]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: track dp target_clock in pipe_config
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292                                     enum pipe pipe)
1293 {
1294         int reg, i;
1295         u32 val;
1296
1297         if (!IS_VALLEYVIEW(dev_priv->dev))
1298                 return;
1299
1300         /* Need to check both planes against the pipe */
1301         for (i = 0; i < dev_priv->num_plane; i++) {
1302                 reg = SPCNTR(pipe, i);
1303                 val = I915_READ(reg);
1304                 WARN((val & SP_ENABLE),
1305                      "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306                      pipe * 2 + i, pipe_name(pipe));
1307         }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312         u32 val;
1313         bool enabled;
1314
1315         if (HAS_PCH_LPT(dev_priv->dev)) {
1316                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317                 return;
1318         }
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                        enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else {
1353                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & SDVO_ENABLE) == 0)
1363                 return false;
1364
1365         if (HAS_PCH_CPT(dev_priv->dev)) {
1366                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367                         return false;
1368         } else {
1369                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370                         return false;
1371         }
1372         return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376                               enum pipe pipe, u32 val)
1377 {
1378         if ((val & LVDS_PORT_EN) == 0)
1379                 return false;
1380
1381         if (HAS_PCH_CPT(dev_priv->dev)) {
1382                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & ADPA_DAC_ENABLE) == 0)
1395                 return false;
1396         if (HAS_PCH_CPT(dev_priv->dev)) {
1397                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407                                    enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412              reg, pipe_name(pipe));
1413
1414         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415              && (val & DP_PIPEB_SELECT),
1416              "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420                                      enum pipe pipe, int reg)
1421 {
1422         u32 val = I915_READ(reg);
1423         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425              reg, pipe_name(pipe));
1426
1427         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428              && (val & SDVO_PIPE_B_SELECT),
1429              "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433                                       enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442         reg = PCH_ADPA;
1443         val = I915_READ(reg);
1444         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445              "PCH VGA enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         reg = PCH_LVDS;
1449         val = I915_READ(reg);
1450         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460  * intel_enable_pll - enable a PLL
1461  * @dev_priv: i915 private structure
1462  * @pipe: pipe PLL to enable
1463  *
1464  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1465  * make sure the PLL reg is writable first though, since the panel write
1466  * protect mechanism may be enabled.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  *
1470  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471  */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* No really, not for ILK+ */
1478         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1479
1480         /* PLL is protected by panel, make sure we can write it */
1481         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482                 assert_panel_unlocked(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val |= DPLL_VCO_ENABLE;
1487
1488         /* We do this three times for luck */
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491         udelay(150); /* wait for warmup */
1492         I915_WRITE(reg, val);
1493         POSTING_READ(reg);
1494         udelay(150); /* wait for warmup */
1495         I915_WRITE(reg, val);
1496         POSTING_READ(reg);
1497         udelay(150); /* wait for warmup */
1498 }
1499
1500 /**
1501  * intel_disable_pll - disable a PLL
1502  * @dev_priv: i915 private structure
1503  * @pipe: pipe PLL to disable
1504  *
1505  * Disable the PLL for @pipe, making sure the pipe is off first.
1506  *
1507  * Note!  This is for pre-ILK only.
1508  */
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1510 {
1511         int reg;
1512         u32 val;
1513
1514         /* Don't disable pipe A or pipe A PLLs if needed */
1515         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516                 return;
1517
1518         /* Make sure the pipe isn't still relying on us */
1519         assert_pipe_disabled(dev_priv, pipe);
1520
1521         reg = DPLL(pipe);
1522         val = I915_READ(reg);
1523         val &= ~DPLL_VCO_ENABLE;
1524         I915_WRITE(reg, val);
1525         POSTING_READ(reg);
1526 }
1527
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531                 enum intel_sbi_destination destination)
1532 {
1533         u32 tmp;
1534
1535         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540                 return;
1541         }
1542
1543         I915_WRITE(SBI_ADDR, (reg << 16));
1544         I915_WRITE(SBI_DATA, value);
1545
1546         if (destination == SBI_ICLK)
1547                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548         else
1549                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1551
1552         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553                                 100)) {
1554                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555                 return;
1556         }
1557 }
1558
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561                enum intel_sbi_destination destination)
1562 {
1563         u32 value = 0;
1564         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569                 return 0;
1570         }
1571
1572         I915_WRITE(SBI_ADDR, (reg << 16));
1573
1574         if (destination == SBI_ICLK)
1575                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576         else
1577                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1579
1580         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581                                 100)) {
1582                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583                 return 0;
1584         }
1585
1586         return I915_READ(SBI_DATA);
1587 }
1588
1589 /**
1590  * ironlake_enable_pch_pll - enable PCH PLL
1591  * @dev_priv: i915 private structure
1592  * @pipe: pipe PLL to enable
1593  *
1594  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595  * drives the transcoder clock.
1596  */
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1598 {
1599         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600         struct intel_pch_pll *pll;
1601         int reg;
1602         u32 val;
1603
1604         /* PCH PLLs only available on ILK, SNB and IVB */
1605         BUG_ON(dev_priv->info->gen < 5);
1606         pll = intel_crtc->pch_pll;
1607         if (pll == NULL)
1608                 return;
1609
1610         if (WARN_ON(pll->refcount == 0))
1611                 return;
1612
1613         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614                       pll->pll_reg, pll->active, pll->on,
1615                       intel_crtc->base.base.id);
1616
1617         /* PCH refclock must be enabled first */
1618         assert_pch_refclk_enabled(dev_priv);
1619
1620         if (pll->active++ && pll->on) {
1621                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622                 return;
1623         }
1624
1625         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1626
1627         reg = pll->pll_reg;
1628         val = I915_READ(reg);
1629         val |= DPLL_VCO_ENABLE;
1630         I915_WRITE(reg, val);
1631         POSTING_READ(reg);
1632         udelay(200);
1633
1634         pll->on = true;
1635 }
1636
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1638 {
1639         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641         int reg;
1642         u32 val;
1643
1644         /* PCH only available on ILK+ */
1645         BUG_ON(dev_priv->info->gen < 5);
1646         if (pll == NULL)
1647                return;
1648
1649         if (WARN_ON(pll->refcount == 0))
1650                 return;
1651
1652         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653                       pll->pll_reg, pll->active, pll->on,
1654                       intel_crtc->base.base.id);
1655
1656         if (WARN_ON(pll->active == 0)) {
1657                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658                 return;
1659         }
1660
1661         if (--pll->active) {
1662                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663                 return;
1664         }
1665
1666         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1667
1668         /* Make sure transcoder isn't still depending on us */
1669         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1670
1671         reg = pll->pll_reg;
1672         val = I915_READ(reg);
1673         val &= ~DPLL_VCO_ENABLE;
1674         I915_WRITE(reg, val);
1675         POSTING_READ(reg);
1676         udelay(200);
1677
1678         pll->on = false;
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682                                            enum pipe pipe)
1683 {
1684         struct drm_device *dev = dev_priv->dev;
1685         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686         uint32_t reg, val, pipeconf_val;
1687
1688         /* PCH only available on ILK+ */
1689         BUG_ON(dev_priv->info->gen < 5);
1690
1691         /* Make sure PCH DPLL is enabled */
1692         assert_pch_pll_enabled(dev_priv,
1693                                to_intel_crtc(crtc)->pch_pll,
1694                                to_intel_crtc(crtc));
1695
1696         /* FDI must be feeding us bits for PCH ports */
1697         assert_fdi_tx_enabled(dev_priv, pipe);
1698         assert_fdi_rx_enabled(dev_priv, pipe);
1699
1700         if (HAS_PCH_CPT(dev)) {
1701                 /* Workaround: Set the timing override bit before enabling the
1702                  * pch transcoder. */
1703                 reg = TRANS_CHICKEN2(pipe);
1704                 val = I915_READ(reg);
1705                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706                 I915_WRITE(reg, val);
1707         }
1708
1709         reg = TRANSCONF(pipe);
1710         val = I915_READ(reg);
1711         pipeconf_val = I915_READ(PIPECONF(pipe));
1712
1713         if (HAS_PCH_IBX(dev_priv->dev)) {
1714                 /*
1715                  * make the BPC in transcoder be consistent with
1716                  * that in pipeconf reg.
1717                  */
1718                 val &= ~PIPECONF_BPC_MASK;
1719                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720         }
1721
1722         val &= ~TRANS_INTERLACE_MASK;
1723         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724                 if (HAS_PCH_IBX(dev_priv->dev) &&
1725                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726                         val |= TRANS_LEGACY_INTERLACED_ILK;
1727                 else
1728                         val |= TRANS_INTERLACED;
1729         else
1730                 val |= TRANS_PROGRESSIVE;
1731
1732         I915_WRITE(reg, val | TRANS_ENABLE);
1733         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1735 }
1736
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738                                       enum transcoder cpu_transcoder)
1739 {
1740         u32 val, pipeconf_val;
1741
1742         /* PCH only available on ILK+ */
1743         BUG_ON(dev_priv->info->gen < 5);
1744
1745         /* FDI must be feeding us bits for PCH ports */
1746         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1748
1749         /* Workaround: set timing override bit. */
1750         val = I915_READ(_TRANSA_CHICKEN2);
1751         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752         I915_WRITE(_TRANSA_CHICKEN2, val);
1753
1754         val = TRANS_ENABLE;
1755         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1756
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758             PIPECONF_INTERLACED_ILK)
1759                 val |= TRANS_INTERLACED;
1760         else
1761                 val |= TRANS_PROGRESSIVE;
1762
1763         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765                 DRM_ERROR("Failed to enable PCH transcoder\n");
1766 }
1767
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769                                             enum pipe pipe)
1770 {
1771         struct drm_device *dev = dev_priv->dev;
1772         uint32_t reg, val;
1773
1774         /* FDI relies on the transcoder */
1775         assert_fdi_tx_disabled(dev_priv, pipe);
1776         assert_fdi_rx_disabled(dev_priv, pipe);
1777
1778         /* Ports must be off as well */
1779         assert_pch_ports_disabled(dev_priv, pipe);
1780
1781         reg = TRANSCONF(pipe);
1782         val = I915_READ(reg);
1783         val &= ~TRANS_ENABLE;
1784         I915_WRITE(reg, val);
1785         /* wait for PCH transcoder off, transcoder state */
1786         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1788
1789         if (!HAS_PCH_IBX(dev)) {
1790                 /* Workaround: Clear the timing override chicken bit again. */
1791                 reg = TRANS_CHICKEN2(pipe);
1792                 val = I915_READ(reg);
1793                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794                 I915_WRITE(reg, val);
1795         }
1796 }
1797
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1799 {
1800         u32 val;
1801
1802         val = I915_READ(_TRANSACONF);
1803         val &= ~TRANS_ENABLE;
1804         I915_WRITE(_TRANSACONF, val);
1805         /* wait for PCH transcoder off, transcoder state */
1806         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807                 DRM_ERROR("Failed to disable PCH transcoder\n");
1808
1809         /* Workaround: clear timing override bit. */
1810         val = I915_READ(_TRANSA_CHICKEN2);
1811         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812         I915_WRITE(_TRANSA_CHICKEN2, val);
1813 }
1814
1815 /**
1816  * intel_enable_pipe - enable a pipe, asserting requirements
1817  * @dev_priv: i915 private structure
1818  * @pipe: pipe to enable
1819  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1820  *
1821  * Enable @pipe, making sure that various hardware specific requirements
1822  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1823  *
1824  * @pipe should be %PIPE_A or %PIPE_B.
1825  *
1826  * Will wait until the pipe is actually running (i.e. first vblank) before
1827  * returning.
1828  */
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830                               bool pch_port)
1831 {
1832         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833                                                                       pipe);
1834         enum pipe pch_transcoder;
1835         int reg;
1836         u32 val;
1837
1838         if (HAS_PCH_LPT(dev_priv->dev))
1839                 pch_transcoder = TRANSCODER_A;
1840         else
1841                 pch_transcoder = pipe;
1842
1843         /*
1844          * A pipe without a PLL won't actually be able to drive bits from
1845          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1846          * need the check.
1847          */
1848         if (!HAS_PCH_SPLIT(dev_priv->dev))
1849                 assert_pll_enabled(dev_priv, pipe);
1850         else {
1851                 if (pch_port) {
1852                         /* if driving the PCH, we need FDI enabled */
1853                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854                         assert_fdi_tx_pll_enabled(dev_priv,
1855                                                   (enum pipe) cpu_transcoder);
1856                 }
1857                 /* FIXME: assert CPU port conditions for SNB+ */
1858         }
1859
1860         reg = PIPECONF(cpu_transcoder);
1861         val = I915_READ(reg);
1862         if (val & PIPECONF_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | PIPECONF_ENABLE);
1866         intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 /**
1870  * intel_disable_pipe - disable a pipe, asserting requirements
1871  * @dev_priv: i915 private structure
1872  * @pipe: pipe to disable
1873  *
1874  * Disable @pipe, making sure that various hardware specific requirements
1875  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1876  *
1877  * @pipe should be %PIPE_A or %PIPE_B.
1878  *
1879  * Will wait until the pipe has shut down before returning.
1880  */
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882                                enum pipe pipe)
1883 {
1884         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885                                                                       pipe);
1886         int reg;
1887         u32 val;
1888
1889         /*
1890          * Make sure planes won't keep trying to pump pixels to us,
1891          * or we might hang the display.
1892          */
1893         assert_planes_disabled(dev_priv, pipe);
1894         assert_sprites_disabled(dev_priv, pipe);
1895
1896         /* Don't disable pipe A or pipe A PLLs if needed */
1897         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898                 return;
1899
1900         reg = PIPECONF(cpu_transcoder);
1901         val = I915_READ(reg);
1902         if ((val & PIPECONF_ENABLE) == 0)
1903                 return;
1904
1905         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1907 }
1908
1909 /*
1910  * Plane regs are double buffered, going from enabled->disabled needs a
1911  * trigger in order to latch.  The display address reg provides this.
1912  */
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914                                       enum plane plane)
1915 {
1916         if (dev_priv->info->gen >= 4)
1917                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918         else
1919                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1920 }
1921
1922 /**
1923  * intel_enable_plane - enable a display plane on a given pipe
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to enable
1926  * @pipe: pipe being fed
1927  *
1928  * Enable @plane on @pipe, making sure that @pipe is running first.
1929  */
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931                                enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937         assert_pipe_enabled(dev_priv, pipe);
1938
1939         reg = DSPCNTR(plane);
1940         val = I915_READ(reg);
1941         if (val & DISPLAY_PLANE_ENABLE)
1942                 return;
1943
1944         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945         intel_flush_display_plane(dev_priv, plane);
1946         intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 /**
1950  * intel_disable_plane - disable a display plane
1951  * @dev_priv: i915 private structure
1952  * @plane: plane to disable
1953  * @pipe: pipe consuming the data
1954  *
1955  * Disable @plane; should be an independent operation.
1956  */
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958                                 enum plane plane, enum pipe pipe)
1959 {
1960         int reg;
1961         u32 val;
1962
1963         reg = DSPCNTR(plane);
1964         val = I915_READ(reg);
1965         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966                 return;
1967
1968         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969         intel_flush_display_plane(dev_priv, plane);
1970         intel_wait_for_vblank(dev_priv->dev, pipe);
1971 }
1972
1973 static bool need_vtd_wa(struct drm_device *dev)
1974 {
1975 #ifdef CONFIG_INTEL_IOMMU
1976         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977                 return true;
1978 #endif
1979         return false;
1980 }
1981
1982 int
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984                            struct drm_i915_gem_object *obj,
1985                            struct intel_ring_buffer *pipelined)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 alignment;
1989         int ret;
1990
1991         switch (obj->tiling_mode) {
1992         case I915_TILING_NONE:
1993                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994                         alignment = 128 * 1024;
1995                 else if (INTEL_INFO(dev)->gen >= 4)
1996                         alignment = 4 * 1024;
1997                 else
1998                         alignment = 64 * 1024;
1999                 break;
2000         case I915_TILING_X:
2001                 /* pin() will align the object as required by fence */
2002                 alignment = 0;
2003                 break;
2004         case I915_TILING_Y:
2005                 /* FIXME: Is this true? */
2006                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2007                 return -EINVAL;
2008         default:
2009                 BUG();
2010         }
2011
2012         /* Note that the w/a also requires 64 PTE of padding following the
2013          * bo. We currently fill all unused PTE with the shadow page and so
2014          * we should always have valid PTE following the scanout preventing
2015          * the VT-d warning.
2016          */
2017         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2018                 alignment = 256 * 1024;
2019
2020         dev_priv->mm.interruptible = false;
2021         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2022         if (ret)
2023                 goto err_interruptible;
2024
2025         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2026          * fence, whereas 965+ only requires a fence if using
2027          * framebuffer compression.  For simplicity, we always install
2028          * a fence as the cost is not that onerous.
2029          */
2030         ret = i915_gem_object_get_fence(obj);
2031         if (ret)
2032                 goto err_unpin;
2033
2034         i915_gem_object_pin_fence(obj);
2035
2036         dev_priv->mm.interruptible = true;
2037         return 0;
2038
2039 err_unpin:
2040         i915_gem_object_unpin(obj);
2041 err_interruptible:
2042         dev_priv->mm.interruptible = true;
2043         return ret;
2044 }
2045
2046 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2047 {
2048         i915_gem_object_unpin_fence(obj);
2049         i915_gem_object_unpin(obj);
2050 }
2051
2052 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2053  * is assumed to be a power-of-two. */
2054 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2055                                              unsigned int tiling_mode,
2056                                              unsigned int cpp,
2057                                              unsigned int pitch)
2058 {
2059         if (tiling_mode != I915_TILING_NONE) {
2060                 unsigned int tile_rows, tiles;
2061
2062                 tile_rows = *y / 8;
2063                 *y %= 8;
2064
2065                 tiles = *x / (512/cpp);
2066                 *x %= 512/cpp;
2067
2068                 return tile_rows * pitch * 8 + tiles * 4096;
2069         } else {
2070                 unsigned int offset;
2071
2072                 offset = *y * pitch + *x * cpp;
2073                 *y = 0;
2074                 *x = (offset & 4095) / cpp;
2075                 return offset & -4096;
2076         }
2077 }
2078
2079 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2080                              int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095                 break;
2096         default:
2097                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2098                 return -EINVAL;
2099         }
2100
2101         intel_fb = to_intel_framebuffer(fb);
2102         obj = intel_fb->obj;
2103
2104         reg = DSPCNTR(plane);
2105         dspcntr = I915_READ(reg);
2106         /* Mask out pixel format bits in case we change it */
2107         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2108         switch (fb->pixel_format) {
2109         case DRM_FORMAT_C8:
2110                 dspcntr |= DISPPLANE_8BPP;
2111                 break;
2112         case DRM_FORMAT_XRGB1555:
2113         case DRM_FORMAT_ARGB1555:
2114                 dspcntr |= DISPPLANE_BGRX555;
2115                 break;
2116         case DRM_FORMAT_RGB565:
2117                 dspcntr |= DISPPLANE_BGRX565;
2118                 break;
2119         case DRM_FORMAT_XRGB8888:
2120         case DRM_FORMAT_ARGB8888:
2121                 dspcntr |= DISPPLANE_BGRX888;
2122                 break;
2123         case DRM_FORMAT_XBGR8888:
2124         case DRM_FORMAT_ABGR8888:
2125                 dspcntr |= DISPPLANE_RGBX888;
2126                 break;
2127         case DRM_FORMAT_XRGB2101010:
2128         case DRM_FORMAT_ARGB2101010:
2129                 dspcntr |= DISPPLANE_BGRX101010;
2130                 break;
2131         case DRM_FORMAT_XBGR2101010:
2132         case DRM_FORMAT_ABGR2101010:
2133                 dspcntr |= DISPPLANE_RGBX101010;
2134                 break;
2135         default:
2136                 BUG();
2137         }
2138
2139         if (INTEL_INFO(dev)->gen >= 4) {
2140                 if (obj->tiling_mode != I915_TILING_NONE)
2141                         dspcntr |= DISPPLANE_TILED;
2142                 else
2143                         dspcntr &= ~DISPPLANE_TILED;
2144         }
2145
2146         I915_WRITE(reg, dspcntr);
2147
2148         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2149
2150         if (INTEL_INFO(dev)->gen >= 4) {
2151                 intel_crtc->dspaddr_offset =
2152                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2153                                                        fb->bits_per_pixel / 8,
2154                                                        fb->pitches[0]);
2155                 linear_offset -= intel_crtc->dspaddr_offset;
2156         } else {
2157                 intel_crtc->dspaddr_offset = linear_offset;
2158         }
2159
2160         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2161                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2162         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2163         if (INTEL_INFO(dev)->gen >= 4) {
2164                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2165                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2166                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2167                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2168         } else
2169                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2170         POSTING_READ(reg);
2171
2172         return 0;
2173 }
2174
2175 static int ironlake_update_plane(struct drm_crtc *crtc,
2176                                  struct drm_framebuffer *fb, int x, int y)
2177 {
2178         struct drm_device *dev = crtc->dev;
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2181         struct intel_framebuffer *intel_fb;
2182         struct drm_i915_gem_object *obj;
2183         int plane = intel_crtc->plane;
2184         unsigned long linear_offset;
2185         u32 dspcntr;
2186         u32 reg;
2187
2188         switch (plane) {
2189         case 0:
2190         case 1:
2191         case 2:
2192                 break;
2193         default:
2194                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2195                 return -EINVAL;
2196         }
2197
2198         intel_fb = to_intel_framebuffer(fb);
2199         obj = intel_fb->obj;
2200
2201         reg = DSPCNTR(plane);
2202         dspcntr = I915_READ(reg);
2203         /* Mask out pixel format bits in case we change it */
2204         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2205         switch (fb->pixel_format) {
2206         case DRM_FORMAT_C8:
2207                 dspcntr |= DISPPLANE_8BPP;
2208                 break;
2209         case DRM_FORMAT_RGB565:
2210                 dspcntr |= DISPPLANE_BGRX565;
2211                 break;
2212         case DRM_FORMAT_XRGB8888:
2213         case DRM_FORMAT_ARGB8888:
2214                 dspcntr |= DISPPLANE_BGRX888;
2215                 break;
2216         case DRM_FORMAT_XBGR8888:
2217         case DRM_FORMAT_ABGR8888:
2218                 dspcntr |= DISPPLANE_RGBX888;
2219                 break;
2220         case DRM_FORMAT_XRGB2101010:
2221         case DRM_FORMAT_ARGB2101010:
2222                 dspcntr |= DISPPLANE_BGRX101010;
2223                 break;
2224         case DRM_FORMAT_XBGR2101010:
2225         case DRM_FORMAT_ABGR2101010:
2226                 dspcntr |= DISPPLANE_RGBX101010;
2227                 break;
2228         default:
2229                 BUG();
2230         }
2231
2232         if (obj->tiling_mode != I915_TILING_NONE)
2233                 dspcntr |= DISPPLANE_TILED;
2234         else
2235                 dspcntr &= ~DISPPLANE_TILED;
2236
2237         /* must disable */
2238         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2239
2240         I915_WRITE(reg, dspcntr);
2241
2242         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2243         intel_crtc->dspaddr_offset =
2244                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2245                                                fb->bits_per_pixel / 8,
2246                                                fb->pitches[0]);
2247         linear_offset -= intel_crtc->dspaddr_offset;
2248
2249         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2250                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2251         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2252         I915_MODIFY_DISPBASE(DSPSURF(plane),
2253                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2254         if (IS_HASWELL(dev)) {
2255                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2256         } else {
2257                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2258                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2259         }
2260         POSTING_READ(reg);
2261
2262         return 0;
2263 }
2264
2265 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2266 static int
2267 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2268                            int x, int y, enum mode_set_atomic state)
2269 {
2270         struct drm_device *dev = crtc->dev;
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272
2273         if (dev_priv->display.disable_fbc)
2274                 dev_priv->display.disable_fbc(dev);
2275         intel_increase_pllclock(crtc);
2276
2277         return dev_priv->display.update_plane(crtc, fb, x, y);
2278 }
2279
2280 void intel_display_handle_reset(struct drm_device *dev)
2281 {
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         struct drm_crtc *crtc;
2284
2285         /*
2286          * Flips in the rings have been nuked by the reset,
2287          * so complete all pending flips so that user space
2288          * will get its events and not get stuck.
2289          *
2290          * Also update the base address of all primary
2291          * planes to the the last fb to make sure we're
2292          * showing the correct fb after a reset.
2293          *
2294          * Need to make two loops over the crtcs so that we
2295          * don't try to grab a crtc mutex before the
2296          * pending_flip_queue really got woken up.
2297          */
2298
2299         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2300                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2301                 enum plane plane = intel_crtc->plane;
2302
2303                 intel_prepare_page_flip(dev, plane);
2304                 intel_finish_page_flip_plane(dev, plane);
2305         }
2306
2307         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2308                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2309
2310                 mutex_lock(&crtc->mutex);
2311                 if (intel_crtc->active)
2312                         dev_priv->display.update_plane(crtc, crtc->fb,
2313                                                        crtc->x, crtc->y);
2314                 mutex_unlock(&crtc->mutex);
2315         }
2316 }
2317
2318 static int
2319 intel_finish_fb(struct drm_framebuffer *old_fb)
2320 {
2321         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2322         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2323         bool was_interruptible = dev_priv->mm.interruptible;
2324         int ret;
2325
2326         /* Big Hammer, we also need to ensure that any pending
2327          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2328          * current scanout is retired before unpinning the old
2329          * framebuffer.
2330          *
2331          * This should only fail upon a hung GPU, in which case we
2332          * can safely continue.
2333          */
2334         dev_priv->mm.interruptible = false;
2335         ret = i915_gem_object_finish_gpu(obj);
2336         dev_priv->mm.interruptible = was_interruptible;
2337
2338         return ret;
2339 }
2340
2341 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2342 {
2343         struct drm_device *dev = crtc->dev;
2344         struct drm_i915_master_private *master_priv;
2345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2346
2347         if (!dev->primary->master)
2348                 return;
2349
2350         master_priv = dev->primary->master->driver_priv;
2351         if (!master_priv->sarea_priv)
2352                 return;
2353
2354         switch (intel_crtc->pipe) {
2355         case 0:
2356                 master_priv->sarea_priv->pipeA_x = x;
2357                 master_priv->sarea_priv->pipeA_y = y;
2358                 break;
2359         case 1:
2360                 master_priv->sarea_priv->pipeB_x = x;
2361                 master_priv->sarea_priv->pipeB_y = y;
2362                 break;
2363         default:
2364                 break;
2365         }
2366 }
2367
2368 static int
2369 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2370                     struct drm_framebuffer *fb)
2371 {
2372         struct drm_device *dev = crtc->dev;
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2375         struct drm_framebuffer *old_fb;
2376         int ret;
2377
2378         /* no fb bound */
2379         if (!fb) {
2380                 DRM_ERROR("No FB bound\n");
2381                 return 0;
2382         }
2383
2384         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2385                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2386                                 intel_crtc->plane,
2387                                 INTEL_INFO(dev)->num_pipes);
2388                 return -EINVAL;
2389         }
2390
2391         mutex_lock(&dev->struct_mutex);
2392         ret = intel_pin_and_fence_fb_obj(dev,
2393                                          to_intel_framebuffer(fb)->obj,
2394                                          NULL);
2395         if (ret != 0) {
2396                 mutex_unlock(&dev->struct_mutex);
2397                 DRM_ERROR("pin & fence failed\n");
2398                 return ret;
2399         }
2400
2401         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2402         if (ret) {
2403                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2404                 mutex_unlock(&dev->struct_mutex);
2405                 DRM_ERROR("failed to update base address\n");
2406                 return ret;
2407         }
2408
2409         old_fb = crtc->fb;
2410         crtc->fb = fb;
2411         crtc->x = x;
2412         crtc->y = y;
2413
2414         if (old_fb) {
2415                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2416                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2417         }
2418
2419         intel_update_fbc(dev);
2420         mutex_unlock(&dev->struct_mutex);
2421
2422         intel_crtc_update_sarea_pos(crtc, x, y);
2423
2424         return 0;
2425 }
2426
2427 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2428 {
2429         struct drm_device *dev = crtc->dev;
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2432         int pipe = intel_crtc->pipe;
2433         u32 reg, temp;
2434
2435         /* enable normal train */
2436         reg = FDI_TX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         if (IS_IVYBRIDGE(dev)) {
2439                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2440                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2441         } else {
2442                 temp &= ~FDI_LINK_TRAIN_NONE;
2443                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2444         }
2445         I915_WRITE(reg, temp);
2446
2447         reg = FDI_RX_CTL(pipe);
2448         temp = I915_READ(reg);
2449         if (HAS_PCH_CPT(dev)) {
2450                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2451                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2452         } else {
2453                 temp &= ~FDI_LINK_TRAIN_NONE;
2454                 temp |= FDI_LINK_TRAIN_NONE;
2455         }
2456         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2457
2458         /* wait one idle pattern time */
2459         POSTING_READ(reg);
2460         udelay(1000);
2461
2462         /* IVB wants error correction enabled */
2463         if (IS_IVYBRIDGE(dev))
2464                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2465                            FDI_FE_ERRC_ENABLE);
2466 }
2467
2468 static void ivb_modeset_global_resources(struct drm_device *dev)
2469 {
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         struct intel_crtc *pipe_B_crtc =
2472                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2473         struct intel_crtc *pipe_C_crtc =
2474                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2475         uint32_t temp;
2476
2477         /* When everything is off disable fdi C so that we could enable fdi B
2478          * with all lanes. XXX: This misses the case where a pipe is not using
2479          * any pch resources and so doesn't need any fdi lanes. */
2480         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2481                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2482                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2483
2484                 temp = I915_READ(SOUTH_CHICKEN1);
2485                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2486                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2487                 I915_WRITE(SOUTH_CHICKEN1, temp);
2488         }
2489 }
2490
2491 /* The FDI link training functions for ILK/Ibexpeak. */
2492 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2493 {
2494         struct drm_device *dev = crtc->dev;
2495         struct drm_i915_private *dev_priv = dev->dev_private;
2496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2497         int pipe = intel_crtc->pipe;
2498         int plane = intel_crtc->plane;
2499         u32 reg, temp, tries;
2500
2501         /* FDI needs bits from pipe & plane first */
2502         assert_pipe_enabled(dev_priv, pipe);
2503         assert_plane_enabled(dev_priv, plane);
2504
2505         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2506            for train result */
2507         reg = FDI_RX_IMR(pipe);
2508         temp = I915_READ(reg);
2509         temp &= ~FDI_RX_SYMBOL_LOCK;
2510         temp &= ~FDI_RX_BIT_LOCK;
2511         I915_WRITE(reg, temp);
2512         I915_READ(reg);
2513         udelay(150);
2514
2515         /* enable CPU FDI TX and PCH FDI RX */
2516         reg = FDI_TX_CTL(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~(7 << 19);
2519         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2520         temp &= ~FDI_LINK_TRAIN_NONE;
2521         temp |= FDI_LINK_TRAIN_PATTERN_1;
2522         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2523
2524         reg = FDI_RX_CTL(pipe);
2525         temp = I915_READ(reg);
2526         temp &= ~FDI_LINK_TRAIN_NONE;
2527         temp |= FDI_LINK_TRAIN_PATTERN_1;
2528         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2529
2530         POSTING_READ(reg);
2531         udelay(150);
2532
2533         /* Ironlake workaround, enable clock pointer after FDI enable*/
2534         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2535         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2536                    FDI_RX_PHASE_SYNC_POINTER_EN);
2537
2538         reg = FDI_RX_IIR(pipe);
2539         for (tries = 0; tries < 5; tries++) {
2540                 temp = I915_READ(reg);
2541                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2542
2543                 if ((temp & FDI_RX_BIT_LOCK)) {
2544                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2545                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2546                         break;
2547                 }
2548         }
2549         if (tries == 5)
2550                 DRM_ERROR("FDI train 1 fail!\n");
2551
2552         /* Train 2 */
2553         reg = FDI_TX_CTL(pipe);
2554         temp = I915_READ(reg);
2555         temp &= ~FDI_LINK_TRAIN_NONE;
2556         temp |= FDI_LINK_TRAIN_PATTERN_2;
2557         I915_WRITE(reg, temp);
2558
2559         reg = FDI_RX_CTL(pipe);
2560         temp = I915_READ(reg);
2561         temp &= ~FDI_LINK_TRAIN_NONE;
2562         temp |= FDI_LINK_TRAIN_PATTERN_2;
2563         I915_WRITE(reg, temp);
2564
2565         POSTING_READ(reg);
2566         udelay(150);
2567
2568         reg = FDI_RX_IIR(pipe);
2569         for (tries = 0; tries < 5; tries++) {
2570                 temp = I915_READ(reg);
2571                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2572
2573                 if (temp & FDI_RX_SYMBOL_LOCK) {
2574                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2575                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2576                         break;
2577                 }
2578         }
2579         if (tries == 5)
2580                 DRM_ERROR("FDI train 2 fail!\n");
2581
2582         DRM_DEBUG_KMS("FDI train done\n");
2583
2584 }
2585
2586 static const int snb_b_fdi_train_param[] = {
2587         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2588         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2589         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2590         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2591 };
2592
2593 /* The FDI link training functions for SNB/Cougarpoint. */
2594 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2595 {
2596         struct drm_device *dev = crtc->dev;
2597         struct drm_i915_private *dev_priv = dev->dev_private;
2598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2599         int pipe = intel_crtc->pipe;
2600         u32 reg, temp, i, retry;
2601
2602         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2603            for train result */
2604         reg = FDI_RX_IMR(pipe);
2605         temp = I915_READ(reg);
2606         temp &= ~FDI_RX_SYMBOL_LOCK;
2607         temp &= ~FDI_RX_BIT_LOCK;
2608         I915_WRITE(reg, temp);
2609
2610         POSTING_READ(reg);
2611         udelay(150);
2612
2613         /* enable CPU FDI TX and PCH FDI RX */
2614         reg = FDI_TX_CTL(pipe);
2615         temp = I915_READ(reg);
2616         temp &= ~(7 << 19);
2617         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2618         temp &= ~FDI_LINK_TRAIN_NONE;
2619         temp |= FDI_LINK_TRAIN_PATTERN_1;
2620         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2621         /* SNB-B */
2622         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2623         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2624
2625         I915_WRITE(FDI_RX_MISC(pipe),
2626                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2627
2628         reg = FDI_RX_CTL(pipe);
2629         temp = I915_READ(reg);
2630         if (HAS_PCH_CPT(dev)) {
2631                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2632                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2633         } else {
2634                 temp &= ~FDI_LINK_TRAIN_NONE;
2635                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2636         }
2637         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639         POSTING_READ(reg);
2640         udelay(150);
2641
2642         for (i = 0; i < 4; i++) {
2643                 reg = FDI_TX_CTL(pipe);
2644                 temp = I915_READ(reg);
2645                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2646                 temp |= snb_b_fdi_train_param[i];
2647                 I915_WRITE(reg, temp);
2648
2649                 POSTING_READ(reg);
2650                 udelay(500);
2651
2652                 for (retry = 0; retry < 5; retry++) {
2653                         reg = FDI_RX_IIR(pipe);
2654                         temp = I915_READ(reg);
2655                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2656                         if (temp & FDI_RX_BIT_LOCK) {
2657                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2658                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2659                                 break;
2660                         }
2661                         udelay(50);
2662                 }
2663                 if (retry < 5)
2664                         break;
2665         }
2666         if (i == 4)
2667                 DRM_ERROR("FDI train 1 fail!\n");
2668
2669         /* Train 2 */
2670         reg = FDI_TX_CTL(pipe);
2671         temp = I915_READ(reg);
2672         temp &= ~FDI_LINK_TRAIN_NONE;
2673         temp |= FDI_LINK_TRAIN_PATTERN_2;
2674         if (IS_GEN6(dev)) {
2675                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676                 /* SNB-B */
2677                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2678         }
2679         I915_WRITE(reg, temp);
2680
2681         reg = FDI_RX_CTL(pipe);
2682         temp = I915_READ(reg);
2683         if (HAS_PCH_CPT(dev)) {
2684                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2685                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2686         } else {
2687                 temp &= ~FDI_LINK_TRAIN_NONE;
2688                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2689         }
2690         I915_WRITE(reg, temp);
2691
2692         POSTING_READ(reg);
2693         udelay(150);
2694
2695         for (i = 0; i < 4; i++) {
2696                 reg = FDI_TX_CTL(pipe);
2697                 temp = I915_READ(reg);
2698                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699                 temp |= snb_b_fdi_train_param[i];
2700                 I915_WRITE(reg, temp);
2701
2702                 POSTING_READ(reg);
2703                 udelay(500);
2704
2705                 for (retry = 0; retry < 5; retry++) {
2706                         reg = FDI_RX_IIR(pipe);
2707                         temp = I915_READ(reg);
2708                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709                         if (temp & FDI_RX_SYMBOL_LOCK) {
2710                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2712                                 break;
2713                         }
2714                         udelay(50);
2715                 }
2716                 if (retry < 5)
2717                         break;
2718         }
2719         if (i == 4)
2720                 DRM_ERROR("FDI train 2 fail!\n");
2721
2722         DRM_DEBUG_KMS("FDI train done.\n");
2723 }
2724
2725 /* Manual link training for Ivy Bridge A0 parts */
2726 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2727 {
2728         struct drm_device *dev = crtc->dev;
2729         struct drm_i915_private *dev_priv = dev->dev_private;
2730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2731         int pipe = intel_crtc->pipe;
2732         u32 reg, temp, i;
2733
2734         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2735            for train result */
2736         reg = FDI_RX_IMR(pipe);
2737         temp = I915_READ(reg);
2738         temp &= ~FDI_RX_SYMBOL_LOCK;
2739         temp &= ~FDI_RX_BIT_LOCK;
2740         I915_WRITE(reg, temp);
2741
2742         POSTING_READ(reg);
2743         udelay(150);
2744
2745         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2746                       I915_READ(FDI_RX_IIR(pipe)));
2747
2748         /* enable CPU FDI TX and PCH FDI RX */
2749         reg = FDI_TX_CTL(pipe);
2750         temp = I915_READ(reg);
2751         temp &= ~(7 << 19);
2752         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2753         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2754         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2755         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2756         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2757         temp |= FDI_COMPOSITE_SYNC;
2758         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2759
2760         I915_WRITE(FDI_RX_MISC(pipe),
2761                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2762
2763         reg = FDI_RX_CTL(pipe);
2764         temp = I915_READ(reg);
2765         temp &= ~FDI_LINK_TRAIN_AUTO;
2766         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2767         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2768         temp |= FDI_COMPOSITE_SYNC;
2769         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2770
2771         POSTING_READ(reg);
2772         udelay(150);
2773
2774         for (i = 0; i < 4; i++) {
2775                 reg = FDI_TX_CTL(pipe);
2776                 temp = I915_READ(reg);
2777                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2778                 temp |= snb_b_fdi_train_param[i];
2779                 I915_WRITE(reg, temp);
2780
2781                 POSTING_READ(reg);
2782                 udelay(500);
2783
2784                 reg = FDI_RX_IIR(pipe);
2785                 temp = I915_READ(reg);
2786                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2787
2788                 if (temp & FDI_RX_BIT_LOCK ||
2789                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2790                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2792                         break;
2793                 }
2794         }
2795         if (i == 4)
2796                 DRM_ERROR("FDI train 1 fail!\n");
2797
2798         /* Train 2 */
2799         reg = FDI_TX_CTL(pipe);
2800         temp = I915_READ(reg);
2801         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2802         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2803         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2804         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2805         I915_WRITE(reg, temp);
2806
2807         reg = FDI_RX_CTL(pipe);
2808         temp = I915_READ(reg);
2809         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2810         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2811         I915_WRITE(reg, temp);
2812
2813         POSTING_READ(reg);
2814         udelay(150);
2815
2816         for (i = 0; i < 4; i++) {
2817                 reg = FDI_TX_CTL(pipe);
2818                 temp = I915_READ(reg);
2819                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2820                 temp |= snb_b_fdi_train_param[i];
2821                 I915_WRITE(reg, temp);
2822
2823                 POSTING_READ(reg);
2824                 udelay(500);
2825
2826                 reg = FDI_RX_IIR(pipe);
2827                 temp = I915_READ(reg);
2828                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2829
2830                 if (temp & FDI_RX_SYMBOL_LOCK) {
2831                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2832                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2833                         break;
2834                 }
2835         }
2836         if (i == 4)
2837                 DRM_ERROR("FDI train 2 fail!\n");
2838
2839         DRM_DEBUG_KMS("FDI train done.\n");
2840 }
2841
2842 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2843 {
2844         struct drm_device *dev = intel_crtc->base.dev;
2845         struct drm_i915_private *dev_priv = dev->dev_private;
2846         int pipe = intel_crtc->pipe;
2847         u32 reg, temp;
2848
2849
2850         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2851         reg = FDI_RX_CTL(pipe);
2852         temp = I915_READ(reg);
2853         temp &= ~((0x7 << 19) | (0x7 << 16));
2854         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2855         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2856         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2857
2858         POSTING_READ(reg);
2859         udelay(200);
2860
2861         /* Switch from Rawclk to PCDclk */
2862         temp = I915_READ(reg);
2863         I915_WRITE(reg, temp | FDI_PCDCLK);
2864
2865         POSTING_READ(reg);
2866         udelay(200);
2867
2868         /* Enable CPU FDI TX PLL, always on for Ironlake */
2869         reg = FDI_TX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2872                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2873
2874                 POSTING_READ(reg);
2875                 udelay(100);
2876         }
2877 }
2878
2879 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2880 {
2881         struct drm_device *dev = intel_crtc->base.dev;
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         int pipe = intel_crtc->pipe;
2884         u32 reg, temp;
2885
2886         /* Switch from PCDclk to Rawclk */
2887         reg = FDI_RX_CTL(pipe);
2888         temp = I915_READ(reg);
2889         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2890
2891         /* Disable CPU FDI TX PLL */
2892         reg = FDI_TX_CTL(pipe);
2893         temp = I915_READ(reg);
2894         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2895
2896         POSTING_READ(reg);
2897         udelay(100);
2898
2899         reg = FDI_RX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2902
2903         /* Wait for the clocks to turn off. */
2904         POSTING_READ(reg);
2905         udelay(100);
2906 }
2907
2908 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2909 {
2910         struct drm_device *dev = crtc->dev;
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2913         int pipe = intel_crtc->pipe;
2914         u32 reg, temp;
2915
2916         /* disable CPU FDI tx and PCH FDI rx */
2917         reg = FDI_TX_CTL(pipe);
2918         temp = I915_READ(reg);
2919         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2920         POSTING_READ(reg);
2921
2922         reg = FDI_RX_CTL(pipe);
2923         temp = I915_READ(reg);
2924         temp &= ~(0x7 << 16);
2925         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2926         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2927
2928         POSTING_READ(reg);
2929         udelay(100);
2930
2931         /* Ironlake workaround, disable clock pointer after downing FDI */
2932         if (HAS_PCH_IBX(dev)) {
2933                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2934         }
2935
2936         /* still set train pattern 1 */
2937         reg = FDI_TX_CTL(pipe);
2938         temp = I915_READ(reg);
2939         temp &= ~FDI_LINK_TRAIN_NONE;
2940         temp |= FDI_LINK_TRAIN_PATTERN_1;
2941         I915_WRITE(reg, temp);
2942
2943         reg = FDI_RX_CTL(pipe);
2944         temp = I915_READ(reg);
2945         if (HAS_PCH_CPT(dev)) {
2946                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2947                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2948         } else {
2949                 temp &= ~FDI_LINK_TRAIN_NONE;
2950                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2951         }
2952         /* BPC in FDI rx is consistent with that in PIPECONF */
2953         temp &= ~(0x07 << 16);
2954         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2955         I915_WRITE(reg, temp);
2956
2957         POSTING_READ(reg);
2958         udelay(100);
2959 }
2960
2961 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2962 {
2963         struct drm_device *dev = crtc->dev;
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2966         unsigned long flags;
2967         bool pending;
2968
2969         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2970             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2971                 return false;
2972
2973         spin_lock_irqsave(&dev->event_lock, flags);
2974         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2975         spin_unlock_irqrestore(&dev->event_lock, flags);
2976
2977         return pending;
2978 }
2979
2980 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2981 {
2982         struct drm_device *dev = crtc->dev;
2983         struct drm_i915_private *dev_priv = dev->dev_private;
2984
2985         if (crtc->fb == NULL)
2986                 return;
2987
2988         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2989
2990         wait_event(dev_priv->pending_flip_queue,
2991                    !intel_crtc_has_pending_flip(crtc));
2992
2993         mutex_lock(&dev->struct_mutex);
2994         intel_finish_fb(crtc->fb);
2995         mutex_unlock(&dev->struct_mutex);
2996 }
2997
2998 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2999 {
3000         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3001 }
3002
3003 /* Program iCLKIP clock to the desired frequency */
3004 static void lpt_program_iclkip(struct drm_crtc *crtc)
3005 {
3006         struct drm_device *dev = crtc->dev;
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3009         u32 temp;
3010
3011         mutex_lock(&dev_priv->dpio_lock);
3012
3013         /* It is necessary to ungate the pixclk gate prior to programming
3014          * the divisors, and gate it back when it is done.
3015          */
3016         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3017
3018         /* Disable SSCCTL */
3019         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3020                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3021                                 SBI_SSCCTL_DISABLE,
3022                         SBI_ICLK);
3023
3024         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3025         if (crtc->mode.clock == 20000) {
3026                 auxdiv = 1;
3027                 divsel = 0x41;
3028                 phaseinc = 0x20;
3029         } else {
3030                 /* The iCLK virtual clock root frequency is in MHz,
3031                  * but the crtc->mode.clock in in KHz. To get the divisors,
3032                  * it is necessary to divide one by another, so we
3033                  * convert the virtual clock precision to KHz here for higher
3034                  * precision.
3035                  */
3036                 u32 iclk_virtual_root_freq = 172800 * 1000;
3037                 u32 iclk_pi_range = 64;
3038                 u32 desired_divisor, msb_divisor_value, pi_value;
3039
3040                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3041                 msb_divisor_value = desired_divisor / iclk_pi_range;
3042                 pi_value = desired_divisor % iclk_pi_range;
3043
3044                 auxdiv = 0;
3045                 divsel = msb_divisor_value - 2;
3046                 phaseinc = pi_value;
3047         }
3048
3049         /* This should not happen with any sane values */
3050         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3051                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3052         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3053                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3054
3055         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3056                         crtc->mode.clock,
3057                         auxdiv,
3058                         divsel,
3059                         phasedir,
3060                         phaseinc);
3061
3062         /* Program SSCDIVINTPHASE6 */
3063         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3064         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3065         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3066         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3067         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3068         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3069         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3070         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3071
3072         /* Program SSCAUXDIV */
3073         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3074         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3075         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3076         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3077
3078         /* Enable modulator and associated divider */
3079         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3080         temp &= ~SBI_SSCCTL_DISABLE;
3081         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3082
3083         /* Wait for initialization time */
3084         udelay(24);
3085
3086         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3087
3088         mutex_unlock(&dev_priv->dpio_lock);
3089 }
3090
3091 /*
3092  * Enable PCH resources required for PCH ports:
3093  *   - PCH PLLs
3094  *   - FDI training & RX/TX
3095  *   - update transcoder timings
3096  *   - DP transcoding bits
3097  *   - transcoder
3098  */
3099 static void ironlake_pch_enable(struct drm_crtc *crtc)
3100 {
3101         struct drm_device *dev = crtc->dev;
3102         struct drm_i915_private *dev_priv = dev->dev_private;
3103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3104         int pipe = intel_crtc->pipe;
3105         u32 reg, temp;
3106
3107         assert_transcoder_disabled(dev_priv, pipe);
3108
3109         /* Write the TU size bits before fdi link training, so that error
3110          * detection works. */
3111         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3112                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3113
3114         /* For PCH output, training FDI link */
3115         dev_priv->display.fdi_link_train(crtc);
3116
3117         /* XXX: pch pll's can be enabled any time before we enable the PCH
3118          * transcoder, and we actually should do this to not upset any PCH
3119          * transcoder that already use the clock when we share it.
3120          *
3121          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3122          * unconditionally resets the pll - we need that to have the right LVDS
3123          * enable sequence. */
3124         ironlake_enable_pch_pll(intel_crtc);
3125
3126         if (HAS_PCH_CPT(dev)) {
3127                 u32 sel;
3128
3129                 temp = I915_READ(PCH_DPLL_SEL);
3130                 switch (pipe) {
3131                 default:
3132                 case 0:
3133                         temp |= TRANSA_DPLL_ENABLE;
3134                         sel = TRANSA_DPLLB_SEL;
3135                         break;
3136                 case 1:
3137                         temp |= TRANSB_DPLL_ENABLE;
3138                         sel = TRANSB_DPLLB_SEL;
3139                         break;
3140                 case 2:
3141                         temp |= TRANSC_DPLL_ENABLE;
3142                         sel = TRANSC_DPLLB_SEL;
3143                         break;
3144                 }
3145                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3146                         temp |= sel;
3147                 else
3148                         temp &= ~sel;
3149                 I915_WRITE(PCH_DPLL_SEL, temp);
3150         }
3151
3152         /* set transcoder timing, panel must allow it */
3153         assert_panel_unlocked(dev_priv, pipe);
3154         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3155         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3156         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3157
3158         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3159         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3160         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3161         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3162
3163         intel_fdi_normal_train(crtc);
3164
3165         /* For PCH DP, enable TRANS_DP_CTL */
3166         if (HAS_PCH_CPT(dev) &&
3167             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3168              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3169                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3170                 reg = TRANS_DP_CTL(pipe);
3171                 temp = I915_READ(reg);
3172                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3173                           TRANS_DP_SYNC_MASK |
3174                           TRANS_DP_BPC_MASK);
3175                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3176                          TRANS_DP_ENH_FRAMING);
3177                 temp |= bpc << 9; /* same format but at 11:9 */
3178
3179                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3180                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3181                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3182                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3183
3184                 switch (intel_trans_dp_port_sel(crtc)) {
3185                 case PCH_DP_B:
3186                         temp |= TRANS_DP_PORT_SEL_B;
3187                         break;
3188                 case PCH_DP_C:
3189                         temp |= TRANS_DP_PORT_SEL_C;
3190                         break;
3191                 case PCH_DP_D:
3192                         temp |= TRANS_DP_PORT_SEL_D;
3193                         break;
3194                 default:
3195                         BUG();
3196                 }
3197
3198                 I915_WRITE(reg, temp);
3199         }
3200
3201         ironlake_enable_pch_transcoder(dev_priv, pipe);
3202 }
3203
3204 static void lpt_pch_enable(struct drm_crtc *crtc)
3205 {
3206         struct drm_device *dev = crtc->dev;
3207         struct drm_i915_private *dev_priv = dev->dev_private;
3208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3209         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3210
3211         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3212
3213         lpt_program_iclkip(crtc);
3214
3215         /* Set transcoder timing. */
3216         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3217         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3218         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3219
3220         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3221         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3222         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3223         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3224
3225         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3226 }
3227
3228 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3229 {
3230         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3231
3232         if (pll == NULL)
3233                 return;
3234
3235         if (pll->refcount == 0) {
3236                 WARN(1, "bad PCH PLL refcount\n");
3237                 return;
3238         }
3239
3240         --pll->refcount;
3241         intel_crtc->pch_pll = NULL;
3242 }
3243
3244 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3245 {
3246         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3247         struct intel_pch_pll *pll;
3248         int i;
3249
3250         pll = intel_crtc->pch_pll;
3251         if (pll) {
3252                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3253                               intel_crtc->base.base.id, pll->pll_reg);
3254                 goto prepare;
3255         }
3256
3257         if (HAS_PCH_IBX(dev_priv->dev)) {
3258                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3259                 i = intel_crtc->pipe;
3260                 pll = &dev_priv->pch_plls[i];
3261
3262                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3263                               intel_crtc->base.base.id, pll->pll_reg);
3264
3265                 goto found;
3266         }
3267
3268         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3269                 pll = &dev_priv->pch_plls[i];
3270
3271                 /* Only want to check enabled timings first */
3272                 if (pll->refcount == 0)
3273                         continue;
3274
3275                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3276                     fp == I915_READ(pll->fp0_reg)) {
3277                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3278                                       intel_crtc->base.base.id,
3279                                       pll->pll_reg, pll->refcount, pll->active);
3280
3281                         goto found;
3282                 }
3283         }
3284
3285         /* Ok no matching timings, maybe there's a free one? */
3286         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3287                 pll = &dev_priv->pch_plls[i];
3288                 if (pll->refcount == 0) {
3289                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3290                                       intel_crtc->base.base.id, pll->pll_reg);
3291                         goto found;
3292                 }
3293         }
3294
3295         return NULL;
3296
3297 found:
3298         intel_crtc->pch_pll = pll;
3299         pll->refcount++;
3300         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3301 prepare: /* separate function? */
3302         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3303
3304         /* Wait for the clocks to stabilize before rewriting the regs */
3305         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3306         POSTING_READ(pll->pll_reg);
3307         udelay(150);
3308
3309         I915_WRITE(pll->fp0_reg, fp);
3310         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3311         pll->on = false;
3312         return pll;
3313 }
3314
3315 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3316 {
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         int dslreg = PIPEDSL(pipe);
3319         u32 temp;
3320
3321         temp = I915_READ(dslreg);
3322         udelay(500);
3323         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3324                 if (wait_for(I915_READ(dslreg) != temp, 5))
3325                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3326         }
3327 }
3328
3329 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3330 {
3331         struct drm_device *dev = crtc->dev;
3332         struct drm_i915_private *dev_priv = dev->dev_private;
3333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3334         struct intel_encoder *encoder;
3335         int pipe = intel_crtc->pipe;
3336         int plane = intel_crtc->plane;
3337         u32 temp;
3338
3339         WARN_ON(!crtc->enabled);
3340
3341         if (intel_crtc->active)
3342                 return;
3343
3344         intel_crtc->active = true;
3345         intel_update_watermarks(dev);
3346
3347         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3348                 temp = I915_READ(PCH_LVDS);
3349                 if ((temp & LVDS_PORT_EN) == 0)
3350                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3351         }
3352
3353
3354         if (intel_crtc->config.has_pch_encoder) {
3355                 /* Note: FDI PLL enabling _must_ be done before we enable the
3356                  * cpu pipes, hence this is separate from all the other fdi/pch
3357                  * enabling. */
3358                 ironlake_fdi_pll_enable(intel_crtc);
3359         } else {
3360                 assert_fdi_tx_disabled(dev_priv, pipe);
3361                 assert_fdi_rx_disabled(dev_priv, pipe);
3362         }
3363
3364         for_each_encoder_on_crtc(dev, crtc, encoder)
3365                 if (encoder->pre_enable)
3366                         encoder->pre_enable(encoder);
3367
3368         /* Enable panel fitting for LVDS */
3369         if (dev_priv->pch_pf_size &&
3370             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3371              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3372                 /* Force use of hard-coded filter coefficients
3373                  * as some pre-programmed values are broken,
3374                  * e.g. x201.
3375                  */
3376                 if (IS_IVYBRIDGE(dev))
3377                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3378                                                  PF_PIPE_SEL_IVB(pipe));
3379                 else
3380                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3381                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3382                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3383         }
3384
3385         /*
3386          * On ILK+ LUT must be loaded before the pipe is running but with
3387          * clocks enabled
3388          */
3389         intel_crtc_load_lut(crtc);
3390
3391         intel_enable_pipe(dev_priv, pipe,
3392                           intel_crtc->config.has_pch_encoder);
3393         intel_enable_plane(dev_priv, plane, pipe);
3394
3395         if (intel_crtc->config.has_pch_encoder)
3396                 ironlake_pch_enable(crtc);
3397
3398         mutex_lock(&dev->struct_mutex);
3399         intel_update_fbc(dev);
3400         mutex_unlock(&dev->struct_mutex);
3401
3402         intel_crtc_update_cursor(crtc, true);
3403
3404         for_each_encoder_on_crtc(dev, crtc, encoder)
3405                 encoder->enable(encoder);
3406
3407         if (HAS_PCH_CPT(dev))
3408                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3409
3410         /*
3411          * There seems to be a race in PCH platform hw (at least on some
3412          * outputs) where an enabled pipe still completes any pageflip right
3413          * away (as if the pipe is off) instead of waiting for vblank. As soon
3414          * as the first vblank happend, everything works as expected. Hence just
3415          * wait for one vblank before returning to avoid strange things
3416          * happening.
3417          */
3418         intel_wait_for_vblank(dev, intel_crtc->pipe);
3419 }
3420
3421 static void haswell_crtc_enable(struct drm_crtc *crtc)
3422 {
3423         struct drm_device *dev = crtc->dev;
3424         struct drm_i915_private *dev_priv = dev->dev_private;
3425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3426         struct intel_encoder *encoder;
3427         int pipe = intel_crtc->pipe;
3428         int plane = intel_crtc->plane;
3429
3430         WARN_ON(!crtc->enabled);
3431
3432         if (intel_crtc->active)
3433                 return;
3434
3435         intel_crtc->active = true;
3436         intel_update_watermarks(dev);
3437
3438         if (intel_crtc->config.has_pch_encoder)
3439                 dev_priv->display.fdi_link_train(crtc);
3440
3441         for_each_encoder_on_crtc(dev, crtc, encoder)
3442                 if (encoder->pre_enable)
3443                         encoder->pre_enable(encoder);
3444
3445         intel_ddi_enable_pipe_clock(intel_crtc);
3446
3447         /* Enable panel fitting for eDP */
3448         if (dev_priv->pch_pf_size &&
3449             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3450                 /* Force use of hard-coded filter coefficients
3451                  * as some pre-programmed values are broken,
3452                  * e.g. x201.
3453                  */
3454                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3455                                          PF_PIPE_SEL_IVB(pipe));
3456                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3457                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3458         }
3459
3460         /*
3461          * On ILK+ LUT must be loaded before the pipe is running but with
3462          * clocks enabled
3463          */
3464         intel_crtc_load_lut(crtc);
3465
3466         intel_ddi_set_pipe_settings(crtc);
3467         intel_ddi_enable_transcoder_func(crtc);
3468
3469         intel_enable_pipe(dev_priv, pipe,
3470                           intel_crtc->config.has_pch_encoder);
3471         intel_enable_plane(dev_priv, plane, pipe);
3472
3473         if (intel_crtc->config.has_pch_encoder)
3474                 lpt_pch_enable(crtc);
3475
3476         mutex_lock(&dev->struct_mutex);
3477         intel_update_fbc(dev);
3478         mutex_unlock(&dev->struct_mutex);
3479
3480         intel_crtc_update_cursor(crtc, true);
3481
3482         for_each_encoder_on_crtc(dev, crtc, encoder)
3483                 encoder->enable(encoder);
3484
3485         /*
3486          * There seems to be a race in PCH platform hw (at least on some
3487          * outputs) where an enabled pipe still completes any pageflip right
3488          * away (as if the pipe is off) instead of waiting for vblank. As soon
3489          * as the first vblank happend, everything works as expected. Hence just
3490          * wait for one vblank before returning to avoid strange things
3491          * happening.
3492          */
3493         intel_wait_for_vblank(dev, intel_crtc->pipe);
3494 }
3495
3496 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3497 {
3498         struct drm_device *dev = crtc->dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3501         struct intel_encoder *encoder;
3502         int pipe = intel_crtc->pipe;
3503         int plane = intel_crtc->plane;
3504         u32 reg, temp;
3505
3506
3507         if (!intel_crtc->active)
3508                 return;
3509
3510         for_each_encoder_on_crtc(dev, crtc, encoder)
3511                 encoder->disable(encoder);
3512
3513         intel_crtc_wait_for_pending_flips(crtc);
3514         drm_vblank_off(dev, pipe);
3515         intel_crtc_update_cursor(crtc, false);
3516
3517         intel_disable_plane(dev_priv, plane, pipe);
3518
3519         if (dev_priv->cfb_plane == plane)
3520                 intel_disable_fbc(dev);
3521
3522         intel_disable_pipe(dev_priv, pipe);
3523
3524         /* Disable PF */
3525         I915_WRITE(PF_CTL(pipe), 0);
3526         I915_WRITE(PF_WIN_SZ(pipe), 0);
3527
3528         for_each_encoder_on_crtc(dev, crtc, encoder)
3529                 if (encoder->post_disable)
3530                         encoder->post_disable(encoder);
3531
3532         ironlake_fdi_disable(crtc);
3533
3534         ironlake_disable_pch_transcoder(dev_priv, pipe);
3535
3536         if (HAS_PCH_CPT(dev)) {
3537                 /* disable TRANS_DP_CTL */
3538                 reg = TRANS_DP_CTL(pipe);
3539                 temp = I915_READ(reg);
3540                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3541                 temp |= TRANS_DP_PORT_SEL_NONE;
3542                 I915_WRITE(reg, temp);
3543
3544                 /* disable DPLL_SEL */
3545                 temp = I915_READ(PCH_DPLL_SEL);
3546                 switch (pipe) {
3547                 case 0:
3548                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3549                         break;
3550                 case 1:
3551                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3552                         break;
3553                 case 2:
3554                         /* C shares PLL A or B */
3555                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3556                         break;
3557                 default:
3558                         BUG(); /* wtf */
3559                 }
3560                 I915_WRITE(PCH_DPLL_SEL, temp);
3561         }
3562
3563         /* disable PCH DPLL */
3564         intel_disable_pch_pll(intel_crtc);
3565
3566         ironlake_fdi_pll_disable(intel_crtc);
3567
3568         intel_crtc->active = false;
3569         intel_update_watermarks(dev);
3570
3571         mutex_lock(&dev->struct_mutex);
3572         intel_update_fbc(dev);
3573         mutex_unlock(&dev->struct_mutex);
3574 }
3575
3576 static void haswell_crtc_disable(struct drm_crtc *crtc)
3577 {
3578         struct drm_device *dev = crtc->dev;
3579         struct drm_i915_private *dev_priv = dev->dev_private;
3580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581         struct intel_encoder *encoder;
3582         int pipe = intel_crtc->pipe;
3583         int plane = intel_crtc->plane;
3584         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3585         bool is_pch_port;
3586
3587         if (!intel_crtc->active)
3588                 return;
3589
3590         is_pch_port = haswell_crtc_driving_pch(crtc);
3591
3592         for_each_encoder_on_crtc(dev, crtc, encoder)
3593                 encoder->disable(encoder);
3594
3595         intel_crtc_wait_for_pending_flips(crtc);
3596         drm_vblank_off(dev, pipe);
3597         intel_crtc_update_cursor(crtc, false);
3598
3599         intel_disable_plane(dev_priv, plane, pipe);
3600
3601         if (dev_priv->cfb_plane == plane)
3602                 intel_disable_fbc(dev);
3603
3604         intel_disable_pipe(dev_priv, pipe);
3605
3606         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3607
3608         /* Disable PF */
3609         I915_WRITE(PF_CTL(pipe), 0);
3610         I915_WRITE(PF_WIN_SZ(pipe), 0);
3611
3612         intel_ddi_disable_pipe_clock(intel_crtc);
3613
3614         for_each_encoder_on_crtc(dev, crtc, encoder)
3615                 if (encoder->post_disable)
3616                         encoder->post_disable(encoder);
3617
3618         if (is_pch_port) {
3619                 lpt_disable_pch_transcoder(dev_priv);
3620                 intel_ddi_fdi_disable(crtc);
3621         }
3622
3623         intel_crtc->active = false;
3624         intel_update_watermarks(dev);
3625
3626         mutex_lock(&dev->struct_mutex);
3627         intel_update_fbc(dev);
3628         mutex_unlock(&dev->struct_mutex);
3629 }
3630
3631 static void ironlake_crtc_off(struct drm_crtc *crtc)
3632 {
3633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3634         intel_put_pch_pll(intel_crtc);
3635 }
3636
3637 static void haswell_crtc_off(struct drm_crtc *crtc)
3638 {
3639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3640
3641         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3642          * start using it. */
3643         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3644
3645         intel_ddi_put_crtc_pll(crtc);
3646 }
3647
3648 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3649 {
3650         if (!enable && intel_crtc->overlay) {
3651                 struct drm_device *dev = intel_crtc->base.dev;
3652                 struct drm_i915_private *dev_priv = dev->dev_private;
3653
3654                 mutex_lock(&dev->struct_mutex);
3655                 dev_priv->mm.interruptible = false;
3656                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3657                 dev_priv->mm.interruptible = true;
3658                 mutex_unlock(&dev->struct_mutex);
3659         }
3660
3661         /* Let userspace switch the overlay on again. In most cases userspace
3662          * has to recompute where to put it anyway.
3663          */
3664 }
3665
3666 /**
3667  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3668  * cursor plane briefly if not already running after enabling the display
3669  * plane.
3670  * This workaround avoids occasional blank screens when self refresh is
3671  * enabled.
3672  */
3673 static void
3674 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3675 {
3676         u32 cntl = I915_READ(CURCNTR(pipe));
3677
3678         if ((cntl & CURSOR_MODE) == 0) {
3679                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3680
3681                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3682                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3683                 intel_wait_for_vblank(dev_priv->dev, pipe);
3684                 I915_WRITE(CURCNTR(pipe), cntl);
3685                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3686                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3687         }
3688 }
3689
3690 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3691 {
3692         struct drm_device *dev = crtc->dev;
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3695         struct intel_encoder *encoder;
3696         int pipe = intel_crtc->pipe;
3697         int plane = intel_crtc->plane;
3698
3699         WARN_ON(!crtc->enabled);
3700
3701         if (intel_crtc->active)
3702                 return;
3703
3704         intel_crtc->active = true;
3705         intel_update_watermarks(dev);
3706
3707         intel_enable_pll(dev_priv, pipe);
3708
3709         for_each_encoder_on_crtc(dev, crtc, encoder)
3710                 if (encoder->pre_enable)
3711                         encoder->pre_enable(encoder);
3712
3713         intel_enable_pipe(dev_priv, pipe, false);
3714         intel_enable_plane(dev_priv, plane, pipe);
3715         if (IS_G4X(dev))
3716                 g4x_fixup_plane(dev_priv, pipe);
3717
3718         intel_crtc_load_lut(crtc);
3719         intel_update_fbc(dev);
3720
3721         /* Give the overlay scaler a chance to enable if it's on this pipe */
3722         intel_crtc_dpms_overlay(intel_crtc, true);
3723         intel_crtc_update_cursor(crtc, true);
3724
3725         for_each_encoder_on_crtc(dev, crtc, encoder)
3726                 encoder->enable(encoder);
3727 }
3728
3729 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3730 {
3731         struct drm_device *dev = crtc->dev;
3732         struct drm_i915_private *dev_priv = dev->dev_private;
3733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3734         struct intel_encoder *encoder;
3735         int pipe = intel_crtc->pipe;
3736         int plane = intel_crtc->plane;
3737         u32 pctl;
3738
3739
3740         if (!intel_crtc->active)
3741                 return;
3742
3743         for_each_encoder_on_crtc(dev, crtc, encoder)
3744                 encoder->disable(encoder);
3745
3746         /* Give the overlay scaler a chance to disable if it's on this pipe */
3747         intel_crtc_wait_for_pending_flips(crtc);
3748         drm_vblank_off(dev, pipe);
3749         intel_crtc_dpms_overlay(intel_crtc, false);
3750         intel_crtc_update_cursor(crtc, false);
3751
3752         if (dev_priv->cfb_plane == plane)
3753                 intel_disable_fbc(dev);
3754
3755         intel_disable_plane(dev_priv, plane, pipe);
3756         intel_disable_pipe(dev_priv, pipe);
3757
3758         /* Disable pannel fitter if it is on this pipe. */
3759         pctl = I915_READ(PFIT_CONTROL);
3760         if ((pctl & PFIT_ENABLE) &&
3761             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3762                 I915_WRITE(PFIT_CONTROL, 0);
3763
3764         intel_disable_pll(dev_priv, pipe);
3765
3766         intel_crtc->active = false;
3767         intel_update_fbc(dev);
3768         intel_update_watermarks(dev);
3769 }
3770
3771 static void i9xx_crtc_off(struct drm_crtc *crtc)
3772 {
3773 }
3774
3775 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3776                                     bool enabled)
3777 {
3778         struct drm_device *dev = crtc->dev;
3779         struct drm_i915_master_private *master_priv;
3780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781         int pipe = intel_crtc->pipe;
3782
3783         if (!dev->primary->master)
3784                 return;
3785
3786         master_priv = dev->primary->master->driver_priv;
3787         if (!master_priv->sarea_priv)
3788                 return;
3789
3790         switch (pipe) {
3791         case 0:
3792                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3793                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3794                 break;
3795         case 1:
3796                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3797                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3798                 break;
3799         default:
3800                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3801                 break;
3802         }
3803 }
3804
3805 /**
3806  * Sets the power management mode of the pipe and plane.
3807  */
3808 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3809 {
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_i915_private *dev_priv = dev->dev_private;
3812         struct intel_encoder *intel_encoder;
3813         bool enable = false;
3814
3815         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3816                 enable |= intel_encoder->connectors_active;
3817
3818         if (enable)
3819                 dev_priv->display.crtc_enable(crtc);
3820         else
3821                 dev_priv->display.crtc_disable(crtc);
3822
3823         intel_crtc_update_sarea(crtc, enable);
3824 }
3825
3826 static void intel_crtc_disable(struct drm_crtc *crtc)
3827 {
3828         struct drm_device *dev = crtc->dev;
3829         struct drm_connector *connector;
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3832
3833         /* crtc should still be enabled when we disable it. */
3834         WARN_ON(!crtc->enabled);
3835
3836         intel_crtc->eld_vld = false;
3837         dev_priv->display.crtc_disable(crtc);
3838         intel_crtc_update_sarea(crtc, false);
3839         dev_priv->display.off(crtc);
3840
3841         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3842         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3843
3844         if (crtc->fb) {
3845                 mutex_lock(&dev->struct_mutex);
3846                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3847                 mutex_unlock(&dev->struct_mutex);
3848                 crtc->fb = NULL;
3849         }
3850
3851         /* Update computed state. */
3852         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3853                 if (!connector->encoder || !connector->encoder->crtc)
3854                         continue;
3855
3856                 if (connector->encoder->crtc != crtc)
3857                         continue;
3858
3859                 connector->dpms = DRM_MODE_DPMS_OFF;
3860                 to_intel_encoder(connector->encoder)->connectors_active = false;
3861         }
3862 }
3863
3864 void intel_modeset_disable(struct drm_device *dev)
3865 {
3866         struct drm_crtc *crtc;
3867
3868         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3869                 if (crtc->enabled)
3870                         intel_crtc_disable(crtc);
3871         }
3872 }
3873
3874 void intel_encoder_destroy(struct drm_encoder *encoder)
3875 {
3876         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3877
3878         drm_encoder_cleanup(encoder);
3879         kfree(intel_encoder);
3880 }
3881
3882 /* Simple dpms helper for encodres with just one connector, no cloning and only
3883  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3884  * state of the entire output pipe. */
3885 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3886 {
3887         if (mode == DRM_MODE_DPMS_ON) {
3888                 encoder->connectors_active = true;
3889
3890                 intel_crtc_update_dpms(encoder->base.crtc);
3891         } else {
3892                 encoder->connectors_active = false;
3893
3894                 intel_crtc_update_dpms(encoder->base.crtc);
3895         }
3896 }
3897
3898 /* Cross check the actual hw state with our own modeset state tracking (and it's
3899  * internal consistency). */
3900 static void intel_connector_check_state(struct intel_connector *connector)
3901 {
3902         if (connector->get_hw_state(connector)) {
3903                 struct intel_encoder *encoder = connector->encoder;
3904                 struct drm_crtc *crtc;
3905                 bool encoder_enabled;
3906                 enum pipe pipe;
3907
3908                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3909                               connector->base.base.id,
3910                               drm_get_connector_name(&connector->base));
3911
3912                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3913                      "wrong connector dpms state\n");
3914                 WARN(connector->base.encoder != &encoder->base,
3915                      "active connector not linked to encoder\n");
3916                 WARN(!encoder->connectors_active,
3917                      "encoder->connectors_active not set\n");
3918
3919                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3920                 WARN(!encoder_enabled, "encoder not enabled\n");
3921                 if (WARN_ON(!encoder->base.crtc))
3922                         return;
3923
3924                 crtc = encoder->base.crtc;
3925
3926                 WARN(!crtc->enabled, "crtc not enabled\n");
3927                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3928                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3929                      "encoder active on the wrong pipe\n");
3930         }
3931 }
3932
3933 /* Even simpler default implementation, if there's really no special case to
3934  * consider. */
3935 void intel_connector_dpms(struct drm_connector *connector, int mode)
3936 {
3937         struct intel_encoder *encoder = intel_attached_encoder(connector);
3938
3939         /* All the simple cases only support two dpms states. */
3940         if (mode != DRM_MODE_DPMS_ON)
3941                 mode = DRM_MODE_DPMS_OFF;
3942
3943         if (mode == connector->dpms)
3944                 return;
3945
3946         connector->dpms = mode;
3947
3948         /* Only need to change hw state when actually enabled */
3949         if (encoder->base.crtc)
3950                 intel_encoder_dpms(encoder, mode);
3951         else
3952                 WARN_ON(encoder->connectors_active != false);
3953
3954         intel_modeset_check_state(connector->dev);
3955 }
3956
3957 /* Simple connector->get_hw_state implementation for encoders that support only
3958  * one connector and no cloning and hence the encoder state determines the state
3959  * of the connector. */
3960 bool intel_connector_get_hw_state(struct intel_connector *connector)
3961 {
3962         enum pipe pipe = 0;
3963         struct intel_encoder *encoder = connector->encoder;
3964
3965         return encoder->get_hw_state(encoder, &pipe);
3966 }
3967
3968 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3969                                       struct intel_crtc_config *pipe_config)
3970 {
3971         struct drm_device *dev = crtc->dev;
3972         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3973
3974         if (HAS_PCH_SPLIT(dev)) {
3975                 /* FDI link clock is fixed at 2.7G */
3976                 if (pipe_config->requested_mode.clock * 3
3977                     > IRONLAKE_FDI_FREQ * 4)
3978                         return false;
3979         }
3980
3981         /* All interlaced capable intel hw wants timings in frames. Note though
3982          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3983          * timings, so we need to be careful not to clobber these.*/
3984         if (!pipe_config->timings_set)
3985                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3986
3987         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3988          * with a hsync front porch of 0.
3989          */
3990         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3991                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3992                 return false;
3993
3994         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10) {
3995                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
3996         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8) {
3997                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
3998                  * for lvds. */
3999                 pipe_config->pipe_bpp = 8*3;
4000         }
4001
4002         return true;
4003 }
4004
4005 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4006 {
4007         return 400000; /* FIXME */
4008 }
4009
4010 static int i945_get_display_clock_speed(struct drm_device *dev)
4011 {
4012         return 400000;
4013 }
4014
4015 static int i915_get_display_clock_speed(struct drm_device *dev)
4016 {
4017         return 333000;
4018 }
4019
4020 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4021 {
4022         return 200000;
4023 }
4024
4025 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4026 {
4027         u16 gcfgc = 0;
4028
4029         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4030
4031         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4032                 return 133000;
4033         else {
4034                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4035                 case GC_DISPLAY_CLOCK_333_MHZ:
4036                         return 333000;
4037                 default:
4038                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4039                         return 190000;
4040                 }
4041         }
4042 }
4043
4044 static int i865_get_display_clock_speed(struct drm_device *dev)
4045 {
4046         return 266000;
4047 }
4048
4049 static int i855_get_display_clock_speed(struct drm_device *dev)
4050 {
4051         u16 hpllcc = 0;
4052         /* Assume that the hardware is in the high speed state.  This
4053          * should be the default.
4054          */
4055         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4056         case GC_CLOCK_133_200:
4057         case GC_CLOCK_100_200:
4058                 return 200000;
4059         case GC_CLOCK_166_250:
4060                 return 250000;
4061         case GC_CLOCK_100_133:
4062                 return 133000;
4063         }
4064
4065         /* Shouldn't happen */
4066         return 0;
4067 }
4068
4069 static int i830_get_display_clock_speed(struct drm_device *dev)
4070 {
4071         return 133000;
4072 }
4073
4074 static void
4075 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4076 {
4077         while (*num > 0xffffff || *den > 0xffffff) {
4078                 *num >>= 1;
4079                 *den >>= 1;
4080         }
4081 }
4082
4083 void
4084 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4085                        int pixel_clock, int link_clock,
4086                        struct intel_link_m_n *m_n)
4087 {
4088         m_n->tu = 64;
4089         m_n->gmch_m = bits_per_pixel * pixel_clock;
4090         m_n->gmch_n = link_clock * nlanes * 8;
4091         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4092         m_n->link_m = pixel_clock;
4093         m_n->link_n = link_clock;
4094         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4095 }
4096
4097 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4098 {
4099         if (i915_panel_use_ssc >= 0)
4100                 return i915_panel_use_ssc != 0;
4101         return dev_priv->lvds_use_ssc
4102                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4103 }
4104
4105 static int vlv_get_refclk(struct drm_crtc *crtc)
4106 {
4107         struct drm_device *dev = crtc->dev;
4108         struct drm_i915_private *dev_priv = dev->dev_private;
4109         int refclk = 27000; /* for DP & HDMI */
4110
4111         return 100000; /* only one validated so far */
4112
4113         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4114                 refclk = 96000;
4115         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4116                 if (intel_panel_use_ssc(dev_priv))
4117                         refclk = 100000;
4118                 else
4119                         refclk = 96000;
4120         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4121                 refclk = 100000;
4122         }
4123
4124         return refclk;
4125 }
4126
4127 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         int refclk;
4132
4133         if (IS_VALLEYVIEW(dev)) {
4134                 refclk = vlv_get_refclk(crtc);
4135         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4136             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4137                 refclk = dev_priv->lvds_ssc_freq * 1000;
4138                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4139                               refclk / 1000);
4140         } else if (!IS_GEN2(dev)) {
4141                 refclk = 96000;
4142         } else {
4143                 refclk = 48000;
4144         }
4145
4146         return refclk;
4147 }
4148
4149 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4150                                       intel_clock_t *clock)
4151 {
4152         /* SDVO TV has fixed PLL values depend on its clock range,
4153            this mirrors vbios setting. */
4154         if (adjusted_mode->clock >= 100000
4155             && adjusted_mode->clock < 140500) {
4156                 clock->p1 = 2;
4157                 clock->p2 = 10;
4158                 clock->n = 3;
4159                 clock->m1 = 16;
4160                 clock->m2 = 8;
4161         } else if (adjusted_mode->clock >= 140500
4162                    && adjusted_mode->clock <= 200000) {
4163                 clock->p1 = 1;
4164                 clock->p2 = 10;
4165                 clock->n = 6;
4166                 clock->m1 = 12;
4167                 clock->m2 = 8;
4168         }
4169 }
4170
4171 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4172                                      intel_clock_t *clock,
4173                                      intel_clock_t *reduced_clock)
4174 {
4175         struct drm_device *dev = crtc->dev;
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178         int pipe = intel_crtc->pipe;
4179         u32 fp, fp2 = 0;
4180
4181         if (IS_PINEVIEW(dev)) {
4182                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4183                 if (reduced_clock)
4184                         fp2 = (1 << reduced_clock->n) << 16 |
4185                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4186         } else {
4187                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4188                 if (reduced_clock)
4189                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4190                                 reduced_clock->m2;
4191         }
4192
4193         I915_WRITE(FP0(pipe), fp);
4194
4195         intel_crtc->lowfreq_avail = false;
4196         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4197             reduced_clock && i915_powersave) {
4198                 I915_WRITE(FP1(pipe), fp2);
4199                 intel_crtc->lowfreq_avail = true;
4200         } else {
4201                 I915_WRITE(FP1(pipe), fp);
4202         }
4203 }
4204
4205 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4206 {
4207         if (crtc->config.has_pch_encoder)
4208                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4209         else
4210                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4211 }
4212
4213 static void vlv_update_pll(struct drm_crtc *crtc,
4214                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4215                            int num_connectors)
4216 {
4217         struct drm_device *dev = crtc->dev;
4218         struct drm_i915_private *dev_priv = dev->dev_private;
4219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220         int pipe = intel_crtc->pipe;
4221         u32 dpll, mdiv, pdiv;
4222         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4223         bool is_sdvo;
4224         u32 temp;
4225
4226         mutex_lock(&dev_priv->dpio_lock);
4227
4228         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4229                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4230
4231         dpll = DPLL_VGA_MODE_DIS;
4232         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4233         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4234         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4235
4236         I915_WRITE(DPLL(pipe), dpll);
4237         POSTING_READ(DPLL(pipe));
4238
4239         bestn = clock->n;
4240         bestm1 = clock->m1;
4241         bestm2 = clock->m2;
4242         bestp1 = clock->p1;
4243         bestp2 = clock->p2;
4244
4245         /*
4246          * In Valleyview PLL and program lane counter registers are exposed
4247          * through DPIO interface
4248          */
4249         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4250         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4251         mdiv |= ((bestn << DPIO_N_SHIFT));
4252         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4253         mdiv |= (1 << DPIO_K_SHIFT);
4254         mdiv |= DPIO_ENABLE_CALIBRATION;
4255         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4256
4257         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4258
4259         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4260                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4261                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4262                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4263         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4264
4265         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4266
4267         dpll |= DPLL_VCO_ENABLE;
4268         I915_WRITE(DPLL(pipe), dpll);
4269         POSTING_READ(DPLL(pipe));
4270         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4271                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4272
4273         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4274
4275         if (intel_crtc->config.has_dp_encoder)
4276                 intel_dp_set_m_n(intel_crtc);
4277
4278         I915_WRITE(DPLL(pipe), dpll);
4279
4280         /* Wait for the clocks to stabilize. */
4281         POSTING_READ(DPLL(pipe));
4282         udelay(150);
4283
4284         temp = 0;
4285         if (is_sdvo) {
4286                 temp = 0;
4287                 if (intel_crtc->config.pixel_multiplier > 1) {
4288                         temp = (intel_crtc->config.pixel_multiplier - 1)
4289                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4290                 }
4291         }
4292         I915_WRITE(DPLL_MD(pipe), temp);
4293         POSTING_READ(DPLL_MD(pipe));
4294
4295         /* Now program lane control registers */
4296         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4297                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4298         {
4299                 temp = 0x1000C4;
4300                 if(pipe == 1)
4301                         temp |= (1 << 21);
4302                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4303         }
4304         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4305         {
4306                 temp = 0x1000C4;
4307                 if(pipe == 1)
4308                         temp |= (1 << 21);
4309                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4310         }
4311
4312         mutex_unlock(&dev_priv->dpio_lock);
4313 }
4314
4315 static void i9xx_update_pll(struct drm_crtc *crtc,
4316                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4317                             int num_connectors)
4318 {
4319         struct drm_device *dev = crtc->dev;
4320         struct drm_i915_private *dev_priv = dev->dev_private;
4321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322         struct intel_encoder *encoder;
4323         int pipe = intel_crtc->pipe;
4324         u32 dpll;
4325         bool is_sdvo;
4326
4327         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4328
4329         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4330                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4331
4332         dpll = DPLL_VGA_MODE_DIS;
4333
4334         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4335                 dpll |= DPLLB_MODE_LVDS;
4336         else
4337                 dpll |= DPLLB_MODE_DAC_SERIAL;
4338
4339         if (is_sdvo) {
4340                 if ((intel_crtc->config.pixel_multiplier > 1) &&
4341                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4342                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
4343                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4344                 }
4345                 dpll |= DPLL_DVO_HIGH_SPEED;
4346         }
4347         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4348                 dpll |= DPLL_DVO_HIGH_SPEED;
4349
4350         /* compute bitmask from p1 value */
4351         if (IS_PINEVIEW(dev))
4352                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4353         else {
4354                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4355                 if (IS_G4X(dev) && reduced_clock)
4356                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4357         }
4358         switch (clock->p2) {
4359         case 5:
4360                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4361                 break;
4362         case 7:
4363                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4364                 break;
4365         case 10:
4366                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4367                 break;
4368         case 14:
4369                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4370                 break;
4371         }
4372         if (INTEL_INFO(dev)->gen >= 4)
4373                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4374
4375         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4376                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4377         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4378                 /* XXX: just matching BIOS for now */
4379                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4380                 dpll |= 3;
4381         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4382                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4383                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4384         else
4385                 dpll |= PLL_REF_INPUT_DREFCLK;
4386
4387         dpll |= DPLL_VCO_ENABLE;
4388         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4389         POSTING_READ(DPLL(pipe));
4390         udelay(150);
4391
4392         for_each_encoder_on_crtc(dev, crtc, encoder)
4393                 if (encoder->pre_pll_enable)
4394                         encoder->pre_pll_enable(encoder);
4395
4396         if (intel_crtc->config.has_dp_encoder)
4397                 intel_dp_set_m_n(intel_crtc);
4398
4399         I915_WRITE(DPLL(pipe), dpll);
4400
4401         /* Wait for the clocks to stabilize. */
4402         POSTING_READ(DPLL(pipe));
4403         udelay(150);
4404
4405         if (INTEL_INFO(dev)->gen >= 4) {
4406                 u32 temp = 0;
4407                 if (is_sdvo) {
4408                         temp = 0;
4409                         if (intel_crtc->config.pixel_multiplier > 1) {
4410                                 temp = (intel_crtc->config.pixel_multiplier - 1)
4411                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4412                         }
4413                 }
4414                 I915_WRITE(DPLL_MD(pipe), temp);
4415         } else {
4416                 /* The pixel multiplier can only be updated once the
4417                  * DPLL is enabled and the clocks are stable.
4418                  *
4419                  * So write it again.
4420                  */
4421                 I915_WRITE(DPLL(pipe), dpll);
4422         }
4423 }
4424
4425 static void i8xx_update_pll(struct drm_crtc *crtc,
4426                             struct drm_display_mode *adjusted_mode,
4427                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4428                             int num_connectors)
4429 {
4430         struct drm_device *dev = crtc->dev;
4431         struct drm_i915_private *dev_priv = dev->dev_private;
4432         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4433         struct intel_encoder *encoder;
4434         int pipe = intel_crtc->pipe;
4435         u32 dpll;
4436
4437         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4438
4439         dpll = DPLL_VGA_MODE_DIS;
4440
4441         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4442                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4443         } else {
4444                 if (clock->p1 == 2)
4445                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4446                 else
4447                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4448                 if (clock->p2 == 4)
4449                         dpll |= PLL_P2_DIVIDE_BY_4;
4450         }
4451
4452         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4453                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4454                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4455         else
4456                 dpll |= PLL_REF_INPUT_DREFCLK;
4457
4458         dpll |= DPLL_VCO_ENABLE;
4459         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4460         POSTING_READ(DPLL(pipe));
4461         udelay(150);
4462
4463         for_each_encoder_on_crtc(dev, crtc, encoder)
4464                 if (encoder->pre_pll_enable)
4465                         encoder->pre_pll_enable(encoder);
4466
4467         I915_WRITE(DPLL(pipe), dpll);
4468
4469         /* Wait for the clocks to stabilize. */
4470         POSTING_READ(DPLL(pipe));
4471         udelay(150);
4472
4473         /* The pixel multiplier can only be updated once the
4474          * DPLL is enabled and the clocks are stable.
4475          *
4476          * So write it again.
4477          */
4478         I915_WRITE(DPLL(pipe), dpll);
4479 }
4480
4481 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4482                                    struct drm_display_mode *mode,
4483                                    struct drm_display_mode *adjusted_mode)
4484 {
4485         struct drm_device *dev = intel_crtc->base.dev;
4486         struct drm_i915_private *dev_priv = dev->dev_private;
4487         enum pipe pipe = intel_crtc->pipe;
4488         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4489         uint32_t vsyncshift;
4490
4491         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4492                 /* the chip adds 2 halflines automatically */
4493                 adjusted_mode->crtc_vtotal -= 1;
4494                 adjusted_mode->crtc_vblank_end -= 1;
4495                 vsyncshift = adjusted_mode->crtc_hsync_start
4496                              - adjusted_mode->crtc_htotal / 2;
4497         } else {
4498                 vsyncshift = 0;
4499         }
4500
4501         if (INTEL_INFO(dev)->gen > 3)
4502                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4503
4504         I915_WRITE(HTOTAL(cpu_transcoder),
4505                    (adjusted_mode->crtc_hdisplay - 1) |
4506                    ((adjusted_mode->crtc_htotal - 1) << 16));
4507         I915_WRITE(HBLANK(cpu_transcoder),
4508                    (adjusted_mode->crtc_hblank_start - 1) |
4509                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4510         I915_WRITE(HSYNC(cpu_transcoder),
4511                    (adjusted_mode->crtc_hsync_start - 1) |
4512                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4513
4514         I915_WRITE(VTOTAL(cpu_transcoder),
4515                    (adjusted_mode->crtc_vdisplay - 1) |
4516                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4517         I915_WRITE(VBLANK(cpu_transcoder),
4518                    (adjusted_mode->crtc_vblank_start - 1) |
4519                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4520         I915_WRITE(VSYNC(cpu_transcoder),
4521                    (adjusted_mode->crtc_vsync_start - 1) |
4522                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4523
4524         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4525          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4526          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4527          * bits. */
4528         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4529             (pipe == PIPE_B || pipe == PIPE_C))
4530                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4531
4532         /* pipesrc controls the size that is scaled from, which should
4533          * always be the user's requested size.
4534          */
4535         I915_WRITE(PIPESRC(pipe),
4536                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4537 }
4538
4539 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4540                               int x, int y,
4541                               struct drm_framebuffer *fb)
4542 {
4543         struct drm_device *dev = crtc->dev;
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4546         struct drm_display_mode *adjusted_mode =
4547                 &intel_crtc->config.adjusted_mode;
4548         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4549         int pipe = intel_crtc->pipe;
4550         int plane = intel_crtc->plane;
4551         int refclk, num_connectors = 0;
4552         intel_clock_t clock, reduced_clock;
4553         u32 dspcntr, pipeconf;
4554         bool ok, has_reduced_clock = false, is_sdvo = false;
4555         bool is_lvds = false, is_tv = false, is_dp = false;
4556         struct intel_encoder *encoder;
4557         const intel_limit_t *limit;
4558         int ret;
4559
4560         for_each_encoder_on_crtc(dev, crtc, encoder) {
4561                 switch (encoder->type) {
4562                 case INTEL_OUTPUT_LVDS:
4563                         is_lvds = true;
4564                         break;
4565                 case INTEL_OUTPUT_SDVO:
4566                 case INTEL_OUTPUT_HDMI:
4567                         is_sdvo = true;
4568                         if (encoder->needs_tv_clock)
4569                                 is_tv = true;
4570                         break;
4571                 case INTEL_OUTPUT_TVOUT:
4572                         is_tv = true;
4573                         break;
4574                 case INTEL_OUTPUT_DISPLAYPORT:
4575                         is_dp = true;
4576                         break;
4577                 }
4578
4579                 num_connectors++;
4580         }
4581
4582         refclk = i9xx_get_refclk(crtc, num_connectors);
4583
4584         /*
4585          * Returns a set of divisors for the desired target clock with the given
4586          * refclk, or FALSE.  The returned values represent the clock equation:
4587          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4588          */
4589         limit = intel_limit(crtc, refclk);
4590         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4591                              &clock);
4592         if (!ok) {
4593                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4594                 return -EINVAL;
4595         }
4596
4597         /* Ensure that the cursor is valid for the new mode before changing... */
4598         intel_crtc_update_cursor(crtc, true);
4599
4600         if (is_lvds && dev_priv->lvds_downclock_avail) {
4601                 /*
4602                  * Ensure we match the reduced clock's P to the target clock.
4603                  * If the clocks don't match, we can't switch the display clock
4604                  * by using the FP0/FP1. In such case we will disable the LVDS
4605                  * downclock feature.
4606                 */
4607                 has_reduced_clock = limit->find_pll(limit, crtc,
4608                                                     dev_priv->lvds_downclock,
4609                                                     refclk,
4610                                                     &clock,
4611                                                     &reduced_clock);
4612         }
4613
4614         if (is_sdvo && is_tv)
4615                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4616
4617         if (IS_GEN2(dev))
4618                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4619                                 has_reduced_clock ? &reduced_clock : NULL,
4620                                 num_connectors);
4621         else if (IS_VALLEYVIEW(dev))
4622                 vlv_update_pll(crtc, &clock,
4623                                 has_reduced_clock ? &reduced_clock : NULL,
4624                                 num_connectors);
4625         else
4626                 i9xx_update_pll(crtc, &clock,
4627                                 has_reduced_clock ? &reduced_clock : NULL,
4628                                 num_connectors);
4629
4630         /* setup pipeconf */
4631         pipeconf = I915_READ(PIPECONF(pipe));
4632
4633         /* Set up the display plane register */
4634         dspcntr = DISPPLANE_GAMMA_ENABLE;
4635
4636         if (!IS_VALLEYVIEW(dev)) {
4637                 if (pipe == 0)
4638                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4639                 else
4640                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4641         }
4642
4643         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4644                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4645                  * core speed.
4646                  *
4647                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4648                  * pipe == 0 check?
4649                  */
4650                 if (mode->clock >
4651                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4652                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4653                 else
4654                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4655         }
4656
4657         /* default to 8bpc */
4658         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4659         if (is_dp) {
4660                 if (intel_crtc->config.dither) {
4661                         pipeconf |= PIPECONF_6BPC |
4662                                     PIPECONF_DITHER_EN |
4663                                     PIPECONF_DITHER_TYPE_SP;
4664                 }
4665         }
4666
4667         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4668                 if (intel_crtc->config.dither) {
4669                         pipeconf |= PIPECONF_6BPC |
4670                                         PIPECONF_ENABLE |
4671                                         I965_PIPECONF_ACTIVE;
4672                 }
4673         }
4674
4675         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4676         drm_mode_debug_printmodeline(mode);
4677
4678         if (HAS_PIPE_CXSR(dev)) {
4679                 if (intel_crtc->lowfreq_avail) {
4680                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4681                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4682                 } else {
4683                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4684                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4685                 }
4686         }
4687
4688         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4689         if (!IS_GEN2(dev) &&
4690             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4691                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4692         else
4693                 pipeconf |= PIPECONF_PROGRESSIVE;
4694
4695         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4696
4697         /* pipesrc and dspsize control the size that is scaled from,
4698          * which should always be the user's requested size.
4699          */
4700         I915_WRITE(DSPSIZE(plane),
4701                    ((mode->vdisplay - 1) << 16) |
4702                    (mode->hdisplay - 1));
4703         I915_WRITE(DSPPOS(plane), 0);
4704
4705         I915_WRITE(PIPECONF(pipe), pipeconf);
4706         POSTING_READ(PIPECONF(pipe));
4707         intel_enable_pipe(dev_priv, pipe, false);
4708
4709         intel_wait_for_vblank(dev, pipe);
4710
4711         I915_WRITE(DSPCNTR(plane), dspcntr);
4712         POSTING_READ(DSPCNTR(plane));
4713
4714         ret = intel_pipe_set_base(crtc, x, y, fb);
4715
4716         intel_update_watermarks(dev);
4717
4718         return ret;
4719 }
4720
4721 static void ironlake_init_pch_refclk(struct drm_device *dev)
4722 {
4723         struct drm_i915_private *dev_priv = dev->dev_private;
4724         struct drm_mode_config *mode_config = &dev->mode_config;
4725         struct intel_encoder *encoder;
4726         u32 val, final;
4727         bool has_lvds = false;
4728         bool has_cpu_edp = false;
4729         bool has_pch_edp = false;
4730         bool has_panel = false;
4731         bool has_ck505 = false;
4732         bool can_ssc = false;
4733
4734         /* We need to take the global config into account */
4735         list_for_each_entry(encoder, &mode_config->encoder_list,
4736                             base.head) {
4737                 switch (encoder->type) {
4738                 case INTEL_OUTPUT_LVDS:
4739                         has_panel = true;
4740                         has_lvds = true;
4741                         break;
4742                 case INTEL_OUTPUT_EDP:
4743                         has_panel = true;
4744                         if (intel_encoder_is_pch_edp(&encoder->base))
4745                                 has_pch_edp = true;
4746                         else
4747                                 has_cpu_edp = true;
4748                         break;
4749                 }
4750         }
4751
4752         if (HAS_PCH_IBX(dev)) {
4753                 has_ck505 = dev_priv->display_clock_mode;
4754                 can_ssc = has_ck505;
4755         } else {
4756                 has_ck505 = false;
4757                 can_ssc = true;
4758         }
4759
4760         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4761                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4762                       has_ck505);
4763
4764         /* Ironlake: try to setup display ref clock before DPLL
4765          * enabling. This is only under driver's control after
4766          * PCH B stepping, previous chipset stepping should be
4767          * ignoring this setting.
4768          */
4769         val = I915_READ(PCH_DREF_CONTROL);
4770
4771         /* As we must carefully and slowly disable/enable each source in turn,
4772          * compute the final state we want first and check if we need to
4773          * make any changes at all.
4774          */
4775         final = val;
4776         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4777         if (has_ck505)
4778                 final |= DREF_NONSPREAD_CK505_ENABLE;
4779         else
4780                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4781
4782         final &= ~DREF_SSC_SOURCE_MASK;
4783         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4784         final &= ~DREF_SSC1_ENABLE;
4785
4786         if (has_panel) {
4787                 final |= DREF_SSC_SOURCE_ENABLE;
4788
4789                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4790                         final |= DREF_SSC1_ENABLE;
4791
4792                 if (has_cpu_edp) {
4793                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4794                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4795                         else
4796                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4797                 } else
4798                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4799         } else {
4800                 final |= DREF_SSC_SOURCE_DISABLE;
4801                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4802         }
4803
4804         if (final == val)
4805                 return;
4806
4807         /* Always enable nonspread source */
4808         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4809
4810         if (has_ck505)
4811                 val |= DREF_NONSPREAD_CK505_ENABLE;
4812         else
4813                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4814
4815         if (has_panel) {
4816                 val &= ~DREF_SSC_SOURCE_MASK;
4817                 val |= DREF_SSC_SOURCE_ENABLE;
4818
4819                 /* SSC must be turned on before enabling the CPU output  */
4820                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4821                         DRM_DEBUG_KMS("Using SSC on panel\n");
4822                         val |= DREF_SSC1_ENABLE;
4823                 } else
4824                         val &= ~DREF_SSC1_ENABLE;
4825
4826                 /* Get SSC going before enabling the outputs */
4827                 I915_WRITE(PCH_DREF_CONTROL, val);
4828                 POSTING_READ(PCH_DREF_CONTROL);
4829                 udelay(200);
4830
4831                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4832
4833                 /* Enable CPU source on CPU attached eDP */
4834                 if (has_cpu_edp) {
4835                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4836                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4837                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4838                         }
4839                         else
4840                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4841                 } else
4842                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4843
4844                 I915_WRITE(PCH_DREF_CONTROL, val);
4845                 POSTING_READ(PCH_DREF_CONTROL);
4846                 udelay(200);
4847         } else {
4848                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4849
4850                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4851
4852                 /* Turn off CPU output */
4853                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4854
4855                 I915_WRITE(PCH_DREF_CONTROL, val);
4856                 POSTING_READ(PCH_DREF_CONTROL);
4857                 udelay(200);
4858
4859                 /* Turn off the SSC source */
4860                 val &= ~DREF_SSC_SOURCE_MASK;
4861                 val |= DREF_SSC_SOURCE_DISABLE;
4862
4863                 /* Turn off SSC1 */
4864                 val &= ~DREF_SSC1_ENABLE;
4865
4866                 I915_WRITE(PCH_DREF_CONTROL, val);
4867                 POSTING_READ(PCH_DREF_CONTROL);
4868                 udelay(200);
4869         }
4870
4871         BUG_ON(val != final);
4872 }
4873
4874 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4875 static void lpt_init_pch_refclk(struct drm_device *dev)
4876 {
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         struct drm_mode_config *mode_config = &dev->mode_config;
4879         struct intel_encoder *encoder;
4880         bool has_vga = false;
4881         bool is_sdv = false;
4882         u32 tmp;
4883
4884         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4885                 switch (encoder->type) {
4886                 case INTEL_OUTPUT_ANALOG:
4887                         has_vga = true;
4888                         break;
4889                 }
4890         }
4891
4892         if (!has_vga)
4893                 return;
4894
4895         mutex_lock(&dev_priv->dpio_lock);
4896
4897         /* XXX: Rip out SDV support once Haswell ships for real. */
4898         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4899                 is_sdv = true;
4900
4901         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4902         tmp &= ~SBI_SSCCTL_DISABLE;
4903         tmp |= SBI_SSCCTL_PATHALT;
4904         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4905
4906         udelay(24);
4907
4908         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4909         tmp &= ~SBI_SSCCTL_PATHALT;
4910         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4911
4912         if (!is_sdv) {
4913                 tmp = I915_READ(SOUTH_CHICKEN2);
4914                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4915                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4916
4917                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4918                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4919                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4920
4921                 tmp = I915_READ(SOUTH_CHICKEN2);
4922                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4923                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4924
4925                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4926                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4927                                        100))
4928                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4929         }
4930
4931         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4932         tmp &= ~(0xFF << 24);
4933         tmp |= (0x12 << 24);
4934         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4935
4936         if (!is_sdv) {
4937                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4938                 tmp &= ~(0x3 << 6);
4939                 tmp |= (1 << 6) | (1 << 0);
4940                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4941         }
4942
4943         if (is_sdv) {
4944                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4945                 tmp |= 0x7FFF;
4946                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4947         }
4948
4949         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4950         tmp |= (1 << 11);
4951         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4952
4953         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4954         tmp |= (1 << 11);
4955         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4956
4957         if (is_sdv) {
4958                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4959                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4960                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4961
4962                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4963                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4964                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4965
4966                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4967                 tmp |= (0x3F << 8);
4968                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4969
4970                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4971                 tmp |= (0x3F << 8);
4972                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4973         }
4974
4975         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4976         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4977         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
4978
4979         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
4980         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4981         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
4982
4983         if (!is_sdv) {
4984                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
4985                 tmp &= ~(7 << 13);
4986                 tmp |= (5 << 13);
4987                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
4988
4989                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
4990                 tmp &= ~(7 << 13);
4991                 tmp |= (5 << 13);
4992                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
4993         }
4994
4995         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
4996         tmp &= ~0xFF;
4997         tmp |= 0x1C;
4998         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
4999
5000         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5001         tmp &= ~0xFF;
5002         tmp |= 0x1C;
5003         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5004
5005         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5006         tmp &= ~(0xFF << 16);
5007         tmp |= (0x1C << 16);
5008         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5009
5010         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5011         tmp &= ~(0xFF << 16);
5012         tmp |= (0x1C << 16);
5013         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5014
5015         if (!is_sdv) {
5016                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5017                 tmp |= (1 << 27);
5018                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5019
5020                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5021                 tmp |= (1 << 27);
5022                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5023
5024                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5025                 tmp &= ~(0xF << 28);
5026                 tmp |= (4 << 28);
5027                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5028
5029                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5030                 tmp &= ~(0xF << 28);
5031                 tmp |= (4 << 28);
5032                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5033         }
5034
5035         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5036         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5037         tmp |= SBI_DBUFF0_ENABLE;
5038         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5039
5040         mutex_unlock(&dev_priv->dpio_lock);
5041 }
5042
5043 /*
5044  * Initialize reference clocks when the driver loads
5045  */
5046 void intel_init_pch_refclk(struct drm_device *dev)
5047 {
5048         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5049                 ironlake_init_pch_refclk(dev);
5050         else if (HAS_PCH_LPT(dev))
5051                 lpt_init_pch_refclk(dev);
5052 }
5053
5054 static int ironlake_get_refclk(struct drm_crtc *crtc)
5055 {
5056         struct drm_device *dev = crtc->dev;
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         struct intel_encoder *encoder;
5059         struct intel_encoder *edp_encoder = NULL;
5060         int num_connectors = 0;
5061         bool is_lvds = false;
5062
5063         for_each_encoder_on_crtc(dev, crtc, encoder) {
5064                 switch (encoder->type) {
5065                 case INTEL_OUTPUT_LVDS:
5066                         is_lvds = true;
5067                         break;
5068                 case INTEL_OUTPUT_EDP:
5069                         edp_encoder = encoder;
5070                         break;
5071                 }
5072                 num_connectors++;
5073         }
5074
5075         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5076                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5077                               dev_priv->lvds_ssc_freq);
5078                 return dev_priv->lvds_ssc_freq * 1000;
5079         }
5080
5081         return 120000;
5082 }
5083
5084 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5085                                   struct drm_display_mode *adjusted_mode,
5086                                   bool dither)
5087 {
5088         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5090         int pipe = intel_crtc->pipe;
5091         uint32_t val;
5092
5093         val = I915_READ(PIPECONF(pipe));
5094
5095         val &= ~PIPECONF_BPC_MASK;
5096         switch (intel_crtc->config.pipe_bpp) {
5097         case 18:
5098                 val |= PIPECONF_6BPC;
5099                 break;
5100         case 24:
5101                 val |= PIPECONF_8BPC;
5102                 break;
5103         case 30:
5104                 val |= PIPECONF_10BPC;
5105                 break;
5106         case 36:
5107                 val |= PIPECONF_12BPC;
5108                 break;
5109         default:
5110                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5111                 BUG();
5112         }
5113
5114         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5115         if (dither)
5116                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5117
5118         val &= ~PIPECONF_INTERLACE_MASK;
5119         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5120                 val |= PIPECONF_INTERLACED_ILK;
5121         else
5122                 val |= PIPECONF_PROGRESSIVE;
5123
5124         if (intel_crtc->config.limited_color_range)
5125                 val |= PIPECONF_COLOR_RANGE_SELECT;
5126         else
5127                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5128
5129         I915_WRITE(PIPECONF(pipe), val);
5130         POSTING_READ(PIPECONF(pipe));
5131 }
5132
5133 /*
5134  * Set up the pipe CSC unit.
5135  *
5136  * Currently only full range RGB to limited range RGB conversion
5137  * is supported, but eventually this should handle various
5138  * RGB<->YCbCr scenarios as well.
5139  */
5140 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5141 {
5142         struct drm_device *dev = crtc->dev;
5143         struct drm_i915_private *dev_priv = dev->dev_private;
5144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5145         int pipe = intel_crtc->pipe;
5146         uint16_t coeff = 0x7800; /* 1.0 */
5147
5148         /*
5149          * TODO: Check what kind of values actually come out of the pipe
5150          * with these coeff/postoff values and adjust to get the best
5151          * accuracy. Perhaps we even need to take the bpc value into
5152          * consideration.
5153          */
5154
5155         if (intel_crtc->config.limited_color_range)
5156                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5157
5158         /*
5159          * GY/GU and RY/RU should be the other way around according
5160          * to BSpec, but reality doesn't agree. Just set them up in
5161          * a way that results in the correct picture.
5162          */
5163         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5164         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5165
5166         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5167         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5168
5169         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5170         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5171
5172         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5173         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5174         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5175
5176         if (INTEL_INFO(dev)->gen > 6) {
5177                 uint16_t postoff = 0;
5178
5179                 if (intel_crtc->config.limited_color_range)
5180                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5181
5182                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5183                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5184                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5185
5186                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5187         } else {
5188                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5189
5190                 if (intel_crtc->config.limited_color_range)
5191                         mode |= CSC_BLACK_SCREEN_OFFSET;
5192
5193                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5194         }
5195 }
5196
5197 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5198                                  struct drm_display_mode *adjusted_mode,
5199                                  bool dither)
5200 {
5201         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5203         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5204         uint32_t val;
5205
5206         val = I915_READ(PIPECONF(cpu_transcoder));
5207
5208         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5209         if (dither)
5210                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5211
5212         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5213         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5214                 val |= PIPECONF_INTERLACED_ILK;
5215         else
5216                 val |= PIPECONF_PROGRESSIVE;
5217
5218         I915_WRITE(PIPECONF(cpu_transcoder), val);
5219         POSTING_READ(PIPECONF(cpu_transcoder));
5220 }
5221
5222 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5223                                     struct drm_display_mode *adjusted_mode,
5224                                     intel_clock_t *clock,
5225                                     bool *has_reduced_clock,
5226                                     intel_clock_t *reduced_clock)
5227 {
5228         struct drm_device *dev = crtc->dev;
5229         struct drm_i915_private *dev_priv = dev->dev_private;
5230         struct intel_encoder *intel_encoder;
5231         int refclk;
5232         const intel_limit_t *limit;
5233         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5234
5235         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5236                 switch (intel_encoder->type) {
5237                 case INTEL_OUTPUT_LVDS:
5238                         is_lvds = true;
5239                         break;
5240                 case INTEL_OUTPUT_SDVO:
5241                 case INTEL_OUTPUT_HDMI:
5242                         is_sdvo = true;
5243                         if (intel_encoder->needs_tv_clock)
5244                                 is_tv = true;
5245                         break;
5246                 case INTEL_OUTPUT_TVOUT:
5247                         is_tv = true;
5248                         break;
5249                 }
5250         }
5251
5252         refclk = ironlake_get_refclk(crtc);
5253
5254         /*
5255          * Returns a set of divisors for the desired target clock with the given
5256          * refclk, or FALSE.  The returned values represent the clock equation:
5257          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5258          */
5259         limit = intel_limit(crtc, refclk);
5260         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5261                               clock);
5262         if (!ret)
5263                 return false;
5264
5265         if (is_lvds && dev_priv->lvds_downclock_avail) {
5266                 /*
5267                  * Ensure we match the reduced clock's P to the target clock.
5268                  * If the clocks don't match, we can't switch the display clock
5269                  * by using the FP0/FP1. In such case we will disable the LVDS
5270                  * downclock feature.
5271                 */
5272                 *has_reduced_clock = limit->find_pll(limit, crtc,
5273                                                      dev_priv->lvds_downclock,
5274                                                      refclk,
5275                                                      clock,
5276                                                      reduced_clock);
5277         }
5278
5279         if (is_sdvo && is_tv)
5280                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5281
5282         return true;
5283 }
5284
5285 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5286 {
5287         struct drm_i915_private *dev_priv = dev->dev_private;
5288         uint32_t temp;
5289
5290         temp = I915_READ(SOUTH_CHICKEN1);
5291         if (temp & FDI_BC_BIFURCATION_SELECT)
5292                 return;
5293
5294         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5295         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5296
5297         temp |= FDI_BC_BIFURCATION_SELECT;
5298         DRM_DEBUG_KMS("enabling fdi C rx\n");
5299         I915_WRITE(SOUTH_CHICKEN1, temp);
5300         POSTING_READ(SOUTH_CHICKEN1);
5301 }
5302
5303 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5304 {
5305         struct drm_device *dev = intel_crtc->base.dev;
5306         struct drm_i915_private *dev_priv = dev->dev_private;
5307         struct intel_crtc *pipe_B_crtc =
5308                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5309
5310         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5311                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5312         if (intel_crtc->fdi_lanes > 4) {
5313                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5314                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5315                 /* Clamp lanes to avoid programming the hw with bogus values. */
5316                 intel_crtc->fdi_lanes = 4;
5317
5318                 return false;
5319         }
5320
5321         if (INTEL_INFO(dev)->num_pipes == 2)
5322                 return true;
5323
5324         switch (intel_crtc->pipe) {
5325         case PIPE_A:
5326                 return true;
5327         case PIPE_B:
5328                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5329                     intel_crtc->fdi_lanes > 2) {
5330                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5331                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5332                         /* Clamp lanes to avoid programming the hw with bogus values. */
5333                         intel_crtc->fdi_lanes = 2;
5334
5335                         return false;
5336                 }
5337
5338                 if (intel_crtc->fdi_lanes > 2)
5339                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5340                 else
5341                         cpt_enable_fdi_bc_bifurcation(dev);
5342
5343                 return true;
5344         case PIPE_C:
5345                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5346                         if (intel_crtc->fdi_lanes > 2) {
5347                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5348                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5349                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5350                                 intel_crtc->fdi_lanes = 2;
5351
5352                                 return false;
5353                         }
5354                 } else {
5355                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5356                         return false;
5357                 }
5358
5359                 cpt_enable_fdi_bc_bifurcation(dev);
5360
5361                 return true;
5362         default:
5363                 BUG();
5364         }
5365 }
5366
5367 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5368 {
5369         /*
5370          * Account for spread spectrum to avoid
5371          * oversubscribing the link. Max center spread
5372          * is 2.5%; use 5% for safety's sake.
5373          */
5374         u32 bps = target_clock * bpp * 21 / 20;
5375         return bps / (link_bw * 8) + 1;
5376 }
5377
5378 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5379                                   struct intel_link_m_n *m_n)
5380 {
5381         struct drm_device *dev = crtc->base.dev;
5382         struct drm_i915_private *dev_priv = dev->dev_private;
5383         int pipe = crtc->pipe;
5384
5385         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5386         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5387         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5388         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5389 }
5390
5391 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5392                                   struct intel_link_m_n *m_n)
5393 {
5394         struct drm_device *dev = crtc->base.dev;
5395         struct drm_i915_private *dev_priv = dev->dev_private;
5396         int pipe = crtc->pipe;
5397         enum transcoder transcoder = crtc->cpu_transcoder;
5398
5399         if (INTEL_INFO(dev)->gen >= 5) {
5400                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5401                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5402                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5403                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5404         } else {
5405                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5406                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5407                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5408                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5409         }
5410 }
5411
5412 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5413 {
5414         struct drm_device *dev = crtc->dev;
5415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5416         struct drm_display_mode *adjusted_mode =
5417                 &intel_crtc->config.adjusted_mode;
5418         struct intel_link_m_n m_n = {0};
5419         int target_clock, lane, link_bw;
5420         uint32_t bps;
5421
5422         /* FDI is a binary signal running at ~2.7GHz, encoding
5423          * each output octet as 10 bits. The actual frequency
5424          * is stored as a divider into a 100MHz clock, and the
5425          * mode pixel clock is stored in units of 1KHz.
5426          * Hence the bw of each lane in terms of the mode signal
5427          * is:
5428          */
5429         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5430
5431         if (intel_crtc->config.pixel_target_clock)
5432                 target_clock = intel_crtc->config.pixel_target_clock;
5433         else
5434                 target_clock = adjusted_mode->clock;
5435
5436         lane = ironlake_get_lanes_required(target_clock, link_bw,
5437                                            intel_crtc->config.pipe_bpp);
5438
5439         intel_crtc->fdi_lanes = lane;
5440
5441         if (intel_crtc->config.pixel_multiplier > 1)
5442                 link_bw *= intel_crtc->config.pixel_multiplier;
5443         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5444                                link_bw, &m_n);
5445
5446         intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5447 }
5448
5449 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5450                                       intel_clock_t *clock, u32 fp)
5451 {
5452         struct drm_crtc *crtc = &intel_crtc->base;
5453         struct drm_device *dev = crtc->dev;
5454         struct drm_i915_private *dev_priv = dev->dev_private;
5455         struct intel_encoder *intel_encoder;
5456         uint32_t dpll;
5457         int factor, num_connectors = 0;
5458         bool is_lvds = false, is_sdvo = false, is_tv = false;
5459         bool is_dp = false, is_cpu_edp = false;
5460
5461         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5462                 switch (intel_encoder->type) {
5463                 case INTEL_OUTPUT_LVDS:
5464                         is_lvds = true;
5465                         break;
5466                 case INTEL_OUTPUT_SDVO:
5467                 case INTEL_OUTPUT_HDMI:
5468                         is_sdvo = true;
5469                         if (intel_encoder->needs_tv_clock)
5470                                 is_tv = true;
5471                         break;
5472                 case INTEL_OUTPUT_TVOUT:
5473                         is_tv = true;
5474                         break;
5475                 case INTEL_OUTPUT_DISPLAYPORT:
5476                         is_dp = true;
5477                         break;
5478                 case INTEL_OUTPUT_EDP:
5479                         is_dp = true;
5480                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5481                                 is_cpu_edp = true;
5482                         break;
5483                 }
5484
5485                 num_connectors++;
5486         }
5487
5488         /* Enable autotuning of the PLL clock (if permissible) */
5489         factor = 21;
5490         if (is_lvds) {
5491                 if ((intel_panel_use_ssc(dev_priv) &&
5492                      dev_priv->lvds_ssc_freq == 100) ||
5493                     intel_is_dual_link_lvds(dev))
5494                         factor = 25;
5495         } else if (is_sdvo && is_tv)
5496                 factor = 20;
5497
5498         if (clock->m < factor * clock->n)
5499                 fp |= FP_CB_TUNE;
5500
5501         dpll = 0;
5502
5503         if (is_lvds)
5504                 dpll |= DPLLB_MODE_LVDS;
5505         else
5506                 dpll |= DPLLB_MODE_DAC_SERIAL;
5507         if (is_sdvo) {
5508                 if (intel_crtc->config.pixel_multiplier > 1) {
5509                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5510                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5511                 }
5512                 dpll |= DPLL_DVO_HIGH_SPEED;
5513         }
5514         if (is_dp && !is_cpu_edp)
5515                 dpll |= DPLL_DVO_HIGH_SPEED;
5516
5517         /* compute bitmask from p1 value */
5518         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5519         /* also FPA1 */
5520         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5521
5522         switch (clock->p2) {
5523         case 5:
5524                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5525                 break;
5526         case 7:
5527                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5528                 break;
5529         case 10:
5530                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5531                 break;
5532         case 14:
5533                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5534                 break;
5535         }
5536
5537         if (is_sdvo && is_tv)
5538                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5539         else if (is_tv)
5540                 /* XXX: just matching BIOS for now */
5541                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5542                 dpll |= 3;
5543         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5544                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5545         else
5546                 dpll |= PLL_REF_INPUT_DREFCLK;
5547
5548         return dpll;
5549 }
5550
5551 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5552                                   int x, int y,
5553                                   struct drm_framebuffer *fb)
5554 {
5555         struct drm_device *dev = crtc->dev;
5556         struct drm_i915_private *dev_priv = dev->dev_private;
5557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5558         struct drm_display_mode *adjusted_mode =
5559                 &intel_crtc->config.adjusted_mode;
5560         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5561         int pipe = intel_crtc->pipe;
5562         int plane = intel_crtc->plane;
5563         int num_connectors = 0;
5564         intel_clock_t clock, reduced_clock;
5565         u32 dpll, fp = 0, fp2 = 0;
5566         bool ok, has_reduced_clock = false;
5567         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5568         struct intel_encoder *encoder;
5569         int ret;
5570         bool dither, fdi_config_ok;
5571
5572         for_each_encoder_on_crtc(dev, crtc, encoder) {
5573                 switch (encoder->type) {
5574                 case INTEL_OUTPUT_LVDS:
5575                         is_lvds = true;
5576                         break;
5577                 case INTEL_OUTPUT_DISPLAYPORT:
5578                         is_dp = true;
5579                         break;
5580                 case INTEL_OUTPUT_EDP:
5581                         is_dp = true;
5582                         if (!intel_encoder_is_pch_edp(&encoder->base))
5583                                 is_cpu_edp = true;
5584                         break;
5585                 }
5586
5587                 num_connectors++;
5588         }
5589
5590         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5591              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5592
5593         intel_crtc->cpu_transcoder = pipe;
5594
5595         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5596                                      &has_reduced_clock, &reduced_clock);
5597         if (!ok) {
5598                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5599                 return -EINVAL;
5600         }
5601
5602         /* Ensure that the cursor is valid for the new mode before changing... */
5603         intel_crtc_update_cursor(crtc, true);
5604
5605         /* determine panel color depth */
5606         dither = intel_crtc->config.dither;
5607         if (is_lvds && dev_priv->lvds_dither)
5608                 dither = true;
5609
5610         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5611         if (has_reduced_clock)
5612                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5613                         reduced_clock.m2;
5614
5615         dpll = ironlake_compute_dpll(intel_crtc, &clock, fp);
5616
5617         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5618         drm_mode_debug_printmodeline(mode);
5619
5620         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5621         if (!is_cpu_edp) {
5622                 struct intel_pch_pll *pll;
5623
5624                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5625                 if (pll == NULL) {
5626                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5627                                          pipe);
5628                         return -EINVAL;
5629                 }
5630         } else
5631                 intel_put_pch_pll(intel_crtc);
5632
5633         if (intel_crtc->config.has_dp_encoder)
5634                 intel_dp_set_m_n(intel_crtc);
5635
5636         for_each_encoder_on_crtc(dev, crtc, encoder)
5637                 if (encoder->pre_pll_enable)
5638                         encoder->pre_pll_enable(encoder);
5639
5640         if (intel_crtc->pch_pll) {
5641                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5642
5643                 /* Wait for the clocks to stabilize. */
5644                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5645                 udelay(150);
5646
5647                 /* The pixel multiplier can only be updated once the
5648                  * DPLL is enabled and the clocks are stable.
5649                  *
5650                  * So write it again.
5651                  */
5652                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5653         }
5654
5655         intel_crtc->lowfreq_avail = false;
5656         if (intel_crtc->pch_pll) {
5657                 if (is_lvds && has_reduced_clock && i915_powersave) {
5658                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5659                         intel_crtc->lowfreq_avail = true;
5660                 } else {
5661                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5662                 }
5663         }
5664
5665         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5666
5667         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5668          * ironlake_check_fdi_lanes. */
5669         intel_crtc->fdi_lanes = 0;
5670         if (intel_crtc->config.has_pch_encoder)
5671                 ironlake_fdi_set_m_n(crtc);
5672
5673         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5674
5675         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5676
5677         intel_wait_for_vblank(dev, pipe);
5678
5679         /* Set up the display plane register */
5680         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5681         POSTING_READ(DSPCNTR(plane));
5682
5683         ret = intel_pipe_set_base(crtc, x, y, fb);
5684
5685         intel_update_watermarks(dev);
5686
5687         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5688
5689         return fdi_config_ok ? ret : -EINVAL;
5690 }
5691
5692 static void haswell_modeset_global_resources(struct drm_device *dev)
5693 {
5694         struct drm_i915_private *dev_priv = dev->dev_private;
5695         bool enable = false;
5696         struct intel_crtc *crtc;
5697         struct intel_encoder *encoder;
5698
5699         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5700                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5701                         enable = true;
5702                 /* XXX: Should check for edp transcoder here, but thanks to init
5703                  * sequence that's not yet available. Just in case desktop eDP
5704                  * on PORT D is possible on haswell, too. */
5705         }
5706
5707         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5708                             base.head) {
5709                 if (encoder->type != INTEL_OUTPUT_EDP &&
5710                     encoder->connectors_active)
5711                         enable = true;
5712         }
5713
5714         /* Even the eDP panel fitter is outside the always-on well. */
5715         if (dev_priv->pch_pf_size)
5716                 enable = true;
5717
5718         intel_set_power_well(dev, enable);
5719 }
5720
5721 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5722                                  int x, int y,
5723                                  struct drm_framebuffer *fb)
5724 {
5725         struct drm_device *dev = crtc->dev;
5726         struct drm_i915_private *dev_priv = dev->dev_private;
5727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5728         struct drm_display_mode *adjusted_mode =
5729                 &intel_crtc->config.adjusted_mode;
5730         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5731         int pipe = intel_crtc->pipe;
5732         int plane = intel_crtc->plane;
5733         int num_connectors = 0;
5734         bool is_dp = false, is_cpu_edp = false;
5735         struct intel_encoder *encoder;
5736         int ret;
5737         bool dither;
5738
5739         for_each_encoder_on_crtc(dev, crtc, encoder) {
5740                 switch (encoder->type) {
5741                 case INTEL_OUTPUT_DISPLAYPORT:
5742                         is_dp = true;
5743                         break;
5744                 case INTEL_OUTPUT_EDP:
5745                         is_dp = true;
5746                         if (!intel_encoder_is_pch_edp(&encoder->base))
5747                                 is_cpu_edp = true;
5748                         break;
5749                 }
5750
5751                 num_connectors++;
5752         }
5753
5754         if (is_cpu_edp)
5755                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5756         else
5757                 intel_crtc->cpu_transcoder = pipe;
5758
5759         /* We are not sure yet this won't happen. */
5760         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5761              INTEL_PCH_TYPE(dev));
5762
5763         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5764              num_connectors, pipe_name(pipe));
5765
5766         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5767                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5768
5769         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5770
5771         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5772                 return -EINVAL;
5773
5774         /* Ensure that the cursor is valid for the new mode before changing... */
5775         intel_crtc_update_cursor(crtc, true);
5776
5777         /* determine panel color depth */
5778         dither = intel_crtc->config.dither;
5779
5780         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5781         drm_mode_debug_printmodeline(mode);
5782
5783         if (intel_crtc->config.has_dp_encoder)
5784                 intel_dp_set_m_n(intel_crtc);
5785
5786         intel_crtc->lowfreq_avail = false;
5787
5788         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5789
5790         if (intel_crtc->config.has_pch_encoder)
5791                 ironlake_fdi_set_m_n(crtc);
5792
5793         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5794
5795         intel_set_pipe_csc(crtc);
5796
5797         /* Set up the display plane register */
5798         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5799         POSTING_READ(DSPCNTR(plane));
5800
5801         ret = intel_pipe_set_base(crtc, x, y, fb);
5802
5803         intel_update_watermarks(dev);
5804
5805         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5806
5807         return ret;
5808 }
5809
5810 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5811                                int x, int y,
5812                                struct drm_framebuffer *fb)
5813 {
5814         struct drm_device *dev = crtc->dev;
5815         struct drm_i915_private *dev_priv = dev->dev_private;
5816         struct drm_encoder_helper_funcs *encoder_funcs;
5817         struct intel_encoder *encoder;
5818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5819         struct drm_display_mode *adjusted_mode =
5820                 &intel_crtc->config.adjusted_mode;
5821         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5822         int pipe = intel_crtc->pipe;
5823         int ret;
5824
5825         drm_vblank_pre_modeset(dev, pipe);
5826
5827         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5828
5829         drm_vblank_post_modeset(dev, pipe);
5830
5831         if (ret != 0)
5832                 return ret;
5833
5834         for_each_encoder_on_crtc(dev, crtc, encoder) {
5835                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5836                         encoder->base.base.id,
5837                         drm_get_encoder_name(&encoder->base),
5838                         mode->base.id, mode->name);
5839                 if (encoder->mode_set) {
5840                         encoder->mode_set(encoder);
5841                 } else {
5842                         encoder_funcs = encoder->base.helper_private;
5843                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5844                 }
5845         }
5846
5847         return 0;
5848 }
5849
5850 static bool intel_eld_uptodate(struct drm_connector *connector,
5851                                int reg_eldv, uint32_t bits_eldv,
5852                                int reg_elda, uint32_t bits_elda,
5853                                int reg_edid)
5854 {
5855         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5856         uint8_t *eld = connector->eld;
5857         uint32_t i;
5858
5859         i = I915_READ(reg_eldv);
5860         i &= bits_eldv;
5861
5862         if (!eld[0])
5863                 return !i;
5864
5865         if (!i)
5866                 return false;
5867
5868         i = I915_READ(reg_elda);
5869         i &= ~bits_elda;
5870         I915_WRITE(reg_elda, i);
5871
5872         for (i = 0; i < eld[2]; i++)
5873                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5874                         return false;
5875
5876         return true;
5877 }
5878
5879 static void g4x_write_eld(struct drm_connector *connector,
5880                           struct drm_crtc *crtc)
5881 {
5882         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5883         uint8_t *eld = connector->eld;
5884         uint32_t eldv;
5885         uint32_t len;
5886         uint32_t i;
5887
5888         i = I915_READ(G4X_AUD_VID_DID);
5889
5890         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5891                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5892         else
5893                 eldv = G4X_ELDV_DEVCTG;
5894
5895         if (intel_eld_uptodate(connector,
5896                                G4X_AUD_CNTL_ST, eldv,
5897                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5898                                G4X_HDMIW_HDMIEDID))
5899                 return;
5900
5901         i = I915_READ(G4X_AUD_CNTL_ST);
5902         i &= ~(eldv | G4X_ELD_ADDR);
5903         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5904         I915_WRITE(G4X_AUD_CNTL_ST, i);
5905
5906         if (!eld[0])
5907                 return;
5908
5909         len = min_t(uint8_t, eld[2], len);
5910         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5911         for (i = 0; i < len; i++)
5912                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5913
5914         i = I915_READ(G4X_AUD_CNTL_ST);
5915         i |= eldv;
5916         I915_WRITE(G4X_AUD_CNTL_ST, i);
5917 }
5918
5919 static void haswell_write_eld(struct drm_connector *connector,
5920                                      struct drm_crtc *crtc)
5921 {
5922         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5923         uint8_t *eld = connector->eld;
5924         struct drm_device *dev = crtc->dev;
5925         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5926         uint32_t eldv;
5927         uint32_t i;
5928         int len;
5929         int pipe = to_intel_crtc(crtc)->pipe;
5930         int tmp;
5931
5932         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5933         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5934         int aud_config = HSW_AUD_CFG(pipe);
5935         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5936
5937
5938         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5939
5940         /* Audio output enable */
5941         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5942         tmp = I915_READ(aud_cntrl_st2);
5943         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5944         I915_WRITE(aud_cntrl_st2, tmp);
5945
5946         /* Wait for 1 vertical blank */
5947         intel_wait_for_vblank(dev, pipe);
5948
5949         /* Set ELD valid state */
5950         tmp = I915_READ(aud_cntrl_st2);
5951         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5952         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5953         I915_WRITE(aud_cntrl_st2, tmp);
5954         tmp = I915_READ(aud_cntrl_st2);
5955         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5956
5957         /* Enable HDMI mode */
5958         tmp = I915_READ(aud_config);
5959         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5960         /* clear N_programing_enable and N_value_index */
5961         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5962         I915_WRITE(aud_config, tmp);
5963
5964         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5965
5966         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5967         intel_crtc->eld_vld = true;
5968
5969         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5970                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5971                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5972                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5973         } else
5974                 I915_WRITE(aud_config, 0);
5975
5976         if (intel_eld_uptodate(connector,
5977                                aud_cntrl_st2, eldv,
5978                                aud_cntl_st, IBX_ELD_ADDRESS,
5979                                hdmiw_hdmiedid))
5980                 return;
5981
5982         i = I915_READ(aud_cntrl_st2);
5983         i &= ~eldv;
5984         I915_WRITE(aud_cntrl_st2, i);
5985
5986         if (!eld[0])
5987                 return;
5988
5989         i = I915_READ(aud_cntl_st);
5990         i &= ~IBX_ELD_ADDRESS;
5991         I915_WRITE(aud_cntl_st, i);
5992         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5993         DRM_DEBUG_DRIVER("port num:%d\n", i);
5994
5995         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5996         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5997         for (i = 0; i < len; i++)
5998                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5999
6000         i = I915_READ(aud_cntrl_st2);
6001         i |= eldv;
6002         I915_WRITE(aud_cntrl_st2, i);
6003
6004 }
6005
6006 static void ironlake_write_eld(struct drm_connector *connector,
6007                                      struct drm_crtc *crtc)
6008 {
6009         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6010         uint8_t *eld = connector->eld;
6011         uint32_t eldv;
6012         uint32_t i;
6013         int len;
6014         int hdmiw_hdmiedid;
6015         int aud_config;
6016         int aud_cntl_st;
6017         int aud_cntrl_st2;
6018         int pipe = to_intel_crtc(crtc)->pipe;
6019
6020         if (HAS_PCH_IBX(connector->dev)) {
6021                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6022                 aud_config = IBX_AUD_CFG(pipe);
6023                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6024                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6025         } else {
6026                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6027                 aud_config = CPT_AUD_CFG(pipe);
6028                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6029                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6030         }
6031
6032         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6033
6034         i = I915_READ(aud_cntl_st);
6035         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6036         if (!i) {
6037                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6038                 /* operate blindly on all ports */
6039                 eldv = IBX_ELD_VALIDB;
6040                 eldv |= IBX_ELD_VALIDB << 4;
6041                 eldv |= IBX_ELD_VALIDB << 8;
6042         } else {
6043                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6044                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6045         }
6046
6047         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6048                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6049                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6050                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6051         } else
6052                 I915_WRITE(aud_config, 0);
6053
6054         if (intel_eld_uptodate(connector,
6055                                aud_cntrl_st2, eldv,
6056                                aud_cntl_st, IBX_ELD_ADDRESS,
6057                                hdmiw_hdmiedid))
6058                 return;
6059
6060         i = I915_READ(aud_cntrl_st2);
6061         i &= ~eldv;
6062         I915_WRITE(aud_cntrl_st2, i);
6063
6064         if (!eld[0])
6065                 return;
6066
6067         i = I915_READ(aud_cntl_st);
6068         i &= ~IBX_ELD_ADDRESS;
6069         I915_WRITE(aud_cntl_st, i);
6070
6071         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6072         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6073         for (i = 0; i < len; i++)
6074                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6075
6076         i = I915_READ(aud_cntrl_st2);
6077         i |= eldv;
6078         I915_WRITE(aud_cntrl_st2, i);
6079 }
6080
6081 void intel_write_eld(struct drm_encoder *encoder,
6082                      struct drm_display_mode *mode)
6083 {
6084         struct drm_crtc *crtc = encoder->crtc;
6085         struct drm_connector *connector;
6086         struct drm_device *dev = encoder->dev;
6087         struct drm_i915_private *dev_priv = dev->dev_private;
6088
6089         connector = drm_select_eld(encoder, mode);
6090         if (!connector)
6091                 return;
6092
6093         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6094                          connector->base.id,
6095                          drm_get_connector_name(connector),
6096                          connector->encoder->base.id,
6097                          drm_get_encoder_name(connector->encoder));
6098
6099         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6100
6101         if (dev_priv->display.write_eld)
6102                 dev_priv->display.write_eld(connector, crtc);
6103 }
6104
6105 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6106 void intel_crtc_load_lut(struct drm_crtc *crtc)
6107 {
6108         struct drm_device *dev = crtc->dev;
6109         struct drm_i915_private *dev_priv = dev->dev_private;
6110         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6111         int palreg = PALETTE(intel_crtc->pipe);
6112         int i;
6113
6114         /* The clocks have to be on to load the palette. */
6115         if (!crtc->enabled || !intel_crtc->active)
6116                 return;
6117
6118         /* use legacy palette for Ironlake */
6119         if (HAS_PCH_SPLIT(dev))
6120                 palreg = LGC_PALETTE(intel_crtc->pipe);
6121
6122         for (i = 0; i < 256; i++) {
6123                 I915_WRITE(palreg + 4 * i,
6124                            (intel_crtc->lut_r[i] << 16) |
6125                            (intel_crtc->lut_g[i] << 8) |
6126                            intel_crtc->lut_b[i]);
6127         }
6128 }
6129
6130 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6131 {
6132         struct drm_device *dev = crtc->dev;
6133         struct drm_i915_private *dev_priv = dev->dev_private;
6134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6135         bool visible = base != 0;
6136         u32 cntl;
6137
6138         if (intel_crtc->cursor_visible == visible)
6139                 return;
6140
6141         cntl = I915_READ(_CURACNTR);
6142         if (visible) {
6143                 /* On these chipsets we can only modify the base whilst
6144                  * the cursor is disabled.
6145                  */
6146                 I915_WRITE(_CURABASE, base);
6147
6148                 cntl &= ~(CURSOR_FORMAT_MASK);
6149                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6150                 cntl |= CURSOR_ENABLE |
6151                         CURSOR_GAMMA_ENABLE |
6152                         CURSOR_FORMAT_ARGB;
6153         } else
6154                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6155         I915_WRITE(_CURACNTR, cntl);
6156
6157         intel_crtc->cursor_visible = visible;
6158 }
6159
6160 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6161 {
6162         struct drm_device *dev = crtc->dev;
6163         struct drm_i915_private *dev_priv = dev->dev_private;
6164         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6165         int pipe = intel_crtc->pipe;
6166         bool visible = base != 0;
6167
6168         if (intel_crtc->cursor_visible != visible) {
6169                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6170                 if (base) {
6171                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6172                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6173                         cntl |= pipe << 28; /* Connect to correct pipe */
6174                 } else {
6175                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6176                         cntl |= CURSOR_MODE_DISABLE;
6177                 }
6178                 I915_WRITE(CURCNTR(pipe), cntl);
6179
6180                 intel_crtc->cursor_visible = visible;
6181         }
6182         /* and commit changes on next vblank */
6183         I915_WRITE(CURBASE(pipe), base);
6184 }
6185
6186 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6187 {
6188         struct drm_device *dev = crtc->dev;
6189         struct drm_i915_private *dev_priv = dev->dev_private;
6190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6191         int pipe = intel_crtc->pipe;
6192         bool visible = base != 0;
6193
6194         if (intel_crtc->cursor_visible != visible) {
6195                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6196                 if (base) {
6197                         cntl &= ~CURSOR_MODE;
6198                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6199                 } else {
6200                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6201                         cntl |= CURSOR_MODE_DISABLE;
6202                 }
6203                 if (IS_HASWELL(dev))
6204                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6205                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6206
6207                 intel_crtc->cursor_visible = visible;
6208         }
6209         /* and commit changes on next vblank */
6210         I915_WRITE(CURBASE_IVB(pipe), base);
6211 }
6212
6213 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6214 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6215                                      bool on)
6216 {
6217         struct drm_device *dev = crtc->dev;
6218         struct drm_i915_private *dev_priv = dev->dev_private;
6219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6220         int pipe = intel_crtc->pipe;
6221         int x = intel_crtc->cursor_x;
6222         int y = intel_crtc->cursor_y;
6223         u32 base, pos;
6224         bool visible;
6225
6226         pos = 0;
6227
6228         if (on && crtc->enabled && crtc->fb) {
6229                 base = intel_crtc->cursor_addr;
6230                 if (x > (int) crtc->fb->width)
6231                         base = 0;
6232
6233                 if (y > (int) crtc->fb->height)
6234                         base = 0;
6235         } else
6236                 base = 0;
6237
6238         if (x < 0) {
6239                 if (x + intel_crtc->cursor_width < 0)
6240                         base = 0;
6241
6242                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6243                 x = -x;
6244         }
6245         pos |= x << CURSOR_X_SHIFT;
6246
6247         if (y < 0) {
6248                 if (y + intel_crtc->cursor_height < 0)
6249                         base = 0;
6250
6251                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6252                 y = -y;
6253         }
6254         pos |= y << CURSOR_Y_SHIFT;
6255
6256         visible = base != 0;
6257         if (!visible && !intel_crtc->cursor_visible)
6258                 return;
6259
6260         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6261                 I915_WRITE(CURPOS_IVB(pipe), pos);
6262                 ivb_update_cursor(crtc, base);
6263         } else {
6264                 I915_WRITE(CURPOS(pipe), pos);
6265                 if (IS_845G(dev) || IS_I865G(dev))
6266                         i845_update_cursor(crtc, base);
6267                 else
6268                         i9xx_update_cursor(crtc, base);
6269         }
6270 }
6271
6272 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6273                                  struct drm_file *file,
6274                                  uint32_t handle,
6275                                  uint32_t width, uint32_t height)
6276 {
6277         struct drm_device *dev = crtc->dev;
6278         struct drm_i915_private *dev_priv = dev->dev_private;
6279         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6280         struct drm_i915_gem_object *obj;
6281         uint32_t addr;
6282         int ret;
6283
6284         /* if we want to turn off the cursor ignore width and height */
6285         if (!handle) {
6286                 DRM_DEBUG_KMS("cursor off\n");
6287                 addr = 0;
6288                 obj = NULL;
6289                 mutex_lock(&dev->struct_mutex);
6290                 goto finish;
6291         }
6292
6293         /* Currently we only support 64x64 cursors */
6294         if (width != 64 || height != 64) {
6295                 DRM_ERROR("we currently only support 64x64 cursors\n");
6296                 return -EINVAL;
6297         }
6298
6299         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6300         if (&obj->base == NULL)
6301                 return -ENOENT;
6302
6303         if (obj->base.size < width * height * 4) {
6304                 DRM_ERROR("buffer is to small\n");
6305                 ret = -ENOMEM;
6306                 goto fail;
6307         }
6308
6309         /* we only need to pin inside GTT if cursor is non-phy */
6310         mutex_lock(&dev->struct_mutex);
6311         if (!dev_priv->info->cursor_needs_physical) {
6312                 unsigned alignment;
6313
6314                 if (obj->tiling_mode) {
6315                         DRM_ERROR("cursor cannot be tiled\n");
6316                         ret = -EINVAL;
6317                         goto fail_locked;
6318                 }
6319
6320                 /* Note that the w/a also requires 2 PTE of padding following
6321                  * the bo. We currently fill all unused PTE with the shadow
6322                  * page and so we should always have valid PTE following the
6323                  * cursor preventing the VT-d warning.
6324                  */
6325                 alignment = 0;
6326                 if (need_vtd_wa(dev))
6327                         alignment = 64*1024;
6328
6329                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6330                 if (ret) {
6331                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6332                         goto fail_locked;
6333                 }
6334
6335                 ret = i915_gem_object_put_fence(obj);
6336                 if (ret) {
6337                         DRM_ERROR("failed to release fence for cursor");
6338                         goto fail_unpin;
6339                 }
6340
6341                 addr = obj->gtt_offset;
6342         } else {
6343                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6344                 ret = i915_gem_attach_phys_object(dev, obj,
6345                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6346                                                   align);
6347                 if (ret) {
6348                         DRM_ERROR("failed to attach phys object\n");
6349                         goto fail_locked;
6350                 }
6351                 addr = obj->phys_obj->handle->busaddr;
6352         }
6353
6354         if (IS_GEN2(dev))
6355                 I915_WRITE(CURSIZE, (height << 12) | width);
6356
6357  finish:
6358         if (intel_crtc->cursor_bo) {
6359                 if (dev_priv->info->cursor_needs_physical) {
6360                         if (intel_crtc->cursor_bo != obj)
6361                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6362                 } else
6363                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6364                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6365         }
6366
6367         mutex_unlock(&dev->struct_mutex);
6368
6369         intel_crtc->cursor_addr = addr;
6370         intel_crtc->cursor_bo = obj;
6371         intel_crtc->cursor_width = width;
6372         intel_crtc->cursor_height = height;
6373
6374         intel_crtc_update_cursor(crtc, true);
6375
6376         return 0;
6377 fail_unpin:
6378         i915_gem_object_unpin(obj);
6379 fail_locked:
6380         mutex_unlock(&dev->struct_mutex);
6381 fail:
6382         drm_gem_object_unreference_unlocked(&obj->base);
6383         return ret;
6384 }
6385
6386 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6387 {
6388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6389
6390         intel_crtc->cursor_x = x;
6391         intel_crtc->cursor_y = y;
6392
6393         intel_crtc_update_cursor(crtc, true);
6394
6395         return 0;
6396 }
6397
6398 /** Sets the color ramps on behalf of RandR */
6399 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6400                                  u16 blue, int regno)
6401 {
6402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6403
6404         intel_crtc->lut_r[regno] = red >> 8;
6405         intel_crtc->lut_g[regno] = green >> 8;
6406         intel_crtc->lut_b[regno] = blue >> 8;
6407 }
6408
6409 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6410                              u16 *blue, int regno)
6411 {
6412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6413
6414         *red = intel_crtc->lut_r[regno] << 8;
6415         *green = intel_crtc->lut_g[regno] << 8;
6416         *blue = intel_crtc->lut_b[regno] << 8;
6417 }
6418
6419 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6420                                  u16 *blue, uint32_t start, uint32_t size)
6421 {
6422         int end = (start + size > 256) ? 256 : start + size, i;
6423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6424
6425         for (i = start; i < end; i++) {
6426                 intel_crtc->lut_r[i] = red[i] >> 8;
6427                 intel_crtc->lut_g[i] = green[i] >> 8;
6428                 intel_crtc->lut_b[i] = blue[i] >> 8;
6429         }
6430
6431         intel_crtc_load_lut(crtc);
6432 }
6433
6434 /* VESA 640x480x72Hz mode to set on the pipe */
6435 static struct drm_display_mode load_detect_mode = {
6436         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6437                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6438 };
6439
6440 static struct drm_framebuffer *
6441 intel_framebuffer_create(struct drm_device *dev,
6442                          struct drm_mode_fb_cmd2 *mode_cmd,
6443                          struct drm_i915_gem_object *obj)
6444 {
6445         struct intel_framebuffer *intel_fb;
6446         int ret;
6447
6448         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6449         if (!intel_fb) {
6450                 drm_gem_object_unreference_unlocked(&obj->base);
6451                 return ERR_PTR(-ENOMEM);
6452         }
6453
6454         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6455         if (ret) {
6456                 drm_gem_object_unreference_unlocked(&obj->base);
6457                 kfree(intel_fb);
6458                 return ERR_PTR(ret);
6459         }
6460
6461         return &intel_fb->base;
6462 }
6463
6464 static u32
6465 intel_framebuffer_pitch_for_width(int width, int bpp)
6466 {
6467         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6468         return ALIGN(pitch, 64);
6469 }
6470
6471 static u32
6472 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6473 {
6474         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6475         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6476 }
6477
6478 static struct drm_framebuffer *
6479 intel_framebuffer_create_for_mode(struct drm_device *dev,
6480                                   struct drm_display_mode *mode,
6481                                   int depth, int bpp)
6482 {
6483         struct drm_i915_gem_object *obj;
6484         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6485
6486         obj = i915_gem_alloc_object(dev,
6487                                     intel_framebuffer_size_for_mode(mode, bpp));
6488         if (obj == NULL)
6489                 return ERR_PTR(-ENOMEM);
6490
6491         mode_cmd.width = mode->hdisplay;
6492         mode_cmd.height = mode->vdisplay;
6493         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6494                                                                 bpp);
6495         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6496
6497         return intel_framebuffer_create(dev, &mode_cmd, obj);
6498 }
6499
6500 static struct drm_framebuffer *
6501 mode_fits_in_fbdev(struct drm_device *dev,
6502                    struct drm_display_mode *mode)
6503 {
6504         struct drm_i915_private *dev_priv = dev->dev_private;
6505         struct drm_i915_gem_object *obj;
6506         struct drm_framebuffer *fb;
6507
6508         if (dev_priv->fbdev == NULL)
6509                 return NULL;
6510
6511         obj = dev_priv->fbdev->ifb.obj;
6512         if (obj == NULL)
6513                 return NULL;
6514
6515         fb = &dev_priv->fbdev->ifb.base;
6516         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6517                                                                fb->bits_per_pixel))
6518                 return NULL;
6519
6520         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6521                 return NULL;
6522
6523         return fb;
6524 }
6525
6526 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6527                                 struct drm_display_mode *mode,
6528                                 struct intel_load_detect_pipe *old)
6529 {
6530         struct intel_crtc *intel_crtc;
6531         struct intel_encoder *intel_encoder =
6532                 intel_attached_encoder(connector);
6533         struct drm_crtc *possible_crtc;
6534         struct drm_encoder *encoder = &intel_encoder->base;
6535         struct drm_crtc *crtc = NULL;
6536         struct drm_device *dev = encoder->dev;
6537         struct drm_framebuffer *fb;
6538         int i = -1;
6539
6540         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6541                       connector->base.id, drm_get_connector_name(connector),
6542                       encoder->base.id, drm_get_encoder_name(encoder));
6543
6544         /*
6545          * Algorithm gets a little messy:
6546          *
6547          *   - if the connector already has an assigned crtc, use it (but make
6548          *     sure it's on first)
6549          *
6550          *   - try to find the first unused crtc that can drive this connector,
6551          *     and use that if we find one
6552          */
6553
6554         /* See if we already have a CRTC for this connector */
6555         if (encoder->crtc) {
6556                 crtc = encoder->crtc;
6557
6558                 mutex_lock(&crtc->mutex);
6559
6560                 old->dpms_mode = connector->dpms;
6561                 old->load_detect_temp = false;
6562
6563                 /* Make sure the crtc and connector are running */
6564                 if (connector->dpms != DRM_MODE_DPMS_ON)
6565                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6566
6567                 return true;
6568         }
6569
6570         /* Find an unused one (if possible) */
6571         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6572                 i++;
6573                 if (!(encoder->possible_crtcs & (1 << i)))
6574                         continue;
6575                 if (!possible_crtc->enabled) {
6576                         crtc = possible_crtc;
6577                         break;
6578                 }
6579         }
6580
6581         /*
6582          * If we didn't find an unused CRTC, don't use any.
6583          */
6584         if (!crtc) {
6585                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6586                 return false;
6587         }
6588
6589         mutex_lock(&crtc->mutex);
6590         intel_encoder->new_crtc = to_intel_crtc(crtc);
6591         to_intel_connector(connector)->new_encoder = intel_encoder;
6592
6593         intel_crtc = to_intel_crtc(crtc);
6594         old->dpms_mode = connector->dpms;
6595         old->load_detect_temp = true;
6596         old->release_fb = NULL;
6597
6598         if (!mode)
6599                 mode = &load_detect_mode;
6600
6601         /* We need a framebuffer large enough to accommodate all accesses
6602          * that the plane may generate whilst we perform load detection.
6603          * We can not rely on the fbcon either being present (we get called
6604          * during its initialisation to detect all boot displays, or it may
6605          * not even exist) or that it is large enough to satisfy the
6606          * requested mode.
6607          */
6608         fb = mode_fits_in_fbdev(dev, mode);
6609         if (fb == NULL) {
6610                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6611                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6612                 old->release_fb = fb;
6613         } else
6614                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6615         if (IS_ERR(fb)) {
6616                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6617                 mutex_unlock(&crtc->mutex);
6618                 return false;
6619         }
6620
6621         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6622                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6623                 if (old->release_fb)
6624                         old->release_fb->funcs->destroy(old->release_fb);
6625                 mutex_unlock(&crtc->mutex);
6626                 return false;
6627         }
6628
6629         /* let the connector get through one full cycle before testing */
6630         intel_wait_for_vblank(dev, intel_crtc->pipe);
6631         return true;
6632 }
6633
6634 void intel_release_load_detect_pipe(struct drm_connector *connector,
6635                                     struct intel_load_detect_pipe *old)
6636 {
6637         struct intel_encoder *intel_encoder =
6638                 intel_attached_encoder(connector);
6639         struct drm_encoder *encoder = &intel_encoder->base;
6640         struct drm_crtc *crtc = encoder->crtc;
6641
6642         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6643                       connector->base.id, drm_get_connector_name(connector),
6644                       encoder->base.id, drm_get_encoder_name(encoder));
6645
6646         if (old->load_detect_temp) {
6647                 to_intel_connector(connector)->new_encoder = NULL;
6648                 intel_encoder->new_crtc = NULL;
6649                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6650
6651                 if (old->release_fb) {
6652                         drm_framebuffer_unregister_private(old->release_fb);
6653                         drm_framebuffer_unreference(old->release_fb);
6654                 }
6655
6656                 mutex_unlock(&crtc->mutex);
6657                 return;
6658         }
6659
6660         /* Switch crtc and encoder back off if necessary */
6661         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6662                 connector->funcs->dpms(connector, old->dpms_mode);
6663
6664         mutex_unlock(&crtc->mutex);
6665 }
6666
6667 /* Returns the clock of the currently programmed mode of the given pipe. */
6668 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6669 {
6670         struct drm_i915_private *dev_priv = dev->dev_private;
6671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6672         int pipe = intel_crtc->pipe;
6673         u32 dpll = I915_READ(DPLL(pipe));
6674         u32 fp;
6675         intel_clock_t clock;
6676
6677         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6678                 fp = I915_READ(FP0(pipe));
6679         else
6680                 fp = I915_READ(FP1(pipe));
6681
6682         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6683         if (IS_PINEVIEW(dev)) {
6684                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6685                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6686         } else {
6687                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6688                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6689         }
6690
6691         if (!IS_GEN2(dev)) {
6692                 if (IS_PINEVIEW(dev))
6693                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6694                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6695                 else
6696                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6697                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6698
6699                 switch (dpll & DPLL_MODE_MASK) {
6700                 case DPLLB_MODE_DAC_SERIAL:
6701                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6702                                 5 : 10;
6703                         break;
6704                 case DPLLB_MODE_LVDS:
6705                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6706                                 7 : 14;
6707                         break;
6708                 default:
6709                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6710                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6711                         return 0;
6712                 }
6713
6714                 /* XXX: Handle the 100Mhz refclk */
6715                 intel_clock(dev, 96000, &clock);
6716         } else {
6717                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6718
6719                 if (is_lvds) {
6720                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6721                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6722                         clock.p2 = 14;
6723
6724                         if ((dpll & PLL_REF_INPUT_MASK) ==
6725                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6726                                 /* XXX: might not be 66MHz */
6727                                 intel_clock(dev, 66000, &clock);
6728                         } else
6729                                 intel_clock(dev, 48000, &clock);
6730                 } else {
6731                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6732                                 clock.p1 = 2;
6733                         else {
6734                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6735                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6736                         }
6737                         if (dpll & PLL_P2_DIVIDE_BY_4)
6738                                 clock.p2 = 4;
6739                         else
6740                                 clock.p2 = 2;
6741
6742                         intel_clock(dev, 48000, &clock);
6743                 }
6744         }
6745
6746         /* XXX: It would be nice to validate the clocks, but we can't reuse
6747          * i830PllIsValid() because it relies on the xf86_config connector
6748          * configuration being accurate, which it isn't necessarily.
6749          */
6750
6751         return clock.dot;
6752 }
6753
6754 /** Returns the currently programmed mode of the given pipe. */
6755 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6756                                              struct drm_crtc *crtc)
6757 {
6758         struct drm_i915_private *dev_priv = dev->dev_private;
6759         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6760         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6761         struct drm_display_mode *mode;
6762         int htot = I915_READ(HTOTAL(cpu_transcoder));
6763         int hsync = I915_READ(HSYNC(cpu_transcoder));
6764         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6765         int vsync = I915_READ(VSYNC(cpu_transcoder));
6766
6767         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6768         if (!mode)
6769                 return NULL;
6770
6771         mode->clock = intel_crtc_clock_get(dev, crtc);
6772         mode->hdisplay = (htot & 0xffff) + 1;
6773         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6774         mode->hsync_start = (hsync & 0xffff) + 1;
6775         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6776         mode->vdisplay = (vtot & 0xffff) + 1;
6777         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6778         mode->vsync_start = (vsync & 0xffff) + 1;
6779         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6780
6781         drm_mode_set_name(mode);
6782
6783         return mode;
6784 }
6785
6786 static void intel_increase_pllclock(struct drm_crtc *crtc)
6787 {
6788         struct drm_device *dev = crtc->dev;
6789         drm_i915_private_t *dev_priv = dev->dev_private;
6790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6791         int pipe = intel_crtc->pipe;
6792         int dpll_reg = DPLL(pipe);
6793         int dpll;
6794
6795         if (HAS_PCH_SPLIT(dev))
6796                 return;
6797
6798         if (!dev_priv->lvds_downclock_avail)
6799                 return;
6800
6801         dpll = I915_READ(dpll_reg);
6802         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6803                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6804
6805                 assert_panel_unlocked(dev_priv, pipe);
6806
6807                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6808                 I915_WRITE(dpll_reg, dpll);
6809                 intel_wait_for_vblank(dev, pipe);
6810
6811                 dpll = I915_READ(dpll_reg);
6812                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6813                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6814         }
6815 }
6816
6817 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6818 {
6819         struct drm_device *dev = crtc->dev;
6820         drm_i915_private_t *dev_priv = dev->dev_private;
6821         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6822
6823         if (HAS_PCH_SPLIT(dev))
6824                 return;
6825
6826         if (!dev_priv->lvds_downclock_avail)
6827                 return;
6828
6829         /*
6830          * Since this is called by a timer, we should never get here in
6831          * the manual case.
6832          */
6833         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6834                 int pipe = intel_crtc->pipe;
6835                 int dpll_reg = DPLL(pipe);
6836                 int dpll;
6837
6838                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6839
6840                 assert_panel_unlocked(dev_priv, pipe);
6841
6842                 dpll = I915_READ(dpll_reg);
6843                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6844                 I915_WRITE(dpll_reg, dpll);
6845                 intel_wait_for_vblank(dev, pipe);
6846                 dpll = I915_READ(dpll_reg);
6847                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6848                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6849         }
6850
6851 }
6852
6853 void intel_mark_busy(struct drm_device *dev)
6854 {
6855         i915_update_gfx_val(dev->dev_private);
6856 }
6857
6858 void intel_mark_idle(struct drm_device *dev)
6859 {
6860         struct drm_crtc *crtc;
6861
6862         if (!i915_powersave)
6863                 return;
6864
6865         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6866                 if (!crtc->fb)
6867                         continue;
6868
6869                 intel_decrease_pllclock(crtc);
6870         }
6871 }
6872
6873 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6874 {
6875         struct drm_device *dev = obj->base.dev;
6876         struct drm_crtc *crtc;
6877
6878         if (!i915_powersave)
6879                 return;
6880
6881         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6882                 if (!crtc->fb)
6883                         continue;
6884
6885                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6886                         intel_increase_pllclock(crtc);
6887         }
6888 }
6889
6890 static void intel_crtc_destroy(struct drm_crtc *crtc)
6891 {
6892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6893         struct drm_device *dev = crtc->dev;
6894         struct intel_unpin_work *work;
6895         unsigned long flags;
6896
6897         spin_lock_irqsave(&dev->event_lock, flags);
6898         work = intel_crtc->unpin_work;
6899         intel_crtc->unpin_work = NULL;
6900         spin_unlock_irqrestore(&dev->event_lock, flags);
6901
6902         if (work) {
6903                 cancel_work_sync(&work->work);
6904                 kfree(work);
6905         }
6906
6907         drm_crtc_cleanup(crtc);
6908
6909         kfree(intel_crtc);
6910 }
6911
6912 static void intel_unpin_work_fn(struct work_struct *__work)
6913 {
6914         struct intel_unpin_work *work =
6915                 container_of(__work, struct intel_unpin_work, work);
6916         struct drm_device *dev = work->crtc->dev;
6917
6918         mutex_lock(&dev->struct_mutex);
6919         intel_unpin_fb_obj(work->old_fb_obj);
6920         drm_gem_object_unreference(&work->pending_flip_obj->base);
6921         drm_gem_object_unreference(&work->old_fb_obj->base);
6922
6923         intel_update_fbc(dev);
6924         mutex_unlock(&dev->struct_mutex);
6925
6926         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6927         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6928
6929         kfree(work);
6930 }
6931
6932 static void do_intel_finish_page_flip(struct drm_device *dev,
6933                                       struct drm_crtc *crtc)
6934 {
6935         drm_i915_private_t *dev_priv = dev->dev_private;
6936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937         struct intel_unpin_work *work;
6938         unsigned long flags;
6939
6940         /* Ignore early vblank irqs */
6941         if (intel_crtc == NULL)
6942                 return;
6943
6944         spin_lock_irqsave(&dev->event_lock, flags);
6945         work = intel_crtc->unpin_work;
6946
6947         /* Ensure we don't miss a work->pending update ... */
6948         smp_rmb();
6949
6950         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6951                 spin_unlock_irqrestore(&dev->event_lock, flags);
6952                 return;
6953         }
6954
6955         /* and that the unpin work is consistent wrt ->pending. */
6956         smp_rmb();
6957
6958         intel_crtc->unpin_work = NULL;
6959
6960         if (work->event)
6961                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6962
6963         drm_vblank_put(dev, intel_crtc->pipe);
6964
6965         spin_unlock_irqrestore(&dev->event_lock, flags);
6966
6967         wake_up_all(&dev_priv->pending_flip_queue);
6968
6969         queue_work(dev_priv->wq, &work->work);
6970
6971         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6972 }
6973
6974 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6975 {
6976         drm_i915_private_t *dev_priv = dev->dev_private;
6977         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6978
6979         do_intel_finish_page_flip(dev, crtc);
6980 }
6981
6982 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6983 {
6984         drm_i915_private_t *dev_priv = dev->dev_private;
6985         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6986
6987         do_intel_finish_page_flip(dev, crtc);
6988 }
6989
6990 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6991 {
6992         drm_i915_private_t *dev_priv = dev->dev_private;
6993         struct intel_crtc *intel_crtc =
6994                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6995         unsigned long flags;
6996
6997         /* NB: An MMIO update of the plane base pointer will also
6998          * generate a page-flip completion irq, i.e. every modeset
6999          * is also accompanied by a spurious intel_prepare_page_flip().
7000          */
7001         spin_lock_irqsave(&dev->event_lock, flags);
7002         if (intel_crtc->unpin_work)
7003                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7004         spin_unlock_irqrestore(&dev->event_lock, flags);
7005 }
7006
7007 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7008 {
7009         /* Ensure that the work item is consistent when activating it ... */
7010         smp_wmb();
7011         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7012         /* and that it is marked active as soon as the irq could fire. */
7013         smp_wmb();
7014 }
7015
7016 static int intel_gen2_queue_flip(struct drm_device *dev,
7017                                  struct drm_crtc *crtc,
7018                                  struct drm_framebuffer *fb,
7019                                  struct drm_i915_gem_object *obj)
7020 {
7021         struct drm_i915_private *dev_priv = dev->dev_private;
7022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7023         u32 flip_mask;
7024         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7025         int ret;
7026
7027         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7028         if (ret)
7029                 goto err;
7030
7031         ret = intel_ring_begin(ring, 6);
7032         if (ret)
7033                 goto err_unpin;
7034
7035         /* Can't queue multiple flips, so wait for the previous
7036          * one to finish before executing the next.
7037          */
7038         if (intel_crtc->plane)
7039                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7040         else
7041                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7042         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7043         intel_ring_emit(ring, MI_NOOP);
7044         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7045                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7046         intel_ring_emit(ring, fb->pitches[0]);
7047         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7048         intel_ring_emit(ring, 0); /* aux display base address, unused */
7049
7050         intel_mark_page_flip_active(intel_crtc);
7051         intel_ring_advance(ring);
7052         return 0;
7053
7054 err_unpin:
7055         intel_unpin_fb_obj(obj);
7056 err:
7057         return ret;
7058 }
7059
7060 static int intel_gen3_queue_flip(struct drm_device *dev,
7061                                  struct drm_crtc *crtc,
7062                                  struct drm_framebuffer *fb,
7063                                  struct drm_i915_gem_object *obj)
7064 {
7065         struct drm_i915_private *dev_priv = dev->dev_private;
7066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7067         u32 flip_mask;
7068         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7069         int ret;
7070
7071         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7072         if (ret)
7073                 goto err;
7074
7075         ret = intel_ring_begin(ring, 6);
7076         if (ret)
7077                 goto err_unpin;
7078
7079         if (intel_crtc->plane)
7080                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7081         else
7082                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7083         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7084         intel_ring_emit(ring, MI_NOOP);
7085         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7086                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7087         intel_ring_emit(ring, fb->pitches[0]);
7088         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7089         intel_ring_emit(ring, MI_NOOP);
7090
7091         intel_mark_page_flip_active(intel_crtc);
7092         intel_ring_advance(ring);
7093         return 0;
7094
7095 err_unpin:
7096         intel_unpin_fb_obj(obj);
7097 err:
7098         return ret;
7099 }
7100
7101 static int intel_gen4_queue_flip(struct drm_device *dev,
7102                                  struct drm_crtc *crtc,
7103                                  struct drm_framebuffer *fb,
7104                                  struct drm_i915_gem_object *obj)
7105 {
7106         struct drm_i915_private *dev_priv = dev->dev_private;
7107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7108         uint32_t pf, pipesrc;
7109         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7110         int ret;
7111
7112         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7113         if (ret)
7114                 goto err;
7115
7116         ret = intel_ring_begin(ring, 4);
7117         if (ret)
7118                 goto err_unpin;
7119
7120         /* i965+ uses the linear or tiled offsets from the
7121          * Display Registers (which do not change across a page-flip)
7122          * so we need only reprogram the base address.
7123          */
7124         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7125                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7126         intel_ring_emit(ring, fb->pitches[0]);
7127         intel_ring_emit(ring,
7128                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7129                         obj->tiling_mode);
7130
7131         /* XXX Enabling the panel-fitter across page-flip is so far
7132          * untested on non-native modes, so ignore it for now.
7133          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7134          */
7135         pf = 0;
7136         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7137         intel_ring_emit(ring, pf | pipesrc);
7138
7139         intel_mark_page_flip_active(intel_crtc);
7140         intel_ring_advance(ring);
7141         return 0;
7142
7143 err_unpin:
7144         intel_unpin_fb_obj(obj);
7145 err:
7146         return ret;
7147 }
7148
7149 static int intel_gen6_queue_flip(struct drm_device *dev,
7150                                  struct drm_crtc *crtc,
7151                                  struct drm_framebuffer *fb,
7152                                  struct drm_i915_gem_object *obj)
7153 {
7154         struct drm_i915_private *dev_priv = dev->dev_private;
7155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7156         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7157         uint32_t pf, pipesrc;
7158         int ret;
7159
7160         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7161         if (ret)
7162                 goto err;
7163
7164         ret = intel_ring_begin(ring, 4);
7165         if (ret)
7166                 goto err_unpin;
7167
7168         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7169                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7170         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7171         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7172
7173         /* Contrary to the suggestions in the documentation,
7174          * "Enable Panel Fitter" does not seem to be required when page
7175          * flipping with a non-native mode, and worse causes a normal
7176          * modeset to fail.
7177          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7178          */
7179         pf = 0;
7180         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7181         intel_ring_emit(ring, pf | pipesrc);
7182
7183         intel_mark_page_flip_active(intel_crtc);
7184         intel_ring_advance(ring);
7185         return 0;
7186
7187 err_unpin:
7188         intel_unpin_fb_obj(obj);
7189 err:
7190         return ret;
7191 }
7192
7193 /*
7194  * On gen7 we currently use the blit ring because (in early silicon at least)
7195  * the render ring doesn't give us interrpts for page flip completion, which
7196  * means clients will hang after the first flip is queued.  Fortunately the
7197  * blit ring generates interrupts properly, so use it instead.
7198  */
7199 static int intel_gen7_queue_flip(struct drm_device *dev,
7200                                  struct drm_crtc *crtc,
7201                                  struct drm_framebuffer *fb,
7202                                  struct drm_i915_gem_object *obj)
7203 {
7204         struct drm_i915_private *dev_priv = dev->dev_private;
7205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7206         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7207         uint32_t plane_bit = 0;
7208         int ret;
7209
7210         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7211         if (ret)
7212                 goto err;
7213
7214         switch(intel_crtc->plane) {
7215         case PLANE_A:
7216                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7217                 break;
7218         case PLANE_B:
7219                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7220                 break;
7221         case PLANE_C:
7222                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7223                 break;
7224         default:
7225                 WARN_ONCE(1, "unknown plane in flip command\n");
7226                 ret = -ENODEV;
7227                 goto err_unpin;
7228         }
7229
7230         ret = intel_ring_begin(ring, 4);
7231         if (ret)
7232                 goto err_unpin;
7233
7234         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7235         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7236         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7237         intel_ring_emit(ring, (MI_NOOP));
7238
7239         intel_mark_page_flip_active(intel_crtc);
7240         intel_ring_advance(ring);
7241         return 0;
7242
7243 err_unpin:
7244         intel_unpin_fb_obj(obj);
7245 err:
7246         return ret;
7247 }
7248
7249 static int intel_default_queue_flip(struct drm_device *dev,
7250                                     struct drm_crtc *crtc,
7251                                     struct drm_framebuffer *fb,
7252                                     struct drm_i915_gem_object *obj)
7253 {
7254         return -ENODEV;
7255 }
7256
7257 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7258                                 struct drm_framebuffer *fb,
7259                                 struct drm_pending_vblank_event *event)
7260 {
7261         struct drm_device *dev = crtc->dev;
7262         struct drm_i915_private *dev_priv = dev->dev_private;
7263         struct drm_framebuffer *old_fb = crtc->fb;
7264         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7266         struct intel_unpin_work *work;
7267         unsigned long flags;
7268         int ret;
7269
7270         /* Can't change pixel format via MI display flips. */
7271         if (fb->pixel_format != crtc->fb->pixel_format)
7272                 return -EINVAL;
7273
7274         /*
7275          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7276          * Note that pitch changes could also affect these register.
7277          */
7278         if (INTEL_INFO(dev)->gen > 3 &&
7279             (fb->offsets[0] != crtc->fb->offsets[0] ||
7280              fb->pitches[0] != crtc->fb->pitches[0]))
7281                 return -EINVAL;
7282
7283         work = kzalloc(sizeof *work, GFP_KERNEL);
7284         if (work == NULL)
7285                 return -ENOMEM;
7286
7287         work->event = event;
7288         work->crtc = crtc;
7289         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7290         INIT_WORK(&work->work, intel_unpin_work_fn);
7291
7292         ret = drm_vblank_get(dev, intel_crtc->pipe);
7293         if (ret)
7294                 goto free_work;
7295
7296         /* We borrow the event spin lock for protecting unpin_work */
7297         spin_lock_irqsave(&dev->event_lock, flags);
7298         if (intel_crtc->unpin_work) {
7299                 spin_unlock_irqrestore(&dev->event_lock, flags);
7300                 kfree(work);
7301                 drm_vblank_put(dev, intel_crtc->pipe);
7302
7303                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7304                 return -EBUSY;
7305         }
7306         intel_crtc->unpin_work = work;
7307         spin_unlock_irqrestore(&dev->event_lock, flags);
7308
7309         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7310                 flush_workqueue(dev_priv->wq);
7311
7312         ret = i915_mutex_lock_interruptible(dev);
7313         if (ret)
7314                 goto cleanup;
7315
7316         /* Reference the objects for the scheduled work. */
7317         drm_gem_object_reference(&work->old_fb_obj->base);
7318         drm_gem_object_reference(&obj->base);
7319
7320         crtc->fb = fb;
7321
7322         work->pending_flip_obj = obj;
7323
7324         work->enable_stall_check = true;
7325
7326         atomic_inc(&intel_crtc->unpin_work_count);
7327         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7328
7329         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7330         if (ret)
7331                 goto cleanup_pending;
7332
7333         intel_disable_fbc(dev);
7334         intel_mark_fb_busy(obj);
7335         mutex_unlock(&dev->struct_mutex);
7336
7337         trace_i915_flip_request(intel_crtc->plane, obj);
7338
7339         return 0;
7340
7341 cleanup_pending:
7342         atomic_dec(&intel_crtc->unpin_work_count);
7343         crtc->fb = old_fb;
7344         drm_gem_object_unreference(&work->old_fb_obj->base);
7345         drm_gem_object_unreference(&obj->base);
7346         mutex_unlock(&dev->struct_mutex);
7347
7348 cleanup:
7349         spin_lock_irqsave(&dev->event_lock, flags);
7350         intel_crtc->unpin_work = NULL;
7351         spin_unlock_irqrestore(&dev->event_lock, flags);
7352
7353         drm_vblank_put(dev, intel_crtc->pipe);
7354 free_work:
7355         kfree(work);
7356
7357         return ret;
7358 }
7359
7360 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7361         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7362         .load_lut = intel_crtc_load_lut,
7363 };
7364
7365 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7366 {
7367         struct intel_encoder *other_encoder;
7368         struct drm_crtc *crtc = &encoder->new_crtc->base;
7369
7370         if (WARN_ON(!crtc))
7371                 return false;
7372
7373         list_for_each_entry(other_encoder,
7374                             &crtc->dev->mode_config.encoder_list,
7375                             base.head) {
7376
7377                 if (&other_encoder->new_crtc->base != crtc ||
7378                     encoder == other_encoder)
7379                         continue;
7380                 else
7381                         return true;
7382         }
7383
7384         return false;
7385 }
7386
7387 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7388                                   struct drm_crtc *crtc)
7389 {
7390         struct drm_device *dev;
7391         struct drm_crtc *tmp;
7392         int crtc_mask = 1;
7393
7394         WARN(!crtc, "checking null crtc?\n");
7395
7396         dev = crtc->dev;
7397
7398         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7399                 if (tmp == crtc)
7400                         break;
7401                 crtc_mask <<= 1;
7402         }
7403
7404         if (encoder->possible_crtcs & crtc_mask)
7405                 return true;
7406         return false;
7407 }
7408
7409 /**
7410  * intel_modeset_update_staged_output_state
7411  *
7412  * Updates the staged output configuration state, e.g. after we've read out the
7413  * current hw state.
7414  */
7415 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7416 {
7417         struct intel_encoder *encoder;
7418         struct intel_connector *connector;
7419
7420         list_for_each_entry(connector, &dev->mode_config.connector_list,
7421                             base.head) {
7422                 connector->new_encoder =
7423                         to_intel_encoder(connector->base.encoder);
7424         }
7425
7426         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7427                             base.head) {
7428                 encoder->new_crtc =
7429                         to_intel_crtc(encoder->base.crtc);
7430         }
7431 }
7432
7433 /**
7434  * intel_modeset_commit_output_state
7435  *
7436  * This function copies the stage display pipe configuration to the real one.
7437  */
7438 static void intel_modeset_commit_output_state(struct drm_device *dev)
7439 {
7440         struct intel_encoder *encoder;
7441         struct intel_connector *connector;
7442
7443         list_for_each_entry(connector, &dev->mode_config.connector_list,
7444                             base.head) {
7445                 connector->base.encoder = &connector->new_encoder->base;
7446         }
7447
7448         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7449                             base.head) {
7450                 encoder->base.crtc = &encoder->new_crtc->base;
7451         }
7452 }
7453
7454 static int
7455 pipe_config_set_bpp(struct drm_crtc *crtc,
7456                     struct drm_framebuffer *fb,
7457                     struct intel_crtc_config *pipe_config)
7458 {
7459         struct drm_device *dev = crtc->dev;
7460         struct drm_connector *connector;
7461         int bpp;
7462
7463         switch (fb->pixel_format) {
7464         case DRM_FORMAT_C8:
7465                 bpp = 8*3; /* since we go through a colormap */
7466                 break;
7467         case DRM_FORMAT_XRGB1555:
7468         case DRM_FORMAT_ARGB1555:
7469                 /* checked in intel_framebuffer_init already */
7470                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7471                         return -EINVAL;
7472         case DRM_FORMAT_RGB565:
7473                 bpp = 6*3; /* min is 18bpp */
7474                 break;
7475         case DRM_FORMAT_XBGR8888:
7476         case DRM_FORMAT_ABGR8888:
7477                 /* checked in intel_framebuffer_init already */
7478                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7479                         return -EINVAL;
7480         case DRM_FORMAT_XRGB8888:
7481         case DRM_FORMAT_ARGB8888:
7482                 bpp = 8*3;
7483                 break;
7484         case DRM_FORMAT_XRGB2101010:
7485         case DRM_FORMAT_ARGB2101010:
7486         case DRM_FORMAT_XBGR2101010:
7487         case DRM_FORMAT_ABGR2101010:
7488                 /* checked in intel_framebuffer_init already */
7489                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7490                         return -EINVAL;
7491                 bpp = 10*3;
7492                 break;
7493         /* TODO: gen4+ supports 16 bpc floating point, too. */
7494         default:
7495                 DRM_DEBUG_KMS("unsupported depth\n");
7496                 return -EINVAL;
7497         }
7498
7499         pipe_config->pipe_bpp = bpp;
7500
7501         /* Clamp display bpp to EDID value */
7502         list_for_each_entry(connector, &dev->mode_config.connector_list,
7503                             head) {
7504                 if (connector->encoder && connector->encoder->crtc != crtc)
7505                         continue;
7506
7507                 /* Don't use an invalid EDID bpc value */
7508                 if (connector->display_info.bpc &&
7509                     connector->display_info.bpc * 3 < bpp) {
7510                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7511                                       bpp, connector->display_info.bpc*3);
7512                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7513                 }
7514         }
7515
7516         return bpp;
7517 }
7518
7519 static struct intel_crtc_config *
7520 intel_modeset_pipe_config(struct drm_crtc *crtc,
7521                           struct drm_framebuffer *fb,
7522                           struct drm_display_mode *mode)
7523 {
7524         struct drm_device *dev = crtc->dev;
7525         struct drm_encoder_helper_funcs *encoder_funcs;
7526         struct intel_encoder *encoder;
7527         struct intel_crtc_config *pipe_config;
7528         int plane_bpp;
7529
7530         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7531         if (!pipe_config)
7532                 return ERR_PTR(-ENOMEM);
7533
7534         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7535         drm_mode_copy(&pipe_config->requested_mode, mode);
7536
7537         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7538         if (plane_bpp < 0)
7539                 goto fail;
7540
7541         /* Pass our mode to the connectors and the CRTC to give them a chance to
7542          * adjust it according to limitations or connector properties, and also
7543          * a chance to reject the mode entirely.
7544          */
7545         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7546                             base.head) {
7547
7548                 if (&encoder->new_crtc->base != crtc)
7549                         continue;
7550
7551                 if (encoder->compute_config) {
7552                         if (!(encoder->compute_config(encoder, pipe_config))) {
7553                                 DRM_DEBUG_KMS("Encoder config failure\n");
7554                                 goto fail;
7555                         }
7556
7557                         continue;
7558                 }
7559
7560                 encoder_funcs = encoder->base.helper_private;
7561                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7562                                                 &pipe_config->requested_mode,
7563                                                 &pipe_config->adjusted_mode))) {
7564                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7565                         goto fail;
7566                 }
7567         }
7568
7569         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7570                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7571                 goto fail;
7572         }
7573         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7574
7575         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7576         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7577                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7578
7579         return pipe_config;
7580 fail:
7581         kfree(pipe_config);
7582         return ERR_PTR(-EINVAL);
7583 }
7584
7585 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7586  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7587 static void
7588 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7589                              unsigned *prepare_pipes, unsigned *disable_pipes)
7590 {
7591         struct intel_crtc *intel_crtc;
7592         struct drm_device *dev = crtc->dev;
7593         struct intel_encoder *encoder;
7594         struct intel_connector *connector;
7595         struct drm_crtc *tmp_crtc;
7596
7597         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7598
7599         /* Check which crtcs have changed outputs connected to them, these need
7600          * to be part of the prepare_pipes mask. We don't (yet) support global
7601          * modeset across multiple crtcs, so modeset_pipes will only have one
7602          * bit set at most. */
7603         list_for_each_entry(connector, &dev->mode_config.connector_list,
7604                             base.head) {
7605                 if (connector->base.encoder == &connector->new_encoder->base)
7606                         continue;
7607
7608                 if (connector->base.encoder) {
7609                         tmp_crtc = connector->base.encoder->crtc;
7610
7611                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7612                 }
7613
7614                 if (connector->new_encoder)
7615                         *prepare_pipes |=
7616                                 1 << connector->new_encoder->new_crtc->pipe;
7617         }
7618
7619         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7620                             base.head) {
7621                 if (encoder->base.crtc == &encoder->new_crtc->base)
7622                         continue;
7623
7624                 if (encoder->base.crtc) {
7625                         tmp_crtc = encoder->base.crtc;
7626
7627                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7628                 }
7629
7630                 if (encoder->new_crtc)
7631                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7632         }
7633
7634         /* Check for any pipes that will be fully disabled ... */
7635         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7636                             base.head) {
7637                 bool used = false;
7638
7639                 /* Don't try to disable disabled crtcs. */
7640                 if (!intel_crtc->base.enabled)
7641                         continue;
7642
7643                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7644                                     base.head) {
7645                         if (encoder->new_crtc == intel_crtc)
7646                                 used = true;
7647                 }
7648
7649                 if (!used)
7650                         *disable_pipes |= 1 << intel_crtc->pipe;
7651         }
7652
7653
7654         /* set_mode is also used to update properties on life display pipes. */
7655         intel_crtc = to_intel_crtc(crtc);
7656         if (crtc->enabled)
7657                 *prepare_pipes |= 1 << intel_crtc->pipe;
7658
7659         /* We only support modeset on one single crtc, hence we need to do that
7660          * only for the passed in crtc iff we change anything else than just
7661          * disable crtcs.
7662          *
7663          * This is actually not true, to be fully compatible with the old crtc
7664          * helper we automatically disable _any_ output (i.e. doesn't need to be
7665          * connected to the crtc we're modesetting on) if it's disconnected.
7666          * Which is a rather nutty api (since changed the output configuration
7667          * without userspace's explicit request can lead to confusion), but
7668          * alas. Hence we currently need to modeset on all pipes we prepare. */
7669         if (*prepare_pipes)
7670                 *modeset_pipes = *prepare_pipes;
7671
7672         /* ... and mask these out. */
7673         *modeset_pipes &= ~(*disable_pipes);
7674         *prepare_pipes &= ~(*disable_pipes);
7675 }
7676
7677 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7678 {
7679         struct drm_encoder *encoder;
7680         struct drm_device *dev = crtc->dev;
7681
7682         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7683                 if (encoder->crtc == crtc)
7684                         return true;
7685
7686         return false;
7687 }
7688
7689 static void
7690 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7691 {
7692         struct intel_encoder *intel_encoder;
7693         struct intel_crtc *intel_crtc;
7694         struct drm_connector *connector;
7695
7696         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7697                             base.head) {
7698                 if (!intel_encoder->base.crtc)
7699                         continue;
7700
7701                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7702
7703                 if (prepare_pipes & (1 << intel_crtc->pipe))
7704                         intel_encoder->connectors_active = false;
7705         }
7706
7707         intel_modeset_commit_output_state(dev);
7708
7709         /* Update computed state. */
7710         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7711                             base.head) {
7712                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7713         }
7714
7715         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7716                 if (!connector->encoder || !connector->encoder->crtc)
7717                         continue;
7718
7719                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7720
7721                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7722                         struct drm_property *dpms_property =
7723                                 dev->mode_config.dpms_property;
7724
7725                         connector->dpms = DRM_MODE_DPMS_ON;
7726                         drm_object_property_set_value(&connector->base,
7727                                                          dpms_property,
7728                                                          DRM_MODE_DPMS_ON);
7729
7730                         intel_encoder = to_intel_encoder(connector->encoder);
7731                         intel_encoder->connectors_active = true;
7732                 }
7733         }
7734
7735 }
7736
7737 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7738         list_for_each_entry((intel_crtc), \
7739                             &(dev)->mode_config.crtc_list, \
7740                             base.head) \
7741                 if (mask & (1 <<(intel_crtc)->pipe)) \
7742
7743 void
7744 intel_modeset_check_state(struct drm_device *dev)
7745 {
7746         struct intel_crtc *crtc;
7747         struct intel_encoder *encoder;
7748         struct intel_connector *connector;
7749
7750         list_for_each_entry(connector, &dev->mode_config.connector_list,
7751                             base.head) {
7752                 /* This also checks the encoder/connector hw state with the
7753                  * ->get_hw_state callbacks. */
7754                 intel_connector_check_state(connector);
7755
7756                 WARN(&connector->new_encoder->base != connector->base.encoder,
7757                      "connector's staged encoder doesn't match current encoder\n");
7758         }
7759
7760         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7761                             base.head) {
7762                 bool enabled = false;
7763                 bool active = false;
7764                 enum pipe pipe, tracked_pipe;
7765
7766                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7767                               encoder->base.base.id,
7768                               drm_get_encoder_name(&encoder->base));
7769
7770                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7771                      "encoder's stage crtc doesn't match current crtc\n");
7772                 WARN(encoder->connectors_active && !encoder->base.crtc,
7773                      "encoder's active_connectors set, but no crtc\n");
7774
7775                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7776                                     base.head) {
7777                         if (connector->base.encoder != &encoder->base)
7778                                 continue;
7779                         enabled = true;
7780                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7781                                 active = true;
7782                 }
7783                 WARN(!!encoder->base.crtc != enabled,
7784                      "encoder's enabled state mismatch "
7785                      "(expected %i, found %i)\n",
7786                      !!encoder->base.crtc, enabled);
7787                 WARN(active && !encoder->base.crtc,
7788                      "active encoder with no crtc\n");
7789
7790                 WARN(encoder->connectors_active != active,
7791                      "encoder's computed active state doesn't match tracked active state "
7792                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7793
7794                 active = encoder->get_hw_state(encoder, &pipe);
7795                 WARN(active != encoder->connectors_active,
7796                      "encoder's hw state doesn't match sw tracking "
7797                      "(expected %i, found %i)\n",
7798                      encoder->connectors_active, active);
7799
7800                 if (!encoder->base.crtc)
7801                         continue;
7802
7803                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7804                 WARN(active && pipe != tracked_pipe,
7805                      "active encoder's pipe doesn't match"
7806                      "(expected %i, found %i)\n",
7807                      tracked_pipe, pipe);
7808
7809         }
7810
7811         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7812                             base.head) {
7813                 bool enabled = false;
7814                 bool active = false;
7815
7816                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7817                               crtc->base.base.id);
7818
7819                 WARN(crtc->active && !crtc->base.enabled,
7820                      "active crtc, but not enabled in sw tracking\n");
7821
7822                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7823                                     base.head) {
7824                         if (encoder->base.crtc != &crtc->base)
7825                                 continue;
7826                         enabled = true;
7827                         if (encoder->connectors_active)
7828                                 active = true;
7829                 }
7830                 WARN(active != crtc->active,
7831                      "crtc's computed active state doesn't match tracked active state "
7832                      "(expected %i, found %i)\n", active, crtc->active);
7833                 WARN(enabled != crtc->base.enabled,
7834                      "crtc's computed enabled state doesn't match tracked enabled state "
7835                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7836
7837                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7838         }
7839 }
7840
7841 int intel_set_mode(struct drm_crtc *crtc,
7842                    struct drm_display_mode *mode,
7843                    int x, int y, struct drm_framebuffer *fb)
7844 {
7845         struct drm_device *dev = crtc->dev;
7846         drm_i915_private_t *dev_priv = dev->dev_private;
7847         struct drm_display_mode *saved_mode, *saved_hwmode;
7848         struct intel_crtc_config *pipe_config = NULL;
7849         struct intel_crtc *intel_crtc;
7850         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7851         int ret = 0;
7852
7853         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7854         if (!saved_mode)
7855                 return -ENOMEM;
7856         saved_hwmode = saved_mode + 1;
7857
7858         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7859                                      &prepare_pipes, &disable_pipes);
7860
7861         *saved_hwmode = crtc->hwmode;
7862         *saved_mode = crtc->mode;
7863
7864         /* Hack: Because we don't (yet) support global modeset on multiple
7865          * crtcs, we don't keep track of the new mode for more than one crtc.
7866          * Hence simply check whether any bit is set in modeset_pipes in all the
7867          * pieces of code that are not yet converted to deal with mutliple crtcs
7868          * changing their mode at the same time. */
7869         if (modeset_pipes) {
7870                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7871                 if (IS_ERR(pipe_config)) {
7872                         ret = PTR_ERR(pipe_config);
7873                         pipe_config = NULL;
7874
7875                         goto out;
7876                 }
7877         }
7878
7879         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7880                       modeset_pipes, prepare_pipes, disable_pipes);
7881
7882         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7883                 intel_crtc_disable(&intel_crtc->base);
7884
7885         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7886                 if (intel_crtc->base.enabled)
7887                         dev_priv->display.crtc_disable(&intel_crtc->base);
7888         }
7889
7890         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7891          * to set it here already despite that we pass it down the callchain.
7892          */
7893         if (modeset_pipes) {
7894                 crtc->mode = *mode;
7895                 /* mode_set/enable/disable functions rely on a correct pipe
7896                  * config. */
7897                 to_intel_crtc(crtc)->config = *pipe_config;
7898         }
7899
7900         /* Only after disabling all output pipelines that will be changed can we
7901          * update the the output configuration. */
7902         intel_modeset_update_state(dev, prepare_pipes);
7903
7904         if (dev_priv->display.modeset_global_resources)
7905                 dev_priv->display.modeset_global_resources(dev);
7906
7907         /* Set up the DPLL and any encoders state that needs to adjust or depend
7908          * on the DPLL.
7909          */
7910         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7911                 ret = intel_crtc_mode_set(&intel_crtc->base,
7912                                           x, y, fb);
7913                 if (ret)
7914                         goto done;
7915         }
7916
7917         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7918         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7919                 dev_priv->display.crtc_enable(&intel_crtc->base);
7920
7921         if (modeset_pipes) {
7922                 /* Store real post-adjustment hardware mode. */
7923                 crtc->hwmode = pipe_config->adjusted_mode;
7924
7925                 /* Calculate and store various constants which
7926                  * are later needed by vblank and swap-completion
7927                  * timestamping. They are derived from true hwmode.
7928                  */
7929                 drm_calc_timestamping_constants(crtc);
7930         }
7931
7932         /* FIXME: add subpixel order */
7933 done:
7934         if (ret && crtc->enabled) {
7935                 crtc->hwmode = *saved_hwmode;
7936                 crtc->mode = *saved_mode;
7937         } else {
7938                 intel_modeset_check_state(dev);
7939         }
7940
7941 out:
7942         kfree(pipe_config);
7943         kfree(saved_mode);
7944         return ret;
7945 }
7946
7947 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7948 {
7949         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7950 }
7951
7952 #undef for_each_intel_crtc_masked
7953
7954 static void intel_set_config_free(struct intel_set_config *config)
7955 {
7956         if (!config)
7957                 return;
7958
7959         kfree(config->save_connector_encoders);
7960         kfree(config->save_encoder_crtcs);
7961         kfree(config);
7962 }
7963
7964 static int intel_set_config_save_state(struct drm_device *dev,
7965                                        struct intel_set_config *config)
7966 {
7967         struct drm_encoder *encoder;
7968         struct drm_connector *connector;
7969         int count;
7970
7971         config->save_encoder_crtcs =
7972                 kcalloc(dev->mode_config.num_encoder,
7973                         sizeof(struct drm_crtc *), GFP_KERNEL);
7974         if (!config->save_encoder_crtcs)
7975                 return -ENOMEM;
7976
7977         config->save_connector_encoders =
7978                 kcalloc(dev->mode_config.num_connector,
7979                         sizeof(struct drm_encoder *), GFP_KERNEL);
7980         if (!config->save_connector_encoders)
7981                 return -ENOMEM;
7982
7983         /* Copy data. Note that driver private data is not affected.
7984          * Should anything bad happen only the expected state is
7985          * restored, not the drivers personal bookkeeping.
7986          */
7987         count = 0;
7988         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7989                 config->save_encoder_crtcs[count++] = encoder->crtc;
7990         }
7991
7992         count = 0;
7993         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7994                 config->save_connector_encoders[count++] = connector->encoder;
7995         }
7996
7997         return 0;
7998 }
7999
8000 static void intel_set_config_restore_state(struct drm_device *dev,
8001                                            struct intel_set_config *config)
8002 {
8003         struct intel_encoder *encoder;
8004         struct intel_connector *connector;
8005         int count;
8006
8007         count = 0;
8008         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8009                 encoder->new_crtc =
8010                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8011         }
8012
8013         count = 0;
8014         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8015                 connector->new_encoder =
8016                         to_intel_encoder(config->save_connector_encoders[count++]);
8017         }
8018 }
8019
8020 static void
8021 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8022                                       struct intel_set_config *config)
8023 {
8024
8025         /* We should be able to check here if the fb has the same properties
8026          * and then just flip_or_move it */
8027         if (set->crtc->fb != set->fb) {
8028                 /* If we have no fb then treat it as a full mode set */
8029                 if (set->crtc->fb == NULL) {
8030                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8031                         config->mode_changed = true;
8032                 } else if (set->fb == NULL) {
8033                         config->mode_changed = true;
8034                 } else if (set->fb->pixel_format !=
8035                            set->crtc->fb->pixel_format) {
8036                         config->mode_changed = true;
8037                 } else
8038                         config->fb_changed = true;
8039         }
8040
8041         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8042                 config->fb_changed = true;
8043
8044         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8045                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8046                 drm_mode_debug_printmodeline(&set->crtc->mode);
8047                 drm_mode_debug_printmodeline(set->mode);
8048                 config->mode_changed = true;
8049         }
8050 }
8051
8052 static int
8053 intel_modeset_stage_output_state(struct drm_device *dev,
8054                                  struct drm_mode_set *set,
8055                                  struct intel_set_config *config)
8056 {
8057         struct drm_crtc *new_crtc;
8058         struct intel_connector *connector;
8059         struct intel_encoder *encoder;
8060         int count, ro;
8061
8062         /* The upper layers ensure that we either disable a crtc or have a list
8063          * of connectors. For paranoia, double-check this. */
8064         WARN_ON(!set->fb && (set->num_connectors != 0));
8065         WARN_ON(set->fb && (set->num_connectors == 0));
8066
8067         count = 0;
8068         list_for_each_entry(connector, &dev->mode_config.connector_list,
8069                             base.head) {
8070                 /* Otherwise traverse passed in connector list and get encoders
8071                  * for them. */
8072                 for (ro = 0; ro < set->num_connectors; ro++) {
8073                         if (set->connectors[ro] == &connector->base) {
8074                                 connector->new_encoder = connector->encoder;
8075                                 break;
8076                         }
8077                 }
8078
8079                 /* If we disable the crtc, disable all its connectors. Also, if
8080                  * the connector is on the changing crtc but not on the new
8081                  * connector list, disable it. */
8082                 if ((!set->fb || ro == set->num_connectors) &&
8083                     connector->base.encoder &&
8084                     connector->base.encoder->crtc == set->crtc) {
8085                         connector->new_encoder = NULL;
8086
8087                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8088                                 connector->base.base.id,
8089                                 drm_get_connector_name(&connector->base));
8090                 }
8091
8092
8093                 if (&connector->new_encoder->base != connector->base.encoder) {
8094                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8095                         config->mode_changed = true;
8096                 }
8097         }
8098         /* connector->new_encoder is now updated for all connectors. */
8099
8100         /* Update crtc of enabled connectors. */
8101         count = 0;
8102         list_for_each_entry(connector, &dev->mode_config.connector_list,
8103                             base.head) {
8104                 if (!connector->new_encoder)
8105                         continue;
8106
8107                 new_crtc = connector->new_encoder->base.crtc;
8108
8109                 for (ro = 0; ro < set->num_connectors; ro++) {
8110                         if (set->connectors[ro] == &connector->base)
8111                                 new_crtc = set->crtc;
8112                 }
8113
8114                 /* Make sure the new CRTC will work with the encoder */
8115                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8116                                            new_crtc)) {
8117                         return -EINVAL;
8118                 }
8119                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8120
8121                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8122                         connector->base.base.id,
8123                         drm_get_connector_name(&connector->base),
8124                         new_crtc->base.id);
8125         }
8126
8127         /* Check for any encoders that needs to be disabled. */
8128         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8129                             base.head) {
8130                 list_for_each_entry(connector,
8131                                     &dev->mode_config.connector_list,
8132                                     base.head) {
8133                         if (connector->new_encoder == encoder) {
8134                                 WARN_ON(!connector->new_encoder->new_crtc);
8135
8136                                 goto next_encoder;
8137                         }
8138                 }
8139                 encoder->new_crtc = NULL;
8140 next_encoder:
8141                 /* Only now check for crtc changes so we don't miss encoders
8142                  * that will be disabled. */
8143                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8144                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8145                         config->mode_changed = true;
8146                 }
8147         }
8148         /* Now we've also updated encoder->new_crtc for all encoders. */
8149
8150         return 0;
8151 }
8152
8153 static int intel_crtc_set_config(struct drm_mode_set *set)
8154 {
8155         struct drm_device *dev;
8156         struct drm_mode_set save_set;
8157         struct intel_set_config *config;
8158         int ret;
8159
8160         BUG_ON(!set);
8161         BUG_ON(!set->crtc);
8162         BUG_ON(!set->crtc->helper_private);
8163
8164         /* Enforce sane interface api - has been abused by the fb helper. */
8165         BUG_ON(!set->mode && set->fb);
8166         BUG_ON(set->fb && set->num_connectors == 0);
8167
8168         if (set->fb) {
8169                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8170                                 set->crtc->base.id, set->fb->base.id,
8171                                 (int)set->num_connectors, set->x, set->y);
8172         } else {
8173                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8174         }
8175
8176         dev = set->crtc->dev;
8177
8178         ret = -ENOMEM;
8179         config = kzalloc(sizeof(*config), GFP_KERNEL);
8180         if (!config)
8181                 goto out_config;
8182
8183         ret = intel_set_config_save_state(dev, config);
8184         if (ret)
8185                 goto out_config;
8186
8187         save_set.crtc = set->crtc;
8188         save_set.mode = &set->crtc->mode;
8189         save_set.x = set->crtc->x;
8190         save_set.y = set->crtc->y;
8191         save_set.fb = set->crtc->fb;
8192
8193         /* Compute whether we need a full modeset, only an fb base update or no
8194          * change at all. In the future we might also check whether only the
8195          * mode changed, e.g. for LVDS where we only change the panel fitter in
8196          * such cases. */
8197         intel_set_config_compute_mode_changes(set, config);
8198
8199         ret = intel_modeset_stage_output_state(dev, set, config);
8200         if (ret)
8201                 goto fail;
8202
8203         if (config->mode_changed) {
8204                 if (set->mode) {
8205                         DRM_DEBUG_KMS("attempting to set mode from"
8206                                         " userspace\n");
8207                         drm_mode_debug_printmodeline(set->mode);
8208                 }
8209
8210                 ret = intel_set_mode(set->crtc, set->mode,
8211                                      set->x, set->y, set->fb);
8212                 if (ret) {
8213                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8214                                   set->crtc->base.id, ret);
8215                         goto fail;
8216                 }
8217         } else if (config->fb_changed) {
8218                 intel_crtc_wait_for_pending_flips(set->crtc);
8219
8220                 ret = intel_pipe_set_base(set->crtc,
8221                                           set->x, set->y, set->fb);
8222         }
8223
8224         intel_set_config_free(config);
8225
8226         return 0;
8227
8228 fail:
8229         intel_set_config_restore_state(dev, config);
8230
8231         /* Try to restore the config */
8232         if (config->mode_changed &&
8233             intel_set_mode(save_set.crtc, save_set.mode,
8234                            save_set.x, save_set.y, save_set.fb))
8235                 DRM_ERROR("failed to restore config after modeset failure\n");
8236
8237 out_config:
8238         intel_set_config_free(config);
8239         return ret;
8240 }
8241
8242 static const struct drm_crtc_funcs intel_crtc_funcs = {
8243         .cursor_set = intel_crtc_cursor_set,
8244         .cursor_move = intel_crtc_cursor_move,
8245         .gamma_set = intel_crtc_gamma_set,
8246         .set_config = intel_crtc_set_config,
8247         .destroy = intel_crtc_destroy,
8248         .page_flip = intel_crtc_page_flip,
8249 };
8250
8251 static void intel_cpu_pll_init(struct drm_device *dev)
8252 {
8253         if (HAS_DDI(dev))
8254                 intel_ddi_pll_init(dev);
8255 }
8256
8257 static void intel_pch_pll_init(struct drm_device *dev)
8258 {
8259         drm_i915_private_t *dev_priv = dev->dev_private;
8260         int i;
8261
8262         if (dev_priv->num_pch_pll == 0) {
8263                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8264                 return;
8265         }
8266
8267         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8268                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8269                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8270                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8271         }
8272 }
8273
8274 static void intel_crtc_init(struct drm_device *dev, int pipe)
8275 {
8276         drm_i915_private_t *dev_priv = dev->dev_private;
8277         struct intel_crtc *intel_crtc;
8278         int i;
8279
8280         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8281         if (intel_crtc == NULL)
8282                 return;
8283
8284         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8285
8286         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8287         for (i = 0; i < 256; i++) {
8288                 intel_crtc->lut_r[i] = i;
8289                 intel_crtc->lut_g[i] = i;
8290                 intel_crtc->lut_b[i] = i;
8291         }
8292
8293         /* Swap pipes & planes for FBC on pre-965 */
8294         intel_crtc->pipe = pipe;
8295         intel_crtc->plane = pipe;
8296         intel_crtc->cpu_transcoder = pipe;
8297         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8298                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8299                 intel_crtc->plane = !pipe;
8300         }
8301
8302         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8303                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8304         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8305         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8306
8307         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8308 }
8309
8310 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8311                                 struct drm_file *file)
8312 {
8313         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8314         struct drm_mode_object *drmmode_obj;
8315         struct intel_crtc *crtc;
8316
8317         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8318                 return -ENODEV;
8319
8320         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8321                         DRM_MODE_OBJECT_CRTC);
8322
8323         if (!drmmode_obj) {
8324                 DRM_ERROR("no such CRTC id\n");
8325                 return -EINVAL;
8326         }
8327
8328         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8329         pipe_from_crtc_id->pipe = crtc->pipe;
8330
8331         return 0;
8332 }
8333
8334 static int intel_encoder_clones(struct intel_encoder *encoder)
8335 {
8336         struct drm_device *dev = encoder->base.dev;
8337         struct intel_encoder *source_encoder;
8338         int index_mask = 0;
8339         int entry = 0;
8340
8341         list_for_each_entry(source_encoder,
8342                             &dev->mode_config.encoder_list, base.head) {
8343
8344                 if (encoder == source_encoder)
8345                         index_mask |= (1 << entry);
8346
8347                 /* Intel hw has only one MUX where enocoders could be cloned. */
8348                 if (encoder->cloneable && source_encoder->cloneable)
8349                         index_mask |= (1 << entry);
8350
8351                 entry++;
8352         }
8353
8354         return index_mask;
8355 }
8356
8357 static bool has_edp_a(struct drm_device *dev)
8358 {
8359         struct drm_i915_private *dev_priv = dev->dev_private;
8360
8361         if (!IS_MOBILE(dev))
8362                 return false;
8363
8364         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8365                 return false;
8366
8367         if (IS_GEN5(dev) &&
8368             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8369                 return false;
8370
8371         return true;
8372 }
8373
8374 static void intel_setup_outputs(struct drm_device *dev)
8375 {
8376         struct drm_i915_private *dev_priv = dev->dev_private;
8377         struct intel_encoder *encoder;
8378         bool dpd_is_edp = false;
8379         bool has_lvds;
8380
8381         has_lvds = intel_lvds_init(dev);
8382         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8383                 /* disable the panel fitter on everything but LVDS */
8384                 I915_WRITE(PFIT_CONTROL, 0);
8385         }
8386
8387         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8388                 intel_crt_init(dev);
8389
8390         if (HAS_DDI(dev)) {
8391                 int found;
8392
8393                 /* Haswell uses DDI functions to detect digital outputs */
8394                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8395                 /* DDI A only supports eDP */
8396                 if (found)
8397                         intel_ddi_init(dev, PORT_A);
8398
8399                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8400                  * register */
8401                 found = I915_READ(SFUSE_STRAP);
8402
8403                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8404                         intel_ddi_init(dev, PORT_B);
8405                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8406                         intel_ddi_init(dev, PORT_C);
8407                 if (found & SFUSE_STRAP_DDID_DETECTED)
8408                         intel_ddi_init(dev, PORT_D);
8409         } else if (HAS_PCH_SPLIT(dev)) {
8410                 int found;
8411                 dpd_is_edp = intel_dpd_is_edp(dev);
8412
8413                 if (has_edp_a(dev))
8414                         intel_dp_init(dev, DP_A, PORT_A);
8415
8416                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8417                         /* PCH SDVOB multiplex with HDMIB */
8418                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8419                         if (!found)
8420                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8421                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8422                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8423                 }
8424
8425                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8426                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8427
8428                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8429                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8430
8431                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8432                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8433
8434                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8435                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8436         } else if (IS_VALLEYVIEW(dev)) {
8437                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8438                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8439                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8440
8441                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8442                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8443                                         PORT_B);
8444                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8445                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8446                 }
8447         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8448                 bool found = false;
8449
8450                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8451                         DRM_DEBUG_KMS("probing SDVOB\n");
8452                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8453                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8454                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8455                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8456                         }
8457
8458                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8459                                 DRM_DEBUG_KMS("probing DP_B\n");
8460                                 intel_dp_init(dev, DP_B, PORT_B);
8461                         }
8462                 }
8463
8464                 /* Before G4X SDVOC doesn't have its own detect register */
8465
8466                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8467                         DRM_DEBUG_KMS("probing SDVOC\n");
8468                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8469                 }
8470
8471                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8472
8473                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8474                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8475                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8476                         }
8477                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8478                                 DRM_DEBUG_KMS("probing DP_C\n");
8479                                 intel_dp_init(dev, DP_C, PORT_C);
8480                         }
8481                 }
8482
8483                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8484                     (I915_READ(DP_D) & DP_DETECTED)) {
8485                         DRM_DEBUG_KMS("probing DP_D\n");
8486                         intel_dp_init(dev, DP_D, PORT_D);
8487                 }
8488         } else if (IS_GEN2(dev))
8489                 intel_dvo_init(dev);
8490
8491         if (SUPPORTS_TV(dev))
8492                 intel_tv_init(dev);
8493
8494         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8495                 encoder->base.possible_crtcs = encoder->crtc_mask;
8496                 encoder->base.possible_clones =
8497                         intel_encoder_clones(encoder);
8498         }
8499
8500         intel_init_pch_refclk(dev);
8501
8502         drm_helper_move_panel_connectors_to_head(dev);
8503 }
8504
8505 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8506 {
8507         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8508
8509         drm_framebuffer_cleanup(fb);
8510         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8511
8512         kfree(intel_fb);
8513 }
8514
8515 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8516                                                 struct drm_file *file,
8517                                                 unsigned int *handle)
8518 {
8519         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8520         struct drm_i915_gem_object *obj = intel_fb->obj;
8521
8522         return drm_gem_handle_create(file, &obj->base, handle);
8523 }
8524
8525 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8526         .destroy = intel_user_framebuffer_destroy,
8527         .create_handle = intel_user_framebuffer_create_handle,
8528 };
8529
8530 int intel_framebuffer_init(struct drm_device *dev,
8531                            struct intel_framebuffer *intel_fb,
8532                            struct drm_mode_fb_cmd2 *mode_cmd,
8533                            struct drm_i915_gem_object *obj)
8534 {
8535         int ret;
8536
8537         if (obj->tiling_mode == I915_TILING_Y) {
8538                 DRM_DEBUG("hardware does not support tiling Y\n");
8539                 return -EINVAL;
8540         }
8541
8542         if (mode_cmd->pitches[0] & 63) {
8543                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8544                           mode_cmd->pitches[0]);
8545                 return -EINVAL;
8546         }
8547
8548         /* FIXME <= Gen4 stride limits are bit unclear */
8549         if (mode_cmd->pitches[0] > 32768) {
8550                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8551                           mode_cmd->pitches[0]);
8552                 return -EINVAL;
8553         }
8554
8555         if (obj->tiling_mode != I915_TILING_NONE &&
8556             mode_cmd->pitches[0] != obj->stride) {
8557                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8558                           mode_cmd->pitches[0], obj->stride);
8559                 return -EINVAL;
8560         }
8561
8562         /* Reject formats not supported by any plane early. */
8563         switch (mode_cmd->pixel_format) {
8564         case DRM_FORMAT_C8:
8565         case DRM_FORMAT_RGB565:
8566         case DRM_FORMAT_XRGB8888:
8567         case DRM_FORMAT_ARGB8888:
8568                 break;
8569         case DRM_FORMAT_XRGB1555:
8570         case DRM_FORMAT_ARGB1555:
8571                 if (INTEL_INFO(dev)->gen > 3) {
8572                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8573                         return -EINVAL;
8574                 }
8575                 break;
8576         case DRM_FORMAT_XBGR8888:
8577         case DRM_FORMAT_ABGR8888:
8578         case DRM_FORMAT_XRGB2101010:
8579         case DRM_FORMAT_ARGB2101010:
8580         case DRM_FORMAT_XBGR2101010:
8581         case DRM_FORMAT_ABGR2101010:
8582                 if (INTEL_INFO(dev)->gen < 4) {
8583                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8584                         return -EINVAL;
8585                 }
8586                 break;
8587         case DRM_FORMAT_YUYV:
8588         case DRM_FORMAT_UYVY:
8589         case DRM_FORMAT_YVYU:
8590         case DRM_FORMAT_VYUY:
8591                 if (INTEL_INFO(dev)->gen < 5) {
8592                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8593                         return -EINVAL;
8594                 }
8595                 break;
8596         default:
8597                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8598                 return -EINVAL;
8599         }
8600
8601         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8602         if (mode_cmd->offsets[0] != 0)
8603                 return -EINVAL;
8604
8605         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8606         intel_fb->obj = obj;
8607
8608         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8609         if (ret) {
8610                 DRM_ERROR("framebuffer init failed %d\n", ret);
8611                 return ret;
8612         }
8613
8614         return 0;
8615 }
8616
8617 static struct drm_framebuffer *
8618 intel_user_framebuffer_create(struct drm_device *dev,
8619                               struct drm_file *filp,
8620                               struct drm_mode_fb_cmd2 *mode_cmd)
8621 {
8622         struct drm_i915_gem_object *obj;
8623
8624         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8625                                                 mode_cmd->handles[0]));
8626         if (&obj->base == NULL)
8627                 return ERR_PTR(-ENOENT);
8628
8629         return intel_framebuffer_create(dev, mode_cmd, obj);
8630 }
8631
8632 static const struct drm_mode_config_funcs intel_mode_funcs = {
8633         .fb_create = intel_user_framebuffer_create,
8634         .output_poll_changed = intel_fb_output_poll_changed,
8635 };
8636
8637 /* Set up chip specific display functions */
8638 static void intel_init_display(struct drm_device *dev)
8639 {
8640         struct drm_i915_private *dev_priv = dev->dev_private;
8641
8642         if (HAS_DDI(dev)) {
8643                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8644                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8645                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8646                 dev_priv->display.off = haswell_crtc_off;
8647                 dev_priv->display.update_plane = ironlake_update_plane;
8648         } else if (HAS_PCH_SPLIT(dev)) {
8649                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8650                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8651                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8652                 dev_priv->display.off = ironlake_crtc_off;
8653                 dev_priv->display.update_plane = ironlake_update_plane;
8654         } else {
8655                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8656                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8657                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8658                 dev_priv->display.off = i9xx_crtc_off;
8659                 dev_priv->display.update_plane = i9xx_update_plane;
8660         }
8661
8662         /* Returns the core display clock speed */
8663         if (IS_VALLEYVIEW(dev))
8664                 dev_priv->display.get_display_clock_speed =
8665                         valleyview_get_display_clock_speed;
8666         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8667                 dev_priv->display.get_display_clock_speed =
8668                         i945_get_display_clock_speed;
8669         else if (IS_I915G(dev))
8670                 dev_priv->display.get_display_clock_speed =
8671                         i915_get_display_clock_speed;
8672         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8673                 dev_priv->display.get_display_clock_speed =
8674                         i9xx_misc_get_display_clock_speed;
8675         else if (IS_I915GM(dev))
8676                 dev_priv->display.get_display_clock_speed =
8677                         i915gm_get_display_clock_speed;
8678         else if (IS_I865G(dev))
8679                 dev_priv->display.get_display_clock_speed =
8680                         i865_get_display_clock_speed;
8681         else if (IS_I85X(dev))
8682                 dev_priv->display.get_display_clock_speed =
8683                         i855_get_display_clock_speed;
8684         else /* 852, 830 */
8685                 dev_priv->display.get_display_clock_speed =
8686                         i830_get_display_clock_speed;
8687
8688         if (HAS_PCH_SPLIT(dev)) {
8689                 if (IS_GEN5(dev)) {
8690                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8691                         dev_priv->display.write_eld = ironlake_write_eld;
8692                 } else if (IS_GEN6(dev)) {
8693                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8694                         dev_priv->display.write_eld = ironlake_write_eld;
8695                 } else if (IS_IVYBRIDGE(dev)) {
8696                         /* FIXME: detect B0+ stepping and use auto training */
8697                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8698                         dev_priv->display.write_eld = ironlake_write_eld;
8699                         dev_priv->display.modeset_global_resources =
8700                                 ivb_modeset_global_resources;
8701                 } else if (IS_HASWELL(dev)) {
8702                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8703                         dev_priv->display.write_eld = haswell_write_eld;
8704                         dev_priv->display.modeset_global_resources =
8705                                 haswell_modeset_global_resources;
8706                 }
8707         } else if (IS_G4X(dev)) {
8708                 dev_priv->display.write_eld = g4x_write_eld;
8709         }
8710
8711         /* Default just returns -ENODEV to indicate unsupported */
8712         dev_priv->display.queue_flip = intel_default_queue_flip;
8713
8714         switch (INTEL_INFO(dev)->gen) {
8715         case 2:
8716                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8717                 break;
8718
8719         case 3:
8720                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8721                 break;
8722
8723         case 4:
8724         case 5:
8725                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8726                 break;
8727
8728         case 6:
8729                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8730                 break;
8731         case 7:
8732                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8733                 break;
8734         }
8735 }
8736
8737 /*
8738  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8739  * resume, or other times.  This quirk makes sure that's the case for
8740  * affected systems.
8741  */
8742 static void quirk_pipea_force(struct drm_device *dev)
8743 {
8744         struct drm_i915_private *dev_priv = dev->dev_private;
8745
8746         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8747         DRM_INFO("applying pipe a force quirk\n");
8748 }
8749
8750 /*
8751  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8752  */
8753 static void quirk_ssc_force_disable(struct drm_device *dev)
8754 {
8755         struct drm_i915_private *dev_priv = dev->dev_private;
8756         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8757         DRM_INFO("applying lvds SSC disable quirk\n");
8758 }
8759
8760 /*
8761  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8762  * brightness value
8763  */
8764 static void quirk_invert_brightness(struct drm_device *dev)
8765 {
8766         struct drm_i915_private *dev_priv = dev->dev_private;
8767         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8768         DRM_INFO("applying inverted panel brightness quirk\n");
8769 }
8770
8771 struct intel_quirk {
8772         int device;
8773         int subsystem_vendor;
8774         int subsystem_device;
8775         void (*hook)(struct drm_device *dev);
8776 };
8777
8778 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8779 struct intel_dmi_quirk {
8780         void (*hook)(struct drm_device *dev);
8781         const struct dmi_system_id (*dmi_id_list)[];
8782 };
8783
8784 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8785 {
8786         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8787         return 1;
8788 }
8789
8790 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8791         {
8792                 .dmi_id_list = &(const struct dmi_system_id[]) {
8793                         {
8794                                 .callback = intel_dmi_reverse_brightness,
8795                                 .ident = "NCR Corporation",
8796                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8797                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8798                                 },
8799                         },
8800                         { }  /* terminating entry */
8801                 },
8802                 .hook = quirk_invert_brightness,
8803         },
8804 };
8805
8806 static struct intel_quirk intel_quirks[] = {
8807         /* HP Mini needs pipe A force quirk (LP: #322104) */
8808         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8809
8810         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8811         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8812
8813         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8814         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8815
8816         /* 830/845 need to leave pipe A & dpll A up */
8817         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8818         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8819
8820         /* Lenovo U160 cannot use SSC on LVDS */
8821         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8822
8823         /* Sony Vaio Y cannot use SSC on LVDS */
8824         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8825
8826         /* Acer Aspire 5734Z must invert backlight brightness */
8827         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8828
8829         /* Acer/eMachines G725 */
8830         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8831
8832         /* Acer/eMachines e725 */
8833         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8834
8835         /* Acer/Packard Bell NCL20 */
8836         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8837
8838         /* Acer Aspire 4736Z */
8839         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8840 };
8841
8842 static void intel_init_quirks(struct drm_device *dev)
8843 {
8844         struct pci_dev *d = dev->pdev;
8845         int i;
8846
8847         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8848                 struct intel_quirk *q = &intel_quirks[i];
8849
8850                 if (d->device == q->device &&
8851                     (d->subsystem_vendor == q->subsystem_vendor ||
8852                      q->subsystem_vendor == PCI_ANY_ID) &&
8853                     (d->subsystem_device == q->subsystem_device ||
8854                      q->subsystem_device == PCI_ANY_ID))
8855                         q->hook(dev);
8856         }
8857         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8858                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8859                         intel_dmi_quirks[i].hook(dev);
8860         }
8861 }
8862
8863 /* Disable the VGA plane that we never use */
8864 static void i915_disable_vga(struct drm_device *dev)
8865 {
8866         struct drm_i915_private *dev_priv = dev->dev_private;
8867         u8 sr1;
8868         u32 vga_reg = i915_vgacntrl_reg(dev);
8869
8870         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8871         outb(SR01, VGA_SR_INDEX);
8872         sr1 = inb(VGA_SR_DATA);
8873         outb(sr1 | 1<<5, VGA_SR_DATA);
8874         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8875         udelay(300);
8876
8877         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8878         POSTING_READ(vga_reg);
8879 }
8880
8881 void intel_modeset_init_hw(struct drm_device *dev)
8882 {
8883         intel_init_power_well(dev);
8884
8885         intel_prepare_ddi(dev);
8886
8887         intel_init_clock_gating(dev);
8888
8889         mutex_lock(&dev->struct_mutex);
8890         intel_enable_gt_powersave(dev);
8891         mutex_unlock(&dev->struct_mutex);
8892 }
8893
8894 void intel_modeset_init(struct drm_device *dev)
8895 {
8896         struct drm_i915_private *dev_priv = dev->dev_private;
8897         int i, j, ret;
8898
8899         drm_mode_config_init(dev);
8900
8901         dev->mode_config.min_width = 0;
8902         dev->mode_config.min_height = 0;
8903
8904         dev->mode_config.preferred_depth = 24;
8905         dev->mode_config.prefer_shadow = 1;
8906
8907         dev->mode_config.funcs = &intel_mode_funcs;
8908
8909         intel_init_quirks(dev);
8910
8911         intel_init_pm(dev);
8912
8913         intel_init_display(dev);
8914
8915         if (IS_GEN2(dev)) {
8916                 dev->mode_config.max_width = 2048;
8917                 dev->mode_config.max_height = 2048;
8918         } else if (IS_GEN3(dev)) {
8919                 dev->mode_config.max_width = 4096;
8920                 dev->mode_config.max_height = 4096;
8921         } else {
8922                 dev->mode_config.max_width = 8192;
8923                 dev->mode_config.max_height = 8192;
8924         }
8925         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8926
8927         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8928                       INTEL_INFO(dev)->num_pipes,
8929                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
8930
8931         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
8932                 intel_crtc_init(dev, i);
8933                 for (j = 0; j < dev_priv->num_plane; j++) {
8934                         ret = intel_plane_init(dev, i, j);
8935                         if (ret)
8936                                 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
8937                                               i, j, ret);
8938                 }
8939         }
8940
8941         intel_cpu_pll_init(dev);
8942         intel_pch_pll_init(dev);
8943
8944         /* Just disable it once at startup */
8945         i915_disable_vga(dev);
8946         intel_setup_outputs(dev);
8947
8948         /* Just in case the BIOS is doing something questionable. */
8949         intel_disable_fbc(dev);
8950 }
8951
8952 static void
8953 intel_connector_break_all_links(struct intel_connector *connector)
8954 {
8955         connector->base.dpms = DRM_MODE_DPMS_OFF;
8956         connector->base.encoder = NULL;
8957         connector->encoder->connectors_active = false;
8958         connector->encoder->base.crtc = NULL;
8959 }
8960
8961 static void intel_enable_pipe_a(struct drm_device *dev)
8962 {
8963         struct intel_connector *connector;
8964         struct drm_connector *crt = NULL;
8965         struct intel_load_detect_pipe load_detect_temp;
8966
8967         /* We can't just switch on the pipe A, we need to set things up with a
8968          * proper mode and output configuration. As a gross hack, enable pipe A
8969          * by enabling the load detect pipe once. */
8970         list_for_each_entry(connector,
8971                             &dev->mode_config.connector_list,
8972                             base.head) {
8973                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8974                         crt = &connector->base;
8975                         break;
8976                 }
8977         }
8978
8979         if (!crt)
8980                 return;
8981
8982         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8983                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8984
8985
8986 }
8987
8988 static bool
8989 intel_check_plane_mapping(struct intel_crtc *crtc)
8990 {
8991         struct drm_device *dev = crtc->base.dev;
8992         struct drm_i915_private *dev_priv = dev->dev_private;
8993         u32 reg, val;
8994
8995         if (INTEL_INFO(dev)->num_pipes == 1)
8996                 return true;
8997
8998         reg = DSPCNTR(!crtc->plane);
8999         val = I915_READ(reg);
9000
9001         if ((val & DISPLAY_PLANE_ENABLE) &&
9002             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9003                 return false;
9004
9005         return true;
9006 }
9007
9008 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9009 {
9010         struct drm_device *dev = crtc->base.dev;
9011         struct drm_i915_private *dev_priv = dev->dev_private;
9012         u32 reg;
9013
9014         /* Clear any frame start delays used for debugging left by the BIOS */
9015         reg = PIPECONF(crtc->cpu_transcoder);
9016         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9017
9018         /* We need to sanitize the plane -> pipe mapping first because this will
9019          * disable the crtc (and hence change the state) if it is wrong. Note
9020          * that gen4+ has a fixed plane -> pipe mapping.  */
9021         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9022                 struct intel_connector *connector;
9023                 bool plane;
9024
9025                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9026                               crtc->base.base.id);
9027
9028                 /* Pipe has the wrong plane attached and the plane is active.
9029                  * Temporarily change the plane mapping and disable everything
9030                  * ...  */
9031                 plane = crtc->plane;
9032                 crtc->plane = !plane;
9033                 dev_priv->display.crtc_disable(&crtc->base);
9034                 crtc->plane = plane;
9035
9036                 /* ... and break all links. */
9037                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9038                                     base.head) {
9039                         if (connector->encoder->base.crtc != &crtc->base)
9040                                 continue;
9041
9042                         intel_connector_break_all_links(connector);
9043                 }
9044
9045                 WARN_ON(crtc->active);
9046                 crtc->base.enabled = false;
9047         }
9048
9049         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9050             crtc->pipe == PIPE_A && !crtc->active) {
9051                 /* BIOS forgot to enable pipe A, this mostly happens after
9052                  * resume. Force-enable the pipe to fix this, the update_dpms
9053                  * call below we restore the pipe to the right state, but leave
9054                  * the required bits on. */
9055                 intel_enable_pipe_a(dev);
9056         }
9057
9058         /* Adjust the state of the output pipe according to whether we
9059          * have active connectors/encoders. */
9060         intel_crtc_update_dpms(&crtc->base);
9061
9062         if (crtc->active != crtc->base.enabled) {
9063                 struct intel_encoder *encoder;
9064
9065                 /* This can happen either due to bugs in the get_hw_state
9066                  * functions or because the pipe is force-enabled due to the
9067                  * pipe A quirk. */
9068                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9069                               crtc->base.base.id,
9070                               crtc->base.enabled ? "enabled" : "disabled",
9071                               crtc->active ? "enabled" : "disabled");
9072
9073                 crtc->base.enabled = crtc->active;
9074
9075                 /* Because we only establish the connector -> encoder ->
9076                  * crtc links if something is active, this means the
9077                  * crtc is now deactivated. Break the links. connector
9078                  * -> encoder links are only establish when things are
9079                  *  actually up, hence no need to break them. */
9080                 WARN_ON(crtc->active);
9081
9082                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9083                         WARN_ON(encoder->connectors_active);
9084                         encoder->base.crtc = NULL;
9085                 }
9086         }
9087 }
9088
9089 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9090 {
9091         struct intel_connector *connector;
9092         struct drm_device *dev = encoder->base.dev;
9093
9094         /* We need to check both for a crtc link (meaning that the
9095          * encoder is active and trying to read from a pipe) and the
9096          * pipe itself being active. */
9097         bool has_active_crtc = encoder->base.crtc &&
9098                 to_intel_crtc(encoder->base.crtc)->active;
9099
9100         if (encoder->connectors_active && !has_active_crtc) {
9101                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9102                               encoder->base.base.id,
9103                               drm_get_encoder_name(&encoder->base));
9104
9105                 /* Connector is active, but has no active pipe. This is
9106                  * fallout from our resume register restoring. Disable
9107                  * the encoder manually again. */
9108                 if (encoder->base.crtc) {
9109                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9110                                       encoder->base.base.id,
9111                                       drm_get_encoder_name(&encoder->base));
9112                         encoder->disable(encoder);
9113                 }
9114
9115                 /* Inconsistent output/port/pipe state happens presumably due to
9116                  * a bug in one of the get_hw_state functions. Or someplace else
9117                  * in our code, like the register restore mess on resume. Clamp
9118                  * things to off as a safer default. */
9119                 list_for_each_entry(connector,
9120                                     &dev->mode_config.connector_list,
9121                                     base.head) {
9122                         if (connector->encoder != encoder)
9123                                 continue;
9124
9125                         intel_connector_break_all_links(connector);
9126                 }
9127         }
9128         /* Enabled encoders without active connectors will be fixed in
9129          * the crtc fixup. */
9130 }
9131
9132 void i915_redisable_vga(struct drm_device *dev)
9133 {
9134         struct drm_i915_private *dev_priv = dev->dev_private;
9135         u32 vga_reg = i915_vgacntrl_reg(dev);
9136
9137         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9138                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9139                 i915_disable_vga(dev);
9140         }
9141 }
9142
9143 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9144  * and i915 state tracking structures. */
9145 void intel_modeset_setup_hw_state(struct drm_device *dev,
9146                                   bool force_restore)
9147 {
9148         struct drm_i915_private *dev_priv = dev->dev_private;
9149         enum pipe pipe;
9150         u32 tmp;
9151         struct drm_plane *plane;
9152         struct intel_crtc *crtc;
9153         struct intel_encoder *encoder;
9154         struct intel_connector *connector;
9155
9156         if (HAS_DDI(dev)) {
9157                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9158
9159                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9160                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9161                         case TRANS_DDI_EDP_INPUT_A_ON:
9162                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9163                                 pipe = PIPE_A;
9164                                 break;
9165                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9166                                 pipe = PIPE_B;
9167                                 break;
9168                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9169                                 pipe = PIPE_C;
9170                                 break;
9171                         default:
9172                                 /* A bogus value has been programmed, disable
9173                                  * the transcoder */
9174                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9175                                 intel_ddi_disable_transcoder_func(dev_priv,
9176                                                 TRANSCODER_EDP);
9177                                 goto setup_pipes;
9178                         }
9179
9180                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9181                         crtc->cpu_transcoder = TRANSCODER_EDP;
9182
9183                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9184                                       pipe_name(pipe));
9185                 }
9186         }
9187
9188 setup_pipes:
9189         for_each_pipe(pipe) {
9190                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9191
9192                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9193                 if (tmp & PIPECONF_ENABLE)
9194                         crtc->active = true;
9195                 else
9196                         crtc->active = false;
9197
9198                 crtc->base.enabled = crtc->active;
9199
9200                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9201                               crtc->base.base.id,
9202                               crtc->active ? "enabled" : "disabled");
9203         }
9204
9205         if (HAS_DDI(dev))
9206                 intel_ddi_setup_hw_pll_state(dev);
9207
9208         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9209                             base.head) {
9210                 pipe = 0;
9211
9212                 if (encoder->get_hw_state(encoder, &pipe)) {
9213                         encoder->base.crtc =
9214                                 dev_priv->pipe_to_crtc_mapping[pipe];
9215                 } else {
9216                         encoder->base.crtc = NULL;
9217                 }
9218
9219                 encoder->connectors_active = false;
9220                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9221                               encoder->base.base.id,
9222                               drm_get_encoder_name(&encoder->base),
9223                               encoder->base.crtc ? "enabled" : "disabled",
9224                               pipe);
9225         }
9226
9227         list_for_each_entry(connector, &dev->mode_config.connector_list,
9228                             base.head) {
9229                 if (connector->get_hw_state(connector)) {
9230                         connector->base.dpms = DRM_MODE_DPMS_ON;
9231                         connector->encoder->connectors_active = true;
9232                         connector->base.encoder = &connector->encoder->base;
9233                 } else {
9234                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9235                         connector->base.encoder = NULL;
9236                 }
9237                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9238                               connector->base.base.id,
9239                               drm_get_connector_name(&connector->base),
9240                               connector->base.encoder ? "enabled" : "disabled");
9241         }
9242
9243         /* HW state is read out, now we need to sanitize this mess. */
9244         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9245                             base.head) {
9246                 intel_sanitize_encoder(encoder);
9247         }
9248
9249         for_each_pipe(pipe) {
9250                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9251                 intel_sanitize_crtc(crtc);
9252         }
9253
9254         if (force_restore) {
9255                 for_each_pipe(pipe) {
9256                         struct drm_crtc *crtc =
9257                                 dev_priv->pipe_to_crtc_mapping[pipe];
9258                         intel_crtc_restore_mode(crtc);
9259                 }
9260                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9261                         intel_plane_restore(plane);
9262
9263                 i915_redisable_vga(dev);
9264         } else {
9265                 intel_modeset_update_staged_output_state(dev);
9266         }
9267
9268         intel_modeset_check_state(dev);
9269
9270         drm_mode_config_reset(dev);
9271 }
9272
9273 void intel_modeset_gem_init(struct drm_device *dev)
9274 {
9275         intel_modeset_init_hw(dev);
9276
9277         intel_setup_overlay(dev);
9278
9279         intel_modeset_setup_hw_state(dev, false);
9280 }
9281
9282 void intel_modeset_cleanup(struct drm_device *dev)
9283 {
9284         struct drm_i915_private *dev_priv = dev->dev_private;
9285         struct drm_crtc *crtc;
9286         struct intel_crtc *intel_crtc;
9287
9288         drm_kms_helper_poll_fini(dev);
9289         mutex_lock(&dev->struct_mutex);
9290
9291         intel_unregister_dsm_handler();
9292
9293
9294         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9295                 /* Skip inactive CRTCs */
9296                 if (!crtc->fb)
9297                         continue;
9298
9299                 intel_crtc = to_intel_crtc(crtc);
9300                 intel_increase_pllclock(crtc);
9301         }
9302
9303         intel_disable_fbc(dev);
9304
9305         intel_disable_gt_powersave(dev);
9306
9307         ironlake_teardown_rc6(dev);
9308
9309         if (IS_VALLEYVIEW(dev))
9310                 vlv_init_dpio(dev);
9311
9312         mutex_unlock(&dev->struct_mutex);
9313
9314         /* Disable the irq before mode object teardown, for the irq might
9315          * enqueue unpin/hotplug work. */
9316         drm_irq_uninstall(dev);
9317         cancel_work_sync(&dev_priv->hotplug_work);
9318         cancel_work_sync(&dev_priv->rps.work);
9319
9320         /* flush any delayed tasks or pending work */
9321         flush_scheduled_work();
9322
9323         drm_mode_config_cleanup(dev);
9324
9325         intel_cleanup_overlay(dev);
9326 }
9327
9328 /*
9329  * Return which encoder is currently attached for connector.
9330  */
9331 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9332 {
9333         return &intel_attached_encoder(connector)->base;
9334 }
9335
9336 void intel_connector_attach_encoder(struct intel_connector *connector,
9337                                     struct intel_encoder *encoder)
9338 {
9339         connector->encoder = encoder;
9340         drm_mode_connector_attach_encoder(&connector->base,
9341                                           &encoder->base);
9342 }
9343
9344 /*
9345  * set vga decode state - true == enable VGA decode
9346  */
9347 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9348 {
9349         struct drm_i915_private *dev_priv = dev->dev_private;
9350         u16 gmch_ctrl;
9351
9352         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9353         if (state)
9354                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9355         else
9356                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9357         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9358         return 0;
9359 }
9360
9361 #ifdef CONFIG_DEBUG_FS
9362 #include <linux/seq_file.h>
9363
9364 struct intel_display_error_state {
9365         struct intel_cursor_error_state {
9366                 u32 control;
9367                 u32 position;
9368                 u32 base;
9369                 u32 size;
9370         } cursor[I915_MAX_PIPES];
9371
9372         struct intel_pipe_error_state {
9373                 u32 conf;
9374                 u32 source;
9375
9376                 u32 htotal;
9377                 u32 hblank;
9378                 u32 hsync;
9379                 u32 vtotal;
9380                 u32 vblank;
9381                 u32 vsync;
9382         } pipe[I915_MAX_PIPES];
9383
9384         struct intel_plane_error_state {
9385                 u32 control;
9386                 u32 stride;
9387                 u32 size;
9388                 u32 pos;
9389                 u32 addr;
9390                 u32 surface;
9391                 u32 tile_offset;
9392         } plane[I915_MAX_PIPES];
9393 };
9394
9395 struct intel_display_error_state *
9396 intel_display_capture_error_state(struct drm_device *dev)
9397 {
9398         drm_i915_private_t *dev_priv = dev->dev_private;
9399         struct intel_display_error_state *error;
9400         enum transcoder cpu_transcoder;
9401         int i;
9402
9403         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9404         if (error == NULL)
9405                 return NULL;
9406
9407         for_each_pipe(i) {
9408                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9409
9410                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9411                         error->cursor[i].control = I915_READ(CURCNTR(i));
9412                         error->cursor[i].position = I915_READ(CURPOS(i));
9413                         error->cursor[i].base = I915_READ(CURBASE(i));
9414                 } else {
9415                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9416                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9417                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9418                 }
9419
9420                 error->plane[i].control = I915_READ(DSPCNTR(i));
9421                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9422                 if (INTEL_INFO(dev)->gen <= 3) {
9423                         error->plane[i].size = I915_READ(DSPSIZE(i));
9424                         error->plane[i].pos = I915_READ(DSPPOS(i));
9425                 }
9426                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9427                         error->plane[i].addr = I915_READ(DSPADDR(i));
9428                 if (INTEL_INFO(dev)->gen >= 4) {
9429                         error->plane[i].surface = I915_READ(DSPSURF(i));
9430                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9431                 }
9432
9433                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9434                 error->pipe[i].source = I915_READ(PIPESRC(i));
9435                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9436                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9437                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9438                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9439                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9440                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9441         }
9442
9443         return error;
9444 }
9445
9446 void
9447 intel_display_print_error_state(struct seq_file *m,
9448                                 struct drm_device *dev,
9449                                 struct intel_display_error_state *error)
9450 {
9451         int i;
9452
9453         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9454         for_each_pipe(i) {
9455                 seq_printf(m, "Pipe [%d]:\n", i);
9456                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9457                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9458                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9459                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9460                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9461                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9462                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9463                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9464
9465                 seq_printf(m, "Plane [%d]:\n", i);
9466                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9467                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9468                 if (INTEL_INFO(dev)->gen <= 3) {
9469                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9470                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9471                 }
9472                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9473                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9474                 if (INTEL_INFO(dev)->gen >= 4) {
9475                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9476                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9477                 }
9478
9479                 seq_printf(m, "Cursor [%d]:\n", i);
9480                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9481                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9482                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9483         }
9484 }
9485 #endif