]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge branch 'drm-intel-fixes' into drm-intel-next
[mv-sheeva.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
46 #define IS_PCH_eDP(i) ((i)->is_pch_edp)
47
48 struct intel_dp {
49         struct intel_encoder base;
50         uint32_t output_reg;
51         uint32_t DP;
52         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
53         bool has_audio;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[4];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         uint8_t link_status[DP_LINK_STATUS_SIZE];
63 };
64
65 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
66 {
67         return container_of(encoder, struct intel_dp, base.base);
68 }
69
70 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
71 {
72         return container_of(intel_attached_encoder(connector),
73                             struct intel_dp, base);
74 }
75
76 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
77 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
78 static void intel_dp_link_down(struct intel_dp *intel_dp);
79
80 void
81 intel_edp_link_config (struct intel_encoder *intel_encoder,
82                        int *lane_num, int *link_bw)
83 {
84         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
85
86         *lane_num = intel_dp->lane_count;
87         if (intel_dp->link_bw == DP_LINK_BW_1_62)
88                 *link_bw = 162000;
89         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
90                 *link_bw = 270000;
91 }
92
93 static int
94 intel_dp_max_lane_count(struct intel_dp *intel_dp)
95 {
96         int max_lane_count = 4;
97
98         if (intel_dp->dpcd[0] >= 0x11) {
99                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
100                 switch (max_lane_count) {
101                 case 1: case 2: case 4:
102                         break;
103                 default:
104                         max_lane_count = 4;
105                 }
106         }
107         return max_lane_count;
108 }
109
110 static int
111 intel_dp_max_link_bw(struct intel_dp *intel_dp)
112 {
113         int max_link_bw = intel_dp->dpcd[1];
114
115         switch (max_link_bw) {
116         case DP_LINK_BW_1_62:
117         case DP_LINK_BW_2_7:
118                 break;
119         default:
120                 max_link_bw = DP_LINK_BW_1_62;
121                 break;
122         }
123         return max_link_bw;
124 }
125
126 static int
127 intel_dp_link_clock(uint8_t link_bw)
128 {
129         if (link_bw == DP_LINK_BW_2_7)
130                 return 270000;
131         else
132                 return 162000;
133 }
134
135 /* I think this is a fiction */
136 static int
137 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
142                 return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
143         else
144                 return pixel_clock * 3;
145 }
146
147 static int
148 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
149 {
150         return (max_link_clock * max_lanes * 8) / 10;
151 }
152
153 static int
154 intel_dp_mode_valid(struct drm_connector *connector,
155                     struct drm_display_mode *mode)
156 {
157         struct intel_dp *intel_dp = intel_attached_dp(connector);
158         struct drm_device *dev = connector->dev;
159         struct drm_i915_private *dev_priv = dev->dev_private;
160         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
161         int max_lanes = intel_dp_max_lane_count(intel_dp);
162
163         if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
164             dev_priv->panel_fixed_mode) {
165                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
166                         return MODE_PANEL;
167
168                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
169                         return MODE_PANEL;
170         }
171
172         /* only refuse the mode on non eDP since we have seen some wierd eDP panels
173            which are outside spec tolerances but somehow work by magic */
174         if (!IS_eDP(intel_dp) &&
175             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
176              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
177                 return MODE_CLOCK_HIGH;
178
179         if (mode->clock < 10000)
180                 return MODE_CLOCK_LOW;
181
182         return MODE_OK;
183 }
184
185 static uint32_t
186 pack_aux(uint8_t *src, int src_bytes)
187 {
188         int     i;
189         uint32_t v = 0;
190
191         if (src_bytes > 4)
192                 src_bytes = 4;
193         for (i = 0; i < src_bytes; i++)
194                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
195         return v;
196 }
197
198 static void
199 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
200 {
201         int i;
202         if (dst_bytes > 4)
203                 dst_bytes = 4;
204         for (i = 0; i < dst_bytes; i++)
205                 dst[i] = src >> ((3-i) * 8);
206 }
207
208 /* hrawclock is 1/4 the FSB frequency */
209 static int
210 intel_hrawclk(struct drm_device *dev)
211 {
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         uint32_t clkcfg;
214
215         clkcfg = I915_READ(CLKCFG);
216         switch (clkcfg & CLKCFG_FSB_MASK) {
217         case CLKCFG_FSB_400:
218                 return 100;
219         case CLKCFG_FSB_533:
220                 return 133;
221         case CLKCFG_FSB_667:
222                 return 166;
223         case CLKCFG_FSB_800:
224                 return 200;
225         case CLKCFG_FSB_1067:
226                 return 266;
227         case CLKCFG_FSB_1333:
228                 return 333;
229         /* these two are just a guess; one of them might be right */
230         case CLKCFG_FSB_1600:
231         case CLKCFG_FSB_1600_ALT:
232                 return 400;
233         default:
234                 return 133;
235         }
236 }
237
238 static int
239 intel_dp_aux_ch(struct intel_dp *intel_dp,
240                 uint8_t *send, int send_bytes,
241                 uint8_t *recv, int recv_size)
242 {
243         uint32_t output_reg = intel_dp->output_reg;
244         struct drm_device *dev = intel_dp->base.base.dev;
245         struct drm_i915_private *dev_priv = dev->dev_private;
246         uint32_t ch_ctl = output_reg + 0x10;
247         uint32_t ch_data = ch_ctl + 4;
248         int i;
249         int recv_bytes;
250         uint32_t status;
251         uint32_t aux_clock_divider;
252         int try, precharge;
253
254         /* The clock divider is based off the hrawclk,
255          * and would like to run at 2MHz. So, take the
256          * hrawclk value and divide by 2 and use that
257          *
258          * Note that PCH attached eDP panels should use a 125MHz input
259          * clock divider.
260          */
261         if (IS_eDP(intel_dp) && !IS_PCH_eDP(intel_dp)) {
262                 if (IS_GEN6(dev))
263                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
264                 else
265                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
266         } else if (HAS_PCH_SPLIT(dev))
267                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
268         else
269                 aux_clock_divider = intel_hrawclk(dev) / 2;
270
271         if (IS_GEN6(dev))
272                 precharge = 3;
273         else
274                 precharge = 5;
275
276         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
277                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
278                           I915_READ(ch_ctl));
279                 return -EBUSY;
280         }
281
282         /* Must try at least 3 times according to DP spec */
283         for (try = 0; try < 5; try++) {
284                 /* Load the send data into the aux channel data registers */
285                 for (i = 0; i < send_bytes; i += 4)
286                         I915_WRITE(ch_data + i,
287                                    pack_aux(send + i, send_bytes - i));
288         
289                 /* Send the command and wait for it to complete */
290                 I915_WRITE(ch_ctl,
291                            DP_AUX_CH_CTL_SEND_BUSY |
292                            DP_AUX_CH_CTL_TIME_OUT_400us |
293                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
294                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
295                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
296                            DP_AUX_CH_CTL_DONE |
297                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
298                            DP_AUX_CH_CTL_RECEIVE_ERROR);
299                 for (;;) {
300                         status = I915_READ(ch_ctl);
301                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
302                                 break;
303                         udelay(100);
304                 }
305         
306                 /* Clear done status and any errors */
307                 I915_WRITE(ch_ctl,
308                            status |
309                            DP_AUX_CH_CTL_DONE |
310                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
311                            DP_AUX_CH_CTL_RECEIVE_ERROR);
312                 if (status & DP_AUX_CH_CTL_DONE)
313                         break;
314         }
315
316         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
317                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
318                 return -EBUSY;
319         }
320
321         /* Check for timeout or receive error.
322          * Timeouts occur when the sink is not connected
323          */
324         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
325                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
326                 return -EIO;
327         }
328
329         /* Timeouts occur when the device isn't connected, so they're
330          * "normal" -- don't fill the kernel log with these */
331         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
332                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
333                 return -ETIMEDOUT;
334         }
335
336         /* Unload any bytes sent back from the other side */
337         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
338                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
339         if (recv_bytes > recv_size)
340                 recv_bytes = recv_size;
341         
342         for (i = 0; i < recv_bytes; i += 4)
343                 unpack_aux(I915_READ(ch_data + i),
344                            recv + i, recv_bytes - i);
345
346         return recv_bytes;
347 }
348
349 /* Write data to the aux channel in native mode */
350 static int
351 intel_dp_aux_native_write(struct intel_dp *intel_dp,
352                           uint16_t address, uint8_t *send, int send_bytes)
353 {
354         int ret;
355         uint8_t msg[20];
356         int msg_bytes;
357         uint8_t ack;
358
359         if (send_bytes > 16)
360                 return -1;
361         msg[0] = AUX_NATIVE_WRITE << 4;
362         msg[1] = address >> 8;
363         msg[2] = address & 0xff;
364         msg[3] = send_bytes - 1;
365         memcpy(&msg[4], send, send_bytes);
366         msg_bytes = send_bytes + 4;
367         for (;;) {
368                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
369                 if (ret < 0)
370                         return ret;
371                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
372                         break;
373                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
374                         udelay(100);
375                 else
376                         return -EIO;
377         }
378         return send_bytes;
379 }
380
381 /* Write a single byte to the aux channel in native mode */
382 static int
383 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
384                             uint16_t address, uint8_t byte)
385 {
386         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
387 }
388
389 /* read bytes from a native aux channel */
390 static int
391 intel_dp_aux_native_read(struct intel_dp *intel_dp,
392                          uint16_t address, uint8_t *recv, int recv_bytes)
393 {
394         uint8_t msg[4];
395         int msg_bytes;
396         uint8_t reply[20];
397         int reply_bytes;
398         uint8_t ack;
399         int ret;
400
401         msg[0] = AUX_NATIVE_READ << 4;
402         msg[1] = address >> 8;
403         msg[2] = address & 0xff;
404         msg[3] = recv_bytes - 1;
405
406         msg_bytes = 4;
407         reply_bytes = recv_bytes + 1;
408
409         for (;;) {
410                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
411                                       reply, reply_bytes);
412                 if (ret == 0)
413                         return -EPROTO;
414                 if (ret < 0)
415                         return ret;
416                 ack = reply[0];
417                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
418                         memcpy(recv, reply + 1, ret - 1);
419                         return ret - 1;
420                 }
421                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
422                         udelay(100);
423                 else
424                         return -EIO;
425         }
426 }
427
428 static int
429 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
430                     uint8_t write_byte, uint8_t *read_byte)
431 {
432         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
433         struct intel_dp *intel_dp = container_of(adapter,
434                                                 struct intel_dp,
435                                                 adapter);
436         uint16_t address = algo_data->address;
437         uint8_t msg[5];
438         uint8_t reply[2];
439         int msg_bytes;
440         int reply_bytes;
441         int ret;
442
443         /* Set up the command byte */
444         if (mode & MODE_I2C_READ)
445                 msg[0] = AUX_I2C_READ << 4;
446         else
447                 msg[0] = AUX_I2C_WRITE << 4;
448
449         if (!(mode & MODE_I2C_STOP))
450                 msg[0] |= AUX_I2C_MOT << 4;
451
452         msg[1] = address >> 8;
453         msg[2] = address;
454
455         switch (mode) {
456         case MODE_I2C_WRITE:
457                 msg[3] = 0;
458                 msg[4] = write_byte;
459                 msg_bytes = 5;
460                 reply_bytes = 1;
461                 break;
462         case MODE_I2C_READ:
463                 msg[3] = 0;
464                 msg_bytes = 4;
465                 reply_bytes = 2;
466                 break;
467         default:
468                 msg_bytes = 3;
469                 reply_bytes = 1;
470                 break;
471         }
472
473         for (;;) {
474           ret = intel_dp_aux_ch(intel_dp,
475                                 msg, msg_bytes,
476                                 reply, reply_bytes);
477                 if (ret < 0) {
478                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
479                         return ret;
480                 }
481                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
482                 case AUX_I2C_REPLY_ACK:
483                         if (mode == MODE_I2C_READ) {
484                                 *read_byte = reply[1];
485                         }
486                         return reply_bytes - 1;
487                 case AUX_I2C_REPLY_NACK:
488                         DRM_DEBUG_KMS("aux_ch nack\n");
489                         return -EREMOTEIO;
490                 case AUX_I2C_REPLY_DEFER:
491                         DRM_DEBUG_KMS("aux_ch defer\n");
492                         udelay(100);
493                         break;
494                 default:
495                         DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
496                         return -EREMOTEIO;
497                 }
498         }
499 }
500
501 static int
502 intel_dp_i2c_init(struct intel_dp *intel_dp,
503                   struct intel_connector *intel_connector, const char *name)
504 {
505         DRM_DEBUG_KMS("i2c_init %s\n", name);
506         intel_dp->algo.running = false;
507         intel_dp->algo.address = 0;
508         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
509
510         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
511         intel_dp->adapter.owner = THIS_MODULE;
512         intel_dp->adapter.class = I2C_CLASS_DDC;
513         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
514         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
515         intel_dp->adapter.algo_data = &intel_dp->algo;
516         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
517
518         return i2c_dp_aux_add_bus(&intel_dp->adapter);
519 }
520
521 static bool
522 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
523                     struct drm_display_mode *adjusted_mode)
524 {
525         struct drm_device *dev = encoder->dev;
526         struct drm_i915_private *dev_priv = dev->dev_private;
527         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
528         int lane_count, clock;
529         int max_lane_count = intel_dp_max_lane_count(intel_dp);
530         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
531         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
532
533         if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
534             dev_priv->panel_fixed_mode) {
535                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
536                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
537                                         mode, adjusted_mode);
538                 /*
539                  * the mode->clock is used to calculate the Data&Link M/N
540                  * of the pipe. For the eDP the fixed clock should be used.
541                  */
542                 mode->clock = dev_priv->panel_fixed_mode->clock;
543         }
544
545         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
546                 for (clock = 0; clock <= max_clock; clock++) {
547                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
548
549                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
550                                         <= link_avail) {
551                                 intel_dp->link_bw = bws[clock];
552                                 intel_dp->lane_count = lane_count;
553                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
554                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
555                                                 "count %d clock %d\n",
556                                        intel_dp->link_bw, intel_dp->lane_count,
557                                        adjusted_mode->clock);
558                                 return true;
559                         }
560                 }
561         }
562
563         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
564                 /* okay we failed just pick the highest */
565                 intel_dp->lane_count = max_lane_count;
566                 intel_dp->link_bw = bws[max_clock];
567                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
568                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
569                               "count %d clock %d\n",
570                               intel_dp->link_bw, intel_dp->lane_count,
571                               adjusted_mode->clock);
572
573                 return true;
574         }
575
576         return false;
577 }
578
579 struct intel_dp_m_n {
580         uint32_t        tu;
581         uint32_t        gmch_m;
582         uint32_t        gmch_n;
583         uint32_t        link_m;
584         uint32_t        link_n;
585 };
586
587 static void
588 intel_reduce_ratio(uint32_t *num, uint32_t *den)
589 {
590         while (*num > 0xffffff || *den > 0xffffff) {
591                 *num >>= 1;
592                 *den >>= 1;
593         }
594 }
595
596 static void
597 intel_dp_compute_m_n(int bpp,
598                      int nlanes,
599                      int pixel_clock,
600                      int link_clock,
601                      struct intel_dp_m_n *m_n)
602 {
603         m_n->tu = 64;
604         m_n->gmch_m = (pixel_clock * bpp) >> 3;
605         m_n->gmch_n = link_clock * nlanes;
606         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
607         m_n->link_m = pixel_clock;
608         m_n->link_n = link_clock;
609         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
610 }
611
612 bool intel_pch_has_edp(struct drm_crtc *crtc)
613 {
614         struct drm_device *dev = crtc->dev;
615         struct drm_mode_config *mode_config = &dev->mode_config;
616         struct drm_encoder *encoder;
617
618         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
619                 struct intel_dp *intel_dp;
620
621                 if (encoder->crtc != crtc)
622                         continue;
623
624                 intel_dp = enc_to_intel_dp(encoder);
625                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
626                         return intel_dp->is_pch_edp;
627         }
628         return false;
629 }
630
631 void
632 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
633                  struct drm_display_mode *adjusted_mode)
634 {
635         struct drm_device *dev = crtc->dev;
636         struct drm_mode_config *mode_config = &dev->mode_config;
637         struct drm_encoder *encoder;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
640         int lane_count = 4, bpp = 24;
641         struct intel_dp_m_n m_n;
642
643         /*
644          * Find the lane count in the intel_encoder private
645          */
646         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
647                 struct intel_dp *intel_dp;
648
649                 if (encoder->crtc != crtc)
650                         continue;
651
652                 intel_dp = enc_to_intel_dp(encoder);
653                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
654                         lane_count = intel_dp->lane_count;
655                         if (IS_PCH_eDP(intel_dp))
656                                 bpp = dev_priv->edp.bpp;
657                         break;
658                 }
659         }
660
661         /*
662          * Compute the GMCH and Link ratios. The '3' here is
663          * the number of bytes_per_pixel post-LUT, which we always
664          * set up for 8-bits of R/G/B, or 3 bytes total.
665          */
666         intel_dp_compute_m_n(bpp, lane_count,
667                              mode->clock, adjusted_mode->clock, &m_n);
668
669         if (HAS_PCH_SPLIT(dev)) {
670                 if (intel_crtc->pipe == 0) {
671                         I915_WRITE(TRANSA_DATA_M1,
672                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
673                                    m_n.gmch_m);
674                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
675                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
676                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
677                 } else {
678                         I915_WRITE(TRANSB_DATA_M1,
679                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
680                                    m_n.gmch_m);
681                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
682                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
683                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
684                 }
685         } else {
686                 if (intel_crtc->pipe == 0) {
687                         I915_WRITE(PIPEA_GMCH_DATA_M,
688                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
689                                    m_n.gmch_m);
690                         I915_WRITE(PIPEA_GMCH_DATA_N,
691                                    m_n.gmch_n);
692                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
693                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
694                 } else {
695                         I915_WRITE(PIPEB_GMCH_DATA_M,
696                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
697                                    m_n.gmch_m);
698                         I915_WRITE(PIPEB_GMCH_DATA_N,
699                                         m_n.gmch_n);
700                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
701                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
702                 }
703         }
704 }
705
706 static void
707 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
708                   struct drm_display_mode *adjusted_mode)
709 {
710         struct drm_device *dev = encoder->dev;
711         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
712         struct drm_crtc *crtc = intel_dp->base.base.crtc;
713         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
714
715         intel_dp->DP = (DP_VOLTAGE_0_4 |
716                        DP_PRE_EMPHASIS_0);
717
718         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
719                 intel_dp->DP |= DP_SYNC_HS_HIGH;
720         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
721                 intel_dp->DP |= DP_SYNC_VS_HIGH;
722
723         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
724                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
725         else
726                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
727
728         switch (intel_dp->lane_count) {
729         case 1:
730                 intel_dp->DP |= DP_PORT_WIDTH_1;
731                 break;
732         case 2:
733                 intel_dp->DP |= DP_PORT_WIDTH_2;
734                 break;
735         case 4:
736                 intel_dp->DP |= DP_PORT_WIDTH_4;
737                 break;
738         }
739         if (intel_dp->has_audio)
740                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
741
742         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
743         intel_dp->link_configuration[0] = intel_dp->link_bw;
744         intel_dp->link_configuration[1] = intel_dp->lane_count;
745
746         /*
747          * Check for DPCD version > 1.1 and enhanced framing support
748          */
749         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
750                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
751                 intel_dp->DP |= DP_ENHANCED_FRAMING;
752         }
753
754         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
755         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
756                 intel_dp->DP |= DP_PIPEB_SELECT;
757
758         if (IS_eDP(intel_dp)) {
759                 /* don't miss out required setting for eDP */
760                 intel_dp->DP |= DP_PLL_ENABLE;
761                 if (adjusted_mode->clock < 200000)
762                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
763                 else
764                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
765         }
766 }
767
768 /* Returns true if the panel was already on when called */
769 static bool ironlake_edp_panel_on (struct drm_device *dev)
770 {
771         struct drm_i915_private *dev_priv = dev->dev_private;
772         u32 pp;
773
774         if (I915_READ(PCH_PP_STATUS) & PP_ON)
775                 return true;
776
777         pp = I915_READ(PCH_PP_CONTROL);
778
779         /* ILK workaround: disable reset around power sequence */
780         pp &= ~PANEL_POWER_RESET;
781         I915_WRITE(PCH_PP_CONTROL, pp);
782         POSTING_READ(PCH_PP_CONTROL);
783
784         pp |= POWER_TARGET_ON;
785         I915_WRITE(PCH_PP_CONTROL, pp);
786
787         /* Ouch. We need to wait here for some panels, like Dell e6510
788          * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
789          */
790         msleep(300);
791
792         if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
793                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
794                           I915_READ(PCH_PP_STATUS));
795
796         pp &= ~(PANEL_UNLOCK_REGS);
797         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
798         I915_WRITE(PCH_PP_CONTROL, pp);
799         POSTING_READ(PCH_PP_CONTROL);
800
801         return false;
802 }
803
804 static void ironlake_edp_panel_off (struct drm_device *dev)
805 {
806         struct drm_i915_private *dev_priv = dev->dev_private;
807         u32 pp;
808
809         pp = I915_READ(PCH_PP_CONTROL);
810
811         /* ILK workaround: disable reset around power sequence */
812         pp &= ~PANEL_POWER_RESET;
813         I915_WRITE(PCH_PP_CONTROL, pp);
814         POSTING_READ(PCH_PP_CONTROL);
815
816         pp &= ~POWER_TARGET_ON;
817         I915_WRITE(PCH_PP_CONTROL, pp);
818
819         if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
820                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
821                           I915_READ(PCH_PP_STATUS));
822
823         /* Make sure VDD is enabled so DP AUX will work */
824         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
825         I915_WRITE(PCH_PP_CONTROL, pp);
826         POSTING_READ(PCH_PP_CONTROL);
827
828         /* Ouch. We need to wait here for some panels, like Dell e6510
829          * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
830          */
831         msleep(300);
832 }
833
834 static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
835 {
836         struct drm_i915_private *dev_priv = dev->dev_private;
837         u32 pp;
838
839         pp = I915_READ(PCH_PP_CONTROL);
840         pp |= EDP_FORCE_VDD;
841         I915_WRITE(PCH_PP_CONTROL, pp);
842         POSTING_READ(PCH_PP_CONTROL);
843         msleep(300);
844 }
845
846 static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
847 {
848         struct drm_i915_private *dev_priv = dev->dev_private;
849         u32 pp;
850
851         pp = I915_READ(PCH_PP_CONTROL);
852         pp &= ~EDP_FORCE_VDD;
853         I915_WRITE(PCH_PP_CONTROL, pp);
854         POSTING_READ(PCH_PP_CONTROL);
855         msleep(300);
856 }
857
858 static void ironlake_edp_backlight_on (struct drm_device *dev)
859 {
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         u32 pp;
862
863         DRM_DEBUG_KMS("\n");
864         pp = I915_READ(PCH_PP_CONTROL);
865         pp |= EDP_BLC_ENABLE;
866         I915_WRITE(PCH_PP_CONTROL, pp);
867 }
868
869 static void ironlake_edp_backlight_off (struct drm_device *dev)
870 {
871         struct drm_i915_private *dev_priv = dev->dev_private;
872         u32 pp;
873
874         DRM_DEBUG_KMS("\n");
875         pp = I915_READ(PCH_PP_CONTROL);
876         pp &= ~EDP_BLC_ENABLE;
877         I915_WRITE(PCH_PP_CONTROL, pp);
878 }
879
880 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
881 {
882         struct drm_device *dev = encoder->dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         u32 dpa_ctl;
885
886         DRM_DEBUG_KMS("\n");
887         dpa_ctl = I915_READ(DP_A);
888         dpa_ctl &= ~DP_PLL_ENABLE;
889         I915_WRITE(DP_A, dpa_ctl);
890 }
891
892 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
893 {
894         struct drm_device *dev = encoder->dev;
895         struct drm_i915_private *dev_priv = dev->dev_private;
896         u32 dpa_ctl;
897
898         dpa_ctl = I915_READ(DP_A);
899         dpa_ctl |= DP_PLL_ENABLE;
900         I915_WRITE(DP_A, dpa_ctl);
901         POSTING_READ(DP_A);
902         udelay(200);
903 }
904
905 static void intel_dp_prepare(struct drm_encoder *encoder)
906 {
907         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
908         struct drm_device *dev = encoder->dev;
909         struct drm_i915_private *dev_priv = dev->dev_private;
910         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
911
912         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
913                 ironlake_edp_panel_off(dev);
914                 ironlake_edp_backlight_off(dev);
915                 ironlake_edp_panel_vdd_on(dev);
916                 ironlake_edp_pll_on(encoder);
917         }
918         if (dp_reg & DP_PORT_EN)
919                 intel_dp_link_down(intel_dp);
920 }
921
922 static void intel_dp_commit(struct drm_encoder *encoder)
923 {
924         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
925         struct drm_device *dev = encoder->dev;
926
927         intel_dp_start_link_train(intel_dp);
928
929         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
930                 ironlake_edp_panel_on(dev);
931
932         intel_dp_complete_link_train(intel_dp);
933
934         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
935                 ironlake_edp_backlight_on(dev);
936 }
937
938 static void
939 intel_dp_dpms(struct drm_encoder *encoder, int mode)
940 {
941         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
942         struct drm_device *dev = encoder->dev;
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
945
946         if (mode != DRM_MODE_DPMS_ON) {
947                 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
948                         ironlake_edp_backlight_off(dev);
949                         ironlake_edp_panel_off(dev);
950                 }
951                 if (dp_reg & DP_PORT_EN)
952                         intel_dp_link_down(intel_dp);
953                 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
954                         ironlake_edp_pll_off(encoder);
955         } else {
956                 if (!(dp_reg & DP_PORT_EN)) {
957                         intel_dp_start_link_train(intel_dp);
958                         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
959                                 ironlake_edp_panel_on(dev);
960                         intel_dp_complete_link_train(intel_dp);
961                         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
962                                 ironlake_edp_backlight_on(dev);
963                 }
964         }
965         intel_dp->dpms_mode = mode;
966 }
967
968 /*
969  * Fetch AUX CH registers 0x202 - 0x207 which contain
970  * link status information
971  */
972 static bool
973 intel_dp_get_link_status(struct intel_dp *intel_dp)
974 {
975         int ret;
976
977         ret = intel_dp_aux_native_read(intel_dp,
978                                        DP_LANE0_1_STATUS,
979                                        intel_dp->link_status, DP_LINK_STATUS_SIZE);
980         if (ret != DP_LINK_STATUS_SIZE)
981                 return false;
982         return true;
983 }
984
985 static uint8_t
986 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
987                      int r)
988 {
989         return link_status[r - DP_LANE0_1_STATUS];
990 }
991
992 static uint8_t
993 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
994                                  int lane)
995 {
996         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
997         int         s = ((lane & 1) ?
998                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
999                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1000         uint8_t l = intel_dp_link_status(link_status, i);
1001
1002         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1003 }
1004
1005 static uint8_t
1006 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1007                                       int lane)
1008 {
1009         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1010         int         s = ((lane & 1) ?
1011                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1012                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1013         uint8_t l = intel_dp_link_status(link_status, i);
1014
1015         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1016 }
1017
1018
1019 #if 0
1020 static char     *voltage_names[] = {
1021         "0.4V", "0.6V", "0.8V", "1.2V"
1022 };
1023 static char     *pre_emph_names[] = {
1024         "0dB", "3.5dB", "6dB", "9.5dB"
1025 };
1026 static char     *link_train_names[] = {
1027         "pattern 1", "pattern 2", "idle", "off"
1028 };
1029 #endif
1030
1031 /*
1032  * These are source-specific values; current Intel hardware supports
1033  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1034  */
1035 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1036
1037 static uint8_t
1038 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1039 {
1040         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1041         case DP_TRAIN_VOLTAGE_SWING_400:
1042                 return DP_TRAIN_PRE_EMPHASIS_6;
1043         case DP_TRAIN_VOLTAGE_SWING_600:
1044                 return DP_TRAIN_PRE_EMPHASIS_6;
1045         case DP_TRAIN_VOLTAGE_SWING_800:
1046                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1047         case DP_TRAIN_VOLTAGE_SWING_1200:
1048         default:
1049                 return DP_TRAIN_PRE_EMPHASIS_0;
1050         }
1051 }
1052
1053 static void
1054 intel_get_adjust_train(struct intel_dp *intel_dp)
1055 {
1056         uint8_t v = 0;
1057         uint8_t p = 0;
1058         int lane;
1059
1060         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1061                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1062                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1063
1064                 if (this_v > v)
1065                         v = this_v;
1066                 if (this_p > p)
1067                         p = this_p;
1068         }
1069
1070         if (v >= I830_DP_VOLTAGE_MAX)
1071                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1072
1073         if (p >= intel_dp_pre_emphasis_max(v))
1074                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1075
1076         for (lane = 0; lane < 4; lane++)
1077                 intel_dp->train_set[lane] = v | p;
1078 }
1079
1080 static uint32_t
1081 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1082 {
1083         uint32_t        signal_levels = 0;
1084
1085         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1086         case DP_TRAIN_VOLTAGE_SWING_400:
1087         default:
1088                 signal_levels |= DP_VOLTAGE_0_4;
1089                 break;
1090         case DP_TRAIN_VOLTAGE_SWING_600:
1091                 signal_levels |= DP_VOLTAGE_0_6;
1092                 break;
1093         case DP_TRAIN_VOLTAGE_SWING_800:
1094                 signal_levels |= DP_VOLTAGE_0_8;
1095                 break;
1096         case DP_TRAIN_VOLTAGE_SWING_1200:
1097                 signal_levels |= DP_VOLTAGE_1_2;
1098                 break;
1099         }
1100         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1101         case DP_TRAIN_PRE_EMPHASIS_0:
1102         default:
1103                 signal_levels |= DP_PRE_EMPHASIS_0;
1104                 break;
1105         case DP_TRAIN_PRE_EMPHASIS_3_5:
1106                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1107                 break;
1108         case DP_TRAIN_PRE_EMPHASIS_6:
1109                 signal_levels |= DP_PRE_EMPHASIS_6;
1110                 break;
1111         case DP_TRAIN_PRE_EMPHASIS_9_5:
1112                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1113                 break;
1114         }
1115         return signal_levels;
1116 }
1117
1118 /* Gen6's DP voltage swing and pre-emphasis control */
1119 static uint32_t
1120 intel_gen6_edp_signal_levels(uint8_t train_set)
1121 {
1122         switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
1123         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1124                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1125         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1126                 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
1127         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1128                 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
1129         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1130                 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
1131         default:
1132                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
1133                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1134         }
1135 }
1136
1137 static uint8_t
1138 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1139                       int lane)
1140 {
1141         int i = DP_LANE0_1_STATUS + (lane >> 1);
1142         int s = (lane & 1) * 4;
1143         uint8_t l = intel_dp_link_status(link_status, i);
1144
1145         return (l >> s) & 0xf;
1146 }
1147
1148 /* Check for clock recovery is done on all channels */
1149 static bool
1150 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1151 {
1152         int lane;
1153         uint8_t lane_status;
1154
1155         for (lane = 0; lane < lane_count; lane++) {
1156                 lane_status = intel_get_lane_status(link_status, lane);
1157                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1158                         return false;
1159         }
1160         return true;
1161 }
1162
1163 /* Check to see if channel eq is done on all channels */
1164 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1165                          DP_LANE_CHANNEL_EQ_DONE|\
1166                          DP_LANE_SYMBOL_LOCKED)
1167 static bool
1168 intel_channel_eq_ok(struct intel_dp *intel_dp)
1169 {
1170         uint8_t lane_align;
1171         uint8_t lane_status;
1172         int lane;
1173
1174         lane_align = intel_dp_link_status(intel_dp->link_status,
1175                                           DP_LANE_ALIGN_STATUS_UPDATED);
1176         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1177                 return false;
1178         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1179                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1180                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1181                         return false;
1182         }
1183         return true;
1184 }
1185
1186 static bool
1187 intel_dp_set_link_train(struct intel_dp *intel_dp,
1188                         uint32_t dp_reg_value,
1189                         uint8_t dp_train_pat)
1190 {
1191         struct drm_device *dev = intel_dp->base.base.dev;
1192         struct drm_i915_private *dev_priv = dev->dev_private;
1193         int ret;
1194
1195         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1196         POSTING_READ(intel_dp->output_reg);
1197
1198         intel_dp_aux_native_write_1(intel_dp,
1199                                     DP_TRAINING_PATTERN_SET,
1200                                     dp_train_pat);
1201
1202         ret = intel_dp_aux_native_write(intel_dp,
1203                                         DP_TRAINING_LANE0_SET,
1204                                         intel_dp->train_set, 4);
1205         if (ret != 4)
1206                 return false;
1207
1208         return true;
1209 }
1210
1211 /* Enable corresponding port and start training pattern 1 */
1212 static void
1213 intel_dp_start_link_train(struct intel_dp *intel_dp)
1214 {
1215         struct drm_device *dev = intel_dp->base.base.dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1218         int i;
1219         uint8_t voltage;
1220         bool clock_recovery = false;
1221         int tries;
1222         u32 reg;
1223         uint32_t DP = intel_dp->DP;
1224
1225         /* Enable output, wait for it to become active */
1226         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1227         POSTING_READ(intel_dp->output_reg);
1228         intel_wait_for_vblank(dev, intel_crtc->pipe);
1229
1230         /* Write the link configuration data */
1231         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1232                                   intel_dp->link_configuration,
1233                                   DP_LINK_CONFIGURATION_SIZE);
1234
1235         DP |= DP_PORT_EN;
1236         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1237                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1238         else
1239                 DP &= ~DP_LINK_TRAIN_MASK;
1240         memset(intel_dp->train_set, 0, 4);
1241         voltage = 0xff;
1242         tries = 0;
1243         clock_recovery = false;
1244         for (;;) {
1245                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1246                 uint32_t    signal_levels;
1247                 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1248                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1249                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1250                 } else {
1251                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1252                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1253                 }
1254
1255                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1256                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1257                 else
1258                         reg = DP | DP_LINK_TRAIN_PAT_1;
1259
1260                 if (!intel_dp_set_link_train(intel_dp, reg,
1261                                              DP_TRAINING_PATTERN_1))
1262                         break;
1263                 /* Set training pattern 1 */
1264
1265                 udelay(100);
1266                 if (!intel_dp_get_link_status(intel_dp))
1267                         break;
1268
1269                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1270                         clock_recovery = true;
1271                         break;
1272                 }
1273
1274                 /* Check to see if we've tried the max voltage */
1275                 for (i = 0; i < intel_dp->lane_count; i++)
1276                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1277                                 break;
1278                 if (i == intel_dp->lane_count)
1279                         break;
1280
1281                 /* Check to see if we've tried the same voltage 5 times */
1282                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1283                         ++tries;
1284                         if (tries == 5)
1285                                 break;
1286                 } else
1287                         tries = 0;
1288                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1289
1290                 /* Compute new intel_dp->train_set as requested by target */
1291                 intel_get_adjust_train(intel_dp);
1292         }
1293
1294         intel_dp->DP = DP;
1295 }
1296
1297 static void
1298 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1299 {
1300         struct drm_device *dev = intel_dp->base.base.dev;
1301         struct drm_i915_private *dev_priv = dev->dev_private;
1302         bool channel_eq = false;
1303         int tries;
1304         u32 reg;
1305         uint32_t DP = intel_dp->DP;
1306
1307         /* channel equalization */
1308         tries = 0;
1309         channel_eq = false;
1310         for (;;) {
1311                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1312                 uint32_t    signal_levels;
1313
1314                 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1315                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1316                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1317                 } else {
1318                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1319                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1320                 }
1321
1322                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1323                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1324                 else
1325                         reg = DP | DP_LINK_TRAIN_PAT_2;
1326
1327                 /* channel eq pattern */
1328                 if (!intel_dp_set_link_train(intel_dp, reg,
1329                                              DP_TRAINING_PATTERN_2))
1330                         break;
1331
1332                 udelay(400);
1333                 if (!intel_dp_get_link_status(intel_dp))
1334                         break;
1335
1336                 if (intel_channel_eq_ok(intel_dp)) {
1337                         channel_eq = true;
1338                         break;
1339                 }
1340
1341                 /* Try 5 times */
1342                 if (tries > 5)
1343                         break;
1344
1345                 /* Compute new intel_dp->train_set as requested by target */
1346                 intel_get_adjust_train(intel_dp);
1347                 ++tries;
1348         }
1349
1350         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1351                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1352         else
1353                 reg = DP | DP_LINK_TRAIN_OFF;
1354
1355         I915_WRITE(intel_dp->output_reg, reg);
1356         POSTING_READ(intel_dp->output_reg);
1357         intel_dp_aux_native_write_1(intel_dp,
1358                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1359 }
1360
1361 static void
1362 intel_dp_link_down(struct intel_dp *intel_dp)
1363 {
1364         struct drm_device *dev = intel_dp->base.base.dev;
1365         struct drm_i915_private *dev_priv = dev->dev_private;
1366         uint32_t DP = intel_dp->DP;
1367
1368         DRM_DEBUG_KMS("\n");
1369
1370         if (IS_eDP(intel_dp)) {
1371                 DP &= ~DP_PLL_ENABLE;
1372                 I915_WRITE(intel_dp->output_reg, DP);
1373                 POSTING_READ(intel_dp->output_reg);
1374                 udelay(100);
1375         }
1376
1377         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
1378                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1379                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1380         } else {
1381                 DP &= ~DP_LINK_TRAIN_MASK;
1382                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1383         }
1384         POSTING_READ(intel_dp->output_reg);
1385
1386         msleep(17);
1387
1388         if (IS_eDP(intel_dp))
1389                 DP |= DP_LINK_TRAIN_OFF;
1390         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1391         POSTING_READ(intel_dp->output_reg);
1392 }
1393
1394 /*
1395  * According to DP spec
1396  * 5.1.2:
1397  *  1. Read DPCD
1398  *  2. Configure link according to Receiver Capabilities
1399  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1400  *  4. Check link status on receipt of hot-plug interrupt
1401  */
1402
1403 static void
1404 intel_dp_check_link_status(struct intel_dp *intel_dp)
1405 {
1406         if (!intel_dp->base.base.crtc)
1407                 return;
1408
1409         if (!intel_dp_get_link_status(intel_dp)) {
1410                 intel_dp_link_down(intel_dp);
1411                 return;
1412         }
1413
1414         if (!intel_channel_eq_ok(intel_dp)) {
1415                 intel_dp_start_link_train(intel_dp);
1416                 intel_dp_complete_link_train(intel_dp);
1417         }
1418 }
1419
1420 static enum drm_connector_status
1421 ironlake_dp_detect(struct drm_connector *connector)
1422 {
1423         struct intel_dp *intel_dp = intel_attached_dp(connector);
1424         enum drm_connector_status status;
1425
1426         /* Panel needs power for AUX to work */
1427         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
1428                 ironlake_edp_panel_vdd_on(connector->dev);
1429         status = connector_status_disconnected;
1430         if (intel_dp_aux_native_read(intel_dp,
1431                                      0x000, intel_dp->dpcd,
1432                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1433         {
1434                 if (intel_dp->dpcd[0] != 0)
1435                         status = connector_status_connected;
1436         }
1437         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1438                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1439         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
1440                 ironlake_edp_panel_vdd_off(connector->dev);
1441         return status;
1442 }
1443
1444 /**
1445  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1446  *
1447  * \return true if DP port is connected.
1448  * \return false if DP port is disconnected.
1449  */
1450 static enum drm_connector_status
1451 intel_dp_detect(struct drm_connector *connector, bool force)
1452 {
1453         struct intel_dp *intel_dp = intel_attached_dp(connector);
1454         struct drm_device *dev = intel_dp->base.base.dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         uint32_t temp, bit;
1457         enum drm_connector_status status;
1458
1459         intel_dp->has_audio = false;
1460
1461         if (HAS_PCH_SPLIT(dev))
1462                 return ironlake_dp_detect(connector);
1463
1464         switch (intel_dp->output_reg) {
1465         case DP_B:
1466                 bit = DPB_HOTPLUG_INT_STATUS;
1467                 break;
1468         case DP_C:
1469                 bit = DPC_HOTPLUG_INT_STATUS;
1470                 break;
1471         case DP_D:
1472                 bit = DPD_HOTPLUG_INT_STATUS;
1473                 break;
1474         default:
1475                 return connector_status_unknown;
1476         }
1477
1478         temp = I915_READ(PORT_HOTPLUG_STAT);
1479
1480         if ((temp & bit) == 0)
1481                 return connector_status_disconnected;
1482
1483         status = connector_status_disconnected;
1484         if (intel_dp_aux_native_read(intel_dp,
1485                                      0x000, intel_dp->dpcd,
1486                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1487         {
1488                 if (intel_dp->dpcd[0] != 0)
1489                         status = connector_status_connected;
1490         }
1491         return status;
1492 }
1493
1494 static int intel_dp_get_modes(struct drm_connector *connector)
1495 {
1496         struct intel_dp *intel_dp = intel_attached_dp(connector);
1497         struct drm_device *dev = intel_dp->base.base.dev;
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499         int ret;
1500
1501         /* We should parse the EDID data and find out if it has an audio sink
1502          */
1503
1504         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1505         if (ret) {
1506                 if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
1507                     !dev_priv->panel_fixed_mode) {
1508                         struct drm_display_mode *newmode;
1509                         list_for_each_entry(newmode, &connector->probed_modes,
1510                                             head) {
1511                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1512                                         dev_priv->panel_fixed_mode =
1513                                                 drm_mode_duplicate(dev, newmode);
1514                                         break;
1515                                 }
1516                         }
1517                 }
1518
1519                 return ret;
1520         }
1521
1522         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1523         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
1524                 if (dev_priv->panel_fixed_mode != NULL) {
1525                         struct drm_display_mode *mode;
1526                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1527                         drm_mode_probed_add(connector, mode);
1528                         return 1;
1529                 }
1530         }
1531         return 0;
1532 }
1533
1534 static void
1535 intel_dp_destroy (struct drm_connector *connector)
1536 {
1537         drm_sysfs_connector_remove(connector);
1538         drm_connector_cleanup(connector);
1539         kfree(connector);
1540 }
1541
1542 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1543 {
1544         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1545
1546         i2c_del_adapter(&intel_dp->adapter);
1547         drm_encoder_cleanup(encoder);
1548         kfree(intel_dp);
1549 }
1550
1551 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1552         .dpms = intel_dp_dpms,
1553         .mode_fixup = intel_dp_mode_fixup,
1554         .prepare = intel_dp_prepare,
1555         .mode_set = intel_dp_mode_set,
1556         .commit = intel_dp_commit,
1557 };
1558
1559 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1560         .dpms = drm_helper_connector_dpms,
1561         .detect = intel_dp_detect,
1562         .fill_modes = drm_helper_probe_single_connector_modes,
1563         .destroy = intel_dp_destroy,
1564 };
1565
1566 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1567         .get_modes = intel_dp_get_modes,
1568         .mode_valid = intel_dp_mode_valid,
1569         .best_encoder = intel_best_encoder,
1570 };
1571
1572 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1573         .destroy = intel_dp_encoder_destroy,
1574 };
1575
1576 static void
1577 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1578 {
1579         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1580
1581         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1582                 intel_dp_check_link_status(intel_dp);
1583 }
1584
1585 /* Return which DP Port should be selected for Transcoder DP control */
1586 int
1587 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1588 {
1589         struct drm_device *dev = crtc->dev;
1590         struct drm_mode_config *mode_config = &dev->mode_config;
1591         struct drm_encoder *encoder;
1592
1593         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1594                 struct intel_dp *intel_dp;
1595
1596                 if (encoder->crtc != crtc)
1597                         continue;
1598
1599                 intel_dp = enc_to_intel_dp(encoder);
1600                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1601                         return intel_dp->output_reg;
1602         }
1603
1604         return -1;
1605 }
1606
1607 /* check the VBT to see whether the eDP is on DP-D port */
1608 bool intel_dpd_is_edp(struct drm_device *dev)
1609 {
1610         struct drm_i915_private *dev_priv = dev->dev_private;
1611         struct child_device_config *p_child;
1612         int i;
1613
1614         if (!dev_priv->child_dev_num)
1615                 return false;
1616
1617         for (i = 0; i < dev_priv->child_dev_num; i++) {
1618                 p_child = dev_priv->child_dev + i;
1619
1620                 if (p_child->dvo_port == PORT_IDPD &&
1621                     p_child->device_type == DEVICE_TYPE_eDP)
1622                         return true;
1623         }
1624         return false;
1625 }
1626
1627 void
1628 intel_dp_init(struct drm_device *dev, int output_reg)
1629 {
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         struct drm_connector *connector;
1632         struct intel_dp *intel_dp;
1633         struct intel_encoder *intel_encoder;
1634         struct intel_connector *intel_connector;
1635         const char *name = NULL;
1636         int type;
1637
1638         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1639         if (!intel_dp)
1640                 return;
1641
1642         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1643         if (!intel_connector) {
1644                 kfree(intel_dp);
1645                 return;
1646         }
1647         intel_encoder = &intel_dp->base;
1648
1649         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1650                 if (intel_dpd_is_edp(dev))
1651                         intel_dp->is_pch_edp = true;
1652
1653         if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1654                 type = DRM_MODE_CONNECTOR_eDP;
1655                 intel_encoder->type = INTEL_OUTPUT_EDP;
1656         } else {
1657                 type = DRM_MODE_CONNECTOR_DisplayPort;
1658                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1659         }
1660
1661         connector = &intel_connector->base;
1662         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1663         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1664
1665         connector->polled = DRM_CONNECTOR_POLL_HPD;
1666
1667         if (output_reg == DP_B || output_reg == PCH_DP_B)
1668                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1669         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1670                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1671         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1672                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1673
1674         if (IS_eDP(intel_dp))
1675                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1676
1677         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1678         connector->interlace_allowed = true;
1679         connector->doublescan_allowed = 0;
1680
1681         intel_dp->output_reg = output_reg;
1682         intel_dp->has_audio = false;
1683         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1684
1685         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1686                          DRM_MODE_ENCODER_TMDS);
1687         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1688
1689         intel_connector_attach_encoder(intel_connector, intel_encoder);
1690         drm_sysfs_connector_add(connector);
1691
1692         /* Set up the DDC bus. */
1693         switch (output_reg) {
1694                 case DP_A:
1695                         name = "DPDDC-A";
1696                         break;
1697                 case DP_B:
1698                 case PCH_DP_B:
1699                         dev_priv->hotplug_supported_mask |=
1700                                 HDMIB_HOTPLUG_INT_STATUS;
1701                         name = "DPDDC-B";
1702                         break;
1703                 case DP_C:
1704                 case PCH_DP_C:
1705                         dev_priv->hotplug_supported_mask |=
1706                                 HDMIC_HOTPLUG_INT_STATUS;
1707                         name = "DPDDC-C";
1708                         break;
1709                 case DP_D:
1710                 case PCH_DP_D:
1711                         dev_priv->hotplug_supported_mask |=
1712                                 HDMID_HOTPLUG_INT_STATUS;
1713                         name = "DPDDC-D";
1714                         break;
1715         }
1716
1717         intel_dp_i2c_init(intel_dp, intel_connector, name);
1718
1719         intel_encoder->hot_plug = intel_dp_hot_plug;
1720
1721         if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1722                 /* initialize panel mode from VBT if available for eDP */
1723                 if (dev_priv->lfp_lvds_vbt_mode) {
1724                         dev_priv->panel_fixed_mode =
1725                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1726                         if (dev_priv->panel_fixed_mode) {
1727                                 dev_priv->panel_fixed_mode->type |=
1728                                         DRM_MODE_TYPE_PREFERRED;
1729                         }
1730                 }
1731         }
1732
1733         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1734          * 0xd.  Failure to do so will result in spurious interrupts being
1735          * generated on the port when a cable is not attached.
1736          */
1737         if (IS_G4X(dev) && !IS_GM45(dev)) {
1738                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1739                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1740         }
1741 }