;
8828         }
8829
8830         if (mode_cmd->pitches[0] & 63) {
8831                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8832                           mode_cmd->pitches[0]);
8833                 return -EINVAL;
8834         }
8835
8836         /* FIXME <= Gen4 stride limits are bit unclear */
8837         if (mode_cmd->pitches[0] > 32768) {
8838                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8839                           mode_cmd->pitches[0]);
8840                 return -EINVAL;
8841         }
8842
8843         if (obj->tiling_mode != I915_TILING_NONE &&
8844             mode_cmd->pitches[0] != obj->stride) {
8845                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8846                           mode_cmd->pitches[0], obj->stride);
8847                 return -EINVAL;
8848         }
8849
8850         /* Reject formats not supported by any plane early. */
8851         switch (mode_cmd->pixel_format) {
8852         case DRM_FORMAT_C8:
8853         case DRM_FORMAT_RGB565:
8854         case DRM_FORMAT_XRGB8888:
8855         case DRM_FORMAT_ARGB8888:
8856                 break;
8857         case DRM_FORMAT_XRGB1555:
8858         case DRM_FORMAT_ARGB1555:
8859                 if (INTEL_INFO(dev)->gen > 3) {
8860                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8861                         return -EINVAL;
8862                 }
8863                 break;
8864         case DRM_FORMAT_XBGR8888:
8865         case DRM_FORMAT_ABGR8888:
8866         case DRM_FORMAT_XRGB2101010:
8867         case DRM_FORMAT_ARGB2101010:
8868         case DRM_FORMAT_XBGR2101010:
8869         case DRM_FORMAT_ABGR2101010:
8870                 if (INTEL_INFO(dev)->gen < 4) {
8871                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8872                         return -EINVAL;
8873                 }
8874                 break;
8875         case DRM_FORMAT_YUYV:
8876         case DRM_FORMAT_UYVY:
8877         case DRM_FORMAT_YVYU:
8878         case DRM_FORMAT_VYUY:
8879                 if (INTEL_INFO(dev)->gen < 5) {
8880                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8881                         return -EINVAL;
8882                 }
8883                 break;
8884         default:
8885                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8886                 return -EINVAL;
8887         }
8888
8889         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8890         if (mode_cmd->offsets[0] != 0)
8891                 return -EINVAL;
8892
8893         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8894         intel_fb->obj = obj;
8895
8896         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8897         if (ret) {
8898                 DRM_ERROR("framebuffer init failed %d\n", ret);
8899                 return ret;
8900         }
8901
8902         return 0;
8903 }
8904
8905 static struct drm_framebuffer *
8906 intel_user_framebuffer_create(struct drm_device *dev,
8907                               struct drm_file *filp,
8908                               struct drm_mode_fb_cmd2 *mode_cmd)
8909 {
8910         struct drm_i915_gem_object *obj;
8911
8912         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8913                                                 mode_cmd->handles[0]));
8914         if (&obj->base == NULL)
8915                 return ERR_PTR(-ENOENT);
8916
8917         return intel_framebuffer_create(dev, mode_cmd, obj);
8918 }
8919
8920 static const struct drm_mode_config_funcs intel_mode_funcs = {
8921         .fb_create = intel_user_framebuffer_create,
8922         .output_poll_changed = intel_fb_output_poll_changed,
8923 };
8924
8925 /* Set up chip specific display functions */
8926 static void intel_init_display(struct drm_device *dev)
8927 {
8928         struct drm_i915_private *dev_priv = dev->dev_private;
8929
8930         if (HAS_DDI(dev)) {
8931                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8932                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8933                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8934                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8935                 dev_priv->display.off = haswell_crtc_off;
8936                 dev_priv->display.update_plane = ironlake_update_plane;
8937         } else if (HAS_PCH_SPLIT(dev)) {
8938                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8939                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8940                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8941                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8942                 dev_priv->display.off = ironlake_crtc_off;
8943                 dev_priv->display.update_plane = ironlake_update_plane;
8944         } else if (IS_VALLEYVIEW(dev)) {
8945                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8946                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8947                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
8948                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8949                 dev_priv->display.off = i9xx_crtc_off;
8950                 dev_priv->display.update_plane = i9xx_update_plane;
8951         } else {
8952                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8953                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8954                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8955                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8956                 dev_priv->display.off = i9xx_crtc_off;
8957                 dev_priv->display.update_plane = i9xx_update_plane;
8958         }
8959
8960         /* Returns the core display clock speed */
8961         if (IS_VALLEYVIEW(dev))
8962                 dev_priv->display.get_display_clock_speed =
8963                         valleyview_get_display_clock_speed;
8964         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8965                 dev_priv->display.get_display_clock_speed =
8966                         i945_get_display_clock_speed;
8967         else if (IS_I915G(dev))
8968                 dev_priv->display.get_display_clock_speed =
8969                         i915_get_display_clock_speed;
8970         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8971                 dev_priv->display.get_display_clock_speed =
8972                         i9xx_misc_get_display_clock_speed;
8973         else if (IS_I915GM(dev))
8974                 dev_priv->display.get_display_clock_speed =
8975                         i915gm_get_display_clock_speed;
8976         else if (IS_I865G(dev))
8977                 dev_priv->display.get_display_clock_speed =
8978                         i865_get_display_clock_speed;
8979         else if (IS_I85X(dev))
8980                 dev_priv->display.get_display_clock_speed =
8981                         i855_get_display_clock_speed;
8982         else /* 852, 830 */
8983                 dev_priv->display.get_display_clock_speed =
8984                         i830_get_display_clock_speed;
8985
8986         if (HAS_PCH_SPLIT(dev)) {
8987                 if (IS_GEN5(dev)) {
8988                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8989                         dev_priv->display.write_eld = ironlake_write_eld;
8990                 } else if (IS_GEN6(dev)) {
8991                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8992                         dev_priv->display.write_eld = ironlake_write_eld;
8993                 } else if (IS_IVYBRIDGE(dev)) {
8994                         /* FIXME: detect B0+ stepping and use auto training */
8995                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8996                         dev_priv->display.write_eld = ironlake_write_eld;
8997                         dev_priv->display.modeset_global_resources =
8998                                 ivb_modeset_global_resources;
8999                 } else if (IS_HASWELL(dev)) {
9000                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9001                         dev_priv->display.write_eld = haswell_write_eld;
9002                         dev_priv->display.modeset_global_resources =
9003                                 haswell_modeset_global_resources;
9004                 }
9005         } else if (IS_G4X(dev)) {
9006                 dev_priv->display.write_eld = g4x_write_eld;
9007         }
9008
9009         /* Default just returns -ENODEV to indicate unsupported */
9010         dev_priv->display.queue_flip = intel_default_queue_flip;
9011
9012         switch (INTEL_INFO(dev)->gen) {
9013         case 2:
9014                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9015                 break;
9016
9017         case 3:
9018                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9019                 break;
9020
9021         case 4:
9022         case 5:
9023                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9024                 break;
9025
9026         case 6:
9027                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9028                 break;
9029         case 7:
9030                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9031                 break;
9032         }
9033 }
9034
9035 /*
9036  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9037  * resume, or other times.  This quirk makes sure that's the case for
9038  * affected systems.
9039  */
9040 static void quirk_pipea_force(struct drm_device *dev)
9041 {
9042         struct drm_i915_private *dev_priv = dev->dev_private;
9043
9044         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9045         DRM_INFO("applying pipe a force quirk\n");
9046 }
9047
9048 /*
9049  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9050  */
9051 static void quirk_ssc_force_disable(struct drm_device *dev)
9052 {
9053         struct drm_i915_private *dev_priv = dev->dev_private;
9054         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9055         DRM_INFO("applying lvds SSC disable quirk\n");
9056 }
9057
9058 /*
9059  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9060  * brightness value
9061  */
9062 static void quirk_invert_brightness(struct drm_device *dev)
9063 {
9064         struct drm_i915_private *dev_priv = dev->dev_private;
9065         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9066         DRM_INFO("applying inverted panel brightness quirk\n");
9067 }
9068
9069 struct intel_quirk {
9070         int device;
9071         int subsystem_vendor;
9072         int subsystem_device;
9073         void (*hook)(struct drm_device *dev);
9074 };
9075
9076 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9077 struct intel_dmi_quirk {
9078         void (*hook)(struct drm_device *dev);
9079         const struct dmi_system_id (*dmi_id_list)[];
9080 };
9081
9082 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9083 {
9084         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9085         return 1;
9086 }
9087
9088 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9089         {
9090                 .dmi_id_list = &(const struct dmi_system_id[]) {
9091                         {
9092                                 .callback = intel_dmi_reverse_brightness,
9093                                 .ident = "NCR Corporation",
9094                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9095                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9096                                 },
9097                         },
9098                         { }  /* terminating entry */
9099                 },
9100                 .hook = quirk_invert_brightness,
9101         },
9102 };
9103
9104 static struct intel_quirk intel_quirks[] = {
9105         /* HP Mini needs pipe A force quirk (LP: #322104) */
9106         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9107
9108         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9109         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9110
9111         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9112         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9113
9114         /* 830/845 need to leave pipe A & dpll A up */
9115         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9116         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9117
9118         /* Lenovo U160 cannot use SSC on LVDS */
9119         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9120
9121         /* Sony Vaio Y cannot use SSC on LVDS */
9122         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9123
9124         /* Acer Aspire 5734Z must invert backlight brightness */
9125         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9126
9127         /* Acer/eMachines G725 */
9128         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9129
9130         /* Acer/eMachines e725 */
9131         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9132
9133         /* Acer/Packard Bell NCL20 */
9134         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9135
9136         /* Acer Aspire 4736Z */
9137         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9138 };
9139
9140 static void intel_init_quirks(struct drm_device *dev)
9141 {
9142         struct pci_dev *d = dev->pdev;
9143         int i;
9144
9145         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9146                 struct intel_quirk *q = &intel_quirks[i];
9147
9148                 if (d->device == q->device &&
9149                     (d->subsystem_vendor == q->subsystem_vendor ||
9150                      q->subsystem_vendor == PCI_ANY_ID) &&
9151                     (d->subsystem_device == q->subsystem_device ||
9152                      q->subsystem_device == PCI_ANY_ID))
9153                         q->hook(dev);
9154         }
9155         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9156                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9157                         intel_dmi_quirks[i].hook(dev);
9158         }
9159 }
9160
9161 /* Disable the VGA plane that we never use */
9162 static void i915_disable_vga(struct drm_device *dev)
9163 {
9164         struct drm_i915_private *dev_priv = dev->dev_private;
9165         u8 sr1;
9166         u32 vga_reg = i915_vgacntrl_reg(dev);
9167
9168         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9169         outb(SR01, VGA_SR_INDEX);
9170         sr1 = inb(VGA_SR_DATA);
9171         outb(sr1 | 1<<5, VGA_SR_DATA);
9172         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9173         udelay(300);
9174
9175         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9176         POSTING_READ(vga_reg);
9177 }
9178
9179 void intel_modeset_init_hw(struct drm_device *dev)
9180 {
9181         intel_init_power_well(dev);
9182
9183         intel_prepare_ddi(dev);
9184
9185         intel_init_clock_gating(dev);
9186
9187         mutex_lock(&dev->struct_mutex);
9188         intel_enable_gt_powersave(dev);
9189         mutex_unlock(&dev->struct_mutex);
9190 }
9191
9192 void intel_modeset_suspend_hw(struct drm_device *dev)
9193 {
9194         intel_suspend_hw(dev);
9195 }
9196
9197 void intel_modeset_init(struct drm_device *dev)
9198 {
9199         struct drm_i915_private *dev_priv = dev->dev_private;
9200         int i, j, ret;
9201
9202         drm_mode_config_init(dev);
9203
9204         dev->mode_config.min_width = 0;
9205         dev->mode_config.min_height = 0;
9206
9207         dev->mode_config.preferred_depth = 24;
9208         dev->mode_config.prefer_shadow = 1;
9209
9210         dev->mode_config.funcs = &intel_mode_funcs;
9211
9212         intel_init_quirks(dev);
9213
9214         intel_init_pm(dev);
9215
9216         if (INTEL_INFO(dev)->num_pipes == 0)
9217                 return;
9218
9219         intel_init_display(dev);
9220
9221         if (IS_GEN2(dev)) {
9222                 dev->mode_config.max_width = 2048;
9223                 dev->mode_config.max_height = 2048;
9224         } else if (IS_GEN3(dev)) {
9225                 dev->mode_config.max_width = 4096;
9226                 dev->mode_config.max_height = 4096;
9227         } else {
9228                 dev->mode_config.max_width = 8192;
9229                 dev->mode_config.max_height = 8192;
9230         }
9231         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9232
9233         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9234                       INTEL_INFO(dev)->num_pipes,
9235                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9236
9237         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9238                 intel_crtc_init(dev, i);
9239                 for (j = 0; j < dev_priv->num_plane; j++) {
9240                         ret = intel_plane_init(dev, i, j);
9241                         if (ret)
9242                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9243                                               pipe_name(i), sprite_name(i, j), ret);
9244                 }
9245         }
9246
9247         intel_cpu_pll_init(dev);
9248         intel_pch_pll_init(dev);
9249
9250         /* Just disable it once at startup */
9251         i915_disable_vga(dev);
9252         intel_setup_outputs(dev);
9253
9254         /* Just in case the BIOS is doing something questionable. */
9255         intel_disable_fbc(dev);
9256 }
9257
9258 static void
9259 intel_connector_break_all_links(struct intel_connector *connector)
9260 {
9261         connector->base.dpms = DRM_MODE_DPMS_OFF;
9262         connector->base.encoder = NULL;
9263         connector->encoder->connectors_active = false;
9264         connector->encoder->base.crtc = NULL;
9265 }
9266
9267 static void intel_enable_pipe_a(struct drm_device *dev)
9268 {
9269         struct intel_connector *connector;
9270         struct drm_connector *crt = NULL;
9271         struct intel_load_detect_pipe load_detect_temp;
9272
9273         /* We can't just switch on the pipe A, we need to set things up with a
9274          * proper mode and output configuration. As a gross hack, enable pipe A
9275          * by enabling the load detect pipe once. */
9276         list_for_each_entry(connector,
9277                             &dev->mode_config.connector_list,
9278                             base.head) {
9279                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9280                         crt = &connector->base;
9281                         break;
9282                 }
9283         }
9284
9285         if (!crt)
9286                 return;
9287
9288         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9289                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9290
9291
9292 }
9293
9294 static bool
9295 intel_check_plane_mapping(struct intel_crtc *crtc)
9296 {
9297         struct drm_device *dev = crtc->base.dev;
9298         struct drm_i915_private *dev_priv = dev->dev_private;
9299         u32 reg, val;
9300
9301         if (INTEL_INFO(dev)->num_pipes == 1)
9302                 return true;
9303
9304         reg = DSPCNTR(!crtc->plane);
9305         val = I915_READ(reg);
9306
9307         if ((val & DISPLAY_PLANE_ENABLE) &&
9308             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9309                 return false;
9310
9311         return true;
9312 }
9313
9314 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9315 {
9316         struct drm_device *dev = crtc->base.dev;
9317         struct drm_i915_private *dev_priv = dev->dev_private;
9318         u32 reg;
9319
9320         /* Clear any frame start delays used for debugging left by the BIOS */
9321         reg = PIPECONF(crtc->config.cpu_transcoder);
9322         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9323
9324         /* We need to sanitize the plane -> pipe mapping first because this will
9325          * disable the crtc (and hence change the state) if it is wrong. Note
9326          * that gen4+ has a fixed plane -> pipe mapping.  */
9327         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9328                 struct intel_connector *connector;
9329                 bool plane;
9330
9331                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9332                               crtc->base.base.id);
9333
9334                 /* Pipe has the wrong plane attached and the plane is active.
9335                  * Temporarily change the plane mapping and disable everything
9336                  * ...  */
9337                 plane = crtc->plane;
9338                 crtc->plane = !plane;
9339                 dev_priv->display.crtc_disable(&crtc->base);
9340                 crtc->plane = plane;
9341
9342                 /* ... and break all links. */
9343                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9344                                     base.head) {
9345                         if (connector->encoder->base.crtc != &crtc->base)
9346                                 continue;
9347
9348                         intel_connector_break_all_links(connector);
9349                 }
9350
9351                 WARN_ON(crtc->active);
9352                 crtc->base.enabled = false;
9353         }
9354
9355         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9356             crtc->pipe == PIPE_A && !crtc->active) {
9357                 /* BIOS forgot to enable pipe A, this mostly happens after
9358                  * resume. Force-enable the pipe to fix this, the update_dpms
9359                  * call below we restore the pipe to the right state, but leave
9360                  * the required bits on. */
9361                 intel_enable_pipe_a(dev);
9362         }
9363
9364         /* Adjust the state of the output pipe according to whether we
9365          * have active connectors/encoders. */
9366         intel_crtc_update_dpms(&crtc->base);
9367
9368         if (crtc->active != crtc->base.enabled) {
9369                 struct intel_encoder *encoder;
9370
9371                 /* This can happen either due to bugs in the get_hw_state
9372                  * functions or because the pipe is force-enabled due to the
9373                  * pipe A quirk. */
9374                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9375                               crtc->base.base.id,
9376                               crtc->base.enabled ? "enabled" : "disabled",
9377                               crtc->active ? "enabled" : "disabled");
9378
9379                 crtc->base.enabled = crtc->active;
9380
9381                 /* Because we only establish the connector -> encoder ->
9382                  * crtc links if something is active, this means the
9383                  * crtc is now deactivated. Break the links. connector
9384                  * -> encoder links are only establish when things are
9385                  *  actually up, hence no need to break them. */
9386                 WARN_ON(crtc->active);
9387
9388                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9389                         WARN_ON(encoder->connectors_active);
9390                         encoder->base.crtc = NULL;
9391                 }
9392         }
9393 }
9394
9395 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9396 {
9397         struct intel_connector *connector;
9398         struct drm_device *dev = encoder->base.dev;
9399
9400         /* We need to check both for a crtc link (meaning that the
9401          * encoder is active and trying to read from a pipe) and the
9402          * pipe itself being active. */
9403         bool has_active_crtc = encoder->base.crtc &&
9404                 to_intel_crtc(encoder->base.crtc)->active;
9405
9406         if (encoder->connectors_active && !has_active_crtc) {
9407                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9408                               encoder->base.base.id,
9409                               drm_get_encoder_name(&encoder->base));
9410
9411                 /* Connector is active, but has no active pipe. This is
9412                  * fallout from our resume register restoring. Disable
9413                  * the encoder manually again. */
9414                 if (encoder->base.crtc) {
9415                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9416                                       encoder->base.base.id,
9417                                       drm_get_encoder_name(&encoder->base));
9418                         encoder->disable(encoder);
9419                 }
9420
9421                 /* Inconsistent output/port/pipe state happens presumably due to
9422                  * a bug in one of the get_hw_state functions. Or someplace else
9423                  * in our code, like the register restore mess on resume. Clamp
9424                  * things to off as a safer default. */
9425                 list_for_each_entry(connector,
9426                                     &dev->mode_config.connector_list,
9427                                     base.head) {
9428                         if (connector->encoder != encoder)
9429                                 continue;
9430
9431                         intel_connector_break_all_links(connector);
9432                 }
9433         }
9434         /* Enabled encoders without active connectors will be fixed in
9435          * the crtc fixup. */
9436 }
9437
9438 void i915_redisable_vga(struct drm_device *dev)
9439 {
9440         struct drm_i915_private *dev_priv = dev->dev_private;
9441         u32 vga_reg = i915_vgacntrl_reg(dev);
9442
9443         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9444                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9445                 i915_disable_vga(dev);
9446         }
9447 }
9448
9449 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9450  * and i915 state tracking structures. */
9451 void intel_modeset_setup_hw_state(struct drm_device *dev,
9452                                   bool force_restore)
9453 {
9454         struct drm_i915_private *dev_priv = dev->dev_private;
9455         enum pipe pipe;
9456         u32 tmp;
9457         struct drm_plane *plane;
9458         struct intel_crtc *crtc;
9459         struct intel_encoder *encoder;
9460         struct intel_connector *connector;
9461
9462         if (HAS_DDI(dev)) {
9463                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9464
9465                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9466                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9467                         case TRANS_DDI_EDP_INPUT_A_ON:
9468                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9469                                 pipe = PIPE_A;
9470                                 break;
9471                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9472                                 pipe = PIPE_B;
9473                                 break;
9474                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9475                                 pipe = PIPE_C;
9476                                 break;
9477                         default:
9478                                 /* A bogus value has been programmed, disable
9479                                  * the transcoder */
9480                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9481                                 intel_ddi_disable_transcoder_func(dev_priv,
9482                                                 TRANSCODER_EDP);
9483                                 goto setup_pipes;
9484                         }
9485
9486                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9487                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9488
9489                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9490                                       pipe_name(pipe));
9491                 }
9492         }
9493
9494 setup_pipes:
9495         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9496                             base.head) {
9497                 enum transcoder tmp = crtc->config.cpu_transcoder;
9498                 memset(&crtc->config, 0, sizeof(crtc->config));
9499                 crtc->config.cpu_transcoder = tmp;
9500
9501                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9502                                                                  &crtc->config);
9503
9504                 crtc->base.enabled = crtc->active;
9505
9506                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9507                               crtc->base.base.id,
9508                               crtc->active ? "enabled" : "disabled");
9509         }
9510
9511         if (HAS_DDI(dev))
9512                 intel_ddi_setup_hw_pll_state(dev);
9513
9514         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9515                             base.head) {
9516                 pipe = 0;
9517
9518                 if (encoder->get_hw_state(encoder, &pipe)) {
9519                         encoder->base.crtc =
9520                                 dev_priv->pipe_to_crtc_mapping[pipe];
9521                 } else {
9522                         encoder->base.crtc = NULL;
9523                 }
9524
9525                 encoder->connectors_active = false;
9526                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9527                               encoder->base.base.id,
9528                               drm_get_encoder_name(&encoder->base),
9529                               encoder->base.crtc ? "enabled" : "disabled",
9530                               pipe);
9531         }
9532
9533         list_for_each_entry(connector, &dev->mode_config.connector_list,
9534                             base.head) {
9535                 if (connector->get_hw_state(connector)) {
9536                         connector->base.dpms = DRM_MODE_DPMS_ON;
9537                         connector->encoder->connectors_active = true;
9538                         connector->base.encoder = &connector->encoder->base;
9539                 } else {
9540                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9541                         connector->base.encoder = NULL;
9542                 }
9543                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9544                               connector->base.base.id,
9545                               drm_get_connector_name(&connector->base),
9546                               connector->base.encoder ? "enabled" : "disabled");
9547         }
9548
9549         /* HW state is read out, now we need to sanitize this mess. */
9550         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9551                             base.head) {
9552                 intel_sanitize_encoder(encoder);
9553         }
9554
9555         for_each_pipe(pipe) {
9556                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9557                 intel_sanitize_crtc(crtc);
9558         }
9559
9560         if (force_restore) {
9561                 /*
9562                  * We need to use raw interfaces for restoring state to avoid
9563                  * checking (bogus) intermediate states.
9564                  */
9565                 for_each_pipe(pipe) {
9566                         struct drm_crtc *crtc =
9567                                 dev_priv->pipe_to_crtc_mapping[pipe];
9568
9569                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9570                                          crtc->fb);
9571                 }
9572                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9573                         intel_plane_restore(plane);
9574
9575                 i915_redisable_vga(dev);
9576         } else {
9577                 intel_modeset_update_staged_output_state(dev);
9578         }
9579
9580         intel_modeset_check_state(dev);
9581
9582         drm_mode_config_reset(dev);
9583 }
9584
9585 void intel_modeset_gem_init(struct drm_device *dev)
9586 {
9587         intel_modeset_init_hw(dev);
9588
9589         intel_setup_overlay(dev);
9590
9591         intel_modeset_setup_hw_state(dev, false);
9592 }
9593
9594 void intel_modeset_cleanup(struct drm_device *dev)
9595 {
9596         struct drm_i915_private *dev_priv = dev->dev_private;
9597         struct drm_crtc *crtc;
9598         struct intel_crtc *intel_crtc;
9599
9600         /*
9601          * Interrupts and polling as the first thing to avoid creating havoc.
9602          * Too much stuff here (turning of rps, connectors, ...) would
9603          * experience fancy races otherwise.
9604          */
9605         drm_irq_uninstall(dev);
9606         cancel_work_sync(&dev_priv->hotplug_work);
9607         /*
9608          * Due to the hpd irq storm handling the hotplug work can re-arm the
9609          * poll handlers. Hence disable polling after hpd handling is shut down.
9610          */
9611         drm_kms_helper_poll_fini(dev);
9612
9613         mutex_lock(&dev->struct_mutex);
9614
9615         intel_unregister_dsm_handler();
9616
9617         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9618                 /* Skip inactive CRTCs */
9619                 if (!crtc->fb)
9620                         continue;
9621
9622                 intel_crtc = to_intel_crtc(crtc);
9623                 intel_increase_pllclock(crtc);
9624         }
9625
9626         intel_disable_fbc(dev);
9627
9628         intel_disable_gt_powersave(dev);
9629
9630         ironlake_teardown_rc6(dev);
9631
9632         mutex_unlock(&dev->struct_mutex);
9633
9634         /* flush any delayed tasks or pending work */
9635         flush_scheduled_work();
9636
9637         /* destroy backlight, if any, before the connectors */
9638         intel_panel_destroy_backlight(dev);
9639
9640         drm_mode_config_cleanup(dev);
9641
9642         intel_cleanup_overlay(dev);
9643 }
9644
9645 /*
9646  * Return which encoder is currently attached for connector.
9647  */
9648 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9649 {
9650         return &intel_attached_encoder(connector)->base;
9651 }
9652
9653 void intel_connector_attach_encoder(struct intel_connector *connector,
9654                                     struct intel_encoder *encoder)
9655 {
9656         connector->encoder = encoder;
9657         drm_mode_connector_attach_encoder(&connector->base,
9658                                           &encoder->base);
9659 }
9660
9661 /*
9662  * set vga decode state - true == enable VGA decode
9663  */
9664 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9665 {
9666         struct drm_i915_private *dev_priv = dev->dev_private;
9667         u16 gmch_ctrl;
9668
9669         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9670         if (state)
9671                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9672         else
9673                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9674         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9675         return 0;
9676 }
9677
9678 #ifdef CONFIG_DEBUG_FS
9679 #include <linux/seq_file.h>
9680
9681 struct intel_display_error_state {
9682
9683         u32 power_well_driver;
9684
9685         struct intel_cursor_error_state {
9686                 u32 control;
9687                 u32 position;
9688                 u32 base;
9689                 u32 size;
9690         } cursor[I915_MAX_PIPES];
9691
9692         struct intel_pipe_error_state {
9693                 enum transcoder cpu_transcoder;
9694                 u32 conf;
9695                 u32 source;
9696
9697                 u32 htotal;
9698                 u32 hblank;
9699                 u32 hsync;
9700                 u32 vtotal;
9701                 u32 vblank;
9702                 u32 vsync;
9703         } pipe[I915_MAX_PIPES];
9704
9705         struct intel_plane_error_state {
9706                 u32 control;
9707                 u32 stride;
9708                 u32 size;
9709                 u32 pos;
9710                 u32 addr;
9711                 u32 surface;
9712                 u32 tile_offset;
9713         } plane[I915_MAX_PIPES];
9714 };
9715
9716 struct intel_display_error_state *
9717 intel_display_capture_error_state(struct drm_device *dev)
9718 {
9719         drm_i915_private_t *dev_priv = dev->dev_private;
9720         struct intel_display_error_state *error;
9721         enum transcoder cpu_transcoder;
9722         int i;
9723
9724         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9725         if (error == NULL)
9726                 return NULL;
9727
9728         if (HAS_POWER_WELL(dev))
9729                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
9730
9731         for_each_pipe(i) {
9732                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9733                 error->pipe[i].cpu_transcoder = cpu_transcoder;
9734
9735                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9736                         error->cursor[i].control = I915_READ(CURCNTR(i));
9737                         error->cursor[i].position = I915_READ(CURPOS(i));
9738                         error->cursor[i].base = I915_READ(CURBASE(i));
9739                 } else {
9740                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9741                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9742                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9743                 }
9744
9745                 error->plane[i].control = I915_READ(DSPCNTR(i));
9746                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9747                 if (INTEL_INFO(dev)->gen <= 3) {
9748                         error->plane[i].size = I915_READ(DSPSIZE(i));
9749                         error->plane[i].pos = I915_READ(DSPPOS(i));
9750                 }
9751                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9752                         error->plane[i].addr = I915_READ(DSPADDR(i));
9753                 if (INTEL_INFO(dev)->gen >= 4) {
9754                         error->plane[i].surface = I915_READ(DSPSURF(i));
9755                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9756                 }
9757
9758                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9759                 error->pipe[i].source = I915_READ(PIPESRC(i));
9760                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9761                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9762                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9763                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9764                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9765                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9766         }
9767
9768         /* In the code above we read the registers without checking if the power
9769          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
9770          * prevent the next I915_WRITE from detecting it and printing an error
9771          * message. */
9772         if (HAS_POWER_WELL(dev))
9773                 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
9774
9775         return error;
9776 }
9777
9778 void
9779 intel_display_print_error_state(struct seq_file *m,
9780                                 struct drm_device *dev,
9781                                 struct intel_display_error_state *error)
9782 {
9783         int i;
9784
9785         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9786         if (HAS_POWER_WELL(dev))
9787                 seq_printf(m, "PWR_WELL_CTL2: %08x\n",
9788                            error->power_well_driver);
9789         for_each_pipe(i) {
9790                 seq_printf(m, "Pipe [%d]:\n", i);
9791                 seq_printf(m, "  CPU transcoder: %c\n",
9792                            transcoder_name(error->pipe[i].cpu_transcoder));
9793                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9794                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9795                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9796                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9797                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9798                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9799                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9800                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9801
9802                 seq_printf(m, "Plane [%d]:\n", i);
9803                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9804                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9805                 if (INTEL_INFO(dev)->gen <= 3) {
9806                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9807                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9808                 }
9809                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9810                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9811                 if (INTEL_INFO(dev)->gen >= 4) {
9812                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9813                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9814                 }
9815
9816                 seq_printf(m, "Cursor [%d]:\n", i);
9817                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9818                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9819                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9820         }
9821 }
9822 #endif