]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Cleanup DisplayPort AUX channel initialization
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195                     struct drm_display_mode *mode)
196 {
197         struct intel_dp *intel_dp = intel_attached_dp(connector);
198         struct intel_connector *intel_connector = to_intel_connector(connector);
199         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200         int target_clock = mode->clock;
201         int max_rate, mode_rate, max_lanes, max_link_clock;
202         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204         if (is_edp(intel_dp) && fixed_mode) {
205                 if (mode->hdisplay > fixed_mode->hdisplay)
206                         return MODE_PANEL;
207
208                 if (mode->vdisplay > fixed_mode->vdisplay)
209                         return MODE_PANEL;
210
211                 target_clock = fixed_mode->clock;
212         }
213
214         max_link_clock = intel_dp_max_link_rate(intel_dp);
215         max_lanes = intel_dp_max_lane_count(intel_dp);
216
217         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218         mode_rate = intel_dp_link_required(target_clock, 18);
219
220         if (mode_rate > max_rate || target_clock > max_dotclk)
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227                 return MODE_H_ILLEGAL;
228
229         return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234         int     i;
235         uint32_t v = 0;
236
237         if (src_bytes > 4)
238                 src_bytes = 4;
239         for (i = 0; i < src_bytes; i++)
240                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241         return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246         int i;
247         if (dst_bytes > 4)
248                 dst_bytes = 4;
249         for (i = 0; i < dst_bytes; i++)
250                 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255                                     struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258                                               struct intel_dp *intel_dp);
259 static void
260 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
261
262 static void pps_lock(struct intel_dp *intel_dp)
263 {
264         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
265         struct intel_encoder *encoder = &intel_dig_port->base;
266         struct drm_device *dev = encoder->base.dev;
267         struct drm_i915_private *dev_priv = to_i915(dev);
268         enum intel_display_power_domain power_domain;
269
270         /*
271          * See vlv_power_sequencer_reset() why we need
272          * a power domain reference here.
273          */
274         power_domain = intel_display_port_aux_power_domain(encoder);
275         intel_display_power_get(dev_priv, power_domain);
276
277         mutex_lock(&dev_priv->pps_mutex);
278 }
279
280 static void pps_unlock(struct intel_dp *intel_dp)
281 {
282         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283         struct intel_encoder *encoder = &intel_dig_port->base;
284         struct drm_device *dev = encoder->base.dev;
285         struct drm_i915_private *dev_priv = to_i915(dev);
286         enum intel_display_power_domain power_domain;
287
288         mutex_unlock(&dev_priv->pps_mutex);
289
290         power_domain = intel_display_port_aux_power_domain(encoder);
291         intel_display_power_put(dev_priv, power_domain);
292 }
293
294 static void
295 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
296 {
297         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
298         struct drm_device *dev = intel_dig_port->base.base.dev;
299         struct drm_i915_private *dev_priv = to_i915(dev);
300         enum pipe pipe = intel_dp->pps_pipe;
301         bool pll_enabled, release_cl_override = false;
302         enum dpio_phy phy = DPIO_PHY(pipe);
303         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
304         uint32_t DP;
305
306         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
307                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
308                  pipe_name(pipe), port_name(intel_dig_port->port)))
309                 return;
310
311         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
312                       pipe_name(pipe), port_name(intel_dig_port->port));
313
314         /* Preserve the BIOS-computed detected bit. This is
315          * supposed to be read-only.
316          */
317         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
318         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
319         DP |= DP_PORT_WIDTH(1);
320         DP |= DP_LINK_TRAIN_PAT_1;
321
322         if (IS_CHERRYVIEW(dev))
323                 DP |= DP_PIPE_SELECT_CHV(pipe);
324         else if (pipe == PIPE_B)
325                 DP |= DP_PIPEB_SELECT;
326
327         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
328
329         /*
330          * The DPLL for the pipe must be enabled for this to work.
331          * So enable temporarily it if it's not already enabled.
332          */
333         if (!pll_enabled) {
334                 release_cl_override = IS_CHERRYVIEW(dev) &&
335                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
336
337                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
338                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
339                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
340                                   pipe_name(pipe));
341                         return;
342                 }
343         }
344
345         /*
346          * Similar magic as in intel_dp_enable_port().
347          * We _must_ do this port enable + disable trick
348          * to make this power seqeuencer lock onto the port.
349          * Otherwise even VDD force bit won't work.
350          */
351         I915_WRITE(intel_dp->output_reg, DP);
352         POSTING_READ(intel_dp->output_reg);
353
354         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
355         POSTING_READ(intel_dp->output_reg);
356
357         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
358         POSTING_READ(intel_dp->output_reg);
359
360         if (!pll_enabled) {
361                 vlv_force_pll_off(dev, pipe);
362
363                 if (release_cl_override)
364                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
365         }
366 }
367
368 static enum pipe
369 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
370 {
371         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
372         struct drm_device *dev = intel_dig_port->base.base.dev;
373         struct drm_i915_private *dev_priv = to_i915(dev);
374         struct intel_encoder *encoder;
375         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
376         enum pipe pipe;
377
378         lockdep_assert_held(&dev_priv->pps_mutex);
379
380         /* We should never land here with regular DP ports */
381         WARN_ON(!is_edp(intel_dp));
382
383         if (intel_dp->pps_pipe != INVALID_PIPE)
384                 return intel_dp->pps_pipe;
385
386         /*
387          * We don't have power sequencer currently.
388          * Pick one that's not used by other ports.
389          */
390         for_each_intel_encoder(dev, encoder) {
391                 struct intel_dp *tmp;
392
393                 if (encoder->type != INTEL_OUTPUT_EDP)
394                         continue;
395
396                 tmp = enc_to_intel_dp(&encoder->base);
397
398                 if (tmp->pps_pipe != INVALID_PIPE)
399                         pipes &= ~(1 << tmp->pps_pipe);
400         }
401
402         /*
403          * Didn't find one. This should not happen since there
404          * are two power sequencers and up to two eDP ports.
405          */
406         if (WARN_ON(pipes == 0))
407                 pipe = PIPE_A;
408         else
409                 pipe = ffs(pipes) - 1;
410
411         vlv_steal_power_sequencer(dev, pipe);
412         intel_dp->pps_pipe = pipe;
413
414         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
415                       pipe_name(intel_dp->pps_pipe),
416                       port_name(intel_dig_port->port));
417
418         /* init power sequencer on this pipe and port */
419         intel_dp_init_panel_power_sequencer(dev, intel_dp);
420         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
421
422         /*
423          * Even vdd force doesn't work until we've made
424          * the power sequencer lock in on the port.
425          */
426         vlv_power_sequencer_kick(intel_dp);
427
428         return intel_dp->pps_pipe;
429 }
430
431 static int
432 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
433 {
434         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435         struct drm_device *dev = intel_dig_port->base.base.dev;
436         struct drm_i915_private *dev_priv = to_i915(dev);
437
438         lockdep_assert_held(&dev_priv->pps_mutex);
439
440         /* We should never land here with regular DP ports */
441         WARN_ON(!is_edp(intel_dp));
442
443         /*
444          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
445          * mapping needs to be retrieved from VBT, for now just hard-code to
446          * use instance #0 always.
447          */
448         if (!intel_dp->pps_reset)
449                 return 0;
450
451         intel_dp->pps_reset = false;
452
453         /*
454          * Only the HW needs to be reprogrammed, the SW state is fixed and
455          * has been setup during connector init.
456          */
457         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
458
459         return 0;
460 }
461
462 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
463                                enum pipe pipe);
464
465 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
466                                enum pipe pipe)
467 {
468         return I915_READ(PP_STATUS(pipe)) & PP_ON;
469 }
470
471 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
472                                 enum pipe pipe)
473 {
474         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
475 }
476
477 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
478                          enum pipe pipe)
479 {
480         return true;
481 }
482
483 static enum pipe
484 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
485                      enum port port,
486                      vlv_pipe_check pipe_check)
487 {
488         enum pipe pipe;
489
490         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
491                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
492                         PANEL_PORT_SELECT_MASK;
493
494                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
495                         continue;
496
497                 if (!pipe_check(dev_priv, pipe))
498                         continue;
499
500                 return pipe;
501         }
502
503         return INVALID_PIPE;
504 }
505
506 static void
507 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
508 {
509         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
510         struct drm_device *dev = intel_dig_port->base.base.dev;
511         struct drm_i915_private *dev_priv = to_i915(dev);
512         enum port port = intel_dig_port->port;
513
514         lockdep_assert_held(&dev_priv->pps_mutex);
515
516         /* try to find a pipe with this port selected */
517         /* first pick one where the panel is on */
518         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
519                                                   vlv_pipe_has_pp_on);
520         /* didn't find one? pick one where vdd is on */
521         if (intel_dp->pps_pipe == INVALID_PIPE)
522                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
523                                                           vlv_pipe_has_vdd_on);
524         /* didn't find one? pick one with just the correct port */
525         if (intel_dp->pps_pipe == INVALID_PIPE)
526                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
527                                                           vlv_pipe_any);
528
529         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
530         if (intel_dp->pps_pipe == INVALID_PIPE) {
531                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
532                               port_name(port));
533                 return;
534         }
535
536         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
537                       port_name(port), pipe_name(intel_dp->pps_pipe));
538
539         intel_dp_init_panel_power_sequencer(dev, intel_dp);
540         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
541 }
542
543 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
544 {
545         struct drm_device *dev = &dev_priv->drm;
546         struct intel_encoder *encoder;
547
548         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
549                     !IS_BROXTON(dev)))
550                 return;
551
552         /*
553          * We can't grab pps_mutex here due to deadlock with power_domain
554          * mutex when power_domain functions are called while holding pps_mutex.
555          * That also means that in order to use pps_pipe the code needs to
556          * hold both a power domain reference and pps_mutex, and the power domain
557          * reference get/put must be done while _not_ holding pps_mutex.
558          * pps_{lock,unlock}() do these steps in the correct order, so one
559          * should use them always.
560          */
561
562         for_each_intel_encoder(dev, encoder) {
563                 struct intel_dp *intel_dp;
564
565                 if (encoder->type != INTEL_OUTPUT_EDP)
566                         continue;
567
568                 intel_dp = enc_to_intel_dp(&encoder->base);
569                 if (IS_BROXTON(dev))
570                         intel_dp->pps_reset = true;
571                 else
572                         intel_dp->pps_pipe = INVALID_PIPE;
573         }
574 }
575
576 struct pps_registers {
577         i915_reg_t pp_ctrl;
578         i915_reg_t pp_stat;
579         i915_reg_t pp_on;
580         i915_reg_t pp_off;
581         i915_reg_t pp_div;
582 };
583
584 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
585                                     struct intel_dp *intel_dp,
586                                     struct pps_registers *regs)
587 {
588         int pps_idx = 0;
589
590         memset(regs, 0, sizeof(*regs));
591
592         if (IS_BROXTON(dev_priv))
593                 pps_idx = bxt_power_sequencer_idx(intel_dp);
594         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
595                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
596
597         regs->pp_ctrl = PP_CONTROL(pps_idx);
598         regs->pp_stat = PP_STATUS(pps_idx);
599         regs->pp_on = PP_ON_DELAYS(pps_idx);
600         regs->pp_off = PP_OFF_DELAYS(pps_idx);
601         if (!IS_BROXTON(dev_priv))
602                 regs->pp_div = PP_DIVISOR(pps_idx);
603 }
604
605 static i915_reg_t
606 _pp_ctrl_reg(struct intel_dp *intel_dp)
607 {
608         struct pps_registers regs;
609
610         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
611                                 &regs);
612
613         return regs.pp_ctrl;
614 }
615
616 static i915_reg_t
617 _pp_stat_reg(struct intel_dp *intel_dp)
618 {
619         struct pps_registers regs;
620
621         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
622                                 &regs);
623
624         return regs.pp_stat;
625 }
626
627 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
628    This function only applicable when panel PM state is not to be tracked */
629 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
630                               void *unused)
631 {
632         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
633                                                  edp_notifier);
634         struct drm_device *dev = intel_dp_to_dev(intel_dp);
635         struct drm_i915_private *dev_priv = to_i915(dev);
636
637         if (!is_edp(intel_dp) || code != SYS_RESTART)
638                 return 0;
639
640         pps_lock(intel_dp);
641
642         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
643                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
644                 i915_reg_t pp_ctrl_reg, pp_div_reg;
645                 u32 pp_div;
646
647                 pp_ctrl_reg = PP_CONTROL(pipe);
648                 pp_div_reg  = PP_DIVISOR(pipe);
649                 pp_div = I915_READ(pp_div_reg);
650                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
651
652                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
653                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
654                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
655                 msleep(intel_dp->panel_power_cycle_delay);
656         }
657
658         pps_unlock(intel_dp);
659
660         return 0;
661 }
662
663 static bool edp_have_panel_power(struct intel_dp *intel_dp)
664 {
665         struct drm_device *dev = intel_dp_to_dev(intel_dp);
666         struct drm_i915_private *dev_priv = to_i915(dev);
667
668         lockdep_assert_held(&dev_priv->pps_mutex);
669
670         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
671             intel_dp->pps_pipe == INVALID_PIPE)
672                 return false;
673
674         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
675 }
676
677 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
678 {
679         struct drm_device *dev = intel_dp_to_dev(intel_dp);
680         struct drm_i915_private *dev_priv = to_i915(dev);
681
682         lockdep_assert_held(&dev_priv->pps_mutex);
683
684         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
685             intel_dp->pps_pipe == INVALID_PIPE)
686                 return false;
687
688         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
689 }
690
691 static void
692 intel_dp_check_edp(struct intel_dp *intel_dp)
693 {
694         struct drm_device *dev = intel_dp_to_dev(intel_dp);
695         struct drm_i915_private *dev_priv = to_i915(dev);
696
697         if (!is_edp(intel_dp))
698                 return;
699
700         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
701                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
702                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
703                               I915_READ(_pp_stat_reg(intel_dp)),
704                               I915_READ(_pp_ctrl_reg(intel_dp)));
705         }
706 }
707
708 static uint32_t
709 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
710 {
711         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
712         struct drm_device *dev = intel_dig_port->base.base.dev;
713         struct drm_i915_private *dev_priv = to_i915(dev);
714         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
715         uint32_t status;
716         bool done;
717
718 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
719         if (has_aux_irq)
720                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
721                                           msecs_to_jiffies_timeout(10));
722         else
723                 done = wait_for(C, 10) == 0;
724         if (!done)
725                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
726                           has_aux_irq);
727 #undef C
728
729         return status;
730 }
731
732 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
733 {
734         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
735         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
736
737         if (index)
738                 return 0;
739
740         /*
741          * The clock divider is based off the hrawclk, and would like to run at
742          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
743          */
744         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
745 }
746
747 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
748 {
749         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
750         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
751
752         if (index)
753                 return 0;
754
755         /*
756          * The clock divider is based off the cdclk or PCH rawclk, and would
757          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
758          * divide by 2000 and use that
759          */
760         if (intel_dig_port->port == PORT_A)
761                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
762         else
763                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
764 }
765
766 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
767 {
768         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
769         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
770
771         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
772                 /* Workaround for non-ULT HSW */
773                 switch (index) {
774                 case 0: return 63;
775                 case 1: return 72;
776                 default: return 0;
777                 }
778         }
779
780         return ilk_get_aux_clock_divider(intel_dp, index);
781 }
782
783 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
784 {
785         /*
786          * SKL doesn't need us to program the AUX clock divider (Hardware will
787          * derive the clock from CDCLK automatically). We still implement the
788          * get_aux_clock_divider vfunc to plug-in into the existing code.
789          */
790         return index ? 0 : 1;
791 }
792
793 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
794                                      bool has_aux_irq,
795                                      int send_bytes,
796                                      uint32_t aux_clock_divider)
797 {
798         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
799         struct drm_device *dev = intel_dig_port->base.base.dev;
800         uint32_t precharge, timeout;
801
802         if (IS_GEN6(dev))
803                 precharge = 3;
804         else
805                 precharge = 5;
806
807         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
808                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
809         else
810                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
811
812         return DP_AUX_CH_CTL_SEND_BUSY |
813                DP_AUX_CH_CTL_DONE |
814                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
815                DP_AUX_CH_CTL_TIME_OUT_ERROR |
816                timeout |
817                DP_AUX_CH_CTL_RECEIVE_ERROR |
818                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
819                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
820                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
821 }
822
823 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
824                                       bool has_aux_irq,
825                                       int send_bytes,
826                                       uint32_t unused)
827 {
828         return DP_AUX_CH_CTL_SEND_BUSY |
829                DP_AUX_CH_CTL_DONE |
830                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
831                DP_AUX_CH_CTL_TIME_OUT_ERROR |
832                DP_AUX_CH_CTL_TIME_OUT_1600us |
833                DP_AUX_CH_CTL_RECEIVE_ERROR |
834                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
835                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
836                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
837 }
838
839 static int
840 intel_dp_aux_ch(struct intel_dp *intel_dp,
841                 const uint8_t *send, int send_bytes,
842                 uint8_t *recv, int recv_size)
843 {
844         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
845         struct drm_device *dev = intel_dig_port->base.base.dev;
846         struct drm_i915_private *dev_priv = to_i915(dev);
847         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
848         uint32_t aux_clock_divider;
849         int i, ret, recv_bytes;
850         uint32_t status;
851         int try, clock = 0;
852         bool has_aux_irq = HAS_AUX_IRQ(dev);
853         bool vdd;
854
855         pps_lock(intel_dp);
856
857         /*
858          * We will be called with VDD already enabled for dpcd/edid/oui reads.
859          * In such cases we want to leave VDD enabled and it's up to upper layers
860          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
861          * ourselves.
862          */
863         vdd = edp_panel_vdd_on(intel_dp);
864
865         /* dp aux is extremely sensitive to irq latency, hence request the
866          * lowest possible wakeup latency and so prevent the cpu from going into
867          * deep sleep states.
868          */
869         pm_qos_update_request(&dev_priv->pm_qos, 0);
870
871         intel_dp_check_edp(intel_dp);
872
873         /* Try to wait for any previous AUX channel activity */
874         for (try = 0; try < 3; try++) {
875                 status = I915_READ_NOTRACE(ch_ctl);
876                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
877                         break;
878                 msleep(1);
879         }
880
881         if (try == 3) {
882                 static u32 last_status = -1;
883                 const u32 status = I915_READ(ch_ctl);
884
885                 if (status != last_status) {
886                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
887                              status);
888                         last_status = status;
889                 }
890
891                 ret = -EBUSY;
892                 goto out;
893         }
894
895         /* Only 5 data registers! */
896         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
897                 ret = -E2BIG;
898                 goto out;
899         }
900
901         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
902                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
903                                                           has_aux_irq,
904                                                           send_bytes,
905                                                           aux_clock_divider);
906
907                 /* Must try at least 3 times according to DP spec */
908                 for (try = 0; try < 5; try++) {
909                         /* Load the send data into the aux channel data registers */
910                         for (i = 0; i < send_bytes; i += 4)
911                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
912                                            intel_dp_pack_aux(send + i,
913                                                              send_bytes - i));
914
915                         /* Send the command and wait for it to complete */
916                         I915_WRITE(ch_ctl, send_ctl);
917
918                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
919
920                         /* Clear done status and any errors */
921                         I915_WRITE(ch_ctl,
922                                    status |
923                                    DP_AUX_CH_CTL_DONE |
924                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
925                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
926
927                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
928                                 continue;
929
930                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
931                          *   400us delay required for errors and timeouts
932                          *   Timeout errors from the HW already meet this
933                          *   requirement so skip to next iteration
934                          */
935                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
936                                 usleep_range(400, 500);
937                                 continue;
938                         }
939                         if (status & DP_AUX_CH_CTL_DONE)
940                                 goto done;
941                 }
942         }
943
944         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
945                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
946                 ret = -EBUSY;
947                 goto out;
948         }
949
950 done:
951         /* Check for timeout or receive error.
952          * Timeouts occur when the sink is not connected
953          */
954         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
955                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
956                 ret = -EIO;
957                 goto out;
958         }
959
960         /* Timeouts occur when the device isn't connected, so they're
961          * "normal" -- don't fill the kernel log with these */
962         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
963                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
964                 ret = -ETIMEDOUT;
965                 goto out;
966         }
967
968         /* Unload any bytes sent back from the other side */
969         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
970                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
971
972         /*
973          * By BSpec: "Message sizes of 0 or >20 are not allowed."
974          * We have no idea of what happened so we return -EBUSY so
975          * drm layer takes care for the necessary retries.
976          */
977         if (recv_bytes == 0 || recv_bytes > 20) {
978                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
979                               recv_bytes);
980                 /*
981                  * FIXME: This patch was created on top of a series that
982                  * organize the retries at drm level. There EBUSY should
983                  * also take care for 1ms wait before retrying.
984                  * That aux retries re-org is still needed and after that is
985                  * merged we remove this sleep from here.
986                  */
987                 usleep_range(1000, 1500);
988                 ret = -EBUSY;
989                 goto out;
990         }
991
992         if (recv_bytes > recv_size)
993                 recv_bytes = recv_size;
994
995         for (i = 0; i < recv_bytes; i += 4)
996                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
997                                     recv + i, recv_bytes - i);
998
999         ret = recv_bytes;
1000 out:
1001         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1002
1003         if (vdd)
1004                 edp_panel_vdd_off(intel_dp, false);
1005
1006         pps_unlock(intel_dp);
1007
1008         return ret;
1009 }
1010
1011 #define BARE_ADDRESS_SIZE       3
1012 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1013 static ssize_t
1014 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1015 {
1016         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1017         uint8_t txbuf[20], rxbuf[20];
1018         size_t txsize, rxsize;
1019         int ret;
1020
1021         txbuf[0] = (msg->request << 4) |
1022                 ((msg->address >> 16) & 0xf);
1023         txbuf[1] = (msg->address >> 8) & 0xff;
1024         txbuf[2] = msg->address & 0xff;
1025         txbuf[3] = msg->size - 1;
1026
1027         switch (msg->request & ~DP_AUX_I2C_MOT) {
1028         case DP_AUX_NATIVE_WRITE:
1029         case DP_AUX_I2C_WRITE:
1030         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1031                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1032                 rxsize = 2; /* 0 or 1 data bytes */
1033
1034                 if (WARN_ON(txsize > 20))
1035                         return -E2BIG;
1036
1037                 WARN_ON(!msg->buffer != !msg->size);
1038
1039                 if (msg->buffer)
1040                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1041
1042                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1043                 if (ret > 0) {
1044                         msg->reply = rxbuf[0] >> 4;
1045
1046                         if (ret > 1) {
1047                                 /* Number of bytes written in a short write. */
1048                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1049                         } else {
1050                                 /* Return payload size. */
1051                                 ret = msg->size;
1052                         }
1053                 }
1054                 break;
1055
1056         case DP_AUX_NATIVE_READ:
1057         case DP_AUX_I2C_READ:
1058                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1059                 rxsize = msg->size + 1;
1060
1061                 if (WARN_ON(rxsize > 20))
1062                         return -E2BIG;
1063
1064                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1065                 if (ret > 0) {
1066                         msg->reply = rxbuf[0] >> 4;
1067                         /*
1068                          * Assume happy day, and copy the data. The caller is
1069                          * expected to check msg->reply before touching it.
1070                          *
1071                          * Return payload size.
1072                          */
1073                         ret--;
1074                         memcpy(msg->buffer, rxbuf + 1, ret);
1075                 }
1076                 break;
1077
1078         default:
1079                 ret = -EINVAL;
1080                 break;
1081         }
1082
1083         return ret;
1084 }
1085
1086 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1087                                        enum port port)
1088 {
1089         switch (port) {
1090         case PORT_B:
1091         case PORT_C:
1092         case PORT_D:
1093                 return DP_AUX_CH_CTL(port);
1094         default:
1095                 MISSING_CASE(port);
1096                 return DP_AUX_CH_CTL(PORT_B);
1097         }
1098 }
1099
1100 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1101                                         enum port port, int index)
1102 {
1103         switch (port) {
1104         case PORT_B:
1105         case PORT_C:
1106         case PORT_D:
1107                 return DP_AUX_CH_DATA(port, index);
1108         default:
1109                 MISSING_CASE(port);
1110                 return DP_AUX_CH_DATA(PORT_B, index);
1111         }
1112 }
1113
1114 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1115                                        enum port port)
1116 {
1117         switch (port) {
1118         case PORT_A:
1119                 return DP_AUX_CH_CTL(port);
1120         case PORT_B:
1121         case PORT_C:
1122         case PORT_D:
1123                 return PCH_DP_AUX_CH_CTL(port);
1124         default:
1125                 MISSING_CASE(port);
1126                 return DP_AUX_CH_CTL(PORT_A);
1127         }
1128 }
1129
1130 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1131                                         enum port port, int index)
1132 {
1133         switch (port) {
1134         case PORT_A:
1135                 return DP_AUX_CH_DATA(port, index);
1136         case PORT_B:
1137         case PORT_C:
1138         case PORT_D:
1139                 return PCH_DP_AUX_CH_DATA(port, index);
1140         default:
1141                 MISSING_CASE(port);
1142                 return DP_AUX_CH_DATA(PORT_A, index);
1143         }
1144 }
1145
1146 /*
1147  * On SKL we don't have Aux for port E so we rely
1148  * on VBT to set a proper alternate aux channel.
1149  */
1150 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1151 {
1152         const struct ddi_vbt_port_info *info =
1153                 &dev_priv->vbt.ddi_port_info[PORT_E];
1154
1155         switch (info->alternate_aux_channel) {
1156         case DP_AUX_A:
1157                 return PORT_A;
1158         case DP_AUX_B:
1159                 return PORT_B;
1160         case DP_AUX_C:
1161                 return PORT_C;
1162         case DP_AUX_D:
1163                 return PORT_D;
1164         default:
1165                 MISSING_CASE(info->alternate_aux_channel);
1166                 return PORT_A;
1167         }
1168 }
1169
1170 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1171                                        enum port port)
1172 {
1173         if (port == PORT_E)
1174                 port = skl_porte_aux_port(dev_priv);
1175
1176         switch (port) {
1177         case PORT_A:
1178         case PORT_B:
1179         case PORT_C:
1180         case PORT_D:
1181                 return DP_AUX_CH_CTL(port);
1182         default:
1183                 MISSING_CASE(port);
1184                 return DP_AUX_CH_CTL(PORT_A);
1185         }
1186 }
1187
1188 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1189                                         enum port port, int index)
1190 {
1191         if (port == PORT_E)
1192                 port = skl_porte_aux_port(dev_priv);
1193
1194         switch (port) {
1195         case PORT_A:
1196         case PORT_B:
1197         case PORT_C:
1198         case PORT_D:
1199                 return DP_AUX_CH_DATA(port, index);
1200         default:
1201                 MISSING_CASE(port);
1202                 return DP_AUX_CH_DATA(PORT_A, index);
1203         }
1204 }
1205
1206 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1207                                          enum port port)
1208 {
1209         if (INTEL_INFO(dev_priv)->gen >= 9)
1210                 return skl_aux_ctl_reg(dev_priv, port);
1211         else if (HAS_PCH_SPLIT(dev_priv))
1212                 return ilk_aux_ctl_reg(dev_priv, port);
1213         else
1214                 return g4x_aux_ctl_reg(dev_priv, port);
1215 }
1216
1217 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1218                                           enum port port, int index)
1219 {
1220         if (INTEL_INFO(dev_priv)->gen >= 9)
1221                 return skl_aux_data_reg(dev_priv, port, index);
1222         else if (HAS_PCH_SPLIT(dev_priv))
1223                 return ilk_aux_data_reg(dev_priv, port, index);
1224         else
1225                 return g4x_aux_data_reg(dev_priv, port, index);
1226 }
1227
1228 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1229 {
1230         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1231         enum port port = dp_to_dig_port(intel_dp)->port;
1232         int i;
1233
1234         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1235         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1236                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1237 }
1238
1239 static void
1240 intel_dp_aux_fini(struct intel_dp *intel_dp)
1241 {
1242         kfree(intel_dp->aux.name);
1243 }
1244
1245 static void
1246 intel_dp_aux_init(struct intel_dp *intel_dp)
1247 {
1248         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1249         enum port port = intel_dig_port->port;
1250
1251         intel_aux_reg_init(intel_dp);
1252         drm_dp_aux_init(&intel_dp->aux);
1253
1254         /* Failure to allocate our preferred name is not critical */
1255         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1256         intel_dp->aux.transfer = intel_dp_aux_transfer;
1257 }
1258
1259 static int
1260 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1261 {
1262         if (intel_dp->num_sink_rates) {
1263                 *sink_rates = intel_dp->sink_rates;
1264                 return intel_dp->num_sink_rates;
1265         }
1266
1267         *sink_rates = default_rates;
1268
1269         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1270 }
1271
1272 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1273 {
1274         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1275         struct drm_device *dev = dig_port->base.base.dev;
1276
1277         /* WaDisableHBR2:skl */
1278         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1279                 return false;
1280
1281         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1282             (INTEL_INFO(dev)->gen >= 9))
1283                 return true;
1284         else
1285                 return false;
1286 }
1287
1288 static int
1289 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1290 {
1291         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1292         struct drm_device *dev = dig_port->base.base.dev;
1293         int size;
1294
1295         if (IS_BROXTON(dev)) {
1296                 *source_rates = bxt_rates;
1297                 size = ARRAY_SIZE(bxt_rates);
1298         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1299                 *source_rates = skl_rates;
1300                 size = ARRAY_SIZE(skl_rates);
1301         } else {
1302                 *source_rates = default_rates;
1303                 size = ARRAY_SIZE(default_rates);
1304         }
1305
1306         /* This depends on the fact that 5.4 is last value in the array */
1307         if (!intel_dp_source_supports_hbr2(intel_dp))
1308                 size--;
1309
1310         return size;
1311 }
1312
1313 static void
1314 intel_dp_set_clock(struct intel_encoder *encoder,
1315                    struct intel_crtc_state *pipe_config)
1316 {
1317         struct drm_device *dev = encoder->base.dev;
1318         const struct dp_link_dpll *divisor = NULL;
1319         int i, count = 0;
1320
1321         if (IS_G4X(dev)) {
1322                 divisor = gen4_dpll;
1323                 count = ARRAY_SIZE(gen4_dpll);
1324         } else if (HAS_PCH_SPLIT(dev)) {
1325                 divisor = pch_dpll;
1326                 count = ARRAY_SIZE(pch_dpll);
1327         } else if (IS_CHERRYVIEW(dev)) {
1328                 divisor = chv_dpll;
1329                 count = ARRAY_SIZE(chv_dpll);
1330         } else if (IS_VALLEYVIEW(dev)) {
1331                 divisor = vlv_dpll;
1332                 count = ARRAY_SIZE(vlv_dpll);
1333         }
1334
1335         if (divisor && count) {
1336                 for (i = 0; i < count; i++) {
1337                         if (pipe_config->port_clock == divisor[i].clock) {
1338                                 pipe_config->dpll = divisor[i].dpll;
1339                                 pipe_config->clock_set = true;
1340                                 break;
1341                         }
1342                 }
1343         }
1344 }
1345
1346 static int intersect_rates(const int *source_rates, int source_len,
1347                            const int *sink_rates, int sink_len,
1348                            int *common_rates)
1349 {
1350         int i = 0, j = 0, k = 0;
1351
1352         while (i < source_len && j < sink_len) {
1353                 if (source_rates[i] == sink_rates[j]) {
1354                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1355                                 return k;
1356                         common_rates[k] = source_rates[i];
1357                         ++k;
1358                         ++i;
1359                         ++j;
1360                 } else if (source_rates[i] < sink_rates[j]) {
1361                         ++i;
1362                 } else {
1363                         ++j;
1364                 }
1365         }
1366         return k;
1367 }
1368
1369 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1370                                  int *common_rates)
1371 {
1372         const int *source_rates, *sink_rates;
1373         int source_len, sink_len;
1374
1375         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1376         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1377
1378         return intersect_rates(source_rates, source_len,
1379                                sink_rates, sink_len,
1380                                common_rates);
1381 }
1382
1383 static void snprintf_int_array(char *str, size_t len,
1384                                const int *array, int nelem)
1385 {
1386         int i;
1387
1388         str[0] = '\0';
1389
1390         for (i = 0; i < nelem; i++) {
1391                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1392                 if (r >= len)
1393                         return;
1394                 str += r;
1395                 len -= r;
1396         }
1397 }
1398
1399 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1400 {
1401         const int *source_rates, *sink_rates;
1402         int source_len, sink_len, common_len;
1403         int common_rates[DP_MAX_SUPPORTED_RATES];
1404         char str[128]; /* FIXME: too big for stack? */
1405
1406         if ((drm_debug & DRM_UT_KMS) == 0)
1407                 return;
1408
1409         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1410         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1411         DRM_DEBUG_KMS("source rates: %s\n", str);
1412
1413         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1414         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1415         DRM_DEBUG_KMS("sink rates: %s\n", str);
1416
1417         common_len = intel_dp_common_rates(intel_dp, common_rates);
1418         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1419         DRM_DEBUG_KMS("common rates: %s\n", str);
1420 }
1421
1422 static int rate_to_index(int find, const int *rates)
1423 {
1424         int i = 0;
1425
1426         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1427                 if (find == rates[i])
1428                         break;
1429
1430         return i;
1431 }
1432
1433 int
1434 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1435 {
1436         int rates[DP_MAX_SUPPORTED_RATES] = {};
1437         int len;
1438
1439         len = intel_dp_common_rates(intel_dp, rates);
1440         if (WARN_ON(len <= 0))
1441                 return 162000;
1442
1443         return rates[len - 1];
1444 }
1445
1446 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1447 {
1448         return rate_to_index(rate, intel_dp->sink_rates);
1449 }
1450
1451 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1452                            uint8_t *link_bw, uint8_t *rate_select)
1453 {
1454         if (intel_dp->num_sink_rates) {
1455                 *link_bw = 0;
1456                 *rate_select =
1457                         intel_dp_rate_select(intel_dp, port_clock);
1458         } else {
1459                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1460                 *rate_select = 0;
1461         }
1462 }
1463
1464 bool
1465 intel_dp_compute_config(struct intel_encoder *encoder,
1466                         struct intel_crtc_state *pipe_config,
1467                         struct drm_connector_state *conn_state)
1468 {
1469         struct drm_device *dev = encoder->base.dev;
1470         struct drm_i915_private *dev_priv = to_i915(dev);
1471         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1472         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1473         enum port port = dp_to_dig_port(intel_dp)->port;
1474         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1475         struct intel_connector *intel_connector = intel_dp->attached_connector;
1476         int lane_count, clock;
1477         int min_lane_count = 1;
1478         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1479         /* Conveniently, the link BW constants become indices with a shift...*/
1480         int min_clock = 0;
1481         int max_clock;
1482         int bpp, mode_rate;
1483         int link_avail, link_clock;
1484         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1485         int common_len;
1486         uint8_t link_bw, rate_select;
1487
1488         common_len = intel_dp_common_rates(intel_dp, common_rates);
1489
1490         /* No common link rates between source and sink */
1491         WARN_ON(common_len <= 0);
1492
1493         max_clock = common_len - 1;
1494
1495         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1496                 pipe_config->has_pch_encoder = true;
1497
1498         pipe_config->has_drrs = false;
1499         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1500
1501         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1502                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1503                                        adjusted_mode);
1504
1505                 if (INTEL_INFO(dev)->gen >= 9) {
1506                         int ret;
1507                         ret = skl_update_scaler_crtc(pipe_config);
1508                         if (ret)
1509                                 return ret;
1510                 }
1511
1512                 if (HAS_GMCH_DISPLAY(dev))
1513                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1514                                                  intel_connector->panel.fitting_mode);
1515                 else
1516                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1517                                                 intel_connector->panel.fitting_mode);
1518         }
1519
1520         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1521                 return false;
1522
1523         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1524                       "max bw %d pixel clock %iKHz\n",
1525                       max_lane_count, common_rates[max_clock],
1526                       adjusted_mode->crtc_clock);
1527
1528         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1529          * bpc in between. */
1530         bpp = pipe_config->pipe_bpp;
1531         if (is_edp(intel_dp)) {
1532
1533                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1534                 if (intel_connector->base.display_info.bpc == 0 &&
1535                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1536                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1537                                       dev_priv->vbt.edp.bpp);
1538                         bpp = dev_priv->vbt.edp.bpp;
1539                 }
1540
1541                 /*
1542                  * Use the maximum clock and number of lanes the eDP panel
1543                  * advertizes being capable of. The panels are generally
1544                  * designed to support only a single clock and lane
1545                  * configuration, and typically these values correspond to the
1546                  * native resolution of the panel.
1547                  */
1548                 min_lane_count = max_lane_count;
1549                 min_clock = max_clock;
1550         }
1551
1552         for (; bpp >= 6*3; bpp -= 2*3) {
1553                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1554                                                    bpp);
1555
1556                 for (clock = min_clock; clock <= max_clock; clock++) {
1557                         for (lane_count = min_lane_count;
1558                                 lane_count <= max_lane_count;
1559                                 lane_count <<= 1) {
1560
1561                                 link_clock = common_rates[clock];
1562                                 link_avail = intel_dp_max_data_rate(link_clock,
1563                                                                     lane_count);
1564
1565                                 if (mode_rate <= link_avail) {
1566                                         goto found;
1567                                 }
1568                         }
1569                 }
1570         }
1571
1572         return false;
1573
1574 found:
1575         if (intel_dp->color_range_auto) {
1576                 /*
1577                  * See:
1578                  * CEA-861-E - 5.1 Default Encoding Parameters
1579                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1580                  */
1581                 pipe_config->limited_color_range =
1582                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1583         } else {
1584                 pipe_config->limited_color_range =
1585                         intel_dp->limited_color_range;
1586         }
1587
1588         pipe_config->lane_count = lane_count;
1589
1590         pipe_config->pipe_bpp = bpp;
1591         pipe_config->port_clock = common_rates[clock];
1592
1593         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1594                               &link_bw, &rate_select);
1595
1596         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1597                       link_bw, rate_select, pipe_config->lane_count,
1598                       pipe_config->port_clock, bpp);
1599         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1600                       mode_rate, link_avail);
1601
1602         intel_link_compute_m_n(bpp, lane_count,
1603                                adjusted_mode->crtc_clock,
1604                                pipe_config->port_clock,
1605                                &pipe_config->dp_m_n);
1606
1607         if (intel_connector->panel.downclock_mode != NULL &&
1608                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1609                         pipe_config->has_drrs = true;
1610                         intel_link_compute_m_n(bpp, lane_count,
1611                                 intel_connector->panel.downclock_mode->clock,
1612                                 pipe_config->port_clock,
1613                                 &pipe_config->dp_m2_n2);
1614         }
1615
1616         /*
1617          * DPLL0 VCO may need to be adjusted to get the correct
1618          * clock for eDP. This will affect cdclk as well.
1619          */
1620         if (is_edp(intel_dp) &&
1621             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1622                 int vco;
1623
1624                 switch (pipe_config->port_clock / 2) {
1625                 case 108000:
1626                 case 216000:
1627                         vco = 8640000;
1628                         break;
1629                 default:
1630                         vco = 8100000;
1631                         break;
1632                 }
1633
1634                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1635         }
1636
1637         if (!HAS_DDI(dev))
1638                 intel_dp_set_clock(encoder, pipe_config);
1639
1640         return true;
1641 }
1642
1643 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1644                               int link_rate, uint8_t lane_count,
1645                               bool link_mst)
1646 {
1647         intel_dp->link_rate = link_rate;
1648         intel_dp->lane_count = lane_count;
1649         intel_dp->link_mst = link_mst;
1650 }
1651
1652 static void intel_dp_prepare(struct intel_encoder *encoder,
1653                              struct intel_crtc_state *pipe_config)
1654 {
1655         struct drm_device *dev = encoder->base.dev;
1656         struct drm_i915_private *dev_priv = to_i915(dev);
1657         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1658         enum port port = dp_to_dig_port(intel_dp)->port;
1659         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1660         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1661
1662         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1663                                  pipe_config->lane_count,
1664                                  intel_crtc_has_type(pipe_config,
1665                                                      INTEL_OUTPUT_DP_MST));
1666
1667         /*
1668          * There are four kinds of DP registers:
1669          *
1670          *      IBX PCH
1671          *      SNB CPU
1672          *      IVB CPU
1673          *      CPT PCH
1674          *
1675          * IBX PCH and CPU are the same for almost everything,
1676          * except that the CPU DP PLL is configured in this
1677          * register
1678          *
1679          * CPT PCH is quite different, having many bits moved
1680          * to the TRANS_DP_CTL register instead. That
1681          * configuration happens (oddly) in ironlake_pch_enable
1682          */
1683
1684         /* Preserve the BIOS-computed detected bit. This is
1685          * supposed to be read-only.
1686          */
1687         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1688
1689         /* Handle DP bits in common between all three register formats */
1690         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1691         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1692
1693         /* Split out the IBX/CPU vs CPT settings */
1694
1695         if (IS_GEN7(dev) && port == PORT_A) {
1696                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1697                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1698                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1699                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1700                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1701
1702                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1703                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1704
1705                 intel_dp->DP |= crtc->pipe << 29;
1706         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1707                 u32 trans_dp;
1708
1709                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1710
1711                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1712                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1713                         trans_dp |= TRANS_DP_ENH_FRAMING;
1714                 else
1715                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1716                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1717         } else {
1718                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1719                     !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1720                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1721
1722                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1723                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1724                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1725                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1726                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1727
1728                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1729                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1730
1731                 if (IS_CHERRYVIEW(dev))
1732                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1733                 else if (crtc->pipe == PIPE_B)
1734                         intel_dp->DP |= DP_PIPEB_SELECT;
1735         }
1736 }
1737
1738 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1739 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1740
1741 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1742 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1743
1744 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1745 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1746
1747 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1748                                    struct intel_dp *intel_dp);
1749
1750 static void wait_panel_status(struct intel_dp *intel_dp,
1751                                        u32 mask,
1752                                        u32 value)
1753 {
1754         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1755         struct drm_i915_private *dev_priv = to_i915(dev);
1756         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1757
1758         lockdep_assert_held(&dev_priv->pps_mutex);
1759
1760         intel_pps_verify_state(dev_priv, intel_dp);
1761
1762         pp_stat_reg = _pp_stat_reg(intel_dp);
1763         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1764
1765         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1766                         mask, value,
1767                         I915_READ(pp_stat_reg),
1768                         I915_READ(pp_ctrl_reg));
1769
1770         if (intel_wait_for_register(dev_priv,
1771                                     pp_stat_reg, mask, value,
1772                                     5000))
1773                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1774                                 I915_READ(pp_stat_reg),
1775                                 I915_READ(pp_ctrl_reg));
1776
1777         DRM_DEBUG_KMS("Wait complete\n");
1778 }
1779
1780 static void wait_panel_on(struct intel_dp *intel_dp)
1781 {
1782         DRM_DEBUG_KMS("Wait for panel power on\n");
1783         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1784 }
1785
1786 static void wait_panel_off(struct intel_dp *intel_dp)
1787 {
1788         DRM_DEBUG_KMS("Wait for panel power off time\n");
1789         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1790 }
1791
1792 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1793 {
1794         ktime_t panel_power_on_time;
1795         s64 panel_power_off_duration;
1796
1797         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1798
1799         /* take the difference of currrent time and panel power off time
1800          * and then make panel wait for t11_t12 if needed. */
1801         panel_power_on_time = ktime_get_boottime();
1802         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1803
1804         /* When we disable the VDD override bit last we have to do the manual
1805          * wait. */
1806         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1807                 wait_remaining_ms_from_jiffies(jiffies,
1808                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1809
1810         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1811 }
1812
1813 static void wait_backlight_on(struct intel_dp *intel_dp)
1814 {
1815         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1816                                        intel_dp->backlight_on_delay);
1817 }
1818
1819 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1820 {
1821         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1822                                        intel_dp->backlight_off_delay);
1823 }
1824
1825 /* Read the current pp_control value, unlocking the register if it
1826  * is locked
1827  */
1828
1829 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1830 {
1831         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1832         struct drm_i915_private *dev_priv = to_i915(dev);
1833         u32 control;
1834
1835         lockdep_assert_held(&dev_priv->pps_mutex);
1836
1837         control = I915_READ(_pp_ctrl_reg(intel_dp));
1838         if (WARN_ON(!HAS_DDI(dev_priv) &&
1839                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1840                 control &= ~PANEL_UNLOCK_MASK;
1841                 control |= PANEL_UNLOCK_REGS;
1842         }
1843         return control;
1844 }
1845
1846 /*
1847  * Must be paired with edp_panel_vdd_off().
1848  * Must hold pps_mutex around the whole on/off sequence.
1849  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1850  */
1851 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1852 {
1853         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1854         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1855         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1856         struct drm_i915_private *dev_priv = to_i915(dev);
1857         enum intel_display_power_domain power_domain;
1858         u32 pp;
1859         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1860         bool need_to_disable = !intel_dp->want_panel_vdd;
1861
1862         lockdep_assert_held(&dev_priv->pps_mutex);
1863
1864         if (!is_edp(intel_dp))
1865                 return false;
1866
1867         cancel_delayed_work(&intel_dp->panel_vdd_work);
1868         intel_dp->want_panel_vdd = true;
1869
1870         if (edp_have_panel_vdd(intel_dp))
1871                 return need_to_disable;
1872
1873         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1874         intel_display_power_get(dev_priv, power_domain);
1875
1876         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1877                       port_name(intel_dig_port->port));
1878
1879         if (!edp_have_panel_power(intel_dp))
1880                 wait_panel_power_cycle(intel_dp);
1881
1882         pp = ironlake_get_pp_control(intel_dp);
1883         pp |= EDP_FORCE_VDD;
1884
1885         pp_stat_reg = _pp_stat_reg(intel_dp);
1886         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1887
1888         I915_WRITE(pp_ctrl_reg, pp);
1889         POSTING_READ(pp_ctrl_reg);
1890         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1891                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1892         /*
1893          * If the panel wasn't on, delay before accessing aux channel
1894          */
1895         if (!edp_have_panel_power(intel_dp)) {
1896                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1897                               port_name(intel_dig_port->port));
1898                 msleep(intel_dp->panel_power_up_delay);
1899         }
1900
1901         return need_to_disable;
1902 }
1903
1904 /*
1905  * Must be paired with intel_edp_panel_vdd_off() or
1906  * intel_edp_panel_off().
1907  * Nested calls to these functions are not allowed since
1908  * we drop the lock. Caller must use some higher level
1909  * locking to prevent nested calls from other threads.
1910  */
1911 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1912 {
1913         bool vdd;
1914
1915         if (!is_edp(intel_dp))
1916                 return;
1917
1918         pps_lock(intel_dp);
1919         vdd = edp_panel_vdd_on(intel_dp);
1920         pps_unlock(intel_dp);
1921
1922         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1923              port_name(dp_to_dig_port(intel_dp)->port));
1924 }
1925
1926 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1927 {
1928         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929         struct drm_i915_private *dev_priv = to_i915(dev);
1930         struct intel_digital_port *intel_dig_port =
1931                 dp_to_dig_port(intel_dp);
1932         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1933         enum intel_display_power_domain power_domain;
1934         u32 pp;
1935         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1936
1937         lockdep_assert_held(&dev_priv->pps_mutex);
1938
1939         WARN_ON(intel_dp->want_panel_vdd);
1940
1941         if (!edp_have_panel_vdd(intel_dp))
1942                 return;
1943
1944         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1945                       port_name(intel_dig_port->port));
1946
1947         pp = ironlake_get_pp_control(intel_dp);
1948         pp &= ~EDP_FORCE_VDD;
1949
1950         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1951         pp_stat_reg = _pp_stat_reg(intel_dp);
1952
1953         I915_WRITE(pp_ctrl_reg, pp);
1954         POSTING_READ(pp_ctrl_reg);
1955
1956         /* Make sure sequencer is idle before allowing subsequent activity */
1957         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1958         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1959
1960         if ((pp & PANEL_POWER_ON) == 0)
1961                 intel_dp->panel_power_off_time = ktime_get_boottime();
1962
1963         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1964         intel_display_power_put(dev_priv, power_domain);
1965 }
1966
1967 static void edp_panel_vdd_work(struct work_struct *__work)
1968 {
1969         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1970                                                  struct intel_dp, panel_vdd_work);
1971
1972         pps_lock(intel_dp);
1973         if (!intel_dp->want_panel_vdd)
1974                 edp_panel_vdd_off_sync(intel_dp);
1975         pps_unlock(intel_dp);
1976 }
1977
1978 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1979 {
1980         unsigned long delay;
1981
1982         /*
1983          * Queue the timer to fire a long time from now (relative to the power
1984          * down delay) to keep the panel power up across a sequence of
1985          * operations.
1986          */
1987         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1988         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1989 }
1990
1991 /*
1992  * Must be paired with edp_panel_vdd_on().
1993  * Must hold pps_mutex around the whole on/off sequence.
1994  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1995  */
1996 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1997 {
1998         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1999
2000         lockdep_assert_held(&dev_priv->pps_mutex);
2001
2002         if (!is_edp(intel_dp))
2003                 return;
2004
2005         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2006              port_name(dp_to_dig_port(intel_dp)->port));
2007
2008         intel_dp->want_panel_vdd = false;
2009
2010         if (sync)
2011                 edp_panel_vdd_off_sync(intel_dp);
2012         else
2013                 edp_panel_vdd_schedule_off(intel_dp);
2014 }
2015
2016 static void edp_panel_on(struct intel_dp *intel_dp)
2017 {
2018         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2019         struct drm_i915_private *dev_priv = to_i915(dev);
2020         u32 pp;
2021         i915_reg_t pp_ctrl_reg;
2022
2023         lockdep_assert_held(&dev_priv->pps_mutex);
2024
2025         if (!is_edp(intel_dp))
2026                 return;
2027
2028         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2029                       port_name(dp_to_dig_port(intel_dp)->port));
2030
2031         if (WARN(edp_have_panel_power(intel_dp),
2032                  "eDP port %c panel power already on\n",
2033                  port_name(dp_to_dig_port(intel_dp)->port)))
2034                 return;
2035
2036         wait_panel_power_cycle(intel_dp);
2037
2038         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2039         pp = ironlake_get_pp_control(intel_dp);
2040         if (IS_GEN5(dev)) {
2041                 /* ILK workaround: disable reset around power sequence */
2042                 pp &= ~PANEL_POWER_RESET;
2043                 I915_WRITE(pp_ctrl_reg, pp);
2044                 POSTING_READ(pp_ctrl_reg);
2045         }
2046
2047         pp |= PANEL_POWER_ON;
2048         if (!IS_GEN5(dev))
2049                 pp |= PANEL_POWER_RESET;
2050
2051         I915_WRITE(pp_ctrl_reg, pp);
2052         POSTING_READ(pp_ctrl_reg);
2053
2054         wait_panel_on(intel_dp);
2055         intel_dp->last_power_on = jiffies;
2056
2057         if (IS_GEN5(dev)) {
2058                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2059                 I915_WRITE(pp_ctrl_reg, pp);
2060                 POSTING_READ(pp_ctrl_reg);
2061         }
2062 }
2063
2064 void intel_edp_panel_on(struct intel_dp *intel_dp)
2065 {
2066         if (!is_edp(intel_dp))
2067                 return;
2068
2069         pps_lock(intel_dp);
2070         edp_panel_on(intel_dp);
2071         pps_unlock(intel_dp);
2072 }
2073
2074
2075 static void edp_panel_off(struct intel_dp *intel_dp)
2076 {
2077         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2078         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2079         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2080         struct drm_i915_private *dev_priv = to_i915(dev);
2081         enum intel_display_power_domain power_domain;
2082         u32 pp;
2083         i915_reg_t pp_ctrl_reg;
2084
2085         lockdep_assert_held(&dev_priv->pps_mutex);
2086
2087         if (!is_edp(intel_dp))
2088                 return;
2089
2090         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2091                       port_name(dp_to_dig_port(intel_dp)->port));
2092
2093         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2094              port_name(dp_to_dig_port(intel_dp)->port));
2095
2096         pp = ironlake_get_pp_control(intel_dp);
2097         /* We need to switch off panel power _and_ force vdd, for otherwise some
2098          * panels get very unhappy and cease to work. */
2099         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2100                 EDP_BLC_ENABLE);
2101
2102         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2103
2104         intel_dp->want_panel_vdd = false;
2105
2106         I915_WRITE(pp_ctrl_reg, pp);
2107         POSTING_READ(pp_ctrl_reg);
2108
2109         intel_dp->panel_power_off_time = ktime_get_boottime();
2110         wait_panel_off(intel_dp);
2111
2112         /* We got a reference when we enabled the VDD. */
2113         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2114         intel_display_power_put(dev_priv, power_domain);
2115 }
2116
2117 void intel_edp_panel_off(struct intel_dp *intel_dp)
2118 {
2119         if (!is_edp(intel_dp))
2120                 return;
2121
2122         pps_lock(intel_dp);
2123         edp_panel_off(intel_dp);
2124         pps_unlock(intel_dp);
2125 }
2126
2127 /* Enable backlight in the panel power control. */
2128 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2129 {
2130         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2131         struct drm_device *dev = intel_dig_port->base.base.dev;
2132         struct drm_i915_private *dev_priv = to_i915(dev);
2133         u32 pp;
2134         i915_reg_t pp_ctrl_reg;
2135
2136         /*
2137          * If we enable the backlight right away following a panel power
2138          * on, we may see slight flicker as the panel syncs with the eDP
2139          * link.  So delay a bit to make sure the image is solid before
2140          * allowing it to appear.
2141          */
2142         wait_backlight_on(intel_dp);
2143
2144         pps_lock(intel_dp);
2145
2146         pp = ironlake_get_pp_control(intel_dp);
2147         pp |= EDP_BLC_ENABLE;
2148
2149         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2150
2151         I915_WRITE(pp_ctrl_reg, pp);
2152         POSTING_READ(pp_ctrl_reg);
2153
2154         pps_unlock(intel_dp);
2155 }
2156
2157 /* Enable backlight PWM and backlight PP control. */
2158 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2159 {
2160         if (!is_edp(intel_dp))
2161                 return;
2162
2163         DRM_DEBUG_KMS("\n");
2164
2165         intel_panel_enable_backlight(intel_dp->attached_connector);
2166         _intel_edp_backlight_on(intel_dp);
2167 }
2168
2169 /* Disable backlight in the panel power control. */
2170 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2171 {
2172         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2173         struct drm_i915_private *dev_priv = to_i915(dev);
2174         u32 pp;
2175         i915_reg_t pp_ctrl_reg;
2176
2177         if (!is_edp(intel_dp))
2178                 return;
2179
2180         pps_lock(intel_dp);
2181
2182         pp = ironlake_get_pp_control(intel_dp);
2183         pp &= ~EDP_BLC_ENABLE;
2184
2185         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2186
2187         I915_WRITE(pp_ctrl_reg, pp);
2188         POSTING_READ(pp_ctrl_reg);
2189
2190         pps_unlock(intel_dp);
2191
2192         intel_dp->last_backlight_off = jiffies;
2193         edp_wait_backlight_off(intel_dp);
2194 }
2195
2196 /* Disable backlight PP control and backlight PWM. */
2197 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2198 {
2199         if (!is_edp(intel_dp))
2200                 return;
2201
2202         DRM_DEBUG_KMS("\n");
2203
2204         _intel_edp_backlight_off(intel_dp);
2205         intel_panel_disable_backlight(intel_dp->attached_connector);
2206 }
2207
2208 /*
2209  * Hook for controlling the panel power control backlight through the bl_power
2210  * sysfs attribute. Take care to handle multiple calls.
2211  */
2212 static void intel_edp_backlight_power(struct intel_connector *connector,
2213                                       bool enable)
2214 {
2215         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2216         bool is_enabled;
2217
2218         pps_lock(intel_dp);
2219         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2220         pps_unlock(intel_dp);
2221
2222         if (is_enabled == enable)
2223                 return;
2224
2225         DRM_DEBUG_KMS("panel power control backlight %s\n",
2226                       enable ? "enable" : "disable");
2227
2228         if (enable)
2229                 _intel_edp_backlight_on(intel_dp);
2230         else
2231                 _intel_edp_backlight_off(intel_dp);
2232 }
2233
2234 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2235 {
2236         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2237         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2238         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2239
2240         I915_STATE_WARN(cur_state != state,
2241                         "DP port %c state assertion failure (expected %s, current %s)\n",
2242                         port_name(dig_port->port),
2243                         onoff(state), onoff(cur_state));
2244 }
2245 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2246
2247 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2248 {
2249         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2250
2251         I915_STATE_WARN(cur_state != state,
2252                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2253                         onoff(state), onoff(cur_state));
2254 }
2255 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2256 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2257
2258 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2259                                 struct intel_crtc_state *pipe_config)
2260 {
2261         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2262         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2263
2264         assert_pipe_disabled(dev_priv, crtc->pipe);
2265         assert_dp_port_disabled(intel_dp);
2266         assert_edp_pll_disabled(dev_priv);
2267
2268         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2269                       pipe_config->port_clock);
2270
2271         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2272
2273         if (pipe_config->port_clock == 162000)
2274                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2275         else
2276                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2277
2278         I915_WRITE(DP_A, intel_dp->DP);
2279         POSTING_READ(DP_A);
2280         udelay(500);
2281
2282         /*
2283          * [DevILK] Work around required when enabling DP PLL
2284          * while a pipe is enabled going to FDI:
2285          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2286          * 2. Program DP PLL enable
2287          */
2288         if (IS_GEN5(dev_priv))
2289                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2290
2291         intel_dp->DP |= DP_PLL_ENABLE;
2292
2293         I915_WRITE(DP_A, intel_dp->DP);
2294         POSTING_READ(DP_A);
2295         udelay(200);
2296 }
2297
2298 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2299 {
2300         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2301         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2302         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2303
2304         assert_pipe_disabled(dev_priv, crtc->pipe);
2305         assert_dp_port_disabled(intel_dp);
2306         assert_edp_pll_enabled(dev_priv);
2307
2308         DRM_DEBUG_KMS("disabling eDP PLL\n");
2309
2310         intel_dp->DP &= ~DP_PLL_ENABLE;
2311
2312         I915_WRITE(DP_A, intel_dp->DP);
2313         POSTING_READ(DP_A);
2314         udelay(200);
2315 }
2316
2317 /* If the sink supports it, try to set the power state appropriately */
2318 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2319 {
2320         int ret, i;
2321
2322         /* Should have a valid DPCD by this point */
2323         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2324                 return;
2325
2326         if (mode != DRM_MODE_DPMS_ON) {
2327                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2328                                          DP_SET_POWER_D3);
2329         } else {
2330                 /*
2331                  * When turning on, we need to retry for 1ms to give the sink
2332                  * time to wake up.
2333                  */
2334                 for (i = 0; i < 3; i++) {
2335                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2336                                                  DP_SET_POWER_D0);
2337                         if (ret == 1)
2338                                 break;
2339                         msleep(1);
2340                 }
2341         }
2342
2343         if (ret != 1)
2344                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2345                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2346 }
2347
2348 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2349                                   enum pipe *pipe)
2350 {
2351         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2352         enum port port = dp_to_dig_port(intel_dp)->port;
2353         struct drm_device *dev = encoder->base.dev;
2354         struct drm_i915_private *dev_priv = to_i915(dev);
2355         enum intel_display_power_domain power_domain;
2356         u32 tmp;
2357         bool ret;
2358
2359         power_domain = intel_display_port_power_domain(encoder);
2360         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2361                 return false;
2362
2363         ret = false;
2364
2365         tmp = I915_READ(intel_dp->output_reg);
2366
2367         if (!(tmp & DP_PORT_EN))
2368                 goto out;
2369
2370         if (IS_GEN7(dev) && port == PORT_A) {
2371                 *pipe = PORT_TO_PIPE_CPT(tmp);
2372         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2373                 enum pipe p;
2374
2375                 for_each_pipe(dev_priv, p) {
2376                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2377                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2378                                 *pipe = p;
2379                                 ret = true;
2380
2381                                 goto out;
2382                         }
2383                 }
2384
2385                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2386                               i915_mmio_reg_offset(intel_dp->output_reg));
2387         } else if (IS_CHERRYVIEW(dev)) {
2388                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2389         } else {
2390                 *pipe = PORT_TO_PIPE(tmp);
2391         }
2392
2393         ret = true;
2394
2395 out:
2396         intel_display_power_put(dev_priv, power_domain);
2397
2398         return ret;
2399 }
2400
2401 static void intel_dp_get_config(struct intel_encoder *encoder,
2402                                 struct intel_crtc_state *pipe_config)
2403 {
2404         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2405         u32 tmp, flags = 0;
2406         struct drm_device *dev = encoder->base.dev;
2407         struct drm_i915_private *dev_priv = to_i915(dev);
2408         enum port port = dp_to_dig_port(intel_dp)->port;
2409         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2410
2411         tmp = I915_READ(intel_dp->output_reg);
2412
2413         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2414
2415         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2416                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2417
2418                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2419                         flags |= DRM_MODE_FLAG_PHSYNC;
2420                 else
2421                         flags |= DRM_MODE_FLAG_NHSYNC;
2422
2423                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2424                         flags |= DRM_MODE_FLAG_PVSYNC;
2425                 else
2426                         flags |= DRM_MODE_FLAG_NVSYNC;
2427         } else {
2428                 if (tmp & DP_SYNC_HS_HIGH)
2429                         flags |= DRM_MODE_FLAG_PHSYNC;
2430                 else
2431                         flags |= DRM_MODE_FLAG_NHSYNC;
2432
2433                 if (tmp & DP_SYNC_VS_HIGH)
2434                         flags |= DRM_MODE_FLAG_PVSYNC;
2435                 else
2436                         flags |= DRM_MODE_FLAG_NVSYNC;
2437         }
2438
2439         pipe_config->base.adjusted_mode.flags |= flags;
2440
2441         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2442             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2443                 pipe_config->limited_color_range = true;
2444
2445         pipe_config->lane_count =
2446                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2447
2448         intel_dp_get_m_n(crtc, pipe_config);
2449
2450         if (port == PORT_A) {
2451                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2452                         pipe_config->port_clock = 162000;
2453                 else
2454                         pipe_config->port_clock = 270000;
2455         }
2456
2457         pipe_config->base.adjusted_mode.crtc_clock =
2458                 intel_dotclock_calculate(pipe_config->port_clock,
2459                                          &pipe_config->dp_m_n);
2460
2461         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2462             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2463                 /*
2464                  * This is a big fat ugly hack.
2465                  *
2466                  * Some machines in UEFI boot mode provide us a VBT that has 18
2467                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2468                  * unknown we fail to light up. Yet the same BIOS boots up with
2469                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2470                  * max, not what it tells us to use.
2471                  *
2472                  * Note: This will still be broken if the eDP panel is not lit
2473                  * up by the BIOS, and thus we can't get the mode at module
2474                  * load.
2475                  */
2476                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2477                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2478                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2479         }
2480 }
2481
2482 static void intel_disable_dp(struct intel_encoder *encoder,
2483                              struct intel_crtc_state *old_crtc_state,
2484                              struct drm_connector_state *old_conn_state)
2485 {
2486         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2487         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2488
2489         if (old_crtc_state->has_audio)
2490                 intel_audio_codec_disable(encoder);
2491
2492         if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2493                 intel_psr_disable(intel_dp);
2494
2495         /* Make sure the panel is off before trying to change the mode. But also
2496          * ensure that we have vdd while we switch off the panel. */
2497         intel_edp_panel_vdd_on(intel_dp);
2498         intel_edp_backlight_off(intel_dp);
2499         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2500         intel_edp_panel_off(intel_dp);
2501
2502         /* disable the port before the pipe on g4x */
2503         if (INTEL_GEN(dev_priv) < 5)
2504                 intel_dp_link_down(intel_dp);
2505 }
2506
2507 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2508                                 struct intel_crtc_state *old_crtc_state,
2509                                 struct drm_connector_state *old_conn_state)
2510 {
2511         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2512         enum port port = dp_to_dig_port(intel_dp)->port;
2513
2514         intel_dp_link_down(intel_dp);
2515
2516         /* Only ilk+ has port A */
2517         if (port == PORT_A)
2518                 ironlake_edp_pll_off(intel_dp);
2519 }
2520
2521 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2522                                 struct intel_crtc_state *old_crtc_state,
2523                                 struct drm_connector_state *old_conn_state)
2524 {
2525         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2526
2527         intel_dp_link_down(intel_dp);
2528 }
2529
2530 static void chv_post_disable_dp(struct intel_encoder *encoder,
2531                                 struct intel_crtc_state *old_crtc_state,
2532                                 struct drm_connector_state *old_conn_state)
2533 {
2534         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2535         struct drm_device *dev = encoder->base.dev;
2536         struct drm_i915_private *dev_priv = to_i915(dev);
2537
2538         intel_dp_link_down(intel_dp);
2539
2540         mutex_lock(&dev_priv->sb_lock);
2541
2542         /* Assert data lane reset */
2543         chv_data_lane_soft_reset(encoder, true);
2544
2545         mutex_unlock(&dev_priv->sb_lock);
2546 }
2547
2548 static void
2549 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2550                          uint32_t *DP,
2551                          uint8_t dp_train_pat)
2552 {
2553         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2554         struct drm_device *dev = intel_dig_port->base.base.dev;
2555         struct drm_i915_private *dev_priv = to_i915(dev);
2556         enum port port = intel_dig_port->port;
2557
2558         if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2559                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2560                               dp_train_pat & DP_TRAINING_PATTERN_MASK);
2561
2562         if (HAS_DDI(dev)) {
2563                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2564
2565                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2566                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2567                 else
2568                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2569
2570                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2571                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2572                 case DP_TRAINING_PATTERN_DISABLE:
2573                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2574
2575                         break;
2576                 case DP_TRAINING_PATTERN_1:
2577                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2578                         break;
2579                 case DP_TRAINING_PATTERN_2:
2580                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2581                         break;
2582                 case DP_TRAINING_PATTERN_3:
2583                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2584                         break;
2585                 }
2586                 I915_WRITE(DP_TP_CTL(port), temp);
2587
2588         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2589                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2590                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2591
2592                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2593                 case DP_TRAINING_PATTERN_DISABLE:
2594                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2595                         break;
2596                 case DP_TRAINING_PATTERN_1:
2597                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2598                         break;
2599                 case DP_TRAINING_PATTERN_2:
2600                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2601                         break;
2602                 case DP_TRAINING_PATTERN_3:
2603                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2604                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2605                         break;
2606                 }
2607
2608         } else {
2609                 if (IS_CHERRYVIEW(dev))
2610                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2611                 else
2612                         *DP &= ~DP_LINK_TRAIN_MASK;
2613
2614                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2615                 case DP_TRAINING_PATTERN_DISABLE:
2616                         *DP |= DP_LINK_TRAIN_OFF;
2617                         break;
2618                 case DP_TRAINING_PATTERN_1:
2619                         *DP |= DP_LINK_TRAIN_PAT_1;
2620                         break;
2621                 case DP_TRAINING_PATTERN_2:
2622                         *DP |= DP_LINK_TRAIN_PAT_2;
2623                         break;
2624                 case DP_TRAINING_PATTERN_3:
2625                         if (IS_CHERRYVIEW(dev)) {
2626                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2627                         } else {
2628                                 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2629                                 *DP |= DP_LINK_TRAIN_PAT_2;
2630                         }
2631                         break;
2632                 }
2633         }
2634 }
2635
2636 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2637                                  struct intel_crtc_state *old_crtc_state)
2638 {
2639         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2640         struct drm_i915_private *dev_priv = to_i915(dev);
2641
2642         /* enable with pattern 1 (as per spec) */
2643
2644         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2645
2646         /*
2647          * Magic for VLV/CHV. We _must_ first set up the register
2648          * without actually enabling the port, and then do another
2649          * write to enable the port. Otherwise link training will
2650          * fail when the power sequencer is freshly used for this port.
2651          */
2652         intel_dp->DP |= DP_PORT_EN;
2653         if (old_crtc_state->has_audio)
2654                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2655
2656         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2657         POSTING_READ(intel_dp->output_reg);
2658 }
2659
2660 static void intel_enable_dp(struct intel_encoder *encoder,
2661                             struct intel_crtc_state *pipe_config)
2662 {
2663         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2664         struct drm_device *dev = encoder->base.dev;
2665         struct drm_i915_private *dev_priv = to_i915(dev);
2666         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2667         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2668         enum pipe pipe = crtc->pipe;
2669
2670         if (WARN_ON(dp_reg & DP_PORT_EN))
2671                 return;
2672
2673         pps_lock(intel_dp);
2674
2675         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2676                 vlv_init_panel_power_sequencer(intel_dp);
2677
2678         intel_dp_enable_port(intel_dp, pipe_config);
2679
2680         edp_panel_vdd_on(intel_dp);
2681         edp_panel_on(intel_dp);
2682         edp_panel_vdd_off(intel_dp, true);
2683
2684         pps_unlock(intel_dp);
2685
2686         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2687                 unsigned int lane_mask = 0x0;
2688
2689                 if (IS_CHERRYVIEW(dev))
2690                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2691
2692                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2693                                     lane_mask);
2694         }
2695
2696         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2697         intel_dp_start_link_train(intel_dp);
2698         intel_dp_stop_link_train(intel_dp);
2699
2700         if (pipe_config->has_audio) {
2701                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2702                                  pipe_name(pipe));
2703                 intel_audio_codec_enable(encoder);
2704         }
2705 }
2706
2707 static void g4x_enable_dp(struct intel_encoder *encoder,
2708                           struct intel_crtc_state *pipe_config,
2709                           struct drm_connector_state *conn_state)
2710 {
2711         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2712
2713         intel_enable_dp(encoder, pipe_config);
2714         intel_edp_backlight_on(intel_dp);
2715 }
2716
2717 static void vlv_enable_dp(struct intel_encoder *encoder,
2718                           struct intel_crtc_state *pipe_config,
2719                           struct drm_connector_state *conn_state)
2720 {
2721         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2722
2723         intel_edp_backlight_on(intel_dp);
2724         intel_psr_enable(intel_dp);
2725 }
2726
2727 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2728                               struct intel_crtc_state *pipe_config,
2729                               struct drm_connector_state *conn_state)
2730 {
2731         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2732         enum port port = dp_to_dig_port(intel_dp)->port;
2733
2734         intel_dp_prepare(encoder, pipe_config);
2735
2736         /* Only ilk+ has port A */
2737         if (port == PORT_A)
2738                 ironlake_edp_pll_on(intel_dp, pipe_config);
2739 }
2740
2741 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2742 {
2743         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2744         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2745         enum pipe pipe = intel_dp->pps_pipe;
2746         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2747
2748         edp_panel_vdd_off_sync(intel_dp);
2749
2750         /*
2751          * VLV seems to get confused when multiple power seqeuencers
2752          * have the same port selected (even if only one has power/vdd
2753          * enabled). The failure manifests as vlv_wait_port_ready() failing
2754          * CHV on the other hand doesn't seem to mind having the same port
2755          * selected in multiple power seqeuencers, but let's clear the
2756          * port select always when logically disconnecting a power sequencer
2757          * from a port.
2758          */
2759         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2760                       pipe_name(pipe), port_name(intel_dig_port->port));
2761         I915_WRITE(pp_on_reg, 0);
2762         POSTING_READ(pp_on_reg);
2763
2764         intel_dp->pps_pipe = INVALID_PIPE;
2765 }
2766
2767 static void vlv_steal_power_sequencer(struct drm_device *dev,
2768                                       enum pipe pipe)
2769 {
2770         struct drm_i915_private *dev_priv = to_i915(dev);
2771         struct intel_encoder *encoder;
2772
2773         lockdep_assert_held(&dev_priv->pps_mutex);
2774
2775         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2776                 return;
2777
2778         for_each_intel_encoder(dev, encoder) {
2779                 struct intel_dp *intel_dp;
2780                 enum port port;
2781
2782                 if (encoder->type != INTEL_OUTPUT_EDP)
2783                         continue;
2784
2785                 intel_dp = enc_to_intel_dp(&encoder->base);
2786                 port = dp_to_dig_port(intel_dp)->port;
2787
2788                 if (intel_dp->pps_pipe != pipe)
2789                         continue;
2790
2791                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2792                               pipe_name(pipe), port_name(port));
2793
2794                 WARN(encoder->base.crtc,
2795                      "stealing pipe %c power sequencer from active eDP port %c\n",
2796                      pipe_name(pipe), port_name(port));
2797
2798                 /* make sure vdd is off before we steal it */
2799                 vlv_detach_power_sequencer(intel_dp);
2800         }
2801 }
2802
2803 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2804 {
2805         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2806         struct intel_encoder *encoder = &intel_dig_port->base;
2807         struct drm_device *dev = encoder->base.dev;
2808         struct drm_i915_private *dev_priv = to_i915(dev);
2809         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2810
2811         lockdep_assert_held(&dev_priv->pps_mutex);
2812
2813         if (!is_edp(intel_dp))
2814                 return;
2815
2816         if (intel_dp->pps_pipe == crtc->pipe)
2817                 return;
2818
2819         /*
2820          * If another power sequencer was being used on this
2821          * port previously make sure to turn off vdd there while
2822          * we still have control of it.
2823          */
2824         if (intel_dp->pps_pipe != INVALID_PIPE)
2825                 vlv_detach_power_sequencer(intel_dp);
2826
2827         /*
2828          * We may be stealing the power
2829          * sequencer from another port.
2830          */
2831         vlv_steal_power_sequencer(dev, crtc->pipe);
2832
2833         /* now it's all ours */
2834         intel_dp->pps_pipe = crtc->pipe;
2835
2836         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2837                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2838
2839         /* init power sequencer on this pipe and port */
2840         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2841         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2842 }
2843
2844 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2845                               struct intel_crtc_state *pipe_config,
2846                               struct drm_connector_state *conn_state)
2847 {
2848         vlv_phy_pre_encoder_enable(encoder);
2849
2850         intel_enable_dp(encoder, pipe_config);
2851 }
2852
2853 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2854                                   struct intel_crtc_state *pipe_config,
2855                                   struct drm_connector_state *conn_state)
2856 {
2857         intel_dp_prepare(encoder, pipe_config);
2858
2859         vlv_phy_pre_pll_enable(encoder);
2860 }
2861
2862 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2863                               struct intel_crtc_state *pipe_config,
2864                               struct drm_connector_state *conn_state)
2865 {
2866         chv_phy_pre_encoder_enable(encoder);
2867
2868         intel_enable_dp(encoder, pipe_config);
2869
2870         /* Second common lane will stay alive on its own now */
2871         chv_phy_release_cl2_override(encoder);
2872 }
2873
2874 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2875                                   struct intel_crtc_state *pipe_config,
2876                                   struct drm_connector_state *conn_state)
2877 {
2878         intel_dp_prepare(encoder, pipe_config);
2879
2880         chv_phy_pre_pll_enable(encoder);
2881 }
2882
2883 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2884                                     struct intel_crtc_state *pipe_config,
2885                                     struct drm_connector_state *conn_state)
2886 {
2887         chv_phy_post_pll_disable(encoder);
2888 }
2889
2890 /*
2891  * Fetch AUX CH registers 0x202 - 0x207 which contain
2892  * link status information
2893  */
2894 bool
2895 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2896 {
2897         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2898                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2899 }
2900
2901 /* These are source-specific values. */
2902 uint8_t
2903 intel_dp_voltage_max(struct intel_dp *intel_dp)
2904 {
2905         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2906         struct drm_i915_private *dev_priv = to_i915(dev);
2907         enum port port = dp_to_dig_port(intel_dp)->port;
2908
2909         if (IS_BROXTON(dev))
2910                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2911         else if (INTEL_INFO(dev)->gen >= 9) {
2912                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2913                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2914                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2915         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2916                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2917         else if (IS_GEN7(dev) && port == PORT_A)
2918                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2919         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2920                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2921         else
2922                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2923 }
2924
2925 uint8_t
2926 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2927 {
2928         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2929         enum port port = dp_to_dig_port(intel_dp)->port;
2930
2931         if (INTEL_INFO(dev)->gen >= 9) {
2932                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2933                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2934                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2935                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2936                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2938                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2939                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2940                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2941                 default:
2942                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2943                 }
2944         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2945                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2946                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2947                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2948                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2949                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2950                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2951                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2952                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2953                 default:
2954                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2955                 }
2956         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2957                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2958                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2959                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2960                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2962                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2963                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2964                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2965                 default:
2966                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2967                 }
2968         } else if (IS_GEN7(dev) && port == PORT_A) {
2969                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2970                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2971                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2972                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2973                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2974                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2975                 default:
2976                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2977                 }
2978         } else {
2979                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2980                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2981                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2982                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2983                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2984                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2985                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2986                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2987                 default:
2988                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2989                 }
2990         }
2991 }
2992
2993 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2994 {
2995         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2996         unsigned long demph_reg_value, preemph_reg_value,
2997                 uniqtranscale_reg_value;
2998         uint8_t train_set = intel_dp->train_set[0];
2999
3000         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3001         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3002                 preemph_reg_value = 0x0004000;
3003                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3004                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3005                         demph_reg_value = 0x2B405555;
3006                         uniqtranscale_reg_value = 0x552AB83A;
3007                         break;
3008                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3009                         demph_reg_value = 0x2B404040;
3010                         uniqtranscale_reg_value = 0x5548B83A;
3011                         break;
3012                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3013                         demph_reg_value = 0x2B245555;
3014                         uniqtranscale_reg_value = 0x5560B83A;
3015                         break;
3016                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3017                         demph_reg_value = 0x2B405555;
3018                         uniqtranscale_reg_value = 0x5598DA3A;
3019                         break;
3020                 default:
3021                         return 0;
3022                 }
3023                 break;
3024         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3025                 preemph_reg_value = 0x0002000;
3026                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3027                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3028                         demph_reg_value = 0x2B404040;
3029                         uniqtranscale_reg_value = 0x5552B83A;
3030                         break;
3031                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3032                         demph_reg_value = 0x2B404848;
3033                         uniqtranscale_reg_value = 0x5580B83A;
3034                         break;
3035                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3036                         demph_reg_value = 0x2B404040;
3037                         uniqtranscale_reg_value = 0x55ADDA3A;
3038                         break;
3039                 default:
3040                         return 0;
3041                 }
3042                 break;
3043         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3044                 preemph_reg_value = 0x0000000;
3045                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3046                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3047                         demph_reg_value = 0x2B305555;
3048                         uniqtranscale_reg_value = 0x5570B83A;
3049                         break;
3050                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3051                         demph_reg_value = 0x2B2B4040;
3052                         uniqtranscale_reg_value = 0x55ADDA3A;
3053                         break;
3054                 default:
3055                         return 0;
3056                 }
3057                 break;
3058         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3059                 preemph_reg_value = 0x0006000;
3060                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3061                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3062                         demph_reg_value = 0x1B405555;
3063                         uniqtranscale_reg_value = 0x55ADDA3A;
3064                         break;
3065                 default:
3066                         return 0;
3067                 }
3068                 break;
3069         default:
3070                 return 0;
3071         }
3072
3073         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3074                                  uniqtranscale_reg_value, 0);
3075
3076         return 0;
3077 }
3078
3079 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3080 {
3081         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3082         u32 deemph_reg_value, margin_reg_value;
3083         bool uniq_trans_scale = false;
3084         uint8_t train_set = intel_dp->train_set[0];
3085
3086         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3087         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3088                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3089                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3090                         deemph_reg_value = 128;
3091                         margin_reg_value = 52;
3092                         break;
3093                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3094                         deemph_reg_value = 128;
3095                         margin_reg_value = 77;
3096                         break;
3097                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3098                         deemph_reg_value = 128;
3099                         margin_reg_value = 102;
3100                         break;
3101                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3102                         deemph_reg_value = 128;
3103                         margin_reg_value = 154;
3104                         uniq_trans_scale = true;
3105                         break;
3106                 default:
3107                         return 0;
3108                 }
3109                 break;
3110         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3111                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3112                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3113                         deemph_reg_value = 85;
3114                         margin_reg_value = 78;
3115                         break;
3116                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3117                         deemph_reg_value = 85;
3118                         margin_reg_value = 116;
3119                         break;
3120                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3121                         deemph_reg_value = 85;
3122                         margin_reg_value = 154;
3123                         break;
3124                 default:
3125                         return 0;
3126                 }
3127                 break;
3128         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3129                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3130                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3131                         deemph_reg_value = 64;
3132                         margin_reg_value = 104;
3133                         break;
3134                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3135                         deemph_reg_value = 64;
3136                         margin_reg_value = 154;
3137                         break;
3138                 default:
3139                         return 0;
3140                 }
3141                 break;
3142         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3143                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3144                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3145                         deemph_reg_value = 43;
3146                         margin_reg_value = 154;
3147                         break;
3148                 default:
3149                         return 0;
3150                 }
3151                 break;
3152         default:
3153                 return 0;
3154         }
3155
3156         chv_set_phy_signal_level(encoder, deemph_reg_value,
3157                                  margin_reg_value, uniq_trans_scale);
3158
3159         return 0;
3160 }
3161
3162 static uint32_t
3163 gen4_signal_levels(uint8_t train_set)
3164 {
3165         uint32_t        signal_levels = 0;
3166
3167         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3168         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3169         default:
3170                 signal_levels |= DP_VOLTAGE_0_4;
3171                 break;
3172         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3173                 signal_levels |= DP_VOLTAGE_0_6;
3174                 break;
3175         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3176                 signal_levels |= DP_VOLTAGE_0_8;
3177                 break;
3178         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3179                 signal_levels |= DP_VOLTAGE_1_2;
3180                 break;
3181         }
3182         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3183         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3184         default:
3185                 signal_levels |= DP_PRE_EMPHASIS_0;
3186                 break;
3187         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3188                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3189                 break;
3190         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3191                 signal_levels |= DP_PRE_EMPHASIS_6;
3192                 break;
3193         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3194                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3195                 break;
3196         }
3197         return signal_levels;
3198 }
3199
3200 /* Gen6's DP voltage swing and pre-emphasis control */
3201 static uint32_t
3202 gen6_edp_signal_levels(uint8_t train_set)
3203 {
3204         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3205                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3206         switch (signal_levels) {
3207         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3208         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3209                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3210         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3211                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3212         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3213         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3214                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3215         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3216         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3217                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3218         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3219         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3220                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3221         default:
3222                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3223                               "0x%x\n", signal_levels);
3224                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3225         }
3226 }
3227
3228 /* Gen7's DP voltage swing and pre-emphasis control */
3229 static uint32_t
3230 gen7_edp_signal_levels(uint8_t train_set)
3231 {
3232         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3233                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3234         switch (signal_levels) {
3235         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3236                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3237         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3238                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3239         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3240                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3241
3242         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3243                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3244         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3245                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3246
3247         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3248                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3249         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3250                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3251
3252         default:
3253                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3254                               "0x%x\n", signal_levels);
3255                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3256         }
3257 }
3258
3259 void
3260 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3261 {
3262         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3263         enum port port = intel_dig_port->port;
3264         struct drm_device *dev = intel_dig_port->base.base.dev;
3265         struct drm_i915_private *dev_priv = to_i915(dev);
3266         uint32_t signal_levels, mask = 0;
3267         uint8_t train_set = intel_dp->train_set[0];
3268
3269         if (HAS_DDI(dev)) {
3270                 signal_levels = ddi_signal_levels(intel_dp);
3271
3272                 if (IS_BROXTON(dev))
3273                         signal_levels = 0;
3274                 else
3275                         mask = DDI_BUF_EMP_MASK;
3276         } else if (IS_CHERRYVIEW(dev)) {
3277                 signal_levels = chv_signal_levels(intel_dp);
3278         } else if (IS_VALLEYVIEW(dev)) {
3279                 signal_levels = vlv_signal_levels(intel_dp);
3280         } else if (IS_GEN7(dev) && port == PORT_A) {
3281                 signal_levels = gen7_edp_signal_levels(train_set);
3282                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3283         } else if (IS_GEN6(dev) && port == PORT_A) {
3284                 signal_levels = gen6_edp_signal_levels(train_set);
3285                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3286         } else {
3287                 signal_levels = gen4_signal_levels(train_set);
3288                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3289         }
3290
3291         if (mask)
3292                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3293
3294         DRM_DEBUG_KMS("Using vswing level %d\n",
3295                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3296         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3297                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3298                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3299
3300         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3301
3302         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3303         POSTING_READ(intel_dp->output_reg);
3304 }
3305
3306 void
3307 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3308                                        uint8_t dp_train_pat)
3309 {
3310         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3311         struct drm_i915_private *dev_priv =
3312                 to_i915(intel_dig_port->base.base.dev);
3313
3314         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3315
3316         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3317         POSTING_READ(intel_dp->output_reg);
3318 }
3319
3320 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3321 {
3322         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3323         struct drm_device *dev = intel_dig_port->base.base.dev;
3324         struct drm_i915_private *dev_priv = to_i915(dev);
3325         enum port port = intel_dig_port->port;
3326         uint32_t val;
3327
3328         if (!HAS_DDI(dev))
3329                 return;
3330
3331         val = I915_READ(DP_TP_CTL(port));
3332         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3333         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3334         I915_WRITE(DP_TP_CTL(port), val);
3335
3336         /*
3337          * On PORT_A we can have only eDP in SST mode. There the only reason
3338          * we need to set idle transmission mode is to work around a HW issue
3339          * where we enable the pipe while not in idle link-training mode.
3340          * In this case there is requirement to wait for a minimum number of
3341          * idle patterns to be sent.
3342          */
3343         if (port == PORT_A)
3344                 return;
3345
3346         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3347                                     DP_TP_STATUS_IDLE_DONE,
3348                                     DP_TP_STATUS_IDLE_DONE,
3349                                     1))
3350                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3351 }
3352
3353 static void
3354 intel_dp_link_down(struct intel_dp *intel_dp)
3355 {
3356         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3357         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3358         enum port port = intel_dig_port->port;
3359         struct drm_device *dev = intel_dig_port->base.base.dev;
3360         struct drm_i915_private *dev_priv = to_i915(dev);
3361         uint32_t DP = intel_dp->DP;
3362
3363         if (WARN_ON(HAS_DDI(dev)))
3364                 return;
3365
3366         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3367                 return;
3368
3369         DRM_DEBUG_KMS("\n");
3370
3371         if ((IS_GEN7(dev) && port == PORT_A) ||
3372             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3373                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3374                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3375         } else {
3376                 if (IS_CHERRYVIEW(dev))
3377                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3378                 else
3379                         DP &= ~DP_LINK_TRAIN_MASK;
3380                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3381         }
3382         I915_WRITE(intel_dp->output_reg, DP);
3383         POSTING_READ(intel_dp->output_reg);
3384
3385         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3386         I915_WRITE(intel_dp->output_reg, DP);
3387         POSTING_READ(intel_dp->output_reg);
3388
3389         /*
3390          * HW workaround for IBX, we need to move the port
3391          * to transcoder A after disabling it to allow the
3392          * matching HDMI port to be enabled on transcoder A.
3393          */
3394         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3395                 /*
3396                  * We get CPU/PCH FIFO underruns on the other pipe when
3397                  * doing the workaround. Sweep them under the rug.
3398                  */
3399                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3400                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3401
3402                 /* always enable with pattern 1 (as per spec) */
3403                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3404                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3405                 I915_WRITE(intel_dp->output_reg, DP);
3406                 POSTING_READ(intel_dp->output_reg);
3407
3408                 DP &= ~DP_PORT_EN;
3409                 I915_WRITE(intel_dp->output_reg, DP);
3410                 POSTING_READ(intel_dp->output_reg);
3411
3412                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3413                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3414                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3415         }
3416
3417         msleep(intel_dp->panel_power_down_delay);
3418
3419         intel_dp->DP = DP;
3420 }
3421
3422 static bool
3423 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3424 {
3425         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3426                              sizeof(intel_dp->dpcd)) < 0)
3427                 return false; /* aux transfer failed */
3428
3429         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3430
3431         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3432 }
3433
3434 static bool
3435 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3436 {
3437         struct drm_i915_private *dev_priv =
3438                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3439
3440         /* this function is meant to be called only once */
3441         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3442
3443         if (!intel_dp_read_dpcd(intel_dp))
3444                 return false;
3445
3446         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3447                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3448                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3449
3450         /* Check if the panel supports PSR */
3451         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3452                          intel_dp->psr_dpcd,
3453                          sizeof(intel_dp->psr_dpcd));
3454         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3455                 dev_priv->psr.sink_support = true;
3456                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3457         }
3458
3459         if (INTEL_GEN(dev_priv) >= 9 &&
3460             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3461                 uint8_t frame_sync_cap;
3462
3463                 dev_priv->psr.sink_support = true;
3464                 drm_dp_dpcd_read(&intel_dp->aux,
3465                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3466                                  &frame_sync_cap, 1);
3467                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3468                 /* PSR2 needs frame sync as well */
3469                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3470                 DRM_DEBUG_KMS("PSR2 %s on sink",
3471                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3472         }
3473
3474         /* Read the eDP Display control capabilities registers */
3475         if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3476             drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3477                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd) ==
3478                              sizeof(intel_dp->edp_dpcd)))
3479                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3480                               intel_dp->edp_dpcd);
3481
3482         /* Intermediate frequency support */
3483         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3484                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3485                 int i;
3486
3487                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3488                                 sink_rates, sizeof(sink_rates));
3489
3490                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3491                         int val = le16_to_cpu(sink_rates[i]);
3492
3493                         if (val == 0)
3494                                 break;
3495
3496                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3497                         intel_dp->sink_rates[i] = (val * 200) / 10;
3498                 }
3499                 intel_dp->num_sink_rates = i;
3500         }
3501
3502         return true;
3503 }
3504
3505
3506 static bool
3507 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3508 {
3509         if (!intel_dp_read_dpcd(intel_dp))
3510                 return false;
3511
3512         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3513                              &intel_dp->sink_count, 1) < 0)
3514                 return false;
3515
3516         /*
3517          * Sink count can change between short pulse hpd hence
3518          * a member variable in intel_dp will track any changes
3519          * between short pulse interrupts.
3520          */
3521         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3522
3523         /*
3524          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3525          * a dongle is present but no display. Unless we require to know
3526          * if a dongle is present or not, we don't need to update
3527          * downstream port information. So, an early return here saves
3528          * time from performing other operations which are not required.
3529          */
3530         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3531                 return false;
3532
3533         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3534               DP_DWN_STRM_PORT_PRESENT))
3535                 return true; /* native DP sink */
3536
3537         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3538                 return true; /* no per-port downstream info */
3539
3540         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3541                              intel_dp->downstream_ports,
3542                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3543                 return false; /* downstream port status fetch failed */
3544
3545         return true;
3546 }
3547
3548 static void
3549 intel_dp_probe_oui(struct intel_dp *intel_dp)
3550 {
3551         u8 buf[3];
3552
3553         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3554                 return;
3555
3556         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3557                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3558                               buf[0], buf[1], buf[2]);
3559
3560         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3561                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3562                               buf[0], buf[1], buf[2]);
3563 }
3564
3565 static bool
3566 intel_dp_can_mst(struct intel_dp *intel_dp)
3567 {
3568         u8 buf[1];
3569
3570         if (!i915.enable_dp_mst)
3571                 return false;
3572
3573         if (!intel_dp->can_mst)
3574                 return false;
3575
3576         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3577                 return false;
3578
3579         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3580                 return false;
3581
3582         return buf[0] & DP_MST_CAP;
3583 }
3584
3585 static void
3586 intel_dp_configure_mst(struct intel_dp *intel_dp)
3587 {
3588         if (!i915.enable_dp_mst)
3589                 return;
3590
3591         if (!intel_dp->can_mst)
3592                 return;
3593
3594         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3595
3596         if (intel_dp->is_mst)
3597                 DRM_DEBUG_KMS("Sink is MST capable\n");
3598         else
3599                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3600
3601         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3602                                         intel_dp->is_mst);
3603 }
3604
3605 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3606 {
3607         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3608         struct drm_device *dev = dig_port->base.base.dev;
3609         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3610         u8 buf;
3611         int ret = 0;
3612         int count = 0;
3613         int attempts = 10;
3614
3615         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3616                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3617                 ret = -EIO;
3618                 goto out;
3619         }
3620
3621         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3622                                buf & ~DP_TEST_SINK_START) < 0) {
3623                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3624                 ret = -EIO;
3625                 goto out;
3626         }
3627
3628         do {
3629                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3630
3631                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3632                                       DP_TEST_SINK_MISC, &buf) < 0) {
3633                         ret = -EIO;
3634                         goto out;
3635                 }
3636                 count = buf & DP_TEST_COUNT_MASK;
3637         } while (--attempts && count);
3638
3639         if (attempts == 0) {
3640                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3641                 ret = -ETIMEDOUT;
3642         }
3643
3644  out:
3645         hsw_enable_ips(intel_crtc);
3646         return ret;
3647 }
3648
3649 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3650 {
3651         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3652         struct drm_device *dev = dig_port->base.base.dev;
3653         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3654         u8 buf;
3655         int ret;
3656
3657         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3658                 return -EIO;
3659
3660         if (!(buf & DP_TEST_CRC_SUPPORTED))
3661                 return -ENOTTY;
3662
3663         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3664                 return -EIO;
3665
3666         if (buf & DP_TEST_SINK_START) {
3667                 ret = intel_dp_sink_crc_stop(intel_dp);
3668                 if (ret)
3669                         return ret;
3670         }
3671
3672         hsw_disable_ips(intel_crtc);
3673
3674         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3675                                buf | DP_TEST_SINK_START) < 0) {
3676                 hsw_enable_ips(intel_crtc);
3677                 return -EIO;
3678         }
3679
3680         intel_wait_for_vblank(dev, intel_crtc->pipe);
3681         return 0;
3682 }
3683
3684 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3685 {
3686         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3687         struct drm_device *dev = dig_port->base.base.dev;
3688         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3689         u8 buf;
3690         int count, ret;
3691         int attempts = 6;
3692
3693         ret = intel_dp_sink_crc_start(intel_dp);
3694         if (ret)
3695                 return ret;
3696
3697         do {
3698                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3699
3700                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3701                                       DP_TEST_SINK_MISC, &buf) < 0) {
3702                         ret = -EIO;
3703                         goto stop;
3704                 }
3705                 count = buf & DP_TEST_COUNT_MASK;
3706
3707         } while (--attempts && count == 0);
3708
3709         if (attempts == 0) {
3710                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3711                 ret = -ETIMEDOUT;
3712                 goto stop;
3713         }
3714
3715         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3716                 ret = -EIO;
3717                 goto stop;
3718         }
3719
3720 stop:
3721         intel_dp_sink_crc_stop(intel_dp);
3722         return ret;
3723 }
3724
3725 static bool
3726 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3727 {
3728         return drm_dp_dpcd_read(&intel_dp->aux,
3729                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3730                                        sink_irq_vector, 1) == 1;
3731 }
3732
3733 static bool
3734 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3735 {
3736         int ret;
3737
3738         ret = drm_dp_dpcd_read(&intel_dp->aux,
3739                                              DP_SINK_COUNT_ESI,
3740                                              sink_irq_vector, 14);
3741         if (ret != 14)
3742                 return false;
3743
3744         return true;
3745 }
3746
3747 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3748 {
3749         uint8_t test_result = DP_TEST_ACK;
3750         return test_result;
3751 }
3752
3753 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3754 {
3755         uint8_t test_result = DP_TEST_NAK;
3756         return test_result;
3757 }
3758
3759 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3760 {
3761         uint8_t test_result = DP_TEST_NAK;
3762         struct intel_connector *intel_connector = intel_dp->attached_connector;
3763         struct drm_connector *connector = &intel_connector->base;
3764
3765         if (intel_connector->detect_edid == NULL ||
3766             connector->edid_corrupt ||
3767             intel_dp->aux.i2c_defer_count > 6) {
3768                 /* Check EDID read for NACKs, DEFERs and corruption
3769                  * (DP CTS 1.2 Core r1.1)
3770                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3771                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3772                  *    4.2.2.6 : EDID corruption detected
3773                  * Use failsafe mode for all cases
3774                  */
3775                 if (intel_dp->aux.i2c_nack_count > 0 ||
3776                         intel_dp->aux.i2c_defer_count > 0)
3777                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3778                                       intel_dp->aux.i2c_nack_count,
3779                                       intel_dp->aux.i2c_defer_count);
3780                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3781         } else {
3782                 struct edid *block = intel_connector->detect_edid;
3783
3784                 /* We have to write the checksum
3785                  * of the last block read
3786                  */
3787                 block += intel_connector->detect_edid->extensions;
3788
3789                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3790                                         DP_TEST_EDID_CHECKSUM,
3791                                         &block->checksum,
3792                                         1))
3793                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3794
3795                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3796                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3797         }
3798
3799         /* Set test active flag here so userspace doesn't interrupt things */
3800         intel_dp->compliance_test_active = 1;
3801
3802         return test_result;
3803 }
3804
3805 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3806 {
3807         uint8_t test_result = DP_TEST_NAK;
3808         return test_result;
3809 }
3810
3811 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3812 {
3813         uint8_t response = DP_TEST_NAK;
3814         uint8_t rxdata = 0;
3815         int status = 0;
3816
3817         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3818         if (status <= 0) {
3819                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3820                 goto update_status;
3821         }
3822
3823         switch (rxdata) {
3824         case DP_TEST_LINK_TRAINING:
3825                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3826                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3827                 response = intel_dp_autotest_link_training(intel_dp);
3828                 break;
3829         case DP_TEST_LINK_VIDEO_PATTERN:
3830                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3831                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3832                 response = intel_dp_autotest_video_pattern(intel_dp);
3833                 break;
3834         case DP_TEST_LINK_EDID_READ:
3835                 DRM_DEBUG_KMS("EDID test requested\n");
3836                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3837                 response = intel_dp_autotest_edid(intel_dp);
3838                 break;
3839         case DP_TEST_LINK_PHY_TEST_PATTERN:
3840                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3841                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3842                 response = intel_dp_autotest_phy_pattern(intel_dp);
3843                 break;
3844         default:
3845                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3846                 break;
3847         }
3848
3849 update_status:
3850         status = drm_dp_dpcd_write(&intel_dp->aux,
3851                                    DP_TEST_RESPONSE,
3852                                    &response, 1);
3853         if (status <= 0)
3854                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3855 }
3856
3857 static int
3858 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3859 {
3860         bool bret;
3861
3862         if (intel_dp->is_mst) {
3863                 u8 esi[16] = { 0 };
3864                 int ret = 0;
3865                 int retry;
3866                 bool handled;
3867                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3868 go_again:
3869                 if (bret == true) {
3870
3871                         /* check link status - esi[10] = 0x200c */
3872                         if (intel_dp->active_mst_links &&
3873                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3874                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3875                                 intel_dp_start_link_train(intel_dp);
3876                                 intel_dp_stop_link_train(intel_dp);
3877                         }
3878
3879                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3880                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3881
3882                         if (handled) {
3883                                 for (retry = 0; retry < 3; retry++) {
3884                                         int wret;
3885                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3886                                                                  DP_SINK_COUNT_ESI+1,
3887                                                                  &esi[1], 3);
3888                                         if (wret == 3) {
3889                                                 break;
3890                                         }
3891                                 }
3892
3893                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3894                                 if (bret == true) {
3895                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3896                                         goto go_again;
3897                                 }
3898                         } else
3899                                 ret = 0;
3900
3901                         return ret;
3902                 } else {
3903                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3904                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3905                         intel_dp->is_mst = false;
3906                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3907                         /* send a hotplug event */
3908                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3909                 }
3910         }
3911         return -EINVAL;
3912 }
3913
3914 static void
3915 intel_dp_check_link_status(struct intel_dp *intel_dp)
3916 {
3917         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3918         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3919         u8 link_status[DP_LINK_STATUS_SIZE];
3920
3921         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3922
3923         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3924                 DRM_ERROR("Failed to get link status\n");
3925                 return;
3926         }
3927
3928         if (!intel_encoder->base.crtc)
3929                 return;
3930
3931         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3932                 return;
3933
3934         /* if link training is requested we should perform it always */
3935         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3936             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3937                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3938                               intel_encoder->base.name);
3939                 intel_dp_start_link_train(intel_dp);
3940                 intel_dp_stop_link_train(intel_dp);
3941         }
3942 }
3943
3944 /*
3945  * According to DP spec
3946  * 5.1.2:
3947  *  1. Read DPCD
3948  *  2. Configure link according to Receiver Capabilities
3949  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3950  *  4. Check link status on receipt of hot-plug interrupt
3951  *
3952  * intel_dp_short_pulse -  handles short pulse interrupts
3953  * when full detection is not required.
3954  * Returns %true if short pulse is handled and full detection
3955  * is NOT required and %false otherwise.
3956  */
3957 static bool
3958 intel_dp_short_pulse(struct intel_dp *intel_dp)
3959 {
3960         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3961         u8 sink_irq_vector = 0;
3962         u8 old_sink_count = intel_dp->sink_count;
3963         bool ret;
3964
3965         /*
3966          * Clearing compliance test variables to allow capturing
3967          * of values for next automated test request.
3968          */
3969         intel_dp->compliance_test_active = 0;
3970         intel_dp->compliance_test_type = 0;
3971         intel_dp->compliance_test_data = 0;
3972
3973         /*
3974          * Now read the DPCD to see if it's actually running
3975          * If the current value of sink count doesn't match with
3976          * the value that was stored earlier or dpcd read failed
3977          * we need to do full detection
3978          */
3979         ret = intel_dp_get_dpcd(intel_dp);
3980
3981         if ((old_sink_count != intel_dp->sink_count) || !ret) {
3982                 /* No need to proceed if we are going to do full detect */
3983                 return false;
3984         }
3985
3986         /* Try to read the source of the interrupt */
3987         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3988             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
3989             sink_irq_vector != 0) {
3990                 /* Clear interrupt source */
3991                 drm_dp_dpcd_writeb(&intel_dp->aux,
3992                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3993                                    sink_irq_vector);
3994
3995                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3996                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3997                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3998                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3999         }
4000
4001         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4002         intel_dp_check_link_status(intel_dp);
4003         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4004
4005         return true;
4006 }
4007
4008 /* XXX this is probably wrong for multiple downstream ports */
4009 static enum drm_connector_status
4010 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4011 {
4012         uint8_t *dpcd = intel_dp->dpcd;
4013         uint8_t type;
4014
4015         if (!intel_dp_get_dpcd(intel_dp))
4016                 return connector_status_disconnected;
4017
4018         if (is_edp(intel_dp))
4019                 return connector_status_connected;
4020
4021         /* if there's no downstream port, we're done */
4022         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4023                 return connector_status_connected;
4024
4025         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4026         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4027             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4028
4029                 return intel_dp->sink_count ?
4030                 connector_status_connected : connector_status_disconnected;
4031         }
4032
4033         if (intel_dp_can_mst(intel_dp))
4034                 return connector_status_connected;
4035
4036         /* If no HPD, poke DDC gently */
4037         if (drm_probe_ddc(&intel_dp->aux.ddc))
4038                 return connector_status_connected;
4039
4040         /* Well we tried, say unknown for unreliable port types */
4041         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4042                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4043                 if (type == DP_DS_PORT_TYPE_VGA ||
4044                     type == DP_DS_PORT_TYPE_NON_EDID)
4045                         return connector_status_unknown;
4046         } else {
4047                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4048                         DP_DWN_STRM_PORT_TYPE_MASK;
4049                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4050                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4051                         return connector_status_unknown;
4052         }
4053
4054         /* Anything else is out of spec, warn and ignore */
4055         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4056         return connector_status_disconnected;
4057 }
4058
4059 static enum drm_connector_status
4060 edp_detect(struct intel_dp *intel_dp)
4061 {
4062         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4063         enum drm_connector_status status;
4064
4065         status = intel_panel_detect(dev);
4066         if (status == connector_status_unknown)
4067                 status = connector_status_connected;
4068
4069         return status;
4070 }
4071
4072 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4073                                        struct intel_digital_port *port)
4074 {
4075         u32 bit;
4076
4077         switch (port->port) {
4078         case PORT_A:
4079                 return true;
4080         case PORT_B:
4081                 bit = SDE_PORTB_HOTPLUG;
4082                 break;
4083         case PORT_C:
4084                 bit = SDE_PORTC_HOTPLUG;
4085                 break;
4086         case PORT_D:
4087                 bit = SDE_PORTD_HOTPLUG;
4088                 break;
4089         default:
4090                 MISSING_CASE(port->port);
4091                 return false;
4092         }
4093
4094         return I915_READ(SDEISR) & bit;
4095 }
4096
4097 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4098                                        struct intel_digital_port *port)
4099 {
4100         u32 bit;
4101
4102         switch (port->port) {
4103         case PORT_A:
4104                 return true;
4105         case PORT_B:
4106                 bit = SDE_PORTB_HOTPLUG_CPT;
4107                 break;
4108         case PORT_C:
4109                 bit = SDE_PORTC_HOTPLUG_CPT;
4110                 break;
4111         case PORT_D:
4112                 bit = SDE_PORTD_HOTPLUG_CPT;
4113                 break;
4114         case PORT_E:
4115                 bit = SDE_PORTE_HOTPLUG_SPT;
4116                 break;
4117         default:
4118                 MISSING_CASE(port->port);
4119                 return false;
4120         }
4121
4122         return I915_READ(SDEISR) & bit;
4123 }
4124
4125 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4126                                        struct intel_digital_port *port)
4127 {
4128         u32 bit;
4129
4130         switch (port->port) {
4131         case PORT_B:
4132                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4133                 break;
4134         case PORT_C:
4135                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4136                 break;
4137         case PORT_D:
4138                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4139                 break;
4140         default:
4141                 MISSING_CASE(port->port);
4142                 return false;
4143         }
4144
4145         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4146 }
4147
4148 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4149                                         struct intel_digital_port *port)
4150 {
4151         u32 bit;
4152
4153         switch (port->port) {
4154         case PORT_B:
4155                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4156                 break;
4157         case PORT_C:
4158                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4159                 break;
4160         case PORT_D:
4161                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4162                 break;
4163         default:
4164                 MISSING_CASE(port->port);
4165                 return false;
4166         }
4167
4168         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4169 }
4170
4171 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4172                                        struct intel_digital_port *intel_dig_port)
4173 {
4174         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4175         enum port port;
4176         u32 bit;
4177
4178         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4179         switch (port) {
4180         case PORT_A:
4181                 bit = BXT_DE_PORT_HP_DDIA;
4182                 break;
4183         case PORT_B:
4184                 bit = BXT_DE_PORT_HP_DDIB;
4185                 break;
4186         case PORT_C:
4187                 bit = BXT_DE_PORT_HP_DDIC;
4188                 break;
4189         default:
4190                 MISSING_CASE(port);
4191                 return false;
4192         }
4193
4194         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4195 }
4196
4197 /*
4198  * intel_digital_port_connected - is the specified port connected?
4199  * @dev_priv: i915 private structure
4200  * @port: the port to test
4201  *
4202  * Return %true if @port is connected, %false otherwise.
4203  */
4204 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4205                                          struct intel_digital_port *port)
4206 {
4207         if (HAS_PCH_IBX(dev_priv))
4208                 return ibx_digital_port_connected(dev_priv, port);
4209         else if (HAS_PCH_SPLIT(dev_priv))
4210                 return cpt_digital_port_connected(dev_priv, port);
4211         else if (IS_BROXTON(dev_priv))
4212                 return bxt_digital_port_connected(dev_priv, port);
4213         else if (IS_GM45(dev_priv))
4214                 return gm45_digital_port_connected(dev_priv, port);
4215         else
4216                 return g4x_digital_port_connected(dev_priv, port);
4217 }
4218
4219 static struct edid *
4220 intel_dp_get_edid(struct intel_dp *intel_dp)
4221 {
4222         struct intel_connector *intel_connector = intel_dp->attached_connector;
4223
4224         /* use cached edid if we have one */
4225         if (intel_connector->edid) {
4226                 /* invalid edid */
4227                 if (IS_ERR(intel_connector->edid))
4228                         return NULL;
4229
4230                 return drm_edid_duplicate(intel_connector->edid);
4231         } else
4232                 return drm_get_edid(&intel_connector->base,
4233                                     &intel_dp->aux.ddc);
4234 }
4235
4236 static void
4237 intel_dp_set_edid(struct intel_dp *intel_dp)
4238 {
4239         struct intel_connector *intel_connector = intel_dp->attached_connector;
4240         struct edid *edid;
4241
4242         intel_dp_unset_edid(intel_dp);
4243         edid = intel_dp_get_edid(intel_dp);
4244         intel_connector->detect_edid = edid;
4245
4246         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4247                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4248         else
4249                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4250 }
4251
4252 static void
4253 intel_dp_unset_edid(struct intel_dp *intel_dp)
4254 {
4255         struct intel_connector *intel_connector = intel_dp->attached_connector;
4256
4257         kfree(intel_connector->detect_edid);
4258         intel_connector->detect_edid = NULL;
4259
4260         intel_dp->has_audio = false;
4261 }
4262
4263 static void
4264 intel_dp_long_pulse(struct intel_connector *intel_connector)
4265 {
4266         struct drm_connector *connector = &intel_connector->base;
4267         struct intel_dp *intel_dp = intel_attached_dp(connector);
4268         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4269         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4270         struct drm_device *dev = connector->dev;
4271         enum drm_connector_status status;
4272         enum intel_display_power_domain power_domain;
4273         u8 sink_irq_vector = 0;
4274
4275         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4276         intel_display_power_get(to_i915(dev), power_domain);
4277
4278         /* Can't disconnect eDP, but you can close the lid... */
4279         if (is_edp(intel_dp))
4280                 status = edp_detect(intel_dp);
4281         else if (intel_digital_port_connected(to_i915(dev),
4282                                               dp_to_dig_port(intel_dp)))
4283                 status = intel_dp_detect_dpcd(intel_dp);
4284         else
4285                 status = connector_status_disconnected;
4286
4287         if (status != connector_status_connected) {
4288                 intel_dp->compliance_test_active = 0;
4289                 intel_dp->compliance_test_type = 0;
4290                 intel_dp->compliance_test_data = 0;
4291
4292                 if (intel_dp->is_mst) {
4293                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4294                                       intel_dp->is_mst,
4295                                       intel_dp->mst_mgr.mst_state);
4296                         intel_dp->is_mst = false;
4297                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4298                                                         intel_dp->is_mst);
4299                 }
4300
4301                 goto out;
4302         }
4303
4304         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4305                 intel_encoder->type = INTEL_OUTPUT_DP;
4306
4307         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4308                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4309                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4310
4311         intel_dp_print_rates(intel_dp);
4312
4313         intel_dp_probe_oui(intel_dp);
4314
4315         intel_dp_configure_mst(intel_dp);
4316
4317         if (intel_dp->is_mst) {
4318                 /*
4319                  * If we are in MST mode then this connector
4320                  * won't appear connected or have anything
4321                  * with EDID on it
4322                  */
4323                 status = connector_status_disconnected;
4324                 goto out;
4325         } else if (connector->status == connector_status_connected) {
4326                 /*
4327                  * If display was connected already and is still connected
4328                  * check links status, there has been known issues of
4329                  * link loss triggerring long pulse!!!!
4330                  */
4331                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4332                 intel_dp_check_link_status(intel_dp);
4333                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4334                 goto out;
4335         }
4336
4337         /*
4338          * Clearing NACK and defer counts to get their exact values
4339          * while reading EDID which are required by Compliance tests
4340          * 4.2.2.4 and 4.2.2.5
4341          */
4342         intel_dp->aux.i2c_nack_count = 0;
4343         intel_dp->aux.i2c_defer_count = 0;
4344
4345         intel_dp_set_edid(intel_dp);
4346
4347         status = connector_status_connected;
4348         intel_dp->detect_done = true;
4349
4350         /* Try to read the source of the interrupt */
4351         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4352             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4353             sink_irq_vector != 0) {
4354                 /* Clear interrupt source */
4355                 drm_dp_dpcd_writeb(&intel_dp->aux,
4356                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4357                                    sink_irq_vector);
4358
4359                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4360                         intel_dp_handle_test_request(intel_dp);
4361                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4362                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4363         }
4364
4365 out:
4366         if ((status != connector_status_connected) &&
4367             (intel_dp->is_mst == false))
4368                 intel_dp_unset_edid(intel_dp);
4369
4370         intel_display_power_put(to_i915(dev), power_domain);
4371         return;
4372 }
4373
4374 static enum drm_connector_status
4375 intel_dp_detect(struct drm_connector *connector, bool force)
4376 {
4377         struct intel_dp *intel_dp = intel_attached_dp(connector);
4378         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4379         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4380         struct intel_connector *intel_connector = to_intel_connector(connector);
4381
4382         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4383                       connector->base.id, connector->name);
4384
4385         if (intel_dp->is_mst) {
4386                 /* MST devices are disconnected from a monitor POV */
4387                 intel_dp_unset_edid(intel_dp);
4388                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4389                         intel_encoder->type = INTEL_OUTPUT_DP;
4390                 return connector_status_disconnected;
4391         }
4392
4393         /* If full detect is not performed yet, do a full detect */
4394         if (!intel_dp->detect_done)
4395                 intel_dp_long_pulse(intel_dp->attached_connector);
4396
4397         intel_dp->detect_done = false;
4398
4399         if (is_edp(intel_dp) || intel_connector->detect_edid)
4400                 return connector_status_connected;
4401         else
4402                 return connector_status_disconnected;
4403 }
4404
4405 static void
4406 intel_dp_force(struct drm_connector *connector)
4407 {
4408         struct intel_dp *intel_dp = intel_attached_dp(connector);
4409         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4410         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4411         enum intel_display_power_domain power_domain;
4412
4413         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4414                       connector->base.id, connector->name);
4415         intel_dp_unset_edid(intel_dp);
4416
4417         if (connector->status != connector_status_connected)
4418                 return;
4419
4420         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4421         intel_display_power_get(dev_priv, power_domain);
4422
4423         intel_dp_set_edid(intel_dp);
4424
4425         intel_display_power_put(dev_priv, power_domain);
4426
4427         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4428                 intel_encoder->type = INTEL_OUTPUT_DP;
4429 }
4430
4431 static int intel_dp_get_modes(struct drm_connector *connector)
4432 {
4433         struct intel_connector *intel_connector = to_intel_connector(connector);
4434         struct edid *edid;
4435
4436         edid = intel_connector->detect_edid;
4437         if (edid) {
4438                 int ret = intel_connector_update_modes(connector, edid);
4439                 if (ret)
4440                         return ret;
4441         }
4442
4443         /* if eDP has no EDID, fall back to fixed mode */
4444         if (is_edp(intel_attached_dp(connector)) &&
4445             intel_connector->panel.fixed_mode) {
4446                 struct drm_display_mode *mode;
4447
4448                 mode = drm_mode_duplicate(connector->dev,
4449                                           intel_connector->panel.fixed_mode);
4450                 if (mode) {
4451                         drm_mode_probed_add(connector, mode);
4452                         return 1;
4453                 }
4454         }
4455
4456         return 0;
4457 }
4458
4459 static bool
4460 intel_dp_detect_audio(struct drm_connector *connector)
4461 {
4462         bool has_audio = false;
4463         struct edid *edid;
4464
4465         edid = to_intel_connector(connector)->detect_edid;
4466         if (edid)
4467                 has_audio = drm_detect_monitor_audio(edid);
4468
4469         return has_audio;
4470 }
4471
4472 static int
4473 intel_dp_set_property(struct drm_connector *connector,
4474                       struct drm_property *property,
4475                       uint64_t val)
4476 {
4477         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4478         struct intel_connector *intel_connector = to_intel_connector(connector);
4479         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4480         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4481         int ret;
4482
4483         ret = drm_object_property_set_value(&connector->base, property, val);
4484         if (ret)
4485                 return ret;
4486
4487         if (property == dev_priv->force_audio_property) {
4488                 int i = val;
4489                 bool has_audio;
4490
4491                 if (i == intel_dp->force_audio)
4492                         return 0;
4493
4494                 intel_dp->force_audio = i;
4495
4496                 if (i == HDMI_AUDIO_AUTO)
4497                         has_audio = intel_dp_detect_audio(connector);
4498                 else
4499                         has_audio = (i == HDMI_AUDIO_ON);
4500
4501                 if (has_audio == intel_dp->has_audio)
4502                         return 0;
4503
4504                 intel_dp->has_audio = has_audio;
4505                 goto done;
4506         }
4507
4508         if (property == dev_priv->broadcast_rgb_property) {
4509                 bool old_auto = intel_dp->color_range_auto;
4510                 bool old_range = intel_dp->limited_color_range;
4511
4512                 switch (val) {
4513                 case INTEL_BROADCAST_RGB_AUTO:
4514                         intel_dp->color_range_auto = true;
4515                         break;
4516                 case INTEL_BROADCAST_RGB_FULL:
4517                         intel_dp->color_range_auto = false;
4518                         intel_dp->limited_color_range = false;
4519                         break;
4520                 case INTEL_BROADCAST_RGB_LIMITED:
4521                         intel_dp->color_range_auto = false;
4522                         intel_dp->limited_color_range = true;
4523                         break;
4524                 default:
4525                         return -EINVAL;
4526                 }
4527
4528                 if (old_auto == intel_dp->color_range_auto &&
4529                     old_range == intel_dp->limited_color_range)
4530                         return 0;
4531
4532                 goto done;
4533         }
4534
4535         if (is_edp(intel_dp) &&
4536             property == connector->dev->mode_config.scaling_mode_property) {
4537                 if (val == DRM_MODE_SCALE_NONE) {
4538                         DRM_DEBUG_KMS("no scaling not supported\n");
4539                         return -EINVAL;
4540                 }
4541                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4542                     val == DRM_MODE_SCALE_CENTER) {
4543                         DRM_DEBUG_KMS("centering not supported\n");
4544                         return -EINVAL;
4545                 }
4546
4547                 if (intel_connector->panel.fitting_mode == val) {
4548                         /* the eDP scaling property is not changed */
4549                         return 0;
4550                 }
4551                 intel_connector->panel.fitting_mode = val;
4552
4553                 goto done;
4554         }
4555
4556         return -EINVAL;
4557
4558 done:
4559         if (intel_encoder->base.crtc)
4560                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4561
4562         return 0;
4563 }
4564
4565 static int
4566 intel_dp_connector_register(struct drm_connector *connector)
4567 {
4568         struct intel_dp *intel_dp = intel_attached_dp(connector);
4569         int ret;
4570
4571         ret = intel_connector_register(connector);
4572         if (ret)
4573                 return ret;
4574
4575         i915_debugfs_connector_add(connector);
4576
4577         DRM_DEBUG_KMS("registering %s bus for %s\n",
4578                       intel_dp->aux.name, connector->kdev->kobj.name);
4579
4580         intel_dp->aux.dev = connector->kdev;
4581         return drm_dp_aux_register(&intel_dp->aux);
4582 }
4583
4584 static void
4585 intel_dp_connector_unregister(struct drm_connector *connector)
4586 {
4587         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4588         intel_connector_unregister(connector);
4589 }
4590
4591 static void
4592 intel_dp_connector_destroy(struct drm_connector *connector)
4593 {
4594         struct intel_connector *intel_connector = to_intel_connector(connector);
4595
4596         kfree(intel_connector->detect_edid);
4597
4598         if (!IS_ERR_OR_NULL(intel_connector->edid))
4599                 kfree(intel_connector->edid);
4600
4601         /* Can't call is_edp() since the encoder may have been destroyed
4602          * already. */
4603         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4604                 intel_panel_fini(&intel_connector->panel);
4605
4606         drm_connector_cleanup(connector);
4607         kfree(connector);
4608 }
4609
4610 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4611 {
4612         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4613         struct intel_dp *intel_dp = &intel_dig_port->dp;
4614
4615         intel_dp_mst_encoder_cleanup(intel_dig_port);
4616         if (is_edp(intel_dp)) {
4617                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4618                 /*
4619                  * vdd might still be enabled do to the delayed vdd off.
4620                  * Make sure vdd is actually turned off here.
4621                  */
4622                 pps_lock(intel_dp);
4623                 edp_panel_vdd_off_sync(intel_dp);
4624                 pps_unlock(intel_dp);
4625
4626                 if (intel_dp->edp_notifier.notifier_call) {
4627                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4628                         intel_dp->edp_notifier.notifier_call = NULL;
4629                 }
4630         }
4631
4632         intel_dp_aux_fini(intel_dp);
4633
4634         drm_encoder_cleanup(encoder);
4635         kfree(intel_dig_port);
4636 }
4637
4638 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4639 {
4640         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4641
4642         if (!is_edp(intel_dp))
4643                 return;
4644
4645         /*
4646          * vdd might still be enabled do to the delayed vdd off.
4647          * Make sure vdd is actually turned off here.
4648          */
4649         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4650         pps_lock(intel_dp);
4651         edp_panel_vdd_off_sync(intel_dp);
4652         pps_unlock(intel_dp);
4653 }
4654
4655 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4656 {
4657         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4658         struct drm_device *dev = intel_dig_port->base.base.dev;
4659         struct drm_i915_private *dev_priv = to_i915(dev);
4660         enum intel_display_power_domain power_domain;
4661
4662         lockdep_assert_held(&dev_priv->pps_mutex);
4663
4664         if (!edp_have_panel_vdd(intel_dp))
4665                 return;
4666
4667         /*
4668          * The VDD bit needs a power domain reference, so if the bit is
4669          * already enabled when we boot or resume, grab this reference and
4670          * schedule a vdd off, so we don't hold on to the reference
4671          * indefinitely.
4672          */
4673         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4674         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4675         intel_display_power_get(dev_priv, power_domain);
4676
4677         edp_panel_vdd_schedule_off(intel_dp);
4678 }
4679
4680 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4681 {
4682         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4683         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4684
4685         if (!HAS_DDI(dev_priv))
4686                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4687
4688         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4689                 return;
4690
4691         pps_lock(intel_dp);
4692
4693         /* Reinit the power sequencer, in case BIOS did something with it. */
4694         intel_dp_pps_init(encoder->dev, intel_dp);
4695         intel_edp_panel_vdd_sanitize(intel_dp);
4696
4697         pps_unlock(intel_dp);
4698 }
4699
4700 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4701         .dpms = drm_atomic_helper_connector_dpms,
4702         .detect = intel_dp_detect,
4703         .force = intel_dp_force,
4704         .fill_modes = drm_helper_probe_single_connector_modes,
4705         .set_property = intel_dp_set_property,
4706         .atomic_get_property = intel_connector_atomic_get_property,
4707         .late_register = intel_dp_connector_register,
4708         .early_unregister = intel_dp_connector_unregister,
4709         .destroy = intel_dp_connector_destroy,
4710         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4711         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4712 };
4713
4714 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4715         .get_modes = intel_dp_get_modes,
4716         .mode_valid = intel_dp_mode_valid,
4717 };
4718
4719 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4720         .reset = intel_dp_encoder_reset,
4721         .destroy = intel_dp_encoder_destroy,
4722 };
4723
4724 enum irqreturn
4725 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4726 {
4727         struct intel_dp *intel_dp = &intel_dig_port->dp;
4728         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4729         struct drm_device *dev = intel_dig_port->base.base.dev;
4730         struct drm_i915_private *dev_priv = to_i915(dev);
4731         enum intel_display_power_domain power_domain;
4732         enum irqreturn ret = IRQ_NONE;
4733
4734         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4735             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4736                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4737
4738         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4739                 /*
4740                  * vdd off can generate a long pulse on eDP which
4741                  * would require vdd on to handle it, and thus we
4742                  * would end up in an endless cycle of
4743                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4744                  */
4745                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4746                               port_name(intel_dig_port->port));
4747                 return IRQ_HANDLED;
4748         }
4749
4750         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4751                       port_name(intel_dig_port->port),
4752                       long_hpd ? "long" : "short");
4753
4754         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4755         intel_display_power_get(dev_priv, power_domain);
4756
4757         if (long_hpd) {
4758                 intel_dp_long_pulse(intel_dp->attached_connector);
4759                 if (intel_dp->is_mst)
4760                         ret = IRQ_HANDLED;
4761                 goto put_power;
4762
4763         } else {
4764                 if (intel_dp->is_mst) {
4765                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4766                                 /*
4767                                  * If we were in MST mode, and device is not
4768                                  * there, get out of MST mode
4769                                  */
4770                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4771                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4772                                 intel_dp->is_mst = false;
4773                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4774                                                                 intel_dp->is_mst);
4775                                 goto put_power;
4776                         }
4777                 }
4778
4779                 if (!intel_dp->is_mst) {
4780                         if (!intel_dp_short_pulse(intel_dp)) {
4781                                 intel_dp_long_pulse(intel_dp->attached_connector);
4782                                 goto put_power;
4783                         }
4784                 }
4785         }
4786
4787         ret = IRQ_HANDLED;
4788
4789 put_power:
4790         intel_display_power_put(dev_priv, power_domain);
4791
4792         return ret;
4793 }
4794
4795 /* check the VBT to see whether the eDP is on another port */
4796 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4797 {
4798         struct drm_i915_private *dev_priv = to_i915(dev);
4799
4800         /*
4801          * eDP not supported on g4x. so bail out early just
4802          * for a bit extra safety in case the VBT is bonkers.
4803          */
4804         if (INTEL_INFO(dev)->gen < 5)
4805                 return false;
4806
4807         if (port == PORT_A)
4808                 return true;
4809
4810         return intel_bios_is_port_edp(dev_priv, port);
4811 }
4812
4813 void
4814 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4815 {
4816         struct intel_connector *intel_connector = to_intel_connector(connector);
4817
4818         intel_attach_force_audio_property(connector);
4819         intel_attach_broadcast_rgb_property(connector);
4820         intel_dp->color_range_auto = true;
4821
4822         if (is_edp(intel_dp)) {
4823                 drm_mode_create_scaling_mode_property(connector->dev);
4824                 drm_object_attach_property(
4825                         &connector->base,
4826                         connector->dev->mode_config.scaling_mode_property,
4827                         DRM_MODE_SCALE_ASPECT);
4828                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4829         }
4830 }
4831
4832 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4833 {
4834         intel_dp->panel_power_off_time = ktime_get_boottime();
4835         intel_dp->last_power_on = jiffies;
4836         intel_dp->last_backlight_off = jiffies;
4837 }
4838
4839 static void
4840 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4841                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4842 {
4843         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4844         struct pps_registers regs;
4845
4846         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4847
4848         /* Workaround: Need to write PP_CONTROL with the unlock key as
4849          * the very first thing. */
4850         pp_ctl = ironlake_get_pp_control(intel_dp);
4851
4852         pp_on = I915_READ(regs.pp_on);
4853         pp_off = I915_READ(regs.pp_off);
4854         if (!IS_BROXTON(dev_priv)) {
4855                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4856                 pp_div = I915_READ(regs.pp_div);
4857         }
4858
4859         /* Pull timing values out of registers */
4860         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4861                      PANEL_POWER_UP_DELAY_SHIFT;
4862
4863         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4864                   PANEL_LIGHT_ON_DELAY_SHIFT;
4865
4866         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4867                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4868
4869         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4870                    PANEL_POWER_DOWN_DELAY_SHIFT;
4871
4872         if (IS_BROXTON(dev_priv)) {
4873                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4874                         BXT_POWER_CYCLE_DELAY_SHIFT;
4875                 if (tmp > 0)
4876                         seq->t11_t12 = (tmp - 1) * 1000;
4877                 else
4878                         seq->t11_t12 = 0;
4879         } else {
4880                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4881                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4882         }
4883 }
4884
4885 static void
4886 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4887 {
4888         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4889                       state_name,
4890                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4891 }
4892
4893 static void
4894 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4895                        struct intel_dp *intel_dp)
4896 {
4897         struct edp_power_seq hw;
4898         struct edp_power_seq *sw = &intel_dp->pps_delays;
4899
4900         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4901
4902         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4903             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4904                 DRM_ERROR("PPS state mismatch\n");
4905                 intel_pps_dump_state("sw", sw);
4906                 intel_pps_dump_state("hw", &hw);
4907         }
4908 }
4909
4910 static void
4911 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4912                                     struct intel_dp *intel_dp)
4913 {
4914         struct drm_i915_private *dev_priv = to_i915(dev);
4915         struct edp_power_seq cur, vbt, spec,
4916                 *final = &intel_dp->pps_delays;
4917
4918         lockdep_assert_held(&dev_priv->pps_mutex);
4919
4920         /* already initialized? */
4921         if (final->t11_t12 != 0)
4922                 return;
4923
4924         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4925
4926         intel_pps_dump_state("cur", &cur);
4927
4928         vbt = dev_priv->vbt.edp.pps;
4929
4930         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4931          * our hw here, which are all in 100usec. */
4932         spec.t1_t3 = 210 * 10;
4933         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4934         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4935         spec.t10 = 500 * 10;
4936         /* This one is special and actually in units of 100ms, but zero
4937          * based in the hw (so we need to add 100 ms). But the sw vbt
4938          * table multiplies it with 1000 to make it in units of 100usec,
4939          * too. */
4940         spec.t11_t12 = (510 + 100) * 10;
4941
4942         intel_pps_dump_state("vbt", &vbt);
4943
4944         /* Use the max of the register settings and vbt. If both are
4945          * unset, fall back to the spec limits. */
4946 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4947                                        spec.field : \
4948                                        max(cur.field, vbt.field))
4949         assign_final(t1_t3);
4950         assign_final(t8);
4951         assign_final(t9);
4952         assign_final(t10);
4953         assign_final(t11_t12);
4954 #undef assign_final
4955
4956 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4957         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4958         intel_dp->backlight_on_delay = get_delay(t8);
4959         intel_dp->backlight_off_delay = get_delay(t9);
4960         intel_dp->panel_power_down_delay = get_delay(t10);
4961         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4962 #undef get_delay
4963
4964         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4965                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4966                       intel_dp->panel_power_cycle_delay);
4967
4968         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4969                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4970
4971         /*
4972          * We override the HW backlight delays to 1 because we do manual waits
4973          * on them. For T8, even BSpec recommends doing it. For T9, if we
4974          * don't do this, we'll end up waiting for the backlight off delay
4975          * twice: once when we do the manual sleep, and once when we disable
4976          * the panel and wait for the PP_STATUS bit to become zero.
4977          */
4978         final->t8 = 1;
4979         final->t9 = 1;
4980 }
4981
4982 static void
4983 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4984                                               struct intel_dp *intel_dp)
4985 {
4986         struct drm_i915_private *dev_priv = to_i915(dev);
4987         u32 pp_on, pp_off, pp_div, port_sel = 0;
4988         int div = dev_priv->rawclk_freq / 1000;
4989         struct pps_registers regs;
4990         enum port port = dp_to_dig_port(intel_dp)->port;
4991         const struct edp_power_seq *seq = &intel_dp->pps_delays;
4992
4993         lockdep_assert_held(&dev_priv->pps_mutex);
4994
4995         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4996
4997         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4998                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
4999         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5000                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5001         /* Compute the divisor for the pp clock, simply match the Bspec
5002          * formula. */
5003         if (IS_BROXTON(dev)) {
5004                 pp_div = I915_READ(regs.pp_ctrl);
5005                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5006                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5007                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5008         } else {
5009                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5010                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5011                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5012         }
5013
5014         /* Haswell doesn't have any port selection bits for the panel
5015          * power sequencer any more. */
5016         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5017                 port_sel = PANEL_PORT_SELECT_VLV(port);
5018         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5019                 if (port == PORT_A)
5020                         port_sel = PANEL_PORT_SELECT_DPA;
5021                 else
5022                         port_sel = PANEL_PORT_SELECT_DPD;
5023         }
5024
5025         pp_on |= port_sel;
5026
5027         I915_WRITE(regs.pp_on, pp_on);
5028         I915_WRITE(regs.pp_off, pp_off);
5029         if (IS_BROXTON(dev))
5030                 I915_WRITE(regs.pp_ctrl, pp_div);
5031         else
5032                 I915_WRITE(regs.pp_div, pp_div);
5033
5034         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5035                       I915_READ(regs.pp_on),
5036                       I915_READ(regs.pp_off),
5037                       IS_BROXTON(dev) ?
5038                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5039                       I915_READ(regs.pp_div));
5040 }
5041
5042 static void intel_dp_pps_init(struct drm_device *dev,
5043                               struct intel_dp *intel_dp)
5044 {
5045         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5046                 vlv_initial_power_sequencer_setup(intel_dp);
5047         } else {
5048                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5049                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5050         }
5051 }
5052
5053 /**
5054  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5055  * @dev_priv: i915 device
5056  * @crtc_state: a pointer to the active intel_crtc_state
5057  * @refresh_rate: RR to be programmed
5058  *
5059  * This function gets called when refresh rate (RR) has to be changed from
5060  * one frequency to another. Switches can be between high and low RR
5061  * supported by the panel or to any other RR based on media playback (in
5062  * this case, RR value needs to be passed from user space).
5063  *
5064  * The caller of this function needs to take a lock on dev_priv->drrs.
5065  */
5066 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5067                                     struct intel_crtc_state *crtc_state,
5068                                     int refresh_rate)
5069 {
5070         struct intel_encoder *encoder;
5071         struct intel_digital_port *dig_port = NULL;
5072         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5074         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5075
5076         if (refresh_rate <= 0) {
5077                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5078                 return;
5079         }
5080
5081         if (intel_dp == NULL) {
5082                 DRM_DEBUG_KMS("DRRS not supported.\n");
5083                 return;
5084         }
5085
5086         /*
5087          * FIXME: This needs proper synchronization with psr state for some
5088          * platforms that cannot have PSR and DRRS enabled at the same time.
5089          */
5090
5091         dig_port = dp_to_dig_port(intel_dp);
5092         encoder = &dig_port->base;
5093         intel_crtc = to_intel_crtc(encoder->base.crtc);
5094
5095         if (!intel_crtc) {
5096                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5097                 return;
5098         }
5099
5100         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5101                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5102                 return;
5103         }
5104
5105         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5106                         refresh_rate)
5107                 index = DRRS_LOW_RR;
5108
5109         if (index == dev_priv->drrs.refresh_rate_type) {
5110                 DRM_DEBUG_KMS(
5111                         "DRRS requested for previously set RR...ignoring\n");
5112                 return;
5113         }
5114
5115         if (!crtc_state->base.active) {
5116                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5117                 return;
5118         }
5119
5120         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5121                 switch (index) {
5122                 case DRRS_HIGH_RR:
5123                         intel_dp_set_m_n(intel_crtc, M1_N1);
5124                         break;
5125                 case DRRS_LOW_RR:
5126                         intel_dp_set_m_n(intel_crtc, M2_N2);
5127                         break;
5128                 case DRRS_MAX_RR:
5129                 default:
5130                         DRM_ERROR("Unsupported refreshrate type\n");
5131                 }
5132         } else if (INTEL_GEN(dev_priv) > 6) {
5133                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5134                 u32 val;
5135
5136                 val = I915_READ(reg);
5137                 if (index > DRRS_HIGH_RR) {
5138                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5139                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5140                         else
5141                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5142                 } else {
5143                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5144                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5145                         else
5146                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5147                 }
5148                 I915_WRITE(reg, val);
5149         }
5150
5151         dev_priv->drrs.refresh_rate_type = index;
5152
5153         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5154 }
5155
5156 /**
5157  * intel_edp_drrs_enable - init drrs struct if supported
5158  * @intel_dp: DP struct
5159  * @crtc_state: A pointer to the active crtc state.
5160  *
5161  * Initializes frontbuffer_bits and drrs.dp
5162  */
5163 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5164                            struct intel_crtc_state *crtc_state)
5165 {
5166         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5167         struct drm_i915_private *dev_priv = to_i915(dev);
5168
5169         if (!crtc_state->has_drrs) {
5170                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5171                 return;
5172         }
5173
5174         mutex_lock(&dev_priv->drrs.mutex);
5175         if (WARN_ON(dev_priv->drrs.dp)) {
5176                 DRM_ERROR("DRRS already enabled\n");
5177                 goto unlock;
5178         }
5179
5180         dev_priv->drrs.busy_frontbuffer_bits = 0;
5181
5182         dev_priv->drrs.dp = intel_dp;
5183
5184 unlock:
5185         mutex_unlock(&dev_priv->drrs.mutex);
5186 }
5187
5188 /**
5189  * intel_edp_drrs_disable - Disable DRRS
5190  * @intel_dp: DP struct
5191  * @old_crtc_state: Pointer to old crtc_state.
5192  *
5193  */
5194 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5195                             struct intel_crtc_state *old_crtc_state)
5196 {
5197         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5198         struct drm_i915_private *dev_priv = to_i915(dev);
5199
5200         if (!old_crtc_state->has_drrs)
5201                 return;
5202
5203         mutex_lock(&dev_priv->drrs.mutex);
5204         if (!dev_priv->drrs.dp) {
5205                 mutex_unlock(&dev_priv->drrs.mutex);
5206                 return;
5207         }
5208
5209         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5210                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5211                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5212
5213         dev_priv->drrs.dp = NULL;
5214         mutex_unlock(&dev_priv->drrs.mutex);
5215
5216         cancel_delayed_work_sync(&dev_priv->drrs.work);
5217 }
5218
5219 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5220 {
5221         struct drm_i915_private *dev_priv =
5222                 container_of(work, typeof(*dev_priv), drrs.work.work);
5223         struct intel_dp *intel_dp;
5224
5225         mutex_lock(&dev_priv->drrs.mutex);
5226
5227         intel_dp = dev_priv->drrs.dp;
5228
5229         if (!intel_dp)
5230                 goto unlock;
5231
5232         /*
5233          * The delayed work can race with an invalidate hence we need to
5234          * recheck.
5235          */
5236
5237         if (dev_priv->drrs.busy_frontbuffer_bits)
5238                 goto unlock;
5239
5240         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5241                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5242
5243                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5244                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5245         }
5246
5247 unlock:
5248         mutex_unlock(&dev_priv->drrs.mutex);
5249 }
5250
5251 /**
5252  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5253  * @dev_priv: i915 device
5254  * @frontbuffer_bits: frontbuffer plane tracking bits
5255  *
5256  * This function gets called everytime rendering on the given planes start.
5257  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5258  *
5259  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5260  */
5261 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5262                                unsigned int frontbuffer_bits)
5263 {
5264         struct drm_crtc *crtc;
5265         enum pipe pipe;
5266
5267         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5268                 return;
5269
5270         cancel_delayed_work(&dev_priv->drrs.work);
5271
5272         mutex_lock(&dev_priv->drrs.mutex);
5273         if (!dev_priv->drrs.dp) {
5274                 mutex_unlock(&dev_priv->drrs.mutex);
5275                 return;
5276         }
5277
5278         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5279         pipe = to_intel_crtc(crtc)->pipe;
5280
5281         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5282         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5283
5284         /* invalidate means busy screen hence upclock */
5285         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5286                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5287                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5288
5289         mutex_unlock(&dev_priv->drrs.mutex);
5290 }
5291
5292 /**
5293  * intel_edp_drrs_flush - Restart Idleness DRRS
5294  * @dev_priv: i915 device
5295  * @frontbuffer_bits: frontbuffer plane tracking bits
5296  *
5297  * This function gets called every time rendering on the given planes has
5298  * completed or flip on a crtc is completed. So DRRS should be upclocked
5299  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5300  * if no other planes are dirty.
5301  *
5302  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5303  */
5304 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5305                           unsigned int frontbuffer_bits)
5306 {
5307         struct drm_crtc *crtc;
5308         enum pipe pipe;
5309
5310         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5311                 return;
5312
5313         cancel_delayed_work(&dev_priv->drrs.work);
5314
5315         mutex_lock(&dev_priv->drrs.mutex);
5316         if (!dev_priv->drrs.dp) {
5317                 mutex_unlock(&dev_priv->drrs.mutex);
5318                 return;
5319         }
5320
5321         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5322         pipe = to_intel_crtc(crtc)->pipe;
5323
5324         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5325         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5326
5327         /* flush means busy screen hence upclock */
5328         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5329                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5330                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5331
5332         /*
5333          * flush also means no more activity hence schedule downclock, if all
5334          * other fbs are quiescent too
5335          */
5336         if (!dev_priv->drrs.busy_frontbuffer_bits)
5337                 schedule_delayed_work(&dev_priv->drrs.work,
5338                                 msecs_to_jiffies(1000));
5339         mutex_unlock(&dev_priv->drrs.mutex);
5340 }
5341
5342 /**
5343  * DOC: Display Refresh Rate Switching (DRRS)
5344  *
5345  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5346  * which enables swtching between low and high refresh rates,
5347  * dynamically, based on the usage scenario. This feature is applicable
5348  * for internal panels.
5349  *
5350  * Indication that the panel supports DRRS is given by the panel EDID, which
5351  * would list multiple refresh rates for one resolution.
5352  *
5353  * DRRS is of 2 types - static and seamless.
5354  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5355  * (may appear as a blink on screen) and is used in dock-undock scenario.
5356  * Seamless DRRS involves changing RR without any visual effect to the user
5357  * and can be used during normal system usage. This is done by programming
5358  * certain registers.
5359  *
5360  * Support for static/seamless DRRS may be indicated in the VBT based on
5361  * inputs from the panel spec.
5362  *
5363  * DRRS saves power by switching to low RR based on usage scenarios.
5364  *
5365  * The implementation is based on frontbuffer tracking implementation.  When
5366  * there is a disturbance on the screen triggered by user activity or a periodic
5367  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5368  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5369  * made.
5370  *
5371  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5372  * and intel_edp_drrs_flush() are called.
5373  *
5374  * DRRS can be further extended to support other internal panels and also
5375  * the scenario of video playback wherein RR is set based on the rate
5376  * requested by userspace.
5377  */
5378
5379 /**
5380  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5381  * @intel_connector: eDP connector
5382  * @fixed_mode: preferred mode of panel
5383  *
5384  * This function is  called only once at driver load to initialize basic
5385  * DRRS stuff.
5386  *
5387  * Returns:
5388  * Downclock mode if panel supports it, else return NULL.
5389  * DRRS support is determined by the presence of downclock mode (apart
5390  * from VBT setting).
5391  */
5392 static struct drm_display_mode *
5393 intel_dp_drrs_init(struct intel_connector *intel_connector,
5394                 struct drm_display_mode *fixed_mode)
5395 {
5396         struct drm_connector *connector = &intel_connector->base;
5397         struct drm_device *dev = connector->dev;
5398         struct drm_i915_private *dev_priv = to_i915(dev);
5399         struct drm_display_mode *downclock_mode = NULL;
5400
5401         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5402         mutex_init(&dev_priv->drrs.mutex);
5403
5404         if (INTEL_INFO(dev)->gen <= 6) {
5405                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5406                 return NULL;
5407         }
5408
5409         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5410                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5411                 return NULL;
5412         }
5413
5414         downclock_mode = intel_find_panel_downclock
5415                                         (dev, fixed_mode, connector);
5416
5417         if (!downclock_mode) {
5418                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5419                 return NULL;
5420         }
5421
5422         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5423
5424         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5425         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5426         return downclock_mode;
5427 }
5428
5429 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5430                                      struct intel_connector *intel_connector)
5431 {
5432         struct drm_connector *connector = &intel_connector->base;
5433         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5434         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5435         struct drm_device *dev = intel_encoder->base.dev;
5436         struct drm_i915_private *dev_priv = to_i915(dev);
5437         struct drm_display_mode *fixed_mode = NULL;
5438         struct drm_display_mode *downclock_mode = NULL;
5439         bool has_dpcd;
5440         struct drm_display_mode *scan;
5441         struct edid *edid;
5442         enum pipe pipe = INVALID_PIPE;
5443
5444         if (!is_edp(intel_dp))
5445                 return true;
5446
5447         /*
5448          * On IBX/CPT we may get here with LVDS already registered. Since the
5449          * driver uses the only internal power sequencer available for both
5450          * eDP and LVDS bail out early in this case to prevent interfering
5451          * with an already powered-on LVDS power sequencer.
5452          */
5453         if (intel_get_lvds_encoder(dev)) {
5454                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5455                 DRM_INFO("LVDS was detected, not registering eDP\n");
5456
5457                 return false;
5458         }
5459
5460         pps_lock(intel_dp);
5461
5462         intel_dp_init_panel_power_timestamps(intel_dp);
5463         intel_dp_pps_init(dev, intel_dp);
5464         intel_edp_panel_vdd_sanitize(intel_dp);
5465
5466         pps_unlock(intel_dp);
5467
5468         /* Cache DPCD and EDID for edp. */
5469         has_dpcd = intel_edp_init_dpcd(intel_dp);
5470
5471         if (!has_dpcd) {
5472                 /* if this fails, presume the device is a ghost */
5473                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5474                 goto out_vdd_off;
5475         }
5476
5477         mutex_lock(&dev->mode_config.mutex);
5478         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5479         if (edid) {
5480                 if (drm_add_edid_modes(connector, edid)) {
5481                         drm_mode_connector_update_edid_property(connector,
5482                                                                 edid);
5483                         drm_edid_to_eld(connector, edid);
5484                 } else {
5485                         kfree(edid);
5486                         edid = ERR_PTR(-EINVAL);
5487                 }
5488         } else {
5489                 edid = ERR_PTR(-ENOENT);
5490         }
5491         intel_connector->edid = edid;
5492
5493         /* prefer fixed mode from EDID if available */
5494         list_for_each_entry(scan, &connector->probed_modes, head) {
5495                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5496                         fixed_mode = drm_mode_duplicate(dev, scan);
5497                         downclock_mode = intel_dp_drrs_init(
5498                                                 intel_connector, fixed_mode);
5499                         break;
5500                 }
5501         }
5502
5503         /* fallback to VBT if available for eDP */
5504         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5505                 fixed_mode = drm_mode_duplicate(dev,
5506                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5507                 if (fixed_mode) {
5508                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5509                         connector->display_info.width_mm = fixed_mode->width_mm;
5510                         connector->display_info.height_mm = fixed_mode->height_mm;
5511                 }
5512         }
5513         mutex_unlock(&dev->mode_config.mutex);
5514
5515         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5516                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5517                 register_reboot_notifier(&intel_dp->edp_notifier);
5518
5519                 /*
5520                  * Figure out the current pipe for the initial backlight setup.
5521                  * If the current pipe isn't valid, try the PPS pipe, and if that
5522                  * fails just assume pipe A.
5523                  */
5524                 if (IS_CHERRYVIEW(dev))
5525                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5526                 else
5527                         pipe = PORT_TO_PIPE(intel_dp->DP);
5528
5529                 if (pipe != PIPE_A && pipe != PIPE_B)
5530                         pipe = intel_dp->pps_pipe;
5531
5532                 if (pipe != PIPE_A && pipe != PIPE_B)
5533                         pipe = PIPE_A;
5534
5535                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5536                               pipe_name(pipe));
5537         }
5538
5539         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5540         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5541         intel_panel_setup_backlight(connector, pipe);
5542
5543         return true;
5544
5545 out_vdd_off:
5546         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5547         /*
5548          * vdd might still be enabled do to the delayed vdd off.
5549          * Make sure vdd is actually turned off here.
5550          */
5551         pps_lock(intel_dp);
5552         edp_panel_vdd_off_sync(intel_dp);
5553         pps_unlock(intel_dp);
5554
5555         return false;
5556 }
5557
5558 bool
5559 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5560                         struct intel_connector *intel_connector)
5561 {
5562         struct drm_connector *connector = &intel_connector->base;
5563         struct intel_dp *intel_dp = &intel_dig_port->dp;
5564         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5565         struct drm_device *dev = intel_encoder->base.dev;
5566         struct drm_i915_private *dev_priv = to_i915(dev);
5567         enum port port = intel_dig_port->port;
5568         int type;
5569
5570         if (WARN(intel_dig_port->max_lanes < 1,
5571                  "Not enough lanes (%d) for DP on port %c\n",
5572                  intel_dig_port->max_lanes, port_name(port)))
5573                 return false;
5574
5575         intel_dp->pps_pipe = INVALID_PIPE;
5576
5577         /* intel_dp vfuncs */
5578         if (INTEL_INFO(dev)->gen >= 9)
5579                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5580         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5581                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5582         else if (HAS_PCH_SPLIT(dev))
5583                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5584         else
5585                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5586
5587         if (INTEL_INFO(dev)->gen >= 9)
5588                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5589         else
5590                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5591
5592         if (HAS_DDI(dev))
5593                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5594
5595         /* Preserve the current hw state. */
5596         intel_dp->DP = I915_READ(intel_dp->output_reg);
5597         intel_dp->attached_connector = intel_connector;
5598
5599         if (intel_dp_is_edp(dev, port))
5600                 type = DRM_MODE_CONNECTOR_eDP;
5601         else
5602                 type = DRM_MODE_CONNECTOR_DisplayPort;
5603
5604         /*
5605          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5606          * for DP the encoder type can be set by the caller to
5607          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5608          */
5609         if (type == DRM_MODE_CONNECTOR_eDP)
5610                 intel_encoder->type = INTEL_OUTPUT_EDP;
5611
5612         /* eDP only on port B and/or C on vlv/chv */
5613         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5614                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5615                 return false;
5616
5617         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5618                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5619                         port_name(port));
5620
5621         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5622         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5623
5624         connector->interlace_allowed = true;
5625         connector->doublescan_allowed = 0;
5626
5627         intel_dp_aux_init(intel_dp);
5628
5629         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5630                           edp_panel_vdd_work);
5631
5632         intel_connector_attach_encoder(intel_connector, intel_encoder);
5633
5634         if (HAS_DDI(dev))
5635                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5636         else
5637                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5638
5639         /* Set up the hotplug pin. */
5640         switch (port) {
5641         case PORT_A:
5642                 intel_encoder->hpd_pin = HPD_PORT_A;
5643                 break;
5644         case PORT_B:
5645                 intel_encoder->hpd_pin = HPD_PORT_B;
5646                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5647                         intel_encoder->hpd_pin = HPD_PORT_A;
5648                 break;
5649         case PORT_C:
5650                 intel_encoder->hpd_pin = HPD_PORT_C;
5651                 break;
5652         case PORT_D:
5653                 intel_encoder->hpd_pin = HPD_PORT_D;
5654                 break;
5655         case PORT_E:
5656                 intel_encoder->hpd_pin = HPD_PORT_E;
5657                 break;
5658         default:
5659                 BUG();
5660         }
5661
5662         /* init MST on ports that can support it */
5663         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5664             (port == PORT_B || port == PORT_C || port == PORT_D))
5665                 intel_dp_mst_encoder_init(intel_dig_port,
5666                                           intel_connector->base.base.id);
5667
5668         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5669                 intel_dp_aux_fini(intel_dp);
5670                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5671                 goto fail;
5672         }
5673
5674         intel_dp_add_properties(intel_dp, connector);
5675
5676         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5677          * 0xd.  Failure to do so will result in spurious interrupts being
5678          * generated on the port when a cable is not attached.
5679          */
5680         if (IS_G4X(dev) && !IS_GM45(dev)) {
5681                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5682                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5683         }
5684
5685         return true;
5686
5687 fail:
5688         drm_connector_cleanup(connector);
5689
5690         return false;
5691 }
5692
5693 bool intel_dp_init(struct drm_device *dev,
5694                    i915_reg_t output_reg,
5695                    enum port port)
5696 {
5697         struct drm_i915_private *dev_priv = to_i915(dev);
5698         struct intel_digital_port *intel_dig_port;
5699         struct intel_encoder *intel_encoder;
5700         struct drm_encoder *encoder;
5701         struct intel_connector *intel_connector;
5702
5703         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5704         if (!intel_dig_port)
5705                 return false;
5706
5707         intel_connector = intel_connector_alloc();
5708         if (!intel_connector)
5709                 goto err_connector_alloc;
5710
5711         intel_encoder = &intel_dig_port->base;
5712         encoder = &intel_encoder->base;
5713
5714         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5715                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5716                 goto err_encoder_init;
5717
5718         intel_encoder->compute_config = intel_dp_compute_config;
5719         intel_encoder->disable = intel_disable_dp;
5720         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5721         intel_encoder->get_config = intel_dp_get_config;
5722         intel_encoder->suspend = intel_dp_encoder_suspend;
5723         if (IS_CHERRYVIEW(dev)) {
5724                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5725                 intel_encoder->pre_enable = chv_pre_enable_dp;
5726                 intel_encoder->enable = vlv_enable_dp;
5727                 intel_encoder->post_disable = chv_post_disable_dp;
5728                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5729         } else if (IS_VALLEYVIEW(dev)) {
5730                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5731                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5732                 intel_encoder->enable = vlv_enable_dp;
5733                 intel_encoder->post_disable = vlv_post_disable_dp;
5734         } else {
5735                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5736                 intel_encoder->enable = g4x_enable_dp;
5737                 if (INTEL_INFO(dev)->gen >= 5)
5738                         intel_encoder->post_disable = ilk_post_disable_dp;
5739         }
5740
5741         intel_dig_port->port = port;
5742         intel_dig_port->dp.output_reg = output_reg;
5743         intel_dig_port->max_lanes = 4;
5744
5745         intel_encoder->type = INTEL_OUTPUT_DP;
5746         if (IS_CHERRYVIEW(dev)) {
5747                 if (port == PORT_D)
5748                         intel_encoder->crtc_mask = 1 << 2;
5749                 else
5750                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5751         } else {
5752                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5753         }
5754         intel_encoder->cloneable = 0;
5755
5756         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5757         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5758
5759         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5760                 goto err_init_connector;
5761
5762         return true;
5763
5764 err_init_connector:
5765         drm_encoder_cleanup(encoder);
5766 err_encoder_init:
5767         kfree(intel_connector);
5768 err_connector_alloc:
5769         kfree(intel_dig_port);
5770         return false;
5771 }
5772
5773 void intel_dp_mst_suspend(struct drm_device *dev)
5774 {
5775         struct drm_i915_private *dev_priv = to_i915(dev);
5776         int i;
5777
5778         /* disable MST */
5779         for (i = 0; i < I915_MAX_PORTS; i++) {
5780                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5781
5782                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5783                         continue;
5784
5785                 if (intel_dig_port->dp.is_mst)
5786                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5787         }
5788 }
5789
5790 void intel_dp_mst_resume(struct drm_device *dev)
5791 {
5792         struct drm_i915_private *dev_priv = to_i915(dev);
5793         int i;
5794
5795         for (i = 0; i < I915_MAX_PORTS; i++) {
5796                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5797                 int ret;
5798
5799                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5800                         continue;
5801
5802                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5803                 if (ret)
5804                         intel_dp_check_mst_status(&intel_dig_port->dp);
5805         }
5806 }