]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'drm-intel-next-2013-07-12' of git://people.freedesktop.org/~danvet/drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74         switch (max_link_bw) {
75         case DP_LINK_BW_1_62:
76         case DP_LINK_BW_2_7:
77                 break;
78         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
79                 max_link_bw = DP_LINK_BW_2_7;
80                 break;
81         default:
82                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
83                      max_link_bw);
84                 max_link_bw = DP_LINK_BW_1_62;
85                 break;
86         }
87         return max_link_bw;
88 }
89
90 /*
91  * The units on the numbers in the next two are... bizarre.  Examples will
92  * make it clearer; this one parallels an example in the eDP spec.
93  *
94  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
95  *
96  *     270000 * 1 * 8 / 10 == 216000
97  *
98  * The actual data capacity of that configuration is 2.16Gbit/s, so the
99  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
100  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
101  * 119000.  At 18bpp that's 2142000 kilobits per second.
102  *
103  * Thus the strange-looking division by 10 in intel_dp_link_required, to
104  * get the result in decakilobits instead of kilobits.
105  */
106
107 static int
108 intel_dp_link_required(int pixel_clock, int bpp)
109 {
110         return (pixel_clock * bpp + 9) / 10;
111 }
112
113 static int
114 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
115 {
116         return (max_link_clock * max_lanes * 8) / 10;
117 }
118
119 static int
120 intel_dp_mode_valid(struct drm_connector *connector,
121                     struct drm_display_mode *mode)
122 {
123         struct intel_dp *intel_dp = intel_attached_dp(connector);
124         struct intel_connector *intel_connector = to_intel_connector(connector);
125         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
126         int target_clock = mode->clock;
127         int max_rate, mode_rate, max_lanes, max_link_clock;
128
129         if (is_edp(intel_dp) && fixed_mode) {
130                 if (mode->hdisplay > fixed_mode->hdisplay)
131                         return MODE_PANEL;
132
133                 if (mode->vdisplay > fixed_mode->vdisplay)
134                         return MODE_PANEL;
135
136                 target_clock = fixed_mode->clock;
137         }
138
139         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
140         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
141
142         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
143         mode_rate = intel_dp_link_required(target_clock, 18);
144
145         if (mode_rate > max_rate)
146                 return MODE_CLOCK_HIGH;
147
148         if (mode->clock < 10000)
149                 return MODE_CLOCK_LOW;
150
151         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
152                 return MODE_H_ILLEGAL;
153
154         return MODE_OK;
155 }
156
157 static uint32_t
158 pack_aux(uint8_t *src, int src_bytes)
159 {
160         int     i;
161         uint32_t v = 0;
162
163         if (src_bytes > 4)
164                 src_bytes = 4;
165         for (i = 0; i < src_bytes; i++)
166                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
167         return v;
168 }
169
170 static void
171 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172 {
173         int i;
174         if (dst_bytes > 4)
175                 dst_bytes = 4;
176         for (i = 0; i < dst_bytes; i++)
177                 dst[i] = src >> ((3-i) * 8);
178 }
179
180 /* hrawclock is 1/4 the FSB frequency */
181 static int
182 intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
215 {
216         struct drm_device *dev = intel_dp_to_dev(intel_dp);
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         u32 pp_stat_reg;
219
220         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
221         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
222 }
223
224 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
225 {
226         struct drm_device *dev = intel_dp_to_dev(intel_dp);
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         u32 pp_ctrl_reg;
229
230         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
231         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
232 }
233
234 static void
235 intel_dp_check_edp(struct intel_dp *intel_dp)
236 {
237         struct drm_device *dev = intel_dp_to_dev(intel_dp);
238         struct drm_i915_private *dev_priv = dev->dev_private;
239         u32 pp_stat_reg, pp_ctrl_reg;
240
241         if (!is_edp(intel_dp))
242                 return;
243
244         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
245         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
246
247         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
248                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
249                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
250                                 I915_READ(pp_stat_reg),
251                                 I915_READ(pp_ctrl_reg));
252         }
253 }
254
255 static uint32_t
256 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
257 {
258         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
259         struct drm_device *dev = intel_dig_port->base.base.dev;
260         struct drm_i915_private *dev_priv = dev->dev_private;
261         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
262         uint32_t status;
263         bool done;
264
265 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
266         if (has_aux_irq)
267                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
268                                           msecs_to_jiffies_timeout(10));
269         else
270                 done = wait_for_atomic(C, 10) == 0;
271         if (!done)
272                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
273                           has_aux_irq);
274 #undef C
275
276         return status;
277 }
278
279 static int
280 intel_dp_aux_ch(struct intel_dp *intel_dp,
281                 uint8_t *send, int send_bytes,
282                 uint8_t *recv, int recv_size)
283 {
284         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
285         struct drm_device *dev = intel_dig_port->base.base.dev;
286         struct drm_i915_private *dev_priv = dev->dev_private;
287         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
288         uint32_t ch_data = ch_ctl + 4;
289         int i, ret, recv_bytes;
290         uint32_t status;
291         uint32_t aux_clock_divider;
292         int try, precharge;
293         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
294
295         /* dp aux is extremely sensitive to irq latency, hence request the
296          * lowest possible wakeup latency and so prevent the cpu from going into
297          * deep sleep states.
298          */
299         pm_qos_update_request(&dev_priv->pm_qos, 0);
300
301         intel_dp_check_edp(intel_dp);
302         /* The clock divider is based off the hrawclk,
303          * and would like to run at 2MHz. So, take the
304          * hrawclk value and divide by 2 and use that
305          *
306          * Note that PCH attached eDP panels should use a 125MHz input
307          * clock divider.
308          */
309         if (IS_VALLEYVIEW(dev)) {
310                 aux_clock_divider = 100;
311         } else if (intel_dig_port->port == PORT_A) {
312                 if (HAS_DDI(dev))
313                         aux_clock_divider = DIV_ROUND_CLOSEST(
314                                 intel_ddi_get_cdclk_freq(dev_priv), 2000);
315                 else if (IS_GEN6(dev) || IS_GEN7(dev))
316                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
317                 else
318                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
319         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
320                 /* Workaround for non-ULT HSW */
321                 aux_clock_divider = 74;
322         } else if (HAS_PCH_SPLIT(dev)) {
323                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
324         } else {
325                 aux_clock_divider = intel_hrawclk(dev) / 2;
326         }
327
328         if (IS_GEN6(dev))
329                 precharge = 3;
330         else
331                 precharge = 5;
332
333         /* Try to wait for any previous AUX channel activity */
334         for (try = 0; try < 3; try++) {
335                 status = I915_READ_NOTRACE(ch_ctl);
336                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
337                         break;
338                 msleep(1);
339         }
340
341         if (try == 3) {
342                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
343                      I915_READ(ch_ctl));
344                 ret = -EBUSY;
345                 goto out;
346         }
347
348         /* Must try at least 3 times according to DP spec */
349         for (try = 0; try < 5; try++) {
350                 /* Load the send data into the aux channel data registers */
351                 for (i = 0; i < send_bytes; i += 4)
352                         I915_WRITE(ch_data + i,
353                                    pack_aux(send + i, send_bytes - i));
354
355                 /* Send the command and wait for it to complete */
356                 I915_WRITE(ch_ctl,
357                            DP_AUX_CH_CTL_SEND_BUSY |
358                            (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
359                            DP_AUX_CH_CTL_TIME_OUT_400us |
360                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
361                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
362                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
363                            DP_AUX_CH_CTL_DONE |
364                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
365                            DP_AUX_CH_CTL_RECEIVE_ERROR);
366
367                 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
368
369                 /* Clear done status and any errors */
370                 I915_WRITE(ch_ctl,
371                            status |
372                            DP_AUX_CH_CTL_DONE |
373                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
374                            DP_AUX_CH_CTL_RECEIVE_ERROR);
375
376                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
377                               DP_AUX_CH_CTL_RECEIVE_ERROR))
378                         continue;
379                 if (status & DP_AUX_CH_CTL_DONE)
380                         break;
381         }
382
383         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
384                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
385                 ret = -EBUSY;
386                 goto out;
387         }
388
389         /* Check for timeout or receive error.
390          * Timeouts occur when the sink is not connected
391          */
392         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
393                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
394                 ret = -EIO;
395                 goto out;
396         }
397
398         /* Timeouts occur when the device isn't connected, so they're
399          * "normal" -- don't fill the kernel log with these */
400         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
401                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
402                 ret = -ETIMEDOUT;
403                 goto out;
404         }
405
406         /* Unload any bytes sent back from the other side */
407         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
408                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
409         if (recv_bytes > recv_size)
410                 recv_bytes = recv_size;
411
412         for (i = 0; i < recv_bytes; i += 4)
413                 unpack_aux(I915_READ(ch_data + i),
414                            recv + i, recv_bytes - i);
415
416         ret = recv_bytes;
417 out:
418         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
419
420         return ret;
421 }
422
423 /* Write data to the aux channel in native mode */
424 static int
425 intel_dp_aux_native_write(struct intel_dp *intel_dp,
426                           uint16_t address, uint8_t *send, int send_bytes)
427 {
428         int ret;
429         uint8_t msg[20];
430         int msg_bytes;
431         uint8_t ack;
432
433         intel_dp_check_edp(intel_dp);
434         if (send_bytes > 16)
435                 return -1;
436         msg[0] = AUX_NATIVE_WRITE << 4;
437         msg[1] = address >> 8;
438         msg[2] = address & 0xff;
439         msg[3] = send_bytes - 1;
440         memcpy(&msg[4], send, send_bytes);
441         msg_bytes = send_bytes + 4;
442         for (;;) {
443                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
444                 if (ret < 0)
445                         return ret;
446                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
447                         break;
448                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
449                         udelay(100);
450                 else
451                         return -EIO;
452         }
453         return send_bytes;
454 }
455
456 /* Write a single byte to the aux channel in native mode */
457 static int
458 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
459                             uint16_t address, uint8_t byte)
460 {
461         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
462 }
463
464 /* read bytes from a native aux channel */
465 static int
466 intel_dp_aux_native_read(struct intel_dp *intel_dp,
467                          uint16_t address, uint8_t *recv, int recv_bytes)
468 {
469         uint8_t msg[4];
470         int msg_bytes;
471         uint8_t reply[20];
472         int reply_bytes;
473         uint8_t ack;
474         int ret;
475
476         intel_dp_check_edp(intel_dp);
477         msg[0] = AUX_NATIVE_READ << 4;
478         msg[1] = address >> 8;
479         msg[2] = address & 0xff;
480         msg[3] = recv_bytes - 1;
481
482         msg_bytes = 4;
483         reply_bytes = recv_bytes + 1;
484
485         for (;;) {
486                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
487                                       reply, reply_bytes);
488                 if (ret == 0)
489                         return -EPROTO;
490                 if (ret < 0)
491                         return ret;
492                 ack = reply[0];
493                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
494                         memcpy(recv, reply + 1, ret - 1);
495                         return ret - 1;
496                 }
497                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
498                         udelay(100);
499                 else
500                         return -EIO;
501         }
502 }
503
504 static int
505 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
506                     uint8_t write_byte, uint8_t *read_byte)
507 {
508         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
509         struct intel_dp *intel_dp = container_of(adapter,
510                                                 struct intel_dp,
511                                                 adapter);
512         uint16_t address = algo_data->address;
513         uint8_t msg[5];
514         uint8_t reply[2];
515         unsigned retry;
516         int msg_bytes;
517         int reply_bytes;
518         int ret;
519
520         intel_dp_check_edp(intel_dp);
521         /* Set up the command byte */
522         if (mode & MODE_I2C_READ)
523                 msg[0] = AUX_I2C_READ << 4;
524         else
525                 msg[0] = AUX_I2C_WRITE << 4;
526
527         if (!(mode & MODE_I2C_STOP))
528                 msg[0] |= AUX_I2C_MOT << 4;
529
530         msg[1] = address >> 8;
531         msg[2] = address;
532
533         switch (mode) {
534         case MODE_I2C_WRITE:
535                 msg[3] = 0;
536                 msg[4] = write_byte;
537                 msg_bytes = 5;
538                 reply_bytes = 1;
539                 break;
540         case MODE_I2C_READ:
541                 msg[3] = 0;
542                 msg_bytes = 4;
543                 reply_bytes = 2;
544                 break;
545         default:
546                 msg_bytes = 3;
547                 reply_bytes = 1;
548                 break;
549         }
550
551         for (retry = 0; retry < 5; retry++) {
552                 ret = intel_dp_aux_ch(intel_dp,
553                                       msg, msg_bytes,
554                                       reply, reply_bytes);
555                 if (ret < 0) {
556                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
557                         return ret;
558                 }
559
560                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
561                 case AUX_NATIVE_REPLY_ACK:
562                         /* I2C-over-AUX Reply field is only valid
563                          * when paired with AUX ACK.
564                          */
565                         break;
566                 case AUX_NATIVE_REPLY_NACK:
567                         DRM_DEBUG_KMS("aux_ch native nack\n");
568                         return -EREMOTEIO;
569                 case AUX_NATIVE_REPLY_DEFER:
570                         udelay(100);
571                         continue;
572                 default:
573                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
574                                   reply[0]);
575                         return -EREMOTEIO;
576                 }
577
578                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
579                 case AUX_I2C_REPLY_ACK:
580                         if (mode == MODE_I2C_READ) {
581                                 *read_byte = reply[1];
582                         }
583                         return reply_bytes - 1;
584                 case AUX_I2C_REPLY_NACK:
585                         DRM_DEBUG_KMS("aux_i2c nack\n");
586                         return -EREMOTEIO;
587                 case AUX_I2C_REPLY_DEFER:
588                         DRM_DEBUG_KMS("aux_i2c defer\n");
589                         udelay(100);
590                         break;
591                 default:
592                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
593                         return -EREMOTEIO;
594                 }
595         }
596
597         DRM_ERROR("too many retries, giving up\n");
598         return -EREMOTEIO;
599 }
600
601 static int
602 intel_dp_i2c_init(struct intel_dp *intel_dp,
603                   struct intel_connector *intel_connector, const char *name)
604 {
605         int     ret;
606
607         DRM_DEBUG_KMS("i2c_init %s\n", name);
608         intel_dp->algo.running = false;
609         intel_dp->algo.address = 0;
610         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
611
612         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
613         intel_dp->adapter.owner = THIS_MODULE;
614         intel_dp->adapter.class = I2C_CLASS_DDC;
615         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
616         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
617         intel_dp->adapter.algo_data = &intel_dp->algo;
618         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
619
620         ironlake_edp_panel_vdd_on(intel_dp);
621         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
622         ironlake_edp_panel_vdd_off(intel_dp, false);
623         return ret;
624 }
625
626 static void
627 intel_dp_set_clock(struct intel_encoder *encoder,
628                    struct intel_crtc_config *pipe_config, int link_bw)
629 {
630         struct drm_device *dev = encoder->base.dev;
631
632         if (IS_G4X(dev)) {
633                 if (link_bw == DP_LINK_BW_1_62) {
634                         pipe_config->dpll.p1 = 2;
635                         pipe_config->dpll.p2 = 10;
636                         pipe_config->dpll.n = 2;
637                         pipe_config->dpll.m1 = 23;
638                         pipe_config->dpll.m2 = 8;
639                 } else {
640                         pipe_config->dpll.p1 = 1;
641                         pipe_config->dpll.p2 = 10;
642                         pipe_config->dpll.n = 1;
643                         pipe_config->dpll.m1 = 14;
644                         pipe_config->dpll.m2 = 2;
645                 }
646                 pipe_config->clock_set = true;
647         } else if (IS_HASWELL(dev)) {
648                 /* Haswell has special-purpose DP DDI clocks. */
649         } else if (HAS_PCH_SPLIT(dev)) {
650                 if (link_bw == DP_LINK_BW_1_62) {
651                         pipe_config->dpll.n = 1;
652                         pipe_config->dpll.p1 = 2;
653                         pipe_config->dpll.p2 = 10;
654                         pipe_config->dpll.m1 = 12;
655                         pipe_config->dpll.m2 = 9;
656                 } else {
657                         pipe_config->dpll.n = 2;
658                         pipe_config->dpll.p1 = 1;
659                         pipe_config->dpll.p2 = 10;
660                         pipe_config->dpll.m1 = 14;
661                         pipe_config->dpll.m2 = 8;
662                 }
663                 pipe_config->clock_set = true;
664         } else if (IS_VALLEYVIEW(dev)) {
665                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
666         }
667 }
668
669 bool
670 intel_dp_compute_config(struct intel_encoder *encoder,
671                         struct intel_crtc_config *pipe_config)
672 {
673         struct drm_device *dev = encoder->base.dev;
674         struct drm_i915_private *dev_priv = dev->dev_private;
675         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
676         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
677         enum port port = dp_to_dig_port(intel_dp)->port;
678         struct intel_crtc *intel_crtc = encoder->new_crtc;
679         struct intel_connector *intel_connector = intel_dp->attached_connector;
680         int lane_count, clock;
681         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
682         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683         int bpp, mode_rate;
684         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685         int link_avail, link_clock;
686
687         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
688                 pipe_config->has_pch_encoder = true;
689
690         pipe_config->has_dp_encoder = true;
691
692         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
693                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
694                                        adjusted_mode);
695                 if (!HAS_PCH_SPLIT(dev))
696                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
697                                                  intel_connector->panel.fitting_mode);
698                 else
699                         intel_pch_panel_fitting(intel_crtc, pipe_config,
700                                                 intel_connector->panel.fitting_mode);
701         }
702
703         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
704                 return false;
705
706         DRM_DEBUG_KMS("DP link computation with max lane count %i "
707                       "max bw %02x pixel clock %iKHz\n",
708                       max_lane_count, bws[max_clock], adjusted_mode->clock);
709
710         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
711          * bpc in between. */
712         bpp = pipe_config->pipe_bpp;
713         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp)
714                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
715
716         for (; bpp >= 6*3; bpp -= 2*3) {
717                 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
718
719                 for (clock = 0; clock <= max_clock; clock++) {
720                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
721                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
722                                 link_avail = intel_dp_max_data_rate(link_clock,
723                                                                     lane_count);
724
725                                 if (mode_rate <= link_avail) {
726                                         goto found;
727                                 }
728                         }
729                 }
730         }
731
732         return false;
733
734 found:
735         if (intel_dp->color_range_auto) {
736                 /*
737                  * See:
738                  * CEA-861-E - 5.1 Default Encoding Parameters
739                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
740                  */
741                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
742                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
743                 else
744                         intel_dp->color_range = 0;
745         }
746
747         if (intel_dp->color_range)
748                 pipe_config->limited_color_range = true;
749
750         intel_dp->link_bw = bws[clock];
751         intel_dp->lane_count = lane_count;
752         pipe_config->pipe_bpp = bpp;
753         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
754
755         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
756                       intel_dp->link_bw, intel_dp->lane_count,
757                       pipe_config->port_clock, bpp);
758         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
759                       mode_rate, link_avail);
760
761         intel_link_compute_m_n(bpp, lane_count,
762                                adjusted_mode->clock, pipe_config->port_clock,
763                                &pipe_config->dp_m_n);
764
765         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
766
767         return true;
768 }
769
770 void intel_dp_init_link_config(struct intel_dp *intel_dp)
771 {
772         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
773         intel_dp->link_configuration[0] = intel_dp->link_bw;
774         intel_dp->link_configuration[1] = intel_dp->lane_count;
775         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
776         /*
777          * Check for DPCD version > 1.1 and enhanced framing support
778          */
779         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
780             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
781                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
782         }
783 }
784
785 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
786 {
787         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
788         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
789         struct drm_device *dev = crtc->base.dev;
790         struct drm_i915_private *dev_priv = dev->dev_private;
791         u32 dpa_ctl;
792
793         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
794         dpa_ctl = I915_READ(DP_A);
795         dpa_ctl &= ~DP_PLL_FREQ_MASK;
796
797         if (crtc->config.port_clock == 162000) {
798                 /* For a long time we've carried around a ILK-DevA w/a for the
799                  * 160MHz clock. If we're really unlucky, it's still required.
800                  */
801                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
802                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
803                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
804         } else {
805                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
806                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
807         }
808
809         I915_WRITE(DP_A, dpa_ctl);
810
811         POSTING_READ(DP_A);
812         udelay(500);
813 }
814
815 static void
816 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
817                   struct drm_display_mode *adjusted_mode)
818 {
819         struct drm_device *dev = encoder->dev;
820         struct drm_i915_private *dev_priv = dev->dev_private;
821         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
822         enum port port = dp_to_dig_port(intel_dp)->port;
823         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
824
825         /*
826          * There are four kinds of DP registers:
827          *
828          *      IBX PCH
829          *      SNB CPU
830          *      IVB CPU
831          *      CPT PCH
832          *
833          * IBX PCH and CPU are the same for almost everything,
834          * except that the CPU DP PLL is configured in this
835          * register
836          *
837          * CPT PCH is quite different, having many bits moved
838          * to the TRANS_DP_CTL register instead. That
839          * configuration happens (oddly) in ironlake_pch_enable
840          */
841
842         /* Preserve the BIOS-computed detected bit. This is
843          * supposed to be read-only.
844          */
845         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
846
847         /* Handle DP bits in common between all three register formats */
848         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
849         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
850
851         if (intel_dp->has_audio) {
852                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
853                                  pipe_name(crtc->pipe));
854                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
855                 intel_write_eld(encoder, adjusted_mode);
856         }
857
858         intel_dp_init_link_config(intel_dp);
859
860         /* Split out the IBX/CPU vs CPT settings */
861
862         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
863                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
864                         intel_dp->DP |= DP_SYNC_HS_HIGH;
865                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
866                         intel_dp->DP |= DP_SYNC_VS_HIGH;
867                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
868
869                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
870                         intel_dp->DP |= DP_ENHANCED_FRAMING;
871
872                 intel_dp->DP |= crtc->pipe << 29;
873         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
874                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
875                         intel_dp->DP |= intel_dp->color_range;
876
877                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
878                         intel_dp->DP |= DP_SYNC_HS_HIGH;
879                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
880                         intel_dp->DP |= DP_SYNC_VS_HIGH;
881                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
882
883                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
884                         intel_dp->DP |= DP_ENHANCED_FRAMING;
885
886                 if (crtc->pipe == 1)
887                         intel_dp->DP |= DP_PIPEB_SELECT;
888         } else {
889                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
890         }
891
892         if (port == PORT_A && !IS_VALLEYVIEW(dev))
893                 ironlake_set_pll_cpu_edp(intel_dp);
894 }
895
896 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
897 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
898
899 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
900 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
901
902 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
903 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
904
905 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
906                                        u32 mask,
907                                        u32 value)
908 {
909         struct drm_device *dev = intel_dp_to_dev(intel_dp);
910         struct drm_i915_private *dev_priv = dev->dev_private;
911         u32 pp_stat_reg, pp_ctrl_reg;
912
913         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
914         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
915
916         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
917                         mask, value,
918                         I915_READ(pp_stat_reg),
919                         I915_READ(pp_ctrl_reg));
920
921         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
922                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
923                                 I915_READ(pp_stat_reg),
924                                 I915_READ(pp_ctrl_reg));
925         }
926 }
927
928 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
929 {
930         DRM_DEBUG_KMS("Wait for panel power on\n");
931         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
932 }
933
934 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
935 {
936         DRM_DEBUG_KMS("Wait for panel power off time\n");
937         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
938 }
939
940 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
941 {
942         DRM_DEBUG_KMS("Wait for panel power cycle\n");
943         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
944 }
945
946
947 /* Read the current pp_control value, unlocking the register if it
948  * is locked
949  */
950
951 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
952 {
953         struct drm_device *dev = intel_dp_to_dev(intel_dp);
954         struct drm_i915_private *dev_priv = dev->dev_private;
955         u32 control;
956         u32 pp_ctrl_reg;
957
958         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
959         control = I915_READ(pp_ctrl_reg);
960
961         control &= ~PANEL_UNLOCK_MASK;
962         control |= PANEL_UNLOCK_REGS;
963         return control;
964 }
965
966 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
967 {
968         struct drm_device *dev = intel_dp_to_dev(intel_dp);
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         u32 pp;
971         u32 pp_stat_reg, pp_ctrl_reg;
972
973         if (!is_edp(intel_dp))
974                 return;
975         DRM_DEBUG_KMS("Turn eDP VDD on\n");
976
977         WARN(intel_dp->want_panel_vdd,
978              "eDP VDD already requested on\n");
979
980         intel_dp->want_panel_vdd = true;
981
982         if (ironlake_edp_have_panel_vdd(intel_dp)) {
983                 DRM_DEBUG_KMS("eDP VDD already on\n");
984                 return;
985         }
986
987         if (!ironlake_edp_have_panel_power(intel_dp))
988                 ironlake_wait_panel_power_cycle(intel_dp);
989
990         pp = ironlake_get_pp_control(intel_dp);
991         pp |= EDP_FORCE_VDD;
992
993         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
994         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
995
996         I915_WRITE(pp_ctrl_reg, pp);
997         POSTING_READ(pp_ctrl_reg);
998         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
999                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1000         /*
1001          * If the panel wasn't on, delay before accessing aux channel
1002          */
1003         if (!ironlake_edp_have_panel_power(intel_dp)) {
1004                 DRM_DEBUG_KMS("eDP was not running\n");
1005                 msleep(intel_dp->panel_power_up_delay);
1006         }
1007 }
1008
1009 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1010 {
1011         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1012         struct drm_i915_private *dev_priv = dev->dev_private;
1013         u32 pp;
1014         u32 pp_stat_reg, pp_ctrl_reg;
1015
1016         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1017
1018         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1019                 pp = ironlake_get_pp_control(intel_dp);
1020                 pp &= ~EDP_FORCE_VDD;
1021
1022                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1023                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1024
1025                 I915_WRITE(pp_ctrl_reg, pp);
1026                 POSTING_READ(pp_ctrl_reg);
1027
1028                 /* Make sure sequencer is idle before allowing subsequent activity */
1029                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1030                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1031                 msleep(intel_dp->panel_power_down_delay);
1032         }
1033 }
1034
1035 static void ironlake_panel_vdd_work(struct work_struct *__work)
1036 {
1037         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1038                                                  struct intel_dp, panel_vdd_work);
1039         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1040
1041         mutex_lock(&dev->mode_config.mutex);
1042         ironlake_panel_vdd_off_sync(intel_dp);
1043         mutex_unlock(&dev->mode_config.mutex);
1044 }
1045
1046 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1047 {
1048         if (!is_edp(intel_dp))
1049                 return;
1050
1051         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1052         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1053
1054         intel_dp->want_panel_vdd = false;
1055
1056         if (sync) {
1057                 ironlake_panel_vdd_off_sync(intel_dp);
1058         } else {
1059                 /*
1060                  * Queue the timer to fire a long
1061                  * time from now (relative to the power down delay)
1062                  * to keep the panel power up across a sequence of operations
1063                  */
1064                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1065                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1066         }
1067 }
1068
1069 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1070 {
1071         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1072         struct drm_i915_private *dev_priv = dev->dev_private;
1073         u32 pp;
1074         u32 pp_ctrl_reg;
1075
1076         if (!is_edp(intel_dp))
1077                 return;
1078
1079         DRM_DEBUG_KMS("Turn eDP power on\n");
1080
1081         if (ironlake_edp_have_panel_power(intel_dp)) {
1082                 DRM_DEBUG_KMS("eDP power already on\n");
1083                 return;
1084         }
1085
1086         ironlake_wait_panel_power_cycle(intel_dp);
1087
1088         pp = ironlake_get_pp_control(intel_dp);
1089         if (IS_GEN5(dev)) {
1090                 /* ILK workaround: disable reset around power sequence */
1091                 pp &= ~PANEL_POWER_RESET;
1092                 I915_WRITE(PCH_PP_CONTROL, pp);
1093                 POSTING_READ(PCH_PP_CONTROL);
1094         }
1095
1096         pp |= POWER_TARGET_ON;
1097         if (!IS_GEN5(dev))
1098                 pp |= PANEL_POWER_RESET;
1099
1100         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1101
1102         I915_WRITE(pp_ctrl_reg, pp);
1103         POSTING_READ(pp_ctrl_reg);
1104
1105         ironlake_wait_panel_on(intel_dp);
1106
1107         if (IS_GEN5(dev)) {
1108                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1109                 I915_WRITE(PCH_PP_CONTROL, pp);
1110                 POSTING_READ(PCH_PP_CONTROL);
1111         }
1112 }
1113
1114 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1115 {
1116         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1117         struct drm_i915_private *dev_priv = dev->dev_private;
1118         u32 pp;
1119         u32 pp_ctrl_reg;
1120
1121         if (!is_edp(intel_dp))
1122                 return;
1123
1124         DRM_DEBUG_KMS("Turn eDP power off\n");
1125
1126         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1127
1128         pp = ironlake_get_pp_control(intel_dp);
1129         /* We need to switch off panel power _and_ force vdd, for otherwise some
1130          * panels get very unhappy and cease to work. */
1131         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1132
1133         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1134
1135         I915_WRITE(pp_ctrl_reg, pp);
1136         POSTING_READ(pp_ctrl_reg);
1137
1138         intel_dp->want_panel_vdd = false;
1139
1140         ironlake_wait_panel_off(intel_dp);
1141 }
1142
1143 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1144 {
1145         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1146         struct drm_device *dev = intel_dig_port->base.base.dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1149         u32 pp;
1150         u32 pp_ctrl_reg;
1151
1152         if (!is_edp(intel_dp))
1153                 return;
1154
1155         DRM_DEBUG_KMS("\n");
1156         /*
1157          * If we enable the backlight right away following a panel power
1158          * on, we may see slight flicker as the panel syncs with the eDP
1159          * link.  So delay a bit to make sure the image is solid before
1160          * allowing it to appear.
1161          */
1162         msleep(intel_dp->backlight_on_delay);
1163         pp = ironlake_get_pp_control(intel_dp);
1164         pp |= EDP_BLC_ENABLE;
1165
1166         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1167
1168         I915_WRITE(pp_ctrl_reg, pp);
1169         POSTING_READ(pp_ctrl_reg);
1170
1171         intel_panel_enable_backlight(dev, pipe);
1172 }
1173
1174 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1175 {
1176         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177         struct drm_i915_private *dev_priv = dev->dev_private;
1178         u32 pp;
1179         u32 pp_ctrl_reg;
1180
1181         if (!is_edp(intel_dp))
1182                 return;
1183
1184         intel_panel_disable_backlight(dev);
1185
1186         DRM_DEBUG_KMS("\n");
1187         pp = ironlake_get_pp_control(intel_dp);
1188         pp &= ~EDP_BLC_ENABLE;
1189
1190         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1191
1192         I915_WRITE(pp_ctrl_reg, pp);
1193         POSTING_READ(pp_ctrl_reg);
1194         msleep(intel_dp->backlight_off_delay);
1195 }
1196
1197 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1198 {
1199         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1200         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1201         struct drm_device *dev = crtc->dev;
1202         struct drm_i915_private *dev_priv = dev->dev_private;
1203         u32 dpa_ctl;
1204
1205         assert_pipe_disabled(dev_priv,
1206                              to_intel_crtc(crtc)->pipe);
1207
1208         DRM_DEBUG_KMS("\n");
1209         dpa_ctl = I915_READ(DP_A);
1210         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1211         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1212
1213         /* We don't adjust intel_dp->DP while tearing down the link, to
1214          * facilitate link retraining (e.g. after hotplug). Hence clear all
1215          * enable bits here to ensure that we don't enable too much. */
1216         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1217         intel_dp->DP |= DP_PLL_ENABLE;
1218         I915_WRITE(DP_A, intel_dp->DP);
1219         POSTING_READ(DP_A);
1220         udelay(200);
1221 }
1222
1223 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1224 {
1225         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1226         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1227         struct drm_device *dev = crtc->dev;
1228         struct drm_i915_private *dev_priv = dev->dev_private;
1229         u32 dpa_ctl;
1230
1231         assert_pipe_disabled(dev_priv,
1232                              to_intel_crtc(crtc)->pipe);
1233
1234         dpa_ctl = I915_READ(DP_A);
1235         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1236              "dp pll off, should be on\n");
1237         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1238
1239         /* We can't rely on the value tracked for the DP register in
1240          * intel_dp->DP because link_down must not change that (otherwise link
1241          * re-training will fail. */
1242         dpa_ctl &= ~DP_PLL_ENABLE;
1243         I915_WRITE(DP_A, dpa_ctl);
1244         POSTING_READ(DP_A);
1245         udelay(200);
1246 }
1247
1248 /* If the sink supports it, try to set the power state appropriately */
1249 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1250 {
1251         int ret, i;
1252
1253         /* Should have a valid DPCD by this point */
1254         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1255                 return;
1256
1257         if (mode != DRM_MODE_DPMS_ON) {
1258                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1259                                                   DP_SET_POWER_D3);
1260                 if (ret != 1)
1261                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1262         } else {
1263                 /*
1264                  * When turning on, we need to retry for 1ms to give the sink
1265                  * time to wake up.
1266                  */
1267                 for (i = 0; i < 3; i++) {
1268                         ret = intel_dp_aux_native_write_1(intel_dp,
1269                                                           DP_SET_POWER,
1270                                                           DP_SET_POWER_D0);
1271                         if (ret == 1)
1272                                 break;
1273                         msleep(1);
1274                 }
1275         }
1276 }
1277
1278 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1279                                   enum pipe *pipe)
1280 {
1281         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1282         enum port port = dp_to_dig_port(intel_dp)->port;
1283         struct drm_device *dev = encoder->base.dev;
1284         struct drm_i915_private *dev_priv = dev->dev_private;
1285         u32 tmp = I915_READ(intel_dp->output_reg);
1286
1287         if (!(tmp & DP_PORT_EN))
1288                 return false;
1289
1290         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1291                 *pipe = PORT_TO_PIPE_CPT(tmp);
1292         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1293                 *pipe = PORT_TO_PIPE(tmp);
1294         } else {
1295                 u32 trans_sel;
1296                 u32 trans_dp;
1297                 int i;
1298
1299                 switch (intel_dp->output_reg) {
1300                 case PCH_DP_B:
1301                         trans_sel = TRANS_DP_PORT_SEL_B;
1302                         break;
1303                 case PCH_DP_C:
1304                         trans_sel = TRANS_DP_PORT_SEL_C;
1305                         break;
1306                 case PCH_DP_D:
1307                         trans_sel = TRANS_DP_PORT_SEL_D;
1308                         break;
1309                 default:
1310                         return true;
1311                 }
1312
1313                 for_each_pipe(i) {
1314                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1315                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1316                                 *pipe = i;
1317                                 return true;
1318                         }
1319                 }
1320
1321                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1322                               intel_dp->output_reg);
1323         }
1324
1325         return true;
1326 }
1327
1328 static void intel_dp_get_config(struct intel_encoder *encoder,
1329                                 struct intel_crtc_config *pipe_config)
1330 {
1331         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1332         u32 tmp, flags = 0;
1333         struct drm_device *dev = encoder->base.dev;
1334         struct drm_i915_private *dev_priv = dev->dev_private;
1335         enum port port = dp_to_dig_port(intel_dp)->port;
1336         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1337
1338         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1339                 tmp = I915_READ(intel_dp->output_reg);
1340                 if (tmp & DP_SYNC_HS_HIGH)
1341                         flags |= DRM_MODE_FLAG_PHSYNC;
1342                 else
1343                         flags |= DRM_MODE_FLAG_NHSYNC;
1344
1345                 if (tmp & DP_SYNC_VS_HIGH)
1346                         flags |= DRM_MODE_FLAG_PVSYNC;
1347                 else
1348                         flags |= DRM_MODE_FLAG_NVSYNC;
1349         } else {
1350                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1351                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1352                         flags |= DRM_MODE_FLAG_PHSYNC;
1353                 else
1354                         flags |= DRM_MODE_FLAG_NHSYNC;
1355
1356                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1357                         flags |= DRM_MODE_FLAG_PVSYNC;
1358                 else
1359                         flags |= DRM_MODE_FLAG_NVSYNC;
1360         }
1361
1362         pipe_config->adjusted_mode.flags |= flags;
1363
1364         if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1365                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1366                         pipe_config->port_clock = 162000;
1367                 else
1368                         pipe_config->port_clock = 270000;
1369         }
1370 }
1371
1372 static void intel_disable_dp(struct intel_encoder *encoder)
1373 {
1374         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1375         enum port port = dp_to_dig_port(intel_dp)->port;
1376         struct drm_device *dev = encoder->base.dev;
1377
1378         /* Make sure the panel is off before trying to change the mode. But also
1379          * ensure that we have vdd while we switch off the panel. */
1380         ironlake_edp_panel_vdd_on(intel_dp);
1381         ironlake_edp_backlight_off(intel_dp);
1382         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1383         ironlake_edp_panel_off(intel_dp);
1384
1385         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1386         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1387                 intel_dp_link_down(intel_dp);
1388 }
1389
1390 static void intel_post_disable_dp(struct intel_encoder *encoder)
1391 {
1392         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1393         enum port port = dp_to_dig_port(intel_dp)->port;
1394         struct drm_device *dev = encoder->base.dev;
1395
1396         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1397                 intel_dp_link_down(intel_dp);
1398                 if (!IS_VALLEYVIEW(dev))
1399                         ironlake_edp_pll_off(intel_dp);
1400         }
1401 }
1402
1403 static void intel_enable_dp(struct intel_encoder *encoder)
1404 {
1405         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1406         struct drm_device *dev = encoder->base.dev;
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1409
1410         if (WARN_ON(dp_reg & DP_PORT_EN))
1411                 return;
1412
1413         ironlake_edp_panel_vdd_on(intel_dp);
1414         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1415         intel_dp_start_link_train(intel_dp);
1416         ironlake_edp_panel_on(intel_dp);
1417         ironlake_edp_panel_vdd_off(intel_dp, true);
1418         intel_dp_complete_link_train(intel_dp);
1419         intel_dp_stop_link_train(intel_dp);
1420         ironlake_edp_backlight_on(intel_dp);
1421
1422         if (IS_VALLEYVIEW(dev)) {
1423                 struct intel_digital_port *dport =
1424                         enc_to_dig_port(&encoder->base);
1425                 int channel = vlv_dport_to_channel(dport);
1426
1427                 vlv_wait_port_ready(dev_priv, channel);
1428         }
1429 }
1430
1431 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1432 {
1433         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1434         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1435         struct drm_device *dev = encoder->base.dev;
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437
1438         if (dport->port == PORT_A && !IS_VALLEYVIEW(dev))
1439                 ironlake_edp_pll_on(intel_dp);
1440
1441         if (IS_VALLEYVIEW(dev)) {
1442                 struct intel_crtc *intel_crtc =
1443                         to_intel_crtc(encoder->base.crtc);
1444                 int port = vlv_dport_to_channel(dport);
1445                 int pipe = intel_crtc->pipe;
1446                 u32 val;
1447
1448                 val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1449                 val = 0;
1450                 if (pipe)
1451                         val |= (1<<21);
1452                 else
1453                         val &= ~(1<<21);
1454                 val |= 0x001000c4;
1455                 vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1456
1457                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
1458                                  0x00760018);
1459                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
1460                                  0x00400888);
1461         }
1462 }
1463
1464 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1465 {
1466         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1467         struct drm_device *dev = encoder->base.dev;
1468         struct drm_i915_private *dev_priv = dev->dev_private;
1469         int port = vlv_dport_to_channel(dport);
1470
1471         if (!IS_VALLEYVIEW(dev))
1472                 return;
1473
1474         /* Program Tx lane resets to default */
1475         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1476                          DPIO_PCS_TX_LANE2_RESET |
1477                          DPIO_PCS_TX_LANE1_RESET);
1478         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1479                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1480                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1481                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1482                                  DPIO_PCS_CLK_SOFT_RESET);
1483
1484         /* Fix up inter-pair skew failure */
1485         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1486         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1487         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1488 }
1489
1490 /*
1491  * Native read with retry for link status and receiver capability reads for
1492  * cases where the sink may still be asleep.
1493  */
1494 static bool
1495 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1496                                uint8_t *recv, int recv_bytes)
1497 {
1498         int ret, i;
1499
1500         /*
1501          * Sinks are *supposed* to come up within 1ms from an off state,
1502          * but we're also supposed to retry 3 times per the spec.
1503          */
1504         for (i = 0; i < 3; i++) {
1505                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1506                                                recv_bytes);
1507                 if (ret == recv_bytes)
1508                         return true;
1509                 msleep(1);
1510         }
1511
1512         return false;
1513 }
1514
1515 /*
1516  * Fetch AUX CH registers 0x202 - 0x207 which contain
1517  * link status information
1518  */
1519 static bool
1520 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1521 {
1522         return intel_dp_aux_native_read_retry(intel_dp,
1523                                               DP_LANE0_1_STATUS,
1524                                               link_status,
1525                                               DP_LINK_STATUS_SIZE);
1526 }
1527
1528 #if 0
1529 static char     *voltage_names[] = {
1530         "0.4V", "0.6V", "0.8V", "1.2V"
1531 };
1532 static char     *pre_emph_names[] = {
1533         "0dB", "3.5dB", "6dB", "9.5dB"
1534 };
1535 static char     *link_train_names[] = {
1536         "pattern 1", "pattern 2", "idle", "off"
1537 };
1538 #endif
1539
1540 /*
1541  * These are source-specific values; current Intel hardware supports
1542  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1543  */
1544
1545 static uint8_t
1546 intel_dp_voltage_max(struct intel_dp *intel_dp)
1547 {
1548         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1549         enum port port = dp_to_dig_port(intel_dp)->port;
1550
1551         if (IS_VALLEYVIEW(dev))
1552                 return DP_TRAIN_VOLTAGE_SWING_1200;
1553         else if (IS_GEN7(dev) && port == PORT_A)
1554                 return DP_TRAIN_VOLTAGE_SWING_800;
1555         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1556                 return DP_TRAIN_VOLTAGE_SWING_1200;
1557         else
1558                 return DP_TRAIN_VOLTAGE_SWING_800;
1559 }
1560
1561 static uint8_t
1562 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1563 {
1564         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1565         enum port port = dp_to_dig_port(intel_dp)->port;
1566
1567         if (HAS_DDI(dev)) {
1568                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1569                 case DP_TRAIN_VOLTAGE_SWING_400:
1570                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1571                 case DP_TRAIN_VOLTAGE_SWING_600:
1572                         return DP_TRAIN_PRE_EMPHASIS_6;
1573                 case DP_TRAIN_VOLTAGE_SWING_800:
1574                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1575                 case DP_TRAIN_VOLTAGE_SWING_1200:
1576                 default:
1577                         return DP_TRAIN_PRE_EMPHASIS_0;
1578                 }
1579         } else if (IS_VALLEYVIEW(dev)) {
1580                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1581                 case DP_TRAIN_VOLTAGE_SWING_400:
1582                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1583                 case DP_TRAIN_VOLTAGE_SWING_600:
1584                         return DP_TRAIN_PRE_EMPHASIS_6;
1585                 case DP_TRAIN_VOLTAGE_SWING_800:
1586                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1587                 case DP_TRAIN_VOLTAGE_SWING_1200:
1588                 default:
1589                         return DP_TRAIN_PRE_EMPHASIS_0;
1590                 }
1591         } else if (IS_GEN7(dev) && port == PORT_A) {
1592                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1593                 case DP_TRAIN_VOLTAGE_SWING_400:
1594                         return DP_TRAIN_PRE_EMPHASIS_6;
1595                 case DP_TRAIN_VOLTAGE_SWING_600:
1596                 case DP_TRAIN_VOLTAGE_SWING_800:
1597                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1598                 default:
1599                         return DP_TRAIN_PRE_EMPHASIS_0;
1600                 }
1601         } else {
1602                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1603                 case DP_TRAIN_VOLTAGE_SWING_400:
1604                         return DP_TRAIN_PRE_EMPHASIS_6;
1605                 case DP_TRAIN_VOLTAGE_SWING_600:
1606                         return DP_TRAIN_PRE_EMPHASIS_6;
1607                 case DP_TRAIN_VOLTAGE_SWING_800:
1608                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1609                 case DP_TRAIN_VOLTAGE_SWING_1200:
1610                 default:
1611                         return DP_TRAIN_PRE_EMPHASIS_0;
1612                 }
1613         }
1614 }
1615
1616 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1617 {
1618         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1619         struct drm_i915_private *dev_priv = dev->dev_private;
1620         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1621         unsigned long demph_reg_value, preemph_reg_value,
1622                 uniqtranscale_reg_value;
1623         uint8_t train_set = intel_dp->train_set[0];
1624         int port = vlv_dport_to_channel(dport);
1625
1626         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1627         case DP_TRAIN_PRE_EMPHASIS_0:
1628                 preemph_reg_value = 0x0004000;
1629                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1630                 case DP_TRAIN_VOLTAGE_SWING_400:
1631                         demph_reg_value = 0x2B405555;
1632                         uniqtranscale_reg_value = 0x552AB83A;
1633                         break;
1634                 case DP_TRAIN_VOLTAGE_SWING_600:
1635                         demph_reg_value = 0x2B404040;
1636                         uniqtranscale_reg_value = 0x5548B83A;
1637                         break;
1638                 case DP_TRAIN_VOLTAGE_SWING_800:
1639                         demph_reg_value = 0x2B245555;
1640                         uniqtranscale_reg_value = 0x5560B83A;
1641                         break;
1642                 case DP_TRAIN_VOLTAGE_SWING_1200:
1643                         demph_reg_value = 0x2B405555;
1644                         uniqtranscale_reg_value = 0x5598DA3A;
1645                         break;
1646                 default:
1647                         return 0;
1648                 }
1649                 break;
1650         case DP_TRAIN_PRE_EMPHASIS_3_5:
1651                 preemph_reg_value = 0x0002000;
1652                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1653                 case DP_TRAIN_VOLTAGE_SWING_400:
1654                         demph_reg_value = 0x2B404040;
1655                         uniqtranscale_reg_value = 0x5552B83A;
1656                         break;
1657                 case DP_TRAIN_VOLTAGE_SWING_600:
1658                         demph_reg_value = 0x2B404848;
1659                         uniqtranscale_reg_value = 0x5580B83A;
1660                         break;
1661                 case DP_TRAIN_VOLTAGE_SWING_800:
1662                         demph_reg_value = 0x2B404040;
1663                         uniqtranscale_reg_value = 0x55ADDA3A;
1664                         break;
1665                 default:
1666                         return 0;
1667                 }
1668                 break;
1669         case DP_TRAIN_PRE_EMPHASIS_6:
1670                 preemph_reg_value = 0x0000000;
1671                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1672                 case DP_TRAIN_VOLTAGE_SWING_400:
1673                         demph_reg_value = 0x2B305555;
1674                         uniqtranscale_reg_value = 0x5570B83A;
1675                         break;
1676                 case DP_TRAIN_VOLTAGE_SWING_600:
1677                         demph_reg_value = 0x2B2B4040;
1678                         uniqtranscale_reg_value = 0x55ADDA3A;
1679                         break;
1680                 default:
1681                         return 0;
1682                 }
1683                 break;
1684         case DP_TRAIN_PRE_EMPHASIS_9_5:
1685                 preemph_reg_value = 0x0006000;
1686                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1687                 case DP_TRAIN_VOLTAGE_SWING_400:
1688                         demph_reg_value = 0x1B405555;
1689                         uniqtranscale_reg_value = 0x55ADDA3A;
1690                         break;
1691                 default:
1692                         return 0;
1693                 }
1694                 break;
1695         default:
1696                 return 0;
1697         }
1698
1699         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1700         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1701         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1702                          uniqtranscale_reg_value);
1703         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1704         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1705         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1706         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1707
1708         return 0;
1709 }
1710
1711 static void
1712 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1713 {
1714         uint8_t v = 0;
1715         uint8_t p = 0;
1716         int lane;
1717         uint8_t voltage_max;
1718         uint8_t preemph_max;
1719
1720         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1721                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1722                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1723
1724                 if (this_v > v)
1725                         v = this_v;
1726                 if (this_p > p)
1727                         p = this_p;
1728         }
1729
1730         voltage_max = intel_dp_voltage_max(intel_dp);
1731         if (v >= voltage_max)
1732                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1733
1734         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1735         if (p >= preemph_max)
1736                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1737
1738         for (lane = 0; lane < 4; lane++)
1739                 intel_dp->train_set[lane] = v | p;
1740 }
1741
1742 static uint32_t
1743 intel_gen4_signal_levels(uint8_t train_set)
1744 {
1745         uint32_t        signal_levels = 0;
1746
1747         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1748         case DP_TRAIN_VOLTAGE_SWING_400:
1749         default:
1750                 signal_levels |= DP_VOLTAGE_0_4;
1751                 break;
1752         case DP_TRAIN_VOLTAGE_SWING_600:
1753                 signal_levels |= DP_VOLTAGE_0_6;
1754                 break;
1755         case DP_TRAIN_VOLTAGE_SWING_800:
1756                 signal_levels |= DP_VOLTAGE_0_8;
1757                 break;
1758         case DP_TRAIN_VOLTAGE_SWING_1200:
1759                 signal_levels |= DP_VOLTAGE_1_2;
1760                 break;
1761         }
1762         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1763         case DP_TRAIN_PRE_EMPHASIS_0:
1764         default:
1765                 signal_levels |= DP_PRE_EMPHASIS_0;
1766                 break;
1767         case DP_TRAIN_PRE_EMPHASIS_3_5:
1768                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1769                 break;
1770         case DP_TRAIN_PRE_EMPHASIS_6:
1771                 signal_levels |= DP_PRE_EMPHASIS_6;
1772                 break;
1773         case DP_TRAIN_PRE_EMPHASIS_9_5:
1774                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1775                 break;
1776         }
1777         return signal_levels;
1778 }
1779
1780 /* Gen6's DP voltage swing and pre-emphasis control */
1781 static uint32_t
1782 intel_gen6_edp_signal_levels(uint8_t train_set)
1783 {
1784         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1785                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1786         switch (signal_levels) {
1787         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1788         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1789                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1790         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1791                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1792         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1793         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1794                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1795         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1796         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1797                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1798         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1799         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1800                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1801         default:
1802                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1803                               "0x%x\n", signal_levels);
1804                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1805         }
1806 }
1807
1808 /* Gen7's DP voltage swing and pre-emphasis control */
1809 static uint32_t
1810 intel_gen7_edp_signal_levels(uint8_t train_set)
1811 {
1812         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1813                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1814         switch (signal_levels) {
1815         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1816                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1817         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1818                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1819         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1820                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1821
1822         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1823                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1824         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1825                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1826
1827         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1828                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1829         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1830                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1831
1832         default:
1833                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1834                               "0x%x\n", signal_levels);
1835                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1836         }
1837 }
1838
1839 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1840 static uint32_t
1841 intel_hsw_signal_levels(uint8_t train_set)
1842 {
1843         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1844                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1845         switch (signal_levels) {
1846         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1847                 return DDI_BUF_EMP_400MV_0DB_HSW;
1848         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1849                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1850         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1851                 return DDI_BUF_EMP_400MV_6DB_HSW;
1852         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1853                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1854
1855         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1856                 return DDI_BUF_EMP_600MV_0DB_HSW;
1857         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1858                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1859         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1860                 return DDI_BUF_EMP_600MV_6DB_HSW;
1861
1862         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1863                 return DDI_BUF_EMP_800MV_0DB_HSW;
1864         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1865                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1866         default:
1867                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1868                               "0x%x\n", signal_levels);
1869                 return DDI_BUF_EMP_400MV_0DB_HSW;
1870         }
1871 }
1872
1873 /* Properly updates "DP" with the correct signal levels. */
1874 static void
1875 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1876 {
1877         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1878         enum port port = intel_dig_port->port;
1879         struct drm_device *dev = intel_dig_port->base.base.dev;
1880         uint32_t signal_levels, mask;
1881         uint8_t train_set = intel_dp->train_set[0];
1882
1883         if (HAS_DDI(dev)) {
1884                 signal_levels = intel_hsw_signal_levels(train_set);
1885                 mask = DDI_BUF_EMP_MASK;
1886         } else if (IS_VALLEYVIEW(dev)) {
1887                 signal_levels = intel_vlv_signal_levels(intel_dp);
1888                 mask = 0;
1889         } else if (IS_GEN7(dev) && port == PORT_A) {
1890                 signal_levels = intel_gen7_edp_signal_levels(train_set);
1891                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1892         } else if (IS_GEN6(dev) && port == PORT_A) {
1893                 signal_levels = intel_gen6_edp_signal_levels(train_set);
1894                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1895         } else {
1896                 signal_levels = intel_gen4_signal_levels(train_set);
1897                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1898         }
1899
1900         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1901
1902         *DP = (*DP & ~mask) | signal_levels;
1903 }
1904
1905 static bool
1906 intel_dp_set_link_train(struct intel_dp *intel_dp,
1907                         uint32_t dp_reg_value,
1908                         uint8_t dp_train_pat)
1909 {
1910         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1911         struct drm_device *dev = intel_dig_port->base.base.dev;
1912         struct drm_i915_private *dev_priv = dev->dev_private;
1913         enum port port = intel_dig_port->port;
1914         int ret;
1915
1916         if (HAS_DDI(dev)) {
1917                 uint32_t temp = I915_READ(DP_TP_CTL(port));
1918
1919                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1920                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1921                 else
1922                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1923
1924                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1925                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1926                 case DP_TRAINING_PATTERN_DISABLE:
1927                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1928
1929                         break;
1930                 case DP_TRAINING_PATTERN_1:
1931                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1932                         break;
1933                 case DP_TRAINING_PATTERN_2:
1934                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1935                         break;
1936                 case DP_TRAINING_PATTERN_3:
1937                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1938                         break;
1939                 }
1940                 I915_WRITE(DP_TP_CTL(port), temp);
1941
1942         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
1943                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1944
1945                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1946                 case DP_TRAINING_PATTERN_DISABLE:
1947                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1948                         break;
1949                 case DP_TRAINING_PATTERN_1:
1950                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1951                         break;
1952                 case DP_TRAINING_PATTERN_2:
1953                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1954                         break;
1955                 case DP_TRAINING_PATTERN_3:
1956                         DRM_ERROR("DP training pattern 3 not supported\n");
1957                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1958                         break;
1959                 }
1960
1961         } else {
1962                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1963
1964                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1965                 case DP_TRAINING_PATTERN_DISABLE:
1966                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1967                         break;
1968                 case DP_TRAINING_PATTERN_1:
1969                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1970                         break;
1971                 case DP_TRAINING_PATTERN_2:
1972                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1973                         break;
1974                 case DP_TRAINING_PATTERN_3:
1975                         DRM_ERROR("DP training pattern 3 not supported\n");
1976                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1977                         break;
1978                 }
1979         }
1980
1981         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1982         POSTING_READ(intel_dp->output_reg);
1983
1984         intel_dp_aux_native_write_1(intel_dp,
1985                                     DP_TRAINING_PATTERN_SET,
1986                                     dp_train_pat);
1987
1988         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1989             DP_TRAINING_PATTERN_DISABLE) {
1990                 ret = intel_dp_aux_native_write(intel_dp,
1991                                                 DP_TRAINING_LANE0_SET,
1992                                                 intel_dp->train_set,
1993                                                 intel_dp->lane_count);
1994                 if (ret != intel_dp->lane_count)
1995                         return false;
1996         }
1997
1998         return true;
1999 }
2000
2001 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2002 {
2003         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2004         struct drm_device *dev = intel_dig_port->base.base.dev;
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006         enum port port = intel_dig_port->port;
2007         uint32_t val;
2008
2009         if (!HAS_DDI(dev))
2010                 return;
2011
2012         val = I915_READ(DP_TP_CTL(port));
2013         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2014         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2015         I915_WRITE(DP_TP_CTL(port), val);
2016
2017         /*
2018          * On PORT_A we can have only eDP in SST mode. There the only reason
2019          * we need to set idle transmission mode is to work around a HW issue
2020          * where we enable the pipe while not in idle link-training mode.
2021          * In this case there is requirement to wait for a minimum number of
2022          * idle patterns to be sent.
2023          */
2024         if (port == PORT_A)
2025                 return;
2026
2027         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2028                      1))
2029                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2030 }
2031
2032 /* Enable corresponding port and start training pattern 1 */
2033 void
2034 intel_dp_start_link_train(struct intel_dp *intel_dp)
2035 {
2036         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2037         struct drm_device *dev = encoder->dev;
2038         int i;
2039         uint8_t voltage;
2040         bool clock_recovery = false;
2041         int voltage_tries, loop_tries;
2042         uint32_t DP = intel_dp->DP;
2043
2044         if (HAS_DDI(dev))
2045                 intel_ddi_prepare_link_retrain(encoder);
2046
2047         /* Write the link configuration data */
2048         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2049                                   intel_dp->link_configuration,
2050                                   DP_LINK_CONFIGURATION_SIZE);
2051
2052         DP |= DP_PORT_EN;
2053
2054         memset(intel_dp->train_set, 0, 4);
2055         voltage = 0xff;
2056         voltage_tries = 0;
2057         loop_tries = 0;
2058         clock_recovery = false;
2059         for (;;) {
2060                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2061                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2062
2063                 intel_dp_set_signal_levels(intel_dp, &DP);
2064
2065                 /* Set training pattern 1 */
2066                 if (!intel_dp_set_link_train(intel_dp, DP,
2067                                              DP_TRAINING_PATTERN_1 |
2068                                              DP_LINK_SCRAMBLING_DISABLE))
2069                         break;
2070
2071                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2072                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2073                         DRM_ERROR("failed to get link status\n");
2074                         break;
2075                 }
2076
2077                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2078                         DRM_DEBUG_KMS("clock recovery OK\n");
2079                         clock_recovery = true;
2080                         break;
2081                 }
2082
2083                 /* Check to see if we've tried the max voltage */
2084                 for (i = 0; i < intel_dp->lane_count; i++)
2085                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2086                                 break;
2087                 if (i == intel_dp->lane_count) {
2088                         ++loop_tries;
2089                         if (loop_tries == 5) {
2090                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2091                                 break;
2092                         }
2093                         memset(intel_dp->train_set, 0, 4);
2094                         voltage_tries = 0;
2095                         continue;
2096                 }
2097
2098                 /* Check to see if we've tried the same voltage 5 times */
2099                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2100                         ++voltage_tries;
2101                         if (voltage_tries == 5) {
2102                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2103                                 break;
2104                         }
2105                 } else
2106                         voltage_tries = 0;
2107                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2108
2109                 /* Compute new intel_dp->train_set as requested by target */
2110                 intel_get_adjust_train(intel_dp, link_status);
2111         }
2112
2113         intel_dp->DP = DP;
2114 }
2115
2116 void
2117 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2118 {
2119         bool channel_eq = false;
2120         int tries, cr_tries;
2121         uint32_t DP = intel_dp->DP;
2122
2123         /* channel equalization */
2124         tries = 0;
2125         cr_tries = 0;
2126         channel_eq = false;
2127         for (;;) {
2128                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2129
2130                 if (cr_tries > 5) {
2131                         DRM_ERROR("failed to train DP, aborting\n");
2132                         intel_dp_link_down(intel_dp);
2133                         break;
2134                 }
2135
2136                 intel_dp_set_signal_levels(intel_dp, &DP);
2137
2138                 /* channel eq pattern */
2139                 if (!intel_dp_set_link_train(intel_dp, DP,
2140                                              DP_TRAINING_PATTERN_2 |
2141                                              DP_LINK_SCRAMBLING_DISABLE))
2142                         break;
2143
2144                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2145                 if (!intel_dp_get_link_status(intel_dp, link_status))
2146                         break;
2147
2148                 /* Make sure clock is still ok */
2149                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2150                         intel_dp_start_link_train(intel_dp);
2151                         cr_tries++;
2152                         continue;
2153                 }
2154
2155                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2156                         channel_eq = true;
2157                         break;
2158                 }
2159
2160                 /* Try 5 times, then try clock recovery if that fails */
2161                 if (tries > 5) {
2162                         intel_dp_link_down(intel_dp);
2163                         intel_dp_start_link_train(intel_dp);
2164                         tries = 0;
2165                         cr_tries++;
2166                         continue;
2167                 }
2168
2169                 /* Compute new intel_dp->train_set as requested by target */
2170                 intel_get_adjust_train(intel_dp, link_status);
2171                 ++tries;
2172         }
2173
2174         intel_dp_set_idle_link_train(intel_dp);
2175
2176         intel_dp->DP = DP;
2177
2178         if (channel_eq)
2179                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2180
2181 }
2182
2183 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2184 {
2185         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2186                                 DP_TRAINING_PATTERN_DISABLE);
2187 }
2188
2189 static void
2190 intel_dp_link_down(struct intel_dp *intel_dp)
2191 {
2192         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2193         enum port port = intel_dig_port->port;
2194         struct drm_device *dev = intel_dig_port->base.base.dev;
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         struct intel_crtc *intel_crtc =
2197                 to_intel_crtc(intel_dig_port->base.base.crtc);
2198         uint32_t DP = intel_dp->DP;
2199
2200         /*
2201          * DDI code has a strict mode set sequence and we should try to respect
2202          * it, otherwise we might hang the machine in many different ways. So we
2203          * really should be disabling the port only on a complete crtc_disable
2204          * sequence. This function is just called under two conditions on DDI
2205          * code:
2206          * - Link train failed while doing crtc_enable, and on this case we
2207          *   really should respect the mode set sequence and wait for a
2208          *   crtc_disable.
2209          * - Someone turned the monitor off and intel_dp_check_link_status
2210          *   called us. We don't need to disable the whole port on this case, so
2211          *   when someone turns the monitor on again,
2212          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2213          *   train.
2214          */
2215         if (HAS_DDI(dev))
2216                 return;
2217
2218         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2219                 return;
2220
2221         DRM_DEBUG_KMS("\n");
2222
2223         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2224                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2225                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2226         } else {
2227                 DP &= ~DP_LINK_TRAIN_MASK;
2228                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2229         }
2230         POSTING_READ(intel_dp->output_reg);
2231
2232         /* We don't really know why we're doing this */
2233         intel_wait_for_vblank(dev, intel_crtc->pipe);
2234
2235         if (HAS_PCH_IBX(dev) &&
2236             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2237                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2238
2239                 /* Hardware workaround: leaving our transcoder select
2240                  * set to transcoder B while it's off will prevent the
2241                  * corresponding HDMI output on transcoder A.
2242                  *
2243                  * Combine this with another hardware workaround:
2244                  * transcoder select bit can only be cleared while the
2245                  * port is enabled.
2246                  */
2247                 DP &= ~DP_PIPEB_SELECT;
2248                 I915_WRITE(intel_dp->output_reg, DP);
2249
2250                 /* Changes to enable or select take place the vblank
2251                  * after being written.
2252                  */
2253                 if (WARN_ON(crtc == NULL)) {
2254                         /* We should never try to disable a port without a crtc
2255                          * attached. For paranoia keep the code around for a
2256                          * bit. */
2257                         POSTING_READ(intel_dp->output_reg);
2258                         msleep(50);
2259                 } else
2260                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2261         }
2262
2263         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2264         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2265         POSTING_READ(intel_dp->output_reg);
2266         msleep(intel_dp->panel_power_down_delay);
2267 }
2268
2269 static bool
2270 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2271 {
2272         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2273
2274         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2275                                            sizeof(intel_dp->dpcd)) == 0)
2276                 return false; /* aux transfer failed */
2277
2278         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2279                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2280         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2281
2282         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2283                 return false; /* DPCD not present */
2284
2285         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2286               DP_DWN_STRM_PORT_PRESENT))
2287                 return true; /* native DP sink */
2288
2289         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2290                 return true; /* no per-port downstream info */
2291
2292         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2293                                            intel_dp->downstream_ports,
2294                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2295                 return false; /* downstream port status fetch failed */
2296
2297         return true;
2298 }
2299
2300 static void
2301 intel_dp_probe_oui(struct intel_dp *intel_dp)
2302 {
2303         u8 buf[3];
2304
2305         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2306                 return;
2307
2308         ironlake_edp_panel_vdd_on(intel_dp);
2309
2310         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2311                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2312                               buf[0], buf[1], buf[2]);
2313
2314         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2315                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2316                               buf[0], buf[1], buf[2]);
2317
2318         ironlake_edp_panel_vdd_off(intel_dp, false);
2319 }
2320
2321 static bool
2322 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2323 {
2324         int ret;
2325
2326         ret = intel_dp_aux_native_read_retry(intel_dp,
2327                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2328                                              sink_irq_vector, 1);
2329         if (!ret)
2330                 return false;
2331
2332         return true;
2333 }
2334
2335 static void
2336 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2337 {
2338         /* NAK by default */
2339         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2340 }
2341
2342 /*
2343  * According to DP spec
2344  * 5.1.2:
2345  *  1. Read DPCD
2346  *  2. Configure link according to Receiver Capabilities
2347  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2348  *  4. Check link status on receipt of hot-plug interrupt
2349  */
2350
2351 void
2352 intel_dp_check_link_status(struct intel_dp *intel_dp)
2353 {
2354         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2355         u8 sink_irq_vector;
2356         u8 link_status[DP_LINK_STATUS_SIZE];
2357
2358         if (!intel_encoder->connectors_active)
2359                 return;
2360
2361         if (WARN_ON(!intel_encoder->base.crtc))
2362                 return;
2363
2364         /* Try to read receiver status if the link appears to be up */
2365         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2366                 intel_dp_link_down(intel_dp);
2367                 return;
2368         }
2369
2370         /* Now read the DPCD to see if it's actually running */
2371         if (!intel_dp_get_dpcd(intel_dp)) {
2372                 intel_dp_link_down(intel_dp);
2373                 return;
2374         }
2375
2376         /* Try to read the source of the interrupt */
2377         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2378             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2379                 /* Clear interrupt source */
2380                 intel_dp_aux_native_write_1(intel_dp,
2381                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2382                                             sink_irq_vector);
2383
2384                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2385                         intel_dp_handle_test_request(intel_dp);
2386                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2387                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2388         }
2389
2390         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2391                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2392                               drm_get_encoder_name(&intel_encoder->base));
2393                 intel_dp_start_link_train(intel_dp);
2394                 intel_dp_complete_link_train(intel_dp);
2395                 intel_dp_stop_link_train(intel_dp);
2396         }
2397 }
2398
2399 /* XXX this is probably wrong for multiple downstream ports */
2400 static enum drm_connector_status
2401 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2402 {
2403         uint8_t *dpcd = intel_dp->dpcd;
2404         bool hpd;
2405         uint8_t type;
2406
2407         if (!intel_dp_get_dpcd(intel_dp))
2408                 return connector_status_disconnected;
2409
2410         /* if there's no downstream port, we're done */
2411         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2412                 return connector_status_connected;
2413
2414         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2415         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2416         if (hpd) {
2417                 uint8_t reg;
2418                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2419                                                     &reg, 1))
2420                         return connector_status_unknown;
2421                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2422                                               : connector_status_disconnected;
2423         }
2424
2425         /* If no HPD, poke DDC gently */
2426         if (drm_probe_ddc(&intel_dp->adapter))
2427                 return connector_status_connected;
2428
2429         /* Well we tried, say unknown for unreliable port types */
2430         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2431         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2432                 return connector_status_unknown;
2433
2434         /* Anything else is out of spec, warn and ignore */
2435         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2436         return connector_status_disconnected;
2437 }
2438
2439 static enum drm_connector_status
2440 ironlake_dp_detect(struct intel_dp *intel_dp)
2441 {
2442         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2443         struct drm_i915_private *dev_priv = dev->dev_private;
2444         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2445         enum drm_connector_status status;
2446
2447         /* Can't disconnect eDP, but you can close the lid... */
2448         if (is_edp(intel_dp)) {
2449                 status = intel_panel_detect(dev);
2450                 if (status == connector_status_unknown)
2451                         status = connector_status_connected;
2452                 return status;
2453         }
2454
2455         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2456                 return connector_status_disconnected;
2457
2458         return intel_dp_detect_dpcd(intel_dp);
2459 }
2460
2461 static enum drm_connector_status
2462 g4x_dp_detect(struct intel_dp *intel_dp)
2463 {
2464         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2465         struct drm_i915_private *dev_priv = dev->dev_private;
2466         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2467         uint32_t bit;
2468
2469         /* Can't disconnect eDP, but you can close the lid... */
2470         if (is_edp(intel_dp)) {
2471                 enum drm_connector_status status;
2472
2473                 status = intel_panel_detect(dev);
2474                 if (status == connector_status_unknown)
2475                         status = connector_status_connected;
2476                 return status;
2477         }
2478
2479         switch (intel_dig_port->port) {
2480         case PORT_B:
2481                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2482                 break;
2483         case PORT_C:
2484                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2485                 break;
2486         case PORT_D:
2487                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2488                 break;
2489         default:
2490                 return connector_status_unknown;
2491         }
2492
2493         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2494                 return connector_status_disconnected;
2495
2496         return intel_dp_detect_dpcd(intel_dp);
2497 }
2498
2499 static struct edid *
2500 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2501 {
2502         struct intel_connector *intel_connector = to_intel_connector(connector);
2503
2504         /* use cached edid if we have one */
2505         if (intel_connector->edid) {
2506                 struct edid *edid;
2507                 int size;
2508
2509                 /* invalid edid */
2510                 if (IS_ERR(intel_connector->edid))
2511                         return NULL;
2512
2513                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2514                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2515                 if (!edid)
2516                         return NULL;
2517
2518                 return edid;
2519         }
2520
2521         return drm_get_edid(connector, adapter);
2522 }
2523
2524 static int
2525 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2526 {
2527         struct intel_connector *intel_connector = to_intel_connector(connector);
2528
2529         /* use cached edid if we have one */
2530         if (intel_connector->edid) {
2531                 /* invalid edid */
2532                 if (IS_ERR(intel_connector->edid))
2533                         return 0;
2534
2535                 return intel_connector_update_modes(connector,
2536                                                     intel_connector->edid);
2537         }
2538
2539         return intel_ddc_get_modes(connector, adapter);
2540 }
2541
2542 static enum drm_connector_status
2543 intel_dp_detect(struct drm_connector *connector, bool force)
2544 {
2545         struct intel_dp *intel_dp = intel_attached_dp(connector);
2546         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2547         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2548         struct drm_device *dev = connector->dev;
2549         enum drm_connector_status status;
2550         struct edid *edid = NULL;
2551
2552         intel_dp->has_audio = false;
2553
2554         if (HAS_PCH_SPLIT(dev))
2555                 status = ironlake_dp_detect(intel_dp);
2556         else
2557                 status = g4x_dp_detect(intel_dp);
2558
2559         if (status != connector_status_connected)
2560                 return status;
2561
2562         intel_dp_probe_oui(intel_dp);
2563
2564         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2565                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2566         } else {
2567                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2568                 if (edid) {
2569                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2570                         kfree(edid);
2571                 }
2572         }
2573
2574         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2575                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2576         return connector_status_connected;
2577 }
2578
2579 static int intel_dp_get_modes(struct drm_connector *connector)
2580 {
2581         struct intel_dp *intel_dp = intel_attached_dp(connector);
2582         struct intel_connector *intel_connector = to_intel_connector(connector);
2583         struct drm_device *dev = connector->dev;
2584         int ret;
2585
2586         /* We should parse the EDID data and find out if it has an audio sink
2587          */
2588
2589         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2590         if (ret)
2591                 return ret;
2592
2593         /* if eDP has no EDID, fall back to fixed mode */
2594         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2595                 struct drm_display_mode *mode;
2596                 mode = drm_mode_duplicate(dev,
2597                                           intel_connector->panel.fixed_mode);
2598                 if (mode) {
2599                         drm_mode_probed_add(connector, mode);
2600                         return 1;
2601                 }
2602         }
2603         return 0;
2604 }
2605
2606 static bool
2607 intel_dp_detect_audio(struct drm_connector *connector)
2608 {
2609         struct intel_dp *intel_dp = intel_attached_dp(connector);
2610         struct edid *edid;
2611         bool has_audio = false;
2612
2613         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2614         if (edid) {
2615                 has_audio = drm_detect_monitor_audio(edid);
2616                 kfree(edid);
2617         }
2618
2619         return has_audio;
2620 }
2621
2622 static int
2623 intel_dp_set_property(struct drm_connector *connector,
2624                       struct drm_property *property,
2625                       uint64_t val)
2626 {
2627         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2628         struct intel_connector *intel_connector = to_intel_connector(connector);
2629         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2630         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2631         int ret;
2632
2633         ret = drm_object_property_set_value(&connector->base, property, val);
2634         if (ret)
2635                 return ret;
2636
2637         if (property == dev_priv->force_audio_property) {
2638                 int i = val;
2639                 bool has_audio;
2640
2641                 if (i == intel_dp->force_audio)
2642                         return 0;
2643
2644                 intel_dp->force_audio = i;
2645
2646                 if (i == HDMI_AUDIO_AUTO)
2647                         has_audio = intel_dp_detect_audio(connector);
2648                 else
2649                         has_audio = (i == HDMI_AUDIO_ON);
2650
2651                 if (has_audio == intel_dp->has_audio)
2652                         return 0;
2653
2654                 intel_dp->has_audio = has_audio;
2655                 goto done;
2656         }
2657
2658         if (property == dev_priv->broadcast_rgb_property) {
2659                 bool old_auto = intel_dp->color_range_auto;
2660                 uint32_t old_range = intel_dp->color_range;
2661
2662                 switch (val) {
2663                 case INTEL_BROADCAST_RGB_AUTO:
2664                         intel_dp->color_range_auto = true;
2665                         break;
2666                 case INTEL_BROADCAST_RGB_FULL:
2667                         intel_dp->color_range_auto = false;
2668                         intel_dp->color_range = 0;
2669                         break;
2670                 case INTEL_BROADCAST_RGB_LIMITED:
2671                         intel_dp->color_range_auto = false;
2672                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2673                         break;
2674                 default:
2675                         return -EINVAL;
2676                 }
2677
2678                 if (old_auto == intel_dp->color_range_auto &&
2679                     old_range == intel_dp->color_range)
2680                         return 0;
2681
2682                 goto done;
2683         }
2684
2685         if (is_edp(intel_dp) &&
2686             property == connector->dev->mode_config.scaling_mode_property) {
2687                 if (val == DRM_MODE_SCALE_NONE) {
2688                         DRM_DEBUG_KMS("no scaling not supported\n");
2689                         return -EINVAL;
2690                 }
2691
2692                 if (intel_connector->panel.fitting_mode == val) {
2693                         /* the eDP scaling property is not changed */
2694                         return 0;
2695                 }
2696                 intel_connector->panel.fitting_mode = val;
2697
2698                 goto done;
2699         }
2700
2701         return -EINVAL;
2702
2703 done:
2704         if (intel_encoder->base.crtc)
2705                 intel_crtc_restore_mode(intel_encoder->base.crtc);
2706
2707         return 0;
2708 }
2709
2710 static void
2711 intel_dp_connector_destroy(struct drm_connector *connector)
2712 {
2713         struct intel_connector *intel_connector = to_intel_connector(connector);
2714
2715         if (!IS_ERR_OR_NULL(intel_connector->edid))
2716                 kfree(intel_connector->edid);
2717
2718         /* Can't call is_edp() since the encoder may have been destroyed
2719          * already. */
2720         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
2721                 intel_panel_fini(&intel_connector->panel);
2722
2723         drm_sysfs_connector_remove(connector);
2724         drm_connector_cleanup(connector);
2725         kfree(connector);
2726 }
2727
2728 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2729 {
2730         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2731         struct intel_dp *intel_dp = &intel_dig_port->dp;
2732         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2733
2734         i2c_del_adapter(&intel_dp->adapter);
2735         drm_encoder_cleanup(encoder);
2736         if (is_edp(intel_dp)) {
2737                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2738                 mutex_lock(&dev->mode_config.mutex);
2739                 ironlake_panel_vdd_off_sync(intel_dp);
2740                 mutex_unlock(&dev->mode_config.mutex);
2741         }
2742         kfree(intel_dig_port);
2743 }
2744
2745 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2746         .mode_set = intel_dp_mode_set,
2747 };
2748
2749 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2750         .dpms = intel_connector_dpms,
2751         .detect = intel_dp_detect,
2752         .fill_modes = drm_helper_probe_single_connector_modes,
2753         .set_property = intel_dp_set_property,
2754         .destroy = intel_dp_connector_destroy,
2755 };
2756
2757 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2758         .get_modes = intel_dp_get_modes,
2759         .mode_valid = intel_dp_mode_valid,
2760         .best_encoder = intel_best_encoder,
2761 };
2762
2763 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2764         .destroy = intel_dp_encoder_destroy,
2765 };
2766
2767 static void
2768 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2769 {
2770         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2771
2772         intel_dp_check_link_status(intel_dp);
2773 }
2774
2775 /* Return which DP Port should be selected for Transcoder DP control */
2776 int
2777 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2778 {
2779         struct drm_device *dev = crtc->dev;
2780         struct intel_encoder *intel_encoder;
2781         struct intel_dp *intel_dp;
2782
2783         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2784                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2785
2786                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2787                     intel_encoder->type == INTEL_OUTPUT_EDP)
2788                         return intel_dp->output_reg;
2789         }
2790
2791         return -1;
2792 }
2793
2794 /* check the VBT to see whether the eDP is on DP-D port */
2795 bool intel_dpd_is_edp(struct drm_device *dev)
2796 {
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         struct child_device_config *p_child;
2799         int i;
2800
2801         if (!dev_priv->vbt.child_dev_num)
2802                 return false;
2803
2804         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2805                 p_child = dev_priv->vbt.child_dev + i;
2806
2807                 if (p_child->dvo_port == PORT_IDPD &&
2808                     p_child->device_type == DEVICE_TYPE_eDP)
2809                         return true;
2810         }
2811         return false;
2812 }
2813
2814 static void
2815 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2816 {
2817         struct intel_connector *intel_connector = to_intel_connector(connector);
2818
2819         intel_attach_force_audio_property(connector);
2820         intel_attach_broadcast_rgb_property(connector);
2821         intel_dp->color_range_auto = true;
2822
2823         if (is_edp(intel_dp)) {
2824                 drm_mode_create_scaling_mode_property(connector->dev);
2825                 drm_object_attach_property(
2826                         &connector->base,
2827                         connector->dev->mode_config.scaling_mode_property,
2828                         DRM_MODE_SCALE_ASPECT);
2829                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2830         }
2831 }
2832
2833 static void
2834 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2835                                     struct intel_dp *intel_dp,
2836                                     struct edp_power_seq *out)
2837 {
2838         struct drm_i915_private *dev_priv = dev->dev_private;
2839         struct edp_power_seq cur, vbt, spec, final;
2840         u32 pp_on, pp_off, pp_div, pp;
2841         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
2842
2843         if (HAS_PCH_SPLIT(dev)) {
2844                 pp_control_reg = PCH_PP_CONTROL;
2845                 pp_on_reg = PCH_PP_ON_DELAYS;
2846                 pp_off_reg = PCH_PP_OFF_DELAYS;
2847                 pp_div_reg = PCH_PP_DIVISOR;
2848         } else {
2849                 pp_control_reg = PIPEA_PP_CONTROL;
2850                 pp_on_reg = PIPEA_PP_ON_DELAYS;
2851                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2852                 pp_div_reg = PIPEA_PP_DIVISOR;
2853         }
2854
2855         /* Workaround: Need to write PP_CONTROL with the unlock key as
2856          * the very first thing. */
2857         pp = ironlake_get_pp_control(intel_dp);
2858         I915_WRITE(pp_control_reg, pp);
2859
2860         pp_on = I915_READ(pp_on_reg);
2861         pp_off = I915_READ(pp_off_reg);
2862         pp_div = I915_READ(pp_div_reg);
2863
2864         /* Pull timing values out of registers */
2865         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2866                 PANEL_POWER_UP_DELAY_SHIFT;
2867
2868         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2869                 PANEL_LIGHT_ON_DELAY_SHIFT;
2870
2871         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2872                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2873
2874         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2875                 PANEL_POWER_DOWN_DELAY_SHIFT;
2876
2877         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2878                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2879
2880         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2881                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2882
2883         vbt = dev_priv->vbt.edp_pps;
2884
2885         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2886          * our hw here, which are all in 100usec. */
2887         spec.t1_t3 = 210 * 10;
2888         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2889         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2890         spec.t10 = 500 * 10;
2891         /* This one is special and actually in units of 100ms, but zero
2892          * based in the hw (so we need to add 100 ms). But the sw vbt
2893          * table multiplies it with 1000 to make it in units of 100usec,
2894          * too. */
2895         spec.t11_t12 = (510 + 100) * 10;
2896
2897         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2898                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2899
2900         /* Use the max of the register settings and vbt. If both are
2901          * unset, fall back to the spec limits. */
2902 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2903                                        spec.field : \
2904                                        max(cur.field, vbt.field))
2905         assign_final(t1_t3);
2906         assign_final(t8);
2907         assign_final(t9);
2908         assign_final(t10);
2909         assign_final(t11_t12);
2910 #undef assign_final
2911
2912 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2913         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2914         intel_dp->backlight_on_delay = get_delay(t8);
2915         intel_dp->backlight_off_delay = get_delay(t9);
2916         intel_dp->panel_power_down_delay = get_delay(t10);
2917         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2918 #undef get_delay
2919
2920         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2921                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2922                       intel_dp->panel_power_cycle_delay);
2923
2924         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2925                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2926
2927         if (out)
2928                 *out = final;
2929 }
2930
2931 static void
2932 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2933                                               struct intel_dp *intel_dp,
2934                                               struct edp_power_seq *seq)
2935 {
2936         struct drm_i915_private *dev_priv = dev->dev_private;
2937         u32 pp_on, pp_off, pp_div, port_sel = 0;
2938         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
2939         int pp_on_reg, pp_off_reg, pp_div_reg;
2940
2941         if (HAS_PCH_SPLIT(dev)) {
2942                 pp_on_reg = PCH_PP_ON_DELAYS;
2943                 pp_off_reg = PCH_PP_OFF_DELAYS;
2944                 pp_div_reg = PCH_PP_DIVISOR;
2945         } else {
2946                 pp_on_reg = PIPEA_PP_ON_DELAYS;
2947                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2948                 pp_div_reg = PIPEA_PP_DIVISOR;
2949         }
2950
2951         /* And finally store the new values in the power sequencer. */
2952         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2953                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2954         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2955                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2956         /* Compute the divisor for the pp clock, simply match the Bspec
2957          * formula. */
2958         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
2959         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2960                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2961
2962         /* Haswell doesn't have any port selection bits for the panel
2963          * power sequencer any more. */
2964         if (IS_VALLEYVIEW(dev)) {
2965                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
2966         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2967                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
2968                         port_sel = PANEL_POWER_PORT_DP_A;
2969                 else
2970                         port_sel = PANEL_POWER_PORT_DP_D;
2971         }
2972
2973         pp_on |= port_sel;
2974
2975         I915_WRITE(pp_on_reg, pp_on);
2976         I915_WRITE(pp_off_reg, pp_off);
2977         I915_WRITE(pp_div_reg, pp_div);
2978
2979         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2980                       I915_READ(pp_on_reg),
2981                       I915_READ(pp_off_reg),
2982                       I915_READ(pp_div_reg));
2983 }
2984
2985 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
2986                                      struct intel_connector *intel_connector)
2987 {
2988         struct drm_connector *connector = &intel_connector->base;
2989         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2990         struct drm_device *dev = intel_dig_port->base.base.dev;
2991         struct drm_i915_private *dev_priv = dev->dev_private;
2992         struct drm_display_mode *fixed_mode = NULL;
2993         struct edp_power_seq power_seq = { 0 };
2994         bool has_dpcd;
2995         struct drm_display_mode *scan;
2996         struct edid *edid;
2997
2998         if (!is_edp(intel_dp))
2999                 return true;
3000
3001         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3002
3003         /* Cache DPCD and EDID for edp. */
3004         ironlake_edp_panel_vdd_on(intel_dp);
3005         has_dpcd = intel_dp_get_dpcd(intel_dp);
3006         ironlake_edp_panel_vdd_off(intel_dp, false);
3007
3008         if (has_dpcd) {
3009                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3010                         dev_priv->no_aux_handshake =
3011                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3012                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3013         } else {
3014                 /* if this fails, presume the device is a ghost */
3015                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3016                 return false;
3017         }
3018
3019         /* We now know it's not a ghost, init power sequence regs. */
3020         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3021                                                       &power_seq);
3022
3023         ironlake_edp_panel_vdd_on(intel_dp);
3024         edid = drm_get_edid(connector, &intel_dp->adapter);
3025         if (edid) {
3026                 if (drm_add_edid_modes(connector, edid)) {
3027                         drm_mode_connector_update_edid_property(connector,
3028                                                                 edid);
3029                         drm_edid_to_eld(connector, edid);
3030                 } else {
3031                         kfree(edid);
3032                         edid = ERR_PTR(-EINVAL);
3033                 }
3034         } else {
3035                 edid = ERR_PTR(-ENOENT);
3036         }
3037         intel_connector->edid = edid;
3038
3039         /* prefer fixed mode from EDID if available */
3040         list_for_each_entry(scan, &connector->probed_modes, head) {
3041                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3042                         fixed_mode = drm_mode_duplicate(dev, scan);
3043                         break;
3044                 }
3045         }
3046
3047         /* fallback to VBT if available for eDP */
3048         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3049                 fixed_mode = drm_mode_duplicate(dev,
3050                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3051                 if (fixed_mode)
3052                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3053         }
3054
3055         ironlake_edp_panel_vdd_off(intel_dp, false);
3056
3057         intel_panel_init(&intel_connector->panel, fixed_mode);
3058         intel_panel_setup_backlight(connector);
3059
3060         return true;
3061 }
3062
3063 bool
3064 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3065                         struct intel_connector *intel_connector)
3066 {
3067         struct drm_connector *connector = &intel_connector->base;
3068         struct intel_dp *intel_dp = &intel_dig_port->dp;
3069         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3070         struct drm_device *dev = intel_encoder->base.dev;
3071         struct drm_i915_private *dev_priv = dev->dev_private;
3072         enum port port = intel_dig_port->port;
3073         const char *name = NULL;
3074         int type, error;
3075
3076         /* Preserve the current hw state. */
3077         intel_dp->DP = I915_READ(intel_dp->output_reg);
3078         intel_dp->attached_connector = intel_connector;
3079
3080         type = DRM_MODE_CONNECTOR_DisplayPort;
3081         /*
3082          * FIXME : We need to initialize built-in panels before external panels.
3083          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3084          */
3085         switch (port) {
3086         case PORT_A:
3087                 type = DRM_MODE_CONNECTOR_eDP;
3088                 break;
3089         case PORT_C:
3090                 if (IS_VALLEYVIEW(dev))
3091                         type = DRM_MODE_CONNECTOR_eDP;
3092                 break;
3093         case PORT_D:
3094                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3095                         type = DRM_MODE_CONNECTOR_eDP;
3096                 break;
3097         default:        /* silence GCC warning */
3098                 break;
3099         }
3100
3101         /*
3102          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3103          * for DP the encoder type can be set by the caller to
3104          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3105          */
3106         if (type == DRM_MODE_CONNECTOR_eDP)
3107                 intel_encoder->type = INTEL_OUTPUT_EDP;
3108
3109         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3110                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3111                         port_name(port));
3112
3113         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3114         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3115
3116         connector->interlace_allowed = true;
3117         connector->doublescan_allowed = 0;
3118
3119         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3120                           ironlake_panel_vdd_work);
3121
3122         intel_connector_attach_encoder(intel_connector, intel_encoder);
3123         drm_sysfs_connector_add(connector);
3124
3125         if (HAS_DDI(dev))
3126                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3127         else
3128                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3129
3130         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3131         if (HAS_DDI(dev)) {
3132                 switch (intel_dig_port->port) {
3133                 case PORT_A:
3134                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3135                         break;
3136                 case PORT_B:
3137                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3138                         break;
3139                 case PORT_C:
3140                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3141                         break;
3142                 case PORT_D:
3143                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3144                         break;
3145                 default:
3146                         BUG();
3147                 }
3148         }
3149
3150         /* Set up the DDC bus. */
3151         switch (port) {
3152         case PORT_A:
3153                 intel_encoder->hpd_pin = HPD_PORT_A;
3154                 name = "DPDDC-A";
3155                 break;
3156         case PORT_B:
3157                 intel_encoder->hpd_pin = HPD_PORT_B;
3158                 name = "DPDDC-B";
3159                 break;
3160         case PORT_C:
3161                 intel_encoder->hpd_pin = HPD_PORT_C;
3162                 name = "DPDDC-C";
3163                 break;
3164         case PORT_D:
3165                 intel_encoder->hpd_pin = HPD_PORT_D;
3166                 name = "DPDDC-D";
3167                 break;
3168         default:
3169                 BUG();
3170         }
3171
3172         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3173         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3174              error, port_name(port));
3175
3176         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3177                 i2c_del_adapter(&intel_dp->adapter);
3178                 if (is_edp(intel_dp)) {
3179                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3180                         mutex_lock(&dev->mode_config.mutex);
3181                         ironlake_panel_vdd_off_sync(intel_dp);
3182                         mutex_unlock(&dev->mode_config.mutex);
3183                 }
3184                 drm_sysfs_connector_remove(connector);
3185                 drm_connector_cleanup(connector);
3186                 return false;
3187         }
3188
3189         intel_dp_add_properties(intel_dp, connector);
3190
3191         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3192          * 0xd.  Failure to do so will result in spurious interrupts being
3193          * generated on the port when a cable is not attached.
3194          */
3195         if (IS_G4X(dev) && !IS_GM45(dev)) {
3196                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3197                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3198         }
3199
3200         return true;
3201 }
3202
3203 void
3204 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3205 {
3206         struct intel_digital_port *intel_dig_port;
3207         struct intel_encoder *intel_encoder;
3208         struct drm_encoder *encoder;
3209         struct intel_connector *intel_connector;
3210
3211         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3212         if (!intel_dig_port)
3213                 return;
3214
3215         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3216         if (!intel_connector) {
3217                 kfree(intel_dig_port);
3218                 return;
3219         }
3220
3221         intel_encoder = &intel_dig_port->base;
3222         encoder = &intel_encoder->base;
3223
3224         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3225                          DRM_MODE_ENCODER_TMDS);
3226         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
3227
3228         intel_encoder->compute_config = intel_dp_compute_config;
3229         intel_encoder->enable = intel_enable_dp;
3230         intel_encoder->pre_enable = intel_pre_enable_dp;
3231         intel_encoder->disable = intel_disable_dp;
3232         intel_encoder->post_disable = intel_post_disable_dp;
3233         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3234         intel_encoder->get_config = intel_dp_get_config;
3235         if (IS_VALLEYVIEW(dev))
3236                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3237
3238         intel_dig_port->port = port;
3239         intel_dig_port->dp.output_reg = output_reg;
3240
3241         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3242         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3243         intel_encoder->cloneable = false;
3244         intel_encoder->hot_plug = intel_dp_hot_plug;
3245
3246         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3247                 drm_encoder_cleanup(encoder);
3248                 kfree(intel_dig_port);
3249                 kfree(intel_connector);
3250         }
3251 }