]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
x86/reboot: Sort reboot DMI quirks by vendor
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74         switch (max_link_bw) {
75         case DP_LINK_BW_1_62:
76         case DP_LINK_BW_2_7:
77                 break;
78         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
79                 max_link_bw = DP_LINK_BW_2_7;
80                 break;
81         default:
82                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
83                      max_link_bw);
84                 max_link_bw = DP_LINK_BW_1_62;
85                 break;
86         }
87         return max_link_bw;
88 }
89
90 /*
91  * The units on the numbers in the next two are... bizarre.  Examples will
92  * make it clearer; this one parallels an example in the eDP spec.
93  *
94  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
95  *
96  *     270000 * 1 * 8 / 10 == 216000
97  *
98  * The actual data capacity of that configuration is 2.16Gbit/s, so the
99  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
100  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
101  * 119000.  At 18bpp that's 2142000 kilobits per second.
102  *
103  * Thus the strange-looking division by 10 in intel_dp_link_required, to
104  * get the result in decakilobits instead of kilobits.
105  */
106
107 static int
108 intel_dp_link_required(int pixel_clock, int bpp)
109 {
110         return (pixel_clock * bpp + 9) / 10;
111 }
112
113 static int
114 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
115 {
116         return (max_link_clock * max_lanes * 8) / 10;
117 }
118
119 static int
120 intel_dp_mode_valid(struct drm_connector *connector,
121                     struct drm_display_mode *mode)
122 {
123         struct intel_dp *intel_dp = intel_attached_dp(connector);
124         struct intel_connector *intel_connector = to_intel_connector(connector);
125         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
126         int target_clock = mode->clock;
127         int max_rate, mode_rate, max_lanes, max_link_clock;
128
129         if (is_edp(intel_dp) && fixed_mode) {
130                 if (mode->hdisplay > fixed_mode->hdisplay)
131                         return MODE_PANEL;
132
133                 if (mode->vdisplay > fixed_mode->vdisplay)
134                         return MODE_PANEL;
135
136                 target_clock = fixed_mode->clock;
137         }
138
139         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
140         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
141
142         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
143         mode_rate = intel_dp_link_required(target_clock, 18);
144
145         if (mode_rate > max_rate)
146                 return MODE_CLOCK_HIGH;
147
148         if (mode->clock < 10000)
149                 return MODE_CLOCK_LOW;
150
151         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
152                 return MODE_H_ILLEGAL;
153
154         return MODE_OK;
155 }
156
157 static uint32_t
158 pack_aux(uint8_t *src, int src_bytes)
159 {
160         int     i;
161         uint32_t v = 0;
162
163         if (src_bytes > 4)
164                 src_bytes = 4;
165         for (i = 0; i < src_bytes; i++)
166                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
167         return v;
168 }
169
170 static void
171 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172 {
173         int i;
174         if (dst_bytes > 4)
175                 dst_bytes = 4;
176         for (i = 0; i < dst_bytes; i++)
177                 dst[i] = src >> ((3-i) * 8);
178 }
179
180 /* hrawclock is 1/4 the FSB frequency */
181 static int
182 intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
215 {
216         struct drm_device *dev = intel_dp_to_dev(intel_dp);
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         u32 pp_stat_reg;
219
220         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
221         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
222 }
223
224 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
225 {
226         struct drm_device *dev = intel_dp_to_dev(intel_dp);
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         u32 pp_ctrl_reg;
229
230         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
231         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
232 }
233
234 static void
235 intel_dp_check_edp(struct intel_dp *intel_dp)
236 {
237         struct drm_device *dev = intel_dp_to_dev(intel_dp);
238         struct drm_i915_private *dev_priv = dev->dev_private;
239         u32 pp_stat_reg, pp_ctrl_reg;
240
241         if (!is_edp(intel_dp))
242                 return;
243
244         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
245         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
246
247         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
248                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
249                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
250                                 I915_READ(pp_stat_reg),
251                                 I915_READ(pp_ctrl_reg));
252         }
253 }
254
255 static uint32_t
256 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
257 {
258         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
259         struct drm_device *dev = intel_dig_port->base.base.dev;
260         struct drm_i915_private *dev_priv = dev->dev_private;
261         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
262         uint32_t status;
263         bool done;
264
265 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
266         if (has_aux_irq)
267                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
268                                           msecs_to_jiffies_timeout(10));
269         else
270                 done = wait_for_atomic(C, 10) == 0;
271         if (!done)
272                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
273                           has_aux_irq);
274 #undef C
275
276         return status;
277 }
278
279 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
280                                       int index)
281 {
282         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283         struct drm_device *dev = intel_dig_port->base.base.dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285
286         /* The clock divider is based off the hrawclk,
287          * and would like to run at 2MHz. So, take the
288          * hrawclk value and divide by 2 and use that
289          *
290          * Note that PCH attached eDP panels should use a 125MHz input
291          * clock divider.
292          */
293         if (IS_VALLEYVIEW(dev)) {
294                 return index ? 0 : 100;
295         } else if (intel_dig_port->port == PORT_A) {
296                 if (index)
297                         return 0;
298                 if (HAS_DDI(dev))
299                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
300                 else if (IS_GEN6(dev) || IS_GEN7(dev))
301                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
302                 else
303                         return 225; /* eDP input clock at 450Mhz */
304         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
305                 /* Workaround for non-ULT HSW */
306                 switch (index) {
307                 case 0: return 63;
308                 case 1: return 72;
309                 default: return 0;
310                 }
311         } else if (HAS_PCH_SPLIT(dev)) {
312                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
313         } else {
314                 return index ? 0 :intel_hrawclk(dev) / 2;
315         }
316 }
317
318 static int
319 intel_dp_aux_ch(struct intel_dp *intel_dp,
320                 uint8_t *send, int send_bytes,
321                 uint8_t *recv, int recv_size)
322 {
323         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324         struct drm_device *dev = intel_dig_port->base.base.dev;
325         struct drm_i915_private *dev_priv = dev->dev_private;
326         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
327         uint32_t ch_data = ch_ctl + 4;
328         uint32_t aux_clock_divider;
329         int i, ret, recv_bytes;
330         uint32_t status;
331         int try, precharge, clock = 0;
332         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
333
334         /* dp aux is extremely sensitive to irq latency, hence request the
335          * lowest possible wakeup latency and so prevent the cpu from going into
336          * deep sleep states.
337          */
338         pm_qos_update_request(&dev_priv->pm_qos, 0);
339
340         intel_dp_check_edp(intel_dp);
341
342         if (IS_GEN6(dev))
343                 precharge = 3;
344         else
345                 precharge = 5;
346
347         intel_aux_display_runtime_get(dev_priv);
348
349         /* Try to wait for any previous AUX channel activity */
350         for (try = 0; try < 3; try++) {
351                 status = I915_READ_NOTRACE(ch_ctl);
352                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
353                         break;
354                 msleep(1);
355         }
356
357         if (try == 3) {
358                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
359                      I915_READ(ch_ctl));
360                 ret = -EBUSY;
361                 goto out;
362         }
363
364         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
365                 /* Must try at least 3 times according to DP spec */
366                 for (try = 0; try < 5; try++) {
367                         /* Load the send data into the aux channel data registers */
368                         for (i = 0; i < send_bytes; i += 4)
369                                 I915_WRITE(ch_data + i,
370                                            pack_aux(send + i, send_bytes - i));
371
372                         /* Send the command and wait for it to complete */
373                         I915_WRITE(ch_ctl,
374                                    DP_AUX_CH_CTL_SEND_BUSY |
375                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
376                                    DP_AUX_CH_CTL_TIME_OUT_400us |
377                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
378                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
379                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
380                                    DP_AUX_CH_CTL_DONE |
381                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
382                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
383
384                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
385
386                         /* Clear done status and any errors */
387                         I915_WRITE(ch_ctl,
388                                    status |
389                                    DP_AUX_CH_CTL_DONE |
390                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
391                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
392
393                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
394                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
395                                 continue;
396                         if (status & DP_AUX_CH_CTL_DONE)
397                                 break;
398                 }
399                 if (status & DP_AUX_CH_CTL_DONE)
400                         break;
401         }
402
403         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
404                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
405                 ret = -EBUSY;
406                 goto out;
407         }
408
409         /* Check for timeout or receive error.
410          * Timeouts occur when the sink is not connected
411          */
412         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
413                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
414                 ret = -EIO;
415                 goto out;
416         }
417
418         /* Timeouts occur when the device isn't connected, so they're
419          * "normal" -- don't fill the kernel log with these */
420         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
421                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
422                 ret = -ETIMEDOUT;
423                 goto out;
424         }
425
426         /* Unload any bytes sent back from the other side */
427         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
428                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
429         if (recv_bytes > recv_size)
430                 recv_bytes = recv_size;
431
432         for (i = 0; i < recv_bytes; i += 4)
433                 unpack_aux(I915_READ(ch_data + i),
434                            recv + i, recv_bytes - i);
435
436         ret = recv_bytes;
437 out:
438         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
439         intel_aux_display_runtime_put(dev_priv);
440
441         return ret;
442 }
443
444 /* Write data to the aux channel in native mode */
445 static int
446 intel_dp_aux_native_write(struct intel_dp *intel_dp,
447                           uint16_t address, uint8_t *send, int send_bytes)
448 {
449         int ret;
450         uint8_t msg[20];
451         int msg_bytes;
452         uint8_t ack;
453
454         intel_dp_check_edp(intel_dp);
455         if (send_bytes > 16)
456                 return -1;
457         msg[0] = AUX_NATIVE_WRITE << 4;
458         msg[1] = address >> 8;
459         msg[2] = address & 0xff;
460         msg[3] = send_bytes - 1;
461         memcpy(&msg[4], send, send_bytes);
462         msg_bytes = send_bytes + 4;
463         for (;;) {
464                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
465                 if (ret < 0)
466                         return ret;
467                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
468                         break;
469                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
470                         udelay(100);
471                 else
472                         return -EIO;
473         }
474         return send_bytes;
475 }
476
477 /* Write a single byte to the aux channel in native mode */
478 static int
479 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
480                             uint16_t address, uint8_t byte)
481 {
482         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
483 }
484
485 /* read bytes from a native aux channel */
486 static int
487 intel_dp_aux_native_read(struct intel_dp *intel_dp,
488                          uint16_t address, uint8_t *recv, int recv_bytes)
489 {
490         uint8_t msg[4];
491         int msg_bytes;
492         uint8_t reply[20];
493         int reply_bytes;
494         uint8_t ack;
495         int ret;
496
497         intel_dp_check_edp(intel_dp);
498         msg[0] = AUX_NATIVE_READ << 4;
499         msg[1] = address >> 8;
500         msg[2] = address & 0xff;
501         msg[3] = recv_bytes - 1;
502
503         msg_bytes = 4;
504         reply_bytes = recv_bytes + 1;
505
506         for (;;) {
507                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
508                                       reply, reply_bytes);
509                 if (ret == 0)
510                         return -EPROTO;
511                 if (ret < 0)
512                         return ret;
513                 ack = reply[0];
514                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
515                         memcpy(recv, reply + 1, ret - 1);
516                         return ret - 1;
517                 }
518                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
519                         udelay(100);
520                 else
521                         return -EIO;
522         }
523 }
524
525 static int
526 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
527                     uint8_t write_byte, uint8_t *read_byte)
528 {
529         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
530         struct intel_dp *intel_dp = container_of(adapter,
531                                                 struct intel_dp,
532                                                 adapter);
533         uint16_t address = algo_data->address;
534         uint8_t msg[5];
535         uint8_t reply[2];
536         unsigned retry;
537         int msg_bytes;
538         int reply_bytes;
539         int ret;
540
541         intel_dp_check_edp(intel_dp);
542         /* Set up the command byte */
543         if (mode & MODE_I2C_READ)
544                 msg[0] = AUX_I2C_READ << 4;
545         else
546                 msg[0] = AUX_I2C_WRITE << 4;
547
548         if (!(mode & MODE_I2C_STOP))
549                 msg[0] |= AUX_I2C_MOT << 4;
550
551         msg[1] = address >> 8;
552         msg[2] = address;
553
554         switch (mode) {
555         case MODE_I2C_WRITE:
556                 msg[3] = 0;
557                 msg[4] = write_byte;
558                 msg_bytes = 5;
559                 reply_bytes = 1;
560                 break;
561         case MODE_I2C_READ:
562                 msg[3] = 0;
563                 msg_bytes = 4;
564                 reply_bytes = 2;
565                 break;
566         default:
567                 msg_bytes = 3;
568                 reply_bytes = 1;
569                 break;
570         }
571
572         for (retry = 0; retry < 5; retry++) {
573                 ret = intel_dp_aux_ch(intel_dp,
574                                       msg, msg_bytes,
575                                       reply, reply_bytes);
576                 if (ret < 0) {
577                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
578                         return ret;
579                 }
580
581                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
582                 case AUX_NATIVE_REPLY_ACK:
583                         /* I2C-over-AUX Reply field is only valid
584                          * when paired with AUX ACK.
585                          */
586                         break;
587                 case AUX_NATIVE_REPLY_NACK:
588                         DRM_DEBUG_KMS("aux_ch native nack\n");
589                         return -EREMOTEIO;
590                 case AUX_NATIVE_REPLY_DEFER:
591                         udelay(100);
592                         continue;
593                 default:
594                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
595                                   reply[0]);
596                         return -EREMOTEIO;
597                 }
598
599                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
600                 case AUX_I2C_REPLY_ACK:
601                         if (mode == MODE_I2C_READ) {
602                                 *read_byte = reply[1];
603                         }
604                         return reply_bytes - 1;
605                 case AUX_I2C_REPLY_NACK:
606                         DRM_DEBUG_KMS("aux_i2c nack\n");
607                         return -EREMOTEIO;
608                 case AUX_I2C_REPLY_DEFER:
609                         DRM_DEBUG_KMS("aux_i2c defer\n");
610                         udelay(100);
611                         break;
612                 default:
613                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
614                         return -EREMOTEIO;
615                 }
616         }
617
618         DRM_ERROR("too many retries, giving up\n");
619         return -EREMOTEIO;
620 }
621
622 static int
623 intel_dp_i2c_init(struct intel_dp *intel_dp,
624                   struct intel_connector *intel_connector, const char *name)
625 {
626         int     ret;
627
628         DRM_DEBUG_KMS("i2c_init %s\n", name);
629         intel_dp->algo.running = false;
630         intel_dp->algo.address = 0;
631         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
632
633         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
634         intel_dp->adapter.owner = THIS_MODULE;
635         intel_dp->adapter.class = I2C_CLASS_DDC;
636         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
637         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
638         intel_dp->adapter.algo_data = &intel_dp->algo;
639         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
640
641         ironlake_edp_panel_vdd_on(intel_dp);
642         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
643         ironlake_edp_panel_vdd_off(intel_dp, false);
644         return ret;
645 }
646
647 static void
648 intel_dp_set_clock(struct intel_encoder *encoder,
649                    struct intel_crtc_config *pipe_config, int link_bw)
650 {
651         struct drm_device *dev = encoder->base.dev;
652
653         if (IS_G4X(dev)) {
654                 if (link_bw == DP_LINK_BW_1_62) {
655                         pipe_config->dpll.p1 = 2;
656                         pipe_config->dpll.p2 = 10;
657                         pipe_config->dpll.n = 2;
658                         pipe_config->dpll.m1 = 23;
659                         pipe_config->dpll.m2 = 8;
660                 } else {
661                         pipe_config->dpll.p1 = 1;
662                         pipe_config->dpll.p2 = 10;
663                         pipe_config->dpll.n = 1;
664                         pipe_config->dpll.m1 = 14;
665                         pipe_config->dpll.m2 = 2;
666                 }
667                 pipe_config->clock_set = true;
668         } else if (IS_HASWELL(dev)) {
669                 /* Haswell has special-purpose DP DDI clocks. */
670         } else if (HAS_PCH_SPLIT(dev)) {
671                 if (link_bw == DP_LINK_BW_1_62) {
672                         pipe_config->dpll.n = 1;
673                         pipe_config->dpll.p1 = 2;
674                         pipe_config->dpll.p2 = 10;
675                         pipe_config->dpll.m1 = 12;
676                         pipe_config->dpll.m2 = 9;
677                 } else {
678                         pipe_config->dpll.n = 2;
679                         pipe_config->dpll.p1 = 1;
680                         pipe_config->dpll.p2 = 10;
681                         pipe_config->dpll.m1 = 14;
682                         pipe_config->dpll.m2 = 8;
683                 }
684                 pipe_config->clock_set = true;
685         } else if (IS_VALLEYVIEW(dev)) {
686                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
687         }
688 }
689
690 bool
691 intel_dp_compute_config(struct intel_encoder *encoder,
692                         struct intel_crtc_config *pipe_config)
693 {
694         struct drm_device *dev = encoder->base.dev;
695         struct drm_i915_private *dev_priv = dev->dev_private;
696         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
697         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
698         enum port port = dp_to_dig_port(intel_dp)->port;
699         struct intel_crtc *intel_crtc = encoder->new_crtc;
700         struct intel_connector *intel_connector = intel_dp->attached_connector;
701         int lane_count, clock;
702         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
703         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
704         int bpp, mode_rate;
705         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
706         int link_avail, link_clock;
707
708         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
709                 pipe_config->has_pch_encoder = true;
710
711         pipe_config->has_dp_encoder = true;
712
713         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
714                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
715                                        adjusted_mode);
716                 if (!HAS_PCH_SPLIT(dev))
717                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
718                                                  intel_connector->panel.fitting_mode);
719                 else
720                         intel_pch_panel_fitting(intel_crtc, pipe_config,
721                                                 intel_connector->panel.fitting_mode);
722         }
723
724         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
725                 return false;
726
727         DRM_DEBUG_KMS("DP link computation with max lane count %i "
728                       "max bw %02x pixel clock %iKHz\n",
729                       max_lane_count, bws[max_clock], adjusted_mode->clock);
730
731         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
732          * bpc in between. */
733         bpp = pipe_config->pipe_bpp;
734         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
735                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
736                               dev_priv->vbt.edp_bpp);
737                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
738         }
739
740         for (; bpp >= 6*3; bpp -= 2*3) {
741                 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
742
743                 for (clock = 0; clock <= max_clock; clock++) {
744                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
745                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
746                                 link_avail = intel_dp_max_data_rate(link_clock,
747                                                                     lane_count);
748
749                                 if (mode_rate <= link_avail) {
750                                         goto found;
751                                 }
752                         }
753                 }
754         }
755
756         return false;
757
758 found:
759         if (intel_dp->color_range_auto) {
760                 /*
761                  * See:
762                  * CEA-861-E - 5.1 Default Encoding Parameters
763                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
764                  */
765                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
766                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
767                 else
768                         intel_dp->color_range = 0;
769         }
770
771         if (intel_dp->color_range)
772                 pipe_config->limited_color_range = true;
773
774         intel_dp->link_bw = bws[clock];
775         intel_dp->lane_count = lane_count;
776         pipe_config->pipe_bpp = bpp;
777         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
778
779         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
780                       intel_dp->link_bw, intel_dp->lane_count,
781                       pipe_config->port_clock, bpp);
782         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
783                       mode_rate, link_avail);
784
785         intel_link_compute_m_n(bpp, lane_count,
786                                adjusted_mode->clock, pipe_config->port_clock,
787                                &pipe_config->dp_m_n);
788
789         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
790
791         return true;
792 }
793
794 void intel_dp_init_link_config(struct intel_dp *intel_dp)
795 {
796         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
797         intel_dp->link_configuration[0] = intel_dp->link_bw;
798         intel_dp->link_configuration[1] = intel_dp->lane_count;
799         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
800         /*
801          * Check for DPCD version > 1.1 and enhanced framing support
802          */
803         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
804             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
805                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
806         }
807 }
808
809 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
810 {
811         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
812         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
813         struct drm_device *dev = crtc->base.dev;
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         u32 dpa_ctl;
816
817         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
818         dpa_ctl = I915_READ(DP_A);
819         dpa_ctl &= ~DP_PLL_FREQ_MASK;
820
821         if (crtc->config.port_clock == 162000) {
822                 /* For a long time we've carried around a ILK-DevA w/a for the
823                  * 160MHz clock. If we're really unlucky, it's still required.
824                  */
825                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
826                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
827                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
828         } else {
829                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
830                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
831         }
832
833         I915_WRITE(DP_A, dpa_ctl);
834
835         POSTING_READ(DP_A);
836         udelay(500);
837 }
838
839 static void intel_dp_mode_set(struct intel_encoder *encoder)
840 {
841         struct drm_device *dev = encoder->base.dev;
842         struct drm_i915_private *dev_priv = dev->dev_private;
843         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
844         enum port port = dp_to_dig_port(intel_dp)->port;
845         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
846         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
847
848         /*
849          * There are four kinds of DP registers:
850          *
851          *      IBX PCH
852          *      SNB CPU
853          *      IVB CPU
854          *      CPT PCH
855          *
856          * IBX PCH and CPU are the same for almost everything,
857          * except that the CPU DP PLL is configured in this
858          * register
859          *
860          * CPT PCH is quite different, having many bits moved
861          * to the TRANS_DP_CTL register instead. That
862          * configuration happens (oddly) in ironlake_pch_enable
863          */
864
865         /* Preserve the BIOS-computed detected bit. This is
866          * supposed to be read-only.
867          */
868         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
869
870         /* Handle DP bits in common between all three register formats */
871         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
872         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
873
874         if (intel_dp->has_audio) {
875                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
876                                  pipe_name(crtc->pipe));
877                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
878                 intel_write_eld(&encoder->base, adjusted_mode);
879         }
880
881         intel_dp_init_link_config(intel_dp);
882
883         /* Split out the IBX/CPU vs CPT settings */
884
885         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
886                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
887                         intel_dp->DP |= DP_SYNC_HS_HIGH;
888                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
889                         intel_dp->DP |= DP_SYNC_VS_HIGH;
890                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
891
892                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
893                         intel_dp->DP |= DP_ENHANCED_FRAMING;
894
895                 intel_dp->DP |= crtc->pipe << 29;
896         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
897                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
898                         intel_dp->DP |= intel_dp->color_range;
899
900                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
901                         intel_dp->DP |= DP_SYNC_HS_HIGH;
902                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
903                         intel_dp->DP |= DP_SYNC_VS_HIGH;
904                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
905
906                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
907                         intel_dp->DP |= DP_ENHANCED_FRAMING;
908
909                 if (crtc->pipe == 1)
910                         intel_dp->DP |= DP_PIPEB_SELECT;
911         } else {
912                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
913         }
914
915         if (port == PORT_A && !IS_VALLEYVIEW(dev))
916                 ironlake_set_pll_cpu_edp(intel_dp);
917 }
918
919 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
920 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
921
922 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
923 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
924
925 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
926 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
927
928 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
929                                        u32 mask,
930                                        u32 value)
931 {
932         struct drm_device *dev = intel_dp_to_dev(intel_dp);
933         struct drm_i915_private *dev_priv = dev->dev_private;
934         u32 pp_stat_reg, pp_ctrl_reg;
935
936         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
937         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
938
939         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
940                         mask, value,
941                         I915_READ(pp_stat_reg),
942                         I915_READ(pp_ctrl_reg));
943
944         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
945                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
946                                 I915_READ(pp_stat_reg),
947                                 I915_READ(pp_ctrl_reg));
948         }
949 }
950
951 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
952 {
953         DRM_DEBUG_KMS("Wait for panel power on\n");
954         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
955 }
956
957 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
958 {
959         DRM_DEBUG_KMS("Wait for panel power off time\n");
960         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
961 }
962
963 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
964 {
965         DRM_DEBUG_KMS("Wait for panel power cycle\n");
966         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
967 }
968
969
970 /* Read the current pp_control value, unlocking the register if it
971  * is locked
972  */
973
974 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
975 {
976         struct drm_device *dev = intel_dp_to_dev(intel_dp);
977         struct drm_i915_private *dev_priv = dev->dev_private;
978         u32 control;
979         u32 pp_ctrl_reg;
980
981         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
982         control = I915_READ(pp_ctrl_reg);
983
984         control &= ~PANEL_UNLOCK_MASK;
985         control |= PANEL_UNLOCK_REGS;
986         return control;
987 }
988
989 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
990 {
991         struct drm_device *dev = intel_dp_to_dev(intel_dp);
992         struct drm_i915_private *dev_priv = dev->dev_private;
993         u32 pp;
994         u32 pp_stat_reg, pp_ctrl_reg;
995
996         if (!is_edp(intel_dp))
997                 return;
998         DRM_DEBUG_KMS("Turn eDP VDD on\n");
999
1000         WARN(intel_dp->want_panel_vdd,
1001              "eDP VDD already requested on\n");
1002
1003         intel_dp->want_panel_vdd = true;
1004
1005         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1006                 DRM_DEBUG_KMS("eDP VDD already on\n");
1007                 return;
1008         }
1009
1010         if (!ironlake_edp_have_panel_power(intel_dp))
1011                 ironlake_wait_panel_power_cycle(intel_dp);
1012
1013         pp = ironlake_get_pp_control(intel_dp);
1014         pp |= EDP_FORCE_VDD;
1015
1016         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1017         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1018
1019         I915_WRITE(pp_ctrl_reg, pp);
1020         POSTING_READ(pp_ctrl_reg);
1021         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1022                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1023         /*
1024          * If the panel wasn't on, delay before accessing aux channel
1025          */
1026         if (!ironlake_edp_have_panel_power(intel_dp)) {
1027                 DRM_DEBUG_KMS("eDP was not running\n");
1028                 msleep(intel_dp->panel_power_up_delay);
1029         }
1030 }
1031
1032 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1033 {
1034         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u32 pp;
1037         u32 pp_stat_reg, pp_ctrl_reg;
1038
1039         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1040
1041         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1042                 pp = ironlake_get_pp_control(intel_dp);
1043                 pp &= ~EDP_FORCE_VDD;
1044
1045                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1046                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1047
1048                 I915_WRITE(pp_ctrl_reg, pp);
1049                 POSTING_READ(pp_ctrl_reg);
1050
1051                 /* Make sure sequencer is idle before allowing subsequent activity */
1052                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1053                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1054                 msleep(intel_dp->panel_power_down_delay);
1055         }
1056 }
1057
1058 static void ironlake_panel_vdd_work(struct work_struct *__work)
1059 {
1060         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1061                                                  struct intel_dp, panel_vdd_work);
1062         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1063
1064         mutex_lock(&dev->mode_config.mutex);
1065         ironlake_panel_vdd_off_sync(intel_dp);
1066         mutex_unlock(&dev->mode_config.mutex);
1067 }
1068
1069 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1070 {
1071         if (!is_edp(intel_dp))
1072                 return;
1073
1074         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1075         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1076
1077         intel_dp->want_panel_vdd = false;
1078
1079         if (sync) {
1080                 ironlake_panel_vdd_off_sync(intel_dp);
1081         } else {
1082                 /*
1083                  * Queue the timer to fire a long
1084                  * time from now (relative to the power down delay)
1085                  * to keep the panel power up across a sequence of operations
1086                  */
1087                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1088                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1089         }
1090 }
1091
1092 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1093 {
1094         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         u32 pp;
1097         u32 pp_ctrl_reg;
1098
1099         if (!is_edp(intel_dp))
1100                 return;
1101
1102         DRM_DEBUG_KMS("Turn eDP power on\n");
1103
1104         if (ironlake_edp_have_panel_power(intel_dp)) {
1105                 DRM_DEBUG_KMS("eDP power already on\n");
1106                 return;
1107         }
1108
1109         ironlake_wait_panel_power_cycle(intel_dp);
1110
1111         pp = ironlake_get_pp_control(intel_dp);
1112         if (IS_GEN5(dev)) {
1113                 /* ILK workaround: disable reset around power sequence */
1114                 pp &= ~PANEL_POWER_RESET;
1115                 I915_WRITE(PCH_PP_CONTROL, pp);
1116                 POSTING_READ(PCH_PP_CONTROL);
1117         }
1118
1119         pp |= POWER_TARGET_ON;
1120         if (!IS_GEN5(dev))
1121                 pp |= PANEL_POWER_RESET;
1122
1123         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1124
1125         I915_WRITE(pp_ctrl_reg, pp);
1126         POSTING_READ(pp_ctrl_reg);
1127
1128         ironlake_wait_panel_on(intel_dp);
1129
1130         if (IS_GEN5(dev)) {
1131                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1132                 I915_WRITE(PCH_PP_CONTROL, pp);
1133                 POSTING_READ(PCH_PP_CONTROL);
1134         }
1135 }
1136
1137 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1138 {
1139         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         u32 pp;
1142         u32 pp_ctrl_reg;
1143
1144         if (!is_edp(intel_dp))
1145                 return;
1146
1147         DRM_DEBUG_KMS("Turn eDP power off\n");
1148
1149         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1150
1151         pp = ironlake_get_pp_control(intel_dp);
1152         /* We need to switch off panel power _and_ force vdd, for otherwise some
1153          * panels get very unhappy and cease to work. */
1154         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1155
1156         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1157
1158         I915_WRITE(pp_ctrl_reg, pp);
1159         POSTING_READ(pp_ctrl_reg);
1160
1161         intel_dp->want_panel_vdd = false;
1162
1163         ironlake_wait_panel_off(intel_dp);
1164 }
1165
1166 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1167 {
1168         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1169         struct drm_device *dev = intel_dig_port->base.base.dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1172         u32 pp;
1173         u32 pp_ctrl_reg;
1174
1175         if (!is_edp(intel_dp))
1176                 return;
1177
1178         DRM_DEBUG_KMS("\n");
1179         /*
1180          * If we enable the backlight right away following a panel power
1181          * on, we may see slight flicker as the panel syncs with the eDP
1182          * link.  So delay a bit to make sure the image is solid before
1183          * allowing it to appear.
1184          */
1185         msleep(intel_dp->backlight_on_delay);
1186         pp = ironlake_get_pp_control(intel_dp);
1187         pp |= EDP_BLC_ENABLE;
1188
1189         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1190
1191         I915_WRITE(pp_ctrl_reg, pp);
1192         POSTING_READ(pp_ctrl_reg);
1193
1194         intel_panel_enable_backlight(dev, pipe);
1195 }
1196
1197 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1198 {
1199         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1200         struct drm_i915_private *dev_priv = dev->dev_private;
1201         u32 pp;
1202         u32 pp_ctrl_reg;
1203
1204         if (!is_edp(intel_dp))
1205                 return;
1206
1207         intel_panel_disable_backlight(dev);
1208
1209         DRM_DEBUG_KMS("\n");
1210         pp = ironlake_get_pp_control(intel_dp);
1211         pp &= ~EDP_BLC_ENABLE;
1212
1213         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1214
1215         I915_WRITE(pp_ctrl_reg, pp);
1216         POSTING_READ(pp_ctrl_reg);
1217         msleep(intel_dp->backlight_off_delay);
1218 }
1219
1220 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1221 {
1222         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1223         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1224         struct drm_device *dev = crtc->dev;
1225         struct drm_i915_private *dev_priv = dev->dev_private;
1226         u32 dpa_ctl;
1227
1228         assert_pipe_disabled(dev_priv,
1229                              to_intel_crtc(crtc)->pipe);
1230
1231         DRM_DEBUG_KMS("\n");
1232         dpa_ctl = I915_READ(DP_A);
1233         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1234         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1235
1236         /* We don't adjust intel_dp->DP while tearing down the link, to
1237          * facilitate link retraining (e.g. after hotplug). Hence clear all
1238          * enable bits here to ensure that we don't enable too much. */
1239         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1240         intel_dp->DP |= DP_PLL_ENABLE;
1241         I915_WRITE(DP_A, intel_dp->DP);
1242         POSTING_READ(DP_A);
1243         udelay(200);
1244 }
1245
1246 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1247 {
1248         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1249         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1250         struct drm_device *dev = crtc->dev;
1251         struct drm_i915_private *dev_priv = dev->dev_private;
1252         u32 dpa_ctl;
1253
1254         assert_pipe_disabled(dev_priv,
1255                              to_intel_crtc(crtc)->pipe);
1256
1257         dpa_ctl = I915_READ(DP_A);
1258         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1259              "dp pll off, should be on\n");
1260         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1261
1262         /* We can't rely on the value tracked for the DP register in
1263          * intel_dp->DP because link_down must not change that (otherwise link
1264          * re-training will fail. */
1265         dpa_ctl &= ~DP_PLL_ENABLE;
1266         I915_WRITE(DP_A, dpa_ctl);
1267         POSTING_READ(DP_A);
1268         udelay(200);
1269 }
1270
1271 /* If the sink supports it, try to set the power state appropriately */
1272 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1273 {
1274         int ret, i;
1275
1276         /* Should have a valid DPCD by this point */
1277         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1278                 return;
1279
1280         if (mode != DRM_MODE_DPMS_ON) {
1281                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1282                                                   DP_SET_POWER_D3);
1283                 if (ret != 1)
1284                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1285         } else {
1286                 /*
1287                  * When turning on, we need to retry for 1ms to give the sink
1288                  * time to wake up.
1289                  */
1290                 for (i = 0; i < 3; i++) {
1291                         ret = intel_dp_aux_native_write_1(intel_dp,
1292                                                           DP_SET_POWER,
1293                                                           DP_SET_POWER_D0);
1294                         if (ret == 1)
1295                                 break;
1296                         msleep(1);
1297                 }
1298         }
1299 }
1300
1301 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1302                                   enum pipe *pipe)
1303 {
1304         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1305         enum port port = dp_to_dig_port(intel_dp)->port;
1306         struct drm_device *dev = encoder->base.dev;
1307         struct drm_i915_private *dev_priv = dev->dev_private;
1308         u32 tmp = I915_READ(intel_dp->output_reg);
1309
1310         if (!(tmp & DP_PORT_EN))
1311                 return false;
1312
1313         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1314                 *pipe = PORT_TO_PIPE_CPT(tmp);
1315         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1316                 *pipe = PORT_TO_PIPE(tmp);
1317         } else {
1318                 u32 trans_sel;
1319                 u32 trans_dp;
1320                 int i;
1321
1322                 switch (intel_dp->output_reg) {
1323                 case PCH_DP_B:
1324                         trans_sel = TRANS_DP_PORT_SEL_B;
1325                         break;
1326                 case PCH_DP_C:
1327                         trans_sel = TRANS_DP_PORT_SEL_C;
1328                         break;
1329                 case PCH_DP_D:
1330                         trans_sel = TRANS_DP_PORT_SEL_D;
1331                         break;
1332                 default:
1333                         return true;
1334                 }
1335
1336                 for_each_pipe(i) {
1337                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1338                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1339                                 *pipe = i;
1340                                 return true;
1341                         }
1342                 }
1343
1344                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1345                               intel_dp->output_reg);
1346         }
1347
1348         return true;
1349 }
1350
1351 static void intel_dp_get_config(struct intel_encoder *encoder,
1352                                 struct intel_crtc_config *pipe_config)
1353 {
1354         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1355         u32 tmp, flags = 0;
1356         struct drm_device *dev = encoder->base.dev;
1357         struct drm_i915_private *dev_priv = dev->dev_private;
1358         enum port port = dp_to_dig_port(intel_dp)->port;
1359         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1360
1361         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1362                 tmp = I915_READ(intel_dp->output_reg);
1363                 if (tmp & DP_SYNC_HS_HIGH)
1364                         flags |= DRM_MODE_FLAG_PHSYNC;
1365                 else
1366                         flags |= DRM_MODE_FLAG_NHSYNC;
1367
1368                 if (tmp & DP_SYNC_VS_HIGH)
1369                         flags |= DRM_MODE_FLAG_PVSYNC;
1370                 else
1371                         flags |= DRM_MODE_FLAG_NVSYNC;
1372         } else {
1373                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1374                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1375                         flags |= DRM_MODE_FLAG_PHSYNC;
1376                 else
1377                         flags |= DRM_MODE_FLAG_NHSYNC;
1378
1379                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1380                         flags |= DRM_MODE_FLAG_PVSYNC;
1381                 else
1382                         flags |= DRM_MODE_FLAG_NVSYNC;
1383         }
1384
1385         pipe_config->adjusted_mode.flags |= flags;
1386
1387         if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1388                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1389                         pipe_config->port_clock = 162000;
1390                 else
1391                         pipe_config->port_clock = 270000;
1392         }
1393 }
1394
1395 static bool is_edp_psr(struct intel_dp *intel_dp)
1396 {
1397         return is_edp(intel_dp) &&
1398                 intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1399 }
1400
1401 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1402 {
1403         struct drm_i915_private *dev_priv = dev->dev_private;
1404
1405         if (!IS_HASWELL(dev))
1406                 return false;
1407
1408         return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1409 }
1410
1411 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1412                                     struct edp_vsc_psr *vsc_psr)
1413 {
1414         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1415         struct drm_device *dev = dig_port->base.base.dev;
1416         struct drm_i915_private *dev_priv = dev->dev_private;
1417         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1418         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1419         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1420         uint32_t *data = (uint32_t *) vsc_psr;
1421         unsigned int i;
1422
1423         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1424            the video DIP being updated before program video DIP data buffer
1425            registers for DIP being updated. */
1426         I915_WRITE(ctl_reg, 0);
1427         POSTING_READ(ctl_reg);
1428
1429         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1430                 if (i < sizeof(struct edp_vsc_psr))
1431                         I915_WRITE(data_reg + i, *data++);
1432                 else
1433                         I915_WRITE(data_reg + i, 0);
1434         }
1435
1436         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1437         POSTING_READ(ctl_reg);
1438 }
1439
1440 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1441 {
1442         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444         struct edp_vsc_psr psr_vsc;
1445
1446         if (intel_dp->psr_setup_done)
1447                 return;
1448
1449         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1450         memset(&psr_vsc, 0, sizeof(psr_vsc));
1451         psr_vsc.sdp_header.HB0 = 0;
1452         psr_vsc.sdp_header.HB1 = 0x7;
1453         psr_vsc.sdp_header.HB2 = 0x2;
1454         psr_vsc.sdp_header.HB3 = 0x8;
1455         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1456
1457         /* Avoid continuous PSR exit by masking memup and hpd */
1458         I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1459                    EDP_PSR_DEBUG_MASK_HPD);
1460
1461         intel_dp->psr_setup_done = true;
1462 }
1463
1464 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1465 {
1466         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1469         int precharge = 0x3;
1470         int msg_size = 5;       /* Header(4) + Message(1) */
1471
1472         /* Enable PSR in sink */
1473         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1474                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1475                                             DP_PSR_ENABLE &
1476                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1477         else
1478                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1479                                             DP_PSR_ENABLE |
1480                                             DP_PSR_MAIN_LINK_ACTIVE);
1481
1482         /* Setup AUX registers */
1483         I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1484         I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1485         I915_WRITE(EDP_PSR_AUX_CTL,
1486                    DP_AUX_CH_CTL_TIME_OUT_400us |
1487                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1488                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1489                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1490 }
1491
1492 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1493 {
1494         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         uint32_t max_sleep_time = 0x1f;
1497         uint32_t idle_frames = 1;
1498         uint32_t val = 0x0;
1499
1500         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1501                 val |= EDP_PSR_LINK_STANDBY;
1502                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1503                 val |= EDP_PSR_TP1_TIME_0us;
1504                 val |= EDP_PSR_SKIP_AUX_EXIT;
1505         } else
1506                 val |= EDP_PSR_LINK_DISABLE;
1507
1508         I915_WRITE(EDP_PSR_CTL, val |
1509                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1510                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1511                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1512                    EDP_PSR_ENABLE);
1513 }
1514
1515 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1516 {
1517         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1518         struct drm_device *dev = dig_port->base.base.dev;
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520         struct drm_crtc *crtc = dig_port->base.base.crtc;
1521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1522         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1523         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1524
1525         if (!IS_HASWELL(dev)) {
1526                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1527                 dev_priv->no_psr_reason = PSR_NO_SOURCE;
1528                 return false;
1529         }
1530
1531         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1532             (dig_port->port != PORT_A)) {
1533                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1534                 dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1535                 return false;
1536         }
1537
1538         if (!is_edp_psr(intel_dp)) {
1539                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1540                 dev_priv->no_psr_reason = PSR_NO_SINK;
1541                 return false;
1542         }
1543
1544         if (!i915_enable_psr) {
1545                 DRM_DEBUG_KMS("PSR disable by flag\n");
1546                 dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1547                 return false;
1548         }
1549
1550         crtc = dig_port->base.base.crtc;
1551         if (crtc == NULL) {
1552                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1553                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1554                 return false;
1555         }
1556
1557         intel_crtc = to_intel_crtc(crtc);
1558         if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1559                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1560                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1561                 return false;
1562         }
1563
1564         obj = to_intel_framebuffer(crtc->fb)->obj;
1565         if (obj->tiling_mode != I915_TILING_X ||
1566             obj->fence_reg == I915_FENCE_REG_NONE) {
1567                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1568                 dev_priv->no_psr_reason = PSR_NOT_TILED;
1569                 return false;
1570         }
1571
1572         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1573                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1574                 dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1575                 return false;
1576         }
1577
1578         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1579             S3D_ENABLE) {
1580                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1581                 dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1582                 return false;
1583         }
1584
1585         if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1586                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1587                 dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1588                 return false;
1589         }
1590
1591         return true;
1592 }
1593
1594 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1595 {
1596         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1597
1598         if (!intel_edp_psr_match_conditions(intel_dp) ||
1599             intel_edp_is_psr_enabled(dev))
1600                 return;
1601
1602         /* Setup PSR once */
1603         intel_edp_psr_setup(intel_dp);
1604
1605         /* Enable PSR on the panel */
1606         intel_edp_psr_enable_sink(intel_dp);
1607
1608         /* Enable PSR on the host */
1609         intel_edp_psr_enable_source(intel_dp);
1610 }
1611
1612 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1613 {
1614         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1615
1616         if (intel_edp_psr_match_conditions(intel_dp) &&
1617             !intel_edp_is_psr_enabled(dev))
1618                 intel_edp_psr_do_enable(intel_dp);
1619 }
1620
1621 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1622 {
1623         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1624         struct drm_i915_private *dev_priv = dev->dev_private;
1625
1626         if (!intel_edp_is_psr_enabled(dev))
1627                 return;
1628
1629         I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1630
1631         /* Wait till PSR is idle */
1632         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1633                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1634                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1635 }
1636
1637 void intel_edp_psr_update(struct drm_device *dev)
1638 {
1639         struct intel_encoder *encoder;
1640         struct intel_dp *intel_dp = NULL;
1641
1642         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1643                 if (encoder->type == INTEL_OUTPUT_EDP) {
1644                         intel_dp = enc_to_intel_dp(&encoder->base);
1645
1646                         if (!is_edp_psr(intel_dp))
1647                                 return;
1648
1649                         if (!intel_edp_psr_match_conditions(intel_dp))
1650                                 intel_edp_psr_disable(intel_dp);
1651                         else
1652                                 if (!intel_edp_is_psr_enabled(dev))
1653                                         intel_edp_psr_do_enable(intel_dp);
1654                 }
1655 }
1656
1657 static void intel_disable_dp(struct intel_encoder *encoder)
1658 {
1659         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1660         enum port port = dp_to_dig_port(intel_dp)->port;
1661         struct drm_device *dev = encoder->base.dev;
1662
1663         /* Make sure the panel is off before trying to change the mode. But also
1664          * ensure that we have vdd while we switch off the panel. */
1665         ironlake_edp_panel_vdd_on(intel_dp);
1666         ironlake_edp_backlight_off(intel_dp);
1667         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1668         ironlake_edp_panel_off(intel_dp);
1669
1670         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1671         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1672                 intel_dp_link_down(intel_dp);
1673 }
1674
1675 static void intel_post_disable_dp(struct intel_encoder *encoder)
1676 {
1677         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1678         enum port port = dp_to_dig_port(intel_dp)->port;
1679         struct drm_device *dev = encoder->base.dev;
1680
1681         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1682                 intel_dp_link_down(intel_dp);
1683                 if (!IS_VALLEYVIEW(dev))
1684                         ironlake_edp_pll_off(intel_dp);
1685         }
1686 }
1687
1688 static void intel_enable_dp(struct intel_encoder *encoder)
1689 {
1690         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1691         struct drm_device *dev = encoder->base.dev;
1692         struct drm_i915_private *dev_priv = dev->dev_private;
1693         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1694
1695         if (WARN_ON(dp_reg & DP_PORT_EN))
1696                 return;
1697
1698         ironlake_edp_panel_vdd_on(intel_dp);
1699         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1700         intel_dp_start_link_train(intel_dp);
1701         ironlake_edp_panel_on(intel_dp);
1702         ironlake_edp_panel_vdd_off(intel_dp, true);
1703         intel_dp_complete_link_train(intel_dp);
1704         intel_dp_stop_link_train(intel_dp);
1705         ironlake_edp_backlight_on(intel_dp);
1706 }
1707
1708 static void vlv_enable_dp(struct intel_encoder *encoder)
1709 {
1710 }
1711
1712 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1713 {
1714         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1715         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1716
1717         if (dport->port == PORT_A)
1718                 ironlake_edp_pll_on(intel_dp);
1719 }
1720
1721 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1722 {
1723         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1724         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1725         struct drm_device *dev = encoder->base.dev;
1726         struct drm_i915_private *dev_priv = dev->dev_private;
1727         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1728         int port = vlv_dport_to_channel(dport);
1729         int pipe = intel_crtc->pipe;
1730         u32 val;
1731
1732         mutex_lock(&dev_priv->dpio_lock);
1733
1734         val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1735         val = 0;
1736         if (pipe)
1737                 val |= (1<<21);
1738         else
1739                 val &= ~(1<<21);
1740         val |= 0x001000c4;
1741         vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1742         vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1743         vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1744
1745         mutex_unlock(&dev_priv->dpio_lock);
1746
1747         intel_enable_dp(encoder);
1748
1749         vlv_wait_port_ready(dev_priv, port);
1750 }
1751
1752 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1753 {
1754         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1755         struct drm_device *dev = encoder->base.dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         int port = vlv_dport_to_channel(dport);
1758
1759         if (!IS_VALLEYVIEW(dev))
1760                 return;
1761
1762         /* Program Tx lane resets to default */
1763         mutex_lock(&dev_priv->dpio_lock);
1764         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1765                          DPIO_PCS_TX_LANE2_RESET |
1766                          DPIO_PCS_TX_LANE1_RESET);
1767         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1768                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1769                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1770                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1771                                  DPIO_PCS_CLK_SOFT_RESET);
1772
1773         /* Fix up inter-pair skew failure */
1774         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1775         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1776         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1777         mutex_unlock(&dev_priv->dpio_lock);
1778 }
1779
1780 /*
1781  * Native read with retry for link status and receiver capability reads for
1782  * cases where the sink may still be asleep.
1783  */
1784 static bool
1785 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1786                                uint8_t *recv, int recv_bytes)
1787 {
1788         int ret, i;
1789
1790         /*
1791          * Sinks are *supposed* to come up within 1ms from an off state,
1792          * but we're also supposed to retry 3 times per the spec.
1793          */
1794         for (i = 0; i < 3; i++) {
1795                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1796                                                recv_bytes);
1797                 if (ret == recv_bytes)
1798                         return true;
1799                 msleep(1);
1800         }
1801
1802         return false;
1803 }
1804
1805 /*
1806  * Fetch AUX CH registers 0x202 - 0x207 which contain
1807  * link status information
1808  */
1809 static bool
1810 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1811 {
1812         return intel_dp_aux_native_read_retry(intel_dp,
1813                                               DP_LANE0_1_STATUS,
1814                                               link_status,
1815                                               DP_LINK_STATUS_SIZE);
1816 }
1817
1818 #if 0
1819 static char     *voltage_names[] = {
1820         "0.4V", "0.6V", "0.8V", "1.2V"
1821 };
1822 static char     *pre_emph_names[] = {
1823         "0dB", "3.5dB", "6dB", "9.5dB"
1824 };
1825 static char     *link_train_names[] = {
1826         "pattern 1", "pattern 2", "idle", "off"
1827 };
1828 #endif
1829
1830 /*
1831  * These are source-specific values; current Intel hardware supports
1832  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1833  */
1834
1835 static uint8_t
1836 intel_dp_voltage_max(struct intel_dp *intel_dp)
1837 {
1838         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1839         enum port port = dp_to_dig_port(intel_dp)->port;
1840
1841         if (IS_VALLEYVIEW(dev))
1842                 return DP_TRAIN_VOLTAGE_SWING_1200;
1843         else if (IS_GEN7(dev) && port == PORT_A)
1844                 return DP_TRAIN_VOLTAGE_SWING_800;
1845         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1846                 return DP_TRAIN_VOLTAGE_SWING_1200;
1847         else
1848                 return DP_TRAIN_VOLTAGE_SWING_800;
1849 }
1850
1851 static uint8_t
1852 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1853 {
1854         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1855         enum port port = dp_to_dig_port(intel_dp)->port;
1856
1857         if (HAS_DDI(dev)) {
1858                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1859                 case DP_TRAIN_VOLTAGE_SWING_400:
1860                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1861                 case DP_TRAIN_VOLTAGE_SWING_600:
1862                         return DP_TRAIN_PRE_EMPHASIS_6;
1863                 case DP_TRAIN_VOLTAGE_SWING_800:
1864                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1865                 case DP_TRAIN_VOLTAGE_SWING_1200:
1866                 default:
1867                         return DP_TRAIN_PRE_EMPHASIS_0;
1868                 }
1869         } else if (IS_VALLEYVIEW(dev)) {
1870                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1871                 case DP_TRAIN_VOLTAGE_SWING_400:
1872                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1873                 case DP_TRAIN_VOLTAGE_SWING_600:
1874                         return DP_TRAIN_PRE_EMPHASIS_6;
1875                 case DP_TRAIN_VOLTAGE_SWING_800:
1876                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1877                 case DP_TRAIN_VOLTAGE_SWING_1200:
1878                 default:
1879                         return DP_TRAIN_PRE_EMPHASIS_0;
1880                 }
1881         } else if (IS_GEN7(dev) && port == PORT_A) {
1882                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1883                 case DP_TRAIN_VOLTAGE_SWING_400:
1884                         return DP_TRAIN_PRE_EMPHASIS_6;
1885                 case DP_TRAIN_VOLTAGE_SWING_600:
1886                 case DP_TRAIN_VOLTAGE_SWING_800:
1887                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1888                 default:
1889                         return DP_TRAIN_PRE_EMPHASIS_0;
1890                 }
1891         } else {
1892                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1893                 case DP_TRAIN_VOLTAGE_SWING_400:
1894                         return DP_TRAIN_PRE_EMPHASIS_6;
1895                 case DP_TRAIN_VOLTAGE_SWING_600:
1896                         return DP_TRAIN_PRE_EMPHASIS_6;
1897                 case DP_TRAIN_VOLTAGE_SWING_800:
1898                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1899                 case DP_TRAIN_VOLTAGE_SWING_1200:
1900                 default:
1901                         return DP_TRAIN_PRE_EMPHASIS_0;
1902                 }
1903         }
1904 }
1905
1906 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1907 {
1908         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1909         struct drm_i915_private *dev_priv = dev->dev_private;
1910         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1911         unsigned long demph_reg_value, preemph_reg_value,
1912                 uniqtranscale_reg_value;
1913         uint8_t train_set = intel_dp->train_set[0];
1914         int port = vlv_dport_to_channel(dport);
1915
1916         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1917         case DP_TRAIN_PRE_EMPHASIS_0:
1918                 preemph_reg_value = 0x0004000;
1919                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1920                 case DP_TRAIN_VOLTAGE_SWING_400:
1921                         demph_reg_value = 0x2B405555;
1922                         uniqtranscale_reg_value = 0x552AB83A;
1923                         break;
1924                 case DP_TRAIN_VOLTAGE_SWING_600:
1925                         demph_reg_value = 0x2B404040;
1926                         uniqtranscale_reg_value = 0x5548B83A;
1927                         break;
1928                 case DP_TRAIN_VOLTAGE_SWING_800:
1929                         demph_reg_value = 0x2B245555;
1930                         uniqtranscale_reg_value = 0x5560B83A;
1931                         break;
1932                 case DP_TRAIN_VOLTAGE_SWING_1200:
1933                         demph_reg_value = 0x2B405555;
1934                         uniqtranscale_reg_value = 0x5598DA3A;
1935                         break;
1936                 default:
1937                         return 0;
1938                 }
1939                 break;
1940         case DP_TRAIN_PRE_EMPHASIS_3_5:
1941                 preemph_reg_value = 0x0002000;
1942                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1943                 case DP_TRAIN_VOLTAGE_SWING_400:
1944                         demph_reg_value = 0x2B404040;
1945                         uniqtranscale_reg_value = 0x5552B83A;
1946                         break;
1947                 case DP_TRAIN_VOLTAGE_SWING_600:
1948                         demph_reg_value = 0x2B404848;
1949                         uniqtranscale_reg_value = 0x5580B83A;
1950                         break;
1951                 case DP_TRAIN_VOLTAGE_SWING_800:
1952                         demph_reg_value = 0x2B404040;
1953                         uniqtranscale_reg_value = 0x55ADDA3A;
1954                         break;
1955                 default:
1956                         return 0;
1957                 }
1958                 break;
1959         case DP_TRAIN_PRE_EMPHASIS_6:
1960                 preemph_reg_value = 0x0000000;
1961                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1962                 case DP_TRAIN_VOLTAGE_SWING_400:
1963                         demph_reg_value = 0x2B305555;
1964                         uniqtranscale_reg_value = 0x5570B83A;
1965                         break;
1966                 case DP_TRAIN_VOLTAGE_SWING_600:
1967                         demph_reg_value = 0x2B2B4040;
1968                         uniqtranscale_reg_value = 0x55ADDA3A;
1969                         break;
1970                 default:
1971                         return 0;
1972                 }
1973                 break;
1974         case DP_TRAIN_PRE_EMPHASIS_9_5:
1975                 preemph_reg_value = 0x0006000;
1976                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1977                 case DP_TRAIN_VOLTAGE_SWING_400:
1978                         demph_reg_value = 0x1B405555;
1979                         uniqtranscale_reg_value = 0x55ADDA3A;
1980                         break;
1981                 default:
1982                         return 0;
1983                 }
1984                 break;
1985         default:
1986                 return 0;
1987         }
1988
1989         mutex_lock(&dev_priv->dpio_lock);
1990         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1991         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1992         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1993                          uniqtranscale_reg_value);
1994         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1995         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1996         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1997         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1998         mutex_unlock(&dev_priv->dpio_lock);
1999
2000         return 0;
2001 }
2002
2003 static void
2004 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2005 {
2006         uint8_t v = 0;
2007         uint8_t p = 0;
2008         int lane;
2009         uint8_t voltage_max;
2010         uint8_t preemph_max;
2011
2012         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2013                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2014                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2015
2016                 if (this_v > v)
2017                         v = this_v;
2018                 if (this_p > p)
2019                         p = this_p;
2020         }
2021
2022         voltage_max = intel_dp_voltage_max(intel_dp);
2023         if (v >= voltage_max)
2024                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2025
2026         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2027         if (p >= preemph_max)
2028                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2029
2030         for (lane = 0; lane < 4; lane++)
2031                 intel_dp->train_set[lane] = v | p;
2032 }
2033
2034 static uint32_t
2035 intel_gen4_signal_levels(uint8_t train_set)
2036 {
2037         uint32_t        signal_levels = 0;
2038
2039         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2040         case DP_TRAIN_VOLTAGE_SWING_400:
2041         default:
2042                 signal_levels |= DP_VOLTAGE_0_4;
2043                 break;
2044         case DP_TRAIN_VOLTAGE_SWING_600:
2045                 signal_levels |= DP_VOLTAGE_0_6;
2046                 break;
2047         case DP_TRAIN_VOLTAGE_SWING_800:
2048                 signal_levels |= DP_VOLTAGE_0_8;
2049                 break;
2050         case DP_TRAIN_VOLTAGE_SWING_1200:
2051                 signal_levels |= DP_VOLTAGE_1_2;
2052                 break;
2053         }
2054         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2055         case DP_TRAIN_PRE_EMPHASIS_0:
2056         default:
2057                 signal_levels |= DP_PRE_EMPHASIS_0;
2058                 break;
2059         case DP_TRAIN_PRE_EMPHASIS_3_5:
2060                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2061                 break;
2062         case DP_TRAIN_PRE_EMPHASIS_6:
2063                 signal_levels |= DP_PRE_EMPHASIS_6;
2064                 break;
2065         case DP_TRAIN_PRE_EMPHASIS_9_5:
2066                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2067                 break;
2068         }
2069         return signal_levels;
2070 }
2071
2072 /* Gen6's DP voltage swing and pre-emphasis control */
2073 static uint32_t
2074 intel_gen6_edp_signal_levels(uint8_t train_set)
2075 {
2076         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2077                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2078         switch (signal_levels) {
2079         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2080         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2081                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2082         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2083                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2084         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2085         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2086                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2087         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2088         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2089                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2090         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2091         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2092                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2093         default:
2094                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2095                               "0x%x\n", signal_levels);
2096                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2097         }
2098 }
2099
2100 /* Gen7's DP voltage swing and pre-emphasis control */
2101 static uint32_t
2102 intel_gen7_edp_signal_levels(uint8_t train_set)
2103 {
2104         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2105                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2106         switch (signal_levels) {
2107         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2108                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2109         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2110                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2111         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2112                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2113
2114         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2115                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2116         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2117                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2118
2119         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2120                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2121         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2122                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2123
2124         default:
2125                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2126                               "0x%x\n", signal_levels);
2127                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2128         }
2129 }
2130
2131 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2132 static uint32_t
2133 intel_hsw_signal_levels(uint8_t train_set)
2134 {
2135         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2136                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2137         switch (signal_levels) {
2138         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2139                 return DDI_BUF_EMP_400MV_0DB_HSW;
2140         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2141                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2142         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2143                 return DDI_BUF_EMP_400MV_6DB_HSW;
2144         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2145                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2146
2147         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2148                 return DDI_BUF_EMP_600MV_0DB_HSW;
2149         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2150                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2151         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2152                 return DDI_BUF_EMP_600MV_6DB_HSW;
2153
2154         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2155                 return DDI_BUF_EMP_800MV_0DB_HSW;
2156         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2157                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2158         default:
2159                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2160                               "0x%x\n", signal_levels);
2161                 return DDI_BUF_EMP_400MV_0DB_HSW;
2162         }
2163 }
2164
2165 /* Properly updates "DP" with the correct signal levels. */
2166 static void
2167 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2168 {
2169         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2170         enum port port = intel_dig_port->port;
2171         struct drm_device *dev = intel_dig_port->base.base.dev;
2172         uint32_t signal_levels, mask;
2173         uint8_t train_set = intel_dp->train_set[0];
2174
2175         if (HAS_DDI(dev)) {
2176                 signal_levels = intel_hsw_signal_levels(train_set);
2177                 mask = DDI_BUF_EMP_MASK;
2178         } else if (IS_VALLEYVIEW(dev)) {
2179                 signal_levels = intel_vlv_signal_levels(intel_dp);
2180                 mask = 0;
2181         } else if (IS_GEN7(dev) && port == PORT_A) {
2182                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2183                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2184         } else if (IS_GEN6(dev) && port == PORT_A) {
2185                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2186                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2187         } else {
2188                 signal_levels = intel_gen4_signal_levels(train_set);
2189                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2190         }
2191
2192         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2193
2194         *DP = (*DP & ~mask) | signal_levels;
2195 }
2196
2197 static bool
2198 intel_dp_set_link_train(struct intel_dp *intel_dp,
2199                         uint32_t dp_reg_value,
2200                         uint8_t dp_train_pat)
2201 {
2202         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2203         struct drm_device *dev = intel_dig_port->base.base.dev;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205         enum port port = intel_dig_port->port;
2206         int ret;
2207
2208         if (HAS_DDI(dev)) {
2209                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2210
2211                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2212                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2213                 else
2214                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2215
2216                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2217                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2218                 case DP_TRAINING_PATTERN_DISABLE:
2219                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2220
2221                         break;
2222                 case DP_TRAINING_PATTERN_1:
2223                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2224                         break;
2225                 case DP_TRAINING_PATTERN_2:
2226                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2227                         break;
2228                 case DP_TRAINING_PATTERN_3:
2229                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2230                         break;
2231                 }
2232                 I915_WRITE(DP_TP_CTL(port), temp);
2233
2234         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2235                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2236
2237                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2238                 case DP_TRAINING_PATTERN_DISABLE:
2239                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2240                         break;
2241                 case DP_TRAINING_PATTERN_1:
2242                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2243                         break;
2244                 case DP_TRAINING_PATTERN_2:
2245                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2246                         break;
2247                 case DP_TRAINING_PATTERN_3:
2248                         DRM_ERROR("DP training pattern 3 not supported\n");
2249                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2250                         break;
2251                 }
2252
2253         } else {
2254                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2255
2256                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2257                 case DP_TRAINING_PATTERN_DISABLE:
2258                         dp_reg_value |= DP_LINK_TRAIN_OFF;
2259                         break;
2260                 case DP_TRAINING_PATTERN_1:
2261                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2262                         break;
2263                 case DP_TRAINING_PATTERN_2:
2264                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2265                         break;
2266                 case DP_TRAINING_PATTERN_3:
2267                         DRM_ERROR("DP training pattern 3 not supported\n");
2268                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2269                         break;
2270                 }
2271         }
2272
2273         I915_WRITE(intel_dp->output_reg, dp_reg_value);
2274         POSTING_READ(intel_dp->output_reg);
2275
2276         intel_dp_aux_native_write_1(intel_dp,
2277                                     DP_TRAINING_PATTERN_SET,
2278                                     dp_train_pat);
2279
2280         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2281             DP_TRAINING_PATTERN_DISABLE) {
2282                 ret = intel_dp_aux_native_write(intel_dp,
2283                                                 DP_TRAINING_LANE0_SET,
2284                                                 intel_dp->train_set,
2285                                                 intel_dp->lane_count);
2286                 if (ret != intel_dp->lane_count)
2287                         return false;
2288         }
2289
2290         return true;
2291 }
2292
2293 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2294 {
2295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2296         struct drm_device *dev = intel_dig_port->base.base.dev;
2297         struct drm_i915_private *dev_priv = dev->dev_private;
2298         enum port port = intel_dig_port->port;
2299         uint32_t val;
2300
2301         if (!HAS_DDI(dev))
2302                 return;
2303
2304         val = I915_READ(DP_TP_CTL(port));
2305         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2306         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2307         I915_WRITE(DP_TP_CTL(port), val);
2308
2309         /*
2310          * On PORT_A we can have only eDP in SST mode. There the only reason
2311          * we need to set idle transmission mode is to work around a HW issue
2312          * where we enable the pipe while not in idle link-training mode.
2313          * In this case there is requirement to wait for a minimum number of
2314          * idle patterns to be sent.
2315          */
2316         if (port == PORT_A)
2317                 return;
2318
2319         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2320                      1))
2321                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2322 }
2323
2324 /* Enable corresponding port and start training pattern 1 */
2325 void
2326 intel_dp_start_link_train(struct intel_dp *intel_dp)
2327 {
2328         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2329         struct drm_device *dev = encoder->dev;
2330         int i;
2331         uint8_t voltage;
2332         int voltage_tries, loop_tries;
2333         uint32_t DP = intel_dp->DP;
2334
2335         if (HAS_DDI(dev))
2336                 intel_ddi_prepare_link_retrain(encoder);
2337
2338         /* Write the link configuration data */
2339         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2340                                   intel_dp->link_configuration,
2341                                   DP_LINK_CONFIGURATION_SIZE);
2342
2343         DP |= DP_PORT_EN;
2344
2345         memset(intel_dp->train_set, 0, 4);
2346         voltage = 0xff;
2347         voltage_tries = 0;
2348         loop_tries = 0;
2349         for (;;) {
2350                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2351                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2352
2353                 intel_dp_set_signal_levels(intel_dp, &DP);
2354
2355                 /* Set training pattern 1 */
2356                 if (!intel_dp_set_link_train(intel_dp, DP,
2357                                              DP_TRAINING_PATTERN_1 |
2358                                              DP_LINK_SCRAMBLING_DISABLE))
2359                         break;
2360
2361                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2362                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2363                         DRM_ERROR("failed to get link status\n");
2364                         break;
2365                 }
2366
2367                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2368                         DRM_DEBUG_KMS("clock recovery OK\n");
2369                         break;
2370                 }
2371
2372                 /* Check to see if we've tried the max voltage */
2373                 for (i = 0; i < intel_dp->lane_count; i++)
2374                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2375                                 break;
2376                 if (i == intel_dp->lane_count) {
2377                         ++loop_tries;
2378                         if (loop_tries == 5) {
2379                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2380                                 break;
2381                         }
2382                         memset(intel_dp->train_set, 0, 4);
2383                         voltage_tries = 0;
2384                         continue;
2385                 }
2386
2387                 /* Check to see if we've tried the same voltage 5 times */
2388                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2389                         ++voltage_tries;
2390                         if (voltage_tries == 5) {
2391                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2392                                 break;
2393                         }
2394                 } else
2395                         voltage_tries = 0;
2396                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2397
2398                 /* Compute new intel_dp->train_set as requested by target */
2399                 intel_get_adjust_train(intel_dp, link_status);
2400         }
2401
2402         intel_dp->DP = DP;
2403 }
2404
2405 void
2406 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2407 {
2408         bool channel_eq = false;
2409         int tries, cr_tries;
2410         uint32_t DP = intel_dp->DP;
2411
2412         /* channel equalization */
2413         tries = 0;
2414         cr_tries = 0;
2415         channel_eq = false;
2416         for (;;) {
2417                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2418
2419                 if (cr_tries > 5) {
2420                         DRM_ERROR("failed to train DP, aborting\n");
2421                         intel_dp_link_down(intel_dp);
2422                         break;
2423                 }
2424
2425                 intel_dp_set_signal_levels(intel_dp, &DP);
2426
2427                 /* channel eq pattern */
2428                 if (!intel_dp_set_link_train(intel_dp, DP,
2429                                              DP_TRAINING_PATTERN_2 |
2430                                              DP_LINK_SCRAMBLING_DISABLE))
2431                         break;
2432
2433                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2434                 if (!intel_dp_get_link_status(intel_dp, link_status))
2435                         break;
2436
2437                 /* Make sure clock is still ok */
2438                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2439                         intel_dp_start_link_train(intel_dp);
2440                         cr_tries++;
2441                         continue;
2442                 }
2443
2444                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2445                         channel_eq = true;
2446                         break;
2447                 }
2448
2449                 /* Try 5 times, then try clock recovery if that fails */
2450                 if (tries > 5) {
2451                         intel_dp_link_down(intel_dp);
2452                         intel_dp_start_link_train(intel_dp);
2453                         tries = 0;
2454                         cr_tries++;
2455                         continue;
2456                 }
2457
2458                 /* Compute new intel_dp->train_set as requested by target */
2459                 intel_get_adjust_train(intel_dp, link_status);
2460                 ++tries;
2461         }
2462
2463         intel_dp_set_idle_link_train(intel_dp);
2464
2465         intel_dp->DP = DP;
2466
2467         if (channel_eq)
2468                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2469
2470 }
2471
2472 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2473 {
2474         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2475                                 DP_TRAINING_PATTERN_DISABLE);
2476 }
2477
2478 static void
2479 intel_dp_link_down(struct intel_dp *intel_dp)
2480 {
2481         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2482         enum port port = intel_dig_port->port;
2483         struct drm_device *dev = intel_dig_port->base.base.dev;
2484         struct drm_i915_private *dev_priv = dev->dev_private;
2485         struct intel_crtc *intel_crtc =
2486                 to_intel_crtc(intel_dig_port->base.base.crtc);
2487         uint32_t DP = intel_dp->DP;
2488
2489         /*
2490          * DDI code has a strict mode set sequence and we should try to respect
2491          * it, otherwise we might hang the machine in many different ways. So we
2492          * really should be disabling the port only on a complete crtc_disable
2493          * sequence. This function is just called under two conditions on DDI
2494          * code:
2495          * - Link train failed while doing crtc_enable, and on this case we
2496          *   really should respect the mode set sequence and wait for a
2497          *   crtc_disable.
2498          * - Someone turned the monitor off and intel_dp_check_link_status
2499          *   called us. We don't need to disable the whole port on this case, so
2500          *   when someone turns the monitor on again,
2501          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2502          *   train.
2503          */
2504         if (HAS_DDI(dev))
2505                 return;
2506
2507         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2508                 return;
2509
2510         DRM_DEBUG_KMS("\n");
2511
2512         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2513                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2514                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2515         } else {
2516                 DP &= ~DP_LINK_TRAIN_MASK;
2517                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2518         }
2519         POSTING_READ(intel_dp->output_reg);
2520
2521         /* We don't really know why we're doing this */
2522         intel_wait_for_vblank(dev, intel_crtc->pipe);
2523
2524         if (HAS_PCH_IBX(dev) &&
2525             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2526                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2527
2528                 /* Hardware workaround: leaving our transcoder select
2529                  * set to transcoder B while it's off will prevent the
2530                  * corresponding HDMI output on transcoder A.
2531                  *
2532                  * Combine this with another hardware workaround:
2533                  * transcoder select bit can only be cleared while the
2534                  * port is enabled.
2535                  */
2536                 DP &= ~DP_PIPEB_SELECT;
2537                 I915_WRITE(intel_dp->output_reg, DP);
2538
2539                 /* Changes to enable or select take place the vblank
2540                  * after being written.
2541                  */
2542                 if (WARN_ON(crtc == NULL)) {
2543                         /* We should never try to disable a port without a crtc
2544                          * attached. For paranoia keep the code around for a
2545                          * bit. */
2546                         POSTING_READ(intel_dp->output_reg);
2547                         msleep(50);
2548                 } else
2549                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2550         }
2551
2552         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2553         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2554         POSTING_READ(intel_dp->output_reg);
2555         msleep(intel_dp->panel_power_down_delay);
2556 }
2557
2558 static bool
2559 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2560 {
2561         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2562
2563         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2564                                            sizeof(intel_dp->dpcd)) == 0)
2565                 return false; /* aux transfer failed */
2566
2567         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2568                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2569         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2570
2571         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2572                 return false; /* DPCD not present */
2573
2574         /* Check if the panel supports PSR */
2575         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2576         intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2577                                        intel_dp->psr_dpcd,
2578                                        sizeof(intel_dp->psr_dpcd));
2579         if (is_edp_psr(intel_dp))
2580                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2581         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2582               DP_DWN_STRM_PORT_PRESENT))
2583                 return true; /* native DP sink */
2584
2585         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2586                 return true; /* no per-port downstream info */
2587
2588         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2589                                            intel_dp->downstream_ports,
2590                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2591                 return false; /* downstream port status fetch failed */
2592
2593         return true;
2594 }
2595
2596 static void
2597 intel_dp_probe_oui(struct intel_dp *intel_dp)
2598 {
2599         u8 buf[3];
2600
2601         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2602                 return;
2603
2604         ironlake_edp_panel_vdd_on(intel_dp);
2605
2606         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2607                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2608                               buf[0], buf[1], buf[2]);
2609
2610         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2611                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2612                               buf[0], buf[1], buf[2]);
2613
2614         ironlake_edp_panel_vdd_off(intel_dp, false);
2615 }
2616
2617 static bool
2618 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2619 {
2620         int ret;
2621
2622         ret = intel_dp_aux_native_read_retry(intel_dp,
2623                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2624                                              sink_irq_vector, 1);
2625         if (!ret)
2626                 return false;
2627
2628         return true;
2629 }
2630
2631 static void
2632 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2633 {
2634         /* NAK by default */
2635         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2636 }
2637
2638 /*
2639  * According to DP spec
2640  * 5.1.2:
2641  *  1. Read DPCD
2642  *  2. Configure link according to Receiver Capabilities
2643  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2644  *  4. Check link status on receipt of hot-plug interrupt
2645  */
2646
2647 void
2648 intel_dp_check_link_status(struct intel_dp *intel_dp)
2649 {
2650         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2651         u8 sink_irq_vector;
2652         u8 link_status[DP_LINK_STATUS_SIZE];
2653
2654         if (!intel_encoder->connectors_active)
2655                 return;
2656
2657         if (WARN_ON(!intel_encoder->base.crtc))
2658                 return;
2659
2660         /* Try to read receiver status if the link appears to be up */
2661         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2662                 intel_dp_link_down(intel_dp);
2663                 return;
2664         }
2665
2666         /* Now read the DPCD to see if it's actually running */
2667         if (!intel_dp_get_dpcd(intel_dp)) {
2668                 intel_dp_link_down(intel_dp);
2669                 return;
2670         }
2671
2672         /* Try to read the source of the interrupt */
2673         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2674             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2675                 /* Clear interrupt source */
2676                 intel_dp_aux_native_write_1(intel_dp,
2677                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2678                                             sink_irq_vector);
2679
2680                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2681                         intel_dp_handle_test_request(intel_dp);
2682                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2683                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2684         }
2685
2686         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2687                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2688                               drm_get_encoder_name(&intel_encoder->base));
2689                 intel_dp_start_link_train(intel_dp);
2690                 intel_dp_complete_link_train(intel_dp);
2691                 intel_dp_stop_link_train(intel_dp);
2692         }
2693 }
2694
2695 /* XXX this is probably wrong for multiple downstream ports */
2696 static enum drm_connector_status
2697 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2698 {
2699         uint8_t *dpcd = intel_dp->dpcd;
2700         bool hpd;
2701         uint8_t type;
2702
2703         if (!intel_dp_get_dpcd(intel_dp))
2704                 return connector_status_disconnected;
2705
2706         /* if there's no downstream port, we're done */
2707         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2708                 return connector_status_connected;
2709
2710         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2711         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2712         if (hpd) {
2713                 uint8_t reg;
2714                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2715                                                     &reg, 1))
2716                         return connector_status_unknown;
2717                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2718                                               : connector_status_disconnected;
2719         }
2720
2721         /* If no HPD, poke DDC gently */
2722         if (drm_probe_ddc(&intel_dp->adapter))
2723                 return connector_status_connected;
2724
2725         /* Well we tried, say unknown for unreliable port types */
2726         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2727         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2728                 return connector_status_unknown;
2729
2730         /* Anything else is out of spec, warn and ignore */
2731         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2732         return connector_status_disconnected;
2733 }
2734
2735 static enum drm_connector_status
2736 ironlake_dp_detect(struct intel_dp *intel_dp)
2737 {
2738         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2739         struct drm_i915_private *dev_priv = dev->dev_private;
2740         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2741         enum drm_connector_status status;
2742
2743         /* Can't disconnect eDP, but you can close the lid... */
2744         if (is_edp(intel_dp)) {
2745                 status = intel_panel_detect(dev);
2746                 if (status == connector_status_unknown)
2747                         status = connector_status_connected;
2748                 return status;
2749         }
2750
2751         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2752                 return connector_status_disconnected;
2753
2754         return intel_dp_detect_dpcd(intel_dp);
2755 }
2756
2757 static enum drm_connector_status
2758 g4x_dp_detect(struct intel_dp *intel_dp)
2759 {
2760         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2763         uint32_t bit;
2764
2765         /* Can't disconnect eDP, but you can close the lid... */
2766         if (is_edp(intel_dp)) {
2767                 enum drm_connector_status status;
2768
2769                 status = intel_panel_detect(dev);
2770                 if (status == connector_status_unknown)
2771                         status = connector_status_connected;
2772                 return status;
2773         }
2774
2775         switch (intel_dig_port->port) {
2776         case PORT_B:
2777                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2778                 break;
2779         case PORT_C:
2780                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2781                 break;
2782         case PORT_D:
2783                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2784                 break;
2785         default:
2786                 return connector_status_unknown;
2787         }
2788
2789         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2790                 return connector_status_disconnected;
2791
2792         return intel_dp_detect_dpcd(intel_dp);
2793 }
2794
2795 static struct edid *
2796 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2797 {
2798         struct intel_connector *intel_connector = to_intel_connector(connector);
2799
2800         /* use cached edid if we have one */
2801         if (intel_connector->edid) {
2802                 struct edid *edid;
2803                 int size;
2804
2805                 /* invalid edid */
2806                 if (IS_ERR(intel_connector->edid))
2807                         return NULL;
2808
2809                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2810                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2811                 if (!edid)
2812                         return NULL;
2813
2814                 return edid;
2815         }
2816
2817         return drm_get_edid(connector, adapter);
2818 }
2819
2820 static int
2821 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2822 {
2823         struct intel_connector *intel_connector = to_intel_connector(connector);
2824
2825         /* use cached edid if we have one */
2826         if (intel_connector->edid) {
2827                 /* invalid edid */
2828                 if (IS_ERR(intel_connector->edid))
2829                         return 0;
2830
2831                 return intel_connector_update_modes(connector,
2832                                                     intel_connector->edid);
2833         }
2834
2835         return intel_ddc_get_modes(connector, adapter);
2836 }
2837
2838 static enum drm_connector_status
2839 intel_dp_detect(struct drm_connector *connector, bool force)
2840 {
2841         struct intel_dp *intel_dp = intel_attached_dp(connector);
2842         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2843         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2844         struct drm_device *dev = connector->dev;
2845         enum drm_connector_status status;
2846         struct edid *edid = NULL;
2847
2848         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2849                       connector->base.id, drm_get_connector_name(connector));
2850
2851         intel_dp->has_audio = false;
2852
2853         if (HAS_PCH_SPLIT(dev))
2854                 status = ironlake_dp_detect(intel_dp);
2855         else
2856                 status = g4x_dp_detect(intel_dp);
2857
2858         if (status != connector_status_connected)
2859                 return status;
2860
2861         intel_dp_probe_oui(intel_dp);
2862
2863         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2864                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2865         } else {
2866                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2867                 if (edid) {
2868                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2869                         kfree(edid);
2870                 }
2871         }
2872
2873         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2874                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2875         return connector_status_connected;
2876 }
2877
2878 static int intel_dp_get_modes(struct drm_connector *connector)
2879 {
2880         struct intel_dp *intel_dp = intel_attached_dp(connector);
2881         struct intel_connector *intel_connector = to_intel_connector(connector);
2882         struct drm_device *dev = connector->dev;
2883         int ret;
2884
2885         /* We should parse the EDID data and find out if it has an audio sink
2886          */
2887
2888         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2889         if (ret)
2890                 return ret;
2891
2892         /* if eDP has no EDID, fall back to fixed mode */
2893         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2894                 struct drm_display_mode *mode;
2895                 mode = drm_mode_duplicate(dev,
2896                                           intel_connector->panel.fixed_mode);
2897                 if (mode) {
2898                         drm_mode_probed_add(connector, mode);
2899                         return 1;
2900                 }
2901         }
2902         return 0;
2903 }
2904
2905 static bool
2906 intel_dp_detect_audio(struct drm_connector *connector)
2907 {
2908         struct intel_dp *intel_dp = intel_attached_dp(connector);
2909         struct edid *edid;
2910         bool has_audio = false;
2911
2912         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2913         if (edid) {
2914                 has_audio = drm_detect_monitor_audio(edid);
2915                 kfree(edid);
2916         }
2917
2918         return has_audio;
2919 }
2920
2921 static int
2922 intel_dp_set_property(struct drm_connector *connector,
2923                       struct drm_property *property,
2924                       uint64_t val)
2925 {
2926         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2927         struct intel_connector *intel_connector = to_intel_connector(connector);
2928         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2929         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2930         int ret;
2931
2932         ret = drm_object_property_set_value(&connector->base, property, val);
2933         if (ret)
2934                 return ret;
2935
2936         if (property == dev_priv->force_audio_property) {
2937                 int i = val;
2938                 bool has_audio;
2939
2940                 if (i == intel_dp->force_audio)
2941                         return 0;
2942
2943                 intel_dp->force_audio = i;
2944
2945                 if (i == HDMI_AUDIO_AUTO)
2946                         has_audio = intel_dp_detect_audio(connector);
2947                 else
2948                         has_audio = (i == HDMI_AUDIO_ON);
2949
2950                 if (has_audio == intel_dp->has_audio)
2951                         return 0;
2952
2953                 intel_dp->has_audio = has_audio;
2954                 goto done;
2955         }
2956
2957         if (property == dev_priv->broadcast_rgb_property) {
2958                 bool old_auto = intel_dp->color_range_auto;
2959                 uint32_t old_range = intel_dp->color_range;
2960
2961                 switch (val) {
2962                 case INTEL_BROADCAST_RGB_AUTO:
2963                         intel_dp->color_range_auto = true;
2964                         break;
2965                 case INTEL_BROADCAST_RGB_FULL:
2966                         intel_dp->color_range_auto = false;
2967                         intel_dp->color_range = 0;
2968                         break;
2969                 case INTEL_BROADCAST_RGB_LIMITED:
2970                         intel_dp->color_range_auto = false;
2971                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2972                         break;
2973                 default:
2974                         return -EINVAL;
2975                 }
2976
2977                 if (old_auto == intel_dp->color_range_auto &&
2978                     old_range == intel_dp->color_range)
2979                         return 0;
2980
2981                 goto done;
2982         }
2983
2984         if (is_edp(intel_dp) &&
2985             property == connector->dev->mode_config.scaling_mode_property) {
2986                 if (val == DRM_MODE_SCALE_NONE) {
2987                         DRM_DEBUG_KMS("no scaling not supported\n");
2988                         return -EINVAL;
2989                 }
2990
2991                 if (intel_connector->panel.fitting_mode == val) {
2992                         /* the eDP scaling property is not changed */
2993                         return 0;
2994                 }
2995                 intel_connector->panel.fitting_mode = val;
2996
2997                 goto done;
2998         }
2999
3000         return -EINVAL;
3001
3002 done:
3003         if (intel_encoder->base.crtc)
3004                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3005
3006         return 0;
3007 }
3008
3009 static void
3010 intel_dp_connector_destroy(struct drm_connector *connector)
3011 {
3012         struct intel_connector *intel_connector = to_intel_connector(connector);
3013
3014         if (!IS_ERR_OR_NULL(intel_connector->edid))
3015                 kfree(intel_connector->edid);
3016
3017         /* Can't call is_edp() since the encoder may have been destroyed
3018          * already. */
3019         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3020                 intel_panel_fini(&intel_connector->panel);
3021
3022         drm_sysfs_connector_remove(connector);
3023         drm_connector_cleanup(connector);
3024         kfree(connector);
3025 }
3026
3027 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3028 {
3029         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3030         struct intel_dp *intel_dp = &intel_dig_port->dp;
3031         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3032
3033         i2c_del_adapter(&intel_dp->adapter);
3034         drm_encoder_cleanup(encoder);
3035         if (is_edp(intel_dp)) {
3036                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3037                 mutex_lock(&dev->mode_config.mutex);
3038                 ironlake_panel_vdd_off_sync(intel_dp);
3039                 mutex_unlock(&dev->mode_config.mutex);
3040         }
3041         kfree(intel_dig_port);
3042 }
3043
3044 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3045         .dpms = intel_connector_dpms,
3046         .detect = intel_dp_detect,
3047         .fill_modes = drm_helper_probe_single_connector_modes,
3048         .set_property = intel_dp_set_property,
3049         .destroy = intel_dp_connector_destroy,
3050 };
3051
3052 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3053         .get_modes = intel_dp_get_modes,
3054         .mode_valid = intel_dp_mode_valid,
3055         .best_encoder = intel_best_encoder,
3056 };
3057
3058 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3059         .destroy = intel_dp_encoder_destroy,
3060 };
3061
3062 static void
3063 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3064 {
3065         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3066
3067         intel_dp_check_link_status(intel_dp);
3068 }
3069
3070 /* Return which DP Port should be selected for Transcoder DP control */
3071 int
3072 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3073 {
3074         struct drm_device *dev = crtc->dev;
3075         struct intel_encoder *intel_encoder;
3076         struct intel_dp *intel_dp;
3077
3078         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3079                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3080
3081                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3082                     intel_encoder->type == INTEL_OUTPUT_EDP)
3083                         return intel_dp->output_reg;
3084         }
3085
3086         return -1;
3087 }
3088
3089 /* check the VBT to see whether the eDP is on DP-D port */
3090 bool intel_dpd_is_edp(struct drm_device *dev)
3091 {
3092         struct drm_i915_private *dev_priv = dev->dev_private;
3093         struct child_device_config *p_child;
3094         int i;
3095
3096         if (!dev_priv->vbt.child_dev_num)
3097                 return false;
3098
3099         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3100                 p_child = dev_priv->vbt.child_dev + i;
3101
3102                 if (p_child->dvo_port == PORT_IDPD &&
3103                     p_child->device_type == DEVICE_TYPE_eDP)
3104                         return true;
3105         }
3106         return false;
3107 }
3108
3109 static void
3110 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3111 {
3112         struct intel_connector *intel_connector = to_intel_connector(connector);
3113
3114         intel_attach_force_audio_property(connector);
3115         intel_attach_broadcast_rgb_property(connector);
3116         intel_dp->color_range_auto = true;
3117
3118         if (is_edp(intel_dp)) {
3119                 drm_mode_create_scaling_mode_property(connector->dev);
3120                 drm_object_attach_property(
3121                         &connector->base,
3122                         connector->dev->mode_config.scaling_mode_property,
3123                         DRM_MODE_SCALE_ASPECT);
3124                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3125         }
3126 }
3127
3128 static void
3129 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3130                                     struct intel_dp *intel_dp,
3131                                     struct edp_power_seq *out)
3132 {
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134         struct edp_power_seq cur, vbt, spec, final;
3135         u32 pp_on, pp_off, pp_div, pp;
3136         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3137
3138         if (HAS_PCH_SPLIT(dev)) {
3139                 pp_control_reg = PCH_PP_CONTROL;
3140                 pp_on_reg = PCH_PP_ON_DELAYS;
3141                 pp_off_reg = PCH_PP_OFF_DELAYS;
3142                 pp_div_reg = PCH_PP_DIVISOR;
3143         } else {
3144                 pp_control_reg = PIPEA_PP_CONTROL;
3145                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3146                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3147                 pp_div_reg = PIPEA_PP_DIVISOR;
3148         }
3149
3150         /* Workaround: Need to write PP_CONTROL with the unlock key as
3151          * the very first thing. */
3152         pp = ironlake_get_pp_control(intel_dp);
3153         I915_WRITE(pp_control_reg, pp);
3154
3155         pp_on = I915_READ(pp_on_reg);
3156         pp_off = I915_READ(pp_off_reg);
3157         pp_div = I915_READ(pp_div_reg);
3158
3159         /* Pull timing values out of registers */
3160         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3161                 PANEL_POWER_UP_DELAY_SHIFT;
3162
3163         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3164                 PANEL_LIGHT_ON_DELAY_SHIFT;
3165
3166         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3167                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3168
3169         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3170                 PANEL_POWER_DOWN_DELAY_SHIFT;
3171
3172         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3173                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3174
3175         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3176                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3177
3178         vbt = dev_priv->vbt.edp_pps;
3179
3180         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3181          * our hw here, which are all in 100usec. */
3182         spec.t1_t3 = 210 * 10;
3183         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3184         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3185         spec.t10 = 500 * 10;
3186         /* This one is special and actually in units of 100ms, but zero
3187          * based in the hw (so we need to add 100 ms). But the sw vbt
3188          * table multiplies it with 1000 to make it in units of 100usec,
3189          * too. */
3190         spec.t11_t12 = (510 + 100) * 10;
3191
3192         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3193                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3194
3195         /* Use the max of the register settings and vbt. If both are
3196          * unset, fall back to the spec limits. */
3197 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3198                                        spec.field : \
3199                                        max(cur.field, vbt.field))
3200         assign_final(t1_t3);
3201         assign_final(t8);
3202         assign_final(t9);
3203         assign_final(t10);
3204         assign_final(t11_t12);
3205 #undef assign_final
3206
3207 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3208         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3209         intel_dp->backlight_on_delay = get_delay(t8);
3210         intel_dp->backlight_off_delay = get_delay(t9);
3211         intel_dp->panel_power_down_delay = get_delay(t10);
3212         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3213 #undef get_delay
3214
3215         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3216                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3217                       intel_dp->panel_power_cycle_delay);
3218
3219         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3220                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3221
3222         if (out)
3223                 *out = final;
3224 }
3225
3226 static void
3227 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3228                                               struct intel_dp *intel_dp,
3229                                               struct edp_power_seq *seq)
3230 {
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         u32 pp_on, pp_off, pp_div, port_sel = 0;
3233         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3234         int pp_on_reg, pp_off_reg, pp_div_reg;
3235
3236         if (HAS_PCH_SPLIT(dev)) {
3237                 pp_on_reg = PCH_PP_ON_DELAYS;
3238                 pp_off_reg = PCH_PP_OFF_DELAYS;
3239                 pp_div_reg = PCH_PP_DIVISOR;
3240         } else {
3241                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3242                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3243                 pp_div_reg = PIPEA_PP_DIVISOR;
3244         }
3245
3246         /* And finally store the new values in the power sequencer. */
3247         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3248                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3249         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3250                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3251         /* Compute the divisor for the pp clock, simply match the Bspec
3252          * formula. */
3253         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3254         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3255                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3256
3257         /* Haswell doesn't have any port selection bits for the panel
3258          * power sequencer any more. */
3259         if (IS_VALLEYVIEW(dev)) {
3260                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3261         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3262                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3263                         port_sel = PANEL_POWER_PORT_DP_A;
3264                 else
3265                         port_sel = PANEL_POWER_PORT_DP_D;
3266         }
3267
3268         pp_on |= port_sel;
3269
3270         I915_WRITE(pp_on_reg, pp_on);
3271         I915_WRITE(pp_off_reg, pp_off);
3272         I915_WRITE(pp_div_reg, pp_div);
3273
3274         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3275                       I915_READ(pp_on_reg),
3276                       I915_READ(pp_off_reg),
3277                       I915_READ(pp_div_reg));
3278 }
3279
3280 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3281                                      struct intel_connector *intel_connector)
3282 {
3283         struct drm_connector *connector = &intel_connector->base;
3284         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3285         struct drm_device *dev = intel_dig_port->base.base.dev;
3286         struct drm_i915_private *dev_priv = dev->dev_private;
3287         struct drm_display_mode *fixed_mode = NULL;
3288         struct edp_power_seq power_seq = { 0 };
3289         bool has_dpcd;
3290         struct drm_display_mode *scan;
3291         struct edid *edid;
3292
3293         if (!is_edp(intel_dp))
3294                 return true;
3295
3296         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3297
3298         /* Cache DPCD and EDID for edp. */
3299         ironlake_edp_panel_vdd_on(intel_dp);
3300         has_dpcd = intel_dp_get_dpcd(intel_dp);
3301         ironlake_edp_panel_vdd_off(intel_dp, false);
3302
3303         if (has_dpcd) {
3304                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3305                         dev_priv->no_aux_handshake =
3306                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3307                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3308         } else {
3309                 /* if this fails, presume the device is a ghost */
3310                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3311                 return false;
3312         }
3313
3314         /* We now know it's not a ghost, init power sequence regs. */
3315         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3316                                                       &power_seq);
3317
3318         ironlake_edp_panel_vdd_on(intel_dp);
3319         edid = drm_get_edid(connector, &intel_dp->adapter);
3320         if (edid) {
3321                 if (drm_add_edid_modes(connector, edid)) {
3322                         drm_mode_connector_update_edid_property(connector,
3323                                                                 edid);
3324                         drm_edid_to_eld(connector, edid);
3325                 } else {
3326                         kfree(edid);
3327                         edid = ERR_PTR(-EINVAL);
3328                 }
3329         } else {
3330                 edid = ERR_PTR(-ENOENT);
3331         }
3332         intel_connector->edid = edid;
3333
3334         /* prefer fixed mode from EDID if available */
3335         list_for_each_entry(scan, &connector->probed_modes, head) {
3336                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3337                         fixed_mode = drm_mode_duplicate(dev, scan);
3338                         break;
3339                 }
3340         }
3341
3342         /* fallback to VBT if available for eDP */
3343         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3344                 fixed_mode = drm_mode_duplicate(dev,
3345                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3346                 if (fixed_mode)
3347                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3348         }
3349
3350         ironlake_edp_panel_vdd_off(intel_dp, false);
3351
3352         intel_panel_init(&intel_connector->panel, fixed_mode);
3353         intel_panel_setup_backlight(connector);
3354
3355         return true;
3356 }
3357
3358 bool
3359 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3360                         struct intel_connector *intel_connector)
3361 {
3362         struct drm_connector *connector = &intel_connector->base;
3363         struct intel_dp *intel_dp = &intel_dig_port->dp;
3364         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3365         struct drm_device *dev = intel_encoder->base.dev;
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         enum port port = intel_dig_port->port;
3368         const char *name = NULL;
3369         int type, error;
3370
3371         /* Preserve the current hw state. */
3372         intel_dp->DP = I915_READ(intel_dp->output_reg);
3373         intel_dp->attached_connector = intel_connector;
3374
3375         type = DRM_MODE_CONNECTOR_DisplayPort;
3376         /*
3377          * FIXME : We need to initialize built-in panels before external panels.
3378          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3379          */
3380         switch (port) {
3381         case PORT_A:
3382                 type = DRM_MODE_CONNECTOR_eDP;
3383                 break;
3384         case PORT_C:
3385                 if (IS_VALLEYVIEW(dev))
3386                         type = DRM_MODE_CONNECTOR_eDP;
3387                 break;
3388         case PORT_D:
3389                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3390                         type = DRM_MODE_CONNECTOR_eDP;
3391                 break;
3392         default:        /* silence GCC warning */
3393                 break;
3394         }
3395
3396         /*
3397          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3398          * for DP the encoder type can be set by the caller to
3399          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3400          */
3401         if (type == DRM_MODE_CONNECTOR_eDP)
3402                 intel_encoder->type = INTEL_OUTPUT_EDP;
3403
3404         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3405                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3406                         port_name(port));
3407
3408         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3409         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3410
3411         connector->interlace_allowed = true;
3412         connector->doublescan_allowed = 0;
3413
3414         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3415                           ironlake_panel_vdd_work);
3416
3417         intel_connector_attach_encoder(intel_connector, intel_encoder);
3418         drm_sysfs_connector_add(connector);
3419
3420         if (HAS_DDI(dev))
3421                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3422         else
3423                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3424
3425         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3426         if (HAS_DDI(dev)) {
3427                 switch (intel_dig_port->port) {
3428                 case PORT_A:
3429                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3430                         break;
3431                 case PORT_B:
3432                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3433                         break;
3434                 case PORT_C:
3435                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3436                         break;
3437                 case PORT_D:
3438                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3439                         break;
3440                 default:
3441                         BUG();
3442                 }
3443         }
3444
3445         /* Set up the DDC bus. */
3446         switch (port) {
3447         case PORT_A:
3448                 intel_encoder->hpd_pin = HPD_PORT_A;
3449                 name = "DPDDC-A";
3450                 break;
3451         case PORT_B:
3452                 intel_encoder->hpd_pin = HPD_PORT_B;
3453                 name = "DPDDC-B";
3454                 break;
3455         case PORT_C:
3456                 intel_encoder->hpd_pin = HPD_PORT_C;
3457                 name = "DPDDC-C";
3458                 break;
3459         case PORT_D:
3460                 intel_encoder->hpd_pin = HPD_PORT_D;
3461                 name = "DPDDC-D";
3462                 break;
3463         default:
3464                 BUG();
3465         }
3466
3467         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3468         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3469              error, port_name(port));
3470
3471         intel_dp->psr_setup_done = false;
3472
3473         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3474                 i2c_del_adapter(&intel_dp->adapter);
3475                 if (is_edp(intel_dp)) {
3476                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3477                         mutex_lock(&dev->mode_config.mutex);
3478                         ironlake_panel_vdd_off_sync(intel_dp);
3479                         mutex_unlock(&dev->mode_config.mutex);
3480                 }
3481                 drm_sysfs_connector_remove(connector);
3482                 drm_connector_cleanup(connector);
3483                 return false;
3484         }
3485
3486         intel_dp_add_properties(intel_dp, connector);
3487
3488         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3489          * 0xd.  Failure to do so will result in spurious interrupts being
3490          * generated on the port when a cable is not attached.
3491          */
3492         if (IS_G4X(dev) && !IS_GM45(dev)) {
3493                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3494                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3495         }
3496
3497         return true;
3498 }
3499
3500 void
3501 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3502 {
3503         struct intel_digital_port *intel_dig_port;
3504         struct intel_encoder *intel_encoder;
3505         struct drm_encoder *encoder;
3506         struct intel_connector *intel_connector;
3507
3508         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3509         if (!intel_dig_port)
3510                 return;
3511
3512         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3513         if (!intel_connector) {
3514                 kfree(intel_dig_port);
3515                 return;
3516         }
3517
3518         intel_encoder = &intel_dig_port->base;
3519         encoder = &intel_encoder->base;
3520
3521         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3522                          DRM_MODE_ENCODER_TMDS);
3523
3524         intel_encoder->compute_config = intel_dp_compute_config;
3525         intel_encoder->mode_set = intel_dp_mode_set;
3526         intel_encoder->disable = intel_disable_dp;
3527         intel_encoder->post_disable = intel_post_disable_dp;
3528         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3529         intel_encoder->get_config = intel_dp_get_config;
3530         if (IS_VALLEYVIEW(dev)) {
3531                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3532                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3533                 intel_encoder->enable = vlv_enable_dp;
3534         } else {
3535                 intel_encoder->pre_enable = intel_pre_enable_dp;
3536                 intel_encoder->enable = intel_enable_dp;
3537         }
3538
3539         intel_dig_port->port = port;
3540         intel_dig_port->dp.output_reg = output_reg;
3541
3542         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3543         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3544         intel_encoder->cloneable = false;
3545         intel_encoder->hot_plug = intel_dp_hot_plug;
3546
3547         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3548                 drm_encoder_cleanup(encoder);
3549                 kfree(intel_dig_port);
3550                 kfree(intel_connector);
3551         }
3552 }