]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'exynos-mcpm-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97 static int
98 intel_dp_max_link_bw(struct intel_dp *intel_dp)
99 {
100         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101         struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103         switch (max_link_bw) {
104         case DP_LINK_BW_1_62:
105         case DP_LINK_BW_2_7:
106                 break;
107         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108                 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
109                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
110                         max_link_bw = DP_LINK_BW_5_4;
111                 else
112                         max_link_bw = DP_LINK_BW_2_7;
113                 break;
114         default:
115                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
116                      max_link_bw);
117                 max_link_bw = DP_LINK_BW_1_62;
118                 break;
119         }
120         return max_link_bw;
121 }
122
123 /*
124  * The units on the numbers in the next two are... bizarre.  Examples will
125  * make it clearer; this one parallels an example in the eDP spec.
126  *
127  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
128  *
129  *     270000 * 1 * 8 / 10 == 216000
130  *
131  * The actual data capacity of that configuration is 2.16Gbit/s, so the
132  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
133  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
134  * 119000.  At 18bpp that's 2142000 kilobits per second.
135  *
136  * Thus the strange-looking division by 10 in intel_dp_link_required, to
137  * get the result in decakilobits instead of kilobits.
138  */
139
140 static int
141 intel_dp_link_required(int pixel_clock, int bpp)
142 {
143         return (pixel_clock * bpp + 9) / 10;
144 }
145
146 static int
147 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
148 {
149         return (max_link_clock * max_lanes * 8) / 10;
150 }
151
152 static enum drm_mode_status
153 intel_dp_mode_valid(struct drm_connector *connector,
154                     struct drm_display_mode *mode)
155 {
156         struct intel_dp *intel_dp = intel_attached_dp(connector);
157         struct intel_connector *intel_connector = to_intel_connector(connector);
158         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
159         int target_clock = mode->clock;
160         int max_rate, mode_rate, max_lanes, max_link_clock;
161
162         if (is_edp(intel_dp) && fixed_mode) {
163                 if (mode->hdisplay > fixed_mode->hdisplay)
164                         return MODE_PANEL;
165
166                 if (mode->vdisplay > fixed_mode->vdisplay)
167                         return MODE_PANEL;
168
169                 target_clock = fixed_mode->clock;
170         }
171
172         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
173         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
174
175         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
176         mode_rate = intel_dp_link_required(target_clock, 18);
177
178         if (mode_rate > max_rate)
179                 return MODE_CLOCK_HIGH;
180
181         if (mode->clock < 10000)
182                 return MODE_CLOCK_LOW;
183
184         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
185                 return MODE_H_ILLEGAL;
186
187         return MODE_OK;
188 }
189
190 static uint32_t
191 pack_aux(uint8_t *src, int src_bytes)
192 {
193         int     i;
194         uint32_t v = 0;
195
196         if (src_bytes > 4)
197                 src_bytes = 4;
198         for (i = 0; i < src_bytes; i++)
199                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
200         return v;
201 }
202
203 static void
204 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
205 {
206         int i;
207         if (dst_bytes > 4)
208                 dst_bytes = 4;
209         for (i = 0; i < dst_bytes; i++)
210                 dst[i] = src >> ((3-i) * 8);
211 }
212
213 /* hrawclock is 1/4 the FSB frequency */
214 static int
215 intel_hrawclk(struct drm_device *dev)
216 {
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         uint32_t clkcfg;
219
220         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
221         if (IS_VALLEYVIEW(dev))
222                 return 200;
223
224         clkcfg = I915_READ(CLKCFG);
225         switch (clkcfg & CLKCFG_FSB_MASK) {
226         case CLKCFG_FSB_400:
227                 return 100;
228         case CLKCFG_FSB_533:
229                 return 133;
230         case CLKCFG_FSB_667:
231                 return 166;
232         case CLKCFG_FSB_800:
233                 return 200;
234         case CLKCFG_FSB_1067:
235                 return 266;
236         case CLKCFG_FSB_1333:
237                 return 333;
238         /* these two are just a guess; one of them might be right */
239         case CLKCFG_FSB_1600:
240         case CLKCFG_FSB_1600_ALT:
241                 return 400;
242         default:
243                 return 133;
244         }
245 }
246
247 static void
248 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
249                                     struct intel_dp *intel_dp,
250                                     struct edp_power_seq *out);
251 static void
252 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
253                                               struct intel_dp *intel_dp,
254                                               struct edp_power_seq *out);
255
256 static enum pipe
257 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
258 {
259         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
260         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
261         struct drm_device *dev = intel_dig_port->base.base.dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263         enum port port = intel_dig_port->port;
264         enum pipe pipe;
265
266         /* modeset should have pipe */
267         if (crtc)
268                 return to_intel_crtc(crtc)->pipe;
269
270         /* init time, try to find a pipe with this port selected */
271         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
272                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
273                         PANEL_PORT_SELECT_MASK;
274                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
275                         return pipe;
276                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
277                         return pipe;
278         }
279
280         /* shrug */
281         return PIPE_A;
282 }
283
284 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
285 {
286         struct drm_device *dev = intel_dp_to_dev(intel_dp);
287
288         if (HAS_PCH_SPLIT(dev))
289                 return PCH_PP_CONTROL;
290         else
291                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
292 }
293
294 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
295 {
296         struct drm_device *dev = intel_dp_to_dev(intel_dp);
297
298         if (HAS_PCH_SPLIT(dev))
299                 return PCH_PP_STATUS;
300         else
301                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
302 }
303
304 static bool edp_have_panel_power(struct intel_dp *intel_dp)
305 {
306         struct drm_device *dev = intel_dp_to_dev(intel_dp);
307         struct drm_i915_private *dev_priv = dev->dev_private;
308
309         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
310 }
311
312 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
313 {
314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
315         struct drm_i915_private *dev_priv = dev->dev_private;
316
317         return !dev_priv->pm.suspended &&
318                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
319 }
320
321 static void
322 intel_dp_check_edp(struct intel_dp *intel_dp)
323 {
324         struct drm_device *dev = intel_dp_to_dev(intel_dp);
325         struct drm_i915_private *dev_priv = dev->dev_private;
326
327         if (!is_edp(intel_dp))
328                 return;
329
330         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
331                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
332                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
333                               I915_READ(_pp_stat_reg(intel_dp)),
334                               I915_READ(_pp_ctrl_reg(intel_dp)));
335         }
336 }
337
338 static uint32_t
339 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
340 {
341         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
342         struct drm_device *dev = intel_dig_port->base.base.dev;
343         struct drm_i915_private *dev_priv = dev->dev_private;
344         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
345         uint32_t status;
346         bool done;
347
348 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
349         if (has_aux_irq)
350                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
351                                           msecs_to_jiffies_timeout(10));
352         else
353                 done = wait_for_atomic(C, 10) == 0;
354         if (!done)
355                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
356                           has_aux_irq);
357 #undef C
358
359         return status;
360 }
361
362 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
363 {
364         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
365         struct drm_device *dev = intel_dig_port->base.base.dev;
366
367         /*
368          * The clock divider is based off the hrawclk, and would like to run at
369          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
370          */
371         return index ? 0 : intel_hrawclk(dev) / 2;
372 }
373
374 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
375 {
376         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
377         struct drm_device *dev = intel_dig_port->base.base.dev;
378
379         if (index)
380                 return 0;
381
382         if (intel_dig_port->port == PORT_A) {
383                 if (IS_GEN6(dev) || IS_GEN7(dev))
384                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
385                 else
386                         return 225; /* eDP input clock at 450Mhz */
387         } else {
388                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
389         }
390 }
391
392 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
393 {
394         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
395         struct drm_device *dev = intel_dig_port->base.base.dev;
396         struct drm_i915_private *dev_priv = dev->dev_private;
397
398         if (intel_dig_port->port == PORT_A) {
399                 if (index)
400                         return 0;
401                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
402         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
403                 /* Workaround for non-ULT HSW */
404                 switch (index) {
405                 case 0: return 63;
406                 case 1: return 72;
407                 default: return 0;
408                 }
409         } else  {
410                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411         }
412 }
413
414 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415 {
416         return index ? 0 : 100;
417 }
418
419 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
420                                       bool has_aux_irq,
421                                       int send_bytes,
422                                       uint32_t aux_clock_divider)
423 {
424         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
425         struct drm_device *dev = intel_dig_port->base.base.dev;
426         uint32_t precharge, timeout;
427
428         if (IS_GEN6(dev))
429                 precharge = 3;
430         else
431                 precharge = 5;
432
433         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
434                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
435         else
436                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
437
438         return DP_AUX_CH_CTL_SEND_BUSY |
439                DP_AUX_CH_CTL_DONE |
440                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
441                DP_AUX_CH_CTL_TIME_OUT_ERROR |
442                timeout |
443                DP_AUX_CH_CTL_RECEIVE_ERROR |
444                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
445                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
446                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
447 }
448
449 static int
450 intel_dp_aux_ch(struct intel_dp *intel_dp,
451                 uint8_t *send, int send_bytes,
452                 uint8_t *recv, int recv_size)
453 {
454         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
455         struct drm_device *dev = intel_dig_port->base.base.dev;
456         struct drm_i915_private *dev_priv = dev->dev_private;
457         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
458         uint32_t ch_data = ch_ctl + 4;
459         uint32_t aux_clock_divider;
460         int i, ret, recv_bytes;
461         uint32_t status;
462         int try, clock = 0;
463         bool has_aux_irq = HAS_AUX_IRQ(dev);
464         bool vdd;
465
466         vdd = _edp_panel_vdd_on(intel_dp);
467
468         /* dp aux is extremely sensitive to irq latency, hence request the
469          * lowest possible wakeup latency and so prevent the cpu from going into
470          * deep sleep states.
471          */
472         pm_qos_update_request(&dev_priv->pm_qos, 0);
473
474         intel_dp_check_edp(intel_dp);
475
476         intel_aux_display_runtime_get(dev_priv);
477
478         /* Try to wait for any previous AUX channel activity */
479         for (try = 0; try < 3; try++) {
480                 status = I915_READ_NOTRACE(ch_ctl);
481                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
482                         break;
483                 msleep(1);
484         }
485
486         if (try == 3) {
487                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
488                      I915_READ(ch_ctl));
489                 ret = -EBUSY;
490                 goto out;
491         }
492
493         /* Only 5 data registers! */
494         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
495                 ret = -E2BIG;
496                 goto out;
497         }
498
499         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
500                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
501                                                           has_aux_irq,
502                                                           send_bytes,
503                                                           aux_clock_divider);
504
505                 /* Must try at least 3 times according to DP spec */
506                 for (try = 0; try < 5; try++) {
507                         /* Load the send data into the aux channel data registers */
508                         for (i = 0; i < send_bytes; i += 4)
509                                 I915_WRITE(ch_data + i,
510                                            pack_aux(send + i, send_bytes - i));
511
512                         /* Send the command and wait for it to complete */
513                         I915_WRITE(ch_ctl, send_ctl);
514
515                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
516
517                         /* Clear done status and any errors */
518                         I915_WRITE(ch_ctl,
519                                    status |
520                                    DP_AUX_CH_CTL_DONE |
521                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
522                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
523
524                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
525                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
526                                 continue;
527                         if (status & DP_AUX_CH_CTL_DONE)
528                                 break;
529                 }
530                 if (status & DP_AUX_CH_CTL_DONE)
531                         break;
532         }
533
534         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
535                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
536                 ret = -EBUSY;
537                 goto out;
538         }
539
540         /* Check for timeout or receive error.
541          * Timeouts occur when the sink is not connected
542          */
543         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
544                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
545                 ret = -EIO;
546                 goto out;
547         }
548
549         /* Timeouts occur when the device isn't connected, so they're
550          * "normal" -- don't fill the kernel log with these */
551         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
552                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
553                 ret = -ETIMEDOUT;
554                 goto out;
555         }
556
557         /* Unload any bytes sent back from the other side */
558         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
559                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
560         if (recv_bytes > recv_size)
561                 recv_bytes = recv_size;
562
563         for (i = 0; i < recv_bytes; i += 4)
564                 unpack_aux(I915_READ(ch_data + i),
565                            recv + i, recv_bytes - i);
566
567         ret = recv_bytes;
568 out:
569         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
570         intel_aux_display_runtime_put(dev_priv);
571
572         if (vdd)
573                 edp_panel_vdd_off(intel_dp, false);
574
575         return ret;
576 }
577
578 #define BARE_ADDRESS_SIZE       3
579 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
580 static ssize_t
581 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
582 {
583         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
584         uint8_t txbuf[20], rxbuf[20];
585         size_t txsize, rxsize;
586         int ret;
587
588         txbuf[0] = msg->request << 4;
589         txbuf[1] = msg->address >> 8;
590         txbuf[2] = msg->address & 0xff;
591         txbuf[3] = msg->size - 1;
592
593         switch (msg->request & ~DP_AUX_I2C_MOT) {
594         case DP_AUX_NATIVE_WRITE:
595         case DP_AUX_I2C_WRITE:
596                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
597                 rxsize = 1;
598
599                 if (WARN_ON(txsize > 20))
600                         return -E2BIG;
601
602                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
603
604                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
605                 if (ret > 0) {
606                         msg->reply = rxbuf[0] >> 4;
607
608                         /* Return payload size. */
609                         ret = msg->size;
610                 }
611                 break;
612
613         case DP_AUX_NATIVE_READ:
614         case DP_AUX_I2C_READ:
615                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
616                 rxsize = msg->size + 1;
617
618                 if (WARN_ON(rxsize > 20))
619                         return -E2BIG;
620
621                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
622                 if (ret > 0) {
623                         msg->reply = rxbuf[0] >> 4;
624                         /*
625                          * Assume happy day, and copy the data. The caller is
626                          * expected to check msg->reply before touching it.
627                          *
628                          * Return payload size.
629                          */
630                         ret--;
631                         memcpy(msg->buffer, rxbuf + 1, ret);
632                 }
633                 break;
634
635         default:
636                 ret = -EINVAL;
637                 break;
638         }
639
640         return ret;
641 }
642
643 static void
644 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
645 {
646         struct drm_device *dev = intel_dp_to_dev(intel_dp);
647         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
648         enum port port = intel_dig_port->port;
649         const char *name = NULL;
650         int ret;
651
652         switch (port) {
653         case PORT_A:
654                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
655                 name = "DPDDC-A";
656                 break;
657         case PORT_B:
658                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
659                 name = "DPDDC-B";
660                 break;
661         case PORT_C:
662                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
663                 name = "DPDDC-C";
664                 break;
665         case PORT_D:
666                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
667                 name = "DPDDC-D";
668                 break;
669         default:
670                 BUG();
671         }
672
673         if (!HAS_DDI(dev))
674                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
675
676         intel_dp->aux.name = name;
677         intel_dp->aux.dev = dev->dev;
678         intel_dp->aux.transfer = intel_dp_aux_transfer;
679
680         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
681                       connector->base.kdev->kobj.name);
682
683         ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
684         if (ret < 0) {
685                 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
686                           name, ret);
687                 return;
688         }
689
690         ret = sysfs_create_link(&connector->base.kdev->kobj,
691                                 &intel_dp->aux.ddc.dev.kobj,
692                                 intel_dp->aux.ddc.dev.kobj.name);
693         if (ret < 0) {
694                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
695                 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
696         }
697 }
698
699 static void
700 intel_dp_connector_unregister(struct intel_connector *intel_connector)
701 {
702         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
703
704         sysfs_remove_link(&intel_connector->base.kdev->kobj,
705                           intel_dp->aux.ddc.dev.kobj.name);
706         intel_connector_unregister(intel_connector);
707 }
708
709 static void
710 intel_dp_set_clock(struct intel_encoder *encoder,
711                    struct intel_crtc_config *pipe_config, int link_bw)
712 {
713         struct drm_device *dev = encoder->base.dev;
714         const struct dp_link_dpll *divisor = NULL;
715         int i, count = 0;
716
717         if (IS_G4X(dev)) {
718                 divisor = gen4_dpll;
719                 count = ARRAY_SIZE(gen4_dpll);
720         } else if (IS_HASWELL(dev)) {
721                 /* Haswell has special-purpose DP DDI clocks. */
722         } else if (HAS_PCH_SPLIT(dev)) {
723                 divisor = pch_dpll;
724                 count = ARRAY_SIZE(pch_dpll);
725         } else if (IS_VALLEYVIEW(dev)) {
726                 divisor = vlv_dpll;
727                 count = ARRAY_SIZE(vlv_dpll);
728         }
729
730         if (divisor && count) {
731                 for (i = 0; i < count; i++) {
732                         if (link_bw == divisor[i].link_bw) {
733                                 pipe_config->dpll = divisor[i].dpll;
734                                 pipe_config->clock_set = true;
735                                 break;
736                         }
737                 }
738         }
739 }
740
741 bool
742 intel_dp_compute_config(struct intel_encoder *encoder,
743                         struct intel_crtc_config *pipe_config)
744 {
745         struct drm_device *dev = encoder->base.dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
748         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
749         enum port port = dp_to_dig_port(intel_dp)->port;
750         struct intel_crtc *intel_crtc = encoder->new_crtc;
751         struct intel_connector *intel_connector = intel_dp->attached_connector;
752         int lane_count, clock;
753         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
754         /* Conveniently, the link BW constants become indices with a shift...*/
755         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
756         int bpp, mode_rate;
757         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
758         int link_avail, link_clock;
759
760         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
761                 pipe_config->has_pch_encoder = true;
762
763         pipe_config->has_dp_encoder = true;
764
765         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
766                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
767                                        adjusted_mode);
768                 if (!HAS_PCH_SPLIT(dev))
769                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
770                                                  intel_connector->panel.fitting_mode);
771                 else
772                         intel_pch_panel_fitting(intel_crtc, pipe_config,
773                                                 intel_connector->panel.fitting_mode);
774         }
775
776         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
777                 return false;
778
779         DRM_DEBUG_KMS("DP link computation with max lane count %i "
780                       "max bw %02x pixel clock %iKHz\n",
781                       max_lane_count, bws[max_clock],
782                       adjusted_mode->crtc_clock);
783
784         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
785          * bpc in between. */
786         bpp = pipe_config->pipe_bpp;
787         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
788             dev_priv->vbt.edp_bpp < bpp) {
789                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
790                               dev_priv->vbt.edp_bpp);
791                 bpp = dev_priv->vbt.edp_bpp;
792         }
793
794         for (; bpp >= 6*3; bpp -= 2*3) {
795                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
796                                                    bpp);
797
798                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
799                         for (clock = 0; clock <= max_clock; clock++) {
800                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
801                                 link_avail = intel_dp_max_data_rate(link_clock,
802                                                                     lane_count);
803
804                                 if (mode_rate <= link_avail) {
805                                         goto found;
806                                 }
807                         }
808                 }
809         }
810
811         return false;
812
813 found:
814         if (intel_dp->color_range_auto) {
815                 /*
816                  * See:
817                  * CEA-861-E - 5.1 Default Encoding Parameters
818                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
819                  */
820                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
821                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
822                 else
823                         intel_dp->color_range = 0;
824         }
825
826         if (intel_dp->color_range)
827                 pipe_config->limited_color_range = true;
828
829         intel_dp->link_bw = bws[clock];
830         intel_dp->lane_count = lane_count;
831         pipe_config->pipe_bpp = bpp;
832         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
833
834         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
835                       intel_dp->link_bw, intel_dp->lane_count,
836                       pipe_config->port_clock, bpp);
837         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
838                       mode_rate, link_avail);
839
840         intel_link_compute_m_n(bpp, lane_count,
841                                adjusted_mode->crtc_clock,
842                                pipe_config->port_clock,
843                                &pipe_config->dp_m_n);
844
845         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
846
847         return true;
848 }
849
850 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
851 {
852         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
853         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
854         struct drm_device *dev = crtc->base.dev;
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         u32 dpa_ctl;
857
858         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
859         dpa_ctl = I915_READ(DP_A);
860         dpa_ctl &= ~DP_PLL_FREQ_MASK;
861
862         if (crtc->config.port_clock == 162000) {
863                 /* For a long time we've carried around a ILK-DevA w/a for the
864                  * 160MHz clock. If we're really unlucky, it's still required.
865                  */
866                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
867                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
868                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
869         } else {
870                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
871                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
872         }
873
874         I915_WRITE(DP_A, dpa_ctl);
875
876         POSTING_READ(DP_A);
877         udelay(500);
878 }
879
880 static void intel_dp_mode_set(struct intel_encoder *encoder)
881 {
882         struct drm_device *dev = encoder->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
885         enum port port = dp_to_dig_port(intel_dp)->port;
886         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
887         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
888
889         /*
890          * There are four kinds of DP registers:
891          *
892          *      IBX PCH
893          *      SNB CPU
894          *      IVB CPU
895          *      CPT PCH
896          *
897          * IBX PCH and CPU are the same for almost everything,
898          * except that the CPU DP PLL is configured in this
899          * register
900          *
901          * CPT PCH is quite different, having many bits moved
902          * to the TRANS_DP_CTL register instead. That
903          * configuration happens (oddly) in ironlake_pch_enable
904          */
905
906         /* Preserve the BIOS-computed detected bit. This is
907          * supposed to be read-only.
908          */
909         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
910
911         /* Handle DP bits in common between all three register formats */
912         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
913         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
914
915         if (intel_dp->has_audio) {
916                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
917                                  pipe_name(crtc->pipe));
918                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
919                 intel_write_eld(&encoder->base, adjusted_mode);
920         }
921
922         /* Split out the IBX/CPU vs CPT settings */
923
924         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
925                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
926                         intel_dp->DP |= DP_SYNC_HS_HIGH;
927                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
928                         intel_dp->DP |= DP_SYNC_VS_HIGH;
929                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
930
931                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
932                         intel_dp->DP |= DP_ENHANCED_FRAMING;
933
934                 intel_dp->DP |= crtc->pipe << 29;
935         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
936                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
937                         intel_dp->DP |= intel_dp->color_range;
938
939                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
940                         intel_dp->DP |= DP_SYNC_HS_HIGH;
941                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
942                         intel_dp->DP |= DP_SYNC_VS_HIGH;
943                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
944
945                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
946                         intel_dp->DP |= DP_ENHANCED_FRAMING;
947
948                 if (crtc->pipe == 1)
949                         intel_dp->DP |= DP_PIPEB_SELECT;
950         } else {
951                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
952         }
953
954         if (port == PORT_A && !IS_VALLEYVIEW(dev))
955                 ironlake_set_pll_cpu_edp(intel_dp);
956 }
957
958 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
959 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
960
961 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
962 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
963
964 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
965 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
966
967 static void wait_panel_status(struct intel_dp *intel_dp,
968                                        u32 mask,
969                                        u32 value)
970 {
971         struct drm_device *dev = intel_dp_to_dev(intel_dp);
972         struct drm_i915_private *dev_priv = dev->dev_private;
973         u32 pp_stat_reg, pp_ctrl_reg;
974
975         pp_stat_reg = _pp_stat_reg(intel_dp);
976         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
977
978         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
979                         mask, value,
980                         I915_READ(pp_stat_reg),
981                         I915_READ(pp_ctrl_reg));
982
983         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
984                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
985                                 I915_READ(pp_stat_reg),
986                                 I915_READ(pp_ctrl_reg));
987         }
988
989         DRM_DEBUG_KMS("Wait complete\n");
990 }
991
992 static void wait_panel_on(struct intel_dp *intel_dp)
993 {
994         DRM_DEBUG_KMS("Wait for panel power on\n");
995         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
996 }
997
998 static void wait_panel_off(struct intel_dp *intel_dp)
999 {
1000         DRM_DEBUG_KMS("Wait for panel power off time\n");
1001         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1002 }
1003
1004 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1005 {
1006         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1007
1008         /* When we disable the VDD override bit last we have to do the manual
1009          * wait. */
1010         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1011                                        intel_dp->panel_power_cycle_delay);
1012
1013         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1014 }
1015
1016 static void wait_backlight_on(struct intel_dp *intel_dp)
1017 {
1018         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1019                                        intel_dp->backlight_on_delay);
1020 }
1021
1022 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1023 {
1024         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1025                                        intel_dp->backlight_off_delay);
1026 }
1027
1028 /* Read the current pp_control value, unlocking the register if it
1029  * is locked
1030  */
1031
1032 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1033 {
1034         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u32 control;
1037
1038         control = I915_READ(_pp_ctrl_reg(intel_dp));
1039         control &= ~PANEL_UNLOCK_MASK;
1040         control |= PANEL_UNLOCK_REGS;
1041         return control;
1042 }
1043
1044 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1045 {
1046         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1047         struct drm_i915_private *dev_priv = dev->dev_private;
1048         u32 pp;
1049         u32 pp_stat_reg, pp_ctrl_reg;
1050         bool need_to_disable = !intel_dp->want_panel_vdd;
1051
1052         if (!is_edp(intel_dp))
1053                 return false;
1054
1055         intel_dp->want_panel_vdd = true;
1056
1057         if (edp_have_panel_vdd(intel_dp))
1058                 return need_to_disable;
1059
1060         intel_runtime_pm_get(dev_priv);
1061
1062         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1063
1064         if (!edp_have_panel_power(intel_dp))
1065                 wait_panel_power_cycle(intel_dp);
1066
1067         pp = ironlake_get_pp_control(intel_dp);
1068         pp |= EDP_FORCE_VDD;
1069
1070         pp_stat_reg = _pp_stat_reg(intel_dp);
1071         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1072
1073         I915_WRITE(pp_ctrl_reg, pp);
1074         POSTING_READ(pp_ctrl_reg);
1075         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1076                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1077         /*
1078          * If the panel wasn't on, delay before accessing aux channel
1079          */
1080         if (!edp_have_panel_power(intel_dp)) {
1081                 DRM_DEBUG_KMS("eDP was not running\n");
1082                 msleep(intel_dp->panel_power_up_delay);
1083         }
1084
1085         return need_to_disable;
1086 }
1087
1088 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1089 {
1090         if (is_edp(intel_dp)) {
1091                 bool vdd = _edp_panel_vdd_on(intel_dp);
1092
1093                 WARN(!vdd, "eDP VDD already requested on\n");
1094         }
1095 }
1096
1097 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1098 {
1099         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1100         struct drm_i915_private *dev_priv = dev->dev_private;
1101         u32 pp;
1102         u32 pp_stat_reg, pp_ctrl_reg;
1103
1104         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1105
1106         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1107                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1108
1109                 pp = ironlake_get_pp_control(intel_dp);
1110                 pp &= ~EDP_FORCE_VDD;
1111
1112                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1113                 pp_stat_reg = _pp_stat_reg(intel_dp);
1114
1115                 I915_WRITE(pp_ctrl_reg, pp);
1116                 POSTING_READ(pp_ctrl_reg);
1117
1118                 /* Make sure sequencer is idle before allowing subsequent activity */
1119                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1120                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1121
1122                 if ((pp & POWER_TARGET_ON) == 0)
1123                         intel_dp->last_power_cycle = jiffies;
1124
1125                 intel_runtime_pm_put(dev_priv);
1126         }
1127 }
1128
1129 static void edp_panel_vdd_work(struct work_struct *__work)
1130 {
1131         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1132                                                  struct intel_dp, panel_vdd_work);
1133         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1134
1135         mutex_lock(&dev->mode_config.mutex);
1136         edp_panel_vdd_off_sync(intel_dp);
1137         mutex_unlock(&dev->mode_config.mutex);
1138 }
1139
1140 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1141 {
1142         if (!is_edp(intel_dp))
1143                 return;
1144
1145         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1146
1147         intel_dp->want_panel_vdd = false;
1148
1149         if (sync) {
1150                 edp_panel_vdd_off_sync(intel_dp);
1151         } else {
1152                 /*
1153                  * Queue the timer to fire a long
1154                  * time from now (relative to the power down delay)
1155                  * to keep the panel power up across a sequence of operations
1156                  */
1157                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1158                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1159         }
1160 }
1161
1162 void intel_edp_panel_on(struct intel_dp *intel_dp)
1163 {
1164         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1165         struct drm_i915_private *dev_priv = dev->dev_private;
1166         u32 pp;
1167         u32 pp_ctrl_reg;
1168
1169         if (!is_edp(intel_dp))
1170                 return;
1171
1172         DRM_DEBUG_KMS("Turn eDP power on\n");
1173
1174         if (edp_have_panel_power(intel_dp)) {
1175                 DRM_DEBUG_KMS("eDP power already on\n");
1176                 return;
1177         }
1178
1179         wait_panel_power_cycle(intel_dp);
1180
1181         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1182         pp = ironlake_get_pp_control(intel_dp);
1183         if (IS_GEN5(dev)) {
1184                 /* ILK workaround: disable reset around power sequence */
1185                 pp &= ~PANEL_POWER_RESET;
1186                 I915_WRITE(pp_ctrl_reg, pp);
1187                 POSTING_READ(pp_ctrl_reg);
1188         }
1189
1190         pp |= POWER_TARGET_ON;
1191         if (!IS_GEN5(dev))
1192                 pp |= PANEL_POWER_RESET;
1193
1194         I915_WRITE(pp_ctrl_reg, pp);
1195         POSTING_READ(pp_ctrl_reg);
1196
1197         wait_panel_on(intel_dp);
1198         intel_dp->last_power_on = jiffies;
1199
1200         if (IS_GEN5(dev)) {
1201                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1202                 I915_WRITE(pp_ctrl_reg, pp);
1203                 POSTING_READ(pp_ctrl_reg);
1204         }
1205 }
1206
1207 void intel_edp_panel_off(struct intel_dp *intel_dp)
1208 {
1209         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1210         struct drm_i915_private *dev_priv = dev->dev_private;
1211         u32 pp;
1212         u32 pp_ctrl_reg;
1213
1214         if (!is_edp(intel_dp))
1215                 return;
1216
1217         DRM_DEBUG_KMS("Turn eDP power off\n");
1218
1219         edp_wait_backlight_off(intel_dp);
1220
1221         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1222
1223         pp = ironlake_get_pp_control(intel_dp);
1224         /* We need to switch off panel power _and_ force vdd, for otherwise some
1225          * panels get very unhappy and cease to work. */
1226         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1227                 EDP_BLC_ENABLE);
1228
1229         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1230
1231         intel_dp->want_panel_vdd = false;
1232
1233         I915_WRITE(pp_ctrl_reg, pp);
1234         POSTING_READ(pp_ctrl_reg);
1235
1236         intel_dp->last_power_cycle = jiffies;
1237         wait_panel_off(intel_dp);
1238
1239         /* We got a reference when we enabled the VDD. */
1240         intel_runtime_pm_put(dev_priv);
1241 }
1242
1243 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1244 {
1245         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1246         struct drm_device *dev = intel_dig_port->base.base.dev;
1247         struct drm_i915_private *dev_priv = dev->dev_private;
1248         u32 pp;
1249         u32 pp_ctrl_reg;
1250
1251         if (!is_edp(intel_dp))
1252                 return;
1253
1254         DRM_DEBUG_KMS("\n");
1255         /*
1256          * If we enable the backlight right away following a panel power
1257          * on, we may see slight flicker as the panel syncs with the eDP
1258          * link.  So delay a bit to make sure the image is solid before
1259          * allowing it to appear.
1260          */
1261         wait_backlight_on(intel_dp);
1262         pp = ironlake_get_pp_control(intel_dp);
1263         pp |= EDP_BLC_ENABLE;
1264
1265         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1266
1267         I915_WRITE(pp_ctrl_reg, pp);
1268         POSTING_READ(pp_ctrl_reg);
1269
1270         intel_panel_enable_backlight(intel_dp->attached_connector);
1271 }
1272
1273 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1274 {
1275         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         u32 pp;
1278         u32 pp_ctrl_reg;
1279
1280         if (!is_edp(intel_dp))
1281                 return;
1282
1283         intel_panel_disable_backlight(intel_dp->attached_connector);
1284
1285         DRM_DEBUG_KMS("\n");
1286         pp = ironlake_get_pp_control(intel_dp);
1287         pp &= ~EDP_BLC_ENABLE;
1288
1289         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1290
1291         I915_WRITE(pp_ctrl_reg, pp);
1292         POSTING_READ(pp_ctrl_reg);
1293         intel_dp->last_backlight_off = jiffies;
1294 }
1295
1296 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1297 {
1298         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1299         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1300         struct drm_device *dev = crtc->dev;
1301         struct drm_i915_private *dev_priv = dev->dev_private;
1302         u32 dpa_ctl;
1303
1304         assert_pipe_disabled(dev_priv,
1305                              to_intel_crtc(crtc)->pipe);
1306
1307         DRM_DEBUG_KMS("\n");
1308         dpa_ctl = I915_READ(DP_A);
1309         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1310         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1311
1312         /* We don't adjust intel_dp->DP while tearing down the link, to
1313          * facilitate link retraining (e.g. after hotplug). Hence clear all
1314          * enable bits here to ensure that we don't enable too much. */
1315         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1316         intel_dp->DP |= DP_PLL_ENABLE;
1317         I915_WRITE(DP_A, intel_dp->DP);
1318         POSTING_READ(DP_A);
1319         udelay(200);
1320 }
1321
1322 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1323 {
1324         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1326         struct drm_device *dev = crtc->dev;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         u32 dpa_ctl;
1329
1330         assert_pipe_disabled(dev_priv,
1331                              to_intel_crtc(crtc)->pipe);
1332
1333         dpa_ctl = I915_READ(DP_A);
1334         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1335              "dp pll off, should be on\n");
1336         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1337
1338         /* We can't rely on the value tracked for the DP register in
1339          * intel_dp->DP because link_down must not change that (otherwise link
1340          * re-training will fail. */
1341         dpa_ctl &= ~DP_PLL_ENABLE;
1342         I915_WRITE(DP_A, dpa_ctl);
1343         POSTING_READ(DP_A);
1344         udelay(200);
1345 }
1346
1347 /* If the sink supports it, try to set the power state appropriately */
1348 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1349 {
1350         int ret, i;
1351
1352         /* Should have a valid DPCD by this point */
1353         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1354                 return;
1355
1356         if (mode != DRM_MODE_DPMS_ON) {
1357                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1358                                          DP_SET_POWER_D3);
1359                 if (ret != 1)
1360                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1361         } else {
1362                 /*
1363                  * When turning on, we need to retry for 1ms to give the sink
1364                  * time to wake up.
1365                  */
1366                 for (i = 0; i < 3; i++) {
1367                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1368                                                  DP_SET_POWER_D0);
1369                         if (ret == 1)
1370                                 break;
1371                         msleep(1);
1372                 }
1373         }
1374 }
1375
1376 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1377                                   enum pipe *pipe)
1378 {
1379         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1380         enum port port = dp_to_dig_port(intel_dp)->port;
1381         struct drm_device *dev = encoder->base.dev;
1382         struct drm_i915_private *dev_priv = dev->dev_private;
1383         enum intel_display_power_domain power_domain;
1384         u32 tmp;
1385
1386         power_domain = intel_display_port_power_domain(encoder);
1387         if (!intel_display_power_enabled(dev_priv, power_domain))
1388                 return false;
1389
1390         tmp = I915_READ(intel_dp->output_reg);
1391
1392         if (!(tmp & DP_PORT_EN))
1393                 return false;
1394
1395         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1396                 *pipe = PORT_TO_PIPE_CPT(tmp);
1397         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1398                 *pipe = PORT_TO_PIPE(tmp);
1399         } else {
1400                 u32 trans_sel;
1401                 u32 trans_dp;
1402                 int i;
1403
1404                 switch (intel_dp->output_reg) {
1405                 case PCH_DP_B:
1406                         trans_sel = TRANS_DP_PORT_SEL_B;
1407                         break;
1408                 case PCH_DP_C:
1409                         trans_sel = TRANS_DP_PORT_SEL_C;
1410                         break;
1411                 case PCH_DP_D:
1412                         trans_sel = TRANS_DP_PORT_SEL_D;
1413                         break;
1414                 default:
1415                         return true;
1416                 }
1417
1418                 for_each_pipe(i) {
1419                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1420                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1421                                 *pipe = i;
1422                                 return true;
1423                         }
1424                 }
1425
1426                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1427                               intel_dp->output_reg);
1428         }
1429
1430         return true;
1431 }
1432
1433 static void intel_dp_get_config(struct intel_encoder *encoder,
1434                                 struct intel_crtc_config *pipe_config)
1435 {
1436         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1437         u32 tmp, flags = 0;
1438         struct drm_device *dev = encoder->base.dev;
1439         struct drm_i915_private *dev_priv = dev->dev_private;
1440         enum port port = dp_to_dig_port(intel_dp)->port;
1441         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1442         int dotclock;
1443
1444         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1445                 tmp = I915_READ(intel_dp->output_reg);
1446                 if (tmp & DP_SYNC_HS_HIGH)
1447                         flags |= DRM_MODE_FLAG_PHSYNC;
1448                 else
1449                         flags |= DRM_MODE_FLAG_NHSYNC;
1450
1451                 if (tmp & DP_SYNC_VS_HIGH)
1452                         flags |= DRM_MODE_FLAG_PVSYNC;
1453                 else
1454                         flags |= DRM_MODE_FLAG_NVSYNC;
1455         } else {
1456                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1457                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1458                         flags |= DRM_MODE_FLAG_PHSYNC;
1459                 else
1460                         flags |= DRM_MODE_FLAG_NHSYNC;
1461
1462                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1463                         flags |= DRM_MODE_FLAG_PVSYNC;
1464                 else
1465                         flags |= DRM_MODE_FLAG_NVSYNC;
1466         }
1467
1468         pipe_config->adjusted_mode.flags |= flags;
1469
1470         pipe_config->has_dp_encoder = true;
1471
1472         intel_dp_get_m_n(crtc, pipe_config);
1473
1474         if (port == PORT_A) {
1475                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1476                         pipe_config->port_clock = 162000;
1477                 else
1478                         pipe_config->port_clock = 270000;
1479         }
1480
1481         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1482                                             &pipe_config->dp_m_n);
1483
1484         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1485                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1486
1487         pipe_config->adjusted_mode.crtc_clock = dotclock;
1488
1489         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1490             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1491                 /*
1492                  * This is a big fat ugly hack.
1493                  *
1494                  * Some machines in UEFI boot mode provide us a VBT that has 18
1495                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1496                  * unknown we fail to light up. Yet the same BIOS boots up with
1497                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1498                  * max, not what it tells us to use.
1499                  *
1500                  * Note: This will still be broken if the eDP panel is not lit
1501                  * up by the BIOS, and thus we can't get the mode at module
1502                  * load.
1503                  */
1504                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1505                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1506                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1507         }
1508 }
1509
1510 static bool is_edp_psr(struct drm_device *dev)
1511 {
1512         struct drm_i915_private *dev_priv = dev->dev_private;
1513
1514         return dev_priv->psr.sink_support;
1515 }
1516
1517 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1518 {
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520
1521         if (!HAS_PSR(dev))
1522                 return false;
1523
1524         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1525 }
1526
1527 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1528                                     struct edp_vsc_psr *vsc_psr)
1529 {
1530         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1531         struct drm_device *dev = dig_port->base.base.dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1534         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1535         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1536         uint32_t *data = (uint32_t *) vsc_psr;
1537         unsigned int i;
1538
1539         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1540            the video DIP being updated before program video DIP data buffer
1541            registers for DIP being updated. */
1542         I915_WRITE(ctl_reg, 0);
1543         POSTING_READ(ctl_reg);
1544
1545         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1546                 if (i < sizeof(struct edp_vsc_psr))
1547                         I915_WRITE(data_reg + i, *data++);
1548                 else
1549                         I915_WRITE(data_reg + i, 0);
1550         }
1551
1552         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1553         POSTING_READ(ctl_reg);
1554 }
1555
1556 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1557 {
1558         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560         struct edp_vsc_psr psr_vsc;
1561
1562         if (intel_dp->psr_setup_done)
1563                 return;
1564
1565         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1566         memset(&psr_vsc, 0, sizeof(psr_vsc));
1567         psr_vsc.sdp_header.HB0 = 0;
1568         psr_vsc.sdp_header.HB1 = 0x7;
1569         psr_vsc.sdp_header.HB2 = 0x2;
1570         psr_vsc.sdp_header.HB3 = 0x8;
1571         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1572
1573         /* Avoid continuous PSR exit by masking memup and hpd */
1574         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1575                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1576
1577         intel_dp->psr_setup_done = true;
1578 }
1579
1580 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1581 {
1582         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1583         struct drm_i915_private *dev_priv = dev->dev_private;
1584         uint32_t aux_clock_divider;
1585         int precharge = 0x3;
1586         int msg_size = 5;       /* Header(4) + Message(1) */
1587
1588         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1589
1590         /* Enable PSR in sink */
1591         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1592                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1593                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1594         else
1595                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1596                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1597
1598         /* Setup AUX registers */
1599         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1600         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1601         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1602                    DP_AUX_CH_CTL_TIME_OUT_400us |
1603                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1604                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1605                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1606 }
1607
1608 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1609 {
1610         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612         uint32_t max_sleep_time = 0x1f;
1613         uint32_t idle_frames = 1;
1614         uint32_t val = 0x0;
1615         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1616
1617         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1618                 val |= EDP_PSR_LINK_STANDBY;
1619                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1620                 val |= EDP_PSR_TP1_TIME_0us;
1621                 val |= EDP_PSR_SKIP_AUX_EXIT;
1622         } else
1623                 val |= EDP_PSR_LINK_DISABLE;
1624
1625         I915_WRITE(EDP_PSR_CTL(dev), val |
1626                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1627                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1628                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1629                    EDP_PSR_ENABLE);
1630 }
1631
1632 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1633 {
1634         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1635         struct drm_device *dev = dig_port->base.base.dev;
1636         struct drm_i915_private *dev_priv = dev->dev_private;
1637         struct drm_crtc *crtc = dig_port->base.base.crtc;
1638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1639         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1640         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1641
1642         dev_priv->psr.source_ok = false;
1643
1644         if (!HAS_PSR(dev)) {
1645                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1646                 return false;
1647         }
1648
1649         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1650             (dig_port->port != PORT_A)) {
1651                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1652                 return false;
1653         }
1654
1655         if (!i915.enable_psr) {
1656                 DRM_DEBUG_KMS("PSR disable by flag\n");
1657                 return false;
1658         }
1659
1660         crtc = dig_port->base.base.crtc;
1661         if (crtc == NULL) {
1662                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1663                 return false;
1664         }
1665
1666         intel_crtc = to_intel_crtc(crtc);
1667         if (!intel_crtc_active(crtc)) {
1668                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1669                 return false;
1670         }
1671
1672         obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1673         if (obj->tiling_mode != I915_TILING_X ||
1674             obj->fence_reg == I915_FENCE_REG_NONE) {
1675                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1676                 return false;
1677         }
1678
1679         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1680                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1681                 return false;
1682         }
1683
1684         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1685             S3D_ENABLE) {
1686                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1687                 return false;
1688         }
1689
1690         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1691                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1692                 return false;
1693         }
1694
1695         dev_priv->psr.source_ok = true;
1696         return true;
1697 }
1698
1699 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1700 {
1701         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1702
1703         if (!intel_edp_psr_match_conditions(intel_dp) ||
1704             intel_edp_is_psr_enabled(dev))
1705                 return;
1706
1707         /* Setup PSR once */
1708         intel_edp_psr_setup(intel_dp);
1709
1710         /* Enable PSR on the panel */
1711         intel_edp_psr_enable_sink(intel_dp);
1712
1713         /* Enable PSR on the host */
1714         intel_edp_psr_enable_source(intel_dp);
1715 }
1716
1717 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1718 {
1719         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1720
1721         if (intel_edp_psr_match_conditions(intel_dp) &&
1722             !intel_edp_is_psr_enabled(dev))
1723                 intel_edp_psr_do_enable(intel_dp);
1724 }
1725
1726 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1727 {
1728         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730
1731         if (!intel_edp_is_psr_enabled(dev))
1732                 return;
1733
1734         I915_WRITE(EDP_PSR_CTL(dev),
1735                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1736
1737         /* Wait till PSR is idle */
1738         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1739                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1740                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1741 }
1742
1743 void intel_edp_psr_update(struct drm_device *dev)
1744 {
1745         struct intel_encoder *encoder;
1746         struct intel_dp *intel_dp = NULL;
1747
1748         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1749                 if (encoder->type == INTEL_OUTPUT_EDP) {
1750                         intel_dp = enc_to_intel_dp(&encoder->base);
1751
1752                         if (!is_edp_psr(dev))
1753                                 return;
1754
1755                         if (!intel_edp_psr_match_conditions(intel_dp))
1756                                 intel_edp_psr_disable(intel_dp);
1757                         else
1758                                 if (!intel_edp_is_psr_enabled(dev))
1759                                         intel_edp_psr_do_enable(intel_dp);
1760                 }
1761 }
1762
1763 static void intel_disable_dp(struct intel_encoder *encoder)
1764 {
1765         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1766         enum port port = dp_to_dig_port(intel_dp)->port;
1767         struct drm_device *dev = encoder->base.dev;
1768
1769         /* Make sure the panel is off before trying to change the mode. But also
1770          * ensure that we have vdd while we switch off the panel. */
1771         intel_edp_panel_vdd_on(intel_dp);
1772         intel_edp_backlight_off(intel_dp);
1773         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1774         intel_edp_panel_off(intel_dp);
1775
1776         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1777         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1778                 intel_dp_link_down(intel_dp);
1779 }
1780
1781 static void intel_post_disable_dp(struct intel_encoder *encoder)
1782 {
1783         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1784         enum port port = dp_to_dig_port(intel_dp)->port;
1785         struct drm_device *dev = encoder->base.dev;
1786
1787         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1788                 intel_dp_link_down(intel_dp);
1789                 if (!IS_VALLEYVIEW(dev))
1790                         ironlake_edp_pll_off(intel_dp);
1791         }
1792 }
1793
1794 static void intel_enable_dp(struct intel_encoder *encoder)
1795 {
1796         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1797         struct drm_device *dev = encoder->base.dev;
1798         struct drm_i915_private *dev_priv = dev->dev_private;
1799         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1800
1801         if (WARN_ON(dp_reg & DP_PORT_EN))
1802                 return;
1803
1804         intel_edp_panel_vdd_on(intel_dp);
1805         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1806         intel_dp_start_link_train(intel_dp);
1807         intel_edp_panel_on(intel_dp);
1808         edp_panel_vdd_off(intel_dp, true);
1809         intel_dp_complete_link_train(intel_dp);
1810         intel_dp_stop_link_train(intel_dp);
1811 }
1812
1813 static void g4x_enable_dp(struct intel_encoder *encoder)
1814 {
1815         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1816
1817         intel_enable_dp(encoder);
1818         intel_edp_backlight_on(intel_dp);
1819 }
1820
1821 static void vlv_enable_dp(struct intel_encoder *encoder)
1822 {
1823         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1824
1825         intel_edp_backlight_on(intel_dp);
1826 }
1827
1828 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1829 {
1830         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1831         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1832
1833         if (dport->port == PORT_A)
1834                 ironlake_edp_pll_on(intel_dp);
1835 }
1836
1837 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1838 {
1839         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1840         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1841         struct drm_device *dev = encoder->base.dev;
1842         struct drm_i915_private *dev_priv = dev->dev_private;
1843         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1844         enum dpio_channel port = vlv_dport_to_channel(dport);
1845         int pipe = intel_crtc->pipe;
1846         struct edp_power_seq power_seq;
1847         u32 val;
1848
1849         mutex_lock(&dev_priv->dpio_lock);
1850
1851         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1852         val = 0;
1853         if (pipe)
1854                 val |= (1<<21);
1855         else
1856                 val &= ~(1<<21);
1857         val |= 0x001000c4;
1858         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1859         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1860         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1861
1862         mutex_unlock(&dev_priv->dpio_lock);
1863
1864         if (is_edp(intel_dp)) {
1865                 /* init power sequencer on this pipe and port */
1866                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1867                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1868                                                               &power_seq);
1869         }
1870
1871         intel_enable_dp(encoder);
1872
1873         vlv_wait_port_ready(dev_priv, dport);
1874 }
1875
1876 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1877 {
1878         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1879         struct drm_device *dev = encoder->base.dev;
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         struct intel_crtc *intel_crtc =
1882                 to_intel_crtc(encoder->base.crtc);
1883         enum dpio_channel port = vlv_dport_to_channel(dport);
1884         int pipe = intel_crtc->pipe;
1885
1886         /* Program Tx lane resets to default */
1887         mutex_lock(&dev_priv->dpio_lock);
1888         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1889                          DPIO_PCS_TX_LANE2_RESET |
1890                          DPIO_PCS_TX_LANE1_RESET);
1891         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1892                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1893                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1894                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1895                                  DPIO_PCS_CLK_SOFT_RESET);
1896
1897         /* Fix up inter-pair skew failure */
1898         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1899         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1900         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1901         mutex_unlock(&dev_priv->dpio_lock);
1902 }
1903
1904 /*
1905  * Native read with retry for link status and receiver capability reads for
1906  * cases where the sink may still be asleep.
1907  *
1908  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1909  * supposed to retry 3 times per the spec.
1910  */
1911 static ssize_t
1912 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1913                         void *buffer, size_t size)
1914 {
1915         ssize_t ret;
1916         int i;
1917
1918         for (i = 0; i < 3; i++) {
1919                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1920                 if (ret == size)
1921                         return ret;
1922                 msleep(1);
1923         }
1924
1925         return ret;
1926 }
1927
1928 /*
1929  * Fetch AUX CH registers 0x202 - 0x207 which contain
1930  * link status information
1931  */
1932 static bool
1933 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1934 {
1935         return intel_dp_dpcd_read_wake(&intel_dp->aux,
1936                                        DP_LANE0_1_STATUS,
1937                                        link_status,
1938                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1939 }
1940
1941 /*
1942  * These are source-specific values; current Intel hardware supports
1943  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1944  */
1945
1946 static uint8_t
1947 intel_dp_voltage_max(struct intel_dp *intel_dp)
1948 {
1949         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1950         enum port port = dp_to_dig_port(intel_dp)->port;
1951
1952         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1953                 return DP_TRAIN_VOLTAGE_SWING_1200;
1954         else if (IS_GEN7(dev) && port == PORT_A)
1955                 return DP_TRAIN_VOLTAGE_SWING_800;
1956         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1957                 return DP_TRAIN_VOLTAGE_SWING_1200;
1958         else
1959                 return DP_TRAIN_VOLTAGE_SWING_800;
1960 }
1961
1962 static uint8_t
1963 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1964 {
1965         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1966         enum port port = dp_to_dig_port(intel_dp)->port;
1967
1968         if (IS_BROADWELL(dev)) {
1969                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1970                 case DP_TRAIN_VOLTAGE_SWING_400:
1971                 case DP_TRAIN_VOLTAGE_SWING_600:
1972                         return DP_TRAIN_PRE_EMPHASIS_6;
1973                 case DP_TRAIN_VOLTAGE_SWING_800:
1974                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1975                 case DP_TRAIN_VOLTAGE_SWING_1200:
1976                 default:
1977                         return DP_TRAIN_PRE_EMPHASIS_0;
1978                 }
1979         } else if (IS_HASWELL(dev)) {
1980                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1981                 case DP_TRAIN_VOLTAGE_SWING_400:
1982                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1983                 case DP_TRAIN_VOLTAGE_SWING_600:
1984                         return DP_TRAIN_PRE_EMPHASIS_6;
1985                 case DP_TRAIN_VOLTAGE_SWING_800:
1986                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1987                 case DP_TRAIN_VOLTAGE_SWING_1200:
1988                 default:
1989                         return DP_TRAIN_PRE_EMPHASIS_0;
1990                 }
1991         } else if (IS_VALLEYVIEW(dev)) {
1992                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1993                 case DP_TRAIN_VOLTAGE_SWING_400:
1994                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1995                 case DP_TRAIN_VOLTAGE_SWING_600:
1996                         return DP_TRAIN_PRE_EMPHASIS_6;
1997                 case DP_TRAIN_VOLTAGE_SWING_800:
1998                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1999                 case DP_TRAIN_VOLTAGE_SWING_1200:
2000                 default:
2001                         return DP_TRAIN_PRE_EMPHASIS_0;
2002                 }
2003         } else if (IS_GEN7(dev) && port == PORT_A) {
2004                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2005                 case DP_TRAIN_VOLTAGE_SWING_400:
2006                         return DP_TRAIN_PRE_EMPHASIS_6;
2007                 case DP_TRAIN_VOLTAGE_SWING_600:
2008                 case DP_TRAIN_VOLTAGE_SWING_800:
2009                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2010                 default:
2011                         return DP_TRAIN_PRE_EMPHASIS_0;
2012                 }
2013         } else {
2014                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2015                 case DP_TRAIN_VOLTAGE_SWING_400:
2016                         return DP_TRAIN_PRE_EMPHASIS_6;
2017                 case DP_TRAIN_VOLTAGE_SWING_600:
2018                         return DP_TRAIN_PRE_EMPHASIS_6;
2019                 case DP_TRAIN_VOLTAGE_SWING_800:
2020                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2021                 case DP_TRAIN_VOLTAGE_SWING_1200:
2022                 default:
2023                         return DP_TRAIN_PRE_EMPHASIS_0;
2024                 }
2025         }
2026 }
2027
2028 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2029 {
2030         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2033         struct intel_crtc *intel_crtc =
2034                 to_intel_crtc(dport->base.base.crtc);
2035         unsigned long demph_reg_value, preemph_reg_value,
2036                 uniqtranscale_reg_value;
2037         uint8_t train_set = intel_dp->train_set[0];
2038         enum dpio_channel port = vlv_dport_to_channel(dport);
2039         int pipe = intel_crtc->pipe;
2040
2041         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2042         case DP_TRAIN_PRE_EMPHASIS_0:
2043                 preemph_reg_value = 0x0004000;
2044                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2045                 case DP_TRAIN_VOLTAGE_SWING_400:
2046                         demph_reg_value = 0x2B405555;
2047                         uniqtranscale_reg_value = 0x552AB83A;
2048                         break;
2049                 case DP_TRAIN_VOLTAGE_SWING_600:
2050                         demph_reg_value = 0x2B404040;
2051                         uniqtranscale_reg_value = 0x5548B83A;
2052                         break;
2053                 case DP_TRAIN_VOLTAGE_SWING_800:
2054                         demph_reg_value = 0x2B245555;
2055                         uniqtranscale_reg_value = 0x5560B83A;
2056                         break;
2057                 case DP_TRAIN_VOLTAGE_SWING_1200:
2058                         demph_reg_value = 0x2B405555;
2059                         uniqtranscale_reg_value = 0x5598DA3A;
2060                         break;
2061                 default:
2062                         return 0;
2063                 }
2064                 break;
2065         case DP_TRAIN_PRE_EMPHASIS_3_5:
2066                 preemph_reg_value = 0x0002000;
2067                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2068                 case DP_TRAIN_VOLTAGE_SWING_400:
2069                         demph_reg_value = 0x2B404040;
2070                         uniqtranscale_reg_value = 0x5552B83A;
2071                         break;
2072                 case DP_TRAIN_VOLTAGE_SWING_600:
2073                         demph_reg_value = 0x2B404848;
2074                         uniqtranscale_reg_value = 0x5580B83A;
2075                         break;
2076                 case DP_TRAIN_VOLTAGE_SWING_800:
2077                         demph_reg_value = 0x2B404040;
2078                         uniqtranscale_reg_value = 0x55ADDA3A;
2079                         break;
2080                 default:
2081                         return 0;
2082                 }
2083                 break;
2084         case DP_TRAIN_PRE_EMPHASIS_6:
2085                 preemph_reg_value = 0x0000000;
2086                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2087                 case DP_TRAIN_VOLTAGE_SWING_400:
2088                         demph_reg_value = 0x2B305555;
2089                         uniqtranscale_reg_value = 0x5570B83A;
2090                         break;
2091                 case DP_TRAIN_VOLTAGE_SWING_600:
2092                         demph_reg_value = 0x2B2B4040;
2093                         uniqtranscale_reg_value = 0x55ADDA3A;
2094                         break;
2095                 default:
2096                         return 0;
2097                 }
2098                 break;
2099         case DP_TRAIN_PRE_EMPHASIS_9_5:
2100                 preemph_reg_value = 0x0006000;
2101                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2102                 case DP_TRAIN_VOLTAGE_SWING_400:
2103                         demph_reg_value = 0x1B405555;
2104                         uniqtranscale_reg_value = 0x55ADDA3A;
2105                         break;
2106                 default:
2107                         return 0;
2108                 }
2109                 break;
2110         default:
2111                 return 0;
2112         }
2113
2114         mutex_lock(&dev_priv->dpio_lock);
2115         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2116         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2117         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2118                          uniqtranscale_reg_value);
2119         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2120         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2121         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2122         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2123         mutex_unlock(&dev_priv->dpio_lock);
2124
2125         return 0;
2126 }
2127
2128 static void
2129 intel_get_adjust_train(struct intel_dp *intel_dp,
2130                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2131 {
2132         uint8_t v = 0;
2133         uint8_t p = 0;
2134         int lane;
2135         uint8_t voltage_max;
2136         uint8_t preemph_max;
2137
2138         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2139                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2140                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2141
2142                 if (this_v > v)
2143                         v = this_v;
2144                 if (this_p > p)
2145                         p = this_p;
2146         }
2147
2148         voltage_max = intel_dp_voltage_max(intel_dp);
2149         if (v >= voltage_max)
2150                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2151
2152         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2153         if (p >= preemph_max)
2154                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2155
2156         for (lane = 0; lane < 4; lane++)
2157                 intel_dp->train_set[lane] = v | p;
2158 }
2159
2160 static uint32_t
2161 intel_gen4_signal_levels(uint8_t train_set)
2162 {
2163         uint32_t        signal_levels = 0;
2164
2165         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2166         case DP_TRAIN_VOLTAGE_SWING_400:
2167         default:
2168                 signal_levels |= DP_VOLTAGE_0_4;
2169                 break;
2170         case DP_TRAIN_VOLTAGE_SWING_600:
2171                 signal_levels |= DP_VOLTAGE_0_6;
2172                 break;
2173         case DP_TRAIN_VOLTAGE_SWING_800:
2174                 signal_levels |= DP_VOLTAGE_0_8;
2175                 break;
2176         case DP_TRAIN_VOLTAGE_SWING_1200:
2177                 signal_levels |= DP_VOLTAGE_1_2;
2178                 break;
2179         }
2180         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2181         case DP_TRAIN_PRE_EMPHASIS_0:
2182         default:
2183                 signal_levels |= DP_PRE_EMPHASIS_0;
2184                 break;
2185         case DP_TRAIN_PRE_EMPHASIS_3_5:
2186                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2187                 break;
2188         case DP_TRAIN_PRE_EMPHASIS_6:
2189                 signal_levels |= DP_PRE_EMPHASIS_6;
2190                 break;
2191         case DP_TRAIN_PRE_EMPHASIS_9_5:
2192                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2193                 break;
2194         }
2195         return signal_levels;
2196 }
2197
2198 /* Gen6's DP voltage swing and pre-emphasis control */
2199 static uint32_t
2200 intel_gen6_edp_signal_levels(uint8_t train_set)
2201 {
2202         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2203                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2204         switch (signal_levels) {
2205         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2206         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2207                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2208         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2209                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2210         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2211         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2212                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2213         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2214         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2215                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2216         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2217         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2218                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2219         default:
2220                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2221                               "0x%x\n", signal_levels);
2222                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2223         }
2224 }
2225
2226 /* Gen7's DP voltage swing and pre-emphasis control */
2227 static uint32_t
2228 intel_gen7_edp_signal_levels(uint8_t train_set)
2229 {
2230         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2231                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2232         switch (signal_levels) {
2233         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2234                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2235         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2236                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2237         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2238                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2239
2240         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2241                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2242         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2243                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2244
2245         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2246                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2247         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2248                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2249
2250         default:
2251                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2252                               "0x%x\n", signal_levels);
2253                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2254         }
2255 }
2256
2257 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2258 static uint32_t
2259 intel_hsw_signal_levels(uint8_t train_set)
2260 {
2261         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2262                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2263         switch (signal_levels) {
2264         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2265                 return DDI_BUF_EMP_400MV_0DB_HSW;
2266         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2267                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2268         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2269                 return DDI_BUF_EMP_400MV_6DB_HSW;
2270         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2271                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2272
2273         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2274                 return DDI_BUF_EMP_600MV_0DB_HSW;
2275         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2276                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2277         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2278                 return DDI_BUF_EMP_600MV_6DB_HSW;
2279
2280         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2281                 return DDI_BUF_EMP_800MV_0DB_HSW;
2282         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2283                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2284         default:
2285                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2286                               "0x%x\n", signal_levels);
2287                 return DDI_BUF_EMP_400MV_0DB_HSW;
2288         }
2289 }
2290
2291 static uint32_t
2292 intel_bdw_signal_levels(uint8_t train_set)
2293 {
2294         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2295                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2296         switch (signal_levels) {
2297         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2298                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2299         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2300                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2301         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2302                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2303
2304         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2305                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2306         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2307                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2308         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2309                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2310
2311         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2312                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2313         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2315
2316         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2317                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2318
2319         default:
2320                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2321                               "0x%x\n", signal_levels);
2322                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2323         }
2324 }
2325
2326 /* Properly updates "DP" with the correct signal levels. */
2327 static void
2328 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2329 {
2330         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2331         enum port port = intel_dig_port->port;
2332         struct drm_device *dev = intel_dig_port->base.base.dev;
2333         uint32_t signal_levels, mask;
2334         uint8_t train_set = intel_dp->train_set[0];
2335
2336         if (IS_BROADWELL(dev)) {
2337                 signal_levels = intel_bdw_signal_levels(train_set);
2338                 mask = DDI_BUF_EMP_MASK;
2339         } else if (IS_HASWELL(dev)) {
2340                 signal_levels = intel_hsw_signal_levels(train_set);
2341                 mask = DDI_BUF_EMP_MASK;
2342         } else if (IS_VALLEYVIEW(dev)) {
2343                 signal_levels = intel_vlv_signal_levels(intel_dp);
2344                 mask = 0;
2345         } else if (IS_GEN7(dev) && port == PORT_A) {
2346                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2347                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2348         } else if (IS_GEN6(dev) && port == PORT_A) {
2349                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2350                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2351         } else {
2352                 signal_levels = intel_gen4_signal_levels(train_set);
2353                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2354         }
2355
2356         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2357
2358         *DP = (*DP & ~mask) | signal_levels;
2359 }
2360
2361 static bool
2362 intel_dp_set_link_train(struct intel_dp *intel_dp,
2363                         uint32_t *DP,
2364                         uint8_t dp_train_pat)
2365 {
2366         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2367         struct drm_device *dev = intel_dig_port->base.base.dev;
2368         struct drm_i915_private *dev_priv = dev->dev_private;
2369         enum port port = intel_dig_port->port;
2370         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2371         int ret, len;
2372
2373         if (HAS_DDI(dev)) {
2374                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2375
2376                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2377                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2378                 else
2379                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2380
2381                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2382                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2383                 case DP_TRAINING_PATTERN_DISABLE:
2384                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2385
2386                         break;
2387                 case DP_TRAINING_PATTERN_1:
2388                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2389                         break;
2390                 case DP_TRAINING_PATTERN_2:
2391                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2392                         break;
2393                 case DP_TRAINING_PATTERN_3:
2394                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2395                         break;
2396                 }
2397                 I915_WRITE(DP_TP_CTL(port), temp);
2398
2399         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2400                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2401
2402                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2403                 case DP_TRAINING_PATTERN_DISABLE:
2404                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2405                         break;
2406                 case DP_TRAINING_PATTERN_1:
2407                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2408                         break;
2409                 case DP_TRAINING_PATTERN_2:
2410                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2411                         break;
2412                 case DP_TRAINING_PATTERN_3:
2413                         DRM_ERROR("DP training pattern 3 not supported\n");
2414                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2415                         break;
2416                 }
2417
2418         } else {
2419                 *DP &= ~DP_LINK_TRAIN_MASK;
2420
2421                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2422                 case DP_TRAINING_PATTERN_DISABLE:
2423                         *DP |= DP_LINK_TRAIN_OFF;
2424                         break;
2425                 case DP_TRAINING_PATTERN_1:
2426                         *DP |= DP_LINK_TRAIN_PAT_1;
2427                         break;
2428                 case DP_TRAINING_PATTERN_2:
2429                         *DP |= DP_LINK_TRAIN_PAT_2;
2430                         break;
2431                 case DP_TRAINING_PATTERN_3:
2432                         DRM_ERROR("DP training pattern 3 not supported\n");
2433                         *DP |= DP_LINK_TRAIN_PAT_2;
2434                         break;
2435                 }
2436         }
2437
2438         I915_WRITE(intel_dp->output_reg, *DP);
2439         POSTING_READ(intel_dp->output_reg);
2440
2441         buf[0] = dp_train_pat;
2442         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2443             DP_TRAINING_PATTERN_DISABLE) {
2444                 /* don't write DP_TRAINING_LANEx_SET on disable */
2445                 len = 1;
2446         } else {
2447                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2448                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2449                 len = intel_dp->lane_count + 1;
2450         }
2451
2452         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2453                                 buf, len);
2454
2455         return ret == len;
2456 }
2457
2458 static bool
2459 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2460                         uint8_t dp_train_pat)
2461 {
2462         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2463         intel_dp_set_signal_levels(intel_dp, DP);
2464         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2465 }
2466
2467 static bool
2468 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2469                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2470 {
2471         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2472         struct drm_device *dev = intel_dig_port->base.base.dev;
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474         int ret;
2475
2476         intel_get_adjust_train(intel_dp, link_status);
2477         intel_dp_set_signal_levels(intel_dp, DP);
2478
2479         I915_WRITE(intel_dp->output_reg, *DP);
2480         POSTING_READ(intel_dp->output_reg);
2481
2482         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2483                                 intel_dp->train_set, intel_dp->lane_count);
2484
2485         return ret == intel_dp->lane_count;
2486 }
2487
2488 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2489 {
2490         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2491         struct drm_device *dev = intel_dig_port->base.base.dev;
2492         struct drm_i915_private *dev_priv = dev->dev_private;
2493         enum port port = intel_dig_port->port;
2494         uint32_t val;
2495
2496         if (!HAS_DDI(dev))
2497                 return;
2498
2499         val = I915_READ(DP_TP_CTL(port));
2500         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2501         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2502         I915_WRITE(DP_TP_CTL(port), val);
2503
2504         /*
2505          * On PORT_A we can have only eDP in SST mode. There the only reason
2506          * we need to set idle transmission mode is to work around a HW issue
2507          * where we enable the pipe while not in idle link-training mode.
2508          * In this case there is requirement to wait for a minimum number of
2509          * idle patterns to be sent.
2510          */
2511         if (port == PORT_A)
2512                 return;
2513
2514         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2515                      1))
2516                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2517 }
2518
2519 /* Enable corresponding port and start training pattern 1 */
2520 void
2521 intel_dp_start_link_train(struct intel_dp *intel_dp)
2522 {
2523         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2524         struct drm_device *dev = encoder->dev;
2525         int i;
2526         uint8_t voltage;
2527         int voltage_tries, loop_tries;
2528         uint32_t DP = intel_dp->DP;
2529         uint8_t link_config[2];
2530
2531         if (HAS_DDI(dev))
2532                 intel_ddi_prepare_link_retrain(encoder);
2533
2534         /* Write the link configuration data */
2535         link_config[0] = intel_dp->link_bw;
2536         link_config[1] = intel_dp->lane_count;
2537         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2538                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2539         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2540
2541         link_config[0] = 0;
2542         link_config[1] = DP_SET_ANSI_8B10B;
2543         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2544
2545         DP |= DP_PORT_EN;
2546
2547         /* clock recovery */
2548         if (!intel_dp_reset_link_train(intel_dp, &DP,
2549                                        DP_TRAINING_PATTERN_1 |
2550                                        DP_LINK_SCRAMBLING_DISABLE)) {
2551                 DRM_ERROR("failed to enable link training\n");
2552                 return;
2553         }
2554
2555         voltage = 0xff;
2556         voltage_tries = 0;
2557         loop_tries = 0;
2558         for (;;) {
2559                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2560
2561                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2562                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2563                         DRM_ERROR("failed to get link status\n");
2564                         break;
2565                 }
2566
2567                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2568                         DRM_DEBUG_KMS("clock recovery OK\n");
2569                         break;
2570                 }
2571
2572                 /* Check to see if we've tried the max voltage */
2573                 for (i = 0; i < intel_dp->lane_count; i++)
2574                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2575                                 break;
2576                 if (i == intel_dp->lane_count) {
2577                         ++loop_tries;
2578                         if (loop_tries == 5) {
2579                                 DRM_ERROR("too many full retries, give up\n");
2580                                 break;
2581                         }
2582                         intel_dp_reset_link_train(intel_dp, &DP,
2583                                                   DP_TRAINING_PATTERN_1 |
2584                                                   DP_LINK_SCRAMBLING_DISABLE);
2585                         voltage_tries = 0;
2586                         continue;
2587                 }
2588
2589                 /* Check to see if we've tried the same voltage 5 times */
2590                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2591                         ++voltage_tries;
2592                         if (voltage_tries == 5) {
2593                                 DRM_ERROR("too many voltage retries, give up\n");
2594                                 break;
2595                         }
2596                 } else
2597                         voltage_tries = 0;
2598                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2599
2600                 /* Update training set as requested by target */
2601                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2602                         DRM_ERROR("failed to update link training\n");
2603                         break;
2604                 }
2605         }
2606
2607         intel_dp->DP = DP;
2608 }
2609
2610 void
2611 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2612 {
2613         bool channel_eq = false;
2614         int tries, cr_tries;
2615         uint32_t DP = intel_dp->DP;
2616         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2617
2618         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2619         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2620                 training_pattern = DP_TRAINING_PATTERN_3;
2621
2622         /* channel equalization */
2623         if (!intel_dp_set_link_train(intel_dp, &DP,
2624                                      training_pattern |
2625                                      DP_LINK_SCRAMBLING_DISABLE)) {
2626                 DRM_ERROR("failed to start channel equalization\n");
2627                 return;
2628         }
2629
2630         tries = 0;
2631         cr_tries = 0;
2632         channel_eq = false;
2633         for (;;) {
2634                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2635
2636                 if (cr_tries > 5) {
2637                         DRM_ERROR("failed to train DP, aborting\n");
2638                         break;
2639                 }
2640
2641                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2642                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2643                         DRM_ERROR("failed to get link status\n");
2644                         break;
2645                 }
2646
2647                 /* Make sure clock is still ok */
2648                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2649                         intel_dp_start_link_train(intel_dp);
2650                         intel_dp_set_link_train(intel_dp, &DP,
2651                                                 training_pattern |
2652                                                 DP_LINK_SCRAMBLING_DISABLE);
2653                         cr_tries++;
2654                         continue;
2655                 }
2656
2657                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2658                         channel_eq = true;
2659                         break;
2660                 }
2661
2662                 /* Try 5 times, then try clock recovery if that fails */
2663                 if (tries > 5) {
2664                         intel_dp_link_down(intel_dp);
2665                         intel_dp_start_link_train(intel_dp);
2666                         intel_dp_set_link_train(intel_dp, &DP,
2667                                                 training_pattern |
2668                                                 DP_LINK_SCRAMBLING_DISABLE);
2669                         tries = 0;
2670                         cr_tries++;
2671                         continue;
2672                 }
2673
2674                 /* Update training set as requested by target */
2675                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2676                         DRM_ERROR("failed to update link training\n");
2677                         break;
2678                 }
2679                 ++tries;
2680         }
2681
2682         intel_dp_set_idle_link_train(intel_dp);
2683
2684         intel_dp->DP = DP;
2685
2686         if (channel_eq)
2687                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2688
2689 }
2690
2691 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2692 {
2693         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2694                                 DP_TRAINING_PATTERN_DISABLE);
2695 }
2696
2697 static void
2698 intel_dp_link_down(struct intel_dp *intel_dp)
2699 {
2700         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2701         enum port port = intel_dig_port->port;
2702         struct drm_device *dev = intel_dig_port->base.base.dev;
2703         struct drm_i915_private *dev_priv = dev->dev_private;
2704         struct intel_crtc *intel_crtc =
2705                 to_intel_crtc(intel_dig_port->base.base.crtc);
2706         uint32_t DP = intel_dp->DP;
2707
2708         /*
2709          * DDI code has a strict mode set sequence and we should try to respect
2710          * it, otherwise we might hang the machine in many different ways. So we
2711          * really should be disabling the port only on a complete crtc_disable
2712          * sequence. This function is just called under two conditions on DDI
2713          * code:
2714          * - Link train failed while doing crtc_enable, and on this case we
2715          *   really should respect the mode set sequence and wait for a
2716          *   crtc_disable.
2717          * - Someone turned the monitor off and intel_dp_check_link_status
2718          *   called us. We don't need to disable the whole port on this case, so
2719          *   when someone turns the monitor on again,
2720          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2721          *   train.
2722          */
2723         if (HAS_DDI(dev))
2724                 return;
2725
2726         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2727                 return;
2728
2729         DRM_DEBUG_KMS("\n");
2730
2731         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2732                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2733                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2734         } else {
2735                 DP &= ~DP_LINK_TRAIN_MASK;
2736                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2737         }
2738         POSTING_READ(intel_dp->output_reg);
2739
2740         /* We don't really know why we're doing this */
2741         intel_wait_for_vblank(dev, intel_crtc->pipe);
2742
2743         if (HAS_PCH_IBX(dev) &&
2744             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2745                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2746
2747                 /* Hardware workaround: leaving our transcoder select
2748                  * set to transcoder B while it's off will prevent the
2749                  * corresponding HDMI output on transcoder A.
2750                  *
2751                  * Combine this with another hardware workaround:
2752                  * transcoder select bit can only be cleared while the
2753                  * port is enabled.
2754                  */
2755                 DP &= ~DP_PIPEB_SELECT;
2756                 I915_WRITE(intel_dp->output_reg, DP);
2757
2758                 /* Changes to enable or select take place the vblank
2759                  * after being written.
2760                  */
2761                 if (WARN_ON(crtc == NULL)) {
2762                         /* We should never try to disable a port without a crtc
2763                          * attached. For paranoia keep the code around for a
2764                          * bit. */
2765                         POSTING_READ(intel_dp->output_reg);
2766                         msleep(50);
2767                 } else
2768                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2769         }
2770
2771         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2772         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2773         POSTING_READ(intel_dp->output_reg);
2774         msleep(intel_dp->panel_power_down_delay);
2775 }
2776
2777 static bool
2778 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2779 {
2780         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2781         struct drm_device *dev = dig_port->base.base.dev;
2782         struct drm_i915_private *dev_priv = dev->dev_private;
2783
2784         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2785
2786         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2787                                     sizeof(intel_dp->dpcd)) < 0)
2788                 return false; /* aux transfer failed */
2789
2790         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2791                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2792         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2793
2794         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2795                 return false; /* DPCD not present */
2796
2797         /* Check if the panel supports PSR */
2798         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2799         if (is_edp(intel_dp)) {
2800                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2801                                         intel_dp->psr_dpcd,
2802                                         sizeof(intel_dp->psr_dpcd));
2803                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2804                         dev_priv->psr.sink_support = true;
2805                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2806                 }
2807         }
2808
2809         /* Training Pattern 3 support */
2810         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2811             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2812                 intel_dp->use_tps3 = true;
2813                 DRM_DEBUG_KMS("Displayport TPS3 supported");
2814         } else
2815                 intel_dp->use_tps3 = false;
2816
2817         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2818               DP_DWN_STRM_PORT_PRESENT))
2819                 return true; /* native DP sink */
2820
2821         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2822                 return true; /* no per-port downstream info */
2823
2824         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2825                                     intel_dp->downstream_ports,
2826                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
2827                 return false; /* downstream port status fetch failed */
2828
2829         return true;
2830 }
2831
2832 static void
2833 intel_dp_probe_oui(struct intel_dp *intel_dp)
2834 {
2835         u8 buf[3];
2836
2837         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2838                 return;
2839
2840         intel_edp_panel_vdd_on(intel_dp);
2841
2842         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2843                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2844                               buf[0], buf[1], buf[2]);
2845
2846         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2847                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2848                               buf[0], buf[1], buf[2]);
2849
2850         edp_panel_vdd_off(intel_dp, false);
2851 }
2852
2853 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2854 {
2855         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2856         struct drm_device *dev = intel_dig_port->base.base.dev;
2857         struct intel_crtc *intel_crtc =
2858                 to_intel_crtc(intel_dig_port->base.base.crtc);
2859         u8 buf[1];
2860
2861         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2862                 return -EAGAIN;
2863
2864         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2865                 return -ENOTTY;
2866
2867         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2868                                DP_TEST_SINK_START) < 0)
2869                 return -EAGAIN;
2870
2871         /* Wait 2 vblanks to be sure we will have the correct CRC value */
2872         intel_wait_for_vblank(dev, intel_crtc->pipe);
2873         intel_wait_for_vblank(dev, intel_crtc->pipe);
2874
2875         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2876                 return -EAGAIN;
2877
2878         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2879         return 0;
2880 }
2881
2882 static bool
2883 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2884 {
2885         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2886                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
2887                                        sink_irq_vector, 1) == 1;
2888 }
2889
2890 static void
2891 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2892 {
2893         /* NAK by default */
2894         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2895 }
2896
2897 /*
2898  * According to DP spec
2899  * 5.1.2:
2900  *  1. Read DPCD
2901  *  2. Configure link according to Receiver Capabilities
2902  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2903  *  4. Check link status on receipt of hot-plug interrupt
2904  */
2905
2906 void
2907 intel_dp_check_link_status(struct intel_dp *intel_dp)
2908 {
2909         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2910         u8 sink_irq_vector;
2911         u8 link_status[DP_LINK_STATUS_SIZE];
2912
2913         if (!intel_encoder->connectors_active)
2914                 return;
2915
2916         if (WARN_ON(!intel_encoder->base.crtc))
2917                 return;
2918
2919         /* Try to read receiver status if the link appears to be up */
2920         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2921                 return;
2922         }
2923
2924         /* Now read the DPCD to see if it's actually running */
2925         if (!intel_dp_get_dpcd(intel_dp)) {
2926                 return;
2927         }
2928
2929         /* Try to read the source of the interrupt */
2930         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2931             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2932                 /* Clear interrupt source */
2933                 drm_dp_dpcd_writeb(&intel_dp->aux,
2934                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
2935                                    sink_irq_vector);
2936
2937                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2938                         intel_dp_handle_test_request(intel_dp);
2939                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2940                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2941         }
2942
2943         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2944                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2945                               drm_get_encoder_name(&intel_encoder->base));
2946                 intel_dp_start_link_train(intel_dp);
2947                 intel_dp_complete_link_train(intel_dp);
2948                 intel_dp_stop_link_train(intel_dp);
2949         }
2950 }
2951
2952 /* XXX this is probably wrong for multiple downstream ports */
2953 static enum drm_connector_status
2954 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2955 {
2956         uint8_t *dpcd = intel_dp->dpcd;
2957         uint8_t type;
2958
2959         if (!intel_dp_get_dpcd(intel_dp))
2960                 return connector_status_disconnected;
2961
2962         /* if there's no downstream port, we're done */
2963         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2964                 return connector_status_connected;
2965
2966         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2967         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2968             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2969                 uint8_t reg;
2970
2971                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
2972                                             &reg, 1) < 0)
2973                         return connector_status_unknown;
2974
2975                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2976                                               : connector_status_disconnected;
2977         }
2978
2979         /* If no HPD, poke DDC gently */
2980         if (drm_probe_ddc(&intel_dp->aux.ddc))
2981                 return connector_status_connected;
2982
2983         /* Well we tried, say unknown for unreliable port types */
2984         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2985                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2986                 if (type == DP_DS_PORT_TYPE_VGA ||
2987                     type == DP_DS_PORT_TYPE_NON_EDID)
2988                         return connector_status_unknown;
2989         } else {
2990                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2991                         DP_DWN_STRM_PORT_TYPE_MASK;
2992                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2993                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2994                         return connector_status_unknown;
2995         }
2996
2997         /* Anything else is out of spec, warn and ignore */
2998         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2999         return connector_status_disconnected;
3000 }
3001
3002 static enum drm_connector_status
3003 ironlake_dp_detect(struct intel_dp *intel_dp)
3004 {
3005         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3006         struct drm_i915_private *dev_priv = dev->dev_private;
3007         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3008         enum drm_connector_status status;
3009
3010         /* Can't disconnect eDP, but you can close the lid... */
3011         if (is_edp(intel_dp)) {
3012                 status = intel_panel_detect(dev);
3013                 if (status == connector_status_unknown)
3014                         status = connector_status_connected;
3015                 return status;
3016         }
3017
3018         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3019                 return connector_status_disconnected;
3020
3021         return intel_dp_detect_dpcd(intel_dp);
3022 }
3023
3024 static enum drm_connector_status
3025 g4x_dp_detect(struct intel_dp *intel_dp)
3026 {
3027         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3028         struct drm_i915_private *dev_priv = dev->dev_private;
3029         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3030         uint32_t bit;
3031
3032         /* Can't disconnect eDP, but you can close the lid... */
3033         if (is_edp(intel_dp)) {
3034                 enum drm_connector_status status;
3035
3036                 status = intel_panel_detect(dev);
3037                 if (status == connector_status_unknown)
3038                         status = connector_status_connected;
3039                 return status;
3040         }
3041
3042         if (IS_VALLEYVIEW(dev)) {
3043                 switch (intel_dig_port->port) {
3044                 case PORT_B:
3045                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3046                         break;
3047                 case PORT_C:
3048                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3049                         break;
3050                 case PORT_D:
3051                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3052                         break;
3053                 default:
3054                         return connector_status_unknown;
3055                 }
3056         } else {
3057                 switch (intel_dig_port->port) {
3058                 case PORT_B:
3059                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3060                         break;
3061                 case PORT_C:
3062                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3063                         break;
3064                 case PORT_D:
3065                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3066                         break;
3067                 default:
3068                         return connector_status_unknown;
3069                 }
3070         }
3071
3072         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3073                 return connector_status_disconnected;
3074
3075         return intel_dp_detect_dpcd(intel_dp);
3076 }
3077
3078 static struct edid *
3079 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3080 {
3081         struct intel_connector *intel_connector = to_intel_connector(connector);
3082
3083         /* use cached edid if we have one */
3084         if (intel_connector->edid) {
3085                 /* invalid edid */
3086                 if (IS_ERR(intel_connector->edid))
3087                         return NULL;
3088
3089                 return drm_edid_duplicate(intel_connector->edid);
3090         }
3091
3092         return drm_get_edid(connector, adapter);
3093 }
3094
3095 static int
3096 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3097 {
3098         struct intel_connector *intel_connector = to_intel_connector(connector);
3099
3100         /* use cached edid if we have one */
3101         if (intel_connector->edid) {
3102                 /* invalid edid */
3103                 if (IS_ERR(intel_connector->edid))
3104                         return 0;
3105
3106                 return intel_connector_update_modes(connector,
3107                                                     intel_connector->edid);
3108         }
3109
3110         return intel_ddc_get_modes(connector, adapter);
3111 }
3112
3113 static enum drm_connector_status
3114 intel_dp_detect(struct drm_connector *connector, bool force)
3115 {
3116         struct intel_dp *intel_dp = intel_attached_dp(connector);
3117         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3118         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3119         struct drm_device *dev = connector->dev;
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         enum drm_connector_status status;
3122         enum intel_display_power_domain power_domain;
3123         struct edid *edid = NULL;
3124
3125         intel_runtime_pm_get(dev_priv);
3126
3127         power_domain = intel_display_port_power_domain(intel_encoder);
3128         intel_display_power_get(dev_priv, power_domain);
3129
3130         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3131                       connector->base.id, drm_get_connector_name(connector));
3132
3133         intel_dp->has_audio = false;
3134
3135         if (HAS_PCH_SPLIT(dev))
3136                 status = ironlake_dp_detect(intel_dp);
3137         else
3138                 status = g4x_dp_detect(intel_dp);
3139
3140         if (status != connector_status_connected)
3141                 goto out;
3142
3143         intel_dp_probe_oui(intel_dp);
3144
3145         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3146                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3147         } else {
3148                 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3149                 if (edid) {
3150                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3151                         kfree(edid);
3152                 }
3153         }
3154
3155         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3156                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3157         status = connector_status_connected;
3158
3159 out:
3160         intel_display_power_put(dev_priv, power_domain);
3161
3162         intel_runtime_pm_put(dev_priv);
3163
3164         return status;
3165 }
3166
3167 static int intel_dp_get_modes(struct drm_connector *connector)
3168 {
3169         struct intel_dp *intel_dp = intel_attached_dp(connector);
3170         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3171         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3172         struct intel_connector *intel_connector = to_intel_connector(connector);
3173         struct drm_device *dev = connector->dev;
3174         struct drm_i915_private *dev_priv = dev->dev_private;
3175         enum intel_display_power_domain power_domain;
3176         int ret;
3177
3178         /* We should parse the EDID data and find out if it has an audio sink
3179          */
3180
3181         power_domain = intel_display_port_power_domain(intel_encoder);
3182         intel_display_power_get(dev_priv, power_domain);
3183
3184         ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3185         intel_display_power_put(dev_priv, power_domain);
3186         if (ret)
3187                 return ret;
3188
3189         /* if eDP has no EDID, fall back to fixed mode */
3190         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3191                 struct drm_display_mode *mode;
3192                 mode = drm_mode_duplicate(dev,
3193                                           intel_connector->panel.fixed_mode);
3194                 if (mode) {
3195                         drm_mode_probed_add(connector, mode);
3196                         return 1;
3197                 }
3198         }
3199         return 0;
3200 }
3201
3202 static bool
3203 intel_dp_detect_audio(struct drm_connector *connector)
3204 {
3205         struct intel_dp *intel_dp = intel_attached_dp(connector);
3206         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3207         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3208         struct drm_device *dev = connector->dev;
3209         struct drm_i915_private *dev_priv = dev->dev_private;
3210         enum intel_display_power_domain power_domain;
3211         struct edid *edid;
3212         bool has_audio = false;
3213
3214         power_domain = intel_display_port_power_domain(intel_encoder);
3215         intel_display_power_get(dev_priv, power_domain);
3216
3217         edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3218         if (edid) {
3219                 has_audio = drm_detect_monitor_audio(edid);
3220                 kfree(edid);
3221         }
3222
3223         intel_display_power_put(dev_priv, power_domain);
3224
3225         return has_audio;
3226 }
3227
3228 static int
3229 intel_dp_set_property(struct drm_connector *connector,
3230                       struct drm_property *property,
3231                       uint64_t val)
3232 {
3233         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3234         struct intel_connector *intel_connector = to_intel_connector(connector);
3235         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3236         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3237         int ret;
3238
3239         ret = drm_object_property_set_value(&connector->base, property, val);
3240         if (ret)
3241                 return ret;
3242
3243         if (property == dev_priv->force_audio_property) {
3244                 int i = val;
3245                 bool has_audio;
3246
3247                 if (i == intel_dp->force_audio)
3248                         return 0;
3249
3250                 intel_dp->force_audio = i;
3251
3252                 if (i == HDMI_AUDIO_AUTO)
3253                         has_audio = intel_dp_detect_audio(connector);
3254                 else
3255                         has_audio = (i == HDMI_AUDIO_ON);
3256
3257                 if (has_audio == intel_dp->has_audio)
3258                         return 0;
3259
3260                 intel_dp->has_audio = has_audio;
3261                 goto done;
3262         }
3263
3264         if (property == dev_priv->broadcast_rgb_property) {
3265                 bool old_auto = intel_dp->color_range_auto;
3266                 uint32_t old_range = intel_dp->color_range;
3267
3268                 switch (val) {
3269                 case INTEL_BROADCAST_RGB_AUTO:
3270                         intel_dp->color_range_auto = true;
3271                         break;
3272                 case INTEL_BROADCAST_RGB_FULL:
3273                         intel_dp->color_range_auto = false;
3274                         intel_dp->color_range = 0;
3275                         break;
3276                 case INTEL_BROADCAST_RGB_LIMITED:
3277                         intel_dp->color_range_auto = false;
3278                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3279                         break;
3280                 default:
3281                         return -EINVAL;
3282                 }
3283
3284                 if (old_auto == intel_dp->color_range_auto &&
3285                     old_range == intel_dp->color_range)
3286                         return 0;
3287
3288                 goto done;
3289         }
3290
3291         if (is_edp(intel_dp) &&
3292             property == connector->dev->mode_config.scaling_mode_property) {
3293                 if (val == DRM_MODE_SCALE_NONE) {
3294                         DRM_DEBUG_KMS("no scaling not supported\n");
3295                         return -EINVAL;
3296                 }
3297
3298                 if (intel_connector->panel.fitting_mode == val) {
3299                         /* the eDP scaling property is not changed */
3300                         return 0;
3301                 }
3302                 intel_connector->panel.fitting_mode = val;
3303
3304                 goto done;
3305         }
3306
3307         return -EINVAL;
3308
3309 done:
3310         if (intel_encoder->base.crtc)
3311                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3312
3313         return 0;
3314 }
3315
3316 static void
3317 intel_dp_connector_destroy(struct drm_connector *connector)
3318 {
3319         struct intel_connector *intel_connector = to_intel_connector(connector);
3320
3321         if (!IS_ERR_OR_NULL(intel_connector->edid))
3322                 kfree(intel_connector->edid);
3323
3324         /* Can't call is_edp() since the encoder may have been destroyed
3325          * already. */
3326         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3327                 intel_panel_fini(&intel_connector->panel);
3328
3329         drm_connector_cleanup(connector);
3330         kfree(connector);
3331 }
3332
3333 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3334 {
3335         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3336         struct intel_dp *intel_dp = &intel_dig_port->dp;
3337         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3338
3339         drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3340         drm_encoder_cleanup(encoder);
3341         if (is_edp(intel_dp)) {
3342                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3343                 mutex_lock(&dev->mode_config.mutex);
3344                 edp_panel_vdd_off_sync(intel_dp);
3345                 mutex_unlock(&dev->mode_config.mutex);
3346         }
3347         kfree(intel_dig_port);
3348 }
3349
3350 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3351         .dpms = intel_connector_dpms,
3352         .detect = intel_dp_detect,
3353         .fill_modes = drm_helper_probe_single_connector_modes,
3354         .set_property = intel_dp_set_property,
3355         .destroy = intel_dp_connector_destroy,
3356 };
3357
3358 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3359         .get_modes = intel_dp_get_modes,
3360         .mode_valid = intel_dp_mode_valid,
3361         .best_encoder = intel_best_encoder,
3362 };
3363
3364 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3365         .destroy = intel_dp_encoder_destroy,
3366 };
3367
3368 static void
3369 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3370 {
3371         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3372
3373         intel_dp_check_link_status(intel_dp);
3374 }
3375
3376 /* Return which DP Port should be selected for Transcoder DP control */
3377 int
3378 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3379 {
3380         struct drm_device *dev = crtc->dev;
3381         struct intel_encoder *intel_encoder;
3382         struct intel_dp *intel_dp;
3383
3384         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3385                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3386
3387                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3388                     intel_encoder->type == INTEL_OUTPUT_EDP)
3389                         return intel_dp->output_reg;
3390         }
3391
3392         return -1;
3393 }
3394
3395 /* check the VBT to see whether the eDP is on DP-D port */
3396 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399         union child_device_config *p_child;
3400         int i;
3401         static const short port_mapping[] = {
3402                 [PORT_B] = PORT_IDPB,
3403                 [PORT_C] = PORT_IDPC,
3404                 [PORT_D] = PORT_IDPD,
3405         };
3406
3407         if (port == PORT_A)
3408                 return true;
3409
3410         if (!dev_priv->vbt.child_dev_num)
3411                 return false;
3412
3413         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3414                 p_child = dev_priv->vbt.child_dev + i;
3415
3416                 if (p_child->common.dvo_port == port_mapping[port] &&
3417                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3418                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3419                         return true;
3420         }
3421         return false;
3422 }
3423
3424 static void
3425 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3426 {
3427         struct intel_connector *intel_connector = to_intel_connector(connector);
3428
3429         intel_attach_force_audio_property(connector);
3430         intel_attach_broadcast_rgb_property(connector);
3431         intel_dp->color_range_auto = true;
3432
3433         if (is_edp(intel_dp)) {
3434                 drm_mode_create_scaling_mode_property(connector->dev);
3435                 drm_object_attach_property(
3436                         &connector->base,
3437                         connector->dev->mode_config.scaling_mode_property,
3438                         DRM_MODE_SCALE_ASPECT);
3439                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3440         }
3441 }
3442
3443 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3444 {
3445         intel_dp->last_power_cycle = jiffies;
3446         intel_dp->last_power_on = jiffies;
3447         intel_dp->last_backlight_off = jiffies;
3448 }
3449
3450 static void
3451 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3452                                     struct intel_dp *intel_dp,
3453                                     struct edp_power_seq *out)
3454 {
3455         struct drm_i915_private *dev_priv = dev->dev_private;
3456         struct edp_power_seq cur, vbt, spec, final;
3457         u32 pp_on, pp_off, pp_div, pp;
3458         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3459
3460         if (HAS_PCH_SPLIT(dev)) {
3461                 pp_ctrl_reg = PCH_PP_CONTROL;
3462                 pp_on_reg = PCH_PP_ON_DELAYS;
3463                 pp_off_reg = PCH_PP_OFF_DELAYS;
3464                 pp_div_reg = PCH_PP_DIVISOR;
3465         } else {
3466                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3467
3468                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3469                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3470                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3471                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3472         }
3473
3474         /* Workaround: Need to write PP_CONTROL with the unlock key as
3475          * the very first thing. */
3476         pp = ironlake_get_pp_control(intel_dp);
3477         I915_WRITE(pp_ctrl_reg, pp);
3478
3479         pp_on = I915_READ(pp_on_reg);
3480         pp_off = I915_READ(pp_off_reg);
3481         pp_div = I915_READ(pp_div_reg);
3482
3483         /* Pull timing values out of registers */
3484         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3485                 PANEL_POWER_UP_DELAY_SHIFT;
3486
3487         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3488                 PANEL_LIGHT_ON_DELAY_SHIFT;
3489
3490         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3491                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3492
3493         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3494                 PANEL_POWER_DOWN_DELAY_SHIFT;
3495
3496         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3497                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3498
3499         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3500                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3501
3502         vbt = dev_priv->vbt.edp_pps;
3503
3504         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3505          * our hw here, which are all in 100usec. */
3506         spec.t1_t3 = 210 * 10;
3507         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3508         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3509         spec.t10 = 500 * 10;
3510         /* This one is special and actually in units of 100ms, but zero
3511          * based in the hw (so we need to add 100 ms). But the sw vbt
3512          * table multiplies it with 1000 to make it in units of 100usec,
3513          * too. */
3514         spec.t11_t12 = (510 + 100) * 10;
3515
3516         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3517                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3518
3519         /* Use the max of the register settings and vbt. If both are
3520          * unset, fall back to the spec limits. */
3521 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3522                                        spec.field : \
3523                                        max(cur.field, vbt.field))
3524         assign_final(t1_t3);
3525         assign_final(t8);
3526         assign_final(t9);
3527         assign_final(t10);
3528         assign_final(t11_t12);
3529 #undef assign_final
3530
3531 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3532         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3533         intel_dp->backlight_on_delay = get_delay(t8);
3534         intel_dp->backlight_off_delay = get_delay(t9);
3535         intel_dp->panel_power_down_delay = get_delay(t10);
3536         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3537 #undef get_delay
3538
3539         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3540                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3541                       intel_dp->panel_power_cycle_delay);
3542
3543         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3544                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3545
3546         if (out)
3547                 *out = final;
3548 }
3549
3550 static void
3551 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3552                                               struct intel_dp *intel_dp,
3553                                               struct edp_power_seq *seq)
3554 {
3555         struct drm_i915_private *dev_priv = dev->dev_private;
3556         u32 pp_on, pp_off, pp_div, port_sel = 0;
3557         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3558         int pp_on_reg, pp_off_reg, pp_div_reg;
3559
3560         if (HAS_PCH_SPLIT(dev)) {
3561                 pp_on_reg = PCH_PP_ON_DELAYS;
3562                 pp_off_reg = PCH_PP_OFF_DELAYS;
3563                 pp_div_reg = PCH_PP_DIVISOR;
3564         } else {
3565                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3566
3567                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3568                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3569                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3570         }
3571
3572         /*
3573          * And finally store the new values in the power sequencer. The
3574          * backlight delays are set to 1 because we do manual waits on them. For
3575          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3576          * we'll end up waiting for the backlight off delay twice: once when we
3577          * do the manual sleep, and once when we disable the panel and wait for
3578          * the PP_STATUS bit to become zero.
3579          */
3580         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3581                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3582         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3583                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3584         /* Compute the divisor for the pp clock, simply match the Bspec
3585          * formula. */
3586         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3587         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3588                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3589
3590         /* Haswell doesn't have any port selection bits for the panel
3591          * power sequencer any more. */
3592         if (IS_VALLEYVIEW(dev)) {
3593                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3594                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3595                 else
3596                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3597         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3598                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3599                         port_sel = PANEL_PORT_SELECT_DPA;
3600                 else
3601                         port_sel = PANEL_PORT_SELECT_DPD;
3602         }
3603
3604         pp_on |= port_sel;
3605
3606         I915_WRITE(pp_on_reg, pp_on);
3607         I915_WRITE(pp_off_reg, pp_off);
3608         I915_WRITE(pp_div_reg, pp_div);
3609
3610         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3611                       I915_READ(pp_on_reg),
3612                       I915_READ(pp_off_reg),
3613                       I915_READ(pp_div_reg));
3614 }
3615
3616 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3617                                      struct intel_connector *intel_connector,
3618                                      struct edp_power_seq *power_seq)
3619 {
3620         struct drm_connector *connector = &intel_connector->base;
3621         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3622         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3623         struct drm_device *dev = intel_encoder->base.dev;
3624         struct drm_i915_private *dev_priv = dev->dev_private;
3625         struct drm_display_mode *fixed_mode = NULL;
3626         bool has_dpcd;
3627         struct drm_display_mode *scan;
3628         struct edid *edid;
3629
3630         if (!is_edp(intel_dp))
3631                 return true;
3632
3633         /* The VDD bit needs a power domain reference, so if the bit is already
3634          * enabled when we boot, grab this reference. */
3635         if (edp_have_panel_vdd(intel_dp)) {
3636                 enum intel_display_power_domain power_domain;
3637                 power_domain = intel_display_port_power_domain(intel_encoder);
3638                 intel_display_power_get(dev_priv, power_domain);
3639         }
3640
3641         /* Cache DPCD and EDID for edp. */
3642         intel_edp_panel_vdd_on(intel_dp);
3643         has_dpcd = intel_dp_get_dpcd(intel_dp);
3644         edp_panel_vdd_off(intel_dp, false);
3645
3646         if (has_dpcd) {
3647                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3648                         dev_priv->no_aux_handshake =
3649                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3650                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3651         } else {
3652                 /* if this fails, presume the device is a ghost */
3653                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3654                 return false;
3655         }
3656
3657         /* We now know it's not a ghost, init power sequence regs. */
3658         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3659
3660         mutex_lock(&dev->mode_config.mutex);
3661         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3662         if (edid) {
3663                 if (drm_add_edid_modes(connector, edid)) {
3664                         drm_mode_connector_update_edid_property(connector,
3665                                                                 edid);
3666                         drm_edid_to_eld(connector, edid);
3667                 } else {
3668                         kfree(edid);
3669                         edid = ERR_PTR(-EINVAL);
3670                 }
3671         } else {
3672                 edid = ERR_PTR(-ENOENT);
3673         }
3674         intel_connector->edid = edid;
3675
3676         /* prefer fixed mode from EDID if available */
3677         list_for_each_entry(scan, &connector->probed_modes, head) {
3678                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3679                         fixed_mode = drm_mode_duplicate(dev, scan);
3680                         break;
3681                 }
3682         }
3683
3684         /* fallback to VBT if available for eDP */
3685         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3686                 fixed_mode = drm_mode_duplicate(dev,
3687                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3688                 if (fixed_mode)
3689                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3690         }
3691         mutex_unlock(&dev->mode_config.mutex);
3692
3693         intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3694         intel_panel_setup_backlight(connector);
3695
3696         return true;
3697 }
3698
3699 bool
3700 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3701                         struct intel_connector *intel_connector)
3702 {
3703         struct drm_connector *connector = &intel_connector->base;
3704         struct intel_dp *intel_dp = &intel_dig_port->dp;
3705         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3706         struct drm_device *dev = intel_encoder->base.dev;
3707         struct drm_i915_private *dev_priv = dev->dev_private;
3708         enum port port = intel_dig_port->port;
3709         struct edp_power_seq power_seq = { 0 };
3710         int type;
3711
3712         /* intel_dp vfuncs */
3713         if (IS_VALLEYVIEW(dev))
3714                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3715         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3716                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3717         else if (HAS_PCH_SPLIT(dev))
3718                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3719         else
3720                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3721
3722         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3723
3724         /* Preserve the current hw state. */
3725         intel_dp->DP = I915_READ(intel_dp->output_reg);
3726         intel_dp->attached_connector = intel_connector;
3727
3728         if (intel_dp_is_edp(dev, port))
3729                 type = DRM_MODE_CONNECTOR_eDP;
3730         else
3731                 type = DRM_MODE_CONNECTOR_DisplayPort;
3732
3733         /*
3734          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3735          * for DP the encoder type can be set by the caller to
3736          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3737          */
3738         if (type == DRM_MODE_CONNECTOR_eDP)
3739                 intel_encoder->type = INTEL_OUTPUT_EDP;
3740
3741         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3742                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3743                         port_name(port));
3744
3745         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3746         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3747
3748         connector->interlace_allowed = true;
3749         connector->doublescan_allowed = 0;
3750
3751         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3752                           edp_panel_vdd_work);
3753
3754         intel_connector_attach_encoder(intel_connector, intel_encoder);
3755         drm_sysfs_connector_add(connector);
3756
3757         if (HAS_DDI(dev))
3758                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3759         else
3760                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3761         intel_connector->unregister = intel_dp_connector_unregister;
3762
3763         /* Set up the hotplug pin. */
3764         switch (port) {
3765         case PORT_A:
3766                 intel_encoder->hpd_pin = HPD_PORT_A;
3767                 break;
3768         case PORT_B:
3769                 intel_encoder->hpd_pin = HPD_PORT_B;
3770                 break;
3771         case PORT_C:
3772                 intel_encoder->hpd_pin = HPD_PORT_C;
3773                 break;
3774         case PORT_D:
3775                 intel_encoder->hpd_pin = HPD_PORT_D;
3776                 break;
3777         default:
3778                 BUG();
3779         }
3780
3781         if (is_edp(intel_dp)) {
3782                 intel_dp_init_panel_power_timestamps(intel_dp);
3783                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3784         }
3785
3786         intel_dp_aux_init(intel_dp, intel_connector);
3787
3788         intel_dp->psr_setup_done = false;
3789
3790         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3791                 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3792                 if (is_edp(intel_dp)) {
3793                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3794                         mutex_lock(&dev->mode_config.mutex);
3795                         edp_panel_vdd_off_sync(intel_dp);
3796                         mutex_unlock(&dev->mode_config.mutex);
3797                 }
3798                 drm_sysfs_connector_remove(connector);
3799                 drm_connector_cleanup(connector);
3800                 return false;
3801         }
3802
3803         intel_dp_add_properties(intel_dp, connector);
3804
3805         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3806          * 0xd.  Failure to do so will result in spurious interrupts being
3807          * generated on the port when a cable is not attached.
3808          */
3809         if (IS_G4X(dev) && !IS_GM45(dev)) {
3810                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3811                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3812         }
3813
3814         return true;
3815 }
3816
3817 void
3818 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3819 {
3820         struct intel_digital_port *intel_dig_port;
3821         struct intel_encoder *intel_encoder;
3822         struct drm_encoder *encoder;
3823         struct intel_connector *intel_connector;
3824
3825         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3826         if (!intel_dig_port)
3827                 return;
3828
3829         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3830         if (!intel_connector) {
3831                 kfree(intel_dig_port);
3832                 return;
3833         }
3834
3835         intel_encoder = &intel_dig_port->base;
3836         encoder = &intel_encoder->base;
3837
3838         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3839                          DRM_MODE_ENCODER_TMDS);
3840
3841         intel_encoder->compute_config = intel_dp_compute_config;
3842         intel_encoder->mode_set = intel_dp_mode_set;
3843         intel_encoder->disable = intel_disable_dp;
3844         intel_encoder->post_disable = intel_post_disable_dp;
3845         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3846         intel_encoder->get_config = intel_dp_get_config;
3847         if (IS_VALLEYVIEW(dev)) {
3848                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3849                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3850                 intel_encoder->enable = vlv_enable_dp;
3851         } else {
3852                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3853                 intel_encoder->enable = g4x_enable_dp;
3854         }
3855
3856         intel_dig_port->port = port;
3857         intel_dig_port->dp.output_reg = output_reg;
3858
3859         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3860         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3861         intel_encoder->cloneable = 0;
3862         intel_encoder->hot_plug = intel_dp_hot_plug;
3863
3864         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3865                 drm_encoder_cleanup(encoder);
3866                 kfree(intel_dig_port);
3867                 kfree(intel_connector);
3868         }
3869 }