]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: assume all GM45 Acer laptops use inverted backlight PWM
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
51                                    struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54                           int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58         int     min, max;
59 } intel_range_t;
60
61 typedef struct {
62         int     dot_limit;
63         int     p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70 };
71
72 int
73 intel_pch_rawclk(struct drm_device *dev)
74 {
75         struct drm_i915_private *dev_priv = dev->dev_private;
76
77         WARN_ON(!HAS_PCH_SPLIT(dev));
78
79         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
80 }
81
82 static inline u32 /* units of 100MHz */
83 intel_fdi_link_freq(struct drm_device *dev)
84 {
85         if (IS_GEN5(dev)) {
86                 struct drm_i915_private *dev_priv = dev->dev_private;
87                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
88         } else
89                 return 27;
90 }
91
92 static const intel_limit_t intel_limits_i8xx_dac = {
93         .dot = { .min = 25000, .max = 350000 },
94         .vco = { .min = 930000, .max = 1400000 },
95         .n = { .min = 3, .max = 16 },
96         .m = { .min = 96, .max = 140 },
97         .m1 = { .min = 18, .max = 26 },
98         .m2 = { .min = 6, .max = 16 },
99         .p = { .min = 4, .max = 128 },
100         .p1 = { .min = 2, .max = 33 },
101         .p2 = { .dot_limit = 165000,
102                 .p2_slow = 4, .p2_fast = 2 },
103 };
104
105 static const intel_limit_t intel_limits_i8xx_dvo = {
106         .dot = { .min = 25000, .max = 350000 },
107         .vco = { .min = 930000, .max = 1400000 },
108         .n = { .min = 3, .max = 16 },
109         .m = { .min = 96, .max = 140 },
110         .m1 = { .min = 18, .max = 26 },
111         .m2 = { .min = 6, .max = 16 },
112         .p = { .min = 4, .max = 128 },
113         .p1 = { .min = 2, .max = 33 },
114         .p2 = { .dot_limit = 165000,
115                 .p2_slow = 4, .p2_fast = 4 },
116 };
117
118 static const intel_limit_t intel_limits_i8xx_lvds = {
119         .dot = { .min = 25000, .max = 350000 },
120         .vco = { .min = 930000, .max = 1400000 },
121         .n = { .min = 3, .max = 16 },
122         .m = { .min = 96, .max = 140 },
123         .m1 = { .min = 18, .max = 26 },
124         .m2 = { .min = 6, .max = 16 },
125         .p = { .min = 4, .max = 128 },
126         .p1 = { .min = 1, .max = 6 },
127         .p2 = { .dot_limit = 165000,
128                 .p2_slow = 14, .p2_fast = 7 },
129 };
130
131 static const intel_limit_t intel_limits_i9xx_sdvo = {
132         .dot = { .min = 20000, .max = 400000 },
133         .vco = { .min = 1400000, .max = 2800000 },
134         .n = { .min = 1, .max = 6 },
135         .m = { .min = 70, .max = 120 },
136         .m1 = { .min = 8, .max = 18 },
137         .m2 = { .min = 3, .max = 7 },
138         .p = { .min = 5, .max = 80 },
139         .p1 = { .min = 1, .max = 8 },
140         .p2 = { .dot_limit = 200000,
141                 .p2_slow = 10, .p2_fast = 5 },
142 };
143
144 static const intel_limit_t intel_limits_i9xx_lvds = {
145         .dot = { .min = 20000, .max = 400000 },
146         .vco = { .min = 1400000, .max = 2800000 },
147         .n = { .min = 1, .max = 6 },
148         .m = { .min = 70, .max = 120 },
149         .m1 = { .min = 8, .max = 18 },
150         .m2 = { .min = 3, .max = 7 },
151         .p = { .min = 7, .max = 98 },
152         .p1 = { .min = 1, .max = 8 },
153         .p2 = { .dot_limit = 112000,
154                 .p2_slow = 14, .p2_fast = 7 },
155 };
156
157
158 static const intel_limit_t intel_limits_g4x_sdvo = {
159         .dot = { .min = 25000, .max = 270000 },
160         .vco = { .min = 1750000, .max = 3500000},
161         .n = { .min = 1, .max = 4 },
162         .m = { .min = 104, .max = 138 },
163         .m1 = { .min = 17, .max = 23 },
164         .m2 = { .min = 5, .max = 11 },
165         .p = { .min = 10, .max = 30 },
166         .p1 = { .min = 1, .max = 3},
167         .p2 = { .dot_limit = 270000,
168                 .p2_slow = 10,
169                 .p2_fast = 10
170         },
171 };
172
173 static const intel_limit_t intel_limits_g4x_hdmi = {
174         .dot = { .min = 22000, .max = 400000 },
175         .vco = { .min = 1750000, .max = 3500000},
176         .n = { .min = 1, .max = 4 },
177         .m = { .min = 104, .max = 138 },
178         .m1 = { .min = 16, .max = 23 },
179         .m2 = { .min = 5, .max = 11 },
180         .p = { .min = 5, .max = 80 },
181         .p1 = { .min = 1, .max = 8},
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 10, .p2_fast = 5 },
184 };
185
186 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
187         .dot = { .min = 20000, .max = 115000 },
188         .vco = { .min = 1750000, .max = 3500000 },
189         .n = { .min = 1, .max = 3 },
190         .m = { .min = 104, .max = 138 },
191         .m1 = { .min = 17, .max = 23 },
192         .m2 = { .min = 5, .max = 11 },
193         .p = { .min = 28, .max = 112 },
194         .p1 = { .min = 2, .max = 8 },
195         .p2 = { .dot_limit = 0,
196                 .p2_slow = 14, .p2_fast = 14
197         },
198 };
199
200 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
201         .dot = { .min = 80000, .max = 224000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 14, .max = 42 },
208         .p1 = { .min = 2, .max = 6 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 7, .p2_fast = 7
211         },
212 };
213
214 static const intel_limit_t intel_limits_pineview_sdvo = {
215         .dot = { .min = 20000, .max = 400000},
216         .vco = { .min = 1700000, .max = 3500000 },
217         /* Pineview's Ncounter is a ring counter */
218         .n = { .min = 3, .max = 6 },
219         .m = { .min = 2, .max = 256 },
220         /* Pineview only has one combined m divider, which we treat as m2. */
221         .m1 = { .min = 0, .max = 0 },
222         .m2 = { .min = 0, .max = 254 },
223         .p = { .min = 5, .max = 80 },
224         .p1 = { .min = 1, .max = 8 },
225         .p2 = { .dot_limit = 200000,
226                 .p2_slow = 10, .p2_fast = 5 },
227 };
228
229 static const intel_limit_t intel_limits_pineview_lvds = {
230         .dot = { .min = 20000, .max = 400000 },
231         .vco = { .min = 1700000, .max = 3500000 },
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         .m1 = { .min = 0, .max = 0 },
235         .m2 = { .min = 0, .max = 254 },
236         .p = { .min = 7, .max = 112 },
237         .p1 = { .min = 1, .max = 8 },
238         .p2 = { .dot_limit = 112000,
239                 .p2_slow = 14, .p2_fast = 14 },
240 };
241
242 /* Ironlake / Sandybridge
243  *
244  * We calculate clock using (register_value + 2) for N/M1/M2, so here
245  * the range value for them is (actual_value - 2).
246  */
247 static const intel_limit_t intel_limits_ironlake_dac = {
248         .dot = { .min = 25000, .max = 350000 },
249         .vco = { .min = 1760000, .max = 3510000 },
250         .n = { .min = 1, .max = 5 },
251         .m = { .min = 79, .max = 127 },
252         .m1 = { .min = 12, .max = 22 },
253         .m2 = { .min = 5, .max = 9 },
254         .p = { .min = 5, .max = 80 },
255         .p1 = { .min = 1, .max = 8 },
256         .p2 = { .dot_limit = 225000,
257                 .p2_slow = 10, .p2_fast = 5 },
258 };
259
260 static const intel_limit_t intel_limits_ironlake_single_lvds = {
261         .dot = { .min = 25000, .max = 350000 },
262         .vco = { .min = 1760000, .max = 3510000 },
263         .n = { .min = 1, .max = 3 },
264         .m = { .min = 79, .max = 118 },
265         .m1 = { .min = 12, .max = 22 },
266         .m2 = { .min = 5, .max = 9 },
267         .p = { .min = 28, .max = 112 },
268         .p1 = { .min = 2, .max = 8 },
269         .p2 = { .dot_limit = 225000,
270                 .p2_slow = 14, .p2_fast = 14 },
271 };
272
273 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
274         .dot = { .min = 25000, .max = 350000 },
275         .vco = { .min = 1760000, .max = 3510000 },
276         .n = { .min = 1, .max = 3 },
277         .m = { .min = 79, .max = 127 },
278         .m1 = { .min = 12, .max = 22 },
279         .m2 = { .min = 5, .max = 9 },
280         .p = { .min = 14, .max = 56 },
281         .p1 = { .min = 2, .max = 8 },
282         .p2 = { .dot_limit = 225000,
283                 .p2_slow = 7, .p2_fast = 7 },
284 };
285
286 /* LVDS 100mhz refclk limits. */
287 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 2 },
291         .m = { .min = 79, .max = 126 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 28, .max = 112 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 126 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 42 },
308         .p1 = { .min = 2, .max = 6 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311 };
312
313 static const intel_limit_t intel_limits_vlv_dac = {
314         .dot = { .min = 25000, .max = 270000 },
315         .vco = { .min = 4000000, .max = 6000000 },
316         .n = { .min = 1, .max = 7 },
317         .m = { .min = 22, .max = 450 }, /* guess */
318         .m1 = { .min = 2, .max = 3 },
319         .m2 = { .min = 11, .max = 156 },
320         .p = { .min = 10, .max = 30 },
321         .p1 = { .min = 1, .max = 3 },
322         .p2 = { .dot_limit = 270000,
323                 .p2_slow = 2, .p2_fast = 20 },
324 };
325
326 static const intel_limit_t intel_limits_vlv_hdmi = {
327         .dot = { .min = 25000, .max = 270000 },
328         .vco = { .min = 4000000, .max = 6000000 },
329         .n = { .min = 1, .max = 7 },
330         .m = { .min = 60, .max = 300 }, /* guess */
331         .m1 = { .min = 2, .max = 3 },
332         .m2 = { .min = 11, .max = 156 },
333         .p = { .min = 10, .max = 30 },
334         .p1 = { .min = 2, .max = 3 },
335         .p2 = { .dot_limit = 270000,
336                 .p2_slow = 2, .p2_fast = 20 },
337 };
338
339 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
340                                                 int refclk)
341 {
342         struct drm_device *dev = crtc->dev;
343         const intel_limit_t *limit;
344
345         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
346                 if (intel_is_dual_link_lvds(dev)) {
347                         if (refclk == 100000)
348                                 limit = &intel_limits_ironlake_dual_lvds_100m;
349                         else
350                                 limit = &intel_limits_ironlake_dual_lvds;
351                 } else {
352                         if (refclk == 100000)
353                                 limit = &intel_limits_ironlake_single_lvds_100m;
354                         else
355                                 limit = &intel_limits_ironlake_single_lvds;
356                 }
357         } else
358                 limit = &intel_limits_ironlake_dac;
359
360         return limit;
361 }
362
363 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
364 {
365         struct drm_device *dev = crtc->dev;
366         const intel_limit_t *limit;
367
368         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
369                 if (intel_is_dual_link_lvds(dev))
370                         limit = &intel_limits_g4x_dual_channel_lvds;
371                 else
372                         limit = &intel_limits_g4x_single_channel_lvds;
373         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
374                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
375                 limit = &intel_limits_g4x_hdmi;
376         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
377                 limit = &intel_limits_g4x_sdvo;
378         } else /* The option is for other outputs */
379                 limit = &intel_limits_i9xx_sdvo;
380
381         return limit;
382 }
383
384 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
385 {
386         struct drm_device *dev = crtc->dev;
387         const intel_limit_t *limit;
388
389         if (HAS_PCH_SPLIT(dev))
390                 limit = intel_ironlake_limit(crtc, refclk);
391         else if (IS_G4X(dev)) {
392                 limit = intel_g4x_limit(crtc);
393         } else if (IS_PINEVIEW(dev)) {
394                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
395                         limit = &intel_limits_pineview_lvds;
396                 else
397                         limit = &intel_limits_pineview_sdvo;
398         } else if (IS_VALLEYVIEW(dev)) {
399                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
400                         limit = &intel_limits_vlv_dac;
401                 else
402                         limit = &intel_limits_vlv_hdmi;
403         } else if (!IS_GEN2(dev)) {
404                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
405                         limit = &intel_limits_i9xx_lvds;
406                 else
407                         limit = &intel_limits_i9xx_sdvo;
408         } else {
409                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
410                         limit = &intel_limits_i8xx_lvds;
411                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
412                         limit = &intel_limits_i8xx_dvo;
413                 else
414                         limit = &intel_limits_i8xx_dac;
415         }
416         return limit;
417 }
418
419 /* m1 is reserved as 0 in Pineview, n is a ring counter */
420 static void pineview_clock(int refclk, intel_clock_t *clock)
421 {
422         clock->m = clock->m2 + 2;
423         clock->p = clock->p1 * clock->p2;
424         clock->vco = refclk * clock->m / clock->n;
425         clock->dot = clock->vco / clock->p;
426 }
427
428 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
429 {
430         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
431 }
432
433 static void i9xx_clock(int refclk, intel_clock_t *clock)
434 {
435         clock->m = i9xx_dpll_compute_m(clock);
436         clock->p = clock->p1 * clock->p2;
437         clock->vco = refclk * clock->m / (clock->n + 2);
438         clock->dot = clock->vco / clock->p;
439 }
440
441 /**
442  * Returns whether any output on the specified pipe is of the specified type
443  */
444 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
445 {
446         struct drm_device *dev = crtc->dev;
447         struct intel_encoder *encoder;
448
449         for_each_encoder_on_crtc(dev, crtc, encoder)
450                 if (encoder->type == type)
451                         return true;
452
453         return false;
454 }
455
456 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458  * Returns whether the given set of divisors are valid for a given refclk with
459  * the given connectors.
460  */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463                                const intel_limit_t *limit,
464                                const intel_clock_t *clock)
465 {
466         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
467                 INTELPllInvalid("p1 out of range\n");
468         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
469                 INTELPllInvalid("p out of range\n");
470         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
471                 INTELPllInvalid("m2 out of range\n");
472         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
473                 INTELPllInvalid("m1 out of range\n");
474         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
475                 INTELPllInvalid("m1 <= m2\n");
476         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
477                 INTELPllInvalid("m out of range\n");
478         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
479                 INTELPllInvalid("n out of range\n");
480         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481                 INTELPllInvalid("vco out of range\n");
482         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483          * connector, etc., rather than just a single range.
484          */
485         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486                 INTELPllInvalid("dot out of range\n");
487
488         return true;
489 }
490
491 static bool
492 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493                     int target, int refclk, intel_clock_t *match_clock,
494                     intel_clock_t *best_clock)
495 {
496         struct drm_device *dev = crtc->dev;
497         intel_clock_t clock;
498         int err = target;
499
500         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501                 /*
502                  * For LVDS just rely on its current settings for dual-channel.
503                  * We haven't figured out how to reliably set up different
504                  * single/dual channel state, if we even can.
505                  */
506                 if (intel_is_dual_link_lvds(dev))
507                         clock.p2 = limit->p2.p2_fast;
508                 else
509                         clock.p2 = limit->p2.p2_slow;
510         } else {
511                 if (target < limit->p2.dot_limit)
512                         clock.p2 = limit->p2.p2_slow;
513                 else
514                         clock.p2 = limit->p2.p2_fast;
515         }
516
517         memset(best_clock, 0, sizeof(*best_clock));
518
519         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520              clock.m1++) {
521                 for (clock.m2 = limit->m2.min;
522                      clock.m2 <= limit->m2.max; clock.m2++) {
523                         if (clock.m2 >= clock.m1)
524                                 break;
525                         for (clock.n = limit->n.min;
526                              clock.n <= limit->n.max; clock.n++) {
527                                 for (clock.p1 = limit->p1.min;
528                                         clock.p1 <= limit->p1.max; clock.p1++) {
529                                         int this_err;
530
531                                         i9xx_clock(refclk, &clock);
532                                         if (!intel_PLL_is_valid(dev, limit,
533                                                                 &clock))
534                                                 continue;
535                                         if (match_clock &&
536                                             clock.p != match_clock->p)
537                                                 continue;
538
539                                         this_err = abs(clock.dot - target);
540                                         if (this_err < err) {
541                                                 *best_clock = clock;
542                                                 err = this_err;
543                                         }
544                                 }
545                         }
546                 }
547         }
548
549         return (err != target);
550 }
551
552 static bool
553 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554                    int target, int refclk, intel_clock_t *match_clock,
555                    intel_clock_t *best_clock)
556 {
557         struct drm_device *dev = crtc->dev;
558         intel_clock_t clock;
559         int err = target;
560
561         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562                 /*
563                  * For LVDS just rely on its current settings for dual-channel.
564                  * We haven't figured out how to reliably set up different
565                  * single/dual channel state, if we even can.
566                  */
567                 if (intel_is_dual_link_lvds(dev))
568                         clock.p2 = limit->p2.p2_fast;
569                 else
570                         clock.p2 = limit->p2.p2_slow;
571         } else {
572                 if (target < limit->p2.dot_limit)
573                         clock.p2 = limit->p2.p2_slow;
574                 else
575                         clock.p2 = limit->p2.p2_fast;
576         }
577
578         memset(best_clock, 0, sizeof(*best_clock));
579
580         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581              clock.m1++) {
582                 for (clock.m2 = limit->m2.min;
583                      clock.m2 <= limit->m2.max; clock.m2++) {
584                         for (clock.n = limit->n.min;
585                              clock.n <= limit->n.max; clock.n++) {
586                                 for (clock.p1 = limit->p1.min;
587                                         clock.p1 <= limit->p1.max; clock.p1++) {
588                                         int this_err;
589
590                                         pineview_clock(refclk, &clock);
591                                         if (!intel_PLL_is_valid(dev, limit,
592                                                                 &clock))
593                                                 continue;
594                                         if (match_clock &&
595                                             clock.p != match_clock->p)
596                                                 continue;
597
598                                         this_err = abs(clock.dot - target);
599                                         if (this_err < err) {
600                                                 *best_clock = clock;
601                                                 err = this_err;
602                                         }
603                                 }
604                         }
605                 }
606         }
607
608         return (err != target);
609 }
610
611 static bool
612 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613                    int target, int refclk, intel_clock_t *match_clock,
614                    intel_clock_t *best_clock)
615 {
616         struct drm_device *dev = crtc->dev;
617         intel_clock_t clock;
618         int max_n;
619         bool found;
620         /* approximately equals target * 0.00585 */
621         int err_most = (target >> 8) + (target >> 9);
622         found = false;
623
624         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625                 if (intel_is_dual_link_lvds(dev))
626                         clock.p2 = limit->p2.p2_fast;
627                 else
628                         clock.p2 = limit->p2.p2_slow;
629         } else {
630                 if (target < limit->p2.dot_limit)
631                         clock.p2 = limit->p2.p2_slow;
632                 else
633                         clock.p2 = limit->p2.p2_fast;
634         }
635
636         memset(best_clock, 0, sizeof(*best_clock));
637         max_n = limit->n.max;
638         /* based on hardware requirement, prefer smaller n to precision */
639         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640                 /* based on hardware requirement, prefere larger m1,m2 */
641                 for (clock.m1 = limit->m1.max;
642                      clock.m1 >= limit->m1.min; clock.m1--) {
643                         for (clock.m2 = limit->m2.max;
644                              clock.m2 >= limit->m2.min; clock.m2--) {
645                                 for (clock.p1 = limit->p1.max;
646                                      clock.p1 >= limit->p1.min; clock.p1--) {
647                                         int this_err;
648
649                                         i9xx_clock(refclk, &clock);
650                                         if (!intel_PLL_is_valid(dev, limit,
651                                                                 &clock))
652                                                 continue;
653
654                                         this_err = abs(clock.dot - target);
655                                         if (this_err < err_most) {
656                                                 *best_clock = clock;
657                                                 err_most = this_err;
658                                                 max_n = clock.n;
659                                                 found = true;
660                                         }
661                                 }
662                         }
663                 }
664         }
665         return found;
666 }
667
668 static bool
669 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670                    int target, int refclk, intel_clock_t *match_clock,
671                    intel_clock_t *best_clock)
672 {
673         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
674         u32 m, n, fastclk;
675         u32 updrate, minupdate, p;
676         unsigned long bestppm, ppm, absppm;
677         int dotclk, flag;
678
679         flag = 0;
680         dotclk = target * 1000;
681         bestppm = 1000000;
682         ppm = absppm = 0;
683         fastclk = dotclk / (2*100);
684         updrate = 0;
685         minupdate = 19200;
686         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
687         bestm1 = bestm2 = bestp1 = bestp2 = 0;
688
689         /* based on hardware requirement, prefer smaller n to precision */
690         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
691                 updrate = refclk / n;
692                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
693                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
694                                 if (p2 > 10)
695                                         p2 = p2 - 1;
696                                 p = p1 * p2;
697                                 /* based on hardware requirement, prefer bigger m1,m2 values */
698                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
699                                         m2 = (((2*(fastclk * p * n / m1 )) +
700                                                refclk) / (2*refclk));
701                                         m = m1 * m2;
702                                         vco = updrate * m;
703                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
704                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
705                                                 absppm = (ppm > 0) ? ppm : (-ppm);
706                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
707                                                         bestppm = 0;
708                                                         flag = 1;
709                                                 }
710                                                 if (absppm < bestppm - 10) {
711                                                         bestppm = absppm;
712                                                         flag = 1;
713                                                 }
714                                                 if (flag) {
715                                                         bestn = n;
716                                                         bestm1 = m1;
717                                                         bestm2 = m2;
718                                                         bestp1 = p1;
719                                                         bestp2 = p2;
720                                                         flag = 0;
721                                                 }
722                                         }
723                                 }
724                         }
725                 }
726         }
727         best_clock->n = bestn;
728         best_clock->m1 = bestm1;
729         best_clock->m2 = bestm2;
730         best_clock->p1 = bestp1;
731         best_clock->p2 = bestp2;
732
733         return true;
734 }
735
736 bool intel_crtc_active(struct drm_crtc *crtc)
737 {
738         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
739
740         /* Be paranoid as we can arrive here with only partial
741          * state retrieved from the hardware during setup.
742          *
743          * We can ditch the adjusted_mode.clock check as soon
744          * as Haswell has gained clock readout/fastboot support.
745          *
746          * We can ditch the crtc->fb check as soon as we can
747          * properly reconstruct framebuffers.
748          */
749         return intel_crtc->active && crtc->fb &&
750                 intel_crtc->config.adjusted_mode.clock;
751 }
752
753 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
754                                              enum pipe pipe)
755 {
756         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
757         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
758
759         return intel_crtc->config.cpu_transcoder;
760 }
761
762 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
763 {
764         struct drm_i915_private *dev_priv = dev->dev_private;
765         u32 frame, frame_reg = PIPEFRAME(pipe);
766
767         frame = I915_READ(frame_reg);
768
769         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
770                 DRM_DEBUG_KMS("vblank wait timed out\n");
771 }
772
773 /**
774  * intel_wait_for_vblank - wait for vblank on a given pipe
775  * @dev: drm device
776  * @pipe: pipe to wait for
777  *
778  * Wait for vblank to occur on a given pipe.  Needed for various bits of
779  * mode setting code.
780  */
781 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         int pipestat_reg = PIPESTAT(pipe);
785
786         if (INTEL_INFO(dev)->gen >= 5) {
787                 ironlake_wait_for_vblank(dev, pipe);
788                 return;
789         }
790
791         /* Clear existing vblank status. Note this will clear any other
792          * sticky status fields as well.
793          *
794          * This races with i915_driver_irq_handler() with the result
795          * that either function could miss a vblank event.  Here it is not
796          * fatal, as we will either wait upon the next vblank interrupt or
797          * timeout.  Generally speaking intel_wait_for_vblank() is only
798          * called during modeset at which time the GPU should be idle and
799          * should *not* be performing page flips and thus not waiting on
800          * vblanks...
801          * Currently, the result of us stealing a vblank from the irq
802          * handler is that a single frame will be skipped during swapbuffers.
803          */
804         I915_WRITE(pipestat_reg,
805                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
806
807         /* Wait for vblank interrupt bit to set */
808         if (wait_for(I915_READ(pipestat_reg) &
809                      PIPE_VBLANK_INTERRUPT_STATUS,
810                      50))
811                 DRM_DEBUG_KMS("vblank wait timed out\n");
812 }
813
814 /*
815  * intel_wait_for_pipe_off - wait for pipe to turn off
816  * @dev: drm device
817  * @pipe: pipe to wait for
818  *
819  * After disabling a pipe, we can't wait for vblank in the usual way,
820  * spinning on the vblank interrupt status bit, since we won't actually
821  * see an interrupt when the pipe is disabled.
822  *
823  * On Gen4 and above:
824  *   wait for the pipe register state bit to turn off
825  *
826  * Otherwise:
827  *   wait for the display line value to settle (it usually
828  *   ends up stopping at the start of the next frame).
829  *
830  */
831 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
832 {
833         struct drm_i915_private *dev_priv = dev->dev_private;
834         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
835                                                                       pipe);
836
837         if (INTEL_INFO(dev)->gen >= 4) {
838                 int reg = PIPECONF(cpu_transcoder);
839
840                 /* Wait for the Pipe State to go off */
841                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
842                              100))
843                         WARN(1, "pipe_off wait timed out\n");
844         } else {
845                 u32 last_line, line_mask;
846                 int reg = PIPEDSL(pipe);
847                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
848
849                 if (IS_GEN2(dev))
850                         line_mask = DSL_LINEMASK_GEN2;
851                 else
852                         line_mask = DSL_LINEMASK_GEN3;
853
854                 /* Wait for the display line to settle */
855                 do {
856                         last_line = I915_READ(reg) & line_mask;
857                         mdelay(5);
858                 } while (((I915_READ(reg) & line_mask) != last_line) &&
859                          time_after(timeout, jiffies));
860                 if (time_after(jiffies, timeout))
861                         WARN(1, "pipe_off wait timed out\n");
862         }
863 }
864
865 /*
866  * ibx_digital_port_connected - is the specified port connected?
867  * @dev_priv: i915 private structure
868  * @port: the port to test
869  *
870  * Returns true if @port is connected, false otherwise.
871  */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873                                 struct intel_digital_port *port)
874 {
875         u32 bit;
876
877         if (HAS_PCH_IBX(dev_priv->dev)) {
878                 switch(port->port) {
879                 case PORT_B:
880                         bit = SDE_PORTB_HOTPLUG;
881                         break;
882                 case PORT_C:
883                         bit = SDE_PORTC_HOTPLUG;
884                         break;
885                 case PORT_D:
886                         bit = SDE_PORTD_HOTPLUG;
887                         break;
888                 default:
889                         return true;
890                 }
891         } else {
892                 switch(port->port) {
893                 case PORT_B:
894                         bit = SDE_PORTB_HOTPLUG_CPT;
895                         break;
896                 case PORT_C:
897                         bit = SDE_PORTC_HOTPLUG_CPT;
898                         break;
899                 case PORT_D:
900                         bit = SDE_PORTD_HOTPLUG_CPT;
901                         break;
902                 default:
903                         return true;
904                 }
905         }
906
907         return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912         return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917                 enum pipe pipe, bool state)
918 {
919         int reg;
920         u32 val;
921         bool cur_state;
922
923         reg = DPLL(pipe);
924         val = I915_READ(reg);
925         cur_state = !!(val & DPLL_VCO_ENABLE);
926         WARN(cur_state != state,
927              "PLL state assertion failure (expected %s, current %s)\n",
928              state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934         u32 val;
935         bool cur_state;
936
937         mutex_lock(&dev_priv->dpio_lock);
938         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939         mutex_unlock(&dev_priv->dpio_lock);
940
941         cur_state = val & DSI_PLL_VCO_EN;
942         WARN(cur_state != state,
943              "DSI PLL state assertion failure (expected %s, current %s)\n",
944              state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954         if (crtc->config.shared_dpll < 0)
955                 return NULL;
956
957         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962                         struct intel_shared_dpll *pll,
963                         bool state)
964 {
965         bool cur_state;
966         struct intel_dpll_hw_state hw_state;
967
968         if (HAS_PCH_LPT(dev_priv->dev)) {
969                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970                 return;
971         }
972
973         if (WARN (!pll,
974                   "asserting DPLL %s with no DPLL\n", state_string(state)))
975                 return;
976
977         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978         WARN(cur_state != state,
979              "%s assertion failure (expected %s, current %s)\n",
980              pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984                           enum pipe pipe, bool state)
985 {
986         int reg;
987         u32 val;
988         bool cur_state;
989         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990                                                                       pipe);
991
992         if (HAS_DDI(dev_priv->dev)) {
993                 /* DDI does not have a specific FDI_TX register */
994                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995                 val = I915_READ(reg);
996                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997         } else {
998                 reg = FDI_TX_CTL(pipe);
999                 val = I915_READ(reg);
1000                 cur_state = !!(val & FDI_TX_ENABLE);
1001         }
1002         WARN(cur_state != state,
1003              "FDI TX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010                           enum pipe pipe, bool state)
1011 {
1012         int reg;
1013         u32 val;
1014         bool cur_state;
1015
1016         reg = FDI_RX_CTL(pipe);
1017         val = I915_READ(reg);
1018         cur_state = !!(val & FDI_RX_ENABLE);
1019         WARN(cur_state != state,
1020              "FDI RX state assertion failure (expected %s, current %s)\n",
1021              state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027                                       enum pipe pipe)
1028 {
1029         int reg;
1030         u32 val;
1031
1032         /* ILK FDI PLL is always enabled */
1033         if (dev_priv->info->gen == 5)
1034                 return;
1035
1036         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037         if (HAS_DDI(dev_priv->dev))
1038                 return;
1039
1040         reg = FDI_TX_CTL(pipe);
1041         val = I915_READ(reg);
1042         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046                        enum pipe pipe, bool state)
1047 {
1048         int reg;
1049         u32 val;
1050         bool cur_state;
1051
1052         reg = FDI_RX_CTL(pipe);
1053         val = I915_READ(reg);
1054         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055         WARN(cur_state != state,
1056              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057              state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061                                   enum pipe pipe)
1062 {
1063         int pp_reg, lvds_reg;
1064         u32 val;
1065         enum pipe panel_pipe = PIPE_A;
1066         bool locked = true;
1067
1068         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069                 pp_reg = PCH_PP_CONTROL;
1070                 lvds_reg = PCH_LVDS;
1071         } else {
1072                 pp_reg = PP_CONTROL;
1073                 lvds_reg = LVDS;
1074         }
1075
1076         val = I915_READ(pp_reg);
1077         if (!(val & PANEL_POWER_ON) ||
1078             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079                 locked = false;
1080
1081         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082                 panel_pipe = PIPE_B;
1083
1084         WARN(panel_pipe == pipe && locked,
1085              "panel assertion failure, pipe %c regs locked\n",
1086              pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090                           enum pipe pipe, bool state)
1091 {
1092         struct drm_device *dev = dev_priv->dev;
1093         bool cur_state;
1094
1095         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097         else if (IS_845G(dev) || IS_I865G(dev))
1098                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099         else
1100                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102         WARN(cur_state != state,
1103              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104              pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110                  enum pipe pipe, bool state)
1111 {
1112         int reg;
1113         u32 val;
1114         bool cur_state;
1115         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116                                                                       pipe);
1117
1118         /* if we need the pipe A quirk it must be always on */
1119         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120                 state = true;
1121
1122         if (!intel_display_power_enabled(dev_priv->dev,
1123                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124                 cur_state = false;
1125         } else {
1126                 reg = PIPECONF(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & PIPECONF_ENABLE);
1129         }
1130
1131         WARN(cur_state != state,
1132              "pipe %c assertion failure (expected %s, current %s)\n",
1133              pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137                          enum plane plane, bool state)
1138 {
1139         int reg;
1140         u32 val;
1141         bool cur_state;
1142
1143         reg = DSPCNTR(plane);
1144         val = I915_READ(reg);
1145         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146         WARN(cur_state != state,
1147              "plane %c assertion failure (expected %s, current %s)\n",
1148              plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155                                    enum pipe pipe)
1156 {
1157         struct drm_device *dev = dev_priv->dev;
1158         int reg, i;
1159         u32 val;
1160         int cur_pipe;
1161
1162         /* Primary planes are fixed to pipes on gen4+ */
1163         if (INTEL_INFO(dev)->gen >= 4) {
1164                 reg = DSPCNTR(pipe);
1165                 val = I915_READ(reg);
1166                 WARN((val & DISPLAY_PLANE_ENABLE),
1167                      "plane %c assertion failure, should be disabled but not\n",
1168                      plane_name(pipe));
1169                 return;
1170         }
1171
1172         /* Need to check both planes against the pipe */
1173         for_each_pipe(i) {
1174                 reg = DSPCNTR(i);
1175                 val = I915_READ(reg);
1176                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177                         DISPPLANE_SEL_PIPE_SHIFT;
1178                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180                      plane_name(i), pipe_name(pipe));
1181         }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185                                     enum pipe pipe)
1186 {
1187         struct drm_device *dev = dev_priv->dev;
1188         int reg, i;
1189         u32 val;
1190
1191         if (IS_VALLEYVIEW(dev)) {
1192                 for (i = 0; i < dev_priv->num_plane; i++) {
1193                         reg = SPCNTR(pipe, i);
1194                         val = I915_READ(reg);
1195                         WARN((val & SP_ENABLE),
1196                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197                              sprite_name(pipe, i), pipe_name(pipe));
1198                 }
1199         } else if (INTEL_INFO(dev)->gen >= 7) {
1200                 reg = SPRCTL(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & SPRITE_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         } else if (INTEL_INFO(dev)->gen >= 5) {
1206                 reg = DVSCNTR(pipe);
1207                 val = I915_READ(reg);
1208                 WARN((val & DVS_ENABLE),
1209                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210                      plane_name(pipe), pipe_name(pipe));
1211         }
1212 }
1213
1214 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216         u32 val;
1217         bool enabled;
1218
1219         if (HAS_PCH_LPT(dev_priv->dev)) {
1220                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1221                 return;
1222         }
1223
1224         val = I915_READ(PCH_DREF_CONTROL);
1225         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1226                             DREF_SUPERSPREAD_SOURCE_MASK));
1227         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1228 }
1229
1230 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1231                                            enum pipe pipe)
1232 {
1233         int reg;
1234         u32 val;
1235         bool enabled;
1236
1237         reg = PCH_TRANSCONF(pipe);
1238         val = I915_READ(reg);
1239         enabled = !!(val & TRANS_ENABLE);
1240         WARN(enabled,
1241              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1242              pipe_name(pipe));
1243 }
1244
1245 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1246                             enum pipe pipe, u32 port_sel, u32 val)
1247 {
1248         if ((val & DP_PORT_EN) == 0)
1249                 return false;
1250
1251         if (HAS_PCH_CPT(dev_priv->dev)) {
1252                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1253                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1254                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1255                         return false;
1256         } else {
1257                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1258                         return false;
1259         }
1260         return true;
1261 }
1262
1263 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1264                               enum pipe pipe, u32 val)
1265 {
1266         if ((val & SDVO_ENABLE) == 0)
1267                 return false;
1268
1269         if (HAS_PCH_CPT(dev_priv->dev)) {
1270                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1271                         return false;
1272         } else {
1273                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1274                         return false;
1275         }
1276         return true;
1277 }
1278
1279 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1280                               enum pipe pipe, u32 val)
1281 {
1282         if ((val & LVDS_PORT_EN) == 0)
1283                 return false;
1284
1285         if (HAS_PCH_CPT(dev_priv->dev)) {
1286                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1287                         return false;
1288         } else {
1289                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1290                         return false;
1291         }
1292         return true;
1293 }
1294
1295 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1296                               enum pipe pipe, u32 val)
1297 {
1298         if ((val & ADPA_DAC_ENABLE) == 0)
1299                 return false;
1300         if (HAS_PCH_CPT(dev_priv->dev)) {
1301                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1302                         return false;
1303         } else {
1304                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1305                         return false;
1306         }
1307         return true;
1308 }
1309
1310 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe, int reg, u32 port_sel)
1312 {
1313         u32 val = I915_READ(reg);
1314         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1315              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1316              reg, pipe_name(pipe));
1317
1318         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1319              && (val & DP_PIPEB_SELECT),
1320              "IBX PCH dp port still using transcoder B\n");
1321 }
1322
1323 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1324                                      enum pipe pipe, int reg)
1325 {
1326         u32 val = I915_READ(reg);
1327         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1328              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1329              reg, pipe_name(pipe));
1330
1331         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1332              && (val & SDVO_PIPE_B_SELECT),
1333              "IBX PCH hdmi port still using transcoder B\n");
1334 }
1335
1336 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1337                                       enum pipe pipe)
1338 {
1339         int reg;
1340         u32 val;
1341
1342         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1343         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1344         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1345
1346         reg = PCH_ADPA;
1347         val = I915_READ(reg);
1348         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1349              "PCH VGA enabled on transcoder %c, should be disabled\n",
1350              pipe_name(pipe));
1351
1352         reg = PCH_LVDS;
1353         val = I915_READ(reg);
1354         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1355              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1356              pipe_name(pipe));
1357
1358         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1359         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1360         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1361 }
1362
1363 static void vlv_enable_pll(struct intel_crtc *crtc)
1364 {
1365         struct drm_device *dev = crtc->base.dev;
1366         struct drm_i915_private *dev_priv = dev->dev_private;
1367         int reg = DPLL(crtc->pipe);
1368         u32 dpll = crtc->config.dpll_hw_state.dpll;
1369
1370         assert_pipe_disabled(dev_priv, crtc->pipe);
1371
1372         /* No really, not for ILK+ */
1373         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1374
1375         /* PLL is protected by panel, make sure we can write it */
1376         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1377                 assert_panel_unlocked(dev_priv, crtc->pipe);
1378
1379         I915_WRITE(reg, dpll);
1380         POSTING_READ(reg);
1381         udelay(150);
1382
1383         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1384                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1385
1386         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1387         POSTING_READ(DPLL_MD(crtc->pipe));
1388
1389         /* We do this three times for luck */
1390         I915_WRITE(reg, dpll);
1391         POSTING_READ(reg);
1392         udelay(150); /* wait for warmup */
1393         I915_WRITE(reg, dpll);
1394         POSTING_READ(reg);
1395         udelay(150); /* wait for warmup */
1396         I915_WRITE(reg, dpll);
1397         POSTING_READ(reg);
1398         udelay(150); /* wait for warmup */
1399 }
1400
1401 static void i9xx_enable_pll(struct intel_crtc *crtc)
1402 {
1403         struct drm_device *dev = crtc->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         int reg = DPLL(crtc->pipe);
1406         u32 dpll = crtc->config.dpll_hw_state.dpll;
1407
1408         assert_pipe_disabled(dev_priv, crtc->pipe);
1409
1410         /* No really, not for ILK+ */
1411         BUG_ON(dev_priv->info->gen >= 5);
1412
1413         /* PLL is protected by panel, make sure we can write it */
1414         if (IS_MOBILE(dev) && !IS_I830(dev))
1415                 assert_panel_unlocked(dev_priv, crtc->pipe);
1416
1417         I915_WRITE(reg, dpll);
1418
1419         /* Wait for the clocks to stabilize. */
1420         POSTING_READ(reg);
1421         udelay(150);
1422
1423         if (INTEL_INFO(dev)->gen >= 4) {
1424                 I915_WRITE(DPLL_MD(crtc->pipe),
1425                            crtc->config.dpll_hw_state.dpll_md);
1426         } else {
1427                 /* The pixel multiplier can only be updated once the
1428                  * DPLL is enabled and the clocks are stable.
1429                  *
1430                  * So write it again.
1431                  */
1432                 I915_WRITE(reg, dpll);
1433         }
1434
1435         /* We do this three times for luck */
1436         I915_WRITE(reg, dpll);
1437         POSTING_READ(reg);
1438         udelay(150); /* wait for warmup */
1439         I915_WRITE(reg, dpll);
1440         POSTING_READ(reg);
1441         udelay(150); /* wait for warmup */
1442         I915_WRITE(reg, dpll);
1443         POSTING_READ(reg);
1444         udelay(150); /* wait for warmup */
1445 }
1446
1447 /**
1448  * i9xx_disable_pll - disable a PLL
1449  * @dev_priv: i915 private structure
1450  * @pipe: pipe PLL to disable
1451  *
1452  * Disable the PLL for @pipe, making sure the pipe is off first.
1453  *
1454  * Note!  This is for pre-ILK only.
1455  */
1456 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1457 {
1458         /* Don't disable pipe A or pipe A PLLs if needed */
1459         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1460                 return;
1461
1462         /* Make sure the pipe isn't still relying on us */
1463         assert_pipe_disabled(dev_priv, pipe);
1464
1465         I915_WRITE(DPLL(pipe), 0);
1466         POSTING_READ(DPLL(pipe));
1467 }
1468
1469 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1470 {
1471         u32 port_mask;
1472
1473         if (!port)
1474                 port_mask = DPLL_PORTB_READY_MASK;
1475         else
1476                 port_mask = DPLL_PORTC_READY_MASK;
1477
1478         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1479                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1480                      'B' + port, I915_READ(DPLL(0)));
1481 }
1482
1483 /**
1484  * ironlake_enable_shared_dpll - enable PCH PLL
1485  * @dev_priv: i915 private structure
1486  * @pipe: pipe PLL to enable
1487  *
1488  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1489  * drives the transcoder clock.
1490  */
1491 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1492 {
1493         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1494         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1495
1496         /* PCH PLLs only available on ILK, SNB and IVB */
1497         BUG_ON(dev_priv->info->gen < 5);
1498         if (WARN_ON(pll == NULL))
1499                 return;
1500
1501         if (WARN_ON(pll->refcount == 0))
1502                 return;
1503
1504         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1505                       pll->name, pll->active, pll->on,
1506                       crtc->base.base.id);
1507
1508         if (pll->active++) {
1509                 WARN_ON(!pll->on);
1510                 assert_shared_dpll_enabled(dev_priv, pll);
1511                 return;
1512         }
1513         WARN_ON(pll->on);
1514
1515         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1516         pll->enable(dev_priv, pll);
1517         pll->on = true;
1518 }
1519
1520 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1521 {
1522         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1523         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1524
1525         /* PCH only available on ILK+ */
1526         BUG_ON(dev_priv->info->gen < 5);
1527         if (WARN_ON(pll == NULL))
1528                return;
1529
1530         if (WARN_ON(pll->refcount == 0))
1531                 return;
1532
1533         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1534                       pll->name, pll->active, pll->on,
1535                       crtc->base.base.id);
1536
1537         if (WARN_ON(pll->active == 0)) {
1538                 assert_shared_dpll_disabled(dev_priv, pll);
1539                 return;
1540         }
1541
1542         assert_shared_dpll_enabled(dev_priv, pll);
1543         WARN_ON(!pll->on);
1544         if (--pll->active)
1545                 return;
1546
1547         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1548         pll->disable(dev_priv, pll);
1549         pll->on = false;
1550 }
1551
1552 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1553                                            enum pipe pipe)
1554 {
1555         struct drm_device *dev = dev_priv->dev;
1556         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1558         uint32_t reg, val, pipeconf_val;
1559
1560         /* PCH only available on ILK+ */
1561         BUG_ON(dev_priv->info->gen < 5);
1562
1563         /* Make sure PCH DPLL is enabled */
1564         assert_shared_dpll_enabled(dev_priv,
1565                                    intel_crtc_to_shared_dpll(intel_crtc));
1566
1567         /* FDI must be feeding us bits for PCH ports */
1568         assert_fdi_tx_enabled(dev_priv, pipe);
1569         assert_fdi_rx_enabled(dev_priv, pipe);
1570
1571         if (HAS_PCH_CPT(dev)) {
1572                 /* Workaround: Set the timing override bit before enabling the
1573                  * pch transcoder. */
1574                 reg = TRANS_CHICKEN2(pipe);
1575                 val = I915_READ(reg);
1576                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1577                 I915_WRITE(reg, val);
1578         }
1579
1580         reg = PCH_TRANSCONF(pipe);
1581         val = I915_READ(reg);
1582         pipeconf_val = I915_READ(PIPECONF(pipe));
1583
1584         if (HAS_PCH_IBX(dev_priv->dev)) {
1585                 /*
1586                  * make the BPC in transcoder be consistent with
1587                  * that in pipeconf reg.
1588                  */
1589                 val &= ~PIPECONF_BPC_MASK;
1590                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1591         }
1592
1593         val &= ~TRANS_INTERLACE_MASK;
1594         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1595                 if (HAS_PCH_IBX(dev_priv->dev) &&
1596                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1597                         val |= TRANS_LEGACY_INTERLACED_ILK;
1598                 else
1599                         val |= TRANS_INTERLACED;
1600         else
1601                 val |= TRANS_PROGRESSIVE;
1602
1603         I915_WRITE(reg, val | TRANS_ENABLE);
1604         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1605                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1606 }
1607
1608 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1609                                       enum transcoder cpu_transcoder)
1610 {
1611         u32 val, pipeconf_val;
1612
1613         /* PCH only available on ILK+ */
1614         BUG_ON(dev_priv->info->gen < 5);
1615
1616         /* FDI must be feeding us bits for PCH ports */
1617         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1618         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1619
1620         /* Workaround: set timing override bit. */
1621         val = I915_READ(_TRANSA_CHICKEN2);
1622         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1623         I915_WRITE(_TRANSA_CHICKEN2, val);
1624
1625         val = TRANS_ENABLE;
1626         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1627
1628         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1629             PIPECONF_INTERLACED_ILK)
1630                 val |= TRANS_INTERLACED;
1631         else
1632                 val |= TRANS_PROGRESSIVE;
1633
1634         I915_WRITE(LPT_TRANSCONF, val);
1635         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1636                 DRM_ERROR("Failed to enable PCH transcoder\n");
1637 }
1638
1639 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1640                                             enum pipe pipe)
1641 {
1642         struct drm_device *dev = dev_priv->dev;
1643         uint32_t reg, val;
1644
1645         /* FDI relies on the transcoder */
1646         assert_fdi_tx_disabled(dev_priv, pipe);
1647         assert_fdi_rx_disabled(dev_priv, pipe);
1648
1649         /* Ports must be off as well */
1650         assert_pch_ports_disabled(dev_priv, pipe);
1651
1652         reg = PCH_TRANSCONF(pipe);
1653         val = I915_READ(reg);
1654         val &= ~TRANS_ENABLE;
1655         I915_WRITE(reg, val);
1656         /* wait for PCH transcoder off, transcoder state */
1657         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1658                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1659
1660         if (!HAS_PCH_IBX(dev)) {
1661                 /* Workaround: Clear the timing override chicken bit again. */
1662                 reg = TRANS_CHICKEN2(pipe);
1663                 val = I915_READ(reg);
1664                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1665                 I915_WRITE(reg, val);
1666         }
1667 }
1668
1669 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1670 {
1671         u32 val;
1672
1673         val = I915_READ(LPT_TRANSCONF);
1674         val &= ~TRANS_ENABLE;
1675         I915_WRITE(LPT_TRANSCONF, val);
1676         /* wait for PCH transcoder off, transcoder state */
1677         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1678                 DRM_ERROR("Failed to disable PCH transcoder\n");
1679
1680         /* Workaround: clear timing override bit. */
1681         val = I915_READ(_TRANSA_CHICKEN2);
1682         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1683         I915_WRITE(_TRANSA_CHICKEN2, val);
1684 }
1685
1686 /**
1687  * intel_enable_pipe - enable a pipe, asserting requirements
1688  * @dev_priv: i915 private structure
1689  * @pipe: pipe to enable
1690  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1691  *
1692  * Enable @pipe, making sure that various hardware specific requirements
1693  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1694  *
1695  * @pipe should be %PIPE_A or %PIPE_B.
1696  *
1697  * Will wait until the pipe is actually running (i.e. first vblank) before
1698  * returning.
1699  */
1700 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1701                               bool pch_port, bool dsi)
1702 {
1703         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1704                                                                       pipe);
1705         enum pipe pch_transcoder;
1706         int reg;
1707         u32 val;
1708
1709         assert_planes_disabled(dev_priv, pipe);
1710         assert_cursor_disabled(dev_priv, pipe);
1711         assert_sprites_disabled(dev_priv, pipe);
1712
1713         if (HAS_PCH_LPT(dev_priv->dev))
1714                 pch_transcoder = TRANSCODER_A;
1715         else
1716                 pch_transcoder = pipe;
1717
1718         /*
1719          * A pipe without a PLL won't actually be able to drive bits from
1720          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1721          * need the check.
1722          */
1723         if (!HAS_PCH_SPLIT(dev_priv->dev))
1724                 if (dsi)
1725                         assert_dsi_pll_enabled(dev_priv);
1726                 else
1727                         assert_pll_enabled(dev_priv, pipe);
1728         else {
1729                 if (pch_port) {
1730                         /* if driving the PCH, we need FDI enabled */
1731                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1732                         assert_fdi_tx_pll_enabled(dev_priv,
1733                                                   (enum pipe) cpu_transcoder);
1734                 }
1735                 /* FIXME: assert CPU port conditions for SNB+ */
1736         }
1737
1738         reg = PIPECONF(cpu_transcoder);
1739         val = I915_READ(reg);
1740         if (val & PIPECONF_ENABLE)
1741                 return;
1742
1743         I915_WRITE(reg, val | PIPECONF_ENABLE);
1744         intel_wait_for_vblank(dev_priv->dev, pipe);
1745 }
1746
1747 /**
1748  * intel_disable_pipe - disable a pipe, asserting requirements
1749  * @dev_priv: i915 private structure
1750  * @pipe: pipe to disable
1751  *
1752  * Disable @pipe, making sure that various hardware specific requirements
1753  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1754  *
1755  * @pipe should be %PIPE_A or %PIPE_B.
1756  *
1757  * Will wait until the pipe has shut down before returning.
1758  */
1759 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1760                                enum pipe pipe)
1761 {
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         int reg;
1765         u32 val;
1766
1767         /*
1768          * Make sure planes won't keep trying to pump pixels to us,
1769          * or we might hang the display.
1770          */
1771         assert_planes_disabled(dev_priv, pipe);
1772         assert_cursor_disabled(dev_priv, pipe);
1773         assert_sprites_disabled(dev_priv, pipe);
1774
1775         /* Don't disable pipe A or pipe A PLLs if needed */
1776         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1777                 return;
1778
1779         reg = PIPECONF(cpu_transcoder);
1780         val = I915_READ(reg);
1781         if ((val & PIPECONF_ENABLE) == 0)
1782                 return;
1783
1784         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1785         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1786 }
1787
1788 /*
1789  * Plane regs are double buffered, going from enabled->disabled needs a
1790  * trigger in order to latch.  The display address reg provides this.
1791  */
1792 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1793                                       enum plane plane)
1794 {
1795         if (dev_priv->info->gen >= 4)
1796                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1797         else
1798                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1799 }
1800
1801 /**
1802  * intel_enable_plane - enable a display plane on a given pipe
1803  * @dev_priv: i915 private structure
1804  * @plane: plane to enable
1805  * @pipe: pipe being fed
1806  *
1807  * Enable @plane on @pipe, making sure that @pipe is running first.
1808  */
1809 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1810                                enum plane plane, enum pipe pipe)
1811 {
1812         int reg;
1813         u32 val;
1814
1815         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1816         assert_pipe_enabled(dev_priv, pipe);
1817
1818         reg = DSPCNTR(plane);
1819         val = I915_READ(reg);
1820         if (val & DISPLAY_PLANE_ENABLE)
1821                 return;
1822
1823         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1824         intel_flush_display_plane(dev_priv, plane);
1825         intel_wait_for_vblank(dev_priv->dev, pipe);
1826 }
1827
1828 /**
1829  * intel_disable_plane - disable a display plane
1830  * @dev_priv: i915 private structure
1831  * @plane: plane to disable
1832  * @pipe: pipe consuming the data
1833  *
1834  * Disable @plane; should be an independent operation.
1835  */
1836 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1837                                 enum plane plane, enum pipe pipe)
1838 {
1839         int reg;
1840         u32 val;
1841
1842         reg = DSPCNTR(plane);
1843         val = I915_READ(reg);
1844         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1845                 return;
1846
1847         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1848         intel_flush_display_plane(dev_priv, plane);
1849         intel_wait_for_vblank(dev_priv->dev, pipe);
1850 }
1851
1852 static bool need_vtd_wa(struct drm_device *dev)
1853 {
1854 #ifdef CONFIG_INTEL_IOMMU
1855         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1856                 return true;
1857 #endif
1858         return false;
1859 }
1860
1861 int
1862 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1863                            struct drm_i915_gem_object *obj,
1864                            struct intel_ring_buffer *pipelined)
1865 {
1866         struct drm_i915_private *dev_priv = dev->dev_private;
1867         u32 alignment;
1868         int ret;
1869
1870         switch (obj->tiling_mode) {
1871         case I915_TILING_NONE:
1872                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1873                         alignment = 128 * 1024;
1874                 else if (INTEL_INFO(dev)->gen >= 4)
1875                         alignment = 4 * 1024;
1876                 else
1877                         alignment = 64 * 1024;
1878                 break;
1879         case I915_TILING_X:
1880                 /* pin() will align the object as required by fence */
1881                 alignment = 0;
1882                 break;
1883         case I915_TILING_Y:
1884                 /* Despite that we check this in framebuffer_init userspace can
1885                  * screw us over and change the tiling after the fact. Only
1886                  * pinned buffers can't change their tiling. */
1887                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1888                 return -EINVAL;
1889         default:
1890                 BUG();
1891         }
1892
1893         /* Note that the w/a also requires 64 PTE of padding following the
1894          * bo. We currently fill all unused PTE with the shadow page and so
1895          * we should always have valid PTE following the scanout preventing
1896          * the VT-d warning.
1897          */
1898         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1899                 alignment = 256 * 1024;
1900
1901         dev_priv->mm.interruptible = false;
1902         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1903         if (ret)
1904                 goto err_interruptible;
1905
1906         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1907          * fence, whereas 965+ only requires a fence if using
1908          * framebuffer compression.  For simplicity, we always install
1909          * a fence as the cost is not that onerous.
1910          */
1911         ret = i915_gem_object_get_fence(obj);
1912         if (ret)
1913                 goto err_unpin;
1914
1915         i915_gem_object_pin_fence(obj);
1916
1917         dev_priv->mm.interruptible = true;
1918         return 0;
1919
1920 err_unpin:
1921         i915_gem_object_unpin_from_display_plane(obj);
1922 err_interruptible:
1923         dev_priv->mm.interruptible = true;
1924         return ret;
1925 }
1926
1927 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1928 {
1929         i915_gem_object_unpin_fence(obj);
1930         i915_gem_object_unpin_from_display_plane(obj);
1931 }
1932
1933 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1934  * is assumed to be a power-of-two. */
1935 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1936                                              unsigned int tiling_mode,
1937                                              unsigned int cpp,
1938                                              unsigned int pitch)
1939 {
1940         if (tiling_mode != I915_TILING_NONE) {
1941                 unsigned int tile_rows, tiles;
1942
1943                 tile_rows = *y / 8;
1944                 *y %= 8;
1945
1946                 tiles = *x / (512/cpp);
1947                 *x %= 512/cpp;
1948
1949                 return tile_rows * pitch * 8 + tiles * 4096;
1950         } else {
1951                 unsigned int offset;
1952
1953                 offset = *y * pitch + *x * cpp;
1954                 *y = 0;
1955                 *x = (offset & 4095) / cpp;
1956                 return offset & -4096;
1957         }
1958 }
1959
1960 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1961                              int x, int y)
1962 {
1963         struct drm_device *dev = crtc->dev;
1964         struct drm_i915_private *dev_priv = dev->dev_private;
1965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1966         struct intel_framebuffer *intel_fb;
1967         struct drm_i915_gem_object *obj;
1968         int plane = intel_crtc->plane;
1969         unsigned long linear_offset;
1970         u32 dspcntr;
1971         u32 reg;
1972
1973         switch (plane) {
1974         case 0:
1975         case 1:
1976                 break;
1977         default:
1978                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1979                 return -EINVAL;
1980         }
1981
1982         intel_fb = to_intel_framebuffer(fb);
1983         obj = intel_fb->obj;
1984
1985         reg = DSPCNTR(plane);
1986         dspcntr = I915_READ(reg);
1987         /* Mask out pixel format bits in case we change it */
1988         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1989         switch (fb->pixel_format) {
1990         case DRM_FORMAT_C8:
1991                 dspcntr |= DISPPLANE_8BPP;
1992                 break;
1993         case DRM_FORMAT_XRGB1555:
1994         case DRM_FORMAT_ARGB1555:
1995                 dspcntr |= DISPPLANE_BGRX555;
1996                 break;
1997         case DRM_FORMAT_RGB565:
1998                 dspcntr |= DISPPLANE_BGRX565;
1999                 break;
2000         case DRM_FORMAT_XRGB8888:
2001         case DRM_FORMAT_ARGB8888:
2002                 dspcntr |= DISPPLANE_BGRX888;
2003                 break;
2004         case DRM_FORMAT_XBGR8888:
2005         case DRM_FORMAT_ABGR8888:
2006                 dspcntr |= DISPPLANE_RGBX888;
2007                 break;
2008         case DRM_FORMAT_XRGB2101010:
2009         case DRM_FORMAT_ARGB2101010:
2010                 dspcntr |= DISPPLANE_BGRX101010;
2011                 break;
2012         case DRM_FORMAT_XBGR2101010:
2013         case DRM_FORMAT_ABGR2101010:
2014                 dspcntr |= DISPPLANE_RGBX101010;
2015                 break;
2016         default:
2017                 BUG();
2018         }
2019
2020         if (INTEL_INFO(dev)->gen >= 4) {
2021                 if (obj->tiling_mode != I915_TILING_NONE)
2022                         dspcntr |= DISPPLANE_TILED;
2023                 else
2024                         dspcntr &= ~DISPPLANE_TILED;
2025         }
2026
2027         if (IS_G4X(dev))
2028                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2029
2030         I915_WRITE(reg, dspcntr);
2031
2032         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2033
2034         if (INTEL_INFO(dev)->gen >= 4) {
2035                 intel_crtc->dspaddr_offset =
2036                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2037                                                        fb->bits_per_pixel / 8,
2038                                                        fb->pitches[0]);
2039                 linear_offset -= intel_crtc->dspaddr_offset;
2040         } else {
2041                 intel_crtc->dspaddr_offset = linear_offset;
2042         }
2043
2044         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2045                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2046                       fb->pitches[0]);
2047         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2048         if (INTEL_INFO(dev)->gen >= 4) {
2049                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2050                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2051                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2052                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2053         } else
2054                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2055         POSTING_READ(reg);
2056
2057         return 0;
2058 }
2059
2060 static int ironlake_update_plane(struct drm_crtc *crtc,
2061                                  struct drm_framebuffer *fb, int x, int y)
2062 {
2063         struct drm_device *dev = crtc->dev;
2064         struct drm_i915_private *dev_priv = dev->dev_private;
2065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2066         struct intel_framebuffer *intel_fb;
2067         struct drm_i915_gem_object *obj;
2068         int plane = intel_crtc->plane;
2069         unsigned long linear_offset;
2070         u32 dspcntr;
2071         u32 reg;
2072
2073         switch (plane) {
2074         case 0:
2075         case 1:
2076         case 2:
2077                 break;
2078         default:
2079                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2080                 return -EINVAL;
2081         }
2082
2083         intel_fb = to_intel_framebuffer(fb);
2084         obj = intel_fb->obj;
2085
2086         reg = DSPCNTR(plane);
2087         dspcntr = I915_READ(reg);
2088         /* Mask out pixel format bits in case we change it */
2089         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2090         switch (fb->pixel_format) {
2091         case DRM_FORMAT_C8:
2092                 dspcntr |= DISPPLANE_8BPP;
2093                 break;
2094         case DRM_FORMAT_RGB565:
2095                 dspcntr |= DISPPLANE_BGRX565;
2096                 break;
2097         case DRM_FORMAT_XRGB8888:
2098         case DRM_FORMAT_ARGB8888:
2099                 dspcntr |= DISPPLANE_BGRX888;
2100                 break;
2101         case DRM_FORMAT_XBGR8888:
2102         case DRM_FORMAT_ABGR8888:
2103                 dspcntr |= DISPPLANE_RGBX888;
2104                 break;
2105         case DRM_FORMAT_XRGB2101010:
2106         case DRM_FORMAT_ARGB2101010:
2107                 dspcntr |= DISPPLANE_BGRX101010;
2108                 break;
2109         case DRM_FORMAT_XBGR2101010:
2110         case DRM_FORMAT_ABGR2101010:
2111                 dspcntr |= DISPPLANE_RGBX101010;
2112                 break;
2113         default:
2114                 BUG();
2115         }
2116
2117         if (obj->tiling_mode != I915_TILING_NONE)
2118                 dspcntr |= DISPPLANE_TILED;
2119         else
2120                 dspcntr &= ~DISPPLANE_TILED;
2121
2122         if (IS_HASWELL(dev))
2123                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2124         else
2125                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2126
2127         I915_WRITE(reg, dspcntr);
2128
2129         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2130         intel_crtc->dspaddr_offset =
2131                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2132                                                fb->bits_per_pixel / 8,
2133                                                fb->pitches[0]);
2134         linear_offset -= intel_crtc->dspaddr_offset;
2135
2136         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2137                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2138                       fb->pitches[0]);
2139         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2140         I915_MODIFY_DISPBASE(DSPSURF(plane),
2141                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2142         if (IS_HASWELL(dev)) {
2143                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2144         } else {
2145                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2146                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2147         }
2148         POSTING_READ(reg);
2149
2150         return 0;
2151 }
2152
2153 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2154 static int
2155 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2156                            int x, int y, enum mode_set_atomic state)
2157 {
2158         struct drm_device *dev = crtc->dev;
2159         struct drm_i915_private *dev_priv = dev->dev_private;
2160
2161         if (dev_priv->display.disable_fbc)
2162                 dev_priv->display.disable_fbc(dev);
2163         intel_increase_pllclock(crtc);
2164
2165         return dev_priv->display.update_plane(crtc, fb, x, y);
2166 }
2167
2168 void intel_display_handle_reset(struct drm_device *dev)
2169 {
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         struct drm_crtc *crtc;
2172
2173         /*
2174          * Flips in the rings have been nuked by the reset,
2175          * so complete all pending flips so that user space
2176          * will get its events and not get stuck.
2177          *
2178          * Also update the base address of all primary
2179          * planes to the the last fb to make sure we're
2180          * showing the correct fb after a reset.
2181          *
2182          * Need to make two loops over the crtcs so that we
2183          * don't try to grab a crtc mutex before the
2184          * pending_flip_queue really got woken up.
2185          */
2186
2187         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2188                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2189                 enum plane plane = intel_crtc->plane;
2190
2191                 intel_prepare_page_flip(dev, plane);
2192                 intel_finish_page_flip_plane(dev, plane);
2193         }
2194
2195         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2196                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198                 mutex_lock(&crtc->mutex);
2199                 if (intel_crtc->active)
2200                         dev_priv->display.update_plane(crtc, crtc->fb,
2201                                                        crtc->x, crtc->y);
2202                 mutex_unlock(&crtc->mutex);
2203         }
2204 }
2205
2206 static int
2207 intel_finish_fb(struct drm_framebuffer *old_fb)
2208 {
2209         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2210         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2211         bool was_interruptible = dev_priv->mm.interruptible;
2212         int ret;
2213
2214         /* Big Hammer, we also need to ensure that any pending
2215          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2216          * current scanout is retired before unpinning the old
2217          * framebuffer.
2218          *
2219          * This should only fail upon a hung GPU, in which case we
2220          * can safely continue.
2221          */
2222         dev_priv->mm.interruptible = false;
2223         ret = i915_gem_object_finish_gpu(obj);
2224         dev_priv->mm.interruptible = was_interruptible;
2225
2226         return ret;
2227 }
2228
2229 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2230 {
2231         struct drm_device *dev = crtc->dev;
2232         struct drm_i915_master_private *master_priv;
2233         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235         if (!dev->primary->master)
2236                 return;
2237
2238         master_priv = dev->primary->master->driver_priv;
2239         if (!master_priv->sarea_priv)
2240                 return;
2241
2242         switch (intel_crtc->pipe) {
2243         case 0:
2244                 master_priv->sarea_priv->pipeA_x = x;
2245                 master_priv->sarea_priv->pipeA_y = y;
2246                 break;
2247         case 1:
2248                 master_priv->sarea_priv->pipeB_x = x;
2249                 master_priv->sarea_priv->pipeB_y = y;
2250                 break;
2251         default:
2252                 break;
2253         }
2254 }
2255
2256 static int
2257 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2258                     struct drm_framebuffer *fb)
2259 {
2260         struct drm_device *dev = crtc->dev;
2261         struct drm_i915_private *dev_priv = dev->dev_private;
2262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2263         struct drm_framebuffer *old_fb;
2264         int ret;
2265
2266         /* no fb bound */
2267         if (!fb) {
2268                 DRM_ERROR("No FB bound\n");
2269                 return 0;
2270         }
2271
2272         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2273                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2274                           plane_name(intel_crtc->plane),
2275                           INTEL_INFO(dev)->num_pipes);
2276                 return -EINVAL;
2277         }
2278
2279         mutex_lock(&dev->struct_mutex);
2280         ret = intel_pin_and_fence_fb_obj(dev,
2281                                          to_intel_framebuffer(fb)->obj,
2282                                          NULL);
2283         if (ret != 0) {
2284                 mutex_unlock(&dev->struct_mutex);
2285                 DRM_ERROR("pin & fence failed\n");
2286                 return ret;
2287         }
2288
2289         /* Update pipe size and adjust fitter if needed */
2290         if (i915_fastboot) {
2291                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2292                            ((crtc->mode.hdisplay - 1) << 16) |
2293                            (crtc->mode.vdisplay - 1));
2294                 if (!intel_crtc->config.pch_pfit.size &&
2295                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2296                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2297                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2298                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2299                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2300                 }
2301         }
2302
2303         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2304         if (ret) {
2305                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2306                 mutex_unlock(&dev->struct_mutex);
2307                 DRM_ERROR("failed to update base address\n");
2308                 return ret;
2309         }
2310
2311         old_fb = crtc->fb;
2312         crtc->fb = fb;
2313         crtc->x = x;
2314         crtc->y = y;
2315
2316         if (old_fb) {
2317                 if (intel_crtc->active && old_fb != fb)
2318                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2319                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2320         }
2321
2322         intel_update_fbc(dev);
2323         intel_edp_psr_update(dev);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328         return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         int pipe = intel_crtc->pipe;
2337         u32 reg, temp;
2338
2339         /* enable normal train */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         if (IS_IVYBRIDGE(dev)) {
2343                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         } else {
2346                 temp &= ~FDI_LINK_TRAIN_NONE;
2347                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348         }
2349         I915_WRITE(reg, temp);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         if (HAS_PCH_CPT(dev)) {
2354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356         } else {
2357                 temp &= ~FDI_LINK_TRAIN_NONE;
2358                 temp |= FDI_LINK_TRAIN_NONE;
2359         }
2360         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362         /* wait one idle pattern time */
2363         POSTING_READ(reg);
2364         udelay(1000);
2365
2366         /* IVB wants error correction enabled */
2367         if (IS_IVYBRIDGE(dev))
2368                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369                            FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2373 {
2374         return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2375 }
2376
2377 static void ivb_modeset_global_resources(struct drm_device *dev)
2378 {
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380         struct intel_crtc *pipe_B_crtc =
2381                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2382         struct intel_crtc *pipe_C_crtc =
2383                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2384         uint32_t temp;
2385
2386         /*
2387          * When everything is off disable fdi C so that we could enable fdi B
2388          * with all lanes. Note that we don't care about enabled pipes without
2389          * an enabled pch encoder.
2390          */
2391         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2392             !pipe_has_enabled_pch(pipe_C_crtc)) {
2393                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2394                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2395
2396                 temp = I915_READ(SOUTH_CHICKEN1);
2397                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2398                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2399                 I915_WRITE(SOUTH_CHICKEN1, temp);
2400         }
2401 }
2402
2403 /* The FDI link training functions for ILK/Ibexpeak. */
2404 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2405 {
2406         struct drm_device *dev = crtc->dev;
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2409         int pipe = intel_crtc->pipe;
2410         int plane = intel_crtc->plane;
2411         u32 reg, temp, tries;
2412
2413         /* FDI needs bits from pipe & plane first */
2414         assert_pipe_enabled(dev_priv, pipe);
2415         assert_plane_enabled(dev_priv, plane);
2416
2417         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2418            for train result */
2419         reg = FDI_RX_IMR(pipe);
2420         temp = I915_READ(reg);
2421         temp &= ~FDI_RX_SYMBOL_LOCK;
2422         temp &= ~FDI_RX_BIT_LOCK;
2423         I915_WRITE(reg, temp);
2424         I915_READ(reg);
2425         udelay(150);
2426
2427         /* enable CPU FDI TX and PCH FDI RX */
2428         reg = FDI_TX_CTL(pipe);
2429         temp = I915_READ(reg);
2430         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2431         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_1;
2434         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2435
2436         reg = FDI_RX_CTL(pipe);
2437         temp = I915_READ(reg);
2438         temp &= ~FDI_LINK_TRAIN_NONE;
2439         temp |= FDI_LINK_TRAIN_PATTERN_1;
2440         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2441
2442         POSTING_READ(reg);
2443         udelay(150);
2444
2445         /* Ironlake workaround, enable clock pointer after FDI enable*/
2446         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2447         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2448                    FDI_RX_PHASE_SYNC_POINTER_EN);
2449
2450         reg = FDI_RX_IIR(pipe);
2451         for (tries = 0; tries < 5; tries++) {
2452                 temp = I915_READ(reg);
2453                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455                 if ((temp & FDI_RX_BIT_LOCK)) {
2456                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2457                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2458                         break;
2459                 }
2460         }
2461         if (tries == 5)
2462                 DRM_ERROR("FDI train 1 fail!\n");
2463
2464         /* Train 2 */
2465         reg = FDI_TX_CTL(pipe);
2466         temp = I915_READ(reg);
2467         temp &= ~FDI_LINK_TRAIN_NONE;
2468         temp |= FDI_LINK_TRAIN_PATTERN_2;
2469         I915_WRITE(reg, temp);
2470
2471         reg = FDI_RX_CTL(pipe);
2472         temp = I915_READ(reg);
2473         temp &= ~FDI_LINK_TRAIN_NONE;
2474         temp |= FDI_LINK_TRAIN_PATTERN_2;
2475         I915_WRITE(reg, temp);
2476
2477         POSTING_READ(reg);
2478         udelay(150);
2479
2480         reg = FDI_RX_IIR(pipe);
2481         for (tries = 0; tries < 5; tries++) {
2482                 temp = I915_READ(reg);
2483                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484
2485                 if (temp & FDI_RX_SYMBOL_LOCK) {
2486                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2487                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2488                         break;
2489                 }
2490         }
2491         if (tries == 5)
2492                 DRM_ERROR("FDI train 2 fail!\n");
2493
2494         DRM_DEBUG_KMS("FDI train done\n");
2495
2496 }
2497
2498 static const int snb_b_fdi_train_param[] = {
2499         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2500         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2501         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2502         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2503 };
2504
2505 /* The FDI link training functions for SNB/Cougarpoint. */
2506 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2507 {
2508         struct drm_device *dev = crtc->dev;
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2511         int pipe = intel_crtc->pipe;
2512         u32 reg, temp, i, retry;
2513
2514         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2515            for train result */
2516         reg = FDI_RX_IMR(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~FDI_RX_SYMBOL_LOCK;
2519         temp &= ~FDI_RX_BIT_LOCK;
2520         I915_WRITE(reg, temp);
2521
2522         POSTING_READ(reg);
2523         udelay(150);
2524
2525         /* enable CPU FDI TX and PCH FDI RX */
2526         reg = FDI_TX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2529         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2530         temp &= ~FDI_LINK_TRAIN_NONE;
2531         temp |= FDI_LINK_TRAIN_PATTERN_1;
2532         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533         /* SNB-B */
2534         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2536
2537         I915_WRITE(FDI_RX_MISC(pipe),
2538                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2539
2540         reg = FDI_RX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         if (HAS_PCH_CPT(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545         } else {
2546                 temp &= ~FDI_LINK_TRAIN_NONE;
2547                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548         }
2549         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551         POSTING_READ(reg);
2552         udelay(150);
2553
2554         for (i = 0; i < 4; i++) {
2555                 reg = FDI_TX_CTL(pipe);
2556                 temp = I915_READ(reg);
2557                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2558                 temp |= snb_b_fdi_train_param[i];
2559                 I915_WRITE(reg, temp);
2560
2561                 POSTING_READ(reg);
2562                 udelay(500);
2563
2564                 for (retry = 0; retry < 5; retry++) {
2565                         reg = FDI_RX_IIR(pipe);
2566                         temp = I915_READ(reg);
2567                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568                         if (temp & FDI_RX_BIT_LOCK) {
2569                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2570                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2571                                 break;
2572                         }
2573                         udelay(50);
2574                 }
2575                 if (retry < 5)
2576                         break;
2577         }
2578         if (i == 4)
2579                 DRM_ERROR("FDI train 1 fail!\n");
2580
2581         /* Train 2 */
2582         reg = FDI_TX_CTL(pipe);
2583         temp = I915_READ(reg);
2584         temp &= ~FDI_LINK_TRAIN_NONE;
2585         temp |= FDI_LINK_TRAIN_PATTERN_2;
2586         if (IS_GEN6(dev)) {
2587                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2588                 /* SNB-B */
2589                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2590         }
2591         I915_WRITE(reg, temp);
2592
2593         reg = FDI_RX_CTL(pipe);
2594         temp = I915_READ(reg);
2595         if (HAS_PCH_CPT(dev)) {
2596                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2598         } else {
2599                 temp &= ~FDI_LINK_TRAIN_NONE;
2600                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2601         }
2602         I915_WRITE(reg, temp);
2603
2604         POSTING_READ(reg);
2605         udelay(150);
2606
2607         for (i = 0; i < 4; i++) {
2608                 reg = FDI_TX_CTL(pipe);
2609                 temp = I915_READ(reg);
2610                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611                 temp |= snb_b_fdi_train_param[i];
2612                 I915_WRITE(reg, temp);
2613
2614                 POSTING_READ(reg);
2615                 udelay(500);
2616
2617                 for (retry = 0; retry < 5; retry++) {
2618                         reg = FDI_RX_IIR(pipe);
2619                         temp = I915_READ(reg);
2620                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621                         if (temp & FDI_RX_SYMBOL_LOCK) {
2622                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2623                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2624                                 break;
2625                         }
2626                         udelay(50);
2627                 }
2628                 if (retry < 5)
2629                         break;
2630         }
2631         if (i == 4)
2632                 DRM_ERROR("FDI train 2 fail!\n");
2633
2634         DRM_DEBUG_KMS("FDI train done.\n");
2635 }
2636
2637 /* Manual link training for Ivy Bridge A0 parts */
2638 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         int pipe = intel_crtc->pipe;
2644         u32 reg, temp, i, j;
2645
2646         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2647            for train result */
2648         reg = FDI_RX_IMR(pipe);
2649         temp = I915_READ(reg);
2650         temp &= ~FDI_RX_SYMBOL_LOCK;
2651         temp &= ~FDI_RX_BIT_LOCK;
2652         I915_WRITE(reg, temp);
2653
2654         POSTING_READ(reg);
2655         udelay(150);
2656
2657         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2658                       I915_READ(FDI_RX_IIR(pipe)));
2659
2660         /* Try each vswing and preemphasis setting twice before moving on */
2661         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2662                 /* disable first in case we need to retry */
2663                 reg = FDI_TX_CTL(pipe);
2664                 temp = I915_READ(reg);
2665                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2666                 temp &= ~FDI_TX_ENABLE;
2667                 I915_WRITE(reg, temp);
2668
2669                 reg = FDI_RX_CTL(pipe);
2670                 temp = I915_READ(reg);
2671                 temp &= ~FDI_LINK_TRAIN_AUTO;
2672                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2673                 temp &= ~FDI_RX_ENABLE;
2674                 I915_WRITE(reg, temp);
2675
2676                 /* enable CPU FDI TX and PCH FDI RX */
2677                 reg = FDI_TX_CTL(pipe);
2678                 temp = I915_READ(reg);
2679                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2680                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2681                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2682                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683                 temp |= snb_b_fdi_train_param[j/2];
2684                 temp |= FDI_COMPOSITE_SYNC;
2685                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2686
2687                 I915_WRITE(FDI_RX_MISC(pipe),
2688                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2689
2690                 reg = FDI_RX_CTL(pipe);
2691                 temp = I915_READ(reg);
2692                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2693                 temp |= FDI_COMPOSITE_SYNC;
2694                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2695
2696                 POSTING_READ(reg);
2697                 udelay(1); /* should be 0.5us */
2698
2699                 for (i = 0; i < 4; i++) {
2700                         reg = FDI_RX_IIR(pipe);
2701                         temp = I915_READ(reg);
2702                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2703
2704                         if (temp & FDI_RX_BIT_LOCK ||
2705                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2706                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2708                                               i);
2709                                 break;
2710                         }
2711                         udelay(1); /* should be 0.5us */
2712                 }
2713                 if (i == 4) {
2714                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2715                         continue;
2716                 }
2717
2718                 /* Train 2 */
2719                 reg = FDI_TX_CTL(pipe);
2720                 temp = I915_READ(reg);
2721                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2722                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2723                 I915_WRITE(reg, temp);
2724
2725                 reg = FDI_RX_CTL(pipe);
2726                 temp = I915_READ(reg);
2727                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2728                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2729                 I915_WRITE(reg, temp);
2730
2731                 POSTING_READ(reg);
2732                 udelay(2); /* should be 1.5us */
2733
2734                 for (i = 0; i < 4; i++) {
2735                         reg = FDI_RX_IIR(pipe);
2736                         temp = I915_READ(reg);
2737                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2738
2739                         if (temp & FDI_RX_SYMBOL_LOCK ||
2740                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2741                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2742                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2743                                               i);
2744                                 goto train_done;
2745                         }
2746                         udelay(2); /* should be 1.5us */
2747                 }
2748                 if (i == 4)
2749                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2750         }
2751
2752 train_done:
2753         DRM_DEBUG_KMS("FDI train done.\n");
2754 }
2755
2756 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2757 {
2758         struct drm_device *dev = intel_crtc->base.dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         int pipe = intel_crtc->pipe;
2761         u32 reg, temp;
2762
2763
2764         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2768         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2769         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2770         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2771
2772         POSTING_READ(reg);
2773         udelay(200);
2774
2775         /* Switch from Rawclk to PCDclk */
2776         temp = I915_READ(reg);
2777         I915_WRITE(reg, temp | FDI_PCDCLK);
2778
2779         POSTING_READ(reg);
2780         udelay(200);
2781
2782         /* Enable CPU FDI TX PLL, always on for Ironlake */
2783         reg = FDI_TX_CTL(pipe);
2784         temp = I915_READ(reg);
2785         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2786                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2787
2788                 POSTING_READ(reg);
2789                 udelay(100);
2790         }
2791 }
2792
2793 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2794 {
2795         struct drm_device *dev = intel_crtc->base.dev;
2796         struct drm_i915_private *dev_priv = dev->dev_private;
2797         int pipe = intel_crtc->pipe;
2798         u32 reg, temp;
2799
2800         /* Switch from PCDclk to Rawclk */
2801         reg = FDI_RX_CTL(pipe);
2802         temp = I915_READ(reg);
2803         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2804
2805         /* Disable CPU FDI TX PLL */
2806         reg = FDI_TX_CTL(pipe);
2807         temp = I915_READ(reg);
2808         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2809
2810         POSTING_READ(reg);
2811         udelay(100);
2812
2813         reg = FDI_RX_CTL(pipe);
2814         temp = I915_READ(reg);
2815         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2816
2817         /* Wait for the clocks to turn off. */
2818         POSTING_READ(reg);
2819         udelay(100);
2820 }
2821
2822 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2823 {
2824         struct drm_device *dev = crtc->dev;
2825         struct drm_i915_private *dev_priv = dev->dev_private;
2826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2827         int pipe = intel_crtc->pipe;
2828         u32 reg, temp;
2829
2830         /* disable CPU FDI tx and PCH FDI rx */
2831         reg = FDI_TX_CTL(pipe);
2832         temp = I915_READ(reg);
2833         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2834         POSTING_READ(reg);
2835
2836         reg = FDI_RX_CTL(pipe);
2837         temp = I915_READ(reg);
2838         temp &= ~(0x7 << 16);
2839         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2840         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2841
2842         POSTING_READ(reg);
2843         udelay(100);
2844
2845         /* Ironlake workaround, disable clock pointer after downing FDI */
2846         if (HAS_PCH_IBX(dev)) {
2847                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2848         }
2849
2850         /* still set train pattern 1 */
2851         reg = FDI_TX_CTL(pipe);
2852         temp = I915_READ(reg);
2853         temp &= ~FDI_LINK_TRAIN_NONE;
2854         temp |= FDI_LINK_TRAIN_PATTERN_1;
2855         I915_WRITE(reg, temp);
2856
2857         reg = FDI_RX_CTL(pipe);
2858         temp = I915_READ(reg);
2859         if (HAS_PCH_CPT(dev)) {
2860                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2861                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2862         } else {
2863                 temp &= ~FDI_LINK_TRAIN_NONE;
2864                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2865         }
2866         /* BPC in FDI rx is consistent with that in PIPECONF */
2867         temp &= ~(0x07 << 16);
2868         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2869         I915_WRITE(reg, temp);
2870
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         unsigned long flags;
2881         bool pending;
2882
2883         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2884             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2885                 return false;
2886
2887         spin_lock_irqsave(&dev->event_lock, flags);
2888         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2889         spin_unlock_irqrestore(&dev->event_lock, flags);
2890
2891         return pending;
2892 }
2893
2894 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2895 {
2896         struct drm_device *dev = crtc->dev;
2897         struct drm_i915_private *dev_priv = dev->dev_private;
2898
2899         if (crtc->fb == NULL)
2900                 return;
2901
2902         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2903
2904         wait_event(dev_priv->pending_flip_queue,
2905                    !intel_crtc_has_pending_flip(crtc));
2906
2907         mutex_lock(&dev->struct_mutex);
2908         intel_finish_fb(crtc->fb);
2909         mutex_unlock(&dev->struct_mutex);
2910 }
2911
2912 /* Program iCLKIP clock to the desired frequency */
2913 static void lpt_program_iclkip(struct drm_crtc *crtc)
2914 {
2915         struct drm_device *dev = crtc->dev;
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917         int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2918         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2919         u32 temp;
2920
2921         mutex_lock(&dev_priv->dpio_lock);
2922
2923         /* It is necessary to ungate the pixclk gate prior to programming
2924          * the divisors, and gate it back when it is done.
2925          */
2926         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2927
2928         /* Disable SSCCTL */
2929         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2930                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2931                                 SBI_SSCCTL_DISABLE,
2932                         SBI_ICLK);
2933
2934         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2935         if (clock == 20000) {
2936                 auxdiv = 1;
2937                 divsel = 0x41;
2938                 phaseinc = 0x20;
2939         } else {
2940                 /* The iCLK virtual clock root frequency is in MHz,
2941                  * but the adjusted_mode->clock in in KHz. To get the divisors,
2942                  * it is necessary to divide one by another, so we
2943                  * convert the virtual clock precision to KHz here for higher
2944                  * precision.
2945                  */
2946                 u32 iclk_virtual_root_freq = 172800 * 1000;
2947                 u32 iclk_pi_range = 64;
2948                 u32 desired_divisor, msb_divisor_value, pi_value;
2949
2950                 desired_divisor = (iclk_virtual_root_freq / clock);
2951                 msb_divisor_value = desired_divisor / iclk_pi_range;
2952                 pi_value = desired_divisor % iclk_pi_range;
2953
2954                 auxdiv = 0;
2955                 divsel = msb_divisor_value - 2;
2956                 phaseinc = pi_value;
2957         }
2958
2959         /* This should not happen with any sane values */
2960         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2961                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2962         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2963                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2964
2965         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2966                         clock,
2967                         auxdiv,
2968                         divsel,
2969                         phasedir,
2970                         phaseinc);
2971
2972         /* Program SSCDIVINTPHASE6 */
2973         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2974         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2975         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2976         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2977         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2978         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2979         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2980         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2981
2982         /* Program SSCAUXDIV */
2983         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2984         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2985         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2986         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2987
2988         /* Enable modulator and associated divider */
2989         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2990         temp &= ~SBI_SSCCTL_DISABLE;
2991         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2992
2993         /* Wait for initialization time */
2994         udelay(24);
2995
2996         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2997
2998         mutex_unlock(&dev_priv->dpio_lock);
2999 }
3000
3001 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3002                                                 enum pipe pch_transcoder)
3003 {
3004         struct drm_device *dev = crtc->base.dev;
3005         struct drm_i915_private *dev_priv = dev->dev_private;
3006         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3007
3008         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3009                    I915_READ(HTOTAL(cpu_transcoder)));
3010         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3011                    I915_READ(HBLANK(cpu_transcoder)));
3012         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3013                    I915_READ(HSYNC(cpu_transcoder)));
3014
3015         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3016                    I915_READ(VTOTAL(cpu_transcoder)));
3017         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3018                    I915_READ(VBLANK(cpu_transcoder)));
3019         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3020                    I915_READ(VSYNC(cpu_transcoder)));
3021         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3022                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3023 }
3024
3025 /*
3026  * Enable PCH resources required for PCH ports:
3027  *   - PCH PLLs
3028  *   - FDI training & RX/TX
3029  *   - update transcoder timings
3030  *   - DP transcoding bits
3031  *   - transcoder
3032  */
3033 static void ironlake_pch_enable(struct drm_crtc *crtc)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038         int pipe = intel_crtc->pipe;
3039         u32 reg, temp;
3040
3041         assert_pch_transcoder_disabled(dev_priv, pipe);
3042
3043         /* Write the TU size bits before fdi link training, so that error
3044          * detection works. */
3045         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3046                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3047
3048         /* For PCH output, training FDI link */
3049         dev_priv->display.fdi_link_train(crtc);
3050
3051         /* We need to program the right clock selection before writing the pixel
3052          * mutliplier into the DPLL. */
3053         if (HAS_PCH_CPT(dev)) {
3054                 u32 sel;
3055
3056                 temp = I915_READ(PCH_DPLL_SEL);
3057                 temp |= TRANS_DPLL_ENABLE(pipe);
3058                 sel = TRANS_DPLLB_SEL(pipe);
3059                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3060                         temp |= sel;
3061                 else
3062                         temp &= ~sel;
3063                 I915_WRITE(PCH_DPLL_SEL, temp);
3064         }
3065
3066         /* XXX: pch pll's can be enabled any time before we enable the PCH
3067          * transcoder, and we actually should do this to not upset any PCH
3068          * transcoder that already use the clock when we share it.
3069          *
3070          * Note that enable_shared_dpll tries to do the right thing, but
3071          * get_shared_dpll unconditionally resets the pll - we need that to have
3072          * the right LVDS enable sequence. */
3073         ironlake_enable_shared_dpll(intel_crtc);
3074
3075         /* set transcoder timing, panel must allow it */
3076         assert_panel_unlocked(dev_priv, pipe);
3077         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3078
3079         intel_fdi_normal_train(crtc);
3080
3081         /* For PCH DP, enable TRANS_DP_CTL */
3082         if (HAS_PCH_CPT(dev) &&
3083             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3084              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3085                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3086                 reg = TRANS_DP_CTL(pipe);
3087                 temp = I915_READ(reg);
3088                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3089                           TRANS_DP_SYNC_MASK |
3090                           TRANS_DP_BPC_MASK);
3091                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3092                          TRANS_DP_ENH_FRAMING);
3093                 temp |= bpc << 9; /* same format but at 11:9 */
3094
3095                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3096                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3097                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3098                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3099
3100                 switch (intel_trans_dp_port_sel(crtc)) {
3101                 case PCH_DP_B:
3102                         temp |= TRANS_DP_PORT_SEL_B;
3103                         break;
3104                 case PCH_DP_C:
3105                         temp |= TRANS_DP_PORT_SEL_C;
3106                         break;
3107                 case PCH_DP_D:
3108                         temp |= TRANS_DP_PORT_SEL_D;
3109                         break;
3110                 default:
3111                         BUG();
3112                 }
3113
3114                 I915_WRITE(reg, temp);
3115         }
3116
3117         ironlake_enable_pch_transcoder(dev_priv, pipe);
3118 }
3119
3120 static void lpt_pch_enable(struct drm_crtc *crtc)
3121 {
3122         struct drm_device *dev = crtc->dev;
3123         struct drm_i915_private *dev_priv = dev->dev_private;
3124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3125         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3126
3127         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3128
3129         lpt_program_iclkip(crtc);
3130
3131         /* Set transcoder timing. */
3132         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3133
3134         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3135 }
3136
3137 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3138 {
3139         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3140
3141         if (pll == NULL)
3142                 return;
3143
3144         if (pll->refcount == 0) {
3145                 WARN(1, "bad %s refcount\n", pll->name);
3146                 return;
3147         }
3148
3149         if (--pll->refcount == 0) {
3150                 WARN_ON(pll->on);
3151                 WARN_ON(pll->active);
3152         }
3153
3154         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3155 }
3156
3157 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3158 {
3159         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3160         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3161         enum intel_dpll_id i;
3162
3163         if (pll) {
3164                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3165                               crtc->base.base.id, pll->name);
3166                 intel_put_shared_dpll(crtc);
3167         }
3168
3169         if (HAS_PCH_IBX(dev_priv->dev)) {
3170                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3171                 i = (enum intel_dpll_id) crtc->pipe;
3172                 pll = &dev_priv->shared_dplls[i];
3173
3174                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3175                               crtc->base.base.id, pll->name);
3176
3177                 goto found;
3178         }
3179
3180         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3181                 pll = &dev_priv->shared_dplls[i];
3182
3183                 /* Only want to check enabled timings first */
3184                 if (pll->refcount == 0)
3185                         continue;
3186
3187                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3188                            sizeof(pll->hw_state)) == 0) {
3189                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3190                                       crtc->base.base.id,
3191                                       pll->name, pll->refcount, pll->active);
3192
3193                         goto found;
3194                 }
3195         }
3196
3197         /* Ok no matching timings, maybe there's a free one? */
3198         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3199                 pll = &dev_priv->shared_dplls[i];
3200                 if (pll->refcount == 0) {
3201                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3202                                       crtc->base.base.id, pll->name);
3203                         goto found;
3204                 }
3205         }
3206
3207         return NULL;
3208
3209 found:
3210         crtc->config.shared_dpll = i;
3211         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3212                          pipe_name(crtc->pipe));
3213
3214         if (pll->active == 0) {
3215                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3216                        sizeof(pll->hw_state));
3217
3218                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3219                 WARN_ON(pll->on);
3220                 assert_shared_dpll_disabled(dev_priv, pll);
3221
3222                 pll->mode_set(dev_priv, pll);
3223         }
3224         pll->refcount++;
3225
3226         return pll;
3227 }
3228
3229 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3230 {
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         int dslreg = PIPEDSL(pipe);
3233         u32 temp;
3234
3235         temp = I915_READ(dslreg);
3236         udelay(500);
3237         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3238                 if (wait_for(I915_READ(dslreg) != temp, 5))
3239                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3240         }
3241 }
3242
3243 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3244 {
3245         struct drm_device *dev = crtc->base.dev;
3246         struct drm_i915_private *dev_priv = dev->dev_private;
3247         int pipe = crtc->pipe;
3248
3249         if (crtc->config.pch_pfit.size) {
3250                 /* Force use of hard-coded filter coefficients
3251                  * as some pre-programmed values are broken,
3252                  * e.g. x201.
3253                  */
3254                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3255                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3256                                                  PF_PIPE_SEL_IVB(pipe));
3257                 else
3258                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3259                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3260                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3261         }
3262 }
3263
3264 static void intel_enable_planes(struct drm_crtc *crtc)
3265 {
3266         struct drm_device *dev = crtc->dev;
3267         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3268         struct intel_plane *intel_plane;
3269
3270         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3271                 if (intel_plane->pipe == pipe)
3272                         intel_plane_restore(&intel_plane->base);
3273 }
3274
3275 static void intel_disable_planes(struct drm_crtc *crtc)
3276 {
3277         struct drm_device *dev = crtc->dev;
3278         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3279         struct intel_plane *intel_plane;
3280
3281         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3282                 if (intel_plane->pipe == pipe)
3283                         intel_plane_disable(&intel_plane->base);
3284 }
3285
3286 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3287 {
3288         struct drm_device *dev = crtc->dev;
3289         struct drm_i915_private *dev_priv = dev->dev_private;
3290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3291         struct intel_encoder *encoder;
3292         int pipe = intel_crtc->pipe;
3293         int plane = intel_crtc->plane;
3294
3295         WARN_ON(!crtc->enabled);
3296
3297         if (intel_crtc->active)
3298                 return;
3299
3300         intel_crtc->active = true;
3301
3302         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3303         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3304
3305         for_each_encoder_on_crtc(dev, crtc, encoder)
3306                 if (encoder->pre_enable)
3307                         encoder->pre_enable(encoder);
3308
3309         if (intel_crtc->config.has_pch_encoder) {
3310                 /* Note: FDI PLL enabling _must_ be done before we enable the
3311                  * cpu pipes, hence this is separate from all the other fdi/pch
3312                  * enabling. */
3313                 ironlake_fdi_pll_enable(intel_crtc);
3314         } else {
3315                 assert_fdi_tx_disabled(dev_priv, pipe);
3316                 assert_fdi_rx_disabled(dev_priv, pipe);
3317         }
3318
3319         ironlake_pfit_enable(intel_crtc);
3320
3321         /*
3322          * On ILK+ LUT must be loaded before the pipe is running but with
3323          * clocks enabled
3324          */
3325         intel_crtc_load_lut(crtc);
3326
3327         intel_update_watermarks(crtc);
3328         intel_enable_pipe(dev_priv, pipe,
3329                           intel_crtc->config.has_pch_encoder, false);
3330         intel_enable_plane(dev_priv, plane, pipe);
3331         intel_enable_planes(crtc);
3332         intel_crtc_update_cursor(crtc, true);
3333
3334         if (intel_crtc->config.has_pch_encoder)
3335                 ironlake_pch_enable(crtc);
3336
3337         mutex_lock(&dev->struct_mutex);
3338         intel_update_fbc(dev);
3339         mutex_unlock(&dev->struct_mutex);
3340
3341         for_each_encoder_on_crtc(dev, crtc, encoder)
3342                 encoder->enable(encoder);
3343
3344         if (HAS_PCH_CPT(dev))
3345                 cpt_verify_modeset(dev, intel_crtc->pipe);
3346
3347         /*
3348          * There seems to be a race in PCH platform hw (at least on some
3349          * outputs) where an enabled pipe still completes any pageflip right
3350          * away (as if the pipe is off) instead of waiting for vblank. As soon
3351          * as the first vblank happend, everything works as expected. Hence just
3352          * wait for one vblank before returning to avoid strange things
3353          * happening.
3354          */
3355         intel_wait_for_vblank(dev, intel_crtc->pipe);
3356 }
3357
3358 /* IPS only exists on ULT machines and is tied to pipe A. */
3359 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3360 {
3361         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3362 }
3363
3364 static void hsw_enable_ips(struct intel_crtc *crtc)
3365 {
3366         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3367
3368         if (!crtc->config.ips_enabled)
3369                 return;
3370
3371         /* We can only enable IPS after we enable a plane and wait for a vblank.
3372          * We guarantee that the plane is enabled by calling intel_enable_ips
3373          * only after intel_enable_plane. And intel_enable_plane already waits
3374          * for a vblank, so all we need to do here is to enable the IPS bit. */
3375         assert_plane_enabled(dev_priv, crtc->plane);
3376         I915_WRITE(IPS_CTL, IPS_ENABLE);
3377 }
3378
3379 static void hsw_disable_ips(struct intel_crtc *crtc)
3380 {
3381         struct drm_device *dev = crtc->base.dev;
3382         struct drm_i915_private *dev_priv = dev->dev_private;
3383
3384         if (!crtc->config.ips_enabled)
3385                 return;
3386
3387         assert_plane_enabled(dev_priv, crtc->plane);
3388         I915_WRITE(IPS_CTL, 0);
3389         POSTING_READ(IPS_CTL);
3390
3391         /* We need to wait for a vblank before we can disable the plane. */
3392         intel_wait_for_vblank(dev, crtc->pipe);
3393 }
3394
3395 static void haswell_crtc_enable(struct drm_crtc *crtc)
3396 {
3397         struct drm_device *dev = crtc->dev;
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3400         struct intel_encoder *encoder;
3401         int pipe = intel_crtc->pipe;
3402         int plane = intel_crtc->plane;
3403
3404         WARN_ON(!crtc->enabled);
3405
3406         if (intel_crtc->active)
3407                 return;
3408
3409         intel_crtc->active = true;
3410
3411         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3412         if (intel_crtc->config.has_pch_encoder)
3413                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3414
3415         if (intel_crtc->config.has_pch_encoder)
3416                 dev_priv->display.fdi_link_train(crtc);
3417
3418         for_each_encoder_on_crtc(dev, crtc, encoder)
3419                 if (encoder->pre_enable)
3420                         encoder->pre_enable(encoder);
3421
3422         intel_ddi_enable_pipe_clock(intel_crtc);
3423
3424         ironlake_pfit_enable(intel_crtc);
3425
3426         /*
3427          * On ILK+ LUT must be loaded before the pipe is running but with
3428          * clocks enabled
3429          */
3430         intel_crtc_load_lut(crtc);
3431
3432         intel_ddi_set_pipe_settings(crtc);
3433         intel_ddi_enable_transcoder_func(crtc);
3434
3435         intel_update_watermarks(crtc);
3436         intel_enable_pipe(dev_priv, pipe,
3437                           intel_crtc->config.has_pch_encoder, false);
3438         intel_enable_plane(dev_priv, plane, pipe);
3439         intel_enable_planes(crtc);
3440         intel_crtc_update_cursor(crtc, true);
3441
3442         hsw_enable_ips(intel_crtc);
3443
3444         if (intel_crtc->config.has_pch_encoder)
3445                 lpt_pch_enable(crtc);
3446
3447         mutex_lock(&dev->struct_mutex);
3448         intel_update_fbc(dev);
3449         mutex_unlock(&dev->struct_mutex);
3450
3451         for_each_encoder_on_crtc(dev, crtc, encoder) {
3452                 encoder->enable(encoder);
3453                 intel_opregion_notify_encoder(encoder, true);
3454         }
3455
3456         /*
3457          * There seems to be a race in PCH platform hw (at least on some
3458          * outputs) where an enabled pipe still completes any pageflip right
3459          * away (as if the pipe is off) instead of waiting for vblank. As soon
3460          * as the first vblank happend, everything works as expected. Hence just
3461          * wait for one vblank before returning to avoid strange things
3462          * happening.
3463          */
3464         intel_wait_for_vblank(dev, intel_crtc->pipe);
3465 }
3466
3467 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3468 {
3469         struct drm_device *dev = crtc->base.dev;
3470         struct drm_i915_private *dev_priv = dev->dev_private;
3471         int pipe = crtc->pipe;
3472
3473         /* To avoid upsetting the power well on haswell only disable the pfit if
3474          * it's in use. The hw state code will make sure we get this right. */
3475         if (crtc->config.pch_pfit.size) {
3476                 I915_WRITE(PF_CTL(pipe), 0);
3477                 I915_WRITE(PF_WIN_POS(pipe), 0);
3478                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3479         }
3480 }
3481
3482 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3483 {
3484         struct drm_device *dev = crtc->dev;
3485         struct drm_i915_private *dev_priv = dev->dev_private;
3486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3487         struct intel_encoder *encoder;
3488         int pipe = intel_crtc->pipe;
3489         int plane = intel_crtc->plane;
3490         u32 reg, temp;
3491
3492
3493         if (!intel_crtc->active)
3494                 return;
3495
3496         for_each_encoder_on_crtc(dev, crtc, encoder)
3497                 encoder->disable(encoder);
3498
3499         intel_crtc_wait_for_pending_flips(crtc);
3500         drm_vblank_off(dev, pipe);
3501
3502         if (dev_priv->fbc.plane == plane)
3503                 intel_disable_fbc(dev);
3504
3505         intel_crtc_update_cursor(crtc, false);
3506         intel_disable_planes(crtc);
3507         intel_disable_plane(dev_priv, plane, pipe);
3508
3509         if (intel_crtc->config.has_pch_encoder)
3510                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3511
3512         intel_disable_pipe(dev_priv, pipe);
3513
3514         ironlake_pfit_disable(intel_crtc);
3515
3516         for_each_encoder_on_crtc(dev, crtc, encoder)
3517                 if (encoder->post_disable)
3518                         encoder->post_disable(encoder);
3519
3520         if (intel_crtc->config.has_pch_encoder) {
3521                 ironlake_fdi_disable(crtc);
3522
3523                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3524                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3525
3526                 if (HAS_PCH_CPT(dev)) {
3527                         /* disable TRANS_DP_CTL */
3528                         reg = TRANS_DP_CTL(pipe);
3529                         temp = I915_READ(reg);
3530                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3531                                   TRANS_DP_PORT_SEL_MASK);
3532                         temp |= TRANS_DP_PORT_SEL_NONE;
3533                         I915_WRITE(reg, temp);
3534
3535                         /* disable DPLL_SEL */
3536                         temp = I915_READ(PCH_DPLL_SEL);
3537                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3538                         I915_WRITE(PCH_DPLL_SEL, temp);
3539                 }
3540
3541                 /* disable PCH DPLL */
3542                 intel_disable_shared_dpll(intel_crtc);
3543
3544                 ironlake_fdi_pll_disable(intel_crtc);
3545         }
3546
3547         intel_crtc->active = false;
3548         intel_update_watermarks(crtc);
3549
3550         mutex_lock(&dev->struct_mutex);
3551         intel_update_fbc(dev);
3552         mutex_unlock(&dev->struct_mutex);
3553 }
3554
3555 static void haswell_crtc_disable(struct drm_crtc *crtc)
3556 {
3557         struct drm_device *dev = crtc->dev;
3558         struct drm_i915_private *dev_priv = dev->dev_private;
3559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3560         struct intel_encoder *encoder;
3561         int pipe = intel_crtc->pipe;
3562         int plane = intel_crtc->plane;
3563         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3564
3565         if (!intel_crtc->active)
3566                 return;
3567
3568         for_each_encoder_on_crtc(dev, crtc, encoder) {
3569                 intel_opregion_notify_encoder(encoder, false);
3570                 encoder->disable(encoder);
3571         }
3572
3573         intel_crtc_wait_for_pending_flips(crtc);
3574         drm_vblank_off(dev, pipe);
3575
3576         /* FBC must be disabled before disabling the plane on HSW. */
3577         if (dev_priv->fbc.plane == plane)
3578                 intel_disable_fbc(dev);
3579
3580         hsw_disable_ips(intel_crtc);
3581
3582         intel_crtc_update_cursor(crtc, false);
3583         intel_disable_planes(crtc);
3584         intel_disable_plane(dev_priv, plane, pipe);
3585
3586         if (intel_crtc->config.has_pch_encoder)
3587                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3588         intel_disable_pipe(dev_priv, pipe);
3589
3590         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3591
3592         ironlake_pfit_disable(intel_crtc);
3593
3594         intel_ddi_disable_pipe_clock(intel_crtc);
3595
3596         for_each_encoder_on_crtc(dev, crtc, encoder)
3597                 if (encoder->post_disable)
3598                         encoder->post_disable(encoder);
3599
3600         if (intel_crtc->config.has_pch_encoder) {
3601                 lpt_disable_pch_transcoder(dev_priv);
3602                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3603                 intel_ddi_fdi_disable(crtc);
3604         }
3605
3606         intel_crtc->active = false;
3607         intel_update_watermarks(crtc);
3608
3609         mutex_lock(&dev->struct_mutex);
3610         intel_update_fbc(dev);
3611         mutex_unlock(&dev->struct_mutex);
3612 }
3613
3614 static void ironlake_crtc_off(struct drm_crtc *crtc)
3615 {
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         intel_put_shared_dpll(intel_crtc);
3618 }
3619
3620 static void haswell_crtc_off(struct drm_crtc *crtc)
3621 {
3622         intel_ddi_put_crtc_pll(crtc);
3623 }
3624
3625 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3626 {
3627         if (!enable && intel_crtc->overlay) {
3628                 struct drm_device *dev = intel_crtc->base.dev;
3629                 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631                 mutex_lock(&dev->struct_mutex);
3632                 dev_priv->mm.interruptible = false;
3633                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3634                 dev_priv->mm.interruptible = true;
3635                 mutex_unlock(&dev->struct_mutex);
3636         }
3637
3638         /* Let userspace switch the overlay on again. In most cases userspace
3639          * has to recompute where to put it anyway.
3640          */
3641 }
3642
3643 /**
3644  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3645  * cursor plane briefly if not already running after enabling the display
3646  * plane.
3647  * This workaround avoids occasional blank screens when self refresh is
3648  * enabled.
3649  */
3650 static void
3651 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3652 {
3653         u32 cntl = I915_READ(CURCNTR(pipe));
3654
3655         if ((cntl & CURSOR_MODE) == 0) {
3656                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3657
3658                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3659                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3660                 intel_wait_for_vblank(dev_priv->dev, pipe);
3661                 I915_WRITE(CURCNTR(pipe), cntl);
3662                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3663                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3664         }
3665 }
3666
3667 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3668 {
3669         struct drm_device *dev = crtc->base.dev;
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         struct intel_crtc_config *pipe_config = &crtc->config;
3672
3673         if (!crtc->config.gmch_pfit.control)
3674                 return;
3675
3676         /*
3677          * The panel fitter should only be adjusted whilst the pipe is disabled,
3678          * according to register description and PRM.
3679          */
3680         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3681         assert_pipe_disabled(dev_priv, crtc->pipe);
3682
3683         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3684         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3685
3686         /* Border color in case we don't scale up to the full screen. Black by
3687          * default, change to something else for debugging. */
3688         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3689 }
3690
3691 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3692 {
3693         struct drm_device *dev = crtc->dev;
3694         struct drm_i915_private *dev_priv = dev->dev_private;
3695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696         struct intel_encoder *encoder;
3697         int pipe = intel_crtc->pipe;
3698         int plane = intel_crtc->plane;
3699         bool is_dsi;
3700
3701         WARN_ON(!crtc->enabled);
3702
3703         if (intel_crtc->active)
3704                 return;
3705
3706         intel_crtc->active = true;
3707
3708         for_each_encoder_on_crtc(dev, crtc, encoder)
3709                 if (encoder->pre_pll_enable)
3710                         encoder->pre_pll_enable(encoder);
3711
3712         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3713
3714         if (!is_dsi)
3715                 vlv_enable_pll(intel_crtc);
3716
3717         for_each_encoder_on_crtc(dev, crtc, encoder)
3718                 if (encoder->pre_enable)
3719                         encoder->pre_enable(encoder);
3720
3721         i9xx_pfit_enable(intel_crtc);
3722
3723         intel_crtc_load_lut(crtc);
3724
3725         intel_update_watermarks(crtc);
3726         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3727         intel_enable_plane(dev_priv, plane, pipe);
3728         intel_enable_planes(crtc);
3729         intel_crtc_update_cursor(crtc, true);
3730
3731         intel_update_fbc(dev);
3732
3733         for_each_encoder_on_crtc(dev, crtc, encoder)
3734                 encoder->enable(encoder);
3735 }
3736
3737 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3738 {
3739         struct drm_device *dev = crtc->dev;
3740         struct drm_i915_private *dev_priv = dev->dev_private;
3741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742         struct intel_encoder *encoder;
3743         int pipe = intel_crtc->pipe;
3744         int plane = intel_crtc->plane;
3745
3746         WARN_ON(!crtc->enabled);
3747
3748         if (intel_crtc->active)
3749                 return;
3750
3751         intel_crtc->active = true;
3752
3753         for_each_encoder_on_crtc(dev, crtc, encoder)
3754                 if (encoder->pre_enable)
3755                         encoder->pre_enable(encoder);
3756
3757         i9xx_enable_pll(intel_crtc);
3758
3759         i9xx_pfit_enable(intel_crtc);
3760
3761         intel_crtc_load_lut(crtc);
3762
3763         intel_update_watermarks(crtc);
3764         intel_enable_pipe(dev_priv, pipe, false, false);
3765         intel_enable_plane(dev_priv, plane, pipe);
3766         intel_enable_planes(crtc);
3767         /* The fixup needs to happen before cursor is enabled */
3768         if (IS_G4X(dev))
3769                 g4x_fixup_plane(dev_priv, pipe);
3770         intel_crtc_update_cursor(crtc, true);
3771
3772         /* Give the overlay scaler a chance to enable if it's on this pipe */
3773         intel_crtc_dpms_overlay(intel_crtc, true);
3774
3775         intel_update_fbc(dev);
3776
3777         for_each_encoder_on_crtc(dev, crtc, encoder)
3778                 encoder->enable(encoder);
3779 }
3780
3781 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3782 {
3783         struct drm_device *dev = crtc->base.dev;
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785
3786         if (!crtc->config.gmch_pfit.control)
3787                 return;
3788
3789         assert_pipe_disabled(dev_priv, crtc->pipe);
3790
3791         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3792                          I915_READ(PFIT_CONTROL));
3793         I915_WRITE(PFIT_CONTROL, 0);
3794 }
3795
3796 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3797 {
3798         struct drm_device *dev = crtc->dev;
3799         struct drm_i915_private *dev_priv = dev->dev_private;
3800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801         struct intel_encoder *encoder;
3802         int pipe = intel_crtc->pipe;
3803         int plane = intel_crtc->plane;
3804
3805         if (!intel_crtc->active)
3806                 return;
3807
3808         for_each_encoder_on_crtc(dev, crtc, encoder)
3809                 encoder->disable(encoder);
3810
3811         /* Give the overlay scaler a chance to disable if it's on this pipe */
3812         intel_crtc_wait_for_pending_flips(crtc);
3813         drm_vblank_off(dev, pipe);
3814
3815         if (dev_priv->fbc.plane == plane)
3816                 intel_disable_fbc(dev);
3817
3818         intel_crtc_dpms_overlay(intel_crtc, false);
3819         intel_crtc_update_cursor(crtc, false);
3820         intel_disable_planes(crtc);
3821         intel_disable_plane(dev_priv, plane, pipe);
3822
3823         intel_disable_pipe(dev_priv, pipe);
3824
3825         i9xx_pfit_disable(intel_crtc);
3826
3827         for_each_encoder_on_crtc(dev, crtc, encoder)
3828                 if (encoder->post_disable)
3829                         encoder->post_disable(encoder);
3830
3831         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3832                 i9xx_disable_pll(dev_priv, pipe);
3833
3834         intel_crtc->active = false;
3835         intel_update_watermarks(crtc);
3836
3837         intel_update_fbc(dev);
3838 }
3839
3840 static void i9xx_crtc_off(struct drm_crtc *crtc)
3841 {
3842 }
3843
3844 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3845                                     bool enabled)
3846 {
3847         struct drm_device *dev = crtc->dev;
3848         struct drm_i915_master_private *master_priv;
3849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3850         int pipe = intel_crtc->pipe;
3851
3852         if (!dev->primary->master)
3853                 return;
3854
3855         master_priv = dev->primary->master->driver_priv;
3856         if (!master_priv->sarea_priv)
3857                 return;
3858
3859         switch (pipe) {
3860         case 0:
3861                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3862                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3863                 break;
3864         case 1:
3865                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3866                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3867                 break;
3868         default:
3869                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3870                 break;
3871         }
3872 }
3873
3874 /**
3875  * Sets the power management mode of the pipe and plane.
3876  */
3877 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3878 {
3879         struct drm_device *dev = crtc->dev;
3880         struct drm_i915_private *dev_priv = dev->dev_private;
3881         struct intel_encoder *intel_encoder;
3882         bool enable = false;
3883
3884         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3885                 enable |= intel_encoder->connectors_active;
3886
3887         if (enable)
3888                 dev_priv->display.crtc_enable(crtc);
3889         else
3890                 dev_priv->display.crtc_disable(crtc);
3891
3892         intel_crtc_update_sarea(crtc, enable);
3893 }
3894
3895 static void intel_crtc_disable(struct drm_crtc *crtc)
3896 {
3897         struct drm_device *dev = crtc->dev;
3898         struct drm_connector *connector;
3899         struct drm_i915_private *dev_priv = dev->dev_private;
3900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3901
3902         /* crtc should still be enabled when we disable it. */
3903         WARN_ON(!crtc->enabled);
3904
3905         dev_priv->display.crtc_disable(crtc);
3906         intel_crtc->eld_vld = false;
3907         intel_crtc_update_sarea(crtc, false);
3908         dev_priv->display.off(crtc);
3909
3910         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3911         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3912         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3913
3914         if (crtc->fb) {
3915                 mutex_lock(&dev->struct_mutex);
3916                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3917                 mutex_unlock(&dev->struct_mutex);
3918                 crtc->fb = NULL;
3919         }
3920
3921         /* Update computed state. */
3922         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3923                 if (!connector->encoder || !connector->encoder->crtc)
3924                         continue;
3925
3926                 if (connector->encoder->crtc != crtc)
3927                         continue;
3928
3929                 connector->dpms = DRM_MODE_DPMS_OFF;
3930                 to_intel_encoder(connector->encoder)->connectors_active = false;
3931         }
3932 }
3933
3934 void intel_encoder_destroy(struct drm_encoder *encoder)
3935 {
3936         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3937
3938         drm_encoder_cleanup(encoder);
3939         kfree(intel_encoder);
3940 }
3941
3942 /* Simple dpms helper for encoders with just one connector, no cloning and only
3943  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3944  * state of the entire output pipe. */
3945 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3946 {
3947         if (mode == DRM_MODE_DPMS_ON) {
3948                 encoder->connectors_active = true;
3949
3950                 intel_crtc_update_dpms(encoder->base.crtc);
3951         } else {
3952                 encoder->connectors_active = false;
3953
3954                 intel_crtc_update_dpms(encoder->base.crtc);
3955         }
3956 }
3957
3958 /* Cross check the actual hw state with our own modeset state tracking (and it's
3959  * internal consistency). */
3960 static void intel_connector_check_state(struct intel_connector *connector)
3961 {
3962         if (connector->get_hw_state(connector)) {
3963                 struct intel_encoder *encoder = connector->encoder;
3964                 struct drm_crtc *crtc;
3965                 bool encoder_enabled;
3966                 enum pipe pipe;
3967
3968                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3969                               connector->base.base.id,
3970                               drm_get_connector_name(&connector->base));
3971
3972                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3973                      "wrong connector dpms state\n");
3974                 WARN(connector->base.encoder != &encoder->base,
3975                      "active connector not linked to encoder\n");
3976                 WARN(!encoder->connectors_active,
3977                      "encoder->connectors_active not set\n");
3978
3979                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3980                 WARN(!encoder_enabled, "encoder not enabled\n");
3981                 if (WARN_ON(!encoder->base.crtc))
3982                         return;
3983
3984                 crtc = encoder->base.crtc;
3985
3986                 WARN(!crtc->enabled, "crtc not enabled\n");
3987                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3988                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3989                      "encoder active on the wrong pipe\n");
3990         }
3991 }
3992
3993 /* Even simpler default implementation, if there's really no special case to
3994  * consider. */
3995 void intel_connector_dpms(struct drm_connector *connector, int mode)
3996 {
3997         struct intel_encoder *encoder = intel_attached_encoder(connector);
3998
3999         /* All the simple cases only support two dpms states. */
4000         if (mode != DRM_MODE_DPMS_ON)
4001                 mode = DRM_MODE_DPMS_OFF;
4002
4003         if (mode == connector->dpms)
4004                 return;
4005
4006         connector->dpms = mode;
4007
4008         /* Only need to change hw state when actually enabled */
4009         if (encoder->base.crtc)
4010                 intel_encoder_dpms(encoder, mode);
4011         else
4012                 WARN_ON(encoder->connectors_active != false);
4013
4014         intel_modeset_check_state(connector->dev);
4015 }
4016
4017 /* Simple connector->get_hw_state implementation for encoders that support only
4018  * one connector and no cloning and hence the encoder state determines the state
4019  * of the connector. */
4020 bool intel_connector_get_hw_state(struct intel_connector *connector)
4021 {
4022         enum pipe pipe = 0;
4023         struct intel_encoder *encoder = connector->encoder;
4024
4025         return encoder->get_hw_state(encoder, &pipe);
4026 }
4027
4028 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4029                                      struct intel_crtc_config *pipe_config)
4030 {
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         struct intel_crtc *pipe_B_crtc =
4033                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4034
4035         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4036                       pipe_name(pipe), pipe_config->fdi_lanes);
4037         if (pipe_config->fdi_lanes > 4) {
4038                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4039                               pipe_name(pipe), pipe_config->fdi_lanes);
4040                 return false;
4041         }
4042
4043         if (IS_HASWELL(dev)) {
4044                 if (pipe_config->fdi_lanes > 2) {
4045                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4046                                       pipe_config->fdi_lanes);
4047                         return false;
4048                 } else {
4049                         return true;
4050                 }
4051         }
4052
4053         if (INTEL_INFO(dev)->num_pipes == 2)
4054                 return true;
4055
4056         /* Ivybridge 3 pipe is really complicated */
4057         switch (pipe) {
4058         case PIPE_A:
4059                 return true;
4060         case PIPE_B:
4061                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4062                     pipe_config->fdi_lanes > 2) {
4063                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4064                                       pipe_name(pipe), pipe_config->fdi_lanes);
4065                         return false;
4066                 }
4067                 return true;
4068         case PIPE_C:
4069                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4070                     pipe_B_crtc->config.fdi_lanes <= 2) {
4071                         if (pipe_config->fdi_lanes > 2) {
4072                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4073                                               pipe_name(pipe), pipe_config->fdi_lanes);
4074                                 return false;
4075                         }
4076                 } else {
4077                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4078                         return false;
4079                 }
4080                 return true;
4081         default:
4082                 BUG();
4083         }
4084 }
4085
4086 #define RETRY 1
4087 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4088                                        struct intel_crtc_config *pipe_config)
4089 {
4090         struct drm_device *dev = intel_crtc->base.dev;
4091         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4092         int lane, link_bw, fdi_dotclock;
4093         bool setup_ok, needs_recompute = false;
4094
4095 retry:
4096         /* FDI is a binary signal running at ~2.7GHz, encoding
4097          * each output octet as 10 bits. The actual frequency
4098          * is stored as a divider into a 100MHz clock, and the
4099          * mode pixel clock is stored in units of 1KHz.
4100          * Hence the bw of each lane in terms of the mode signal
4101          * is:
4102          */
4103         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4104
4105         fdi_dotclock = adjusted_mode->clock;
4106
4107         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4108                                            pipe_config->pipe_bpp);
4109
4110         pipe_config->fdi_lanes = lane;
4111
4112         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4113                                link_bw, &pipe_config->fdi_m_n);
4114
4115         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4116                                             intel_crtc->pipe, pipe_config);
4117         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4118                 pipe_config->pipe_bpp -= 2*3;
4119                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4120                               pipe_config->pipe_bpp);
4121                 needs_recompute = true;
4122                 pipe_config->bw_constrained = true;
4123
4124                 goto retry;
4125         }
4126
4127         if (needs_recompute)
4128                 return RETRY;
4129
4130         return setup_ok ? 0 : -EINVAL;
4131 }
4132
4133 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4134                                    struct intel_crtc_config *pipe_config)
4135 {
4136         pipe_config->ips_enabled = i915_enable_ips &&
4137                                    hsw_crtc_supports_ips(crtc) &&
4138                                    pipe_config->pipe_bpp <= 24;
4139 }
4140
4141 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4142                                      struct intel_crtc_config *pipe_config)
4143 {
4144         struct drm_device *dev = crtc->base.dev;
4145         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4146
4147         /* FIXME should check pixel clock limits on all platforms */
4148         if (INTEL_INFO(dev)->gen < 4) {
4149                 struct drm_i915_private *dev_priv = dev->dev_private;
4150                 int clock_limit =
4151                         dev_priv->display.get_display_clock_speed(dev);
4152
4153                 /*
4154                  * Enable pixel doubling when the dot clock
4155                  * is > 90% of the (display) core speed.
4156                  *
4157                  * GDG double wide on either pipe,
4158                  * otherwise pipe A only.
4159                  */
4160                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4161                     adjusted_mode->clock > clock_limit * 9 / 10) {
4162                         clock_limit *= 2;
4163                         pipe_config->double_wide = true;
4164                 }
4165
4166                 if (adjusted_mode->clock > clock_limit * 9 / 10)
4167                         return -EINVAL;
4168         }
4169
4170         /*
4171          * Pipe horizontal size must be even in:
4172          * - DVO ganged mode
4173          * - LVDS dual channel mode
4174          * - Double wide pipe
4175          */
4176         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4177              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4178                 pipe_config->pipe_src_w &= ~1;
4179
4180         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4181          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4182          */
4183         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4184                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4185                 return -EINVAL;
4186
4187         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4188                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4189         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4190                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4191                  * for lvds. */
4192                 pipe_config->pipe_bpp = 8*3;
4193         }
4194
4195         if (HAS_IPS(dev))
4196                 hsw_compute_ips_config(crtc, pipe_config);
4197
4198         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4199          * clock survives for now. */
4200         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4201                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4202
4203         if (pipe_config->has_pch_encoder)
4204                 return ironlake_fdi_compute_config(crtc, pipe_config);
4205
4206         return 0;
4207 }
4208
4209 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4210 {
4211         return 400000; /* FIXME */
4212 }
4213
4214 static int i945_get_display_clock_speed(struct drm_device *dev)
4215 {
4216         return 400000;
4217 }
4218
4219 static int i915_get_display_clock_speed(struct drm_device *dev)
4220 {
4221         return 333000;
4222 }
4223
4224 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4225 {
4226         return 200000;
4227 }
4228
4229 static int pnv_get_display_clock_speed(struct drm_device *dev)
4230 {
4231         u16 gcfgc = 0;
4232
4233         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4234
4235         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4236         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4237                 return 267000;
4238         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4239                 return 333000;
4240         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4241                 return 444000;
4242         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4243                 return 200000;
4244         default:
4245                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4246         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4247                 return 133000;
4248         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4249                 return 167000;
4250         }
4251 }
4252
4253 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4254 {
4255         u16 gcfgc = 0;
4256
4257         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4258
4259         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4260                 return 133000;
4261         else {
4262                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4263                 case GC_DISPLAY_CLOCK_333_MHZ:
4264                         return 333000;
4265                 default:
4266                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4267                         return 190000;
4268                 }
4269         }
4270 }
4271
4272 static int i865_get_display_clock_speed(struct drm_device *dev)
4273 {
4274         return 266000;
4275 }
4276
4277 static int i855_get_display_clock_speed(struct drm_device *dev)
4278 {
4279         u16 hpllcc = 0;
4280         /* Assume that the hardware is in the high speed state.  This
4281          * should be the default.
4282          */
4283         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4284         case GC_CLOCK_133_200:
4285         case GC_CLOCK_100_200:
4286                 return 200000;
4287         case GC_CLOCK_166_250:
4288                 return 250000;
4289         case GC_CLOCK_100_133:
4290                 return 133000;
4291         }
4292
4293         /* Shouldn't happen */
4294         return 0;
4295 }
4296
4297 static int i830_get_display_clock_speed(struct drm_device *dev)
4298 {
4299         return 133000;
4300 }
4301
4302 static void
4303 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4304 {
4305         while (*num > DATA_LINK_M_N_MASK ||
4306                *den > DATA_LINK_M_N_MASK) {
4307                 *num >>= 1;
4308                 *den >>= 1;
4309         }
4310 }
4311
4312 static void compute_m_n(unsigned int m, unsigned int n,
4313                         uint32_t *ret_m, uint32_t *ret_n)
4314 {
4315         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4316         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4317         intel_reduce_m_n_ratio(ret_m, ret_n);
4318 }
4319
4320 void
4321 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4322                        int pixel_clock, int link_clock,
4323                        struct intel_link_m_n *m_n)
4324 {
4325         m_n->tu = 64;
4326
4327         compute_m_n(bits_per_pixel * pixel_clock,
4328                     link_clock * nlanes * 8,
4329                     &m_n->gmch_m, &m_n->gmch_n);
4330
4331         compute_m_n(pixel_clock, link_clock,
4332                     &m_n->link_m, &m_n->link_n);
4333 }
4334
4335 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4336 {
4337         if (i915_panel_use_ssc >= 0)
4338                 return i915_panel_use_ssc != 0;
4339         return dev_priv->vbt.lvds_use_ssc
4340                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4341 }
4342
4343 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4344 {
4345         struct drm_device *dev = crtc->dev;
4346         struct drm_i915_private *dev_priv = dev->dev_private;
4347         int refclk;
4348
4349         if (IS_VALLEYVIEW(dev)) {
4350                 refclk = 100000;
4351         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4352             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4353                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4354                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4355                               refclk / 1000);
4356         } else if (!IS_GEN2(dev)) {
4357                 refclk = 96000;
4358         } else {
4359                 refclk = 48000;
4360         }
4361
4362         return refclk;
4363 }
4364
4365 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4366 {
4367         return (1 << dpll->n) << 16 | dpll->m2;
4368 }
4369
4370 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4371 {
4372         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4373 }
4374
4375 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4376                                      intel_clock_t *reduced_clock)
4377 {
4378         struct drm_device *dev = crtc->base.dev;
4379         struct drm_i915_private *dev_priv = dev->dev_private;
4380         int pipe = crtc->pipe;
4381         u32 fp, fp2 = 0;
4382
4383         if (IS_PINEVIEW(dev)) {
4384                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4385                 if (reduced_clock)
4386                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4387         } else {
4388                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4389                 if (reduced_clock)
4390                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4391         }
4392
4393         I915_WRITE(FP0(pipe), fp);
4394         crtc->config.dpll_hw_state.fp0 = fp;
4395
4396         crtc->lowfreq_avail = false;
4397         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4398             reduced_clock && i915_powersave) {
4399                 I915_WRITE(FP1(pipe), fp2);
4400                 crtc->config.dpll_hw_state.fp1 = fp2;
4401                 crtc->lowfreq_avail = true;
4402         } else {
4403                 I915_WRITE(FP1(pipe), fp);
4404                 crtc->config.dpll_hw_state.fp1 = fp;
4405         }
4406 }
4407
4408 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4409                 pipe)
4410 {
4411         u32 reg_val;
4412
4413         /*
4414          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4415          * and set it to a reasonable value instead.
4416          */
4417         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4418         reg_val &= 0xffffff00;
4419         reg_val |= 0x00000030;
4420         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4421
4422         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4423         reg_val &= 0x8cffffff;
4424         reg_val = 0x8c000000;
4425         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4426
4427         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4428         reg_val &= 0xffffff00;
4429         vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4430
4431         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4432         reg_val &= 0x00ffffff;
4433         reg_val |= 0xb0000000;
4434         vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4435 }
4436
4437 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4438                                          struct intel_link_m_n *m_n)
4439 {
4440         struct drm_device *dev = crtc->base.dev;
4441         struct drm_i915_private *dev_priv = dev->dev_private;
4442         int pipe = crtc->pipe;
4443
4444         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4445         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4446         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4447         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4448 }
4449
4450 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4451                                          struct intel_link_m_n *m_n)
4452 {
4453         struct drm_device *dev = crtc->base.dev;
4454         struct drm_i915_private *dev_priv = dev->dev_private;
4455         int pipe = crtc->pipe;
4456         enum transcoder transcoder = crtc->config.cpu_transcoder;
4457
4458         if (INTEL_INFO(dev)->gen >= 5) {
4459                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4460                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4461                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4462                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4463         } else {
4464                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4465                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4466                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4467                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4468         }
4469 }
4470
4471 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4472 {
4473         if (crtc->config.has_pch_encoder)
4474                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4475         else
4476                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4477 }
4478
4479 static void vlv_update_pll(struct intel_crtc *crtc)
4480 {
4481         struct drm_device *dev = crtc->base.dev;
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483         int pipe = crtc->pipe;
4484         u32 dpll, mdiv;
4485         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4486         u32 coreclk, reg_val, dpll_md;
4487
4488         mutex_lock(&dev_priv->dpio_lock);
4489
4490         bestn = crtc->config.dpll.n;
4491         bestm1 = crtc->config.dpll.m1;
4492         bestm2 = crtc->config.dpll.m2;
4493         bestp1 = crtc->config.dpll.p1;
4494         bestp2 = crtc->config.dpll.p2;
4495
4496         /* See eDP HDMI DPIO driver vbios notes doc */
4497
4498         /* PLL B needs special handling */
4499         if (pipe)
4500                 vlv_pllb_recal_opamp(dev_priv, pipe);
4501
4502         /* Set up Tx target for periodic Rcomp update */
4503         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4504
4505         /* Disable target IRef on PLL */
4506         reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4507         reg_val &= 0x00ffffff;
4508         vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4509
4510         /* Disable fast lock */
4511         vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4512
4513         /* Set idtafcrecal before PLL is enabled */
4514         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4515         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4516         mdiv |= ((bestn << DPIO_N_SHIFT));
4517         mdiv |= (1 << DPIO_K_SHIFT);
4518
4519         /*
4520          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4521          * but we don't support that).
4522          * Note: don't use the DAC post divider as it seems unstable.
4523          */
4524         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4525         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4526
4527         mdiv |= DPIO_ENABLE_CALIBRATION;
4528         vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4529
4530         /* Set HBR and RBR LPF coefficients */
4531         if (crtc->config.port_clock == 162000 ||
4532             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4533             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4534                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4535                                  0x009f0003);
4536         else
4537                 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4538                                  0x00d0000f);
4539
4540         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4541             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4542                 /* Use SSC source */
4543                 if (!pipe)
4544                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4545                                          0x0df40000);
4546                 else
4547                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4548                                          0x0df70000);
4549         } else { /* HDMI or VGA */
4550                 /* Use bend source */
4551                 if (!pipe)
4552                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4553                                          0x0df70000);
4554                 else
4555                         vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4556                                          0x0df40000);
4557         }
4558
4559         coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4560         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4561         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4562             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4563                 coreclk |= 0x01000000;
4564         vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4565
4566         vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4567
4568         /* Enable DPIO clock input */
4569         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4570                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4571         if (pipe)
4572                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4573
4574         dpll |= DPLL_VCO_ENABLE;
4575         crtc->config.dpll_hw_state.dpll = dpll;
4576
4577         dpll_md = (crtc->config.pixel_multiplier - 1)
4578                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4579         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4580
4581         if (crtc->config.has_dp_encoder)
4582                 intel_dp_set_m_n(crtc);
4583
4584         mutex_unlock(&dev_priv->dpio_lock);
4585 }
4586
4587 static void i9xx_update_pll(struct intel_crtc *crtc,
4588                             intel_clock_t *reduced_clock,
4589                             int num_connectors)
4590 {
4591         struct drm_device *dev = crtc->base.dev;
4592         struct drm_i915_private *dev_priv = dev->dev_private;
4593         u32 dpll;
4594         bool is_sdvo;
4595         struct dpll *clock = &crtc->config.dpll;
4596
4597         i9xx_update_pll_dividers(crtc, reduced_clock);
4598
4599         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4600                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4601
4602         dpll = DPLL_VGA_MODE_DIS;
4603
4604         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4605                 dpll |= DPLLB_MODE_LVDS;
4606         else
4607                 dpll |= DPLLB_MODE_DAC_SERIAL;
4608
4609         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4610                 dpll |= (crtc->config.pixel_multiplier - 1)
4611                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4612         }
4613
4614         if (is_sdvo)
4615                 dpll |= DPLL_SDVO_HIGH_SPEED;
4616
4617         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4618                 dpll |= DPLL_SDVO_HIGH_SPEED;
4619
4620         /* compute bitmask from p1 value */
4621         if (IS_PINEVIEW(dev))
4622                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4623         else {
4624                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4625                 if (IS_G4X(dev) && reduced_clock)
4626                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4627         }
4628         switch (clock->p2) {
4629         case 5:
4630                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4631                 break;
4632         case 7:
4633                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4634                 break;
4635         case 10:
4636                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4637                 break;
4638         case 14:
4639                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4640                 break;
4641         }
4642         if (INTEL_INFO(dev)->gen >= 4)
4643                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4644
4645         if (crtc->config.sdvo_tv_clock)
4646                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4647         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4648                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4649                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4650         else
4651                 dpll |= PLL_REF_INPUT_DREFCLK;
4652
4653         dpll |= DPLL_VCO_ENABLE;
4654         crtc->config.dpll_hw_state.dpll = dpll;
4655
4656         if (INTEL_INFO(dev)->gen >= 4) {
4657                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4658                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4659                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4660         }
4661
4662         if (crtc->config.has_dp_encoder)
4663                 intel_dp_set_m_n(crtc);
4664 }
4665
4666 static void i8xx_update_pll(struct intel_crtc *crtc,
4667                             intel_clock_t *reduced_clock,
4668                             int num_connectors)
4669 {
4670         struct drm_device *dev = crtc->base.dev;
4671         struct drm_i915_private *dev_priv = dev->dev_private;
4672         u32 dpll;
4673         struct dpll *clock = &crtc->config.dpll;
4674
4675         i9xx_update_pll_dividers(crtc, reduced_clock);
4676
4677         dpll = DPLL_VGA_MODE_DIS;
4678
4679         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4680                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4681         } else {
4682                 if (clock->p1 == 2)
4683                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4684                 else
4685                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4686                 if (clock->p2 == 4)
4687                         dpll |= PLL_P2_DIVIDE_BY_4;
4688         }
4689
4690         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4691                 dpll |= DPLL_DVO_2X_MODE;
4692
4693         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4694                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4695                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4696         else
4697                 dpll |= PLL_REF_INPUT_DREFCLK;
4698
4699         dpll |= DPLL_VCO_ENABLE;
4700         crtc->config.dpll_hw_state.dpll = dpll;
4701 }
4702
4703 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4704 {
4705         struct drm_device *dev = intel_crtc->base.dev;
4706         struct drm_i915_private *dev_priv = dev->dev_private;
4707         enum pipe pipe = intel_crtc->pipe;
4708         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4709         struct drm_display_mode *adjusted_mode =
4710                 &intel_crtc->config.adjusted_mode;
4711         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4712
4713         /* We need to be careful not to changed the adjusted mode, for otherwise
4714          * the hw state checker will get angry at the mismatch. */
4715         crtc_vtotal = adjusted_mode->crtc_vtotal;
4716         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4717
4718         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4719                 /* the chip adds 2 halflines automatically */
4720                 crtc_vtotal -= 1;
4721                 crtc_vblank_end -= 1;
4722                 vsyncshift = adjusted_mode->crtc_hsync_start
4723                              - adjusted_mode->crtc_htotal / 2;
4724         } else {
4725                 vsyncshift = 0;
4726         }
4727
4728         if (INTEL_INFO(dev)->gen > 3)
4729                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4730
4731         I915_WRITE(HTOTAL(cpu_transcoder),
4732                    (adjusted_mode->crtc_hdisplay - 1) |
4733                    ((adjusted_mode->crtc_htotal - 1) << 16));
4734         I915_WRITE(HBLANK(cpu_transcoder),
4735                    (adjusted_mode->crtc_hblank_start - 1) |
4736                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4737         I915_WRITE(HSYNC(cpu_transcoder),
4738                    (adjusted_mode->crtc_hsync_start - 1) |
4739                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4740
4741         I915_WRITE(VTOTAL(cpu_transcoder),
4742                    (adjusted_mode->crtc_vdisplay - 1) |
4743                    ((crtc_vtotal - 1) << 16));
4744         I915_WRITE(VBLANK(cpu_transcoder),
4745                    (adjusted_mode->crtc_vblank_start - 1) |
4746                    ((crtc_vblank_end - 1) << 16));
4747         I915_WRITE(VSYNC(cpu_transcoder),
4748                    (adjusted_mode->crtc_vsync_start - 1) |
4749                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4750
4751         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4752          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4753          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4754          * bits. */
4755         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4756             (pipe == PIPE_B || pipe == PIPE_C))
4757                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4758
4759         /* pipesrc controls the size that is scaled from, which should
4760          * always be the user's requested size.
4761          */
4762         I915_WRITE(PIPESRC(pipe),
4763                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
4764                    (intel_crtc->config.pipe_src_h - 1));
4765 }
4766
4767 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4768                                    struct intel_crtc_config *pipe_config)
4769 {
4770         struct drm_device *dev = crtc->base.dev;
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4773         uint32_t tmp;
4774
4775         tmp = I915_READ(HTOTAL(cpu_transcoder));
4776         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4777         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4778         tmp = I915_READ(HBLANK(cpu_transcoder));
4779         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4780         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4781         tmp = I915_READ(HSYNC(cpu_transcoder));
4782         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4783         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4784
4785         tmp = I915_READ(VTOTAL(cpu_transcoder));
4786         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4787         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4788         tmp = I915_READ(VBLANK(cpu_transcoder));
4789         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4790         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4791         tmp = I915_READ(VSYNC(cpu_transcoder));
4792         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4793         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4794
4795         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4796                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4797                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4798                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4799         }
4800
4801         tmp = I915_READ(PIPESRC(crtc->pipe));
4802         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4803         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4804
4805         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4806         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4807 }
4808
4809 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4810                                              struct intel_crtc_config *pipe_config)
4811 {
4812         struct drm_crtc *crtc = &intel_crtc->base;
4813
4814         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4815         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4816         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4817         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4818
4819         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4820         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4821         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4822         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4823
4824         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4825
4826         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4827         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4828 }
4829
4830 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4831 {
4832         struct drm_device *dev = intel_crtc->base.dev;
4833         struct drm_i915_private *dev_priv = dev->dev_private;
4834         uint32_t pipeconf;
4835
4836         pipeconf = 0;
4837
4838         if (intel_crtc->config.double_wide)
4839                 pipeconf |= PIPECONF_DOUBLE_WIDE;
4840
4841         /* only g4x and later have fancy bpc/dither controls */
4842         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4843                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4844                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4845                         pipeconf |= PIPECONF_DITHER_EN |
4846                                     PIPECONF_DITHER_TYPE_SP;
4847
4848                 switch (intel_crtc->config.pipe_bpp) {
4849                 case 18:
4850                         pipeconf |= PIPECONF_6BPC;
4851                         break;
4852                 case 24:
4853                         pipeconf |= PIPECONF_8BPC;
4854                         break;
4855                 case 30:
4856                         pipeconf |= PIPECONF_10BPC;
4857                         break;
4858                 default:
4859                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4860                         BUG();
4861                 }
4862         }
4863
4864         if (HAS_PIPE_CXSR(dev)) {
4865                 if (intel_crtc->lowfreq_avail) {
4866                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4867                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4868                 } else {
4869                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4870                 }
4871         }
4872
4873         if (!IS_GEN2(dev) &&
4874             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4875                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4876         else
4877                 pipeconf |= PIPECONF_PROGRESSIVE;
4878
4879         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4880                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4881
4882         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4883         POSTING_READ(PIPECONF(intel_crtc->pipe));
4884 }
4885
4886 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4887                               int x, int y,
4888                               struct drm_framebuffer *fb)
4889 {
4890         struct drm_device *dev = crtc->dev;
4891         struct drm_i915_private *dev_priv = dev->dev_private;
4892         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4893         int pipe = intel_crtc->pipe;
4894         int plane = intel_crtc->plane;
4895         int refclk, num_connectors = 0;
4896         intel_clock_t clock, reduced_clock;
4897         u32 dspcntr;
4898         bool ok, has_reduced_clock = false;
4899         bool is_lvds = false, is_dsi = false;
4900         struct intel_encoder *encoder;
4901         const intel_limit_t *limit;
4902         int ret;
4903
4904         for_each_encoder_on_crtc(dev, crtc, encoder) {
4905                 switch (encoder->type) {
4906                 case INTEL_OUTPUT_LVDS:
4907                         is_lvds = true;
4908                         break;
4909                 case INTEL_OUTPUT_DSI:
4910                         is_dsi = true;
4911                         break;
4912                 }
4913
4914                 num_connectors++;
4915         }
4916
4917         refclk = i9xx_get_refclk(crtc, num_connectors);
4918
4919         if (!is_dsi && !intel_crtc->config.clock_set) {
4920                 /*
4921                  * Returns a set of divisors for the desired target clock with
4922                  * the given refclk, or FALSE.  The returned values represent
4923                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4924                  * 2) / p1 / p2.
4925                  */
4926                 limit = intel_limit(crtc, refclk);
4927                 ok = dev_priv->display.find_dpll(limit, crtc,
4928                                                  intel_crtc->config.port_clock,
4929                                                  refclk, NULL, &clock);
4930                 if (!ok && !intel_crtc->config.clock_set) {
4931                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
4932                         return -EINVAL;
4933                 }
4934         }
4935
4936         /* Ensure that the cursor is valid for the new mode before changing... */
4937         intel_crtc_update_cursor(crtc, true);
4938
4939         if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
4940                 /*
4941                  * Ensure we match the reduced clock's P to the target clock.
4942                  * If the clocks don't match, we can't switch the display clock
4943                  * by using the FP0/FP1. In such case we will disable the LVDS
4944                  * downclock feature.
4945                 */
4946                 limit = intel_limit(crtc, refclk);
4947                 has_reduced_clock =
4948                         dev_priv->display.find_dpll(limit, crtc,
4949                                                     dev_priv->lvds_downclock,
4950                                                     refclk, &clock,
4951                                                     &reduced_clock);
4952         }
4953         /* Compat-code for transition, will disappear. */
4954         if (!intel_crtc->config.clock_set) {
4955                 intel_crtc->config.dpll.n = clock.n;
4956                 intel_crtc->config.dpll.m1 = clock.m1;
4957                 intel_crtc->config.dpll.m2 = clock.m2;
4958                 intel_crtc->config.dpll.p1 = clock.p1;
4959                 intel_crtc->config.dpll.p2 = clock.p2;
4960         }
4961
4962         if (IS_GEN2(dev)) {
4963                 i8xx_update_pll(intel_crtc,
4964                                 has_reduced_clock ? &reduced_clock : NULL,
4965                                 num_connectors);
4966         } else if (IS_VALLEYVIEW(dev)) {
4967                 if (!is_dsi)
4968                         vlv_update_pll(intel_crtc);
4969         } else {
4970                 i9xx_update_pll(intel_crtc,
4971                                 has_reduced_clock ? &reduced_clock : NULL,
4972                                 num_connectors);
4973         }
4974
4975         /* Set up the display plane register */
4976         dspcntr = DISPPLANE_GAMMA_ENABLE;
4977
4978         if (!IS_VALLEYVIEW(dev)) {
4979                 if (pipe == 0)
4980                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4981                 else
4982                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4983         }
4984
4985         intel_set_pipe_timings(intel_crtc);
4986
4987         /* pipesrc and dspsize control the size that is scaled from,
4988          * which should always be the user's requested size.
4989          */
4990         I915_WRITE(DSPSIZE(plane),
4991                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4992                    (intel_crtc->config.pipe_src_w - 1));
4993         I915_WRITE(DSPPOS(plane), 0);
4994
4995         i9xx_set_pipeconf(intel_crtc);
4996
4997         I915_WRITE(DSPCNTR(plane), dspcntr);
4998         POSTING_READ(DSPCNTR(plane));
4999
5000         ret = intel_pipe_set_base(crtc, x, y, fb);
5001
5002         return ret;
5003 }
5004
5005 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5006                                  struct intel_crtc_config *pipe_config)
5007 {
5008         struct drm_device *dev = crtc->base.dev;
5009         struct drm_i915_private *dev_priv = dev->dev_private;
5010         uint32_t tmp;
5011
5012         tmp = I915_READ(PFIT_CONTROL);
5013         if (!(tmp & PFIT_ENABLE))
5014                 return;
5015
5016         /* Check whether the pfit is attached to our pipe. */
5017         if (INTEL_INFO(dev)->gen < 4) {
5018                 if (crtc->pipe != PIPE_B)
5019                         return;
5020         } else {
5021                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5022                         return;
5023         }
5024
5025         pipe_config->gmch_pfit.control = tmp;
5026         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5027         if (INTEL_INFO(dev)->gen < 5)
5028                 pipe_config->gmch_pfit.lvds_border_bits =
5029                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5030 }
5031
5032 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5033                                  struct intel_crtc_config *pipe_config)
5034 {
5035         struct drm_device *dev = crtc->base.dev;
5036         struct drm_i915_private *dev_priv = dev->dev_private;
5037         uint32_t tmp;
5038
5039         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5040         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5041
5042         tmp = I915_READ(PIPECONF(crtc->pipe));
5043         if (!(tmp & PIPECONF_ENABLE))
5044                 return false;
5045
5046         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5047                 switch (tmp & PIPECONF_BPC_MASK) {
5048                 case PIPECONF_6BPC:
5049                         pipe_config->pipe_bpp = 18;
5050                         break;
5051                 case PIPECONF_8BPC:
5052                         pipe_config->pipe_bpp = 24;
5053                         break;
5054                 case PIPECONF_10BPC:
5055                         pipe_config->pipe_bpp = 30;
5056                         break;
5057                 default:
5058                         break;
5059                 }
5060         }
5061
5062         if (INTEL_INFO(dev)->gen < 4)
5063                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5064
5065         intel_get_pipe_timings(crtc, pipe_config);
5066
5067         i9xx_get_pfit_config(crtc, pipe_config);
5068
5069         if (INTEL_INFO(dev)->gen >= 4) {
5070                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5071                 pipe_config->pixel_multiplier =
5072                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5073                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5074                 pipe_config->dpll_hw_state.dpll_md = tmp;
5075         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5076                 tmp = I915_READ(DPLL(crtc->pipe));
5077                 pipe_config->pixel_multiplier =
5078                         ((tmp & SDVO_MULTIPLIER_MASK)
5079                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5080         } else {
5081                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5082                  * port and will be fixed up in the encoder->get_config
5083                  * function. */
5084                 pipe_config->pixel_multiplier = 1;
5085         }
5086         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5087         if (!IS_VALLEYVIEW(dev)) {
5088                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5089                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5090         } else {
5091                 /* Mask out read-only status bits. */
5092                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5093                                                      DPLL_PORTC_READY_MASK |
5094                                                      DPLL_PORTB_READY_MASK);
5095         }
5096
5097         i9xx_crtc_clock_get(crtc, pipe_config);
5098
5099         return true;
5100 }
5101
5102 static void ironlake_init_pch_refclk(struct drm_device *dev)
5103 {
5104         struct drm_i915_private *dev_priv = dev->dev_private;
5105         struct drm_mode_config *mode_config = &dev->mode_config;
5106         struct intel_encoder *encoder;
5107         u32 val, final;
5108         bool has_lvds = false;
5109         bool has_cpu_edp = false;
5110         bool has_panel = false;
5111         bool has_ck505 = false;
5112         bool can_ssc = false;
5113
5114         /* We need to take the global config into account */
5115         list_for_each_entry(encoder, &mode_config->encoder_list,
5116                             base.head) {
5117                 switch (encoder->type) {
5118                 case INTEL_OUTPUT_LVDS:
5119                         has_panel = true;
5120                         has_lvds = true;
5121                         break;
5122                 case INTEL_OUTPUT_EDP:
5123                         has_panel = true;
5124                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5125                                 has_cpu_edp = true;
5126                         break;
5127                 }
5128         }
5129
5130         if (HAS_PCH_IBX(dev)) {
5131                 has_ck505 = dev_priv->vbt.display_clock_mode;
5132                 can_ssc = has_ck505;
5133         } else {
5134                 has_ck505 = false;
5135                 can_ssc = true;
5136         }
5137
5138         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5139                       has_panel, has_lvds, has_ck505);
5140
5141         /* Ironlake: try to setup display ref clock before DPLL
5142          * enabling. This is only under driver's control after
5143          * PCH B stepping, previous chipset stepping should be
5144          * ignoring this setting.
5145          */
5146         val = I915_READ(PCH_DREF_CONTROL);
5147
5148         /* As we must carefully and slowly disable/enable each source in turn,
5149          * compute the final state we want first and check if we need to
5150          * make any changes at all.
5151          */
5152         final = val;
5153         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5154         if (has_ck505)
5155                 final |= DREF_NONSPREAD_CK505_ENABLE;
5156         else
5157                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5158
5159         final &= ~DREF_SSC_SOURCE_MASK;
5160         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5161         final &= ~DREF_SSC1_ENABLE;
5162
5163         if (has_panel) {
5164                 final |= DREF_SSC_SOURCE_ENABLE;
5165
5166                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5167                         final |= DREF_SSC1_ENABLE;
5168
5169                 if (has_cpu_edp) {
5170                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5171                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5172                         else
5173                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5174                 } else
5175                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5176         } else {
5177                 final |= DREF_SSC_SOURCE_DISABLE;
5178                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5179         }
5180
5181         if (final == val)
5182                 return;
5183
5184         /* Always enable nonspread source */
5185         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5186
5187         if (has_ck505)
5188                 val |= DREF_NONSPREAD_CK505_ENABLE;
5189         else
5190                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5191
5192         if (has_panel) {
5193                 val &= ~DREF_SSC_SOURCE_MASK;
5194                 val |= DREF_SSC_SOURCE_ENABLE;
5195
5196                 /* SSC must be turned on before enabling the CPU output  */
5197                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5198                         DRM_DEBUG_KMS("Using SSC on panel\n");
5199                         val |= DREF_SSC1_ENABLE;
5200                 } else
5201                         val &= ~DREF_SSC1_ENABLE;
5202
5203                 /* Get SSC going before enabling the outputs */
5204                 I915_WRITE(PCH_DREF_CONTROL, val);
5205                 POSTING_READ(PCH_DREF_CONTROL);
5206                 udelay(200);
5207
5208                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5209
5210                 /* Enable CPU source on CPU attached eDP */
5211                 if (has_cpu_edp) {
5212                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5213                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5214                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5215                         }
5216                         else
5217                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5218                 } else
5219                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5220
5221                 I915_WRITE(PCH_DREF_CONTROL, val);
5222                 POSTING_READ(PCH_DREF_CONTROL);
5223                 udelay(200);
5224         } else {
5225                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5226
5227                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5228
5229                 /* Turn off CPU output */
5230                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5231
5232                 I915_WRITE(PCH_DREF_CONTROL, val);
5233                 POSTING_READ(PCH_DREF_CONTROL);
5234                 udelay(200);
5235
5236                 /* Turn off the SSC source */
5237                 val &= ~DREF_SSC_SOURCE_MASK;
5238                 val |= DREF_SSC_SOURCE_DISABLE;
5239
5240                 /* Turn off SSC1 */
5241                 val &= ~DREF_SSC1_ENABLE;
5242
5243                 I915_WRITE(PCH_DREF_CONTROL, val);
5244                 POSTING_READ(PCH_DREF_CONTROL);
5245                 udelay(200);
5246         }
5247
5248         BUG_ON(val != final);
5249 }
5250
5251 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5252 {
5253         uint32_t tmp;
5254
5255         tmp = I915_READ(SOUTH_CHICKEN2);
5256         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5257         I915_WRITE(SOUTH_CHICKEN2, tmp);
5258
5259         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5260                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5261                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5262
5263         tmp = I915_READ(SOUTH_CHICKEN2);
5264         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5265         I915_WRITE(SOUTH_CHICKEN2, tmp);
5266
5267         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5268                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5269                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5270 }
5271
5272 /* WaMPhyProgramming:hsw */
5273 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5274 {
5275         uint32_t tmp;
5276
5277         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5278         tmp &= ~(0xFF << 24);
5279         tmp |= (0x12 << 24);
5280         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5281
5282         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5283         tmp |= (1 << 11);
5284         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5285
5286         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5287         tmp |= (1 << 11);
5288         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5289
5290         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5291         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5292         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5293
5294         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5295         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5296         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5297
5298         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5299         tmp &= ~(7 << 13);
5300         tmp |= (5 << 13);
5301         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5302
5303         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5304         tmp &= ~(7 << 13);
5305         tmp |= (5 << 13);
5306         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5307
5308         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5309         tmp &= ~0xFF;
5310         tmp |= 0x1C;
5311         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5312
5313         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5314         tmp &= ~0xFF;
5315         tmp |= 0x1C;
5316         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5317
5318         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5319         tmp &= ~(0xFF << 16);
5320         tmp |= (0x1C << 16);
5321         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5322
5323         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5324         tmp &= ~(0xFF << 16);
5325         tmp |= (0x1C << 16);
5326         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5327
5328         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5329         tmp |= (1 << 27);
5330         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5331
5332         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5333         tmp |= (1 << 27);
5334         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5335
5336         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5337         tmp &= ~(0xF << 28);
5338         tmp |= (4 << 28);
5339         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5340
5341         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5342         tmp &= ~(0xF << 28);
5343         tmp |= (4 << 28);
5344         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5345 }
5346
5347 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5348  * Programming" based on the parameters passed:
5349  * - Sequence to enable CLKOUT_DP
5350  * - Sequence to enable CLKOUT_DP without spread
5351  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5352  */
5353 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5354                                  bool with_fdi)
5355 {
5356         struct drm_i915_private *dev_priv = dev->dev_private;
5357         uint32_t reg, tmp;
5358
5359         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5360                 with_spread = true;
5361         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5362                  with_fdi, "LP PCH doesn't have FDI\n"))
5363                 with_fdi = false;
5364
5365         mutex_lock(&dev_priv->dpio_lock);
5366
5367         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5368         tmp &= ~SBI_SSCCTL_DISABLE;
5369         tmp |= SBI_SSCCTL_PATHALT;
5370         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5371
5372         udelay(24);
5373
5374         if (with_spread) {
5375                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5376                 tmp &= ~SBI_SSCCTL_PATHALT;
5377                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5378
5379                 if (with_fdi) {
5380                         lpt_reset_fdi_mphy(dev_priv);
5381                         lpt_program_fdi_mphy(dev_priv);
5382                 }
5383         }
5384
5385         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5386                SBI_GEN0 : SBI_DBUFF0;
5387         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5388         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5389         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5390
5391         mutex_unlock(&dev_priv->dpio_lock);
5392 }
5393
5394 /* Sequence to disable CLKOUT_DP */
5395 static void lpt_disable_clkout_dp(struct drm_device *dev)
5396 {
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398         uint32_t reg, tmp;
5399
5400         mutex_lock(&dev_priv->dpio_lock);
5401
5402         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5403                SBI_GEN0 : SBI_DBUFF0;
5404         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5405         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5406         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5407
5408         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5409         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5410                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5411                         tmp |= SBI_SSCCTL_PATHALT;
5412                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5413                         udelay(32);
5414                 }
5415                 tmp |= SBI_SSCCTL_DISABLE;
5416                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5417         }
5418
5419         mutex_unlock(&dev_priv->dpio_lock);
5420 }
5421
5422 static void lpt_init_pch_refclk(struct drm_device *dev)
5423 {
5424         struct drm_mode_config *mode_config = &dev->mode_config;
5425         struct intel_encoder *encoder;
5426         bool has_vga = false;
5427
5428         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5429                 switch (encoder->type) {
5430                 case INTEL_OUTPUT_ANALOG:
5431                         has_vga = true;
5432                         break;
5433                 }
5434         }
5435
5436         if (has_vga)
5437                 lpt_enable_clkout_dp(dev, true, true);
5438         else
5439                 lpt_disable_clkout_dp(dev);
5440 }
5441
5442 /*
5443  * Initialize reference clocks when the driver loads
5444  */
5445 void intel_init_pch_refclk(struct drm_device *dev)
5446 {
5447         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5448                 ironlake_init_pch_refclk(dev);
5449         else if (HAS_PCH_LPT(dev))
5450                 lpt_init_pch_refclk(dev);
5451 }
5452
5453 static int ironlake_get_refclk(struct drm_crtc *crtc)
5454 {
5455         struct drm_device *dev = crtc->dev;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         struct intel_encoder *encoder;
5458         int num_connectors = 0;
5459         bool is_lvds = false;
5460
5461         for_each_encoder_on_crtc(dev, crtc, encoder) {
5462                 switch (encoder->type) {
5463                 case INTEL_OUTPUT_LVDS:
5464                         is_lvds = true;
5465                         break;
5466                 }
5467                 num_connectors++;
5468         }
5469
5470         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5471                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5472                               dev_priv->vbt.lvds_ssc_freq);
5473                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5474         }
5475
5476         return 120000;
5477 }
5478
5479 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5480 {
5481         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5483         int pipe = intel_crtc->pipe;
5484         uint32_t val;
5485
5486         val = 0;
5487
5488         switch (intel_crtc->config.pipe_bpp) {
5489         case 18:
5490                 val |= PIPECONF_6BPC;
5491                 break;
5492         case 24:
5493                 val |= PIPECONF_8BPC;
5494                 break;
5495         case 30:
5496                 val |= PIPECONF_10BPC;
5497                 break;
5498         case 36:
5499                 val |= PIPECONF_12BPC;
5500                 break;
5501         default:
5502                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5503                 BUG();
5504         }
5505
5506         if (intel_crtc->config.dither)
5507                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5508
5509         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5510                 val |= PIPECONF_INTERLACED_ILK;
5511         else
5512                 val |= PIPECONF_PROGRESSIVE;
5513
5514         if (intel_crtc->config.limited_color_range)
5515                 val |= PIPECONF_COLOR_RANGE_SELECT;
5516
5517         I915_WRITE(PIPECONF(pipe), val);
5518         POSTING_READ(PIPECONF(pipe));
5519 }
5520
5521 /*
5522  * Set up the pipe CSC unit.
5523  *
5524  * Currently only full range RGB to limited range RGB conversion
5525  * is supported, but eventually this should handle various
5526  * RGB<->YCbCr scenarios as well.
5527  */
5528 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5529 {
5530         struct drm_device *dev = crtc->dev;
5531         struct drm_i915_private *dev_priv = dev->dev_private;
5532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5533         int pipe = intel_crtc->pipe;
5534         uint16_t coeff = 0x7800; /* 1.0 */
5535
5536         /*
5537          * TODO: Check what kind of values actually come out of the pipe
5538          * with these coeff/postoff values and adjust to get the best
5539          * accuracy. Perhaps we even need to take the bpc value into
5540          * consideration.
5541          */
5542
5543         if (intel_crtc->config.limited_color_range)
5544                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5545
5546         /*
5547          * GY/GU and RY/RU should be the other way around according
5548          * to BSpec, but reality doesn't agree. Just set them up in
5549          * a way that results in the correct picture.
5550          */
5551         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5552         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5553
5554         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5555         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5556
5557         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5558         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5559
5560         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5561         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5562         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5563
5564         if (INTEL_INFO(dev)->gen > 6) {
5565                 uint16_t postoff = 0;
5566
5567                 if (intel_crtc->config.limited_color_range)
5568                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5569
5570                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5571                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5572                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5573
5574                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5575         } else {
5576                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5577
5578                 if (intel_crtc->config.limited_color_range)
5579                         mode |= CSC_BLACK_SCREEN_OFFSET;
5580
5581                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5582         }
5583 }
5584
5585 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5586 {
5587         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5588         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5589         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5590         uint32_t val;
5591
5592         val = 0;
5593
5594         if (intel_crtc->config.dither)
5595                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5596
5597         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5598                 val |= PIPECONF_INTERLACED_ILK;
5599         else
5600                 val |= PIPECONF_PROGRESSIVE;
5601
5602         I915_WRITE(PIPECONF(cpu_transcoder), val);
5603         POSTING_READ(PIPECONF(cpu_transcoder));
5604
5605         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5606         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5607 }
5608
5609 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5610                                     intel_clock_t *clock,
5611                                     bool *has_reduced_clock,
5612                                     intel_clock_t *reduced_clock)
5613 {
5614         struct drm_device *dev = crtc->dev;
5615         struct drm_i915_private *dev_priv = dev->dev_private;
5616         struct intel_encoder *intel_encoder;
5617         int refclk;
5618         const intel_limit_t *limit;
5619         bool ret, is_lvds = false;
5620
5621         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5622                 switch (intel_encoder->type) {
5623                 case INTEL_OUTPUT_LVDS:
5624                         is_lvds = true;
5625                         break;
5626                 }
5627         }
5628
5629         refclk = ironlake_get_refclk(crtc);
5630
5631         /*
5632          * Returns a set of divisors for the desired target clock with the given
5633          * refclk, or FALSE.  The returned values represent the clock equation:
5634          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5635          */
5636         limit = intel_limit(crtc, refclk);
5637         ret = dev_priv->display.find_dpll(limit, crtc,
5638                                           to_intel_crtc(crtc)->config.port_clock,
5639                                           refclk, NULL, clock);
5640         if (!ret)
5641                 return false;
5642
5643         if (is_lvds && dev_priv->lvds_downclock_avail) {
5644                 /*
5645                  * Ensure we match the reduced clock's P to the target clock.
5646                  * If the clocks don't match, we can't switch the display clock
5647                  * by using the FP0/FP1. In such case we will disable the LVDS
5648                  * downclock feature.
5649                 */
5650                 *has_reduced_clock =
5651                         dev_priv->display.find_dpll(limit, crtc,
5652                                                     dev_priv->lvds_downclock,
5653                                                     refclk, clock,
5654                                                     reduced_clock);
5655         }
5656
5657         return true;
5658 }
5659
5660 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5661 {
5662         struct drm_i915_private *dev_priv = dev->dev_private;
5663         uint32_t temp;
5664
5665         temp = I915_READ(SOUTH_CHICKEN1);
5666         if (temp & FDI_BC_BIFURCATION_SELECT)
5667                 return;
5668
5669         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5670         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5671
5672         temp |= FDI_BC_BIFURCATION_SELECT;
5673         DRM_DEBUG_KMS("enabling fdi C rx\n");
5674         I915_WRITE(SOUTH_CHICKEN1, temp);
5675         POSTING_READ(SOUTH_CHICKEN1);
5676 }
5677
5678 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5679 {
5680         struct drm_device *dev = intel_crtc->base.dev;
5681         struct drm_i915_private *dev_priv = dev->dev_private;
5682
5683         switch (intel_crtc->pipe) {
5684         case PIPE_A:
5685                 break;
5686         case PIPE_B:
5687                 if (intel_crtc->config.fdi_lanes > 2)
5688                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5689                 else
5690                         cpt_enable_fdi_bc_bifurcation(dev);
5691
5692                 break;
5693         case PIPE_C:
5694                 cpt_enable_fdi_bc_bifurcation(dev);
5695
5696                 break;
5697         default:
5698                 BUG();
5699         }
5700 }
5701
5702 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5703 {
5704         /*
5705          * Account for spread spectrum to avoid
5706          * oversubscribing the link. Max center spread
5707          * is 2.5%; use 5% for safety's sake.
5708          */
5709         u32 bps = target_clock * bpp * 21 / 20;
5710         return bps / (link_bw * 8) + 1;
5711 }
5712
5713 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5714 {
5715         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5716 }
5717
5718 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5719                                       u32 *fp,
5720                                       intel_clock_t *reduced_clock, u32 *fp2)
5721 {
5722         struct drm_crtc *crtc = &intel_crtc->base;
5723         struct drm_device *dev = crtc->dev;
5724         struct drm_i915_private *dev_priv = dev->dev_private;
5725         struct intel_encoder *intel_encoder;
5726         uint32_t dpll;
5727         int factor, num_connectors = 0;
5728         bool is_lvds = false, is_sdvo = false;
5729
5730         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5731                 switch (intel_encoder->type) {
5732                 case INTEL_OUTPUT_LVDS:
5733                         is_lvds = true;
5734                         break;
5735                 case INTEL_OUTPUT_SDVO:
5736                 case INTEL_OUTPUT_HDMI:
5737                         is_sdvo = true;
5738                         break;
5739                 }
5740
5741                 num_connectors++;
5742         }
5743
5744         /* Enable autotuning of the PLL clock (if permissible) */
5745         factor = 21;
5746         if (is_lvds) {
5747                 if ((intel_panel_use_ssc(dev_priv) &&
5748                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5749                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5750                         factor = 25;
5751         } else if (intel_crtc->config.sdvo_tv_clock)
5752                 factor = 20;
5753
5754         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5755                 *fp |= FP_CB_TUNE;
5756
5757         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5758                 *fp2 |= FP_CB_TUNE;
5759
5760         dpll = 0;
5761
5762         if (is_lvds)
5763                 dpll |= DPLLB_MODE_LVDS;
5764         else
5765                 dpll |= DPLLB_MODE_DAC_SERIAL;
5766
5767         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5768                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5769
5770         if (is_sdvo)
5771                 dpll |= DPLL_SDVO_HIGH_SPEED;
5772         if (intel_crtc->config.has_dp_encoder)
5773                 dpll |= DPLL_SDVO_HIGH_SPEED;
5774
5775         /* compute bitmask from p1 value */
5776         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5777         /* also FPA1 */
5778         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5779
5780         switch (intel_crtc->config.dpll.p2) {
5781         case 5:
5782                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5783                 break;
5784         case 7:
5785                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5786                 break;
5787         case 10:
5788                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5789                 break;
5790         case 14:
5791                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5792                 break;
5793         }
5794
5795         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5796                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5797         else
5798                 dpll |= PLL_REF_INPUT_DREFCLK;
5799
5800         return dpll | DPLL_VCO_ENABLE;
5801 }
5802
5803 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5804                                   int x, int y,
5805                                   struct drm_framebuffer *fb)
5806 {
5807         struct drm_device *dev = crtc->dev;
5808         struct drm_i915_private *dev_priv = dev->dev_private;
5809         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5810         int pipe = intel_crtc->pipe;
5811         int plane = intel_crtc->plane;
5812         int num_connectors = 0;
5813         intel_clock_t clock, reduced_clock;
5814         u32 dpll = 0, fp = 0, fp2 = 0;
5815         bool ok, has_reduced_clock = false;
5816         bool is_lvds = false;
5817         struct intel_encoder *encoder;
5818         struct intel_shared_dpll *pll;
5819         int ret;
5820
5821         for_each_encoder_on_crtc(dev, crtc, encoder) {
5822                 switch (encoder->type) {
5823                 case INTEL_OUTPUT_LVDS:
5824                         is_lvds = true;
5825                         break;
5826                 }
5827
5828                 num_connectors++;
5829         }
5830
5831         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5832              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5833
5834         ok = ironlake_compute_clocks(crtc, &clock,
5835                                      &has_reduced_clock, &reduced_clock);
5836         if (!ok && !intel_crtc->config.clock_set) {
5837                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5838                 return -EINVAL;
5839         }
5840         /* Compat-code for transition, will disappear. */
5841         if (!intel_crtc->config.clock_set) {
5842                 intel_crtc->config.dpll.n = clock.n;
5843                 intel_crtc->config.dpll.m1 = clock.m1;
5844                 intel_crtc->config.dpll.m2 = clock.m2;
5845                 intel_crtc->config.dpll.p1 = clock.p1;
5846                 intel_crtc->config.dpll.p2 = clock.p2;
5847         }
5848
5849         /* Ensure that the cursor is valid for the new mode before changing... */
5850         intel_crtc_update_cursor(crtc, true);
5851
5852         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5853         if (intel_crtc->config.has_pch_encoder) {
5854                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5855                 if (has_reduced_clock)
5856                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5857
5858                 dpll = ironlake_compute_dpll(intel_crtc,
5859                                              &fp, &reduced_clock,
5860                                              has_reduced_clock ? &fp2 : NULL);
5861
5862                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5863                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5864                 if (has_reduced_clock)
5865                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5866                 else
5867                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5868
5869                 pll = intel_get_shared_dpll(intel_crtc);
5870                 if (pll == NULL) {
5871                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5872                                          pipe_name(pipe));
5873                         return -EINVAL;
5874                 }
5875         } else
5876                 intel_put_shared_dpll(intel_crtc);
5877
5878         if (intel_crtc->config.has_dp_encoder)
5879                 intel_dp_set_m_n(intel_crtc);
5880
5881         if (is_lvds && has_reduced_clock && i915_powersave)
5882                 intel_crtc->lowfreq_avail = true;
5883         else
5884                 intel_crtc->lowfreq_avail = false;
5885
5886         if (intel_crtc->config.has_pch_encoder) {
5887                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5888
5889         }
5890
5891         intel_set_pipe_timings(intel_crtc);
5892
5893         if (intel_crtc->config.has_pch_encoder) {
5894                 intel_cpu_transcoder_set_m_n(intel_crtc,
5895                                              &intel_crtc->config.fdi_m_n);
5896         }
5897
5898         if (IS_IVYBRIDGE(dev))
5899                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5900
5901         ironlake_set_pipeconf(crtc);
5902
5903         /* Set up the display plane register */
5904         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5905         POSTING_READ(DSPCNTR(plane));
5906
5907         ret = intel_pipe_set_base(crtc, x, y, fb);
5908
5909         return ret;
5910 }
5911
5912 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5913                                          struct intel_link_m_n *m_n)
5914 {
5915         struct drm_device *dev = crtc->base.dev;
5916         struct drm_i915_private *dev_priv = dev->dev_private;
5917         enum pipe pipe = crtc->pipe;
5918
5919         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5920         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5921         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5922                 & ~TU_SIZE_MASK;
5923         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5924         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5925                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5926 }
5927
5928 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
5929                                          enum transcoder transcoder,
5930                                          struct intel_link_m_n *m_n)
5931 {
5932         struct drm_device *dev = crtc->base.dev;
5933         struct drm_i915_private *dev_priv = dev->dev_private;
5934         enum pipe pipe = crtc->pipe;
5935
5936         if (INTEL_INFO(dev)->gen >= 5) {
5937                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
5938                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
5939                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5940                         & ~TU_SIZE_MASK;
5941                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5942                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5943                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5944         } else {
5945                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
5946                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
5947                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
5948                         & ~TU_SIZE_MASK;
5949                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
5950                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
5951                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5952         }
5953 }
5954
5955 void intel_dp_get_m_n(struct intel_crtc *crtc,
5956                       struct intel_crtc_config *pipe_config)
5957 {
5958         if (crtc->config.has_pch_encoder)
5959                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
5960         else
5961                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5962                                              &pipe_config->dp_m_n);
5963 }
5964
5965 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5966                                         struct intel_crtc_config *pipe_config)
5967 {
5968         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
5969                                      &pipe_config->fdi_m_n);
5970 }
5971
5972 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5973                                      struct intel_crtc_config *pipe_config)
5974 {
5975         struct drm_device *dev = crtc->base.dev;
5976         struct drm_i915_private *dev_priv = dev->dev_private;
5977         uint32_t tmp;
5978
5979         tmp = I915_READ(PF_CTL(crtc->pipe));
5980
5981         if (tmp & PF_ENABLE) {
5982                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5983                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5984
5985                 /* We currently do not free assignements of panel fitters on
5986                  * ivb/hsw (since we don't use the higher upscaling modes which
5987                  * differentiates them) so just WARN about this case for now. */
5988                 if (IS_GEN7(dev)) {
5989                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5990                                 PF_PIPE_SEL_IVB(crtc->pipe));
5991                 }
5992         }
5993 }
5994
5995 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5996                                      struct intel_crtc_config *pipe_config)
5997 {
5998         struct drm_device *dev = crtc->base.dev;
5999         struct drm_i915_private *dev_priv = dev->dev_private;
6000         uint32_t tmp;
6001
6002         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6003         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6004
6005         tmp = I915_READ(PIPECONF(crtc->pipe));
6006         if (!(tmp & PIPECONF_ENABLE))
6007                 return false;
6008
6009         switch (tmp & PIPECONF_BPC_MASK) {
6010         case PIPECONF_6BPC:
6011                 pipe_config->pipe_bpp = 18;
6012                 break;
6013         case PIPECONF_8BPC:
6014                 pipe_config->pipe_bpp = 24;
6015                 break;
6016         case PIPECONF_10BPC:
6017                 pipe_config->pipe_bpp = 30;
6018                 break;
6019         case PIPECONF_12BPC:
6020                 pipe_config->pipe_bpp = 36;
6021                 break;
6022         default:
6023                 break;
6024         }
6025
6026         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6027                 struct intel_shared_dpll *pll;
6028
6029                 pipe_config->has_pch_encoder = true;
6030
6031                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6032                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6033                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6034
6035                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6036
6037                 if (HAS_PCH_IBX(dev_priv->dev)) {
6038                         pipe_config->shared_dpll =
6039                                 (enum intel_dpll_id) crtc->pipe;
6040                 } else {
6041                         tmp = I915_READ(PCH_DPLL_SEL);
6042                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6043                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6044                         else
6045                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6046                 }
6047
6048                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6049
6050                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6051                                            &pipe_config->dpll_hw_state));
6052
6053                 tmp = pipe_config->dpll_hw_state.dpll;
6054                 pipe_config->pixel_multiplier =
6055                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6056                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6057
6058                 ironlake_pch_clock_get(crtc, pipe_config);
6059         } else {
6060                 pipe_config->pixel_multiplier = 1;
6061         }
6062
6063         intel_get_pipe_timings(crtc, pipe_config);
6064
6065         ironlake_get_pfit_config(crtc, pipe_config);
6066
6067         return true;
6068 }
6069
6070 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6071 {
6072         struct drm_device *dev = dev_priv->dev;
6073         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6074         struct intel_crtc *crtc;
6075         unsigned long irqflags;
6076         uint32_t val;
6077
6078         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6079                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6080                      pipe_name(crtc->pipe));
6081
6082         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6083         WARN(plls->spll_refcount, "SPLL enabled\n");
6084         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6085         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6086         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6087         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6088              "CPU PWM1 enabled\n");
6089         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6090              "CPU PWM2 enabled\n");
6091         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6092              "PCH PWM1 enabled\n");
6093         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6094              "Utility pin enabled\n");
6095         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6096
6097         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6098         val = I915_READ(DEIMR);
6099         WARN((val & ~DE_PCH_EVENT_IVB) != val,
6100              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6101         val = I915_READ(SDEIMR);
6102         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6103              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6104         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6105 }
6106
6107 /*
6108  * This function implements pieces of two sequences from BSpec:
6109  * - Sequence for display software to disable LCPLL
6110  * - Sequence for display software to allow package C8+
6111  * The steps implemented here are just the steps that actually touch the LCPLL
6112  * register. Callers should take care of disabling all the display engine
6113  * functions, doing the mode unset, fixing interrupts, etc.
6114  */
6115 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6116                        bool switch_to_fclk, bool allow_power_down)
6117 {
6118         uint32_t val;
6119
6120         assert_can_disable_lcpll(dev_priv);
6121
6122         val = I915_READ(LCPLL_CTL);
6123
6124         if (switch_to_fclk) {
6125                 val |= LCPLL_CD_SOURCE_FCLK;
6126                 I915_WRITE(LCPLL_CTL, val);
6127
6128                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6129                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6130                         DRM_ERROR("Switching to FCLK failed\n");
6131
6132                 val = I915_READ(LCPLL_CTL);
6133         }
6134
6135         val |= LCPLL_PLL_DISABLE;
6136         I915_WRITE(LCPLL_CTL, val);
6137         POSTING_READ(LCPLL_CTL);
6138
6139         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6140                 DRM_ERROR("LCPLL still locked\n");
6141
6142         val = I915_READ(D_COMP);
6143         val |= D_COMP_COMP_DISABLE;
6144         mutex_lock(&dev_priv->rps.hw_lock);
6145         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6146                 DRM_ERROR("Failed to disable D_COMP\n");
6147         mutex_unlock(&dev_priv->rps.hw_lock);
6148         POSTING_READ(D_COMP);
6149         ndelay(100);
6150
6151         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6152                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6153
6154         if (allow_power_down) {
6155                 val = I915_READ(LCPLL_CTL);
6156                 val |= LCPLL_POWER_DOWN_ALLOW;
6157                 I915_WRITE(LCPLL_CTL, val);
6158                 POSTING_READ(LCPLL_CTL);
6159         }
6160 }
6161
6162 /*
6163  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6164  * source.
6165  */
6166 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6167 {
6168         uint32_t val;
6169
6170         val = I915_READ(LCPLL_CTL);
6171
6172         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6173                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6174                 return;
6175
6176         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6177          * we'll hang the machine! */
6178         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6179
6180         if (val & LCPLL_POWER_DOWN_ALLOW) {
6181                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6182                 I915_WRITE(LCPLL_CTL, val);
6183                 POSTING_READ(LCPLL_CTL);
6184         }
6185
6186         val = I915_READ(D_COMP);
6187         val |= D_COMP_COMP_FORCE;
6188         val &= ~D_COMP_COMP_DISABLE;
6189         mutex_lock(&dev_priv->rps.hw_lock);
6190         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6191                 DRM_ERROR("Failed to enable D_COMP\n");
6192         mutex_unlock(&dev_priv->rps.hw_lock);
6193         POSTING_READ(D_COMP);
6194
6195         val = I915_READ(LCPLL_CTL);
6196         val &= ~LCPLL_PLL_DISABLE;
6197         I915_WRITE(LCPLL_CTL, val);
6198
6199         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6200                 DRM_ERROR("LCPLL not locked yet\n");
6201
6202         if (val & LCPLL_CD_SOURCE_FCLK) {
6203                 val = I915_READ(LCPLL_CTL);
6204                 val &= ~LCPLL_CD_SOURCE_FCLK;
6205                 I915_WRITE(LCPLL_CTL, val);
6206
6207                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6208                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6209                         DRM_ERROR("Switching back to LCPLL failed\n");
6210         }
6211
6212         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6213 }
6214
6215 void hsw_enable_pc8_work(struct work_struct *__work)
6216 {
6217         struct drm_i915_private *dev_priv =
6218                 container_of(to_delayed_work(__work), struct drm_i915_private,
6219                              pc8.enable_work);
6220         struct drm_device *dev = dev_priv->dev;
6221         uint32_t val;
6222
6223         if (dev_priv->pc8.enabled)
6224                 return;
6225
6226         DRM_DEBUG_KMS("Enabling package C8+\n");
6227
6228         dev_priv->pc8.enabled = true;
6229
6230         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6231                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6232                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6233                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6234         }
6235
6236         lpt_disable_clkout_dp(dev);
6237         hsw_pc8_disable_interrupts(dev);
6238         hsw_disable_lcpll(dev_priv, true, true);
6239 }
6240
6241 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6242 {
6243         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6244         WARN(dev_priv->pc8.disable_count < 1,
6245              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6246
6247         dev_priv->pc8.disable_count--;
6248         if (dev_priv->pc8.disable_count != 0)
6249                 return;
6250
6251         schedule_delayed_work(&dev_priv->pc8.enable_work,
6252                               msecs_to_jiffies(i915_pc8_timeout));
6253 }
6254
6255 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6256 {
6257         struct drm_device *dev = dev_priv->dev;
6258         uint32_t val;
6259
6260         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6261         WARN(dev_priv->pc8.disable_count < 0,
6262              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6263
6264         dev_priv->pc8.disable_count++;
6265         if (dev_priv->pc8.disable_count != 1)
6266                 return;
6267
6268         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6269         if (!dev_priv->pc8.enabled)
6270                 return;
6271
6272         DRM_DEBUG_KMS("Disabling package C8+\n");
6273
6274         hsw_restore_lcpll(dev_priv);
6275         hsw_pc8_restore_interrupts(dev);
6276         lpt_init_pch_refclk(dev);
6277
6278         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6279                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6280                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6281                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6282         }
6283
6284         intel_prepare_ddi(dev);
6285         i915_gem_init_swizzling(dev);
6286         mutex_lock(&dev_priv->rps.hw_lock);
6287         gen6_update_ring_freq(dev);
6288         mutex_unlock(&dev_priv->rps.hw_lock);
6289         dev_priv->pc8.enabled = false;
6290 }
6291
6292 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6293 {
6294         mutex_lock(&dev_priv->pc8.lock);
6295         __hsw_enable_package_c8(dev_priv);
6296         mutex_unlock(&dev_priv->pc8.lock);
6297 }
6298
6299 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6300 {
6301         mutex_lock(&dev_priv->pc8.lock);
6302         __hsw_disable_package_c8(dev_priv);
6303         mutex_unlock(&dev_priv->pc8.lock);
6304 }
6305
6306 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6307 {
6308         struct drm_device *dev = dev_priv->dev;
6309         struct intel_crtc *crtc;
6310         uint32_t val;
6311
6312         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6313                 if (crtc->base.enabled)
6314                         return false;
6315
6316         /* This case is still possible since we have the i915.disable_power_well
6317          * parameter and also the KVMr or something else might be requesting the
6318          * power well. */
6319         val = I915_READ(HSW_PWR_WELL_DRIVER);
6320         if (val != 0) {
6321                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6322                 return false;
6323         }
6324
6325         return true;
6326 }
6327
6328 /* Since we're called from modeset_global_resources there's no way to
6329  * symmetrically increase and decrease the refcount, so we use
6330  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6331  * or not.
6332  */
6333 static void hsw_update_package_c8(struct drm_device *dev)
6334 {
6335         struct drm_i915_private *dev_priv = dev->dev_private;
6336         bool allow;
6337
6338         if (!i915_enable_pc8)
6339                 return;
6340
6341         mutex_lock(&dev_priv->pc8.lock);
6342
6343         allow = hsw_can_enable_package_c8(dev_priv);
6344
6345         if (allow == dev_priv->pc8.requirements_met)
6346                 goto done;
6347
6348         dev_priv->pc8.requirements_met = allow;
6349
6350         if (allow)
6351                 __hsw_enable_package_c8(dev_priv);
6352         else
6353                 __hsw_disable_package_c8(dev_priv);
6354
6355 done:
6356         mutex_unlock(&dev_priv->pc8.lock);
6357 }
6358
6359 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6360 {
6361         if (!dev_priv->pc8.gpu_idle) {
6362                 dev_priv->pc8.gpu_idle = true;
6363                 hsw_enable_package_c8(dev_priv);
6364         }
6365 }
6366
6367 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6368 {
6369         if (dev_priv->pc8.gpu_idle) {
6370                 dev_priv->pc8.gpu_idle = false;
6371                 hsw_disable_package_c8(dev_priv);
6372         }
6373 }
6374
6375 static void haswell_modeset_global_resources(struct drm_device *dev)
6376 {
6377         bool enable = false;
6378         struct intel_crtc *crtc;
6379
6380         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6381                 if (!crtc->base.enabled)
6382                         continue;
6383
6384                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
6385                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6386                         enable = true;
6387         }
6388
6389         intel_set_power_well(dev, enable);
6390
6391         hsw_update_package_c8(dev);
6392 }
6393
6394 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6395                                  int x, int y,
6396                                  struct drm_framebuffer *fb)
6397 {
6398         struct drm_device *dev = crtc->dev;
6399         struct drm_i915_private *dev_priv = dev->dev_private;
6400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6401         int plane = intel_crtc->plane;
6402         int ret;
6403
6404         if (!intel_ddi_pll_mode_set(crtc))
6405                 return -EINVAL;
6406
6407         /* Ensure that the cursor is valid for the new mode before changing... */
6408         intel_crtc_update_cursor(crtc, true);
6409
6410         if (intel_crtc->config.has_dp_encoder)
6411                 intel_dp_set_m_n(intel_crtc);
6412
6413         intel_crtc->lowfreq_avail = false;
6414
6415         intel_set_pipe_timings(intel_crtc);
6416
6417         if (intel_crtc->config.has_pch_encoder) {
6418                 intel_cpu_transcoder_set_m_n(intel_crtc,
6419                                              &intel_crtc->config.fdi_m_n);
6420         }
6421
6422         haswell_set_pipeconf(crtc);
6423
6424         intel_set_pipe_csc(crtc);
6425
6426         /* Set up the display plane register */
6427         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6428         POSTING_READ(DSPCNTR(plane));
6429
6430         ret = intel_pipe_set_base(crtc, x, y, fb);
6431
6432         return ret;
6433 }
6434
6435 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6436                                     struct intel_crtc_config *pipe_config)
6437 {
6438         struct drm_device *dev = crtc->base.dev;
6439         struct drm_i915_private *dev_priv = dev->dev_private;
6440         enum intel_display_power_domain pfit_domain;
6441         uint32_t tmp;
6442
6443         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6444         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6445
6446         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6447         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6448                 enum pipe trans_edp_pipe;
6449                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6450                 default:
6451                         WARN(1, "unknown pipe linked to edp transcoder\n");
6452                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6453                 case TRANS_DDI_EDP_INPUT_A_ON:
6454                         trans_edp_pipe = PIPE_A;
6455                         break;
6456                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6457                         trans_edp_pipe = PIPE_B;
6458                         break;
6459                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6460                         trans_edp_pipe = PIPE_C;
6461                         break;
6462                 }
6463
6464                 if (trans_edp_pipe == crtc->pipe)
6465                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6466         }
6467
6468         if (!intel_display_power_enabled(dev,
6469                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6470                 return false;
6471
6472         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6473         if (!(tmp & PIPECONF_ENABLE))
6474                 return false;
6475
6476         /*
6477          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6478          * DDI E. So just check whether this pipe is wired to DDI E and whether
6479          * the PCH transcoder is on.
6480          */
6481         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6482         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6483             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6484                 pipe_config->has_pch_encoder = true;
6485
6486                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6487                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6488                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6489
6490                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6491         }
6492
6493         intel_get_pipe_timings(crtc, pipe_config);
6494
6495         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6496         if (intel_display_power_enabled(dev, pfit_domain))
6497                 ironlake_get_pfit_config(crtc, pipe_config);
6498
6499         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6500                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6501
6502         pipe_config->pixel_multiplier = 1;
6503
6504         return true;
6505 }
6506
6507 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6508                                int x, int y,
6509                                struct drm_framebuffer *fb)
6510 {
6511         struct drm_device *dev = crtc->dev;
6512         struct drm_i915_private *dev_priv = dev->dev_private;
6513         struct intel_encoder *encoder;
6514         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6515         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6516         int pipe = intel_crtc->pipe;
6517         int ret;
6518
6519         drm_vblank_pre_modeset(dev, pipe);
6520
6521         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6522
6523         drm_vblank_post_modeset(dev, pipe);
6524
6525         if (ret != 0)
6526                 return ret;
6527
6528         for_each_encoder_on_crtc(dev, crtc, encoder) {
6529                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6530                         encoder->base.base.id,
6531                         drm_get_encoder_name(&encoder->base),
6532                         mode->base.id, mode->name);
6533                 encoder->mode_set(encoder);
6534         }
6535
6536         return 0;
6537 }
6538
6539 static bool intel_eld_uptodate(struct drm_connector *connector,
6540                                int reg_eldv, uint32_t bits_eldv,
6541                                int reg_elda, uint32_t bits_elda,
6542                                int reg_edid)
6543 {
6544         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6545         uint8_t *eld = connector->eld;
6546         uint32_t i;
6547
6548         i = I915_READ(reg_eldv);
6549         i &= bits_eldv;
6550
6551         if (!eld[0])
6552                 return !i;
6553
6554         if (!i)
6555                 return false;
6556
6557         i = I915_READ(reg_elda);
6558         i &= ~bits_elda;
6559         I915_WRITE(reg_elda, i);
6560
6561         for (i = 0; i < eld[2]; i++)
6562                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6563                         return false;
6564
6565         return true;
6566 }
6567
6568 static void g4x_write_eld(struct drm_connector *connector,
6569                           struct drm_crtc *crtc)
6570 {
6571         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6572         uint8_t *eld = connector->eld;
6573         uint32_t eldv;
6574         uint32_t len;
6575         uint32_t i;
6576
6577         i = I915_READ(G4X_AUD_VID_DID);
6578
6579         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6580                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6581         else
6582                 eldv = G4X_ELDV_DEVCTG;
6583
6584         if (intel_eld_uptodate(connector,
6585                                G4X_AUD_CNTL_ST, eldv,
6586                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6587                                G4X_HDMIW_HDMIEDID))
6588                 return;
6589
6590         i = I915_READ(G4X_AUD_CNTL_ST);
6591         i &= ~(eldv | G4X_ELD_ADDR);
6592         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6593         I915_WRITE(G4X_AUD_CNTL_ST, i);
6594
6595         if (!eld[0])
6596                 return;
6597
6598         len = min_t(uint8_t, eld[2], len);
6599         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6600         for (i = 0; i < len; i++)
6601                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6602
6603         i = I915_READ(G4X_AUD_CNTL_ST);
6604         i |= eldv;
6605         I915_WRITE(G4X_AUD_CNTL_ST, i);
6606 }
6607
6608 static void haswell_write_eld(struct drm_connector *connector,
6609                                      struct drm_crtc *crtc)
6610 {
6611         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6612         uint8_t *eld = connector->eld;
6613         struct drm_device *dev = crtc->dev;
6614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6615         uint32_t eldv;
6616         uint32_t i;
6617         int len;
6618         int pipe = to_intel_crtc(crtc)->pipe;
6619         int tmp;
6620
6621         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6622         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6623         int aud_config = HSW_AUD_CFG(pipe);
6624         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6625
6626
6627         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6628
6629         /* Audio output enable */
6630         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6631         tmp = I915_READ(aud_cntrl_st2);
6632         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6633         I915_WRITE(aud_cntrl_st2, tmp);
6634
6635         /* Wait for 1 vertical blank */
6636         intel_wait_for_vblank(dev, pipe);
6637
6638         /* Set ELD valid state */
6639         tmp = I915_READ(aud_cntrl_st2);
6640         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6641         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6642         I915_WRITE(aud_cntrl_st2, tmp);
6643         tmp = I915_READ(aud_cntrl_st2);
6644         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6645
6646         /* Enable HDMI mode */
6647         tmp = I915_READ(aud_config);
6648         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6649         /* clear N_programing_enable and N_value_index */
6650         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6651         I915_WRITE(aud_config, tmp);
6652
6653         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6654
6655         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6656         intel_crtc->eld_vld = true;
6657
6658         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6659                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6660                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6661                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6662         } else
6663                 I915_WRITE(aud_config, 0);
6664
6665         if (intel_eld_uptodate(connector,
6666                                aud_cntrl_st2, eldv,
6667                                aud_cntl_st, IBX_ELD_ADDRESS,
6668                                hdmiw_hdmiedid))
6669                 return;
6670
6671         i = I915_READ(aud_cntrl_st2);
6672         i &= ~eldv;
6673         I915_WRITE(aud_cntrl_st2, i);
6674
6675         if (!eld[0])
6676                 return;
6677
6678         i = I915_READ(aud_cntl_st);
6679         i &= ~IBX_ELD_ADDRESS;
6680         I915_WRITE(aud_cntl_st, i);
6681         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6682         DRM_DEBUG_DRIVER("port num:%d\n", i);
6683
6684         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6685         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6686         for (i = 0; i < len; i++)
6687                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6688
6689         i = I915_READ(aud_cntrl_st2);
6690         i |= eldv;
6691         I915_WRITE(aud_cntrl_st2, i);
6692
6693 }
6694
6695 static void ironlake_write_eld(struct drm_connector *connector,
6696                                      struct drm_crtc *crtc)
6697 {
6698         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6699         uint8_t *eld = connector->eld;
6700         uint32_t eldv;
6701         uint32_t i;
6702         int len;
6703         int hdmiw_hdmiedid;
6704         int aud_config;
6705         int aud_cntl_st;
6706         int aud_cntrl_st2;
6707         int pipe = to_intel_crtc(crtc)->pipe;
6708
6709         if (HAS_PCH_IBX(connector->dev)) {
6710                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6711                 aud_config = IBX_AUD_CFG(pipe);
6712                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6713                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6714         } else {
6715                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6716                 aud_config = CPT_AUD_CFG(pipe);
6717                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6718                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6719         }
6720
6721         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6722
6723         i = I915_READ(aud_cntl_st);
6724         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6725         if (!i) {
6726                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6727                 /* operate blindly on all ports */
6728                 eldv = IBX_ELD_VALIDB;
6729                 eldv |= IBX_ELD_VALIDB << 4;
6730                 eldv |= IBX_ELD_VALIDB << 8;
6731         } else {
6732                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6733                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6734         }
6735
6736         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6737                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6738                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6739                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6740         } else
6741                 I915_WRITE(aud_config, 0);
6742
6743         if (intel_eld_uptodate(connector,
6744                                aud_cntrl_st2, eldv,
6745                                aud_cntl_st, IBX_ELD_ADDRESS,
6746                                hdmiw_hdmiedid))
6747                 return;
6748
6749         i = I915_READ(aud_cntrl_st2);
6750         i &= ~eldv;
6751         I915_WRITE(aud_cntrl_st2, i);
6752
6753         if (!eld[0])
6754                 return;
6755
6756         i = I915_READ(aud_cntl_st);
6757         i &= ~IBX_ELD_ADDRESS;
6758         I915_WRITE(aud_cntl_st, i);
6759
6760         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6761         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6762         for (i = 0; i < len; i++)
6763                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6764
6765         i = I915_READ(aud_cntrl_st2);
6766         i |= eldv;
6767         I915_WRITE(aud_cntrl_st2, i);
6768 }
6769
6770 void intel_write_eld(struct drm_encoder *encoder,
6771                      struct drm_display_mode *mode)
6772 {
6773         struct drm_crtc *crtc = encoder->crtc;
6774         struct drm_connector *connector;
6775         struct drm_device *dev = encoder->dev;
6776         struct drm_i915_private *dev_priv = dev->dev_private;
6777
6778         connector = drm_select_eld(encoder, mode);
6779         if (!connector)
6780                 return;
6781
6782         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6783                          connector->base.id,
6784                          drm_get_connector_name(connector),
6785                          connector->encoder->base.id,
6786                          drm_get_encoder_name(connector->encoder));
6787
6788         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6789
6790         if (dev_priv->display.write_eld)
6791                 dev_priv->display.write_eld(connector, crtc);
6792 }
6793
6794 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6795 void intel_crtc_load_lut(struct drm_crtc *crtc)
6796 {
6797         struct drm_device *dev = crtc->dev;
6798         struct drm_i915_private *dev_priv = dev->dev_private;
6799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6800         enum pipe pipe = intel_crtc->pipe;
6801         int palreg = PALETTE(pipe);
6802         int i;
6803         bool reenable_ips = false;
6804
6805         /* The clocks have to be on to load the palette. */
6806         if (!crtc->enabled || !intel_crtc->active)
6807                 return;
6808
6809         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
6810                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
6811                         assert_dsi_pll_enabled(dev_priv);
6812                 else
6813                         assert_pll_enabled(dev_priv, pipe);
6814         }
6815
6816         /* use legacy palette for Ironlake */
6817         if (HAS_PCH_SPLIT(dev))
6818                 palreg = LGC_PALETTE(pipe);
6819
6820         /* Workaround : Do not read or write the pipe palette/gamma data while
6821          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6822          */
6823         if (intel_crtc->config.ips_enabled &&
6824             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6825              GAMMA_MODE_MODE_SPLIT)) {
6826                 hsw_disable_ips(intel_crtc);
6827                 reenable_ips = true;
6828         }
6829
6830         for (i = 0; i < 256; i++) {
6831                 I915_WRITE(palreg + 4 * i,
6832                            (intel_crtc->lut_r[i] << 16) |
6833                            (intel_crtc->lut_g[i] << 8) |
6834                            intel_crtc->lut_b[i]);
6835         }
6836
6837         if (reenable_ips)
6838                 hsw_enable_ips(intel_crtc);
6839 }
6840
6841 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6842 {
6843         struct drm_device *dev = crtc->dev;
6844         struct drm_i915_private *dev_priv = dev->dev_private;
6845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6846         bool visible = base != 0;
6847         u32 cntl;
6848
6849         if (intel_crtc->cursor_visible == visible)
6850                 return;
6851
6852         cntl = I915_READ(_CURACNTR);
6853         if (visible) {
6854                 /* On these chipsets we can only modify the base whilst
6855                  * the cursor is disabled.
6856                  */
6857                 I915_WRITE(_CURABASE, base);
6858
6859                 cntl &= ~(CURSOR_FORMAT_MASK);
6860                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6861                 cntl |= CURSOR_ENABLE |
6862                         CURSOR_GAMMA_ENABLE |
6863                         CURSOR_FORMAT_ARGB;
6864         } else
6865                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6866         I915_WRITE(_CURACNTR, cntl);
6867
6868         intel_crtc->cursor_visible = visible;
6869 }
6870
6871 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6872 {
6873         struct drm_device *dev = crtc->dev;
6874         struct drm_i915_private *dev_priv = dev->dev_private;
6875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6876         int pipe = intel_crtc->pipe;
6877         bool visible = base != 0;
6878
6879         if (intel_crtc->cursor_visible != visible) {
6880                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6881                 if (base) {
6882                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6883                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6884                         cntl |= pipe << 28; /* Connect to correct pipe */
6885                 } else {
6886                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6887                         cntl |= CURSOR_MODE_DISABLE;
6888                 }
6889                 I915_WRITE(CURCNTR(pipe), cntl);
6890
6891                 intel_crtc->cursor_visible = visible;
6892         }
6893         /* and commit changes on next vblank */
6894         I915_WRITE(CURBASE(pipe), base);
6895 }
6896
6897 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6898 {
6899         struct drm_device *dev = crtc->dev;
6900         struct drm_i915_private *dev_priv = dev->dev_private;
6901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6902         int pipe = intel_crtc->pipe;
6903         bool visible = base != 0;
6904
6905         if (intel_crtc->cursor_visible != visible) {
6906                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6907                 if (base) {
6908                         cntl &= ~CURSOR_MODE;
6909                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6910                 } else {
6911                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6912                         cntl |= CURSOR_MODE_DISABLE;
6913                 }
6914                 if (IS_HASWELL(dev)) {
6915                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6916                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6917                 }
6918                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6919
6920                 intel_crtc->cursor_visible = visible;
6921         }
6922         /* and commit changes on next vblank */
6923         I915_WRITE(CURBASE_IVB(pipe), base);
6924 }
6925
6926 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6927 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6928                                      bool on)
6929 {
6930         struct drm_device *dev = crtc->dev;
6931         struct drm_i915_private *dev_priv = dev->dev_private;
6932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6933         int pipe = intel_crtc->pipe;
6934         int x = intel_crtc->cursor_x;
6935         int y = intel_crtc->cursor_y;
6936         u32 base = 0, pos = 0;
6937         bool visible;
6938
6939         if (on)
6940                 base = intel_crtc->cursor_addr;
6941
6942         if (x >= intel_crtc->config.pipe_src_w)
6943                 base = 0;
6944
6945         if (y >= intel_crtc->config.pipe_src_h)
6946                 base = 0;
6947
6948         if (x < 0) {
6949                 if (x + intel_crtc->cursor_width <= 0)
6950                         base = 0;
6951
6952                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6953                 x = -x;
6954         }
6955         pos |= x << CURSOR_X_SHIFT;
6956
6957         if (y < 0) {
6958                 if (y + intel_crtc->cursor_height <= 0)
6959                         base = 0;
6960
6961                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6962                 y = -y;
6963         }
6964         pos |= y << CURSOR_Y_SHIFT;
6965
6966         visible = base != 0;
6967         if (!visible && !intel_crtc->cursor_visible)
6968                 return;
6969
6970         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6971                 I915_WRITE(CURPOS_IVB(pipe), pos);
6972                 ivb_update_cursor(crtc, base);
6973         } else {
6974                 I915_WRITE(CURPOS(pipe), pos);
6975                 if (IS_845G(dev) || IS_I865G(dev))
6976                         i845_update_cursor(crtc, base);
6977                 else
6978                         i9xx_update_cursor(crtc, base);
6979         }
6980 }
6981
6982 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6983                                  struct drm_file *file,
6984                                  uint32_t handle,
6985                                  uint32_t width, uint32_t height)
6986 {
6987         struct drm_device *dev = crtc->dev;
6988         struct drm_i915_private *dev_priv = dev->dev_private;
6989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6990         struct drm_i915_gem_object *obj;
6991         uint32_t addr;
6992         int ret;
6993
6994         /* if we want to turn off the cursor ignore width and height */
6995         if (!handle) {
6996                 DRM_DEBUG_KMS("cursor off\n");
6997                 addr = 0;
6998                 obj = NULL;
6999                 mutex_lock(&dev->struct_mutex);
7000                 goto finish;
7001         }
7002
7003         /* Currently we only support 64x64 cursors */
7004         if (width != 64 || height != 64) {
7005                 DRM_ERROR("we currently only support 64x64 cursors\n");
7006                 return -EINVAL;
7007         }
7008
7009         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7010         if (&obj->base == NULL)
7011                 return -ENOENT;
7012
7013         if (obj->base.size < width * height * 4) {
7014                 DRM_ERROR("buffer is to small\n");
7015                 ret = -ENOMEM;
7016                 goto fail;
7017         }
7018
7019         /* we only need to pin inside GTT if cursor is non-phy */
7020         mutex_lock(&dev->struct_mutex);
7021         if (!dev_priv->info->cursor_needs_physical) {
7022                 unsigned alignment;
7023
7024                 if (obj->tiling_mode) {
7025                         DRM_ERROR("cursor cannot be tiled\n");
7026                         ret = -EINVAL;
7027                         goto fail_locked;
7028                 }
7029
7030                 /* Note that the w/a also requires 2 PTE of padding following
7031                  * the bo. We currently fill all unused PTE with the shadow
7032                  * page and so we should always have valid PTE following the
7033                  * cursor preventing the VT-d warning.
7034                  */
7035                 alignment = 0;
7036                 if (need_vtd_wa(dev))
7037                         alignment = 64*1024;
7038
7039                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7040                 if (ret) {
7041                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7042                         goto fail_locked;
7043                 }
7044
7045                 ret = i915_gem_object_put_fence(obj);
7046                 if (ret) {
7047                         DRM_ERROR("failed to release fence for cursor");
7048                         goto fail_unpin;
7049                 }
7050
7051                 addr = i915_gem_obj_ggtt_offset(obj);
7052         } else {
7053                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7054                 ret = i915_gem_attach_phys_object(dev, obj,
7055                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7056                                                   align);
7057                 if (ret) {
7058                         DRM_ERROR("failed to attach phys object\n");
7059                         goto fail_locked;
7060                 }
7061                 addr = obj->phys_obj->handle->busaddr;
7062         }
7063
7064         if (IS_GEN2(dev))
7065                 I915_WRITE(CURSIZE, (height << 12) | width);
7066
7067  finish:
7068         if (intel_crtc->cursor_bo) {
7069                 if (dev_priv->info->cursor_needs_physical) {
7070                         if (intel_crtc->cursor_bo != obj)
7071                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7072                 } else
7073                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7074                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7075         }
7076
7077         mutex_unlock(&dev->struct_mutex);
7078
7079         intel_crtc->cursor_addr = addr;
7080         intel_crtc->cursor_bo = obj;
7081         intel_crtc->cursor_width = width;
7082         intel_crtc->cursor_height = height;
7083
7084         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7085
7086         return 0;
7087 fail_unpin:
7088         i915_gem_object_unpin_from_display_plane(obj);
7089 fail_locked:
7090         mutex_unlock(&dev->struct_mutex);
7091 fail:
7092         drm_gem_object_unreference_unlocked(&obj->base);
7093         return ret;
7094 }
7095
7096 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7097 {
7098         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7099
7100         intel_crtc->cursor_x = x;
7101         intel_crtc->cursor_y = y;
7102
7103         intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7104
7105         return 0;
7106 }
7107
7108 /** Sets the color ramps on behalf of RandR */
7109 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
7110                                  u16 blue, int regno)
7111 {
7112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7113
7114         intel_crtc->lut_r[regno] = red >> 8;
7115         intel_crtc->lut_g[regno] = green >> 8;
7116         intel_crtc->lut_b[regno] = blue >> 8;
7117 }
7118
7119 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7120                              u16 *blue, int regno)
7121 {
7122         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7123
7124         *red = intel_crtc->lut_r[regno] << 8;
7125         *green = intel_crtc->lut_g[regno] << 8;
7126         *blue = intel_crtc->lut_b[regno] << 8;
7127 }
7128
7129 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7130                                  u16 *blue, uint32_t start, uint32_t size)
7131 {
7132         int end = (start + size > 256) ? 256 : start + size, i;
7133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7134
7135         for (i = start; i < end; i++) {
7136                 intel_crtc->lut_r[i] = red[i] >> 8;
7137                 intel_crtc->lut_g[i] = green[i] >> 8;
7138                 intel_crtc->lut_b[i] = blue[i] >> 8;
7139         }
7140
7141         intel_crtc_load_lut(crtc);
7142 }
7143
7144 /* VESA 640x480x72Hz mode to set on the pipe */
7145 static struct drm_display_mode load_detect_mode = {
7146         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7147                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7148 };
7149
7150 static struct drm_framebuffer *
7151 intel_framebuffer_create(struct drm_device *dev,
7152                          struct drm_mode_fb_cmd2 *mode_cmd,
7153                          struct drm_i915_gem_object *obj)
7154 {
7155         struct intel_framebuffer *intel_fb;
7156         int ret;
7157
7158         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7159         if (!intel_fb) {
7160                 drm_gem_object_unreference_unlocked(&obj->base);
7161                 return ERR_PTR(-ENOMEM);
7162         }
7163
7164         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7165         if (ret) {
7166                 drm_gem_object_unreference_unlocked(&obj->base);
7167                 kfree(intel_fb);
7168                 return ERR_PTR(ret);
7169         }
7170
7171         return &intel_fb->base;
7172 }
7173
7174 static u32
7175 intel_framebuffer_pitch_for_width(int width, int bpp)
7176 {
7177         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7178         return ALIGN(pitch, 64);
7179 }
7180
7181 static u32
7182 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7183 {
7184         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7185         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7186 }
7187
7188 static struct drm_framebuffer *
7189 intel_framebuffer_create_for_mode(struct drm_device *dev,
7190                                   struct drm_display_mode *mode,
7191                                   int depth, int bpp)
7192 {
7193         struct drm_i915_gem_object *obj;
7194         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7195
7196         obj = i915_gem_alloc_object(dev,
7197                                     intel_framebuffer_size_for_mode(mode, bpp));
7198         if (obj == NULL)
7199                 return ERR_PTR(-ENOMEM);
7200
7201         mode_cmd.width = mode->hdisplay;
7202         mode_cmd.height = mode->vdisplay;
7203         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7204                                                                 bpp);
7205         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7206
7207         return intel_framebuffer_create(dev, &mode_cmd, obj);
7208 }
7209
7210 static struct drm_framebuffer *
7211 mode_fits_in_fbdev(struct drm_device *dev,
7212                    struct drm_display_mode *mode)
7213 {
7214         struct drm_i915_private *dev_priv = dev->dev_private;
7215         struct drm_i915_gem_object *obj;
7216         struct drm_framebuffer *fb;
7217
7218         if (dev_priv->fbdev == NULL)
7219                 return NULL;
7220
7221         obj = dev_priv->fbdev->ifb.obj;
7222         if (obj == NULL)
7223                 return NULL;
7224
7225         fb = &dev_priv->fbdev->ifb.base;
7226         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7227                                                                fb->bits_per_pixel))
7228                 return NULL;
7229
7230         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7231                 return NULL;
7232
7233         return fb;
7234 }
7235
7236 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7237                                 struct drm_display_mode *mode,
7238                                 struct intel_load_detect_pipe *old)
7239 {
7240         struct intel_crtc *intel_crtc;
7241         struct intel_encoder *intel_encoder =
7242                 intel_attached_encoder(connector);
7243         struct drm_crtc *possible_crtc;
7244         struct drm_encoder *encoder = &intel_encoder->base;
7245         struct drm_crtc *crtc = NULL;
7246         struct drm_device *dev = encoder->dev;
7247         struct drm_framebuffer *fb;
7248         int i = -1;
7249
7250         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7251                       connector->base.id, drm_get_connector_name(connector),
7252                       encoder->base.id, drm_get_encoder_name(encoder));
7253
7254         /*
7255          * Algorithm gets a little messy:
7256          *
7257          *   - if the connector already has an assigned crtc, use it (but make
7258          *     sure it's on first)
7259          *
7260          *   - try to find the first unused crtc that can drive this connector,
7261          *     and use that if we find one
7262          */
7263
7264         /* See if we already have a CRTC for this connector */
7265         if (encoder->crtc) {
7266                 crtc = encoder->crtc;
7267
7268                 mutex_lock(&crtc->mutex);
7269
7270                 old->dpms_mode = connector->dpms;
7271                 old->load_detect_temp = false;
7272
7273                 /* Make sure the crtc and connector are running */
7274                 if (connector->dpms != DRM_MODE_DPMS_ON)
7275                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7276
7277                 return true;
7278         }
7279
7280         /* Find an unused one (if possible) */
7281         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7282                 i++;
7283                 if (!(encoder->possible_crtcs & (1 << i)))
7284                         continue;
7285                 if (!possible_crtc->enabled) {
7286                         crtc = possible_crtc;
7287                         break;
7288                 }
7289         }
7290
7291         /*
7292          * If we didn't find an unused CRTC, don't use any.
7293          */
7294         if (!crtc) {
7295                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7296                 return false;
7297         }
7298
7299         mutex_lock(&crtc->mutex);
7300         intel_encoder->new_crtc = to_intel_crtc(crtc);
7301         to_intel_connector(connector)->new_encoder = intel_encoder;
7302
7303         intel_crtc = to_intel_crtc(crtc);
7304         old->dpms_mode = connector->dpms;
7305         old->load_detect_temp = true;
7306         old->release_fb = NULL;
7307
7308         if (!mode)
7309                 mode = &load_detect_mode;
7310
7311         /* We need a framebuffer large enough to accommodate all accesses
7312          * that the plane may generate whilst we perform load detection.
7313          * We can not rely on the fbcon either being present (we get called
7314          * during its initialisation to detect all boot displays, or it may
7315          * not even exist) or that it is large enough to satisfy the
7316          * requested mode.
7317          */
7318         fb = mode_fits_in_fbdev(dev, mode);
7319         if (fb == NULL) {
7320                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7321                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7322                 old->release_fb = fb;
7323         } else
7324                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7325         if (IS_ERR(fb)) {
7326                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7327                 mutex_unlock(&crtc->mutex);
7328                 return false;
7329         }
7330
7331         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7332                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7333                 if (old->release_fb)
7334                         old->release_fb->funcs->destroy(old->release_fb);
7335                 mutex_unlock(&crtc->mutex);
7336                 return false;
7337         }
7338
7339         /* let the connector get through one full cycle before testing */
7340         intel_wait_for_vblank(dev, intel_crtc->pipe);
7341         return true;
7342 }
7343
7344 void intel_release_load_detect_pipe(struct drm_connector *connector,
7345                                     struct intel_load_detect_pipe *old)
7346 {
7347         struct intel_encoder *intel_encoder =
7348                 intel_attached_encoder(connector);
7349         struct drm_encoder *encoder = &intel_encoder->base;
7350         struct drm_crtc *crtc = encoder->crtc;
7351
7352         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7353                       connector->base.id, drm_get_connector_name(connector),
7354                       encoder->base.id, drm_get_encoder_name(encoder));
7355
7356         if (old->load_detect_temp) {
7357                 to_intel_connector(connector)->new_encoder = NULL;
7358                 intel_encoder->new_crtc = NULL;
7359                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7360
7361                 if (old->release_fb) {
7362                         drm_framebuffer_unregister_private(old->release_fb);
7363                         drm_framebuffer_unreference(old->release_fb);
7364                 }
7365
7366                 mutex_unlock(&crtc->mutex);
7367                 return;
7368         }
7369
7370         /* Switch crtc and encoder back off if necessary */
7371         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7372                 connector->funcs->dpms(connector, old->dpms_mode);
7373
7374         mutex_unlock(&crtc->mutex);
7375 }
7376
7377 static int i9xx_pll_refclk(struct drm_device *dev,
7378                            const struct intel_crtc_config *pipe_config)
7379 {
7380         struct drm_i915_private *dev_priv = dev->dev_private;
7381         u32 dpll = pipe_config->dpll_hw_state.dpll;
7382
7383         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7384                 return dev_priv->vbt.lvds_ssc_freq * 1000;
7385         else if (HAS_PCH_SPLIT(dev))
7386                 return 120000;
7387         else if (!IS_GEN2(dev))
7388                 return 96000;
7389         else
7390                 return 48000;
7391 }
7392
7393 /* Returns the clock of the currently programmed mode of the given pipe. */
7394 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7395                                 struct intel_crtc_config *pipe_config)
7396 {
7397         struct drm_device *dev = crtc->base.dev;
7398         struct drm_i915_private *dev_priv = dev->dev_private;
7399         int pipe = pipe_config->cpu_transcoder;
7400         u32 dpll = pipe_config->dpll_hw_state.dpll;
7401         u32 fp;
7402         intel_clock_t clock;
7403         int refclk = i9xx_pll_refclk(dev, pipe_config);
7404
7405         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7406                 fp = pipe_config->dpll_hw_state.fp0;
7407         else
7408                 fp = pipe_config->dpll_hw_state.fp1;
7409
7410         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7411         if (IS_PINEVIEW(dev)) {
7412                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7413                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7414         } else {
7415                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7416                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7417         }
7418
7419         if (!IS_GEN2(dev)) {
7420                 if (IS_PINEVIEW(dev))
7421                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7422                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7423                 else
7424                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7425                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7426
7427                 switch (dpll & DPLL_MODE_MASK) {
7428                 case DPLLB_MODE_DAC_SERIAL:
7429                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7430                                 5 : 10;
7431                         break;
7432                 case DPLLB_MODE_LVDS:
7433                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7434                                 7 : 14;
7435                         break;
7436                 default:
7437                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7438                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7439                         return;
7440                 }
7441
7442                 if (IS_PINEVIEW(dev))
7443                         pineview_clock(refclk, &clock);
7444                 else
7445                         i9xx_clock(refclk, &clock);
7446         } else {
7447                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7448
7449                 if (is_lvds) {
7450                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7451                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7452                         clock.p2 = 14;
7453                 } else {
7454                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7455                                 clock.p1 = 2;
7456                         else {
7457                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7458                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7459                         }
7460                         if (dpll & PLL_P2_DIVIDE_BY_4)
7461                                 clock.p2 = 4;
7462                         else
7463                                 clock.p2 = 2;
7464                 }
7465
7466                 i9xx_clock(refclk, &clock);
7467         }
7468
7469         /*
7470          * This value includes pixel_multiplier. We will use
7471          * port_clock to compute adjusted_mode.clock in the
7472          * encoder's get_config() function.
7473          */
7474         pipe_config->port_clock = clock.dot;
7475 }
7476
7477 int intel_dotclock_calculate(int link_freq,
7478                              const struct intel_link_m_n *m_n)
7479 {
7480         /*
7481          * The calculation for the data clock is:
7482          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7483          * But we want to avoid losing precison if possible, so:
7484          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7485          *
7486          * and the link clock is simpler:
7487          * link_clock = (m * link_clock) / n
7488          */
7489
7490         if (!m_n->link_n)
7491                 return 0;
7492
7493         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7494 }
7495
7496 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7497                                    struct intel_crtc_config *pipe_config)
7498 {
7499         struct drm_device *dev = crtc->base.dev;
7500
7501         /* read out port_clock from the DPLL */
7502         i9xx_crtc_clock_get(crtc, pipe_config);
7503
7504         /*
7505          * This value does not include pixel_multiplier.
7506          * We will check that port_clock and adjusted_mode.clock
7507          * agree once we know their relationship in the encoder's
7508          * get_config() function.
7509          */
7510         pipe_config->adjusted_mode.clock =
7511                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7512                                          &pipe_config->fdi_m_n);
7513 }
7514
7515 /** Returns the currently programmed mode of the given pipe. */
7516 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7517                                              struct drm_crtc *crtc)
7518 {
7519         struct drm_i915_private *dev_priv = dev->dev_private;
7520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7521         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7522         struct drm_display_mode *mode;
7523         struct intel_crtc_config pipe_config;
7524         int htot = I915_READ(HTOTAL(cpu_transcoder));
7525         int hsync = I915_READ(HSYNC(cpu_transcoder));
7526         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7527         int vsync = I915_READ(VSYNC(cpu_transcoder));
7528         enum pipe pipe = intel_crtc->pipe;
7529
7530         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7531         if (!mode)
7532                 return NULL;
7533
7534         /*
7535          * Construct a pipe_config sufficient for getting the clock info
7536          * back out of crtc_clock_get.
7537          *
7538          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7539          * to use a real value here instead.
7540          */
7541         pipe_config.cpu_transcoder = (enum transcoder) pipe;
7542         pipe_config.pixel_multiplier = 1;
7543         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7544         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7545         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7546         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7547
7548         mode->clock = pipe_config.adjusted_mode.clock;
7549         mode->hdisplay = (htot & 0xffff) + 1;
7550         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7551         mode->hsync_start = (hsync & 0xffff) + 1;
7552         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7553         mode->vdisplay = (vtot & 0xffff) + 1;
7554         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7555         mode->vsync_start = (vsync & 0xffff) + 1;
7556         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7557
7558         drm_mode_set_name(mode);
7559
7560         return mode;
7561 }
7562
7563 static void intel_increase_pllclock(struct drm_crtc *crtc)
7564 {
7565         struct drm_device *dev = crtc->dev;
7566         drm_i915_private_t *dev_priv = dev->dev_private;
7567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7568         int pipe = intel_crtc->pipe;
7569         int dpll_reg = DPLL(pipe);
7570         int dpll;
7571
7572         if (HAS_PCH_SPLIT(dev))
7573                 return;
7574
7575         if (!dev_priv->lvds_downclock_avail)
7576                 return;
7577
7578         dpll = I915_READ(dpll_reg);
7579         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7580                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7581
7582                 assert_panel_unlocked(dev_priv, pipe);
7583
7584                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7585                 I915_WRITE(dpll_reg, dpll);
7586                 intel_wait_for_vblank(dev, pipe);
7587
7588                 dpll = I915_READ(dpll_reg);
7589                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7590                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7591         }
7592 }
7593
7594 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7595 {
7596         struct drm_device *dev = crtc->dev;
7597         drm_i915_private_t *dev_priv = dev->dev_private;
7598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7599
7600         if (HAS_PCH_SPLIT(dev))
7601                 return;
7602
7603         if (!dev_priv->lvds_downclock_avail)
7604                 return;
7605
7606         /*
7607          * Since this is called by a timer, we should never get here in
7608          * the manual case.
7609          */
7610         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7611                 int pipe = intel_crtc->pipe;
7612                 int dpll_reg = DPLL(pipe);
7613                 int dpll;
7614
7615                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7616
7617                 assert_panel_unlocked(dev_priv, pipe);
7618
7619                 dpll = I915_READ(dpll_reg);
7620                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7621                 I915_WRITE(dpll_reg, dpll);
7622                 intel_wait_for_vblank(dev, pipe);
7623                 dpll = I915_READ(dpll_reg);
7624                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7625                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7626         }
7627
7628 }
7629
7630 void intel_mark_busy(struct drm_device *dev)
7631 {
7632         struct drm_i915_private *dev_priv = dev->dev_private;
7633
7634         hsw_package_c8_gpu_busy(dev_priv);
7635         i915_update_gfx_val(dev_priv);
7636 }
7637
7638 void intel_mark_idle(struct drm_device *dev)
7639 {
7640         struct drm_i915_private *dev_priv = dev->dev_private;
7641         struct drm_crtc *crtc;
7642
7643         hsw_package_c8_gpu_idle(dev_priv);
7644
7645         if (!i915_powersave)
7646                 return;
7647
7648         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7649                 if (!crtc->fb)
7650                         continue;
7651
7652                 intel_decrease_pllclock(crtc);
7653         }
7654 }
7655
7656 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7657                         struct intel_ring_buffer *ring)
7658 {
7659         struct drm_device *dev = obj->base.dev;
7660         struct drm_crtc *crtc;
7661
7662         if (!i915_powersave)
7663                 return;
7664
7665         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7666                 if (!crtc->fb)
7667                         continue;
7668
7669                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7670                         continue;
7671
7672                 intel_increase_pllclock(crtc);
7673                 if (ring && intel_fbc_enabled(dev))
7674                         ring->fbc_dirty = true;
7675         }
7676 }
7677
7678 static void intel_crtc_destroy(struct drm_crtc *crtc)
7679 {
7680         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7681         struct drm_device *dev = crtc->dev;
7682         struct intel_unpin_work *work;
7683         unsigned long flags;
7684
7685         spin_lock_irqsave(&dev->event_lock, flags);
7686         work = intel_crtc->unpin_work;
7687         intel_crtc->unpin_work = NULL;
7688         spin_unlock_irqrestore(&dev->event_lock, flags);
7689
7690         if (work) {
7691                 cancel_work_sync(&work->work);
7692                 kfree(work);
7693         }
7694
7695         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7696
7697         drm_crtc_cleanup(crtc);
7698
7699         kfree(intel_crtc);
7700 }
7701
7702 static void intel_unpin_work_fn(struct work_struct *__work)
7703 {
7704         struct intel_unpin_work *work =
7705                 container_of(__work, struct intel_unpin_work, work);
7706         struct drm_device *dev = work->crtc->dev;
7707
7708         mutex_lock(&dev->struct_mutex);
7709         intel_unpin_fb_obj(work->old_fb_obj);
7710         drm_gem_object_unreference(&work->pending_flip_obj->base);
7711         drm_gem_object_unreference(&work->old_fb_obj->base);
7712
7713         intel_update_fbc(dev);
7714         mutex_unlock(&dev->struct_mutex);
7715
7716         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7717         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7718
7719         kfree(work);
7720 }
7721
7722 static void do_intel_finish_page_flip(struct drm_device *dev,
7723                                       struct drm_crtc *crtc)
7724 {
7725         drm_i915_private_t *dev_priv = dev->dev_private;
7726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7727         struct intel_unpin_work *work;
7728         unsigned long flags;
7729
7730         /* Ignore early vblank irqs */
7731         if (intel_crtc == NULL)
7732                 return;
7733
7734         spin_lock_irqsave(&dev->event_lock, flags);
7735         work = intel_crtc->unpin_work;
7736
7737         /* Ensure we don't miss a work->pending update ... */
7738         smp_rmb();
7739
7740         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7741                 spin_unlock_irqrestore(&dev->event_lock, flags);
7742                 return;
7743         }
7744
7745         /* and that the unpin work is consistent wrt ->pending. */
7746         smp_rmb();
7747
7748         intel_crtc->unpin_work = NULL;
7749
7750         if (work->event)
7751                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7752
7753         drm_vblank_put(dev, intel_crtc->pipe);
7754
7755         spin_unlock_irqrestore(&dev->event_lock, flags);
7756
7757         wake_up_all(&dev_priv->pending_flip_queue);
7758
7759         queue_work(dev_priv->wq, &work->work);
7760
7761         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7762 }
7763
7764 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7765 {
7766         drm_i915_private_t *dev_priv = dev->dev_private;
7767         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7768
7769         do_intel_finish_page_flip(dev, crtc);
7770 }
7771
7772 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7773 {
7774         drm_i915_private_t *dev_priv = dev->dev_private;
7775         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7776
7777         do_intel_finish_page_flip(dev, crtc);
7778 }
7779
7780 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7781 {
7782         drm_i915_private_t *dev_priv = dev->dev_private;
7783         struct intel_crtc *intel_crtc =
7784                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7785         unsigned long flags;
7786
7787         /* NB: An MMIO update of the plane base pointer will also
7788          * generate a page-flip completion irq, i.e. every modeset
7789          * is also accompanied by a spurious intel_prepare_page_flip().
7790          */
7791         spin_lock_irqsave(&dev->event_lock, flags);
7792         if (intel_crtc->unpin_work)
7793                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7794         spin_unlock_irqrestore(&dev->event_lock, flags);
7795 }
7796
7797 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7798 {
7799         /* Ensure that the work item is consistent when activating it ... */
7800         smp_wmb();
7801         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7802         /* and that it is marked active as soon as the irq could fire. */
7803         smp_wmb();
7804 }
7805
7806 static int intel_gen2_queue_flip(struct drm_device *dev,
7807                                  struct drm_crtc *crtc,
7808                                  struct drm_framebuffer *fb,
7809                                  struct drm_i915_gem_object *obj,
7810                                  uint32_t flags)
7811 {
7812         struct drm_i915_private *dev_priv = dev->dev_private;
7813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7814         u32 flip_mask;
7815         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7816         int ret;
7817
7818         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7819         if (ret)
7820                 goto err;
7821
7822         ret = intel_ring_begin(ring, 6);
7823         if (ret)
7824                 goto err_unpin;
7825
7826         /* Can't queue multiple flips, so wait for the previous
7827          * one to finish before executing the next.
7828          */
7829         if (intel_crtc->plane)
7830                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7831         else
7832                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7833         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7834         intel_ring_emit(ring, MI_NOOP);
7835         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7836                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7837         intel_ring_emit(ring, fb->pitches[0]);
7838         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7839         intel_ring_emit(ring, 0); /* aux display base address, unused */
7840
7841         intel_mark_page_flip_active(intel_crtc);
7842         __intel_ring_advance(ring);
7843         return 0;
7844
7845 err_unpin:
7846         intel_unpin_fb_obj(obj);
7847 err:
7848         return ret;
7849 }
7850
7851 static int intel_gen3_queue_flip(struct drm_device *dev,
7852                                  struct drm_crtc *crtc,
7853                                  struct drm_framebuffer *fb,
7854                                  struct drm_i915_gem_object *obj,
7855                                  uint32_t flags)
7856 {
7857         struct drm_i915_private *dev_priv = dev->dev_private;
7858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7859         u32 flip_mask;
7860         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7861         int ret;
7862
7863         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7864         if (ret)
7865                 goto err;
7866
7867         ret = intel_ring_begin(ring, 6);
7868         if (ret)
7869                 goto err_unpin;
7870
7871         if (intel_crtc->plane)
7872                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7873         else
7874                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7875         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7876         intel_ring_emit(ring, MI_NOOP);
7877         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7878                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7879         intel_ring_emit(ring, fb->pitches[0]);
7880         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7881         intel_ring_emit(ring, MI_NOOP);
7882
7883         intel_mark_page_flip_active(intel_crtc);
7884         __intel_ring_advance(ring);
7885         return 0;
7886
7887 err_unpin:
7888         intel_unpin_fb_obj(obj);
7889 err:
7890         return ret;
7891 }
7892
7893 static int intel_gen4_queue_flip(struct drm_device *dev,
7894                                  struct drm_crtc *crtc,
7895                                  struct drm_framebuffer *fb,
7896                                  struct drm_i915_gem_object *obj,
7897                                  uint32_t flags)
7898 {
7899         struct drm_i915_private *dev_priv = dev->dev_private;
7900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7901         uint32_t pf, pipesrc;
7902         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7903         int ret;
7904
7905         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7906         if (ret)
7907                 goto err;
7908
7909         ret = intel_ring_begin(ring, 4);
7910         if (ret)
7911                 goto err_unpin;
7912
7913         /* i965+ uses the linear or tiled offsets from the
7914          * Display Registers (which do not change across a page-flip)
7915          * so we need only reprogram the base address.
7916          */
7917         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7918                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7919         intel_ring_emit(ring, fb->pitches[0]);
7920         intel_ring_emit(ring,
7921                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7922                         obj->tiling_mode);
7923
7924         /* XXX Enabling the panel-fitter across page-flip is so far
7925          * untested on non-native modes, so ignore it for now.
7926          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7927          */
7928         pf = 0;
7929         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7930         intel_ring_emit(ring, pf | pipesrc);
7931
7932         intel_mark_page_flip_active(intel_crtc);
7933         __intel_ring_advance(ring);
7934         return 0;
7935
7936 err_unpin:
7937         intel_unpin_fb_obj(obj);
7938 err:
7939         return ret;
7940 }
7941
7942 static int intel_gen6_queue_flip(struct drm_device *dev,
7943                                  struct drm_crtc *crtc,
7944                                  struct drm_framebuffer *fb,
7945                                  struct drm_i915_gem_object *obj,
7946                                  uint32_t flags)
7947 {
7948         struct drm_i915_private *dev_priv = dev->dev_private;
7949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7950         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7951         uint32_t pf, pipesrc;
7952         int ret;
7953
7954         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7955         if (ret)
7956                 goto err;
7957
7958         ret = intel_ring_begin(ring, 4);
7959         if (ret)
7960                 goto err_unpin;
7961
7962         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7963                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7964         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7965         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7966
7967         /* Contrary to the suggestions in the documentation,
7968          * "Enable Panel Fitter" does not seem to be required when page
7969          * flipping with a non-native mode, and worse causes a normal
7970          * modeset to fail.
7971          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7972          */
7973         pf = 0;
7974         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7975         intel_ring_emit(ring, pf | pipesrc);
7976
7977         intel_mark_page_flip_active(intel_crtc);
7978         __intel_ring_advance(ring);
7979         return 0;
7980
7981 err_unpin:
7982         intel_unpin_fb_obj(obj);
7983 err:
7984         return ret;
7985 }
7986
7987 static int intel_gen7_queue_flip(struct drm_device *dev,
7988                                  struct drm_crtc *crtc,
7989                                  struct drm_framebuffer *fb,
7990                                  struct drm_i915_gem_object *obj,
7991                                  uint32_t flags)
7992 {
7993         struct drm_i915_private *dev_priv = dev->dev_private;
7994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7995         struct intel_ring_buffer *ring;
7996         uint32_t plane_bit = 0;
7997         int len, ret;
7998
7999         ring = obj->ring;
8000         if (ring == NULL || ring->id != RCS)
8001                 ring = &dev_priv->ring[BCS];
8002
8003         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8004         if (ret)
8005                 goto err;
8006
8007         switch(intel_crtc->plane) {
8008         case PLANE_A:
8009                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8010                 break;
8011         case PLANE_B:
8012                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8013                 break;
8014         case PLANE_C:
8015                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8016                 break;
8017         default:
8018                 WARN_ONCE(1, "unknown plane in flip command\n");
8019                 ret = -ENODEV;
8020                 goto err_unpin;
8021         }
8022
8023         len = 4;
8024         if (ring->id == RCS)
8025                 len += 6;
8026
8027         ret = intel_ring_begin(ring, len);
8028         if (ret)
8029                 goto err_unpin;
8030
8031         /* Unmask the flip-done completion message. Note that the bspec says that
8032          * we should do this for both the BCS and RCS, and that we must not unmask
8033          * more than one flip event at any time (or ensure that one flip message
8034          * can be sent by waiting for flip-done prior to queueing new flips).
8035          * Experimentation says that BCS works despite DERRMR masking all
8036          * flip-done completion events and that unmasking all planes at once
8037          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8038          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8039          */
8040         if (ring->id == RCS) {
8041                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8042                 intel_ring_emit(ring, DERRMR);
8043                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8044                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8045                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8046                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8047                 intel_ring_emit(ring, DERRMR);
8048                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8049         }
8050
8051         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8052         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8053         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8054         intel_ring_emit(ring, (MI_NOOP));
8055
8056         intel_mark_page_flip_active(intel_crtc);
8057         __intel_ring_advance(ring);
8058         return 0;
8059
8060 err_unpin:
8061         intel_unpin_fb_obj(obj);
8062 err:
8063         return ret;
8064 }
8065
8066 static int intel_default_queue_flip(struct drm_device *dev,
8067                                     struct drm_crtc *crtc,
8068                                     struct drm_framebuffer *fb,
8069                                     struct drm_i915_gem_object *obj,
8070                                     uint32_t flags)
8071 {
8072         return -ENODEV;
8073 }
8074
8075 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8076                                 struct drm_framebuffer *fb,
8077                                 struct drm_pending_vblank_event *event,
8078                                 uint32_t page_flip_flags)
8079 {
8080         struct drm_device *dev = crtc->dev;
8081         struct drm_i915_private *dev_priv = dev->dev_private;
8082         struct drm_framebuffer *old_fb = crtc->fb;
8083         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8085         struct intel_unpin_work *work;
8086         unsigned long flags;
8087         int ret;
8088
8089         /* Can't change pixel format via MI display flips. */
8090         if (fb->pixel_format != crtc->fb->pixel_format)
8091                 return -EINVAL;
8092
8093         /*
8094          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8095          * Note that pitch changes could also affect these register.
8096          */
8097         if (INTEL_INFO(dev)->gen > 3 &&
8098             (fb->offsets[0] != crtc->fb->offsets[0] ||
8099              fb->pitches[0] != crtc->fb->pitches[0]))
8100                 return -EINVAL;
8101
8102         work = kzalloc(sizeof *work, GFP_KERNEL);
8103         if (work == NULL)
8104                 return -ENOMEM;
8105
8106         work->event = event;
8107         work->crtc = crtc;
8108         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8109         INIT_WORK(&work->work, intel_unpin_work_fn);
8110
8111         ret = drm_vblank_get(dev, intel_crtc->pipe);
8112         if (ret)
8113                 goto free_work;
8114
8115         /* We borrow the event spin lock for protecting unpin_work */
8116         spin_lock_irqsave(&dev->event_lock, flags);
8117         if (intel_crtc->unpin_work) {
8118                 spin_unlock_irqrestore(&dev->event_lock, flags);
8119                 kfree(work);
8120                 drm_vblank_put(dev, intel_crtc->pipe);
8121
8122                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8123                 return -EBUSY;
8124         }
8125         intel_crtc->unpin_work = work;
8126         spin_unlock_irqrestore(&dev->event_lock, flags);
8127
8128         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8129                 flush_workqueue(dev_priv->wq);
8130
8131         ret = i915_mutex_lock_interruptible(dev);
8132         if (ret)
8133                 goto cleanup;
8134
8135         /* Reference the objects for the scheduled work. */
8136         drm_gem_object_reference(&work->old_fb_obj->base);
8137         drm_gem_object_reference(&obj->base);
8138
8139         crtc->fb = fb;
8140
8141         work->pending_flip_obj = obj;
8142
8143         work->enable_stall_check = true;
8144
8145         atomic_inc(&intel_crtc->unpin_work_count);
8146         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8147
8148         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8149         if (ret)
8150                 goto cleanup_pending;
8151
8152         intel_disable_fbc(dev);
8153         intel_mark_fb_busy(obj, NULL);
8154         mutex_unlock(&dev->struct_mutex);
8155
8156         trace_i915_flip_request(intel_crtc->plane, obj);
8157
8158         return 0;
8159
8160 cleanup_pending:
8161         atomic_dec(&intel_crtc->unpin_work_count);
8162         crtc->fb = old_fb;
8163         drm_gem_object_unreference(&work->old_fb_obj->base);
8164         drm_gem_object_unreference(&obj->base);
8165         mutex_unlock(&dev->struct_mutex);
8166
8167 cleanup:
8168         spin_lock_irqsave(&dev->event_lock, flags);
8169         intel_crtc->unpin_work = NULL;
8170         spin_unlock_irqrestore(&dev->event_lock, flags);
8171
8172         drm_vblank_put(dev, intel_crtc->pipe);
8173 free_work:
8174         kfree(work);
8175
8176         return ret;
8177 }
8178
8179 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8180         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8181         .load_lut = intel_crtc_load_lut,
8182 };
8183
8184 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8185                                   struct drm_crtc *crtc)
8186 {
8187         struct drm_device *dev;
8188         struct drm_crtc *tmp;
8189         int crtc_mask = 1;
8190
8191         WARN(!crtc, "checking null crtc?\n");
8192
8193         dev = crtc->dev;
8194
8195         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8196                 if (tmp == crtc)
8197                         break;
8198                 crtc_mask <<= 1;
8199         }
8200
8201         if (encoder->possible_crtcs & crtc_mask)
8202                 return true;
8203         return false;
8204 }
8205
8206 /**
8207  * intel_modeset_update_staged_output_state
8208  *
8209  * Updates the staged output configuration state, e.g. after we've read out the
8210  * current hw state.
8211  */
8212 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8213 {
8214         struct intel_encoder *encoder;
8215         struct intel_connector *connector;
8216
8217         list_for_each_entry(connector, &dev->mode_config.connector_list,
8218                             base.head) {
8219                 connector->new_encoder =
8220                         to_intel_encoder(connector->base.encoder);
8221         }
8222
8223         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8224                             base.head) {
8225                 encoder->new_crtc =
8226                         to_intel_crtc(encoder->base.crtc);
8227         }
8228 }
8229
8230 /**
8231  * intel_modeset_commit_output_state
8232  *
8233  * This function copies the stage display pipe configuration to the real one.
8234  */
8235 static void intel_modeset_commit_output_state(struct drm_device *dev)
8236 {
8237         struct intel_encoder *encoder;
8238         struct intel_connector *connector;
8239
8240         list_for_each_entry(connector, &dev->mode_config.connector_list,
8241                             base.head) {
8242                 connector->base.encoder = &connector->new_encoder->base;
8243         }
8244
8245         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8246                             base.head) {
8247                 encoder->base.crtc = &encoder->new_crtc->base;
8248         }
8249 }
8250
8251 static void
8252 connected_sink_compute_bpp(struct intel_connector * connector,
8253                            struct intel_crtc_config *pipe_config)
8254 {
8255         int bpp = pipe_config->pipe_bpp;
8256
8257         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8258                 connector->base.base.id,
8259                 drm_get_connector_name(&connector->base));
8260
8261         /* Don't use an invalid EDID bpc value */
8262         if (connector->base.display_info.bpc &&
8263             connector->base.display_info.bpc * 3 < bpp) {
8264                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8265                               bpp, connector->base.display_info.bpc*3);
8266                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8267         }
8268
8269         /* Clamp bpp to 8 on screens without EDID 1.4 */
8270         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8271                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8272                               bpp);
8273                 pipe_config->pipe_bpp = 24;
8274         }
8275 }
8276
8277 static int
8278 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8279                           struct drm_framebuffer *fb,
8280                           struct intel_crtc_config *pipe_config)
8281 {
8282         struct drm_device *dev = crtc->base.dev;
8283         struct intel_connector *connector;
8284         int bpp;
8285
8286         switch (fb->pixel_format) {
8287         case DRM_FORMAT_C8:
8288                 bpp = 8*3; /* since we go through a colormap */
8289                 break;
8290         case DRM_FORMAT_XRGB1555:
8291         case DRM_FORMAT_ARGB1555:
8292                 /* checked in intel_framebuffer_init already */
8293                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8294                         return -EINVAL;
8295         case DRM_FORMAT_RGB565:
8296                 bpp = 6*3; /* min is 18bpp */
8297                 break;
8298         case DRM_FORMAT_XBGR8888:
8299         case DRM_FORMAT_ABGR8888:
8300                 /* checked in intel_framebuffer_init already */
8301                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8302                         return -EINVAL;
8303         case DRM_FORMAT_XRGB8888:
8304         case DRM_FORMAT_ARGB8888:
8305                 bpp = 8*3;
8306                 break;
8307         case DRM_FORMAT_XRGB2101010:
8308         case DRM_FORMAT_ARGB2101010:
8309         case DRM_FORMAT_XBGR2101010:
8310         case DRM_FORMAT_ABGR2101010:
8311                 /* checked in intel_framebuffer_init already */
8312                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8313                         return -EINVAL;
8314                 bpp = 10*3;
8315                 break;
8316         /* TODO: gen4+ supports 16 bpc floating point, too. */
8317         default:
8318                 DRM_DEBUG_KMS("unsupported depth\n");
8319                 return -EINVAL;
8320         }
8321
8322         pipe_config->pipe_bpp = bpp;
8323
8324         /* Clamp display bpp to EDID value */
8325         list_for_each_entry(connector, &dev->mode_config.connector_list,
8326                             base.head) {
8327                 if (!connector->new_encoder ||
8328                     connector->new_encoder->new_crtc != crtc)
8329                         continue;
8330
8331                 connected_sink_compute_bpp(connector, pipe_config);
8332         }
8333
8334         return bpp;
8335 }
8336
8337 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8338 {
8339         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8340                         "type: 0x%x flags: 0x%x\n",
8341                 mode->clock,
8342                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8343                 mode->crtc_hsync_end, mode->crtc_htotal,
8344                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8345                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8346 }
8347
8348 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8349                                    struct intel_crtc_config *pipe_config,
8350                                    const char *context)
8351 {
8352         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8353                       context, pipe_name(crtc->pipe));
8354
8355         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8356         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8357                       pipe_config->pipe_bpp, pipe_config->dither);
8358         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8359                       pipe_config->has_pch_encoder,
8360                       pipe_config->fdi_lanes,
8361                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8362                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8363                       pipe_config->fdi_m_n.tu);
8364         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8365                       pipe_config->has_dp_encoder,
8366                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8367                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8368                       pipe_config->dp_m_n.tu);
8369         DRM_DEBUG_KMS("requested mode:\n");
8370         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8371         DRM_DEBUG_KMS("adjusted mode:\n");
8372         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8373         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8374         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8375         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8376                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8377         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8378                       pipe_config->gmch_pfit.control,
8379                       pipe_config->gmch_pfit.pgm_ratios,
8380                       pipe_config->gmch_pfit.lvds_border_bits);
8381         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
8382                       pipe_config->pch_pfit.pos,
8383                       pipe_config->pch_pfit.size);
8384         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8385         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8386 }
8387
8388 static bool check_encoder_cloning(struct drm_crtc *crtc)
8389 {
8390         int num_encoders = 0;
8391         bool uncloneable_encoders = false;
8392         struct intel_encoder *encoder;
8393
8394         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8395                             base.head) {
8396                 if (&encoder->new_crtc->base != crtc)
8397                         continue;
8398
8399                 num_encoders++;
8400                 if (!encoder->cloneable)
8401                         uncloneable_encoders = true;
8402         }
8403
8404         return !(num_encoders > 1 && uncloneable_encoders);
8405 }
8406
8407 static struct intel_crtc_config *
8408 intel_modeset_pipe_config(struct drm_crtc *crtc,
8409                           struct drm_framebuffer *fb,
8410                           struct drm_display_mode *mode)
8411 {
8412         struct drm_device *dev = crtc->dev;
8413         struct intel_encoder *encoder;
8414         struct intel_crtc_config *pipe_config;
8415         int plane_bpp, ret = -EINVAL;
8416         bool retry = true;
8417
8418         if (!check_encoder_cloning(crtc)) {
8419                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8420                 return ERR_PTR(-EINVAL);
8421         }
8422
8423         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8424         if (!pipe_config)
8425                 return ERR_PTR(-ENOMEM);
8426
8427         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8428         drm_mode_copy(&pipe_config->requested_mode, mode);
8429
8430         pipe_config->pipe_src_w = mode->hdisplay;
8431         pipe_config->pipe_src_h = mode->vdisplay;
8432
8433         pipe_config->cpu_transcoder =
8434                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8435         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8436
8437         /*
8438          * Sanitize sync polarity flags based on requested ones. If neither
8439          * positive or negative polarity is requested, treat this as meaning
8440          * negative polarity.
8441          */
8442         if (!(pipe_config->adjusted_mode.flags &
8443               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8444                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8445
8446         if (!(pipe_config->adjusted_mode.flags &
8447               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8448                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8449
8450         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8451          * plane pixel format and any sink constraints into account. Returns the
8452          * source plane bpp so that dithering can be selected on mismatches
8453          * after encoders and crtc also have had their say. */
8454         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8455                                               fb, pipe_config);
8456         if (plane_bpp < 0)
8457                 goto fail;
8458
8459 encoder_retry:
8460         /* Ensure the port clock defaults are reset when retrying. */
8461         pipe_config->port_clock = 0;
8462         pipe_config->pixel_multiplier = 1;
8463
8464         /* Fill in default crtc timings, allow encoders to overwrite them. */
8465         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8466
8467         /* Pass our mode to the connectors and the CRTC to give them a chance to
8468          * adjust it according to limitations or connector properties, and also
8469          * a chance to reject the mode entirely.
8470          */
8471         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8472                             base.head) {
8473
8474                 if (&encoder->new_crtc->base != crtc)
8475                         continue;
8476
8477                 if (!(encoder->compute_config(encoder, pipe_config))) {
8478                         DRM_DEBUG_KMS("Encoder config failure\n");
8479                         goto fail;
8480                 }
8481         }
8482
8483         /* Set default port clock if not overwritten by the encoder. Needs to be
8484          * done afterwards in case the encoder adjusts the mode. */
8485         if (!pipe_config->port_clock)
8486                 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8487                         pipe_config->pixel_multiplier;
8488
8489         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8490         if (ret < 0) {
8491                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8492                 goto fail;
8493         }
8494
8495         if (ret == RETRY) {
8496                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8497                         ret = -EINVAL;
8498                         goto fail;
8499                 }
8500
8501                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8502                 retry = false;
8503                 goto encoder_retry;
8504         }
8505
8506         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8507         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8508                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8509
8510         return pipe_config;
8511 fail:
8512         kfree(pipe_config);
8513         return ERR_PTR(ret);
8514 }
8515
8516 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8517  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8518 static void
8519 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8520                              unsigned *prepare_pipes, unsigned *disable_pipes)
8521 {
8522         struct intel_crtc *intel_crtc;
8523         struct drm_device *dev = crtc->dev;
8524         struct intel_encoder *encoder;
8525         struct intel_connector *connector;
8526         struct drm_crtc *tmp_crtc;
8527
8528         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8529
8530         /* Check which crtcs have changed outputs connected to them, these need
8531          * to be part of the prepare_pipes mask. We don't (yet) support global
8532          * modeset across multiple crtcs, so modeset_pipes will only have one
8533          * bit set at most. */
8534         list_for_each_entry(connector, &dev->mode_config.connector_list,
8535                             base.head) {
8536                 if (connector->base.encoder == &connector->new_encoder->base)
8537                         continue;
8538
8539                 if (connector->base.encoder) {
8540                         tmp_crtc = connector->base.encoder->crtc;
8541
8542                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8543                 }
8544
8545                 if (connector->new_encoder)
8546                         *prepare_pipes |=
8547                                 1 << connector->new_encoder->new_crtc->pipe;
8548         }
8549
8550         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8551                             base.head) {
8552                 if (encoder->base.crtc == &encoder->new_crtc->base)
8553                         continue;
8554
8555                 if (encoder->base.crtc) {
8556                         tmp_crtc = encoder->base.crtc;
8557
8558                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8559                 }
8560
8561                 if (encoder->new_crtc)
8562                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8563         }
8564
8565         /* Check for any pipes that will be fully disabled ... */
8566         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8567                             base.head) {
8568                 bool used = false;
8569
8570                 /* Don't try to disable disabled crtcs. */
8571                 if (!intel_crtc->base.enabled)
8572                         continue;
8573
8574                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8575                                     base.head) {
8576                         if (encoder->new_crtc == intel_crtc)
8577                                 used = true;
8578                 }
8579
8580                 if (!used)
8581                         *disable_pipes |= 1 << intel_crtc->pipe;
8582         }
8583
8584
8585         /* set_mode is also used to update properties on life display pipes. */
8586         intel_crtc = to_intel_crtc(crtc);
8587         if (crtc->enabled)
8588                 *prepare_pipes |= 1 << intel_crtc->pipe;
8589
8590         /*
8591          * For simplicity do a full modeset on any pipe where the output routing
8592          * changed. We could be more clever, but that would require us to be
8593          * more careful with calling the relevant encoder->mode_set functions.
8594          */
8595         if (*prepare_pipes)
8596                 *modeset_pipes = *prepare_pipes;
8597
8598         /* ... and mask these out. */
8599         *modeset_pipes &= ~(*disable_pipes);
8600         *prepare_pipes &= ~(*disable_pipes);
8601
8602         /*
8603          * HACK: We don't (yet) fully support global modesets. intel_set_config
8604          * obies this rule, but the modeset restore mode of
8605          * intel_modeset_setup_hw_state does not.
8606          */
8607         *modeset_pipes &= 1 << intel_crtc->pipe;
8608         *prepare_pipes &= 1 << intel_crtc->pipe;
8609
8610         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8611                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8612 }
8613
8614 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8615 {
8616         struct drm_encoder *encoder;
8617         struct drm_device *dev = crtc->dev;
8618
8619         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8620                 if (encoder->crtc == crtc)
8621                         return true;
8622
8623         return false;
8624 }
8625
8626 static void
8627 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8628 {
8629         struct intel_encoder *intel_encoder;
8630         struct intel_crtc *intel_crtc;
8631         struct drm_connector *connector;
8632
8633         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8634                             base.head) {
8635                 if (!intel_encoder->base.crtc)
8636                         continue;
8637
8638                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8639
8640                 if (prepare_pipes & (1 << intel_crtc->pipe))
8641                         intel_encoder->connectors_active = false;
8642         }
8643
8644         intel_modeset_commit_output_state(dev);
8645
8646         /* Update computed state. */
8647         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8648                             base.head) {
8649                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8650         }
8651
8652         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8653                 if (!connector->encoder || !connector->encoder->crtc)
8654                         continue;
8655
8656                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8657
8658                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8659                         struct drm_property *dpms_property =
8660                                 dev->mode_config.dpms_property;
8661
8662                         connector->dpms = DRM_MODE_DPMS_ON;
8663                         drm_object_property_set_value(&connector->base,
8664                                                          dpms_property,
8665                                                          DRM_MODE_DPMS_ON);
8666
8667                         intel_encoder = to_intel_encoder(connector->encoder);
8668                         intel_encoder->connectors_active = true;
8669                 }
8670         }
8671
8672 }
8673
8674 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8675 {
8676         int diff;
8677
8678         if (clock1 == clock2)
8679                 return true;
8680
8681         if (!clock1 || !clock2)
8682                 return false;
8683
8684         diff = abs(clock1 - clock2);
8685
8686         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8687                 return true;
8688
8689         return false;
8690 }
8691
8692 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8693         list_for_each_entry((intel_crtc), \
8694                             &(dev)->mode_config.crtc_list, \
8695                             base.head) \
8696                 if (mask & (1 <<(intel_crtc)->pipe))
8697
8698 static bool
8699 intel_pipe_config_compare(struct drm_device *dev,
8700                           struct intel_crtc_config *current_config,
8701                           struct intel_crtc_config *pipe_config)
8702 {
8703 #define PIPE_CONF_CHECK_X(name) \
8704         if (current_config->name != pipe_config->name) { \
8705                 DRM_ERROR("mismatch in " #name " " \
8706                           "(expected 0x%08x, found 0x%08x)\n", \
8707                           current_config->name, \
8708                           pipe_config->name); \
8709                 return false; \
8710         }
8711
8712 #define PIPE_CONF_CHECK_I(name) \
8713         if (current_config->name != pipe_config->name) { \
8714                 DRM_ERROR("mismatch in " #name " " \
8715                           "(expected %i, found %i)\n", \
8716                           current_config->name, \
8717                           pipe_config->name); \
8718                 return false; \
8719         }
8720
8721 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8722         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8723                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8724                           "(expected %i, found %i)\n", \
8725                           current_config->name & (mask), \
8726                           pipe_config->name & (mask)); \
8727                 return false; \
8728         }
8729
8730 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8731         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8732                 DRM_ERROR("mismatch in " #name " " \
8733                           "(expected %i, found %i)\n", \
8734                           current_config->name, \
8735                           pipe_config->name); \
8736                 return false; \
8737         }
8738
8739 #define PIPE_CONF_QUIRK(quirk)  \
8740         ((current_config->quirks | pipe_config->quirks) & (quirk))
8741
8742         PIPE_CONF_CHECK_I(cpu_transcoder);
8743
8744         PIPE_CONF_CHECK_I(has_pch_encoder);
8745         PIPE_CONF_CHECK_I(fdi_lanes);
8746         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8747         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8748         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8749         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8750         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8751
8752         PIPE_CONF_CHECK_I(has_dp_encoder);
8753         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8754         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8755         PIPE_CONF_CHECK_I(dp_m_n.link_m);
8756         PIPE_CONF_CHECK_I(dp_m_n.link_n);
8757         PIPE_CONF_CHECK_I(dp_m_n.tu);
8758
8759         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8760         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8761         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8762         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8763         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8764         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8765
8766         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8767         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8768         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8769         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8770         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8771         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8772
8773         PIPE_CONF_CHECK_I(pixel_multiplier);
8774
8775         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8776                               DRM_MODE_FLAG_INTERLACE);
8777
8778         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8779                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8780                                       DRM_MODE_FLAG_PHSYNC);
8781                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8782                                       DRM_MODE_FLAG_NHSYNC);
8783                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8784                                       DRM_MODE_FLAG_PVSYNC);
8785                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8786                                       DRM_MODE_FLAG_NVSYNC);
8787         }
8788
8789         PIPE_CONF_CHECK_I(pipe_src_w);
8790         PIPE_CONF_CHECK_I(pipe_src_h);
8791
8792         PIPE_CONF_CHECK_I(gmch_pfit.control);
8793         /* pfit ratios are autocomputed by the hw on gen4+ */
8794         if (INTEL_INFO(dev)->gen < 4)
8795                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8796         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8797         PIPE_CONF_CHECK_I(pch_pfit.pos);
8798         PIPE_CONF_CHECK_I(pch_pfit.size);
8799
8800         PIPE_CONF_CHECK_I(ips_enabled);
8801
8802         PIPE_CONF_CHECK_I(double_wide);
8803
8804         PIPE_CONF_CHECK_I(shared_dpll);
8805         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8806         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8807         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8808         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8809
8810         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8811                 PIPE_CONF_CHECK_I(pipe_bpp);
8812
8813         if (!IS_HASWELL(dev)) {
8814                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8815                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8816         }
8817
8818 #undef PIPE_CONF_CHECK_X
8819 #undef PIPE_CONF_CHECK_I
8820 #undef PIPE_CONF_CHECK_FLAGS
8821 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8822 #undef PIPE_CONF_QUIRK
8823
8824         return true;
8825 }
8826
8827 static void
8828 check_connector_state(struct drm_device *dev)
8829 {
8830         struct intel_connector *connector;
8831
8832         list_for_each_entry(connector, &dev->mode_config.connector_list,
8833                             base.head) {
8834                 /* This also checks the encoder/connector hw state with the
8835                  * ->get_hw_state callbacks. */
8836                 intel_connector_check_state(connector);
8837
8838                 WARN(&connector->new_encoder->base != connector->base.encoder,
8839                      "connector's staged encoder doesn't match current encoder\n");
8840         }
8841 }
8842
8843 static void
8844 check_encoder_state(struct drm_device *dev)
8845 {
8846         struct intel_encoder *encoder;
8847         struct intel_connector *connector;
8848
8849         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8850                             base.head) {
8851                 bool enabled = false;
8852                 bool active = false;
8853                 enum pipe pipe, tracked_pipe;
8854
8855                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8856                               encoder->base.base.id,
8857                               drm_get_encoder_name(&encoder->base));
8858
8859                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8860                      "encoder's stage crtc doesn't match current crtc\n");
8861                 WARN(encoder->connectors_active && !encoder->base.crtc,
8862                      "encoder's active_connectors set, but no crtc\n");
8863
8864                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8865                                     base.head) {
8866                         if (connector->base.encoder != &encoder->base)
8867                                 continue;
8868                         enabled = true;
8869                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8870                                 active = true;
8871                 }
8872                 WARN(!!encoder->base.crtc != enabled,
8873                      "encoder's enabled state mismatch "
8874                      "(expected %i, found %i)\n",
8875                      !!encoder->base.crtc, enabled);
8876                 WARN(active && !encoder->base.crtc,
8877                      "active encoder with no crtc\n");
8878
8879                 WARN(encoder->connectors_active != active,
8880                      "encoder's computed active state doesn't match tracked active state "
8881                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8882
8883                 active = encoder->get_hw_state(encoder, &pipe);
8884                 WARN(active != encoder->connectors_active,
8885                      "encoder's hw state doesn't match sw tracking "
8886                      "(expected %i, found %i)\n",
8887                      encoder->connectors_active, active);
8888
8889                 if (!encoder->base.crtc)
8890                         continue;
8891
8892                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8893                 WARN(active && pipe != tracked_pipe,
8894                      "active encoder's pipe doesn't match"
8895                      "(expected %i, found %i)\n",
8896                      tracked_pipe, pipe);
8897
8898         }
8899 }
8900
8901 static void
8902 check_crtc_state(struct drm_device *dev)
8903 {
8904         drm_i915_private_t *dev_priv = dev->dev_private;
8905         struct intel_crtc *crtc;
8906         struct intel_encoder *encoder;
8907         struct intel_crtc_config pipe_config;
8908
8909         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8910                             base.head) {
8911                 bool enabled = false;
8912                 bool active = false;
8913
8914                 memset(&pipe_config, 0, sizeof(pipe_config));
8915
8916                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8917                               crtc->base.base.id);
8918
8919                 WARN(crtc->active && !crtc->base.enabled,
8920                      "active crtc, but not enabled in sw tracking\n");
8921
8922                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8923                                     base.head) {
8924                         if (encoder->base.crtc != &crtc->base)
8925                                 continue;
8926                         enabled = true;
8927                         if (encoder->connectors_active)
8928                                 active = true;
8929                 }
8930
8931                 WARN(active != crtc->active,
8932                      "crtc's computed active state doesn't match tracked active state "
8933                      "(expected %i, found %i)\n", active, crtc->active);
8934                 WARN(enabled != crtc->base.enabled,
8935                      "crtc's computed enabled state doesn't match tracked enabled state "
8936                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8937
8938                 active = dev_priv->display.get_pipe_config(crtc,
8939                                                            &pipe_config);
8940
8941                 /* hw state is inconsistent with the pipe A quirk */
8942                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8943                         active = crtc->active;
8944
8945                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8946                                     base.head) {
8947                         enum pipe pipe;
8948                         if (encoder->base.crtc != &crtc->base)
8949                                 continue;
8950                         if (encoder->get_config &&
8951                             encoder->get_hw_state(encoder, &pipe))
8952                                 encoder->get_config(encoder, &pipe_config);
8953                 }
8954
8955                 WARN(crtc->active != active,
8956                      "crtc active state doesn't match with hw state "
8957                      "(expected %i, found %i)\n", crtc->active, active);
8958
8959                 if (active &&
8960                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8961                         WARN(1, "pipe state doesn't match!\n");
8962                         intel_dump_pipe_config(crtc, &pipe_config,
8963                                                "[hw state]");
8964                         intel_dump_pipe_config(crtc, &crtc->config,
8965                                                "[sw state]");
8966                 }
8967         }
8968 }
8969
8970 static void
8971 check_shared_dpll_state(struct drm_device *dev)
8972 {
8973         drm_i915_private_t *dev_priv = dev->dev_private;
8974         struct intel_crtc *crtc;
8975         struct intel_dpll_hw_state dpll_hw_state;
8976         int i;
8977
8978         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8979                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8980                 int enabled_crtcs = 0, active_crtcs = 0;
8981                 bool active;
8982
8983                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8984
8985                 DRM_DEBUG_KMS("%s\n", pll->name);
8986
8987                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8988
8989                 WARN(pll->active > pll->refcount,
8990                      "more active pll users than references: %i vs %i\n",
8991                      pll->active, pll->refcount);
8992                 WARN(pll->active && !pll->on,
8993                      "pll in active use but not on in sw tracking\n");
8994                 WARN(pll->on && !pll->active,
8995                      "pll in on but not on in use in sw tracking\n");
8996                 WARN(pll->on != active,
8997                      "pll on state mismatch (expected %i, found %i)\n",
8998                      pll->on, active);
8999
9000                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9001                                     base.head) {
9002                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9003                                 enabled_crtcs++;
9004                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9005                                 active_crtcs++;
9006                 }
9007                 WARN(pll->active != active_crtcs,
9008                      "pll active crtcs mismatch (expected %i, found %i)\n",
9009                      pll->active, active_crtcs);
9010                 WARN(pll->refcount != enabled_crtcs,
9011                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9012                      pll->refcount, enabled_crtcs);
9013
9014                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9015                                        sizeof(dpll_hw_state)),
9016                      "pll hw state mismatch\n");
9017         }
9018 }
9019
9020 void
9021 intel_modeset_check_state(struct drm_device *dev)
9022 {
9023         check_connector_state(dev);
9024         check_encoder_state(dev);
9025         check_crtc_state(dev);
9026         check_shared_dpll_state(dev);
9027 }
9028
9029 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9030                                      int dotclock)
9031 {
9032         /*
9033          * FDI already provided one idea for the dotclock.
9034          * Yell if the encoder disagrees.
9035          */
9036         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9037              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9038              pipe_config->adjusted_mode.clock, dotclock);
9039 }
9040
9041 static int __intel_set_mode(struct drm_crtc *crtc,
9042                             struct drm_display_mode *mode,
9043                             int x, int y, struct drm_framebuffer *fb)
9044 {
9045         struct drm_device *dev = crtc->dev;
9046         drm_i915_private_t *dev_priv = dev->dev_private;
9047         struct drm_display_mode *saved_mode, *saved_hwmode;
9048         struct intel_crtc_config *pipe_config = NULL;
9049         struct intel_crtc *intel_crtc;
9050         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9051         int ret = 0;
9052
9053         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
9054         if (!saved_mode)
9055                 return -ENOMEM;
9056         saved_hwmode = saved_mode + 1;
9057
9058         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9059                                      &prepare_pipes, &disable_pipes);
9060
9061         *saved_hwmode = crtc->hwmode;
9062         *saved_mode = crtc->mode;
9063
9064         /* Hack: Because we don't (yet) support global modeset on multiple
9065          * crtcs, we don't keep track of the new mode for more than one crtc.
9066          * Hence simply check whether any bit is set in modeset_pipes in all the
9067          * pieces of code that are not yet converted to deal with mutliple crtcs
9068          * changing their mode at the same time. */
9069         if (modeset_pipes) {
9070                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9071                 if (IS_ERR(pipe_config)) {
9072                         ret = PTR_ERR(pipe_config);
9073                         pipe_config = NULL;
9074
9075                         goto out;
9076                 }
9077                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9078                                        "[modeset]");
9079         }
9080
9081         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9082                 intel_crtc_disable(&intel_crtc->base);
9083
9084         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9085                 if (intel_crtc->base.enabled)
9086                         dev_priv->display.crtc_disable(&intel_crtc->base);
9087         }
9088
9089         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9090          * to set it here already despite that we pass it down the callchain.
9091          */
9092         if (modeset_pipes) {
9093                 crtc->mode = *mode;
9094                 /* mode_set/enable/disable functions rely on a correct pipe
9095                  * config. */
9096                 to_intel_crtc(crtc)->config = *pipe_config;
9097         }
9098
9099         /* Only after disabling all output pipelines that will be changed can we
9100          * update the the output configuration. */
9101         intel_modeset_update_state(dev, prepare_pipes);
9102
9103         if (dev_priv->display.modeset_global_resources)
9104                 dev_priv->display.modeset_global_resources(dev);
9105
9106         /* Set up the DPLL and any encoders state that needs to adjust or depend
9107          * on the DPLL.
9108          */
9109         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9110                 ret = intel_crtc_mode_set(&intel_crtc->base,
9111                                           x, y, fb);
9112                 if (ret)
9113                         goto done;
9114         }
9115
9116         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9117         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9118                 dev_priv->display.crtc_enable(&intel_crtc->base);
9119
9120         if (modeset_pipes) {
9121                 /* Store real post-adjustment hardware mode. */
9122                 crtc->hwmode = pipe_config->adjusted_mode;
9123
9124                 /* Calculate and store various constants which
9125                  * are later needed by vblank and swap-completion
9126                  * timestamping. They are derived from true hwmode.
9127                  */
9128                 drm_calc_timestamping_constants(crtc);
9129         }
9130
9131         /* FIXME: add subpixel order */
9132 done:
9133         if (ret && crtc->enabled) {
9134                 crtc->hwmode = *saved_hwmode;
9135                 crtc->mode = *saved_mode;
9136         }
9137
9138 out:
9139         kfree(pipe_config);
9140         kfree(saved_mode);
9141         return ret;
9142 }
9143
9144 static int intel_set_mode(struct drm_crtc *crtc,
9145                           struct drm_display_mode *mode,
9146                           int x, int y, struct drm_framebuffer *fb)
9147 {
9148         int ret;
9149
9150         ret = __intel_set_mode(crtc, mode, x, y, fb);
9151
9152         if (ret == 0)
9153                 intel_modeset_check_state(crtc->dev);
9154
9155         return ret;
9156 }
9157
9158 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9159 {
9160         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9161 }
9162
9163 #undef for_each_intel_crtc_masked
9164
9165 static void intel_set_config_free(struct intel_set_config *config)
9166 {
9167         if (!config)
9168                 return;
9169
9170         kfree(config->save_connector_encoders);
9171         kfree(config->save_encoder_crtcs);
9172         kfree(config);
9173 }
9174
9175 static int intel_set_config_save_state(struct drm_device *dev,
9176                                        struct intel_set_config *config)
9177 {
9178         struct drm_encoder *encoder;
9179         struct drm_connector *connector;
9180         int count;
9181
9182         config->save_encoder_crtcs =
9183                 kcalloc(dev->mode_config.num_encoder,
9184                         sizeof(struct drm_crtc *), GFP_KERNEL);
9185         if (!config->save_encoder_crtcs)
9186                 return -ENOMEM;
9187
9188         config->save_connector_encoders =
9189                 kcalloc(dev->mode_config.num_connector,
9190                         sizeof(struct drm_encoder *), GFP_KERNEL);
9191         if (!config->save_connector_encoders)
9192                 return -ENOMEM;
9193
9194         /* Copy data. Note that driver private data is not affected.
9195          * Should anything bad happen only the expected state is
9196          * restored, not the drivers personal bookkeeping.
9197          */
9198         count = 0;
9199         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9200                 config->save_encoder_crtcs[count++] = encoder->crtc;
9201         }
9202
9203         count = 0;
9204         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9205                 config->save_connector_encoders[count++] = connector->encoder;
9206         }
9207
9208         return 0;
9209 }
9210
9211 static void intel_set_config_restore_state(struct drm_device *dev,
9212                                            struct intel_set_config *config)
9213 {
9214         struct intel_encoder *encoder;
9215         struct intel_connector *connector;
9216         int count;
9217
9218         count = 0;
9219         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9220                 encoder->new_crtc =
9221                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9222         }
9223
9224         count = 0;
9225         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9226                 connector->new_encoder =
9227                         to_intel_encoder(config->save_connector_encoders[count++]);
9228         }
9229 }
9230
9231 static bool
9232 is_crtc_connector_off(struct drm_mode_set *set)
9233 {
9234         int i;
9235
9236         if (set->num_connectors == 0)
9237                 return false;
9238
9239         if (WARN_ON(set->connectors == NULL))
9240                 return false;
9241
9242         for (i = 0; i < set->num_connectors; i++)
9243                 if (set->connectors[i]->encoder &&
9244                     set->connectors[i]->encoder->crtc == set->crtc &&
9245                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9246                         return true;
9247
9248         return false;
9249 }
9250
9251 static void
9252 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9253                                       struct intel_set_config *config)
9254 {
9255
9256         /* We should be able to check here if the fb has the same properties
9257          * and then just flip_or_move it */
9258         if (is_crtc_connector_off(set)) {
9259                 config->mode_changed = true;
9260         } else if (set->crtc->fb != set->fb) {
9261                 /* If we have no fb then treat it as a full mode set */
9262                 if (set->crtc->fb == NULL) {
9263                         struct intel_crtc *intel_crtc =
9264                                 to_intel_crtc(set->crtc);
9265
9266                         if (intel_crtc->active && i915_fastboot) {
9267                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9268                                 config->fb_changed = true;
9269                         } else {
9270                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9271                                 config->mode_changed = true;
9272                         }
9273                 } else if (set->fb == NULL) {
9274                         config->mode_changed = true;
9275                 } else if (set->fb->pixel_format !=
9276                            set->crtc->fb->pixel_format) {
9277                         config->mode_changed = true;
9278                 } else {
9279                         config->fb_changed = true;
9280                 }
9281         }
9282
9283         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9284                 config->fb_changed = true;
9285
9286         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9287                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9288                 drm_mode_debug_printmodeline(&set->crtc->mode);
9289                 drm_mode_debug_printmodeline(set->mode);
9290                 config->mode_changed = true;
9291         }
9292
9293         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9294                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9295 }
9296
9297 static int
9298 intel_modeset_stage_output_state(struct drm_device *dev,
9299                                  struct drm_mode_set *set,
9300                                  struct intel_set_config *config)
9301 {
9302         struct drm_crtc *new_crtc;
9303         struct intel_connector *connector;
9304         struct intel_encoder *encoder;
9305         int ro;
9306
9307         /* The upper layers ensure that we either disable a crtc or have a list
9308          * of connectors. For paranoia, double-check this. */
9309         WARN_ON(!set->fb && (set->num_connectors != 0));
9310         WARN_ON(set->fb && (set->num_connectors == 0));
9311
9312         list_for_each_entry(connector, &dev->mode_config.connector_list,
9313                             base.head) {
9314                 /* Otherwise traverse passed in connector list and get encoders
9315                  * for them. */
9316                 for (ro = 0; ro < set->num_connectors; ro++) {
9317                         if (set->connectors[ro] == &connector->base) {
9318                                 connector->new_encoder = connector->encoder;
9319                                 break;
9320                         }
9321                 }
9322
9323                 /* If we disable the crtc, disable all its connectors. Also, if
9324                  * the connector is on the changing crtc but not on the new
9325                  * connector list, disable it. */
9326                 if ((!set->fb || ro == set->num_connectors) &&
9327                     connector->base.encoder &&
9328                     connector->base.encoder->crtc == set->crtc) {
9329                         connector->new_encoder = NULL;
9330
9331                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9332                                 connector->base.base.id,
9333                                 drm_get_connector_name(&connector->base));
9334                 }
9335
9336
9337                 if (&connector->new_encoder->base != connector->base.encoder) {
9338                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9339                         config->mode_changed = true;
9340                 }
9341         }
9342         /* connector->new_encoder is now updated for all connectors. */
9343
9344         /* Update crtc of enabled connectors. */
9345         list_for_each_entry(connector, &dev->mode_config.connector_list,
9346                             base.head) {
9347                 if (!connector->new_encoder)
9348                         continue;
9349
9350                 new_crtc = connector->new_encoder->base.crtc;
9351
9352                 for (ro = 0; ro < set->num_connectors; ro++) {
9353                         if (set->connectors[ro] == &connector->base)
9354                                 new_crtc = set->crtc;
9355                 }
9356
9357                 /* Make sure the new CRTC will work with the encoder */
9358                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9359                                            new_crtc)) {
9360                         return -EINVAL;
9361                 }
9362                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9363
9364                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9365                         connector->base.base.id,
9366                         drm_get_connector_name(&connector->base),
9367                         new_crtc->base.id);
9368         }
9369
9370         /* Check for any encoders that needs to be disabled. */
9371         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9372                             base.head) {
9373                 list_for_each_entry(connector,
9374                                     &dev->mode_config.connector_list,
9375                                     base.head) {
9376                         if (connector->new_encoder == encoder) {
9377                                 WARN_ON(!connector->new_encoder->new_crtc);
9378
9379                                 goto next_encoder;
9380                         }
9381                 }
9382                 encoder->new_crtc = NULL;
9383 next_encoder:
9384                 /* Only now check for crtc changes so we don't miss encoders
9385                  * that will be disabled. */
9386                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9387                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9388                         config->mode_changed = true;
9389                 }
9390         }
9391         /* Now we've also updated encoder->new_crtc for all encoders. */
9392
9393         return 0;
9394 }
9395
9396 static int intel_crtc_set_config(struct drm_mode_set *set)
9397 {
9398         struct drm_device *dev;
9399         struct drm_mode_set save_set;
9400         struct intel_set_config *config;
9401         int ret;
9402
9403         BUG_ON(!set);
9404         BUG_ON(!set->crtc);
9405         BUG_ON(!set->crtc->helper_private);
9406
9407         /* Enforce sane interface api - has been abused by the fb helper. */
9408         BUG_ON(!set->mode && set->fb);
9409         BUG_ON(set->fb && set->num_connectors == 0);
9410
9411         if (set->fb) {
9412                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9413                                 set->crtc->base.id, set->fb->base.id,
9414                                 (int)set->num_connectors, set->x, set->y);
9415         } else {
9416                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9417         }
9418
9419         dev = set->crtc->dev;
9420
9421         ret = -ENOMEM;
9422         config = kzalloc(sizeof(*config), GFP_KERNEL);
9423         if (!config)
9424                 goto out_config;
9425
9426         ret = intel_set_config_save_state(dev, config);
9427         if (ret)
9428                 goto out_config;
9429
9430         save_set.crtc = set->crtc;
9431         save_set.mode = &set->crtc->mode;
9432         save_set.x = set->crtc->x;
9433         save_set.y = set->crtc->y;
9434         save_set.fb = set->crtc->fb;
9435
9436         /* Compute whether we need a full modeset, only an fb base update or no
9437          * change at all. In the future we might also check whether only the
9438          * mode changed, e.g. for LVDS where we only change the panel fitter in
9439          * such cases. */
9440         intel_set_config_compute_mode_changes(set, config);
9441
9442         ret = intel_modeset_stage_output_state(dev, set, config);
9443         if (ret)
9444                 goto fail;
9445
9446         if (config->mode_changed) {
9447                 ret = intel_set_mode(set->crtc, set->mode,
9448                                      set->x, set->y, set->fb);
9449         } else if (config->fb_changed) {
9450                 intel_crtc_wait_for_pending_flips(set->crtc);
9451
9452                 ret = intel_pipe_set_base(set->crtc,
9453                                           set->x, set->y, set->fb);
9454         }
9455
9456         if (ret) {
9457                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9458                               set->crtc->base.id, ret);
9459 fail:
9460                 intel_set_config_restore_state(dev, config);
9461
9462                 /* Try to restore the config */
9463                 if (config->mode_changed &&
9464                     intel_set_mode(save_set.crtc, save_set.mode,
9465                                    save_set.x, save_set.y, save_set.fb))
9466                         DRM_ERROR("failed to restore config after modeset failure\n");
9467         }
9468
9469 out_config:
9470         intel_set_config_free(config);
9471         return ret;
9472 }
9473
9474 static const struct drm_crtc_funcs intel_crtc_funcs = {
9475         .cursor_set = intel_crtc_cursor_set,
9476         .cursor_move = intel_crtc_cursor_move,
9477         .gamma_set = intel_crtc_gamma_set,
9478         .set_config = intel_crtc_set_config,
9479         .destroy = intel_crtc_destroy,
9480         .page_flip = intel_crtc_page_flip,
9481 };
9482
9483 static void intel_cpu_pll_init(struct drm_device *dev)
9484 {
9485         if (HAS_DDI(dev))
9486                 intel_ddi_pll_init(dev);
9487 }
9488
9489 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9490                                       struct intel_shared_dpll *pll,
9491                                       struct intel_dpll_hw_state *hw_state)
9492 {
9493         uint32_t val;
9494
9495         val = I915_READ(PCH_DPLL(pll->id));
9496         hw_state->dpll = val;
9497         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9498         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9499
9500         return val & DPLL_VCO_ENABLE;
9501 }
9502
9503 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9504                                   struct intel_shared_dpll *pll)
9505 {
9506         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9507         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9508 }
9509
9510 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9511                                 struct intel_shared_dpll *pll)
9512 {
9513         /* PCH refclock must be enabled first */
9514         assert_pch_refclk_enabled(dev_priv);
9515
9516         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9517
9518         /* Wait for the clocks to stabilize. */
9519         POSTING_READ(PCH_DPLL(pll->id));
9520         udelay(150);
9521
9522         /* The pixel multiplier can only be updated once the
9523          * DPLL is enabled and the clocks are stable.
9524          *
9525          * So write it again.
9526          */
9527         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9528         POSTING_READ(PCH_DPLL(pll->id));
9529         udelay(200);
9530 }
9531
9532 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9533                                  struct intel_shared_dpll *pll)
9534 {
9535         struct drm_device *dev = dev_priv->dev;
9536         struct intel_crtc *crtc;
9537
9538         /* Make sure no transcoder isn't still depending on us. */
9539         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9540                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9541                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9542         }
9543
9544         I915_WRITE(PCH_DPLL(pll->id), 0);
9545         POSTING_READ(PCH_DPLL(pll->id));
9546         udelay(200);
9547 }
9548
9549 static char *ibx_pch_dpll_names[] = {
9550         "PCH DPLL A",
9551         "PCH DPLL B",
9552 };
9553
9554 static void ibx_pch_dpll_init(struct drm_device *dev)
9555 {
9556         struct drm_i915_private *dev_priv = dev->dev_private;
9557         int i;
9558
9559         dev_priv->num_shared_dpll = 2;
9560
9561         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9562                 dev_priv->shared_dplls[i].id = i;
9563                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9564                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9565                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9566                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9567                 dev_priv->shared_dplls[i].get_hw_state =
9568                         ibx_pch_dpll_get_hw_state;
9569         }
9570 }
9571
9572 static void intel_shared_dpll_init(struct drm_device *dev)
9573 {
9574         struct drm_i915_private *dev_priv = dev->dev_private;
9575
9576         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9577                 ibx_pch_dpll_init(dev);
9578         else
9579                 dev_priv->num_shared_dpll = 0;
9580
9581         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9582         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9583                       dev_priv->num_shared_dpll);
9584 }
9585
9586 static void intel_crtc_init(struct drm_device *dev, int pipe)
9587 {
9588         drm_i915_private_t *dev_priv = dev->dev_private;
9589         struct intel_crtc *intel_crtc;
9590         int i;
9591
9592         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9593         if (intel_crtc == NULL)
9594                 return;
9595
9596         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9597
9598         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9599         for (i = 0; i < 256; i++) {
9600                 intel_crtc->lut_r[i] = i;
9601                 intel_crtc->lut_g[i] = i;
9602                 intel_crtc->lut_b[i] = i;
9603         }
9604
9605         /* Swap pipes & planes for FBC on pre-965 */
9606         intel_crtc->pipe = pipe;
9607         intel_crtc->plane = pipe;
9608         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9609                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9610                 intel_crtc->plane = !pipe;
9611         }
9612
9613         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9614                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9615         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9616         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9617
9618         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9619 }
9620
9621 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9622                                 struct drm_file *file)
9623 {
9624         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9625         struct drm_mode_object *drmmode_obj;
9626         struct intel_crtc *crtc;
9627
9628         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9629                 return -ENODEV;
9630
9631         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9632                         DRM_MODE_OBJECT_CRTC);
9633
9634         if (!drmmode_obj) {
9635                 DRM_ERROR("no such CRTC id\n");
9636                 return -EINVAL;
9637         }
9638
9639         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9640         pipe_from_crtc_id->pipe = crtc->pipe;
9641
9642         return 0;
9643 }
9644
9645 static int intel_encoder_clones(struct intel_encoder *encoder)
9646 {
9647         struct drm_device *dev = encoder->base.dev;
9648         struct intel_encoder *source_encoder;
9649         int index_mask = 0;
9650         int entry = 0;
9651
9652         list_for_each_entry(source_encoder,
9653                             &dev->mode_config.encoder_list, base.head) {
9654
9655                 if (encoder == source_encoder)
9656                         index_mask |= (1 << entry);
9657
9658                 /* Intel hw has only one MUX where enocoders could be cloned. */
9659                 if (encoder->cloneable && source_encoder->cloneable)
9660                         index_mask |= (1 << entry);
9661
9662                 entry++;
9663         }
9664
9665         return index_mask;
9666 }
9667
9668 static bool has_edp_a(struct drm_device *dev)
9669 {
9670         struct drm_i915_private *dev_priv = dev->dev_private;
9671
9672         if (!IS_MOBILE(dev))
9673                 return false;
9674
9675         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9676                 return false;
9677
9678         if (IS_GEN5(dev) &&
9679             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9680                 return false;
9681
9682         return true;
9683 }
9684
9685 static void intel_setup_outputs(struct drm_device *dev)
9686 {
9687         struct drm_i915_private *dev_priv = dev->dev_private;
9688         struct intel_encoder *encoder;
9689         bool dpd_is_edp = false;
9690
9691         intel_lvds_init(dev);
9692
9693         if (!IS_ULT(dev))
9694                 intel_crt_init(dev);
9695
9696         if (HAS_DDI(dev)) {
9697                 int found;
9698
9699                 /* Haswell uses DDI functions to detect digital outputs */
9700                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9701                 /* DDI A only supports eDP */
9702                 if (found)
9703                         intel_ddi_init(dev, PORT_A);
9704
9705                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9706                  * register */
9707                 found = I915_READ(SFUSE_STRAP);
9708
9709                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9710                         intel_ddi_init(dev, PORT_B);
9711                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9712                         intel_ddi_init(dev, PORT_C);
9713                 if (found & SFUSE_STRAP_DDID_DETECTED)
9714                         intel_ddi_init(dev, PORT_D);
9715         } else if (HAS_PCH_SPLIT(dev)) {
9716                 int found;
9717                 dpd_is_edp = intel_dpd_is_edp(dev);
9718
9719                 if (has_edp_a(dev))
9720                         intel_dp_init(dev, DP_A, PORT_A);
9721
9722                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9723                         /* PCH SDVOB multiplex with HDMIB */
9724                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9725                         if (!found)
9726                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9727                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9728                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9729                 }
9730
9731                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9732                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9733
9734                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9735                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9736
9737                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9738                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9739
9740                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9741                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9742         } else if (IS_VALLEYVIEW(dev)) {
9743                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9744                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9745                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9746                                         PORT_C);
9747                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9748                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9749                                               PORT_C);
9750                 }
9751
9752                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9753                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9754                                         PORT_B);
9755                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9756                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9757                 }
9758
9759                 intel_dsi_init(dev);
9760         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9761                 bool found = false;
9762
9763                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9764                         DRM_DEBUG_KMS("probing SDVOB\n");
9765                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9766                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9767                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9768                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9769                         }
9770
9771                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9772                                 intel_dp_init(dev, DP_B, PORT_B);
9773                 }
9774
9775                 /* Before G4X SDVOC doesn't have its own detect register */
9776
9777                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9778                         DRM_DEBUG_KMS("probing SDVOC\n");
9779                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9780                 }
9781
9782                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9783
9784                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9785                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9786                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9787                         }
9788                         if (SUPPORTS_INTEGRATED_DP(dev))
9789                                 intel_dp_init(dev, DP_C, PORT_C);
9790                 }
9791
9792                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9793                     (I915_READ(DP_D) & DP_DETECTED))
9794                         intel_dp_init(dev, DP_D, PORT_D);
9795         } else if (IS_GEN2(dev))
9796                 intel_dvo_init(dev);
9797
9798         if (SUPPORTS_TV(dev))
9799                 intel_tv_init(dev);
9800
9801         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9802                 encoder->base.possible_crtcs = encoder->crtc_mask;
9803                 encoder->base.possible_clones =
9804                         intel_encoder_clones(encoder);
9805         }
9806
9807         intel_init_pch_refclk(dev);
9808
9809         drm_helper_move_panel_connectors_to_head(dev);
9810 }
9811
9812 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9813 {
9814         drm_framebuffer_cleanup(&fb->base);
9815         drm_gem_object_unreference_unlocked(&fb->obj->base);
9816 }
9817
9818 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9819 {
9820         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9821
9822         intel_framebuffer_fini(intel_fb);
9823         kfree(intel_fb);
9824 }
9825
9826 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9827                                                 struct drm_file *file,
9828                                                 unsigned int *handle)
9829 {
9830         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9831         struct drm_i915_gem_object *obj = intel_fb->obj;
9832
9833         return drm_gem_handle_create(file, &obj->base, handle);
9834 }
9835
9836 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9837         .destroy = intel_user_framebuffer_destroy,
9838         .create_handle = intel_user_framebuffer_create_handle,
9839 };
9840
9841 int intel_framebuffer_init(struct drm_device *dev,
9842                            struct intel_framebuffer *intel_fb,
9843                            struct drm_mode_fb_cmd2 *mode_cmd,
9844                            struct drm_i915_gem_object *obj)
9845 {
9846         int pitch_limit;
9847         int ret;
9848
9849         if (obj->tiling_mode == I915_TILING_Y) {
9850                 DRM_DEBUG("hardware does not support tiling Y\n");
9851                 return -EINVAL;
9852         }
9853
9854         if (mode_cmd->pitches[0] & 63) {
9855                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9856                           mode_cmd->pitches[0]);
9857                 return -EINVAL;
9858         }
9859
9860         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9861                 pitch_limit = 32*1024;
9862         } else if (INTEL_INFO(dev)->gen >= 4) {
9863                 if (obj->tiling_mode)
9864                         pitch_limit = 16*1024;
9865                 else
9866                         pitch_limit = 32*1024;
9867         } else if (INTEL_INFO(dev)->gen >= 3) {
9868                 if (obj->tiling_mode)
9869                         pitch_limit = 8*1024;
9870                 else
9871                         pitch_limit = 16*1024;
9872         } else
9873                 /* XXX DSPC is limited to 4k tiled */
9874                 pitch_limit = 8*1024;
9875
9876         if (mode_cmd->pitches[0] > pitch_limit) {
9877                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9878                           obj->tiling_mode ? "tiled" : "linear",
9879                           mode_cmd->pitches[0], pitch_limit);
9880                 return -EINVAL;
9881         }
9882
9883         if (obj->tiling_mode != I915_TILING_NONE &&
9884             mode_cmd->pitches[0] != obj->stride) {
9885                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9886                           mode_cmd->pitches[0], obj->stride);
9887                 return -EINVAL;
9888         }
9889
9890         /* Reject formats not supported by any plane early. */
9891         switch (mode_cmd->pixel_format) {
9892         case DRM_FORMAT_C8:
9893         case DRM_FORMAT_RGB565:
9894         case DRM_FORMAT_XRGB8888:
9895         case DRM_FORMAT_ARGB8888:
9896                 break;
9897         case DRM_FORMAT_XRGB1555:
9898         case DRM_FORMAT_ARGB1555:
9899                 if (INTEL_INFO(dev)->gen > 3) {
9900                         DRM_DEBUG("unsupported pixel format: %s\n",
9901                                   drm_get_format_name(mode_cmd->pixel_format));
9902                         return -EINVAL;
9903                 }
9904                 break;
9905         case DRM_FORMAT_XBGR8888:
9906         case DRM_FORMAT_ABGR8888:
9907         case DRM_FORMAT_XRGB2101010:
9908         case DRM_FORMAT_ARGB2101010:
9909         case DRM_FORMAT_XBGR2101010:
9910         case DRM_FORMAT_ABGR2101010:
9911                 if (INTEL_INFO(dev)->gen < 4) {
9912                         DRM_DEBUG("unsupported pixel format: %s\n",
9913                                   drm_get_format_name(mode_cmd->pixel_format));
9914                         return -EINVAL;
9915                 }
9916                 break;
9917         case DRM_FORMAT_YUYV:
9918         case DRM_FORMAT_UYVY:
9919         case DRM_FORMAT_YVYU:
9920         case DRM_FORMAT_VYUY:
9921                 if (INTEL_INFO(dev)->gen < 5) {
9922                         DRM_DEBUG("unsupported pixel format: %s\n",
9923                                   drm_get_format_name(mode_cmd->pixel_format));
9924                         return -EINVAL;
9925                 }
9926                 break;
9927         default:
9928                 DRM_DEBUG("unsupported pixel format: %s\n",
9929                           drm_get_format_name(mode_cmd->pixel_format));
9930                 return -EINVAL;
9931         }
9932
9933         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9934         if (mode_cmd->offsets[0] != 0)
9935                 return -EINVAL;
9936
9937         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9938         intel_fb->obj = obj;
9939
9940         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9941         if (ret) {
9942                 DRM_ERROR("framebuffer init failed %d\n", ret);
9943                 return ret;
9944         }
9945
9946         return 0;
9947 }
9948
9949 static struct drm_framebuffer *
9950 intel_user_framebuffer_create(struct drm_device *dev,
9951                               struct drm_file *filp,
9952                               struct drm_mode_fb_cmd2 *mode_cmd)
9953 {
9954         struct drm_i915_gem_object *obj;
9955
9956         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9957                                                 mode_cmd->handles[0]));
9958         if (&obj->base == NULL)
9959                 return ERR_PTR(-ENOENT);
9960
9961         return intel_framebuffer_create(dev, mode_cmd, obj);
9962 }
9963
9964 static const struct drm_mode_config_funcs intel_mode_funcs = {
9965         .fb_create = intel_user_framebuffer_create,
9966         .output_poll_changed = intel_fb_output_poll_changed,
9967 };
9968
9969 /* Set up chip specific display functions */
9970 static void intel_init_display(struct drm_device *dev)
9971 {
9972         struct drm_i915_private *dev_priv = dev->dev_private;
9973
9974         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9975                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9976         else if (IS_VALLEYVIEW(dev))
9977                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9978         else if (IS_PINEVIEW(dev))
9979                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9980         else
9981                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9982
9983         if (HAS_DDI(dev)) {
9984                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9985                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9986                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9987                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9988                 dev_priv->display.off = haswell_crtc_off;
9989                 dev_priv->display.update_plane = ironlake_update_plane;
9990         } else if (HAS_PCH_SPLIT(dev)) {
9991                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9992                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9993                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9994                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9995                 dev_priv->display.off = ironlake_crtc_off;
9996                 dev_priv->display.update_plane = ironlake_update_plane;
9997         } else if (IS_VALLEYVIEW(dev)) {
9998                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9999                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10000                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10001                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10002                 dev_priv->display.off = i9xx_crtc_off;
10003                 dev_priv->display.update_plane = i9xx_update_plane;
10004         } else {
10005                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10006                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10007                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10008                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10009                 dev_priv->display.off = i9xx_crtc_off;
10010                 dev_priv->display.update_plane = i9xx_update_plane;
10011         }
10012
10013         /* Returns the core display clock speed */
10014         if (IS_VALLEYVIEW(dev))
10015                 dev_priv->display.get_display_clock_speed =
10016                         valleyview_get_display_clock_speed;
10017         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10018                 dev_priv->display.get_display_clock_speed =
10019                         i945_get_display_clock_speed;
10020         else if (IS_I915G(dev))
10021                 dev_priv->display.get_display_clock_speed =
10022                         i915_get_display_clock_speed;
10023         else if (IS_I945GM(dev) || IS_845G(dev))
10024                 dev_priv->display.get_display_clock_speed =
10025                         i9xx_misc_get_display_clock_speed;
10026         else if (IS_PINEVIEW(dev))
10027                 dev_priv->display.get_display_clock_speed =
10028                         pnv_get_display_clock_speed;
10029         else if (IS_I915GM(dev))
10030                 dev_priv->display.get_display_clock_speed =
10031                         i915gm_get_display_clock_speed;
10032         else if (IS_I865G(dev))
10033                 dev_priv->display.get_display_clock_speed =
10034                         i865_get_display_clock_speed;
10035         else if (IS_I85X(dev))
10036                 dev_priv->display.get_display_clock_speed =
10037                         i855_get_display_clock_speed;
10038         else /* 852, 830 */
10039                 dev_priv->display.get_display_clock_speed =
10040                         i830_get_display_clock_speed;
10041
10042         if (HAS_PCH_SPLIT(dev)) {
10043                 if (IS_GEN5(dev)) {
10044                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10045                         dev_priv->display.write_eld = ironlake_write_eld;
10046                 } else if (IS_GEN6(dev)) {
10047                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10048                         dev_priv->display.write_eld = ironlake_write_eld;
10049                 } else if (IS_IVYBRIDGE(dev)) {
10050                         /* FIXME: detect B0+ stepping and use auto training */
10051                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10052                         dev_priv->display.write_eld = ironlake_write_eld;
10053                         dev_priv->display.modeset_global_resources =
10054                                 ivb_modeset_global_resources;
10055                 } else if (IS_HASWELL(dev)) {
10056                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10057                         dev_priv->display.write_eld = haswell_write_eld;
10058                         dev_priv->display.modeset_global_resources =
10059                                 haswell_modeset_global_resources;
10060                 }
10061         } else if (IS_G4X(dev)) {
10062                 dev_priv->display.write_eld = g4x_write_eld;
10063         }
10064
10065         /* Default just returns -ENODEV to indicate unsupported */
10066         dev_priv->display.queue_flip = intel_default_queue_flip;
10067
10068         switch (INTEL_INFO(dev)->gen) {
10069         case 2:
10070                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10071                 break;
10072
10073         case 3:
10074                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10075                 break;
10076
10077         case 4:
10078         case 5:
10079                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10080                 break;
10081
10082         case 6:
10083                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10084                 break;
10085         case 7:
10086                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10087                 break;
10088         }
10089 }
10090
10091 /*
10092  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10093  * resume, or other times.  This quirk makes sure that's the case for
10094  * affected systems.
10095  */
10096 static void quirk_pipea_force(struct drm_device *dev)
10097 {
10098         struct drm_i915_private *dev_priv = dev->dev_private;
10099
10100         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10101         DRM_INFO("applying pipe a force quirk\n");
10102 }
10103
10104 /*
10105  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10106  */
10107 static void quirk_ssc_force_disable(struct drm_device *dev)
10108 {
10109         struct drm_i915_private *dev_priv = dev->dev_private;
10110         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10111         DRM_INFO("applying lvds SSC disable quirk\n");
10112 }
10113
10114 /*
10115  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10116  * brightness value
10117  */
10118 static void quirk_invert_brightness(struct drm_device *dev)
10119 {
10120         struct drm_i915_private *dev_priv = dev->dev_private;
10121         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10122         DRM_INFO("applying inverted panel brightness quirk\n");
10123 }
10124
10125 /*
10126  * Some machines (Dell XPS13) suffer broken backlight controls if
10127  * BLM_PCH_PWM_ENABLE is set.
10128  */
10129 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10130 {
10131         struct drm_i915_private *dev_priv = dev->dev_private;
10132         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10133         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10134 }
10135
10136 struct intel_quirk {
10137         int device;
10138         int subsystem_vendor;
10139         int subsystem_device;
10140         void (*hook)(struct drm_device *dev);
10141 };
10142
10143 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10144 struct intel_dmi_quirk {
10145         void (*hook)(struct drm_device *dev);
10146         const struct dmi_system_id (*dmi_id_list)[];
10147 };
10148
10149 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10150 {
10151         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10152         return 1;
10153 }
10154
10155 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10156         {
10157                 .dmi_id_list = &(const struct dmi_system_id[]) {
10158                         {
10159                                 .callback = intel_dmi_reverse_brightness,
10160                                 .ident = "NCR Corporation",
10161                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10162                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10163                                 },
10164                         },
10165                         { }  /* terminating entry */
10166                 },
10167                 .hook = quirk_invert_brightness,
10168         },
10169 };
10170
10171 static struct intel_quirk intel_quirks[] = {
10172         /* HP Mini needs pipe A force quirk (LP: #322104) */
10173         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10174
10175         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10176         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10177
10178         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10179         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10180
10181         /* 830/845 need to leave pipe A & dpll A up */
10182         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10183         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10184
10185         /* Lenovo U160 cannot use SSC on LVDS */
10186         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10187
10188         /* Sony Vaio Y cannot use SSC on LVDS */
10189         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10190
10191         /*
10192          * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10193          * seem to use inverted backlight PWM.
10194          */
10195         { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10196
10197         /* Dell XPS13 HD Sandy Bridge */
10198         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10199         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10200         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10201 };
10202
10203 static void intel_init_quirks(struct drm_device *dev)
10204 {
10205         struct pci_dev *d = dev->pdev;
10206         int i;
10207
10208         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10209                 struct intel_quirk *q = &intel_quirks[i];
10210
10211                 if (d->device == q->device &&
10212                     (d->subsystem_vendor == q->subsystem_vendor ||
10213                      q->subsystem_vendor == PCI_ANY_ID) &&
10214                     (d->subsystem_device == q->subsystem_device ||
10215                      q->subsystem_device == PCI_ANY_ID))
10216                         q->hook(dev);
10217         }
10218         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10219                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10220                         intel_dmi_quirks[i].hook(dev);
10221         }
10222 }
10223
10224 /* Disable the VGA plane that we never use */
10225 static void i915_disable_vga(struct drm_device *dev)
10226 {
10227         struct drm_i915_private *dev_priv = dev->dev_private;
10228         u8 sr1;
10229         u32 vga_reg = i915_vgacntrl_reg(dev);
10230
10231         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10232         outb(SR01, VGA_SR_INDEX);
10233         sr1 = inb(VGA_SR_DATA);
10234         outb(sr1 | 1<<5, VGA_SR_DATA);
10235
10236         /* Disable VGA memory on Intel HD */
10237         if (HAS_PCH_SPLIT(dev)) {
10238                 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10239                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10240                                                    VGA_RSRC_NORMAL_IO |
10241                                                    VGA_RSRC_NORMAL_MEM);
10242         }
10243
10244         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10245         udelay(300);
10246
10247         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10248         POSTING_READ(vga_reg);
10249 }
10250
10251 static void i915_enable_vga(struct drm_device *dev)
10252 {
10253         /* Enable VGA memory on Intel HD */
10254         if (HAS_PCH_SPLIT(dev)) {
10255                 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10256                 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10257                 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10258                                                    VGA_RSRC_LEGACY_MEM |
10259                                                    VGA_RSRC_NORMAL_IO |
10260                                                    VGA_RSRC_NORMAL_MEM);
10261                 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10262         }
10263 }
10264
10265 void intel_modeset_init_hw(struct drm_device *dev)
10266 {
10267         intel_prepare_ddi(dev);
10268
10269         intel_init_clock_gating(dev);
10270
10271         mutex_lock(&dev->struct_mutex);
10272         intel_enable_gt_powersave(dev);
10273         mutex_unlock(&dev->struct_mutex);
10274 }
10275
10276 void intel_modeset_suspend_hw(struct drm_device *dev)
10277 {
10278         intel_suspend_hw(dev);
10279 }
10280
10281 void intel_modeset_init(struct drm_device *dev)
10282 {
10283         struct drm_i915_private *dev_priv = dev->dev_private;
10284         int i, j, ret;
10285
10286         drm_mode_config_init(dev);
10287
10288         dev->mode_config.min_width = 0;
10289         dev->mode_config.min_height = 0;
10290
10291         dev->mode_config.preferred_depth = 24;
10292         dev->mode_config.prefer_shadow = 1;
10293
10294         dev->mode_config.funcs = &intel_mode_funcs;
10295
10296         intel_init_quirks(dev);
10297
10298         intel_init_pm(dev);
10299
10300         if (INTEL_INFO(dev)->num_pipes == 0)
10301                 return;
10302
10303         intel_init_display(dev);
10304
10305         if (IS_GEN2(dev)) {
10306                 dev->mode_config.max_width = 2048;
10307                 dev->mode_config.max_height = 2048;
10308         } else if (IS_GEN3(dev)) {
10309                 dev->mode_config.max_width = 4096;
10310                 dev->mode_config.max_height = 4096;
10311         } else {
10312                 dev->mode_config.max_width = 8192;
10313                 dev->mode_config.max_height = 8192;
10314         }
10315         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10316
10317         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10318                       INTEL_INFO(dev)->num_pipes,
10319                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10320
10321         for_each_pipe(i) {
10322                 intel_crtc_init(dev, i);
10323                 for (j = 0; j < dev_priv->num_plane; j++) {
10324                         ret = intel_plane_init(dev, i, j);
10325                         if (ret)
10326                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10327                                               pipe_name(i), sprite_name(i, j), ret);
10328                 }
10329         }
10330
10331         intel_cpu_pll_init(dev);
10332         intel_shared_dpll_init(dev);
10333
10334         /* Just disable it once at startup */
10335         i915_disable_vga(dev);
10336         intel_setup_outputs(dev);
10337
10338         /* Just in case the BIOS is doing something questionable. */
10339         intel_disable_fbc(dev);
10340 }
10341
10342 static void
10343 intel_connector_break_all_links(struct intel_connector *connector)
10344 {
10345         connector->base.dpms = DRM_MODE_DPMS_OFF;
10346         connector->base.encoder = NULL;
10347         connector->encoder->connectors_active = false;
10348         connector->encoder->base.crtc = NULL;
10349 }
10350
10351 static void intel_enable_pipe_a(struct drm_device *dev)
10352 {
10353         struct intel_connector *connector;
10354         struct drm_connector *crt = NULL;
10355         struct intel_load_detect_pipe load_detect_temp;
10356
10357         /* We can't just switch on the pipe A, we need to set things up with a
10358          * proper mode and output configuration. As a gross hack, enable pipe A
10359          * by enabling the load detect pipe once. */
10360         list_for_each_entry(connector,
10361                             &dev->mode_config.connector_list,
10362                             base.head) {
10363                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10364                         crt = &connector->base;
10365                         break;
10366                 }
10367         }
10368
10369         if (!crt)
10370                 return;
10371
10372         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10373                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10374
10375
10376 }
10377
10378 static bool
10379 intel_check_plane_mapping(struct intel_crtc *crtc)
10380 {
10381         struct drm_device *dev = crtc->base.dev;
10382         struct drm_i915_private *dev_priv = dev->dev_private;
10383         u32 reg, val;
10384
10385         if (INTEL_INFO(dev)->num_pipes == 1)
10386                 return true;
10387
10388         reg = DSPCNTR(!crtc->plane);
10389         val = I915_READ(reg);
10390
10391         if ((val & DISPLAY_PLANE_ENABLE) &&
10392             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10393                 return false;
10394
10395         return true;
10396 }
10397
10398 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10399 {
10400         struct drm_device *dev = crtc->base.dev;
10401         struct drm_i915_private *dev_priv = dev->dev_private;
10402         u32 reg;
10403
10404         /* Clear any frame start delays used for debugging left by the BIOS */
10405         reg = PIPECONF(crtc->config.cpu_transcoder);
10406         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10407
10408         /* We need to sanitize the plane -> pipe mapping first because this will
10409          * disable the crtc (and hence change the state) if it is wrong. Note
10410          * that gen4+ has a fixed plane -> pipe mapping.  */
10411         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10412                 struct intel_connector *connector;
10413                 bool plane;
10414
10415                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10416                               crtc->base.base.id);
10417
10418                 /* Pipe has the wrong plane attached and the plane is active.
10419                  * Temporarily change the plane mapping and disable everything
10420                  * ...  */
10421                 plane = crtc->plane;
10422                 crtc->plane = !plane;
10423                 dev_priv->display.crtc_disable(&crtc->base);
10424                 crtc->plane = plane;
10425
10426                 /* ... and break all links. */
10427                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10428                                     base.head) {
10429                         if (connector->encoder->base.crtc != &crtc->base)
10430                                 continue;
10431
10432                         intel_connector_break_all_links(connector);
10433                 }
10434
10435                 WARN_ON(crtc->active);
10436                 crtc->base.enabled = false;
10437         }
10438
10439         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10440             crtc->pipe == PIPE_A && !crtc->active) {
10441                 /* BIOS forgot to enable pipe A, this mostly happens after
10442                  * resume. Force-enable the pipe to fix this, the update_dpms
10443                  * call below we restore the pipe to the right state, but leave
10444                  * the required bits on. */
10445                 intel_enable_pipe_a(dev);
10446         }
10447
10448         /* Adjust the state of the output pipe according to whether we
10449          * have active connectors/encoders. */
10450         intel_crtc_update_dpms(&crtc->base);
10451
10452         if (crtc->active != crtc->base.enabled) {
10453                 struct intel_encoder *encoder;
10454
10455                 /* This can happen either due to bugs in the get_hw_state
10456                  * functions or because the pipe is force-enabled due to the
10457                  * pipe A quirk. */
10458                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10459                               crtc->base.base.id,
10460                               crtc->base.enabled ? "enabled" : "disabled",
10461                               crtc->active ? "enabled" : "disabled");
10462
10463                 crtc->base.enabled = crtc->active;
10464
10465                 /* Because we only establish the connector -> encoder ->
10466                  * crtc links if something is active, this means the
10467                  * crtc is now deactivated. Break the links. connector
10468                  * -> encoder links are only establish when things are
10469                  *  actually up, hence no need to break them. */
10470                 WARN_ON(crtc->active);
10471
10472                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10473                         WARN_ON(encoder->connectors_active);
10474                         encoder->base.crtc = NULL;
10475                 }
10476         }
10477 }
10478
10479 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10480 {
10481         struct intel_connector *connector;
10482         struct drm_device *dev = encoder->base.dev;
10483
10484         /* We need to check both for a crtc link (meaning that the
10485          * encoder is active and trying to read from a pipe) and the
10486          * pipe itself being active. */
10487         bool has_active_crtc = encoder->base.crtc &&
10488                 to_intel_crtc(encoder->base.crtc)->active;
10489
10490         if (encoder->connectors_active && !has_active_crtc) {
10491                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10492                               encoder->base.base.id,
10493                               drm_get_encoder_name(&encoder->base));
10494
10495                 /* Connector is active, but has no active pipe. This is
10496                  * fallout from our resume register restoring. Disable
10497                  * the encoder manually again. */
10498                 if (encoder->base.crtc) {
10499                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10500                                       encoder->base.base.id,
10501                                       drm_get_encoder_name(&encoder->base));
10502                         encoder->disable(encoder);
10503                 }
10504
10505                 /* Inconsistent output/port/pipe state happens presumably due to
10506                  * a bug in one of the get_hw_state functions. Or someplace else
10507                  * in our code, like the register restore mess on resume. Clamp
10508                  * things to off as a safer default. */
10509                 list_for_each_entry(connector,
10510                                     &dev->mode_config.connector_list,
10511                                     base.head) {
10512                         if (connector->encoder != encoder)
10513                                 continue;
10514
10515                         intel_connector_break_all_links(connector);
10516                 }
10517         }
10518         /* Enabled encoders without active connectors will be fixed in
10519          * the crtc fixup. */
10520 }
10521
10522 void i915_redisable_vga(struct drm_device *dev)
10523 {
10524         struct drm_i915_private *dev_priv = dev->dev_private;
10525         u32 vga_reg = i915_vgacntrl_reg(dev);
10526
10527         /* This function can be called both from intel_modeset_setup_hw_state or
10528          * at a very early point in our resume sequence, where the power well
10529          * structures are not yet restored. Since this function is at a very
10530          * paranoid "someone might have enabled VGA while we were not looking"
10531          * level, just check if the power well is enabled instead of trying to
10532          * follow the "don't touch the power well if we don't need it" policy
10533          * the rest of the driver uses. */
10534         if (HAS_POWER_WELL(dev) &&
10535             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10536                 return;
10537
10538         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10539                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10540                 i915_disable_vga(dev);
10541         }
10542 }
10543
10544 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10545 {
10546         struct drm_i915_private *dev_priv = dev->dev_private;
10547         enum pipe pipe;
10548         struct intel_crtc *crtc;
10549         struct intel_encoder *encoder;
10550         struct intel_connector *connector;
10551         int i;
10552
10553         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10554                             base.head) {
10555                 memset(&crtc->config, 0, sizeof(crtc->config));
10556
10557                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10558                                                                  &crtc->config);
10559
10560                 crtc->base.enabled = crtc->active;
10561
10562                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10563                               crtc->base.base.id,
10564                               crtc->active ? "enabled" : "disabled");
10565         }
10566
10567         /* FIXME: Smash this into the new shared dpll infrastructure. */
10568         if (HAS_DDI(dev))
10569                 intel_ddi_setup_hw_pll_state(dev);
10570
10571         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10572                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10573
10574                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10575                 pll->active = 0;
10576                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10577                                     base.head) {
10578                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10579                                 pll->active++;
10580                 }
10581                 pll->refcount = pll->active;
10582
10583                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10584                               pll->name, pll->refcount, pll->on);
10585         }
10586
10587         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10588                             base.head) {
10589                 pipe = 0;
10590
10591                 if (encoder->get_hw_state(encoder, &pipe)) {
10592                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10593                         encoder->base.crtc = &crtc->base;
10594                         if (encoder->get_config)
10595                                 encoder->get_config(encoder, &crtc->config);
10596                 } else {
10597                         encoder->base.crtc = NULL;
10598                 }
10599
10600                 encoder->connectors_active = false;
10601                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10602                               encoder->base.base.id,
10603                               drm_get_encoder_name(&encoder->base),
10604                               encoder->base.crtc ? "enabled" : "disabled",
10605                               pipe);
10606         }
10607
10608         list_for_each_entry(connector, &dev->mode_config.connector_list,
10609                             base.head) {
10610                 if (connector->get_hw_state(connector)) {
10611                         connector->base.dpms = DRM_MODE_DPMS_ON;
10612                         connector->encoder->connectors_active = true;
10613                         connector->base.encoder = &connector->encoder->base;
10614                 } else {
10615                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10616                         connector->base.encoder = NULL;
10617                 }
10618                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10619                               connector->base.base.id,
10620                               drm_get_connector_name(&connector->base),
10621                               connector->base.encoder ? "enabled" : "disabled");
10622         }
10623 }
10624
10625 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10626  * and i915 state tracking structures. */
10627 void intel_modeset_setup_hw_state(struct drm_device *dev,
10628                                   bool force_restore)
10629 {
10630         struct drm_i915_private *dev_priv = dev->dev_private;
10631         enum pipe pipe;
10632         struct drm_plane *plane;
10633         struct intel_crtc *crtc;
10634         struct intel_encoder *encoder;
10635         int i;
10636
10637         intel_modeset_readout_hw_state(dev);
10638
10639         /*
10640          * Now that we have the config, copy it to each CRTC struct
10641          * Note that this could go away if we move to using crtc_config
10642          * checking everywhere.
10643          */
10644         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10645                             base.head) {
10646                 if (crtc->active && i915_fastboot) {
10647                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10648
10649                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10650                                       crtc->base.base.id);
10651                         drm_mode_debug_printmodeline(&crtc->base.mode);
10652                 }
10653         }
10654
10655         /* HW state is read out, now we need to sanitize this mess. */
10656         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10657                             base.head) {
10658                 intel_sanitize_encoder(encoder);
10659         }
10660
10661         for_each_pipe(pipe) {
10662                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10663                 intel_sanitize_crtc(crtc);
10664                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10665         }
10666
10667         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10668                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10669
10670                 if (!pll->on || pll->active)
10671                         continue;
10672
10673                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10674
10675                 pll->disable(dev_priv, pll);
10676                 pll->on = false;
10677         }
10678
10679         if (force_restore) {
10680                 /*
10681                  * We need to use raw interfaces for restoring state to avoid
10682                  * checking (bogus) intermediate states.
10683                  */
10684                 for_each_pipe(pipe) {
10685                         struct drm_crtc *crtc =
10686                                 dev_priv->pipe_to_crtc_mapping[pipe];
10687
10688                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10689                                          crtc->fb);
10690                 }
10691                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10692                         intel_plane_restore(plane);
10693
10694                 i915_redisable_vga(dev);
10695         } else {
10696                 intel_modeset_update_staged_output_state(dev);
10697         }
10698
10699         intel_modeset_check_state(dev);
10700
10701         drm_mode_config_reset(dev);
10702 }
10703
10704 void intel_modeset_gem_init(struct drm_device *dev)
10705 {
10706         intel_modeset_init_hw(dev);
10707
10708         intel_setup_overlay(dev);
10709
10710         intel_modeset_setup_hw_state(dev, false);
10711 }
10712
10713 void intel_modeset_cleanup(struct drm_device *dev)
10714 {
10715         struct drm_i915_private *dev_priv = dev->dev_private;
10716         struct drm_crtc *crtc;
10717
10718         /*
10719          * Interrupts and polling as the first thing to avoid creating havoc.
10720          * Too much stuff here (turning of rps, connectors, ...) would
10721          * experience fancy races otherwise.
10722          */
10723         drm_irq_uninstall(dev);
10724         cancel_work_sync(&dev_priv->hotplug_work);
10725         /*
10726          * Due to the hpd irq storm handling the hotplug work can re-arm the
10727          * poll handlers. Hence disable polling after hpd handling is shut down.
10728          */
10729         drm_kms_helper_poll_fini(dev);
10730
10731         mutex_lock(&dev->struct_mutex);
10732
10733         intel_unregister_dsm_handler();
10734
10735         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10736                 /* Skip inactive CRTCs */
10737                 if (!crtc->fb)
10738                         continue;
10739
10740                 intel_increase_pllclock(crtc);
10741         }
10742
10743         intel_disable_fbc(dev);
10744
10745         i915_enable_vga(dev);
10746
10747         intel_disable_gt_powersave(dev);
10748
10749         ironlake_teardown_rc6(dev);
10750
10751         mutex_unlock(&dev->struct_mutex);
10752
10753         /* flush any delayed tasks or pending work */
10754         flush_scheduled_work();
10755
10756         /* destroy backlight, if any, before the connectors */
10757         intel_panel_destroy_backlight(dev);
10758
10759         drm_mode_config_cleanup(dev);
10760
10761         intel_cleanup_overlay(dev);
10762 }
10763
10764 /*
10765  * Return which encoder is currently attached for connector.
10766  */
10767 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10768 {
10769         return &intel_attached_encoder(connector)->base;
10770 }
10771
10772 void intel_connector_attach_encoder(struct intel_connector *connector,
10773                                     struct intel_encoder *encoder)
10774 {
10775         connector->encoder = encoder;
10776         drm_mode_connector_attach_encoder(&connector->base,
10777                                           &encoder->base);
10778 }
10779
10780 /*
10781  * set vga decode state - true == enable VGA decode
10782  */
10783 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10784 {
10785         struct drm_i915_private *dev_priv = dev->dev_private;
10786         u16 gmch_ctrl;
10787
10788         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10789         if (state)
10790                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10791         else
10792                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10793         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10794         return 0;
10795 }
10796
10797 struct intel_display_error_state {
10798
10799         u32 power_well_driver;
10800
10801         int num_transcoders;
10802
10803         struct intel_cursor_error_state {
10804                 u32 control;
10805                 u32 position;
10806                 u32 base;
10807                 u32 size;
10808         } cursor[I915_MAX_PIPES];
10809
10810         struct intel_pipe_error_state {
10811                 u32 source;
10812         } pipe[I915_MAX_PIPES];
10813
10814         struct intel_plane_error_state {
10815                 u32 control;
10816                 u32 stride;
10817                 u32 size;
10818                 u32 pos;
10819                 u32 addr;
10820                 u32 surface;
10821                 u32 tile_offset;
10822         } plane[I915_MAX_PIPES];
10823
10824         struct intel_transcoder_error_state {
10825                 enum transcoder cpu_transcoder;
10826
10827                 u32 conf;
10828
10829                 u32 htotal;
10830                 u32 hblank;
10831                 u32 hsync;
10832                 u32 vtotal;
10833                 u32 vblank;
10834                 u32 vsync;
10835         } transcoder[4];
10836 };
10837
10838 struct intel_display_error_state *
10839 intel_display_capture_error_state(struct drm_device *dev)
10840 {
10841         drm_i915_private_t *dev_priv = dev->dev_private;
10842         struct intel_display_error_state *error;
10843         int transcoders[] = {
10844                 TRANSCODER_A,
10845                 TRANSCODER_B,
10846                 TRANSCODER_C,
10847                 TRANSCODER_EDP,
10848         };
10849         int i;
10850
10851         if (INTEL_INFO(dev)->num_pipes == 0)
10852                 return NULL;
10853
10854         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10855         if (error == NULL)
10856                 return NULL;
10857
10858         if (HAS_POWER_WELL(dev))
10859                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10860
10861         for_each_pipe(i) {
10862                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10863                         error->cursor[i].control = I915_READ(CURCNTR(i));
10864                         error->cursor[i].position = I915_READ(CURPOS(i));
10865                         error->cursor[i].base = I915_READ(CURBASE(i));
10866                 } else {
10867                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10868                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10869                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10870                 }
10871
10872                 error->plane[i].control = I915_READ(DSPCNTR(i));
10873                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10874                 if (INTEL_INFO(dev)->gen <= 3) {
10875                         error->plane[i].size = I915_READ(DSPSIZE(i));
10876                         error->plane[i].pos = I915_READ(DSPPOS(i));
10877                 }
10878                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10879                         error->plane[i].addr = I915_READ(DSPADDR(i));
10880                 if (INTEL_INFO(dev)->gen >= 4) {
10881                         error->plane[i].surface = I915_READ(DSPSURF(i));
10882                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10883                 }
10884
10885                 error->pipe[i].source = I915_READ(PIPESRC(i));
10886         }
10887
10888         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10889         if (HAS_DDI(dev_priv->dev))
10890                 error->num_transcoders++; /* Account for eDP. */
10891
10892         for (i = 0; i < error->num_transcoders; i++) {
10893                 enum transcoder cpu_transcoder = transcoders[i];
10894
10895                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10896
10897                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10898                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10899                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10900                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10901                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10902                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10903                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10904         }
10905
10906         /* In the code above we read the registers without checking if the power
10907          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10908          * prevent the next I915_WRITE from detecting it and printing an error
10909          * message. */
10910         intel_uncore_clear_errors(dev);
10911
10912         return error;
10913 }
10914
10915 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10916
10917 void
10918 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10919                                 struct drm_device *dev,
10920                                 struct intel_display_error_state *error)
10921 {
10922         int i;
10923
10924         if (!error)
10925                 return;
10926
10927         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10928         if (HAS_POWER_WELL(dev))
10929                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10930                            error->power_well_driver);
10931         for_each_pipe(i) {
10932                 err_printf(m, "Pipe [%d]:\n", i);
10933                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10934
10935                 err_printf(m, "Plane [%d]:\n", i);
10936                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10937                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10938                 if (INTEL_INFO(dev)->gen <= 3) {
10939                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10940                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10941                 }
10942                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10943                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10944                 if (INTEL_INFO(dev)->gen >= 4) {
10945                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10946                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10947                 }
10948
10949                 err_printf(m, "Cursor [%d]:\n", i);
10950                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10951                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10952                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10953         }
10954
10955         for (i = 0; i < error->num_transcoders; i++) {
10956                 err_printf(m, "  CPU transcoder: %c\n",
10957                            transcoder_name(error->transcoder[i].cpu_transcoder));
10958                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10959                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10960                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10961                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10962                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10963                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10964                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10965         }
10966 }