]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: rename VLV IOSF sideband functions logically
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 /**
63  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
64  * @intel_dp: DP struct
65  *
66  * Returns true if the given DP struct corresponds to a CPU eDP port.
67  */
68 static bool is_cpu_edp(struct intel_dp *intel_dp)
69 {
70         struct drm_device *dev = intel_dp_to_dev(intel_dp);
71         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
72         enum port port = intel_dig_port->port;
73
74         return is_edp(intel_dp) &&
75                 (port == PORT_A || (port == PORT_C && IS_VALLEYVIEW(dev)));
76 }
77
78 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
79 {
80         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
81 }
82
83 static void intel_dp_link_down(struct intel_dp *intel_dp);
84
85 static int
86 intel_dp_max_link_bw(struct intel_dp *intel_dp)
87 {
88         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
89
90         switch (max_link_bw) {
91         case DP_LINK_BW_1_62:
92         case DP_LINK_BW_2_7:
93                 break;
94         default:
95                 max_link_bw = DP_LINK_BW_1_62;
96                 break;
97         }
98         return max_link_bw;
99 }
100
101 /*
102  * The units on the numbers in the next two are... bizarre.  Examples will
103  * make it clearer; this one parallels an example in the eDP spec.
104  *
105  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
106  *
107  *     270000 * 1 * 8 / 10 == 216000
108  *
109  * The actual data capacity of that configuration is 2.16Gbit/s, so the
110  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
111  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
112  * 119000.  At 18bpp that's 2142000 kilobits per second.
113  *
114  * Thus the strange-looking division by 10 in intel_dp_link_required, to
115  * get the result in decakilobits instead of kilobits.
116  */
117
118 static int
119 intel_dp_link_required(int pixel_clock, int bpp)
120 {
121         return (pixel_clock * bpp + 9) / 10;
122 }
123
124 static int
125 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
126 {
127         return (max_link_clock * max_lanes * 8) / 10;
128 }
129
130 static int
131 intel_dp_mode_valid(struct drm_connector *connector,
132                     struct drm_display_mode *mode)
133 {
134         struct intel_dp *intel_dp = intel_attached_dp(connector);
135         struct intel_connector *intel_connector = to_intel_connector(connector);
136         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
137         int target_clock = mode->clock;
138         int max_rate, mode_rate, max_lanes, max_link_clock;
139
140         if (is_edp(intel_dp) && fixed_mode) {
141                 if (mode->hdisplay > fixed_mode->hdisplay)
142                         return MODE_PANEL;
143
144                 if (mode->vdisplay > fixed_mode->vdisplay)
145                         return MODE_PANEL;
146
147                 target_clock = fixed_mode->clock;
148         }
149
150         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
151         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
152
153         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
154         mode_rate = intel_dp_link_required(target_clock, 18);
155
156         if (mode_rate > max_rate)
157                 return MODE_CLOCK_HIGH;
158
159         if (mode->clock < 10000)
160                 return MODE_CLOCK_LOW;
161
162         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
163                 return MODE_H_ILLEGAL;
164
165         return MODE_OK;
166 }
167
168 static uint32_t
169 pack_aux(uint8_t *src, int src_bytes)
170 {
171         int     i;
172         uint32_t v = 0;
173
174         if (src_bytes > 4)
175                 src_bytes = 4;
176         for (i = 0; i < src_bytes; i++)
177                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
178         return v;
179 }
180
181 static void
182 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
183 {
184         int i;
185         if (dst_bytes > 4)
186                 dst_bytes = 4;
187         for (i = 0; i < dst_bytes; i++)
188                 dst[i] = src >> ((3-i) * 8);
189 }
190
191 /* hrawclock is 1/4 the FSB frequency */
192 static int
193 intel_hrawclk(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         uint32_t clkcfg;
197
198         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
199         if (IS_VALLEYVIEW(dev))
200                 return 200;
201
202         clkcfg = I915_READ(CLKCFG);
203         switch (clkcfg & CLKCFG_FSB_MASK) {
204         case CLKCFG_FSB_400:
205                 return 100;
206         case CLKCFG_FSB_533:
207                 return 133;
208         case CLKCFG_FSB_667:
209                 return 166;
210         case CLKCFG_FSB_800:
211                 return 200;
212         case CLKCFG_FSB_1067:
213                 return 266;
214         case CLKCFG_FSB_1333:
215                 return 333;
216         /* these two are just a guess; one of them might be right */
217         case CLKCFG_FSB_1600:
218         case CLKCFG_FSB_1600_ALT:
219                 return 400;
220         default:
221                 return 133;
222         }
223 }
224
225 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
226 {
227         struct drm_device *dev = intel_dp_to_dev(intel_dp);
228         struct drm_i915_private *dev_priv = dev->dev_private;
229         u32 pp_stat_reg;
230
231         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
232         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
233 }
234
235 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
236 {
237         struct drm_device *dev = intel_dp_to_dev(intel_dp);
238         struct drm_i915_private *dev_priv = dev->dev_private;
239         u32 pp_ctrl_reg;
240
241         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
242         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
243 }
244
245 static void
246 intel_dp_check_edp(struct intel_dp *intel_dp)
247 {
248         struct drm_device *dev = intel_dp_to_dev(intel_dp);
249         struct drm_i915_private *dev_priv = dev->dev_private;
250         u32 pp_stat_reg, pp_ctrl_reg;
251
252         if (!is_edp(intel_dp))
253                 return;
254
255         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
256         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
257
258         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
259                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
260                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
261                                 I915_READ(pp_stat_reg),
262                                 I915_READ(pp_ctrl_reg));
263         }
264 }
265
266 static uint32_t
267 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
268 {
269         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
270         struct drm_device *dev = intel_dig_port->base.base.dev;
271         struct drm_i915_private *dev_priv = dev->dev_private;
272         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
273         uint32_t status;
274         bool done;
275
276 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
277         if (has_aux_irq)
278                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
279                                           msecs_to_jiffies(10));
280         else
281                 done = wait_for_atomic(C, 10) == 0;
282         if (!done)
283                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
284                           has_aux_irq);
285 #undef C
286
287         return status;
288 }
289
290 static int
291 intel_dp_aux_ch(struct intel_dp *intel_dp,
292                 uint8_t *send, int send_bytes,
293                 uint8_t *recv, int recv_size)
294 {
295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296         struct drm_device *dev = intel_dig_port->base.base.dev;
297         struct drm_i915_private *dev_priv = dev->dev_private;
298         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
299         uint32_t ch_data = ch_ctl + 4;
300         int i, ret, recv_bytes;
301         uint32_t status;
302         uint32_t aux_clock_divider;
303         int try, precharge;
304         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
305
306         /* dp aux is extremely sensitive to irq latency, hence request the
307          * lowest possible wakeup latency and so prevent the cpu from going into
308          * deep sleep states.
309          */
310         pm_qos_update_request(&dev_priv->pm_qos, 0);
311
312         intel_dp_check_edp(intel_dp);
313         /* The clock divider is based off the hrawclk,
314          * and would like to run at 2MHz. So, take the
315          * hrawclk value and divide by 2 and use that
316          *
317          * Note that PCH attached eDP panels should use a 125MHz input
318          * clock divider.
319          */
320         if (is_cpu_edp(intel_dp)) {
321                 if (HAS_DDI(dev))
322                         aux_clock_divider = DIV_ROUND_CLOSEST(
323                                 intel_ddi_get_cdclk_freq(dev_priv), 2000);
324                 else if (IS_VALLEYVIEW(dev))
325                         aux_clock_divider = 100;
326                 else if (IS_GEN6(dev) || IS_GEN7(dev))
327                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
328                 else
329                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
330         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
331                 /* Workaround for non-ULT HSW */
332                 aux_clock_divider = 74;
333         } else if (HAS_PCH_SPLIT(dev)) {
334                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
335         } else {
336                 aux_clock_divider = intel_hrawclk(dev) / 2;
337         }
338
339         if (IS_GEN6(dev))
340                 precharge = 3;
341         else
342                 precharge = 5;
343
344         /* Try to wait for any previous AUX channel activity */
345         for (try = 0; try < 3; try++) {
346                 status = I915_READ_NOTRACE(ch_ctl);
347                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
348                         break;
349                 msleep(1);
350         }
351
352         if (try == 3) {
353                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
354                      I915_READ(ch_ctl));
355                 ret = -EBUSY;
356                 goto out;
357         }
358
359         /* Must try at least 3 times according to DP spec */
360         for (try = 0; try < 5; try++) {
361                 /* Load the send data into the aux channel data registers */
362                 for (i = 0; i < send_bytes; i += 4)
363                         I915_WRITE(ch_data + i,
364                                    pack_aux(send + i, send_bytes - i));
365
366                 /* Send the command and wait for it to complete */
367                 I915_WRITE(ch_ctl,
368                            DP_AUX_CH_CTL_SEND_BUSY |
369                            (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
370                            DP_AUX_CH_CTL_TIME_OUT_400us |
371                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
372                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
373                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
374                            DP_AUX_CH_CTL_DONE |
375                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
376                            DP_AUX_CH_CTL_RECEIVE_ERROR);
377
378                 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
379
380                 /* Clear done status and any errors */
381                 I915_WRITE(ch_ctl,
382                            status |
383                            DP_AUX_CH_CTL_DONE |
384                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
385                            DP_AUX_CH_CTL_RECEIVE_ERROR);
386
387                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
388                               DP_AUX_CH_CTL_RECEIVE_ERROR))
389                         continue;
390                 if (status & DP_AUX_CH_CTL_DONE)
391                         break;
392         }
393
394         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
395                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
396                 ret = -EBUSY;
397                 goto out;
398         }
399
400         /* Check for timeout or receive error.
401          * Timeouts occur when the sink is not connected
402          */
403         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
404                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
405                 ret = -EIO;
406                 goto out;
407         }
408
409         /* Timeouts occur when the device isn't connected, so they're
410          * "normal" -- don't fill the kernel log with these */
411         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
412                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
413                 ret = -ETIMEDOUT;
414                 goto out;
415         }
416
417         /* Unload any bytes sent back from the other side */
418         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
419                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
420         if (recv_bytes > recv_size)
421                 recv_bytes = recv_size;
422
423         for (i = 0; i < recv_bytes; i += 4)
424                 unpack_aux(I915_READ(ch_data + i),
425                            recv + i, recv_bytes - i);
426
427         ret = recv_bytes;
428 out:
429         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
430
431         return ret;
432 }
433
434 /* Write data to the aux channel in native mode */
435 static int
436 intel_dp_aux_native_write(struct intel_dp *intel_dp,
437                           uint16_t address, uint8_t *send, int send_bytes)
438 {
439         int ret;
440         uint8_t msg[20];
441         int msg_bytes;
442         uint8_t ack;
443
444         intel_dp_check_edp(intel_dp);
445         if (send_bytes > 16)
446                 return -1;
447         msg[0] = AUX_NATIVE_WRITE << 4;
448         msg[1] = address >> 8;
449         msg[2] = address & 0xff;
450         msg[3] = send_bytes - 1;
451         memcpy(&msg[4], send, send_bytes);
452         msg_bytes = send_bytes + 4;
453         for (;;) {
454                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
455                 if (ret < 0)
456                         return ret;
457                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
458                         break;
459                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
460                         udelay(100);
461                 else
462                         return -EIO;
463         }
464         return send_bytes;
465 }
466
467 /* Write a single byte to the aux channel in native mode */
468 static int
469 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
470                             uint16_t address, uint8_t byte)
471 {
472         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
473 }
474
475 /* read bytes from a native aux channel */
476 static int
477 intel_dp_aux_native_read(struct intel_dp *intel_dp,
478                          uint16_t address, uint8_t *recv, int recv_bytes)
479 {
480         uint8_t msg[4];
481         int msg_bytes;
482         uint8_t reply[20];
483         int reply_bytes;
484         uint8_t ack;
485         int ret;
486
487         intel_dp_check_edp(intel_dp);
488         msg[0] = AUX_NATIVE_READ << 4;
489         msg[1] = address >> 8;
490         msg[2] = address & 0xff;
491         msg[3] = recv_bytes - 1;
492
493         msg_bytes = 4;
494         reply_bytes = recv_bytes + 1;
495
496         for (;;) {
497                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
498                                       reply, reply_bytes);
499                 if (ret == 0)
500                         return -EPROTO;
501                 if (ret < 0)
502                         return ret;
503                 ack = reply[0];
504                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
505                         memcpy(recv, reply + 1, ret - 1);
506                         return ret - 1;
507                 }
508                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
509                         udelay(100);
510                 else
511                         return -EIO;
512         }
513 }
514
515 static int
516 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
517                     uint8_t write_byte, uint8_t *read_byte)
518 {
519         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
520         struct intel_dp *intel_dp = container_of(adapter,
521                                                 struct intel_dp,
522                                                 adapter);
523         uint16_t address = algo_data->address;
524         uint8_t msg[5];
525         uint8_t reply[2];
526         unsigned retry;
527         int msg_bytes;
528         int reply_bytes;
529         int ret;
530
531         intel_dp_check_edp(intel_dp);
532         /* Set up the command byte */
533         if (mode & MODE_I2C_READ)
534                 msg[0] = AUX_I2C_READ << 4;
535         else
536                 msg[0] = AUX_I2C_WRITE << 4;
537
538         if (!(mode & MODE_I2C_STOP))
539                 msg[0] |= AUX_I2C_MOT << 4;
540
541         msg[1] = address >> 8;
542         msg[2] = address;
543
544         switch (mode) {
545         case MODE_I2C_WRITE:
546                 msg[3] = 0;
547                 msg[4] = write_byte;
548                 msg_bytes = 5;
549                 reply_bytes = 1;
550                 break;
551         case MODE_I2C_READ:
552                 msg[3] = 0;
553                 msg_bytes = 4;
554                 reply_bytes = 2;
555                 break;
556         default:
557                 msg_bytes = 3;
558                 reply_bytes = 1;
559                 break;
560         }
561
562         for (retry = 0; retry < 5; retry++) {
563                 ret = intel_dp_aux_ch(intel_dp,
564                                       msg, msg_bytes,
565                                       reply, reply_bytes);
566                 if (ret < 0) {
567                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
568                         return ret;
569                 }
570
571                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
572                 case AUX_NATIVE_REPLY_ACK:
573                         /* I2C-over-AUX Reply field is only valid
574                          * when paired with AUX ACK.
575                          */
576                         break;
577                 case AUX_NATIVE_REPLY_NACK:
578                         DRM_DEBUG_KMS("aux_ch native nack\n");
579                         return -EREMOTEIO;
580                 case AUX_NATIVE_REPLY_DEFER:
581                         udelay(100);
582                         continue;
583                 default:
584                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
585                                   reply[0]);
586                         return -EREMOTEIO;
587                 }
588
589                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
590                 case AUX_I2C_REPLY_ACK:
591                         if (mode == MODE_I2C_READ) {
592                                 *read_byte = reply[1];
593                         }
594                         return reply_bytes - 1;
595                 case AUX_I2C_REPLY_NACK:
596                         DRM_DEBUG_KMS("aux_i2c nack\n");
597                         return -EREMOTEIO;
598                 case AUX_I2C_REPLY_DEFER:
599                         DRM_DEBUG_KMS("aux_i2c defer\n");
600                         udelay(100);
601                         break;
602                 default:
603                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
604                         return -EREMOTEIO;
605                 }
606         }
607
608         DRM_ERROR("too many retries, giving up\n");
609         return -EREMOTEIO;
610 }
611
612 static int
613 intel_dp_i2c_init(struct intel_dp *intel_dp,
614                   struct intel_connector *intel_connector, const char *name)
615 {
616         int     ret;
617
618         DRM_DEBUG_KMS("i2c_init %s\n", name);
619         intel_dp->algo.running = false;
620         intel_dp->algo.address = 0;
621         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
622
623         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
624         intel_dp->adapter.owner = THIS_MODULE;
625         intel_dp->adapter.class = I2C_CLASS_DDC;
626         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
627         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
628         intel_dp->adapter.algo_data = &intel_dp->algo;
629         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
630
631         ironlake_edp_panel_vdd_on(intel_dp);
632         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
633         ironlake_edp_panel_vdd_off(intel_dp, false);
634         return ret;
635 }
636
637 static void
638 intel_dp_set_clock(struct intel_encoder *encoder,
639                    struct intel_crtc_config *pipe_config, int link_bw)
640 {
641         struct drm_device *dev = encoder->base.dev;
642
643         if (IS_G4X(dev)) {
644                 if (link_bw == DP_LINK_BW_1_62) {
645                         pipe_config->dpll.p1 = 2;
646                         pipe_config->dpll.p2 = 10;
647                         pipe_config->dpll.n = 2;
648                         pipe_config->dpll.m1 = 23;
649                         pipe_config->dpll.m2 = 8;
650                 } else {
651                         pipe_config->dpll.p1 = 1;
652                         pipe_config->dpll.p2 = 10;
653                         pipe_config->dpll.n = 1;
654                         pipe_config->dpll.m1 = 14;
655                         pipe_config->dpll.m2 = 2;
656                 }
657                 pipe_config->clock_set = true;
658         } else if (IS_HASWELL(dev)) {
659                 /* Haswell has special-purpose DP DDI clocks. */
660         } else if (HAS_PCH_SPLIT(dev)) {
661                 if (link_bw == DP_LINK_BW_1_62) {
662                         pipe_config->dpll.n = 1;
663                         pipe_config->dpll.p1 = 2;
664                         pipe_config->dpll.p2 = 10;
665                         pipe_config->dpll.m1 = 12;
666                         pipe_config->dpll.m2 = 9;
667                 } else {
668                         pipe_config->dpll.n = 2;
669                         pipe_config->dpll.p1 = 1;
670                         pipe_config->dpll.p2 = 10;
671                         pipe_config->dpll.m1 = 14;
672                         pipe_config->dpll.m2 = 8;
673                 }
674                 pipe_config->clock_set = true;
675         } else if (IS_VALLEYVIEW(dev)) {
676                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
677         }
678 }
679
680 bool
681 intel_dp_compute_config(struct intel_encoder *encoder,
682                         struct intel_crtc_config *pipe_config)
683 {
684         struct drm_device *dev = encoder->base.dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
687         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
688         struct intel_crtc *intel_crtc = encoder->new_crtc;
689         struct intel_connector *intel_connector = intel_dp->attached_connector;
690         int lane_count, clock;
691         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
692         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
693         int bpp, mode_rate;
694         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
695         int target_clock, link_avail, link_clock;
696
697         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && !is_cpu_edp(intel_dp))
698                 pipe_config->has_pch_encoder = true;
699
700         pipe_config->has_dp_encoder = true;
701
702         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
703                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
704                                        adjusted_mode);
705                 if (!HAS_PCH_SPLIT(dev))
706                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
707                                                  intel_connector->panel.fitting_mode);
708                 else
709                         intel_pch_panel_fitting(intel_crtc, pipe_config,
710                                                 intel_connector->panel.fitting_mode);
711         }
712         /* We need to take the panel's fixed mode into account. */
713         target_clock = adjusted_mode->clock;
714
715         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
716                 return false;
717
718         DRM_DEBUG_KMS("DP link computation with max lane count %i "
719                       "max bw %02x pixel clock %iKHz\n",
720                       max_lane_count, bws[max_clock], adjusted_mode->clock);
721
722         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
723          * bpc in between. */
724         bpp = min_t(int, 8*3, pipe_config->pipe_bpp);
725         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp)
726                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
727
728         for (; bpp >= 6*3; bpp -= 2*3) {
729                 mode_rate = intel_dp_link_required(target_clock, bpp);
730
731                 for (clock = 0; clock <= max_clock; clock++) {
732                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
733                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
734                                 link_avail = intel_dp_max_data_rate(link_clock,
735                                                                     lane_count);
736
737                                 if (mode_rate <= link_avail) {
738                                         goto found;
739                                 }
740                         }
741                 }
742         }
743
744         return false;
745
746 found:
747         if (intel_dp->color_range_auto) {
748                 /*
749                  * See:
750                  * CEA-861-E - 5.1 Default Encoding Parameters
751                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
752                  */
753                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
754                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
755                 else
756                         intel_dp->color_range = 0;
757         }
758
759         if (intel_dp->color_range)
760                 pipe_config->limited_color_range = true;
761
762         intel_dp->link_bw = bws[clock];
763         intel_dp->lane_count = lane_count;
764         adjusted_mode->clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
765         pipe_config->pipe_bpp = bpp;
766         pipe_config->pixel_target_clock = target_clock;
767
768         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
769                       intel_dp->link_bw, intel_dp->lane_count,
770                       adjusted_mode->clock, bpp);
771         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
772                       mode_rate, link_avail);
773
774         intel_link_compute_m_n(bpp, lane_count,
775                                target_clock, adjusted_mode->clock,
776                                &pipe_config->dp_m_n);
777
778         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
779
780         return true;
781 }
782
783 void intel_dp_init_link_config(struct intel_dp *intel_dp)
784 {
785         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
786         intel_dp->link_configuration[0] = intel_dp->link_bw;
787         intel_dp->link_configuration[1] = intel_dp->lane_count;
788         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
789         /*
790          * Check for DPCD version > 1.1 and enhanced framing support
791          */
792         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
793             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
794                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
795         }
796 }
797
798 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
799 {
800         struct drm_device *dev = crtc->dev;
801         struct drm_i915_private *dev_priv = dev->dev_private;
802         u32 dpa_ctl;
803
804         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
805         dpa_ctl = I915_READ(DP_A);
806         dpa_ctl &= ~DP_PLL_FREQ_MASK;
807
808         if (clock < 200000) {
809                 /* For a long time we've carried around a ILK-DevA w/a for the
810                  * 160MHz clock. If we're really unlucky, it's still required.
811                  */
812                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
813                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
814         } else {
815                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
816         }
817
818         I915_WRITE(DP_A, dpa_ctl);
819
820         POSTING_READ(DP_A);
821         udelay(500);
822 }
823
824 static void
825 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
826                   struct drm_display_mode *adjusted_mode)
827 {
828         struct drm_device *dev = encoder->dev;
829         struct drm_i915_private *dev_priv = dev->dev_private;
830         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
831         struct drm_crtc *crtc = encoder->crtc;
832         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
833
834         /*
835          * There are four kinds of DP registers:
836          *
837          *      IBX PCH
838          *      SNB CPU
839          *      IVB CPU
840          *      CPT PCH
841          *
842          * IBX PCH and CPU are the same for almost everything,
843          * except that the CPU DP PLL is configured in this
844          * register
845          *
846          * CPT PCH is quite different, having many bits moved
847          * to the TRANS_DP_CTL register instead. That
848          * configuration happens (oddly) in ironlake_pch_enable
849          */
850
851         /* Preserve the BIOS-computed detected bit. This is
852          * supposed to be read-only.
853          */
854         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
855
856         /* Handle DP bits in common between all three register formats */
857         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
858         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
859
860         if (intel_dp->has_audio) {
861                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
862                                  pipe_name(intel_crtc->pipe));
863                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
864                 intel_write_eld(encoder, adjusted_mode);
865         }
866
867         intel_dp_init_link_config(intel_dp);
868
869         /* Split out the IBX/CPU vs CPT settings */
870
871         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
872                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
873                         intel_dp->DP |= DP_SYNC_HS_HIGH;
874                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
875                         intel_dp->DP |= DP_SYNC_VS_HIGH;
876                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
877
878                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
879                         intel_dp->DP |= DP_ENHANCED_FRAMING;
880
881                 intel_dp->DP |= intel_crtc->pipe << 29;
882
883                 /* don't miss out required setting for eDP */
884                 if (adjusted_mode->clock < 200000)
885                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
886                 else
887                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
888         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
889                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
890                         intel_dp->DP |= intel_dp->color_range;
891
892                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
893                         intel_dp->DP |= DP_SYNC_HS_HIGH;
894                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
895                         intel_dp->DP |= DP_SYNC_VS_HIGH;
896                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
897
898                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
899                         intel_dp->DP |= DP_ENHANCED_FRAMING;
900
901                 if (intel_crtc->pipe == 1)
902                         intel_dp->DP |= DP_PIPEB_SELECT;
903
904                 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
905                         /* don't miss out required setting for eDP */
906                         if (adjusted_mode->clock < 200000)
907                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
908                         else
909                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
910                 }
911         } else {
912                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
913         }
914
915         if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
916                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
917 }
918
919 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
920 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
921
922 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
923 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
924
925 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
926 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
927
928 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
929                                        u32 mask,
930                                        u32 value)
931 {
932         struct drm_device *dev = intel_dp_to_dev(intel_dp);
933         struct drm_i915_private *dev_priv = dev->dev_private;
934         u32 pp_stat_reg, pp_ctrl_reg;
935
936         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
937         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
938
939         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
940                         mask, value,
941                         I915_READ(pp_stat_reg),
942                         I915_READ(pp_ctrl_reg));
943
944         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
945                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
946                                 I915_READ(pp_stat_reg),
947                                 I915_READ(pp_ctrl_reg));
948         }
949 }
950
951 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
952 {
953         DRM_DEBUG_KMS("Wait for panel power on\n");
954         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
955 }
956
957 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
958 {
959         DRM_DEBUG_KMS("Wait for panel power off time\n");
960         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
961 }
962
963 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
964 {
965         DRM_DEBUG_KMS("Wait for panel power cycle\n");
966         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
967 }
968
969
970 /* Read the current pp_control value, unlocking the register if it
971  * is locked
972  */
973
974 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
975 {
976         struct drm_device *dev = intel_dp_to_dev(intel_dp);
977         struct drm_i915_private *dev_priv = dev->dev_private;
978         u32 control;
979         u32 pp_ctrl_reg;
980
981         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
982         control = I915_READ(pp_ctrl_reg);
983
984         control &= ~PANEL_UNLOCK_MASK;
985         control |= PANEL_UNLOCK_REGS;
986         return control;
987 }
988
989 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
990 {
991         struct drm_device *dev = intel_dp_to_dev(intel_dp);
992         struct drm_i915_private *dev_priv = dev->dev_private;
993         u32 pp;
994         u32 pp_stat_reg, pp_ctrl_reg;
995
996         if (!is_edp(intel_dp))
997                 return;
998         DRM_DEBUG_KMS("Turn eDP VDD on\n");
999
1000         WARN(intel_dp->want_panel_vdd,
1001              "eDP VDD already requested on\n");
1002
1003         intel_dp->want_panel_vdd = true;
1004
1005         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1006                 DRM_DEBUG_KMS("eDP VDD already on\n");
1007                 return;
1008         }
1009
1010         if (!ironlake_edp_have_panel_power(intel_dp))
1011                 ironlake_wait_panel_power_cycle(intel_dp);
1012
1013         pp = ironlake_get_pp_control(intel_dp);
1014         pp |= EDP_FORCE_VDD;
1015
1016         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1017         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1018
1019         I915_WRITE(pp_ctrl_reg, pp);
1020         POSTING_READ(pp_ctrl_reg);
1021         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1022                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1023         /*
1024          * If the panel wasn't on, delay before accessing aux channel
1025          */
1026         if (!ironlake_edp_have_panel_power(intel_dp)) {
1027                 DRM_DEBUG_KMS("eDP was not running\n");
1028                 msleep(intel_dp->panel_power_up_delay);
1029         }
1030 }
1031
1032 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1033 {
1034         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u32 pp;
1037         u32 pp_stat_reg, pp_ctrl_reg;
1038
1039         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1040
1041         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1042                 pp = ironlake_get_pp_control(intel_dp);
1043                 pp &= ~EDP_FORCE_VDD;
1044
1045                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1046                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1047
1048                 I915_WRITE(pp_ctrl_reg, pp);
1049                 POSTING_READ(pp_ctrl_reg);
1050
1051                 /* Make sure sequencer is idle before allowing subsequent activity */
1052                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1053                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1054                 msleep(intel_dp->panel_power_down_delay);
1055         }
1056 }
1057
1058 static void ironlake_panel_vdd_work(struct work_struct *__work)
1059 {
1060         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1061                                                  struct intel_dp, panel_vdd_work);
1062         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1063
1064         mutex_lock(&dev->mode_config.mutex);
1065         ironlake_panel_vdd_off_sync(intel_dp);
1066         mutex_unlock(&dev->mode_config.mutex);
1067 }
1068
1069 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1070 {
1071         if (!is_edp(intel_dp))
1072                 return;
1073
1074         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1075         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1076
1077         intel_dp->want_panel_vdd = false;
1078
1079         if (sync) {
1080                 ironlake_panel_vdd_off_sync(intel_dp);
1081         } else {
1082                 /*
1083                  * Queue the timer to fire a long
1084                  * time from now (relative to the power down delay)
1085                  * to keep the panel power up across a sequence of operations
1086                  */
1087                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1088                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1089         }
1090 }
1091
1092 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1093 {
1094         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         u32 pp;
1097         u32 pp_ctrl_reg;
1098
1099         if (!is_edp(intel_dp))
1100                 return;
1101
1102         DRM_DEBUG_KMS("Turn eDP power on\n");
1103
1104         if (ironlake_edp_have_panel_power(intel_dp)) {
1105                 DRM_DEBUG_KMS("eDP power already on\n");
1106                 return;
1107         }
1108
1109         ironlake_wait_panel_power_cycle(intel_dp);
1110
1111         pp = ironlake_get_pp_control(intel_dp);
1112         if (IS_GEN5(dev)) {
1113                 /* ILK workaround: disable reset around power sequence */
1114                 pp &= ~PANEL_POWER_RESET;
1115                 I915_WRITE(PCH_PP_CONTROL, pp);
1116                 POSTING_READ(PCH_PP_CONTROL);
1117         }
1118
1119         pp |= POWER_TARGET_ON;
1120         if (!IS_GEN5(dev))
1121                 pp |= PANEL_POWER_RESET;
1122
1123         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1124
1125         I915_WRITE(pp_ctrl_reg, pp);
1126         POSTING_READ(pp_ctrl_reg);
1127
1128         ironlake_wait_panel_on(intel_dp);
1129
1130         if (IS_GEN5(dev)) {
1131                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1132                 I915_WRITE(PCH_PP_CONTROL, pp);
1133                 POSTING_READ(PCH_PP_CONTROL);
1134         }
1135 }
1136
1137 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1138 {
1139         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         u32 pp;
1142         u32 pp_ctrl_reg;
1143
1144         if (!is_edp(intel_dp))
1145                 return;
1146
1147         DRM_DEBUG_KMS("Turn eDP power off\n");
1148
1149         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1150
1151         pp = ironlake_get_pp_control(intel_dp);
1152         /* We need to switch off panel power _and_ force vdd, for otherwise some
1153          * panels get very unhappy and cease to work. */
1154         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1155
1156         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1157
1158         I915_WRITE(pp_ctrl_reg, pp);
1159         POSTING_READ(pp_ctrl_reg);
1160
1161         intel_dp->want_panel_vdd = false;
1162
1163         ironlake_wait_panel_off(intel_dp);
1164 }
1165
1166 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1167 {
1168         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1169         struct drm_device *dev = intel_dig_port->base.base.dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1172         u32 pp;
1173         u32 pp_ctrl_reg;
1174
1175         if (!is_edp(intel_dp))
1176                 return;
1177
1178         DRM_DEBUG_KMS("\n");
1179         /*
1180          * If we enable the backlight right away following a panel power
1181          * on, we may see slight flicker as the panel syncs with the eDP
1182          * link.  So delay a bit to make sure the image is solid before
1183          * allowing it to appear.
1184          */
1185         msleep(intel_dp->backlight_on_delay);
1186         pp = ironlake_get_pp_control(intel_dp);
1187         pp |= EDP_BLC_ENABLE;
1188
1189         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1190
1191         I915_WRITE(pp_ctrl_reg, pp);
1192         POSTING_READ(pp_ctrl_reg);
1193
1194         intel_panel_enable_backlight(dev, pipe);
1195 }
1196
1197 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1198 {
1199         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1200         struct drm_i915_private *dev_priv = dev->dev_private;
1201         u32 pp;
1202         u32 pp_ctrl_reg;
1203
1204         if (!is_edp(intel_dp))
1205                 return;
1206
1207         intel_panel_disable_backlight(dev);
1208
1209         DRM_DEBUG_KMS("\n");
1210         pp = ironlake_get_pp_control(intel_dp);
1211         pp &= ~EDP_BLC_ENABLE;
1212
1213         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1214
1215         I915_WRITE(pp_ctrl_reg, pp);
1216         POSTING_READ(pp_ctrl_reg);
1217         msleep(intel_dp->backlight_off_delay);
1218 }
1219
1220 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1221 {
1222         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1223         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1224         struct drm_device *dev = crtc->dev;
1225         struct drm_i915_private *dev_priv = dev->dev_private;
1226         u32 dpa_ctl;
1227
1228         assert_pipe_disabled(dev_priv,
1229                              to_intel_crtc(crtc)->pipe);
1230
1231         DRM_DEBUG_KMS("\n");
1232         dpa_ctl = I915_READ(DP_A);
1233         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1234         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1235
1236         /* We don't adjust intel_dp->DP while tearing down the link, to
1237          * facilitate link retraining (e.g. after hotplug). Hence clear all
1238          * enable bits here to ensure that we don't enable too much. */
1239         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1240         intel_dp->DP |= DP_PLL_ENABLE;
1241         I915_WRITE(DP_A, intel_dp->DP);
1242         POSTING_READ(DP_A);
1243         udelay(200);
1244 }
1245
1246 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1247 {
1248         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1249         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1250         struct drm_device *dev = crtc->dev;
1251         struct drm_i915_private *dev_priv = dev->dev_private;
1252         u32 dpa_ctl;
1253
1254         assert_pipe_disabled(dev_priv,
1255                              to_intel_crtc(crtc)->pipe);
1256
1257         dpa_ctl = I915_READ(DP_A);
1258         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1259              "dp pll off, should be on\n");
1260         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1261
1262         /* We can't rely on the value tracked for the DP register in
1263          * intel_dp->DP because link_down must not change that (otherwise link
1264          * re-training will fail. */
1265         dpa_ctl &= ~DP_PLL_ENABLE;
1266         I915_WRITE(DP_A, dpa_ctl);
1267         POSTING_READ(DP_A);
1268         udelay(200);
1269 }
1270
1271 /* If the sink supports it, try to set the power state appropriately */
1272 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1273 {
1274         int ret, i;
1275
1276         /* Should have a valid DPCD by this point */
1277         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1278                 return;
1279
1280         if (mode != DRM_MODE_DPMS_ON) {
1281                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1282                                                   DP_SET_POWER_D3);
1283                 if (ret != 1)
1284                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1285         } else {
1286                 /*
1287                  * When turning on, we need to retry for 1ms to give the sink
1288                  * time to wake up.
1289                  */
1290                 for (i = 0; i < 3; i++) {
1291                         ret = intel_dp_aux_native_write_1(intel_dp,
1292                                                           DP_SET_POWER,
1293                                                           DP_SET_POWER_D0);
1294                         if (ret == 1)
1295                                 break;
1296                         msleep(1);
1297                 }
1298         }
1299 }
1300
1301 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1302                                   enum pipe *pipe)
1303 {
1304         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1305         struct drm_device *dev = encoder->base.dev;
1306         struct drm_i915_private *dev_priv = dev->dev_private;
1307         u32 tmp = I915_READ(intel_dp->output_reg);
1308
1309         if (!(tmp & DP_PORT_EN))
1310                 return false;
1311
1312         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1313                 *pipe = PORT_TO_PIPE_CPT(tmp);
1314         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1315                 *pipe = PORT_TO_PIPE(tmp);
1316         } else {
1317                 u32 trans_sel;
1318                 u32 trans_dp;
1319                 int i;
1320
1321                 switch (intel_dp->output_reg) {
1322                 case PCH_DP_B:
1323                         trans_sel = TRANS_DP_PORT_SEL_B;
1324                         break;
1325                 case PCH_DP_C:
1326                         trans_sel = TRANS_DP_PORT_SEL_C;
1327                         break;
1328                 case PCH_DP_D:
1329                         trans_sel = TRANS_DP_PORT_SEL_D;
1330                         break;
1331                 default:
1332                         return true;
1333                 }
1334
1335                 for_each_pipe(i) {
1336                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1337                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1338                                 *pipe = i;
1339                                 return true;
1340                         }
1341                 }
1342
1343                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1344                               intel_dp->output_reg);
1345         }
1346
1347         return true;
1348 }
1349
1350 static void intel_dp_get_config(struct intel_encoder *encoder,
1351                                 struct intel_crtc_config *pipe_config)
1352 {
1353         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1354         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1355         u32 tmp, flags = 0;
1356
1357         tmp = I915_READ(intel_dp->output_reg);
1358
1359         if (tmp & DP_SYNC_HS_HIGH)
1360                 flags |= DRM_MODE_FLAG_PHSYNC;
1361         else
1362                 flags |= DRM_MODE_FLAG_NHSYNC;
1363
1364         if (tmp & DP_SYNC_VS_HIGH)
1365                 flags |= DRM_MODE_FLAG_PVSYNC;
1366         else
1367                 flags |= DRM_MODE_FLAG_NVSYNC;
1368
1369         pipe_config->adjusted_mode.flags |= flags;
1370 }
1371
1372 static void intel_disable_dp(struct intel_encoder *encoder)
1373 {
1374         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1375
1376         /* Make sure the panel is off before trying to change the mode. But also
1377          * ensure that we have vdd while we switch off the panel. */
1378         ironlake_edp_panel_vdd_on(intel_dp);
1379         ironlake_edp_backlight_off(intel_dp);
1380         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1381         ironlake_edp_panel_off(intel_dp);
1382
1383         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1384         if (!is_cpu_edp(intel_dp))
1385                 intel_dp_link_down(intel_dp);
1386 }
1387
1388 static void intel_post_disable_dp(struct intel_encoder *encoder)
1389 {
1390         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1391         struct drm_device *dev = encoder->base.dev;
1392
1393         if (is_cpu_edp(intel_dp)) {
1394                 intel_dp_link_down(intel_dp);
1395                 if (!IS_VALLEYVIEW(dev))
1396                         ironlake_edp_pll_off(intel_dp);
1397         }
1398 }
1399
1400 static void intel_enable_dp(struct intel_encoder *encoder)
1401 {
1402         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1403         struct drm_device *dev = encoder->base.dev;
1404         struct drm_i915_private *dev_priv = dev->dev_private;
1405         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1406
1407         if (WARN_ON(dp_reg & DP_PORT_EN))
1408                 return;
1409
1410         ironlake_edp_panel_vdd_on(intel_dp);
1411         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1412         intel_dp_start_link_train(intel_dp);
1413         ironlake_edp_panel_on(intel_dp);
1414         ironlake_edp_panel_vdd_off(intel_dp, true);
1415         intel_dp_complete_link_train(intel_dp);
1416         intel_dp_stop_link_train(intel_dp);
1417         ironlake_edp_backlight_on(intel_dp);
1418
1419         if (IS_VALLEYVIEW(dev)) {
1420                 struct intel_digital_port *dport =
1421                         enc_to_dig_port(&encoder->base);
1422                 int channel = vlv_dport_to_channel(dport);
1423
1424                 vlv_wait_port_ready(dev_priv, channel);
1425         }
1426 }
1427
1428 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1429 {
1430         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1431         struct drm_device *dev = encoder->base.dev;
1432         struct drm_i915_private *dev_priv = dev->dev_private;
1433
1434         if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
1435                 ironlake_edp_pll_on(intel_dp);
1436
1437         if (IS_VALLEYVIEW(dev)) {
1438                 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1439                 struct intel_crtc *intel_crtc =
1440                         to_intel_crtc(encoder->base.crtc);
1441                 int port = vlv_dport_to_channel(dport);
1442                 int pipe = intel_crtc->pipe;
1443                 u32 val;
1444
1445                 val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1446                 val = 0;
1447                 if (pipe)
1448                         val |= (1<<21);
1449                 else
1450                         val &= ~(1<<21);
1451                 val |= 0x001000c4;
1452                 vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1453
1454                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port),
1455                                  0x00760018);
1456                 vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port),
1457                                  0x00400888);
1458         }
1459 }
1460
1461 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1462 {
1463         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1464         struct drm_device *dev = encoder->base.dev;
1465         struct drm_i915_private *dev_priv = dev->dev_private;
1466         int port = vlv_dport_to_channel(dport);
1467
1468         if (!IS_VALLEYVIEW(dev))
1469                 return;
1470
1471         /* Program Tx lane resets to default */
1472         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1473                          DPIO_PCS_TX_LANE2_RESET |
1474                          DPIO_PCS_TX_LANE1_RESET);
1475         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1476                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1477                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1478                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1479                                  DPIO_PCS_CLK_SOFT_RESET);
1480
1481         /* Fix up inter-pair skew failure */
1482         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1483         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1484         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1485 }
1486
1487 /*
1488  * Native read with retry for link status and receiver capability reads for
1489  * cases where the sink may still be asleep.
1490  */
1491 static bool
1492 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1493                                uint8_t *recv, int recv_bytes)
1494 {
1495         int ret, i;
1496
1497         /*
1498          * Sinks are *supposed* to come up within 1ms from an off state,
1499          * but we're also supposed to retry 3 times per the spec.
1500          */
1501         for (i = 0; i < 3; i++) {
1502                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1503                                                recv_bytes);
1504                 if (ret == recv_bytes)
1505                         return true;
1506                 msleep(1);
1507         }
1508
1509         return false;
1510 }
1511
1512 /*
1513  * Fetch AUX CH registers 0x202 - 0x207 which contain
1514  * link status information
1515  */
1516 static bool
1517 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1518 {
1519         return intel_dp_aux_native_read_retry(intel_dp,
1520                                               DP_LANE0_1_STATUS,
1521                                               link_status,
1522                                               DP_LINK_STATUS_SIZE);
1523 }
1524
1525 #if 0
1526 static char     *voltage_names[] = {
1527         "0.4V", "0.6V", "0.8V", "1.2V"
1528 };
1529 static char     *pre_emph_names[] = {
1530         "0dB", "3.5dB", "6dB", "9.5dB"
1531 };
1532 static char     *link_train_names[] = {
1533         "pattern 1", "pattern 2", "idle", "off"
1534 };
1535 #endif
1536
1537 /*
1538  * These are source-specific values; current Intel hardware supports
1539  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1540  */
1541
1542 static uint8_t
1543 intel_dp_voltage_max(struct intel_dp *intel_dp)
1544 {
1545         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1546
1547         if (IS_VALLEYVIEW(dev))
1548                 return DP_TRAIN_VOLTAGE_SWING_1200;
1549         else if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1550                 return DP_TRAIN_VOLTAGE_SWING_800;
1551         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1552                 return DP_TRAIN_VOLTAGE_SWING_1200;
1553         else
1554                 return DP_TRAIN_VOLTAGE_SWING_800;
1555 }
1556
1557 static uint8_t
1558 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1559 {
1560         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1561
1562         if (HAS_DDI(dev)) {
1563                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1564                 case DP_TRAIN_VOLTAGE_SWING_400:
1565                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1566                 case DP_TRAIN_VOLTAGE_SWING_600:
1567                         return DP_TRAIN_PRE_EMPHASIS_6;
1568                 case DP_TRAIN_VOLTAGE_SWING_800:
1569                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1570                 case DP_TRAIN_VOLTAGE_SWING_1200:
1571                 default:
1572                         return DP_TRAIN_PRE_EMPHASIS_0;
1573                 }
1574         } else if (IS_VALLEYVIEW(dev)) {
1575                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1576                 case DP_TRAIN_VOLTAGE_SWING_400:
1577                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1578                 case DP_TRAIN_VOLTAGE_SWING_600:
1579                         return DP_TRAIN_PRE_EMPHASIS_6;
1580                 case DP_TRAIN_VOLTAGE_SWING_800:
1581                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1582                 case DP_TRAIN_VOLTAGE_SWING_1200:
1583                 default:
1584                         return DP_TRAIN_PRE_EMPHASIS_0;
1585                 }
1586         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1587                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1588                 case DP_TRAIN_VOLTAGE_SWING_400:
1589                         return DP_TRAIN_PRE_EMPHASIS_6;
1590                 case DP_TRAIN_VOLTAGE_SWING_600:
1591                 case DP_TRAIN_VOLTAGE_SWING_800:
1592                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1593                 default:
1594                         return DP_TRAIN_PRE_EMPHASIS_0;
1595                 }
1596         } else {
1597                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1598                 case DP_TRAIN_VOLTAGE_SWING_400:
1599                         return DP_TRAIN_PRE_EMPHASIS_6;
1600                 case DP_TRAIN_VOLTAGE_SWING_600:
1601                         return DP_TRAIN_PRE_EMPHASIS_6;
1602                 case DP_TRAIN_VOLTAGE_SWING_800:
1603                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1604                 case DP_TRAIN_VOLTAGE_SWING_1200:
1605                 default:
1606                         return DP_TRAIN_PRE_EMPHASIS_0;
1607                 }
1608         }
1609 }
1610
1611 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1612 {
1613         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1614         struct drm_i915_private *dev_priv = dev->dev_private;
1615         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1616         unsigned long demph_reg_value, preemph_reg_value,
1617                 uniqtranscale_reg_value;
1618         uint8_t train_set = intel_dp->train_set[0];
1619         int port = vlv_dport_to_channel(dport);
1620
1621         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1622         case DP_TRAIN_PRE_EMPHASIS_0:
1623                 preemph_reg_value = 0x0004000;
1624                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1625                 case DP_TRAIN_VOLTAGE_SWING_400:
1626                         demph_reg_value = 0x2B405555;
1627                         uniqtranscale_reg_value = 0x552AB83A;
1628                         break;
1629                 case DP_TRAIN_VOLTAGE_SWING_600:
1630                         demph_reg_value = 0x2B404040;
1631                         uniqtranscale_reg_value = 0x5548B83A;
1632                         break;
1633                 case DP_TRAIN_VOLTAGE_SWING_800:
1634                         demph_reg_value = 0x2B245555;
1635                         uniqtranscale_reg_value = 0x5560B83A;
1636                         break;
1637                 case DP_TRAIN_VOLTAGE_SWING_1200:
1638                         demph_reg_value = 0x2B405555;
1639                         uniqtranscale_reg_value = 0x5598DA3A;
1640                         break;
1641                 default:
1642                         return 0;
1643                 }
1644                 break;
1645         case DP_TRAIN_PRE_EMPHASIS_3_5:
1646                 preemph_reg_value = 0x0002000;
1647                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1648                 case DP_TRAIN_VOLTAGE_SWING_400:
1649                         demph_reg_value = 0x2B404040;
1650                         uniqtranscale_reg_value = 0x5552B83A;
1651                         break;
1652                 case DP_TRAIN_VOLTAGE_SWING_600:
1653                         demph_reg_value = 0x2B404848;
1654                         uniqtranscale_reg_value = 0x5580B83A;
1655                         break;
1656                 case DP_TRAIN_VOLTAGE_SWING_800:
1657                         demph_reg_value = 0x2B404040;
1658                         uniqtranscale_reg_value = 0x55ADDA3A;
1659                         break;
1660                 default:
1661                         return 0;
1662                 }
1663                 break;
1664         case DP_TRAIN_PRE_EMPHASIS_6:
1665                 preemph_reg_value = 0x0000000;
1666                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1667                 case DP_TRAIN_VOLTAGE_SWING_400:
1668                         demph_reg_value = 0x2B305555;
1669                         uniqtranscale_reg_value = 0x5570B83A;
1670                         break;
1671                 case DP_TRAIN_VOLTAGE_SWING_600:
1672                         demph_reg_value = 0x2B2B4040;
1673                         uniqtranscale_reg_value = 0x55ADDA3A;
1674                         break;
1675                 default:
1676                         return 0;
1677                 }
1678                 break;
1679         case DP_TRAIN_PRE_EMPHASIS_9_5:
1680                 preemph_reg_value = 0x0006000;
1681                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1682                 case DP_TRAIN_VOLTAGE_SWING_400:
1683                         demph_reg_value = 0x1B405555;
1684                         uniqtranscale_reg_value = 0x55ADDA3A;
1685                         break;
1686                 default:
1687                         return 0;
1688                 }
1689                 break;
1690         default:
1691                 return 0;
1692         }
1693
1694         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1695         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1696         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1697                          uniqtranscale_reg_value);
1698         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1699         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1700         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1701         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1702
1703         return 0;
1704 }
1705
1706 static void
1707 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1708 {
1709         uint8_t v = 0;
1710         uint8_t p = 0;
1711         int lane;
1712         uint8_t voltage_max;
1713         uint8_t preemph_max;
1714
1715         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1716                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1717                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1718
1719                 if (this_v > v)
1720                         v = this_v;
1721                 if (this_p > p)
1722                         p = this_p;
1723         }
1724
1725         voltage_max = intel_dp_voltage_max(intel_dp);
1726         if (v >= voltage_max)
1727                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1728
1729         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1730         if (p >= preemph_max)
1731                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1732
1733         for (lane = 0; lane < 4; lane++)
1734                 intel_dp->train_set[lane] = v | p;
1735 }
1736
1737 static uint32_t
1738 intel_gen4_signal_levels(uint8_t train_set)
1739 {
1740         uint32_t        signal_levels = 0;
1741
1742         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1743         case DP_TRAIN_VOLTAGE_SWING_400:
1744         default:
1745                 signal_levels |= DP_VOLTAGE_0_4;
1746                 break;
1747         case DP_TRAIN_VOLTAGE_SWING_600:
1748                 signal_levels |= DP_VOLTAGE_0_6;
1749                 break;
1750         case DP_TRAIN_VOLTAGE_SWING_800:
1751                 signal_levels |= DP_VOLTAGE_0_8;
1752                 break;
1753         case DP_TRAIN_VOLTAGE_SWING_1200:
1754                 signal_levels |= DP_VOLTAGE_1_2;
1755                 break;
1756         }
1757         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1758         case DP_TRAIN_PRE_EMPHASIS_0:
1759         default:
1760                 signal_levels |= DP_PRE_EMPHASIS_0;
1761                 break;
1762         case DP_TRAIN_PRE_EMPHASIS_3_5:
1763                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1764                 break;
1765         case DP_TRAIN_PRE_EMPHASIS_6:
1766                 signal_levels |= DP_PRE_EMPHASIS_6;
1767                 break;
1768         case DP_TRAIN_PRE_EMPHASIS_9_5:
1769                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1770                 break;
1771         }
1772         return signal_levels;
1773 }
1774
1775 /* Gen6's DP voltage swing and pre-emphasis control */
1776 static uint32_t
1777 intel_gen6_edp_signal_levels(uint8_t train_set)
1778 {
1779         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1780                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1781         switch (signal_levels) {
1782         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1783         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1784                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1785         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1786                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1787         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1788         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1789                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1790         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1791         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1792                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1793         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1794         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1795                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1796         default:
1797                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1798                               "0x%x\n", signal_levels);
1799                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1800         }
1801 }
1802
1803 /* Gen7's DP voltage swing and pre-emphasis control */
1804 static uint32_t
1805 intel_gen7_edp_signal_levels(uint8_t train_set)
1806 {
1807         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1808                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1809         switch (signal_levels) {
1810         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1811                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1812         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1813                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1814         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1815                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1816
1817         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1818                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1819         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1820                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1821
1822         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1823                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1824         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1825                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1826
1827         default:
1828                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1829                               "0x%x\n", signal_levels);
1830                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1831         }
1832 }
1833
1834 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1835 static uint32_t
1836 intel_hsw_signal_levels(uint8_t train_set)
1837 {
1838         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1839                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1840         switch (signal_levels) {
1841         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1842                 return DDI_BUF_EMP_400MV_0DB_HSW;
1843         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1844                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1845         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1846                 return DDI_BUF_EMP_400MV_6DB_HSW;
1847         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1848                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1849
1850         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1851                 return DDI_BUF_EMP_600MV_0DB_HSW;
1852         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1853                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1854         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1855                 return DDI_BUF_EMP_600MV_6DB_HSW;
1856
1857         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1858                 return DDI_BUF_EMP_800MV_0DB_HSW;
1859         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1860                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1861         default:
1862                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1863                               "0x%x\n", signal_levels);
1864                 return DDI_BUF_EMP_400MV_0DB_HSW;
1865         }
1866 }
1867
1868 /* Properly updates "DP" with the correct signal levels. */
1869 static void
1870 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1871 {
1872         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1873         struct drm_device *dev = intel_dig_port->base.base.dev;
1874         uint32_t signal_levels, mask;
1875         uint8_t train_set = intel_dp->train_set[0];
1876
1877         if (HAS_DDI(dev)) {
1878                 signal_levels = intel_hsw_signal_levels(train_set);
1879                 mask = DDI_BUF_EMP_MASK;
1880         } else if (IS_VALLEYVIEW(dev)) {
1881                 signal_levels = intel_vlv_signal_levels(intel_dp);
1882                 mask = 0;
1883         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1884                 signal_levels = intel_gen7_edp_signal_levels(train_set);
1885                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1886         } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1887                 signal_levels = intel_gen6_edp_signal_levels(train_set);
1888                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1889         } else {
1890                 signal_levels = intel_gen4_signal_levels(train_set);
1891                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1892         }
1893
1894         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1895
1896         *DP = (*DP & ~mask) | signal_levels;
1897 }
1898
1899 static bool
1900 intel_dp_set_link_train(struct intel_dp *intel_dp,
1901                         uint32_t dp_reg_value,
1902                         uint8_t dp_train_pat)
1903 {
1904         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1905         struct drm_device *dev = intel_dig_port->base.base.dev;
1906         struct drm_i915_private *dev_priv = dev->dev_private;
1907         enum port port = intel_dig_port->port;
1908         int ret;
1909
1910         if (HAS_DDI(dev)) {
1911                 uint32_t temp = I915_READ(DP_TP_CTL(port));
1912
1913                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1914                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1915                 else
1916                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1917
1918                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1919                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1920                 case DP_TRAINING_PATTERN_DISABLE:
1921                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1922
1923                         break;
1924                 case DP_TRAINING_PATTERN_1:
1925                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1926                         break;
1927                 case DP_TRAINING_PATTERN_2:
1928                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1929                         break;
1930                 case DP_TRAINING_PATTERN_3:
1931                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1932                         break;
1933                 }
1934                 I915_WRITE(DP_TP_CTL(port), temp);
1935
1936         } else if (HAS_PCH_CPT(dev) &&
1937                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1938                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1939
1940                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1941                 case DP_TRAINING_PATTERN_DISABLE:
1942                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1943                         break;
1944                 case DP_TRAINING_PATTERN_1:
1945                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1946                         break;
1947                 case DP_TRAINING_PATTERN_2:
1948                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1949                         break;
1950                 case DP_TRAINING_PATTERN_3:
1951                         DRM_ERROR("DP training pattern 3 not supported\n");
1952                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1953                         break;
1954                 }
1955
1956         } else {
1957                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1958
1959                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1960                 case DP_TRAINING_PATTERN_DISABLE:
1961                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1962                         break;
1963                 case DP_TRAINING_PATTERN_1:
1964                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1965                         break;
1966                 case DP_TRAINING_PATTERN_2:
1967                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1968                         break;
1969                 case DP_TRAINING_PATTERN_3:
1970                         DRM_ERROR("DP training pattern 3 not supported\n");
1971                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1972                         break;
1973                 }
1974         }
1975
1976         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1977         POSTING_READ(intel_dp->output_reg);
1978
1979         intel_dp_aux_native_write_1(intel_dp,
1980                                     DP_TRAINING_PATTERN_SET,
1981                                     dp_train_pat);
1982
1983         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1984             DP_TRAINING_PATTERN_DISABLE) {
1985                 ret = intel_dp_aux_native_write(intel_dp,
1986                                                 DP_TRAINING_LANE0_SET,
1987                                                 intel_dp->train_set,
1988                                                 intel_dp->lane_count);
1989                 if (ret != intel_dp->lane_count)
1990                         return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
1997 {
1998         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1999         struct drm_device *dev = intel_dig_port->base.base.dev;
2000         struct drm_i915_private *dev_priv = dev->dev_private;
2001         enum port port = intel_dig_port->port;
2002         uint32_t val;
2003
2004         if (!HAS_DDI(dev))
2005                 return;
2006
2007         val = I915_READ(DP_TP_CTL(port));
2008         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2009         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2010         I915_WRITE(DP_TP_CTL(port), val);
2011
2012         /*
2013          * On PORT_A we can have only eDP in SST mode. There the only reason
2014          * we need to set idle transmission mode is to work around a HW issue
2015          * where we enable the pipe while not in idle link-training mode.
2016          * In this case there is requirement to wait for a minimum number of
2017          * idle patterns to be sent.
2018          */
2019         if (port == PORT_A)
2020                 return;
2021
2022         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2023                      1))
2024                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2025 }
2026
2027 /* Enable corresponding port and start training pattern 1 */
2028 void
2029 intel_dp_start_link_train(struct intel_dp *intel_dp)
2030 {
2031         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2032         struct drm_device *dev = encoder->dev;
2033         int i;
2034         uint8_t voltage;
2035         bool clock_recovery = false;
2036         int voltage_tries, loop_tries;
2037         uint32_t DP = intel_dp->DP;
2038
2039         if (HAS_DDI(dev))
2040                 intel_ddi_prepare_link_retrain(encoder);
2041
2042         /* Write the link configuration data */
2043         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2044                                   intel_dp->link_configuration,
2045                                   DP_LINK_CONFIGURATION_SIZE);
2046
2047         DP |= DP_PORT_EN;
2048
2049         memset(intel_dp->train_set, 0, 4);
2050         voltage = 0xff;
2051         voltage_tries = 0;
2052         loop_tries = 0;
2053         clock_recovery = false;
2054         for (;;) {
2055                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2056                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2057
2058                 intel_dp_set_signal_levels(intel_dp, &DP);
2059
2060                 /* Set training pattern 1 */
2061                 if (!intel_dp_set_link_train(intel_dp, DP,
2062                                              DP_TRAINING_PATTERN_1 |
2063                                              DP_LINK_SCRAMBLING_DISABLE))
2064                         break;
2065
2066                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2067                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2068                         DRM_ERROR("failed to get link status\n");
2069                         break;
2070                 }
2071
2072                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2073                         DRM_DEBUG_KMS("clock recovery OK\n");
2074                         clock_recovery = true;
2075                         break;
2076                 }
2077
2078                 /* Check to see if we've tried the max voltage */
2079                 for (i = 0; i < intel_dp->lane_count; i++)
2080                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2081                                 break;
2082                 if (i == intel_dp->lane_count) {
2083                         ++loop_tries;
2084                         if (loop_tries == 5) {
2085                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2086                                 break;
2087                         }
2088                         memset(intel_dp->train_set, 0, 4);
2089                         voltage_tries = 0;
2090                         continue;
2091                 }
2092
2093                 /* Check to see if we've tried the same voltage 5 times */
2094                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2095                         ++voltage_tries;
2096                         if (voltage_tries == 5) {
2097                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2098                                 break;
2099                         }
2100                 } else
2101                         voltage_tries = 0;
2102                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2103
2104                 /* Compute new intel_dp->train_set as requested by target */
2105                 intel_get_adjust_train(intel_dp, link_status);
2106         }
2107
2108         intel_dp->DP = DP;
2109 }
2110
2111 void
2112 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2113 {
2114         bool channel_eq = false;
2115         int tries, cr_tries;
2116         uint32_t DP = intel_dp->DP;
2117
2118         /* channel equalization */
2119         tries = 0;
2120         cr_tries = 0;
2121         channel_eq = false;
2122         for (;;) {
2123                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2124
2125                 if (cr_tries > 5) {
2126                         DRM_ERROR("failed to train DP, aborting\n");
2127                         intel_dp_link_down(intel_dp);
2128                         break;
2129                 }
2130
2131                 intel_dp_set_signal_levels(intel_dp, &DP);
2132
2133                 /* channel eq pattern */
2134                 if (!intel_dp_set_link_train(intel_dp, DP,
2135                                              DP_TRAINING_PATTERN_2 |
2136                                              DP_LINK_SCRAMBLING_DISABLE))
2137                         break;
2138
2139                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2140                 if (!intel_dp_get_link_status(intel_dp, link_status))
2141                         break;
2142
2143                 /* Make sure clock is still ok */
2144                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2145                         intel_dp_start_link_train(intel_dp);
2146                         cr_tries++;
2147                         continue;
2148                 }
2149
2150                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2151                         channel_eq = true;
2152                         break;
2153                 }
2154
2155                 /* Try 5 times, then try clock recovery if that fails */
2156                 if (tries > 5) {
2157                         intel_dp_link_down(intel_dp);
2158                         intel_dp_start_link_train(intel_dp);
2159                         tries = 0;
2160                         cr_tries++;
2161                         continue;
2162                 }
2163
2164                 /* Compute new intel_dp->train_set as requested by target */
2165                 intel_get_adjust_train(intel_dp, link_status);
2166                 ++tries;
2167         }
2168
2169         intel_dp_set_idle_link_train(intel_dp);
2170
2171         intel_dp->DP = DP;
2172
2173         if (channel_eq)
2174                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2175
2176 }
2177
2178 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2179 {
2180         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2181                                 DP_TRAINING_PATTERN_DISABLE);
2182 }
2183
2184 static void
2185 intel_dp_link_down(struct intel_dp *intel_dp)
2186 {
2187         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2188         struct drm_device *dev = intel_dig_port->base.base.dev;
2189         struct drm_i915_private *dev_priv = dev->dev_private;
2190         struct intel_crtc *intel_crtc =
2191                 to_intel_crtc(intel_dig_port->base.base.crtc);
2192         uint32_t DP = intel_dp->DP;
2193
2194         /*
2195          * DDI code has a strict mode set sequence and we should try to respect
2196          * it, otherwise we might hang the machine in many different ways. So we
2197          * really should be disabling the port only on a complete crtc_disable
2198          * sequence. This function is just called under two conditions on DDI
2199          * code:
2200          * - Link train failed while doing crtc_enable, and on this case we
2201          *   really should respect the mode set sequence and wait for a
2202          *   crtc_disable.
2203          * - Someone turned the monitor off and intel_dp_check_link_status
2204          *   called us. We don't need to disable the whole port on this case, so
2205          *   when someone turns the monitor on again,
2206          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2207          *   train.
2208          */
2209         if (HAS_DDI(dev))
2210                 return;
2211
2212         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2213                 return;
2214
2215         DRM_DEBUG_KMS("\n");
2216
2217         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2218                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2219                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2220         } else {
2221                 DP &= ~DP_LINK_TRAIN_MASK;
2222                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2223         }
2224         POSTING_READ(intel_dp->output_reg);
2225
2226         /* We don't really know why we're doing this */
2227         intel_wait_for_vblank(dev, intel_crtc->pipe);
2228
2229         if (HAS_PCH_IBX(dev) &&
2230             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2231                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2232
2233                 /* Hardware workaround: leaving our transcoder select
2234                  * set to transcoder B while it's off will prevent the
2235                  * corresponding HDMI output on transcoder A.
2236                  *
2237                  * Combine this with another hardware workaround:
2238                  * transcoder select bit can only be cleared while the
2239                  * port is enabled.
2240                  */
2241                 DP &= ~DP_PIPEB_SELECT;
2242                 I915_WRITE(intel_dp->output_reg, DP);
2243
2244                 /* Changes to enable or select take place the vblank
2245                  * after being written.
2246                  */
2247                 if (WARN_ON(crtc == NULL)) {
2248                         /* We should never try to disable a port without a crtc
2249                          * attached. For paranoia keep the code around for a
2250                          * bit. */
2251                         POSTING_READ(intel_dp->output_reg);
2252                         msleep(50);
2253                 } else
2254                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2255         }
2256
2257         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2258         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2259         POSTING_READ(intel_dp->output_reg);
2260         msleep(intel_dp->panel_power_down_delay);
2261 }
2262
2263 static bool
2264 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2265 {
2266         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2267
2268         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2269                                            sizeof(intel_dp->dpcd)) == 0)
2270                 return false; /* aux transfer failed */
2271
2272         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2273                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2274         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2275
2276         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2277                 return false; /* DPCD not present */
2278
2279         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2280               DP_DWN_STRM_PORT_PRESENT))
2281                 return true; /* native DP sink */
2282
2283         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2284                 return true; /* no per-port downstream info */
2285
2286         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2287                                            intel_dp->downstream_ports,
2288                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2289                 return false; /* downstream port status fetch failed */
2290
2291         return true;
2292 }
2293
2294 static void
2295 intel_dp_probe_oui(struct intel_dp *intel_dp)
2296 {
2297         u8 buf[3];
2298
2299         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2300                 return;
2301
2302         ironlake_edp_panel_vdd_on(intel_dp);
2303
2304         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2305                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2306                               buf[0], buf[1], buf[2]);
2307
2308         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2309                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2310                               buf[0], buf[1], buf[2]);
2311
2312         ironlake_edp_panel_vdd_off(intel_dp, false);
2313 }
2314
2315 static bool
2316 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2317 {
2318         int ret;
2319
2320         ret = intel_dp_aux_native_read_retry(intel_dp,
2321                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2322                                              sink_irq_vector, 1);
2323         if (!ret)
2324                 return false;
2325
2326         return true;
2327 }
2328
2329 static void
2330 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2331 {
2332         /* NAK by default */
2333         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2334 }
2335
2336 /*
2337  * According to DP spec
2338  * 5.1.2:
2339  *  1. Read DPCD
2340  *  2. Configure link according to Receiver Capabilities
2341  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2342  *  4. Check link status on receipt of hot-plug interrupt
2343  */
2344
2345 void
2346 intel_dp_check_link_status(struct intel_dp *intel_dp)
2347 {
2348         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2349         u8 sink_irq_vector;
2350         u8 link_status[DP_LINK_STATUS_SIZE];
2351
2352         if (!intel_encoder->connectors_active)
2353                 return;
2354
2355         if (WARN_ON(!intel_encoder->base.crtc))
2356                 return;
2357
2358         /* Try to read receiver status if the link appears to be up */
2359         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2360                 intel_dp_link_down(intel_dp);
2361                 return;
2362         }
2363
2364         /* Now read the DPCD to see if it's actually running */
2365         if (!intel_dp_get_dpcd(intel_dp)) {
2366                 intel_dp_link_down(intel_dp);
2367                 return;
2368         }
2369
2370         /* Try to read the source of the interrupt */
2371         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2372             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2373                 /* Clear interrupt source */
2374                 intel_dp_aux_native_write_1(intel_dp,
2375                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2376                                             sink_irq_vector);
2377
2378                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2379                         intel_dp_handle_test_request(intel_dp);
2380                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2381                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2382         }
2383
2384         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2385                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2386                               drm_get_encoder_name(&intel_encoder->base));
2387                 intel_dp_start_link_train(intel_dp);
2388                 intel_dp_complete_link_train(intel_dp);
2389                 intel_dp_stop_link_train(intel_dp);
2390         }
2391 }
2392
2393 /* XXX this is probably wrong for multiple downstream ports */
2394 static enum drm_connector_status
2395 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2396 {
2397         uint8_t *dpcd = intel_dp->dpcd;
2398         bool hpd;
2399         uint8_t type;
2400
2401         if (!intel_dp_get_dpcd(intel_dp))
2402                 return connector_status_disconnected;
2403
2404         /* if there's no downstream port, we're done */
2405         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2406                 return connector_status_connected;
2407
2408         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2409         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2410         if (hpd) {
2411                 uint8_t reg;
2412                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2413                                                     &reg, 1))
2414                         return connector_status_unknown;
2415                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2416                                               : connector_status_disconnected;
2417         }
2418
2419         /* If no HPD, poke DDC gently */
2420         if (drm_probe_ddc(&intel_dp->adapter))
2421                 return connector_status_connected;
2422
2423         /* Well we tried, say unknown for unreliable port types */
2424         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2425         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2426                 return connector_status_unknown;
2427
2428         /* Anything else is out of spec, warn and ignore */
2429         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2430         return connector_status_disconnected;
2431 }
2432
2433 static enum drm_connector_status
2434 ironlake_dp_detect(struct intel_dp *intel_dp)
2435 {
2436         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2439         enum drm_connector_status status;
2440
2441         /* Can't disconnect eDP, but you can close the lid... */
2442         if (is_edp(intel_dp)) {
2443                 status = intel_panel_detect(dev);
2444                 if (status == connector_status_unknown)
2445                         status = connector_status_connected;
2446                 return status;
2447         }
2448
2449         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2450                 return connector_status_disconnected;
2451
2452         return intel_dp_detect_dpcd(intel_dp);
2453 }
2454
2455 static enum drm_connector_status
2456 g4x_dp_detect(struct intel_dp *intel_dp)
2457 {
2458         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2461         uint32_t bit;
2462
2463         /* Can't disconnect eDP, but you can close the lid... */
2464         if (is_edp(intel_dp)) {
2465                 enum drm_connector_status status;
2466
2467                 status = intel_panel_detect(dev);
2468                 if (status == connector_status_unknown)
2469                         status = connector_status_connected;
2470                 return status;
2471         }
2472
2473         switch (intel_dig_port->port) {
2474         case PORT_B:
2475                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2476                 break;
2477         case PORT_C:
2478                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2479                 break;
2480         case PORT_D:
2481                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2482                 break;
2483         default:
2484                 return connector_status_unknown;
2485         }
2486
2487         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2488                 return connector_status_disconnected;
2489
2490         return intel_dp_detect_dpcd(intel_dp);
2491 }
2492
2493 static struct edid *
2494 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2495 {
2496         struct intel_connector *intel_connector = to_intel_connector(connector);
2497
2498         /* use cached edid if we have one */
2499         if (intel_connector->edid) {
2500                 struct edid *edid;
2501                 int size;
2502
2503                 /* invalid edid */
2504                 if (IS_ERR(intel_connector->edid))
2505                         return NULL;
2506
2507                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2508                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2509                 if (!edid)
2510                         return NULL;
2511
2512                 return edid;
2513         }
2514
2515         return drm_get_edid(connector, adapter);
2516 }
2517
2518 static int
2519 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2520 {
2521         struct intel_connector *intel_connector = to_intel_connector(connector);
2522
2523         /* use cached edid if we have one */
2524         if (intel_connector->edid) {
2525                 /* invalid edid */
2526                 if (IS_ERR(intel_connector->edid))
2527                         return 0;
2528
2529                 return intel_connector_update_modes(connector,
2530                                                     intel_connector->edid);
2531         }
2532
2533         return intel_ddc_get_modes(connector, adapter);
2534 }
2535
2536 static enum drm_connector_status
2537 intel_dp_detect(struct drm_connector *connector, bool force)
2538 {
2539         struct intel_dp *intel_dp = intel_attached_dp(connector);
2540         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2541         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2542         struct drm_device *dev = connector->dev;
2543         enum drm_connector_status status;
2544         struct edid *edid = NULL;
2545
2546         intel_dp->has_audio = false;
2547
2548         if (HAS_PCH_SPLIT(dev))
2549                 status = ironlake_dp_detect(intel_dp);
2550         else
2551                 status = g4x_dp_detect(intel_dp);
2552
2553         if (status != connector_status_connected)
2554                 return status;
2555
2556         intel_dp_probe_oui(intel_dp);
2557
2558         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2559                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2560         } else {
2561                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2562                 if (edid) {
2563                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2564                         kfree(edid);
2565                 }
2566         }
2567
2568         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2569                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2570         return connector_status_connected;
2571 }
2572
2573 static int intel_dp_get_modes(struct drm_connector *connector)
2574 {
2575         struct intel_dp *intel_dp = intel_attached_dp(connector);
2576         struct intel_connector *intel_connector = to_intel_connector(connector);
2577         struct drm_device *dev = connector->dev;
2578         int ret;
2579
2580         /* We should parse the EDID data and find out if it has an audio sink
2581          */
2582
2583         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2584         if (ret)
2585                 return ret;
2586
2587         /* if eDP has no EDID, fall back to fixed mode */
2588         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2589                 struct drm_display_mode *mode;
2590                 mode = drm_mode_duplicate(dev,
2591                                           intel_connector->panel.fixed_mode);
2592                 if (mode) {
2593                         drm_mode_probed_add(connector, mode);
2594                         return 1;
2595                 }
2596         }
2597         return 0;
2598 }
2599
2600 static bool
2601 intel_dp_detect_audio(struct drm_connector *connector)
2602 {
2603         struct intel_dp *intel_dp = intel_attached_dp(connector);
2604         struct edid *edid;
2605         bool has_audio = false;
2606
2607         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2608         if (edid) {
2609                 has_audio = drm_detect_monitor_audio(edid);
2610                 kfree(edid);
2611         }
2612
2613         return has_audio;
2614 }
2615
2616 static int
2617 intel_dp_set_property(struct drm_connector *connector,
2618                       struct drm_property *property,
2619                       uint64_t val)
2620 {
2621         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2622         struct intel_connector *intel_connector = to_intel_connector(connector);
2623         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2624         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2625         int ret;
2626
2627         ret = drm_object_property_set_value(&connector->base, property, val);
2628         if (ret)
2629                 return ret;
2630
2631         if (property == dev_priv->force_audio_property) {
2632                 int i = val;
2633                 bool has_audio;
2634
2635                 if (i == intel_dp->force_audio)
2636                         return 0;
2637
2638                 intel_dp->force_audio = i;
2639
2640                 if (i == HDMI_AUDIO_AUTO)
2641                         has_audio = intel_dp_detect_audio(connector);
2642                 else
2643                         has_audio = (i == HDMI_AUDIO_ON);
2644
2645                 if (has_audio == intel_dp->has_audio)
2646                         return 0;
2647
2648                 intel_dp->has_audio = has_audio;
2649                 goto done;
2650         }
2651
2652         if (property == dev_priv->broadcast_rgb_property) {
2653                 bool old_auto = intel_dp->color_range_auto;
2654                 uint32_t old_range = intel_dp->color_range;
2655
2656                 switch (val) {
2657                 case INTEL_BROADCAST_RGB_AUTO:
2658                         intel_dp->color_range_auto = true;
2659                         break;
2660                 case INTEL_BROADCAST_RGB_FULL:
2661                         intel_dp->color_range_auto = false;
2662                         intel_dp->color_range = 0;
2663                         break;
2664                 case INTEL_BROADCAST_RGB_LIMITED:
2665                         intel_dp->color_range_auto = false;
2666                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2667                         break;
2668                 default:
2669                         return -EINVAL;
2670                 }
2671
2672                 if (old_auto == intel_dp->color_range_auto &&
2673                     old_range == intel_dp->color_range)
2674                         return 0;
2675
2676                 goto done;
2677         }
2678
2679         if (is_edp(intel_dp) &&
2680             property == connector->dev->mode_config.scaling_mode_property) {
2681                 if (val == DRM_MODE_SCALE_NONE) {
2682                         DRM_DEBUG_KMS("no scaling not supported\n");
2683                         return -EINVAL;
2684                 }
2685
2686                 if (intel_connector->panel.fitting_mode == val) {
2687                         /* the eDP scaling property is not changed */
2688                         return 0;
2689                 }
2690                 intel_connector->panel.fitting_mode = val;
2691
2692                 goto done;
2693         }
2694
2695         return -EINVAL;
2696
2697 done:
2698         if (intel_encoder->base.crtc)
2699                 intel_crtc_restore_mode(intel_encoder->base.crtc);
2700
2701         return 0;
2702 }
2703
2704 static void
2705 intel_dp_destroy(struct drm_connector *connector)
2706 {
2707         struct intel_dp *intel_dp = intel_attached_dp(connector);
2708         struct intel_connector *intel_connector = to_intel_connector(connector);
2709
2710         if (!IS_ERR_OR_NULL(intel_connector->edid))
2711                 kfree(intel_connector->edid);
2712
2713         if (is_edp(intel_dp))
2714                 intel_panel_fini(&intel_connector->panel);
2715
2716         drm_sysfs_connector_remove(connector);
2717         drm_connector_cleanup(connector);
2718         kfree(connector);
2719 }
2720
2721 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2722 {
2723         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2724         struct intel_dp *intel_dp = &intel_dig_port->dp;
2725         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2726
2727         i2c_del_adapter(&intel_dp->adapter);
2728         drm_encoder_cleanup(encoder);
2729         if (is_edp(intel_dp)) {
2730                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2731                 mutex_lock(&dev->mode_config.mutex);
2732                 ironlake_panel_vdd_off_sync(intel_dp);
2733                 mutex_unlock(&dev->mode_config.mutex);
2734         }
2735         kfree(intel_dig_port);
2736 }
2737
2738 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2739         .mode_set = intel_dp_mode_set,
2740 };
2741
2742 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2743         .dpms = intel_connector_dpms,
2744         .detect = intel_dp_detect,
2745         .fill_modes = drm_helper_probe_single_connector_modes,
2746         .set_property = intel_dp_set_property,
2747         .destroy = intel_dp_destroy,
2748 };
2749
2750 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2751         .get_modes = intel_dp_get_modes,
2752         .mode_valid = intel_dp_mode_valid,
2753         .best_encoder = intel_best_encoder,
2754 };
2755
2756 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2757         .destroy = intel_dp_encoder_destroy,
2758 };
2759
2760 static void
2761 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2762 {
2763         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2764
2765         intel_dp_check_link_status(intel_dp);
2766 }
2767
2768 /* Return which DP Port should be selected for Transcoder DP control */
2769 int
2770 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2771 {
2772         struct drm_device *dev = crtc->dev;
2773         struct intel_encoder *intel_encoder;
2774         struct intel_dp *intel_dp;
2775
2776         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2777                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2778
2779                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2780                     intel_encoder->type == INTEL_OUTPUT_EDP)
2781                         return intel_dp->output_reg;
2782         }
2783
2784         return -1;
2785 }
2786
2787 /* check the VBT to see whether the eDP is on DP-D port */
2788 bool intel_dpd_is_edp(struct drm_device *dev)
2789 {
2790         struct drm_i915_private *dev_priv = dev->dev_private;
2791         struct child_device_config *p_child;
2792         int i;
2793
2794         if (!dev_priv->vbt.child_dev_num)
2795                 return false;
2796
2797         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
2798                 p_child = dev_priv->vbt.child_dev + i;
2799
2800                 if (p_child->dvo_port == PORT_IDPD &&
2801                     p_child->device_type == DEVICE_TYPE_eDP)
2802                         return true;
2803         }
2804         return false;
2805 }
2806
2807 static void
2808 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2809 {
2810         struct intel_connector *intel_connector = to_intel_connector(connector);
2811
2812         intel_attach_force_audio_property(connector);
2813         intel_attach_broadcast_rgb_property(connector);
2814         intel_dp->color_range_auto = true;
2815
2816         if (is_edp(intel_dp)) {
2817                 drm_mode_create_scaling_mode_property(connector->dev);
2818                 drm_object_attach_property(
2819                         &connector->base,
2820                         connector->dev->mode_config.scaling_mode_property,
2821                         DRM_MODE_SCALE_ASPECT);
2822                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2823         }
2824 }
2825
2826 static void
2827 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2828                                     struct intel_dp *intel_dp,
2829                                     struct edp_power_seq *out)
2830 {
2831         struct drm_i915_private *dev_priv = dev->dev_private;
2832         struct edp_power_seq cur, vbt, spec, final;
2833         u32 pp_on, pp_off, pp_div, pp;
2834         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
2835
2836         if (HAS_PCH_SPLIT(dev)) {
2837                 pp_control_reg = PCH_PP_CONTROL;
2838                 pp_on_reg = PCH_PP_ON_DELAYS;
2839                 pp_off_reg = PCH_PP_OFF_DELAYS;
2840                 pp_div_reg = PCH_PP_DIVISOR;
2841         } else {
2842                 pp_control_reg = PIPEA_PP_CONTROL;
2843                 pp_on_reg = PIPEA_PP_ON_DELAYS;
2844                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2845                 pp_div_reg = PIPEA_PP_DIVISOR;
2846         }
2847
2848         /* Workaround: Need to write PP_CONTROL with the unlock key as
2849          * the very first thing. */
2850         pp = ironlake_get_pp_control(intel_dp);
2851         I915_WRITE(pp_control_reg, pp);
2852
2853         pp_on = I915_READ(pp_on_reg);
2854         pp_off = I915_READ(pp_off_reg);
2855         pp_div = I915_READ(pp_div_reg);
2856
2857         /* Pull timing values out of registers */
2858         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2859                 PANEL_POWER_UP_DELAY_SHIFT;
2860
2861         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2862                 PANEL_LIGHT_ON_DELAY_SHIFT;
2863
2864         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2865                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2866
2867         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2868                 PANEL_POWER_DOWN_DELAY_SHIFT;
2869
2870         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2871                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2872
2873         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2874                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2875
2876         vbt = dev_priv->vbt.edp_pps;
2877
2878         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2879          * our hw here, which are all in 100usec. */
2880         spec.t1_t3 = 210 * 10;
2881         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2882         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2883         spec.t10 = 500 * 10;
2884         /* This one is special and actually in units of 100ms, but zero
2885          * based in the hw (so we need to add 100 ms). But the sw vbt
2886          * table multiplies it with 1000 to make it in units of 100usec,
2887          * too. */
2888         spec.t11_t12 = (510 + 100) * 10;
2889
2890         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2891                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2892
2893         /* Use the max of the register settings and vbt. If both are
2894          * unset, fall back to the spec limits. */
2895 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2896                                        spec.field : \
2897                                        max(cur.field, vbt.field))
2898         assign_final(t1_t3);
2899         assign_final(t8);
2900         assign_final(t9);
2901         assign_final(t10);
2902         assign_final(t11_t12);
2903 #undef assign_final
2904
2905 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2906         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2907         intel_dp->backlight_on_delay = get_delay(t8);
2908         intel_dp->backlight_off_delay = get_delay(t9);
2909         intel_dp->panel_power_down_delay = get_delay(t10);
2910         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2911 #undef get_delay
2912
2913         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2914                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2915                       intel_dp->panel_power_cycle_delay);
2916
2917         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2918                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2919
2920         if (out)
2921                 *out = final;
2922 }
2923
2924 static void
2925 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2926                                               struct intel_dp *intel_dp,
2927                                               struct edp_power_seq *seq)
2928 {
2929         struct drm_i915_private *dev_priv = dev->dev_private;
2930         u32 pp_on, pp_off, pp_div, port_sel = 0;
2931         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
2932         int pp_on_reg, pp_off_reg, pp_div_reg;
2933
2934         if (HAS_PCH_SPLIT(dev)) {
2935                 pp_on_reg = PCH_PP_ON_DELAYS;
2936                 pp_off_reg = PCH_PP_OFF_DELAYS;
2937                 pp_div_reg = PCH_PP_DIVISOR;
2938         } else {
2939                 pp_on_reg = PIPEA_PP_ON_DELAYS;
2940                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2941                 pp_div_reg = PIPEA_PP_DIVISOR;
2942         }
2943
2944         if (IS_VALLEYVIEW(dev))
2945                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
2946
2947         /* And finally store the new values in the power sequencer. */
2948         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2949                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2950         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2951                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2952         /* Compute the divisor for the pp clock, simply match the Bspec
2953          * formula. */
2954         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
2955         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2956                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2957
2958         /* Haswell doesn't have any port selection bits for the panel
2959          * power sequencer any more. */
2960         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2961                 if (is_cpu_edp(intel_dp))
2962                         port_sel = PANEL_POWER_PORT_DP_A;
2963                 else
2964                         port_sel = PANEL_POWER_PORT_DP_D;
2965         }
2966
2967         pp_on |= port_sel;
2968
2969         I915_WRITE(pp_on_reg, pp_on);
2970         I915_WRITE(pp_off_reg, pp_off);
2971         I915_WRITE(pp_div_reg, pp_div);
2972
2973         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2974                       I915_READ(pp_on_reg),
2975                       I915_READ(pp_off_reg),
2976                       I915_READ(pp_div_reg));
2977 }
2978
2979 void
2980 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2981                         struct intel_connector *intel_connector)
2982 {
2983         struct drm_connector *connector = &intel_connector->base;
2984         struct intel_dp *intel_dp = &intel_dig_port->dp;
2985         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2986         struct drm_device *dev = intel_encoder->base.dev;
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988         struct drm_display_mode *fixed_mode = NULL;
2989         struct edp_power_seq power_seq = { 0 };
2990         enum port port = intel_dig_port->port;
2991         const char *name = NULL;
2992         int type;
2993
2994         /* Preserve the current hw state. */
2995         intel_dp->DP = I915_READ(intel_dp->output_reg);
2996         intel_dp->attached_connector = intel_connector;
2997
2998         type = DRM_MODE_CONNECTOR_DisplayPort;
2999         /*
3000          * FIXME : We need to initialize built-in panels before external panels.
3001          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3002          */
3003         switch (port) {
3004         case PORT_A:
3005                 type = DRM_MODE_CONNECTOR_eDP;
3006                 break;
3007         case PORT_C:
3008                 if (IS_VALLEYVIEW(dev))
3009                         type = DRM_MODE_CONNECTOR_eDP;
3010                 break;
3011         case PORT_D:
3012                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3013                         type = DRM_MODE_CONNECTOR_eDP;
3014                 break;
3015         default:        /* silence GCC warning */
3016                 break;
3017         }
3018
3019         /*
3020          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3021          * for DP the encoder type can be set by the caller to
3022          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3023          */
3024         if (type == DRM_MODE_CONNECTOR_eDP)
3025                 intel_encoder->type = INTEL_OUTPUT_EDP;
3026
3027         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3028                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3029                         port_name(port));
3030
3031         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3032         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3033
3034         connector->interlace_allowed = true;
3035         connector->doublescan_allowed = 0;
3036
3037         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3038                           ironlake_panel_vdd_work);
3039
3040         intel_connector_attach_encoder(intel_connector, intel_encoder);
3041         drm_sysfs_connector_add(connector);
3042
3043         if (HAS_DDI(dev))
3044                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3045         else
3046                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3047
3048         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3049         if (HAS_DDI(dev)) {
3050                 switch (intel_dig_port->port) {
3051                 case PORT_A:
3052                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3053                         break;
3054                 case PORT_B:
3055                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3056                         break;
3057                 case PORT_C:
3058                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3059                         break;
3060                 case PORT_D:
3061                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3062                         break;
3063                 default:
3064                         BUG();
3065                 }
3066         }
3067
3068         /* Set up the DDC bus. */
3069         switch (port) {
3070         case PORT_A:
3071                 intel_encoder->hpd_pin = HPD_PORT_A;
3072                 name = "DPDDC-A";
3073                 break;
3074         case PORT_B:
3075                 intel_encoder->hpd_pin = HPD_PORT_B;
3076                 name = "DPDDC-B";
3077                 break;
3078         case PORT_C:
3079                 intel_encoder->hpd_pin = HPD_PORT_C;
3080                 name = "DPDDC-C";
3081                 break;
3082         case PORT_D:
3083                 intel_encoder->hpd_pin = HPD_PORT_D;
3084                 name = "DPDDC-D";
3085                 break;
3086         default:
3087                 BUG();
3088         }
3089
3090         if (is_edp(intel_dp))
3091                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3092
3093         intel_dp_i2c_init(intel_dp, intel_connector, name);
3094
3095         /* Cache DPCD and EDID for edp. */
3096         if (is_edp(intel_dp)) {
3097                 bool ret;
3098                 struct drm_display_mode *scan;
3099                 struct edid *edid;
3100
3101                 ironlake_edp_panel_vdd_on(intel_dp);
3102                 ret = intel_dp_get_dpcd(intel_dp);
3103                 ironlake_edp_panel_vdd_off(intel_dp, false);
3104
3105                 if (ret) {
3106                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3107                                 dev_priv->no_aux_handshake =
3108                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3109                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3110                 } else {
3111                         /* if this fails, presume the device is a ghost */
3112                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
3113                         intel_dp_encoder_destroy(&intel_encoder->base);
3114                         intel_dp_destroy(connector);
3115                         return;
3116                 }
3117
3118                 /* We now know it's not a ghost, init power sequence regs. */
3119                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3120                                                               &power_seq);
3121
3122                 ironlake_edp_panel_vdd_on(intel_dp);
3123                 edid = drm_get_edid(connector, &intel_dp->adapter);
3124                 if (edid) {
3125                         if (drm_add_edid_modes(connector, edid)) {
3126                                 drm_mode_connector_update_edid_property(connector, edid);
3127                                 drm_edid_to_eld(connector, edid);
3128                         } else {
3129                                 kfree(edid);
3130                                 edid = ERR_PTR(-EINVAL);
3131                         }
3132                 } else {
3133                         edid = ERR_PTR(-ENOENT);
3134                 }
3135                 intel_connector->edid = edid;
3136
3137                 /* prefer fixed mode from EDID if available */
3138                 list_for_each_entry(scan, &connector->probed_modes, head) {
3139                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3140                                 fixed_mode = drm_mode_duplicate(dev, scan);
3141                                 break;
3142                         }
3143                 }
3144
3145                 /* fallback to VBT if available for eDP */
3146                 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3147                         fixed_mode = drm_mode_duplicate(dev, dev_priv->vbt.lfp_lvds_vbt_mode);
3148                         if (fixed_mode)
3149                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3150                 }
3151
3152                 ironlake_edp_panel_vdd_off(intel_dp, false);
3153         }
3154
3155         if (is_edp(intel_dp)) {
3156                 intel_panel_init(&intel_connector->panel, fixed_mode);
3157                 intel_panel_setup_backlight(connector);
3158         }
3159
3160         intel_dp_add_properties(intel_dp, connector);
3161
3162         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3163          * 0xd.  Failure to do so will result in spurious interrupts being
3164          * generated on the port when a cable is not attached.
3165          */
3166         if (IS_G4X(dev) && !IS_GM45(dev)) {
3167                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3168                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3169         }
3170 }
3171
3172 void
3173 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3174 {
3175         struct intel_digital_port *intel_dig_port;
3176         struct intel_encoder *intel_encoder;
3177         struct drm_encoder *encoder;
3178         struct intel_connector *intel_connector;
3179
3180         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3181         if (!intel_dig_port)
3182                 return;
3183
3184         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3185         if (!intel_connector) {
3186                 kfree(intel_dig_port);
3187                 return;
3188         }
3189
3190         intel_encoder = &intel_dig_port->base;
3191         encoder = &intel_encoder->base;
3192
3193         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3194                          DRM_MODE_ENCODER_TMDS);
3195         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
3196
3197         intel_encoder->compute_config = intel_dp_compute_config;
3198         intel_encoder->enable = intel_enable_dp;
3199         intel_encoder->pre_enable = intel_pre_enable_dp;
3200         intel_encoder->disable = intel_disable_dp;
3201         intel_encoder->post_disable = intel_post_disable_dp;
3202         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3203         intel_encoder->get_config = intel_dp_get_config;
3204         if (IS_VALLEYVIEW(dev))
3205                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3206
3207         intel_dig_port->port = port;
3208         intel_dig_port->dp.output_reg = output_reg;
3209
3210         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3211         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3212         intel_encoder->cloneable = false;
3213         intel_encoder->hot_plug = intel_dp_hot_plug;
3214
3215         intel_dp_init_connector(intel_dig_port, intel_connector);
3216 }