]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/intel: refactor DP i2c support and DP common header to drm helper
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "drm_crtc.h"
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #define DP_LINK_STATUS_SIZE     6
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 #define DP_LINK_CONFIGURATION_SIZE      9
42
43 #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
44
45 struct intel_dp_priv {
46         uint32_t output_reg;
47         uint32_t DP;
48         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
49         uint32_t save_DP;
50         uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         int dpms_mode;
53         uint8_t link_bw;
54         uint8_t lane_count;
55         uint8_t dpcd[4];
56         struct intel_output *intel_output;
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59 };
60
61 static void
62 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
63                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
64
65 static void
66 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
67
68 void
69 intel_edp_link_config (struct intel_output *intel_output,
70                 int *lane_num, int *link_bw)
71 {
72         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
73
74         *lane_num = dp_priv->lane_count;
75         if (dp_priv->link_bw == DP_LINK_BW_1_62)
76                 *link_bw = 162000;
77         else if (dp_priv->link_bw == DP_LINK_BW_2_7)
78                 *link_bw = 270000;
79 }
80
81 static int
82 intel_dp_max_lane_count(struct intel_output *intel_output)
83 {
84         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
85         int max_lane_count = 4;
86
87         if (dp_priv->dpcd[0] >= 0x11) {
88                 max_lane_count = dp_priv->dpcd[2] & 0x1f;
89                 switch (max_lane_count) {
90                 case 1: case 2: case 4:
91                         break;
92                 default:
93                         max_lane_count = 4;
94                 }
95         }
96         return max_lane_count;
97 }
98
99 static int
100 intel_dp_max_link_bw(struct intel_output *intel_output)
101 {
102         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
103         int max_link_bw = dp_priv->dpcd[1];
104
105         switch (max_link_bw) {
106         case DP_LINK_BW_1_62:
107         case DP_LINK_BW_2_7:
108                 break;
109         default:
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 static int
117 intel_dp_link_clock(uint8_t link_bw)
118 {
119         if (link_bw == DP_LINK_BW_2_7)
120                 return 270000;
121         else
122                 return 162000;
123 }
124
125 /* I think this is a fiction */
126 static int
127 intel_dp_link_required(int pixel_clock)
128 {
129         return pixel_clock * 3;
130 }
131
132 static int
133 intel_dp_mode_valid(struct drm_connector *connector,
134                     struct drm_display_mode *mode)
135 {
136         struct intel_output *intel_output = to_intel_output(connector);
137         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
138         int max_lanes = intel_dp_max_lane_count(intel_output);
139
140         if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
141                 return MODE_CLOCK_HIGH;
142
143         if (mode->clock < 10000)
144                 return MODE_CLOCK_LOW;
145
146         return MODE_OK;
147 }
148
149 static uint32_t
150 pack_aux(uint8_t *src, int src_bytes)
151 {
152         int     i;
153         uint32_t v = 0;
154
155         if (src_bytes > 4)
156                 src_bytes = 4;
157         for (i = 0; i < src_bytes; i++)
158                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
159         return v;
160 }
161
162 static void
163 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
164 {
165         int i;
166         if (dst_bytes > 4)
167                 dst_bytes = 4;
168         for (i = 0; i < dst_bytes; i++)
169                 dst[i] = src >> ((3-i) * 8);
170 }
171
172 /* hrawclock is 1/4 the FSB frequency */
173 static int
174 intel_hrawclk(struct drm_device *dev)
175 {
176         struct drm_i915_private *dev_priv = dev->dev_private;
177         uint32_t clkcfg;
178
179         clkcfg = I915_READ(CLKCFG);
180         switch (clkcfg & CLKCFG_FSB_MASK) {
181         case CLKCFG_FSB_400:
182                 return 100;
183         case CLKCFG_FSB_533:
184                 return 133;
185         case CLKCFG_FSB_667:
186                 return 166;
187         case CLKCFG_FSB_800:
188                 return 200;
189         case CLKCFG_FSB_1067:
190                 return 266;
191         case CLKCFG_FSB_1333:
192                 return 333;
193         /* these two are just a guess; one of them might be right */
194         case CLKCFG_FSB_1600:
195         case CLKCFG_FSB_1600_ALT:
196                 return 400;
197         default:
198                 return 133;
199         }
200 }
201
202 static int
203 intel_dp_aux_ch(struct intel_output *intel_output,
204                 uint8_t *send, int send_bytes,
205                 uint8_t *recv, int recv_size)
206 {
207         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
208         uint32_t output_reg = dp_priv->output_reg;
209         struct drm_device *dev = intel_output->base.dev;
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t ch_ctl = output_reg + 0x10;
212         uint32_t ch_data = ch_ctl + 4;
213         int i;
214         int recv_bytes;
215         uint32_t ctl;
216         uint32_t status;
217         uint32_t aux_clock_divider;
218         int try;
219
220         /* The clock divider is based off the hrawclk,
221          * and would like to run at 2MHz. So, take the
222          * hrawclk value and divide by 2 and use that
223          */
224         if (IS_eDP(intel_output))
225                 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
226         else if (IS_IGDNG(dev))
227                 aux_clock_divider = 62; /* IGDNG: input clock fixed at 125Mhz */
228         else
229                 aux_clock_divider = intel_hrawclk(dev) / 2;
230
231         /* Must try at least 3 times according to DP spec */
232         for (try = 0; try < 5; try++) {
233                 /* Load the send data into the aux channel data registers */
234                 for (i = 0; i < send_bytes; i += 4) {
235                         uint32_t    d = pack_aux(send + i, send_bytes - i);
236         
237                         I915_WRITE(ch_data + i, d);
238                 }
239         
240                 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
241                        DP_AUX_CH_CTL_TIME_OUT_400us |
242                        (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
243                        (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
244                        (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
245                        DP_AUX_CH_CTL_DONE |
246                        DP_AUX_CH_CTL_TIME_OUT_ERROR |
247                        DP_AUX_CH_CTL_RECEIVE_ERROR);
248         
249                 /* Send the command and wait for it to complete */
250                 I915_WRITE(ch_ctl, ctl);
251                 (void) I915_READ(ch_ctl);
252                 for (;;) {
253                         udelay(100);
254                         status = I915_READ(ch_ctl);
255                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
256                                 break;
257                 }
258         
259                 /* Clear done status and any errors */
260                 I915_WRITE(ch_ctl, (status |
261                                 DP_AUX_CH_CTL_DONE |
262                                 DP_AUX_CH_CTL_TIME_OUT_ERROR |
263                                 DP_AUX_CH_CTL_RECEIVE_ERROR));
264                 (void) I915_READ(ch_ctl);
265                 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
266                         break;
267         }
268
269         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
270                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
271                 return -EBUSY;
272         }
273
274         /* Check for timeout or receive error.
275          * Timeouts occur when the sink is not connected
276          */
277         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
278                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
279                 return -EIO;
280         }
281
282         /* Timeouts occur when the device isn't connected, so they're
283          * "normal" -- don't fill the kernel log with these */
284         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
285                 DRM_DEBUG("dp_aux_ch timeout status 0x%08x\n", status);
286                 return -ETIMEDOUT;
287         }
288
289         /* Unload any bytes sent back from the other side */
290         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
291                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
292
293         if (recv_bytes > recv_size)
294                 recv_bytes = recv_size;
295         
296         for (i = 0; i < recv_bytes; i += 4) {
297                 uint32_t    d = I915_READ(ch_data + i);
298
299                 unpack_aux(d, recv + i, recv_bytes - i);
300         }
301
302         return recv_bytes;
303 }
304
305 /* Write data to the aux channel in native mode */
306 static int
307 intel_dp_aux_native_write(struct intel_output *intel_output,
308                           uint16_t address, uint8_t *send, int send_bytes)
309 {
310         int ret;
311         uint8_t msg[20];
312         int msg_bytes;
313         uint8_t ack;
314
315         if (send_bytes > 16)
316                 return -1;
317         msg[0] = AUX_NATIVE_WRITE << 4;
318         msg[1] = address >> 8;
319         msg[2] = address & 0xff;
320         msg[3] = send_bytes - 1;
321         memcpy(&msg[4], send, send_bytes);
322         msg_bytes = send_bytes + 4;
323         for (;;) {
324                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
325                 if (ret < 0)
326                         return ret;
327                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
328                         break;
329                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
330                         udelay(100);
331                 else
332                         return -EIO;
333         }
334         return send_bytes;
335 }
336
337 /* Write a single byte to the aux channel in native mode */
338 static int
339 intel_dp_aux_native_write_1(struct intel_output *intel_output,
340                             uint16_t address, uint8_t byte)
341 {
342         return intel_dp_aux_native_write(intel_output, address, &byte, 1);
343 }
344
345 /* read bytes from a native aux channel */
346 static int
347 intel_dp_aux_native_read(struct intel_output *intel_output,
348                          uint16_t address, uint8_t *recv, int recv_bytes)
349 {
350         uint8_t msg[4];
351         int msg_bytes;
352         uint8_t reply[20];
353         int reply_bytes;
354         uint8_t ack;
355         int ret;
356
357         msg[0] = AUX_NATIVE_READ << 4;
358         msg[1] = address >> 8;
359         msg[2] = address & 0xff;
360         msg[3] = recv_bytes - 1;
361
362         msg_bytes = 4;
363         reply_bytes = recv_bytes + 1;
364
365         for (;;) {
366                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
367                                       reply, reply_bytes);
368                 if (ret == 0)
369                         return -EPROTO;
370                 if (ret < 0)
371                         return ret;
372                 ack = reply[0];
373                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
374                         memcpy(recv, reply + 1, ret - 1);
375                         return ret - 1;
376                 }
377                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
378                         udelay(100);
379                 else
380                         return -EIO;
381         }
382 }
383
384 static int
385 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
386                     uint8_t write_byte, uint8_t *read_byte)
387 {
388         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
389         struct intel_dp_priv *dp_priv = container_of(adapter,
390                                                      struct intel_dp_priv,
391                                                      adapter);
392         struct intel_output *intel_output = dp_priv->intel_output;
393         uint16_t address = algo_data->address;
394         uint8_t msg[5];
395         uint8_t reply[2];
396         int msg_bytes;
397         int reply_bytes;
398         int ret;
399
400         /* Set up the command byte */
401         if (mode & MODE_I2C_READ)
402                 msg[0] = AUX_I2C_READ << 4;
403         else
404                 msg[0] = AUX_I2C_WRITE << 4;
405
406         if (!(mode & MODE_I2C_STOP))
407                 msg[0] |= AUX_I2C_MOT << 4;
408
409         msg[1] = address >> 8;
410         msg[2] = address;
411
412         switch (mode) {
413         case MODE_I2C_WRITE:
414                 msg[3] = 0;
415                 msg[4] = write_byte;
416                 msg_bytes = 5;
417                 reply_bytes = 1;
418                 break;
419         case MODE_I2C_READ:
420                 msg[3] = 0;
421                 msg_bytes = 4;
422                 reply_bytes = 2;
423                 break;
424         default:
425                 msg_bytes = 3;
426                 reply_bytes = 1;
427                 break;
428         }
429
430         for (;;) {
431           ret = intel_dp_aux_ch(intel_output,
432                                 msg, msg_bytes,
433                                 reply, reply_bytes);
434                 if (ret < 0) {
435                         DRM_DEBUG("aux_ch failed %d\n", ret);
436                         return ret;
437                 }
438                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
439                 case AUX_I2C_REPLY_ACK:
440                         if (mode == MODE_I2C_READ) {
441                                 *read_byte = reply[1];
442                         }
443                         return reply_bytes - 1;
444                 case AUX_I2C_REPLY_NACK:
445                         DRM_DEBUG("aux_ch nack\n");
446                         return -EREMOTEIO;
447                 case AUX_I2C_REPLY_DEFER:
448                         DRM_DEBUG("aux_ch defer\n");
449                         udelay(100);
450                         break;
451                 default:
452                         DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
453                         return -EREMOTEIO;
454                 }
455         }
456 }
457
458 static int
459 intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
460 {
461         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
462
463         DRM_DEBUG_KMS("i2c_init %s\n", name);
464         dp_priv->algo.running = false;
465         dp_priv->algo.address = 0;
466         dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
467
468         memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
469         dp_priv->adapter.owner = THIS_MODULE;
470         dp_priv->adapter.class = I2C_CLASS_DDC;
471         strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
472         dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
473         dp_priv->adapter.algo_data = &dp_priv->algo;
474         dp_priv->adapter.dev.parent = &intel_output->base.kdev;
475         
476         return i2c_dp_aux_add_bus(&dp_priv->adapter);
477 }
478
479 static bool
480 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
481                     struct drm_display_mode *adjusted_mode)
482 {
483         struct intel_output *intel_output = enc_to_intel_output(encoder);
484         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
485         int lane_count, clock;
486         int max_lane_count = intel_dp_max_lane_count(intel_output);
487         int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
488         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
489
490         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
491                 for (clock = 0; clock <= max_clock; clock++) {
492                         int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
493
494                         if (intel_dp_link_required(mode->clock) <= link_avail) {
495                                 dp_priv->link_bw = bws[clock];
496                                 dp_priv->lane_count = lane_count;
497                                 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
498                                 DRM_DEBUG("Display port link bw %02x lane count %d clock %d\n",
499                                        dp_priv->link_bw, dp_priv->lane_count,
500                                        adjusted_mode->clock);
501                                 return true;
502                         }
503                 }
504         }
505         return false;
506 }
507
508 struct intel_dp_m_n {
509         uint32_t        tu;
510         uint32_t        gmch_m;
511         uint32_t        gmch_n;
512         uint32_t        link_m;
513         uint32_t        link_n;
514 };
515
516 static void
517 intel_reduce_ratio(uint32_t *num, uint32_t *den)
518 {
519         while (*num > 0xffffff || *den > 0xffffff) {
520                 *num >>= 1;
521                 *den >>= 1;
522         }
523 }
524
525 static void
526 intel_dp_compute_m_n(int bytes_per_pixel,
527                      int nlanes,
528                      int pixel_clock,
529                      int link_clock,
530                      struct intel_dp_m_n *m_n)
531 {
532         m_n->tu = 64;
533         m_n->gmch_m = pixel_clock * bytes_per_pixel;
534         m_n->gmch_n = link_clock * nlanes;
535         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
536         m_n->link_m = pixel_clock;
537         m_n->link_n = link_clock;
538         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
539 }
540
541 void
542 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
543                  struct drm_display_mode *adjusted_mode)
544 {
545         struct drm_device *dev = crtc->dev;
546         struct drm_mode_config *mode_config = &dev->mode_config;
547         struct drm_connector *connector;
548         struct drm_i915_private *dev_priv = dev->dev_private;
549         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
550         int lane_count = 4;
551         struct intel_dp_m_n m_n;
552
553         /*
554          * Find the lane count in the intel_output private
555          */
556         list_for_each_entry(connector, &mode_config->connector_list, head) {
557                 struct intel_output *intel_output = to_intel_output(connector);
558                 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
559
560                 if (!connector->encoder || connector->encoder->crtc != crtc)
561                         continue;
562
563                 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
564                         lane_count = dp_priv->lane_count;
565                         break;
566                 }
567         }
568
569         /*
570          * Compute the GMCH and Link ratios. The '3' here is
571          * the number of bytes_per_pixel post-LUT, which we always
572          * set up for 8-bits of R/G/B, or 3 bytes total.
573          */
574         intel_dp_compute_m_n(3, lane_count,
575                              mode->clock, adjusted_mode->clock, &m_n);
576
577         if (IS_IGDNG(dev)) {
578                 if (intel_crtc->pipe == 0) {
579                         I915_WRITE(TRANSA_DATA_M1,
580                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
581                                    m_n.gmch_m);
582                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
583                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
584                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
585                 } else {
586                         I915_WRITE(TRANSB_DATA_M1,
587                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
588                                    m_n.gmch_m);
589                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
590                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
591                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
592                 }
593         } else {
594                 if (intel_crtc->pipe == 0) {
595                         I915_WRITE(PIPEA_GMCH_DATA_M,
596                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
597                                    m_n.gmch_m);
598                         I915_WRITE(PIPEA_GMCH_DATA_N,
599                                    m_n.gmch_n);
600                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
601                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
602                 } else {
603                         I915_WRITE(PIPEB_GMCH_DATA_M,
604                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
605                                    m_n.gmch_m);
606                         I915_WRITE(PIPEB_GMCH_DATA_N,
607                                         m_n.gmch_n);
608                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
609                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
610                 }
611         }
612 }
613
614 static void
615 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
616                   struct drm_display_mode *adjusted_mode)
617 {
618         struct intel_output *intel_output = enc_to_intel_output(encoder);
619         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
620         struct drm_crtc *crtc = intel_output->enc.crtc;
621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
622
623         dp_priv->DP = (DP_LINK_TRAIN_OFF |
624                         DP_VOLTAGE_0_4 |
625                         DP_PRE_EMPHASIS_0 |
626                         DP_SYNC_VS_HIGH |
627                         DP_SYNC_HS_HIGH);
628
629         switch (dp_priv->lane_count) {
630         case 1:
631                 dp_priv->DP |= DP_PORT_WIDTH_1;
632                 break;
633         case 2:
634                 dp_priv->DP |= DP_PORT_WIDTH_2;
635                 break;
636         case 4:
637                 dp_priv->DP |= DP_PORT_WIDTH_4;
638                 break;
639         }
640         if (dp_priv->has_audio)
641                 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
642
643         memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
644         dp_priv->link_configuration[0] = dp_priv->link_bw;
645         dp_priv->link_configuration[1] = dp_priv->lane_count;
646
647         /*
648          * Check for DPCD version > 1.1,
649          * enable enahanced frame stuff in that case
650          */
651         if (dp_priv->dpcd[0] >= 0x11) {
652                 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
653                 dp_priv->DP |= DP_ENHANCED_FRAMING;
654         }
655
656         if (intel_crtc->pipe == 1)
657                 dp_priv->DP |= DP_PIPEB_SELECT;
658
659         if (IS_eDP(intel_output)) {
660                 /* don't miss out required setting for eDP */
661                 dp_priv->DP |= DP_PLL_ENABLE;
662                 if (adjusted_mode->clock < 200000)
663                         dp_priv->DP |= DP_PLL_FREQ_160MHZ;
664                 else
665                         dp_priv->DP |= DP_PLL_FREQ_270MHZ;
666         }
667 }
668
669 static void igdng_edp_backlight_on (struct drm_device *dev)
670 {
671         struct drm_i915_private *dev_priv = dev->dev_private;
672         u32 pp;
673
674         DRM_DEBUG("\n");
675         pp = I915_READ(PCH_PP_CONTROL);
676         pp |= EDP_BLC_ENABLE;
677         I915_WRITE(PCH_PP_CONTROL, pp);
678 }
679
680 static void igdng_edp_backlight_off (struct drm_device *dev)
681 {
682         struct drm_i915_private *dev_priv = dev->dev_private;
683         u32 pp;
684
685         DRM_DEBUG("\n");
686         pp = I915_READ(PCH_PP_CONTROL);
687         pp &= ~EDP_BLC_ENABLE;
688         I915_WRITE(PCH_PP_CONTROL, pp);
689 }
690
691 static void
692 intel_dp_dpms(struct drm_encoder *encoder, int mode)
693 {
694         struct intel_output *intel_output = enc_to_intel_output(encoder);
695         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
696         struct drm_device *dev = intel_output->base.dev;
697         struct drm_i915_private *dev_priv = dev->dev_private;
698         uint32_t dp_reg = I915_READ(dp_priv->output_reg);
699
700         if (mode != DRM_MODE_DPMS_ON) {
701                 if (dp_reg & DP_PORT_EN) {
702                         intel_dp_link_down(intel_output, dp_priv->DP);
703                         if (IS_eDP(intel_output))
704                                 igdng_edp_backlight_off(dev);
705                 }
706         } else {
707                 if (!(dp_reg & DP_PORT_EN)) {
708                         intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
709                         if (IS_eDP(intel_output))
710                                 igdng_edp_backlight_on(dev);
711                 }
712         }
713         dp_priv->dpms_mode = mode;
714 }
715
716 /*
717  * Fetch AUX CH registers 0x202 - 0x207 which contain
718  * link status information
719  */
720 static bool
721 intel_dp_get_link_status(struct intel_output *intel_output,
722                          uint8_t link_status[DP_LINK_STATUS_SIZE])
723 {
724         int ret;
725
726         ret = intel_dp_aux_native_read(intel_output,
727                                        DP_LANE0_1_STATUS,
728                                        link_status, DP_LINK_STATUS_SIZE);
729         if (ret != DP_LINK_STATUS_SIZE)
730                 return false;
731         return true;
732 }
733
734 static uint8_t
735 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
736                      int r)
737 {
738         return link_status[r - DP_LANE0_1_STATUS];
739 }
740
741 static void
742 intel_dp_save(struct drm_connector *connector)
743 {
744         struct intel_output *intel_output = to_intel_output(connector);
745         struct drm_device *dev = intel_output->base.dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
748
749         dp_priv->save_DP = I915_READ(dp_priv->output_reg);
750         intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
751                                  dp_priv->save_link_configuration,
752                                  sizeof (dp_priv->save_link_configuration));
753 }
754
755 static uint8_t
756 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
757                                  int lane)
758 {
759         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
760         int         s = ((lane & 1) ?
761                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
762                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
763         uint8_t l = intel_dp_link_status(link_status, i);
764
765         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
766 }
767
768 static uint8_t
769 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
770                                       int lane)
771 {
772         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
773         int         s = ((lane & 1) ?
774                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
775                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
776         uint8_t l = intel_dp_link_status(link_status, i);
777
778         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
779 }
780
781
782 #if 0
783 static char     *voltage_names[] = {
784         "0.4V", "0.6V", "0.8V", "1.2V"
785 };
786 static char     *pre_emph_names[] = {
787         "0dB", "3.5dB", "6dB", "9.5dB"
788 };
789 static char     *link_train_names[] = {
790         "pattern 1", "pattern 2", "idle", "off"
791 };
792 #endif
793
794 /*
795  * These are source-specific values; current Intel hardware supports
796  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
797  */
798 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
799
800 static uint8_t
801 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
802 {
803         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
804         case DP_TRAIN_VOLTAGE_SWING_400:
805                 return DP_TRAIN_PRE_EMPHASIS_6;
806         case DP_TRAIN_VOLTAGE_SWING_600:
807                 return DP_TRAIN_PRE_EMPHASIS_6;
808         case DP_TRAIN_VOLTAGE_SWING_800:
809                 return DP_TRAIN_PRE_EMPHASIS_3_5;
810         case DP_TRAIN_VOLTAGE_SWING_1200:
811         default:
812                 return DP_TRAIN_PRE_EMPHASIS_0;
813         }
814 }
815
816 static void
817 intel_get_adjust_train(struct intel_output *intel_output,
818                        uint8_t link_status[DP_LINK_STATUS_SIZE],
819                        int lane_count,
820                        uint8_t train_set[4])
821 {
822         uint8_t v = 0;
823         uint8_t p = 0;
824         int lane;
825
826         for (lane = 0; lane < lane_count; lane++) {
827                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
828                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
829
830                 if (this_v > v)
831                         v = this_v;
832                 if (this_p > p)
833                         p = this_p;
834         }
835
836         if (v >= I830_DP_VOLTAGE_MAX)
837                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
838
839         if (p >= intel_dp_pre_emphasis_max(v))
840                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
841
842         for (lane = 0; lane < 4; lane++)
843                 train_set[lane] = v | p;
844 }
845
846 static uint32_t
847 intel_dp_signal_levels(uint8_t train_set, int lane_count)
848 {
849         uint32_t        signal_levels = 0;
850
851         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
852         case DP_TRAIN_VOLTAGE_SWING_400:
853         default:
854                 signal_levels |= DP_VOLTAGE_0_4;
855                 break;
856         case DP_TRAIN_VOLTAGE_SWING_600:
857                 signal_levels |= DP_VOLTAGE_0_6;
858                 break;
859         case DP_TRAIN_VOLTAGE_SWING_800:
860                 signal_levels |= DP_VOLTAGE_0_8;
861                 break;
862         case DP_TRAIN_VOLTAGE_SWING_1200:
863                 signal_levels |= DP_VOLTAGE_1_2;
864                 break;
865         }
866         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
867         case DP_TRAIN_PRE_EMPHASIS_0:
868         default:
869                 signal_levels |= DP_PRE_EMPHASIS_0;
870                 break;
871         case DP_TRAIN_PRE_EMPHASIS_3_5:
872                 signal_levels |= DP_PRE_EMPHASIS_3_5;
873                 break;
874         case DP_TRAIN_PRE_EMPHASIS_6:
875                 signal_levels |= DP_PRE_EMPHASIS_6;
876                 break;
877         case DP_TRAIN_PRE_EMPHASIS_9_5:
878                 signal_levels |= DP_PRE_EMPHASIS_9_5;
879                 break;
880         }
881         return signal_levels;
882 }
883
884 static uint8_t
885 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
886                       int lane)
887 {
888         int i = DP_LANE0_1_STATUS + (lane >> 1);
889         int s = (lane & 1) * 4;
890         uint8_t l = intel_dp_link_status(link_status, i);
891
892         return (l >> s) & 0xf;
893 }
894
895 /* Check for clock recovery is done on all channels */
896 static bool
897 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
898 {
899         int lane;
900         uint8_t lane_status;
901
902         for (lane = 0; lane < lane_count; lane++) {
903                 lane_status = intel_get_lane_status(link_status, lane);
904                 if ((lane_status & DP_LANE_CR_DONE) == 0)
905                         return false;
906         }
907         return true;
908 }
909
910 /* Check to see if channel eq is done on all channels */
911 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
912                          DP_LANE_CHANNEL_EQ_DONE|\
913                          DP_LANE_SYMBOL_LOCKED)
914 static bool
915 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
916 {
917         uint8_t lane_align;
918         uint8_t lane_status;
919         int lane;
920
921         lane_align = intel_dp_link_status(link_status,
922                                           DP_LANE_ALIGN_STATUS_UPDATED);
923         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
924                 return false;
925         for (lane = 0; lane < lane_count; lane++) {
926                 lane_status = intel_get_lane_status(link_status, lane);
927                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
928                         return false;
929         }
930         return true;
931 }
932
933 static bool
934 intel_dp_set_link_train(struct intel_output *intel_output,
935                         uint32_t dp_reg_value,
936                         uint8_t dp_train_pat,
937                         uint8_t train_set[4],
938                         bool first)
939 {
940         struct drm_device *dev = intel_output->base.dev;
941         struct drm_i915_private *dev_priv = dev->dev_private;
942         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
943         int ret;
944
945         I915_WRITE(dp_priv->output_reg, dp_reg_value);
946         POSTING_READ(dp_priv->output_reg);
947         if (first)
948                 intel_wait_for_vblank(dev);
949
950         intel_dp_aux_native_write_1(intel_output,
951                                     DP_TRAINING_PATTERN_SET,
952                                     dp_train_pat);
953
954         ret = intel_dp_aux_native_write(intel_output,
955                                         DP_TRAINING_LANE0_SET, train_set, 4);
956         if (ret != 4)
957                 return false;
958
959         return true;
960 }
961
962 static void
963 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
964                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
965 {
966         struct drm_device *dev = intel_output->base.dev;
967         struct drm_i915_private *dev_priv = dev->dev_private;
968         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
969         uint8_t train_set[4];
970         uint8_t link_status[DP_LINK_STATUS_SIZE];
971         int i;
972         uint8_t voltage;
973         bool clock_recovery = false;
974         bool channel_eq = false;
975         bool first = true;
976         int tries;
977
978         /* Write the link configuration data */
979         intel_dp_aux_native_write(intel_output, 0x100,
980                                   link_configuration, DP_LINK_CONFIGURATION_SIZE);
981
982         DP |= DP_PORT_EN;
983         DP &= ~DP_LINK_TRAIN_MASK;
984         memset(train_set, 0, 4);
985         voltage = 0xff;
986         tries = 0;
987         clock_recovery = false;
988         for (;;) {
989                 /* Use train_set[0] to set the voltage and pre emphasis values */
990                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
991                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
992
993                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
994                                              DP_TRAINING_PATTERN_1, train_set, first))
995                         break;
996                 first = false;
997                 /* Set training pattern 1 */
998
999                 udelay(100);
1000                 if (!intel_dp_get_link_status(intel_output, link_status))
1001                         break;
1002
1003                 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
1004                         clock_recovery = true;
1005                         break;
1006                 }
1007
1008                 /* Check to see if we've tried the max voltage */
1009                 for (i = 0; i < dp_priv->lane_count; i++)
1010                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1011                                 break;
1012                 if (i == dp_priv->lane_count)
1013                         break;
1014
1015                 /* Check to see if we've tried the same voltage 5 times */
1016                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1017                         ++tries;
1018                         if (tries == 5)
1019                                 break;
1020                 } else
1021                         tries = 0;
1022                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1023
1024                 /* Compute new train_set as requested by target */
1025                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
1026         }
1027
1028         /* channel equalization */
1029         tries = 0;
1030         channel_eq = false;
1031         for (;;) {
1032                 /* Use train_set[0] to set the voltage and pre emphasis values */
1033                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
1034                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1035
1036                 /* channel eq pattern */
1037                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
1038                                              DP_TRAINING_PATTERN_2, train_set,
1039                                              false))
1040                         break;
1041
1042                 udelay(400);
1043                 if (!intel_dp_get_link_status(intel_output, link_status))
1044                         break;
1045
1046                 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
1047                         channel_eq = true;
1048                         break;
1049                 }
1050
1051                 /* Try 5 times */
1052                 if (tries > 5)
1053                         break;
1054
1055                 /* Compute new train_set as requested by target */
1056                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
1057                 ++tries;
1058         }
1059
1060         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
1061         POSTING_READ(dp_priv->output_reg);
1062         intel_dp_aux_native_write_1(intel_output,
1063                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1064 }
1065
1066 static void
1067 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
1068 {
1069         struct drm_device *dev = intel_output->base.dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1072
1073         DRM_DEBUG("\n");
1074
1075         if (IS_eDP(intel_output)) {
1076                 DP &= ~DP_PLL_ENABLE;
1077                 I915_WRITE(dp_priv->output_reg, DP);
1078                 POSTING_READ(dp_priv->output_reg);
1079                 udelay(100);
1080         }
1081
1082         DP &= ~DP_LINK_TRAIN_MASK;
1083         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1084         POSTING_READ(dp_priv->output_reg);
1085
1086         udelay(17000);
1087
1088         if (IS_eDP(intel_output))
1089                 DP |= DP_LINK_TRAIN_OFF;
1090         I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
1091         POSTING_READ(dp_priv->output_reg);
1092 }
1093
1094 static void
1095 intel_dp_restore(struct drm_connector *connector)
1096 {
1097         struct intel_output *intel_output = to_intel_output(connector);
1098         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1099
1100         if (dp_priv->save_DP & DP_PORT_EN)
1101                 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
1102         else
1103                 intel_dp_link_down(intel_output,  dp_priv->save_DP);
1104 }
1105
1106 /*
1107  * According to DP spec
1108  * 5.1.2:
1109  *  1. Read DPCD
1110  *  2. Configure link according to Receiver Capabilities
1111  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1112  *  4. Check link status on receipt of hot-plug interrupt
1113  */
1114
1115 static void
1116 intel_dp_check_link_status(struct intel_output *intel_output)
1117 {
1118         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1119         uint8_t link_status[DP_LINK_STATUS_SIZE];
1120
1121         if (!intel_output->enc.crtc)
1122                 return;
1123
1124         if (!intel_dp_get_link_status(intel_output, link_status)) {
1125                 intel_dp_link_down(intel_output, dp_priv->DP);
1126                 return;
1127         }
1128
1129         if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1130                 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
1131 }
1132
1133 static enum drm_connector_status
1134 igdng_dp_detect(struct drm_connector *connector)
1135 {
1136         struct intel_output *intel_output = to_intel_output(connector);
1137         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1138         enum drm_connector_status status;
1139
1140         status = connector_status_disconnected;
1141         if (intel_dp_aux_native_read(intel_output,
1142                                      0x000, dp_priv->dpcd,
1143                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1144         {
1145                 if (dp_priv->dpcd[0] != 0)
1146                         status = connector_status_connected;
1147         }
1148         return status;
1149 }
1150
1151 /**
1152  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1153  *
1154  * \return true if DP port is connected.
1155  * \return false if DP port is disconnected.
1156  */
1157 static enum drm_connector_status
1158 intel_dp_detect(struct drm_connector *connector)
1159 {
1160         struct intel_output *intel_output = to_intel_output(connector);
1161         struct drm_device *dev = intel_output->base.dev;
1162         struct drm_i915_private *dev_priv = dev->dev_private;
1163         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1164         uint32_t temp, bit;
1165         enum drm_connector_status status;
1166
1167         dp_priv->has_audio = false;
1168
1169         if (IS_IGDNG(dev))
1170                 return igdng_dp_detect(connector);
1171
1172         temp = I915_READ(PORT_HOTPLUG_EN);
1173
1174         I915_WRITE(PORT_HOTPLUG_EN,
1175                temp |
1176                DPB_HOTPLUG_INT_EN |
1177                DPC_HOTPLUG_INT_EN |
1178                DPD_HOTPLUG_INT_EN);
1179
1180         POSTING_READ(PORT_HOTPLUG_EN);
1181
1182         switch (dp_priv->output_reg) {
1183         case DP_B:
1184                 bit = DPB_HOTPLUG_INT_STATUS;
1185                 break;
1186         case DP_C:
1187                 bit = DPC_HOTPLUG_INT_STATUS;
1188                 break;
1189         case DP_D:
1190                 bit = DPD_HOTPLUG_INT_STATUS;
1191                 break;
1192         default:
1193                 return connector_status_unknown;
1194         }
1195
1196         temp = I915_READ(PORT_HOTPLUG_STAT);
1197
1198         if ((temp & bit) == 0)
1199                 return connector_status_disconnected;
1200
1201         status = connector_status_disconnected;
1202         if (intel_dp_aux_native_read(intel_output,
1203                                      0x000, dp_priv->dpcd,
1204                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1205         {
1206                 if (dp_priv->dpcd[0] != 0)
1207                         status = connector_status_connected;
1208         }
1209         return status;
1210 }
1211
1212 static int intel_dp_get_modes(struct drm_connector *connector)
1213 {
1214         struct intel_output *intel_output = to_intel_output(connector);
1215         struct drm_device *dev = intel_output->base.dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         int ret;
1218
1219         /* We should parse the EDID data and find out if it has an audio sink
1220          */
1221
1222         ret = intel_ddc_get_modes(intel_output);
1223         if (ret)
1224                 return ret;
1225
1226         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1227         if (IS_eDP(intel_output)) {
1228                 if (dev_priv->panel_fixed_mode != NULL) {
1229                         struct drm_display_mode *mode;
1230                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1231                         drm_mode_probed_add(connector, mode);
1232                         return 1;
1233                 }
1234         }
1235         return 0;
1236 }
1237
1238 static void
1239 intel_dp_destroy (struct drm_connector *connector)
1240 {
1241         struct intel_output *intel_output = to_intel_output(connector);
1242
1243         if (intel_output->i2c_bus)
1244                 intel_i2c_destroy(intel_output->i2c_bus);
1245         drm_sysfs_connector_remove(connector);
1246         drm_connector_cleanup(connector);
1247         kfree(intel_output);
1248 }
1249
1250 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1251         .dpms = intel_dp_dpms,
1252         .mode_fixup = intel_dp_mode_fixup,
1253         .prepare = intel_encoder_prepare,
1254         .mode_set = intel_dp_mode_set,
1255         .commit = intel_encoder_commit,
1256 };
1257
1258 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1259         .dpms = drm_helper_connector_dpms,
1260         .save = intel_dp_save,
1261         .restore = intel_dp_restore,
1262         .detect = intel_dp_detect,
1263         .fill_modes = drm_helper_probe_single_connector_modes,
1264         .destroy = intel_dp_destroy,
1265 };
1266
1267 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1268         .get_modes = intel_dp_get_modes,
1269         .mode_valid = intel_dp_mode_valid,
1270         .best_encoder = intel_best_encoder,
1271 };
1272
1273 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1274 {
1275         drm_encoder_cleanup(encoder);
1276 }
1277
1278 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1279         .destroy = intel_dp_enc_destroy,
1280 };
1281
1282 void
1283 intel_dp_hot_plug(struct intel_output *intel_output)
1284 {
1285         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1286
1287         if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1288                 intel_dp_check_link_status(intel_output);
1289 }
1290
1291 void
1292 intel_dp_init(struct drm_device *dev, int output_reg)
1293 {
1294         struct drm_i915_private *dev_priv = dev->dev_private;
1295         struct drm_connector *connector;
1296         struct intel_output *intel_output;
1297         struct intel_dp_priv *dp_priv;
1298         const char *name = NULL;
1299
1300         intel_output = kcalloc(sizeof(struct intel_output) + 
1301                                sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1302         if (!intel_output)
1303                 return;
1304
1305         dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1306
1307         connector = &intel_output->base;
1308         drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1309                            DRM_MODE_CONNECTOR_DisplayPort);
1310         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1311
1312         if (output_reg == DP_A)
1313                 intel_output->type = INTEL_OUTPUT_EDP;
1314         else
1315                 intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1316
1317         if (output_reg == DP_B)
1318                 intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1319         else if (output_reg == DP_C)
1320                 intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1321         else if (output_reg == DP_D)
1322                 intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1323
1324         if (IS_eDP(intel_output)) {
1325                 intel_output->crtc_mask = (1 << 1);
1326                 intel_output->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1327         } else
1328                 intel_output->crtc_mask = (1 << 0) | (1 << 1);
1329         connector->interlace_allowed = true;
1330         connector->doublescan_allowed = 0;
1331
1332         dp_priv->intel_output = intel_output;
1333         dp_priv->output_reg = output_reg;
1334         dp_priv->has_audio = false;
1335         dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1336         intel_output->dev_priv = dp_priv;
1337
1338         drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1339                          DRM_MODE_ENCODER_TMDS);
1340         drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1341
1342         drm_mode_connector_attach_encoder(&intel_output->base,
1343                                           &intel_output->enc);
1344         drm_sysfs_connector_add(connector);
1345
1346         /* Set up the DDC bus. */
1347         switch (output_reg) {
1348                 case DP_A:
1349                         name = "DPDDC-A";
1350                         break;
1351                 case DP_B:
1352                 case PCH_DP_B:
1353                         name = "DPDDC-B";
1354                         break;
1355                 case DP_C:
1356                 case PCH_DP_C:
1357                         name = "DPDDC-C";
1358                         break;
1359                 case DP_D:
1360                 case PCH_DP_D:
1361                         name = "DPDDC-D";
1362                         break;
1363         }
1364
1365         intel_dp_i2c_init(intel_output, name);
1366
1367         intel_output->ddc_bus = &dp_priv->adapter;
1368         intel_output->hot_plug = intel_dp_hot_plug;
1369
1370         if (output_reg == DP_A) {
1371                 /* initialize panel mode from VBT if available for eDP */
1372                 if (dev_priv->lfp_lvds_vbt_mode) {
1373                         dev_priv->panel_fixed_mode =
1374                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1375                         if (dev_priv->panel_fixed_mode) {
1376                                 dev_priv->panel_fixed_mode->type |=
1377                                         DRM_MODE_TYPE_PREFERRED;
1378                         }
1379                 }
1380         }
1381
1382         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1383          * 0xd.  Failure to do so will result in spurious interrupts being
1384          * generated on the port when a cable is not attached.
1385          */
1386         if (IS_G4X(dev) && !IS_GM45(dev)) {
1387                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1388                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1389         }
1390 }