]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/gpu/drm/i915/intel_dp.c
e0ff9085fd863d6ff259d1bb17a8648f3bd8a756
[mv-sheeva.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE    0xf
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         uint8_t link_status[DP_LINK_STATUS_SIZE];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct delayed_work panel_vdd_work;
69         bool want_panel_vdd;
70         unsigned long panel_off_jiffies;
71 };
72
73 /**
74  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
75  * @intel_dp: DP struct
76  *
77  * If a CPU or PCH DP output is attached to an eDP panel, this function
78  * will return true, and false otherwise.
79  */
80 static bool is_edp(struct intel_dp *intel_dp)
81 {
82         return intel_dp->base.type == INTEL_OUTPUT_EDP;
83 }
84
85 /**
86  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
87  * @intel_dp: DP struct
88  *
89  * Returns true if the given DP struct corresponds to a PCH DP port attached
90  * to an eDP panel, false otherwise.  Helpful for determining whether we
91  * may need FDI resources for a given DP output or not.
92  */
93 static bool is_pch_edp(struct intel_dp *intel_dp)
94 {
95         return intel_dp->is_pch_edp;
96 }
97
98 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
99 {
100         return container_of(encoder, struct intel_dp, base.base);
101 }
102
103 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
104 {
105         return container_of(intel_attached_encoder(connector),
106                             struct intel_dp, base);
107 }
108
109 /**
110  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
111  * @encoder: DRM encoder
112  *
113  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
114  * by intel_display.c.
115  */
116 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
117 {
118         struct intel_dp *intel_dp;
119
120         if (!encoder)
121                 return false;
122
123         intel_dp = enc_to_intel_dp(encoder);
124
125         return is_pch_edp(intel_dp);
126 }
127
128 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
129 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
130 static void intel_dp_link_down(struct intel_dp *intel_dp);
131
132 void
133 intel_edp_link_config(struct intel_encoder *intel_encoder,
134                        int *lane_num, int *link_bw)
135 {
136         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
137
138         *lane_num = intel_dp->lane_count;
139         if (intel_dp->link_bw == DP_LINK_BW_1_62)
140                 *link_bw = 162000;
141         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
142                 *link_bw = 270000;
143 }
144
145 static int
146 intel_dp_max_lane_count(struct intel_dp *intel_dp)
147 {
148         int max_lane_count = 4;
149
150         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
151                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
152                 switch (max_lane_count) {
153                 case 1: case 2: case 4:
154                         break;
155                 default:
156                         max_lane_count = 4;
157                 }
158         }
159         return max_lane_count;
160 }
161
162 static int
163 intel_dp_max_link_bw(struct intel_dp *intel_dp)
164 {
165         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
166
167         switch (max_link_bw) {
168         case DP_LINK_BW_1_62:
169         case DP_LINK_BW_2_7:
170                 break;
171         default:
172                 max_link_bw = DP_LINK_BW_1_62;
173                 break;
174         }
175         return max_link_bw;
176 }
177
178 static int
179 intel_dp_link_clock(uint8_t link_bw)
180 {
181         if (link_bw == DP_LINK_BW_2_7)
182                 return 270000;
183         else
184                 return 162000;
185 }
186
187 /*
188  * The units on the numbers in the next two are... bizarre.  Examples will
189  * make it clearer; this one parallels an example in the eDP spec.
190  *
191  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
192  *
193  *     270000 * 1 * 8 / 10 == 216000
194  *
195  * The actual data capacity of that configuration is 2.16Gbit/s, so the
196  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
197  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
198  * 119000.  At 18bpp that's 2142000 kilobits per second.
199  *
200  * Thus the strange-looking division by 10 in intel_dp_link_required, to
201  * get the result in decakilobits instead of kilobits.
202  */
203
204 static int
205 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
206 {
207         struct drm_crtc *crtc = intel_dp->base.base.crtc;
208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
209         int bpp = 24;
210
211         if (intel_crtc)
212                 bpp = intel_crtc->bpp;
213
214         return (pixel_clock * bpp + 9) / 10;
215 }
216
217 static int
218 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
219 {
220         return (max_link_clock * max_lanes * 8) / 10;
221 }
222
223 static int
224 intel_dp_mode_valid(struct drm_connector *connector,
225                     struct drm_display_mode *mode)
226 {
227         struct intel_dp *intel_dp = intel_attached_dp(connector);
228         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
229         int max_lanes = intel_dp_max_lane_count(intel_dp);
230
231         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
232                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
233                         return MODE_PANEL;
234
235                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
236                         return MODE_PANEL;
237         }
238
239         if (intel_dp_link_required(intel_dp, mode->clock)
240             > intel_dp_max_data_rate(max_link_clock, max_lanes))
241                 return MODE_CLOCK_HIGH;
242
243         if (mode->clock < 10000)
244                 return MODE_CLOCK_LOW;
245
246         return MODE_OK;
247 }
248
249 static uint32_t
250 pack_aux(uint8_t *src, int src_bytes)
251 {
252         int     i;
253         uint32_t v = 0;
254
255         if (src_bytes > 4)
256                 src_bytes = 4;
257         for (i = 0; i < src_bytes; i++)
258                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
259         return v;
260 }
261
262 static void
263 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
264 {
265         int i;
266         if (dst_bytes > 4)
267                 dst_bytes = 4;
268         for (i = 0; i < dst_bytes; i++)
269                 dst[i] = src >> ((3-i) * 8);
270 }
271
272 /* hrawclock is 1/4 the FSB frequency */
273 static int
274 intel_hrawclk(struct drm_device *dev)
275 {
276         struct drm_i915_private *dev_priv = dev->dev_private;
277         uint32_t clkcfg;
278
279         clkcfg = I915_READ(CLKCFG);
280         switch (clkcfg & CLKCFG_FSB_MASK) {
281         case CLKCFG_FSB_400:
282                 return 100;
283         case CLKCFG_FSB_533:
284                 return 133;
285         case CLKCFG_FSB_667:
286                 return 166;
287         case CLKCFG_FSB_800:
288                 return 200;
289         case CLKCFG_FSB_1067:
290                 return 266;
291         case CLKCFG_FSB_1333:
292                 return 333;
293         /* these two are just a guess; one of them might be right */
294         case CLKCFG_FSB_1600:
295         case CLKCFG_FSB_1600_ALT:
296                 return 400;
297         default:
298                 return 133;
299         }
300 }
301
302 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
303 {
304         struct drm_device *dev = intel_dp->base.base.dev;
305         struct drm_i915_private *dev_priv = dev->dev_private;
306
307         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
308 }
309
310 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
311 {
312         struct drm_device *dev = intel_dp->base.base.dev;
313         struct drm_i915_private *dev_priv = dev->dev_private;
314
315         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
316 }
317
318 static void
319 intel_dp_check_edp(struct intel_dp *intel_dp)
320 {
321         struct drm_device *dev = intel_dp->base.base.dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         if (!is_edp(intel_dp))
325                 return;
326         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
327                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
328                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
329                               I915_READ(PCH_PP_STATUS),
330                               I915_READ(PCH_PP_CONTROL));
331         }
332 }
333
334 static int
335 intel_dp_aux_ch(struct intel_dp *intel_dp,
336                 uint8_t *send, int send_bytes,
337                 uint8_t *recv, int recv_size)
338 {
339         uint32_t output_reg = intel_dp->output_reg;
340         struct drm_device *dev = intel_dp->base.base.dev;
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         uint32_t ch_ctl = output_reg + 0x10;
343         uint32_t ch_data = ch_ctl + 4;
344         int i;
345         int recv_bytes;
346         uint32_t status;
347         uint32_t aux_clock_divider;
348         int try, precharge;
349
350         intel_dp_check_edp(intel_dp);
351         /* The clock divider is based off the hrawclk,
352          * and would like to run at 2MHz. So, take the
353          * hrawclk value and divide by 2 and use that
354          *
355          * Note that PCH attached eDP panels should use a 125MHz input
356          * clock divider.
357          */
358         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
359                 if (IS_GEN6(dev))
360                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
361                 else
362                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
363         } else if (HAS_PCH_SPLIT(dev))
364                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
365         else
366                 aux_clock_divider = intel_hrawclk(dev) / 2;
367
368         if (IS_GEN6(dev))
369                 precharge = 3;
370         else
371                 precharge = 5;
372
373         /* Try to wait for any previous AUX channel activity */
374         for (try = 0; try < 3; try++) {
375                 status = I915_READ(ch_ctl);
376                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
377                         break;
378                 msleep(1);
379         }
380
381         if (try == 3) {
382                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
383                      I915_READ(ch_ctl));
384                 return -EBUSY;
385         }
386
387         /* Must try at least 3 times according to DP spec */
388         for (try = 0; try < 5; try++) {
389                 /* Load the send data into the aux channel data registers */
390                 for (i = 0; i < send_bytes; i += 4)
391                         I915_WRITE(ch_data + i,
392                                    pack_aux(send + i, send_bytes - i));
393
394                 /* Send the command and wait for it to complete */
395                 I915_WRITE(ch_ctl,
396                            DP_AUX_CH_CTL_SEND_BUSY |
397                            DP_AUX_CH_CTL_TIME_OUT_400us |
398                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
399                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
400                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
401                            DP_AUX_CH_CTL_DONE |
402                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
403                            DP_AUX_CH_CTL_RECEIVE_ERROR);
404                 for (;;) {
405                         status = I915_READ(ch_ctl);
406                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
407                                 break;
408                         udelay(100);
409                 }
410
411                 /* Clear done status and any errors */
412                 I915_WRITE(ch_ctl,
413                            status |
414                            DP_AUX_CH_CTL_DONE |
415                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
416                            DP_AUX_CH_CTL_RECEIVE_ERROR);
417                 if (status & DP_AUX_CH_CTL_DONE)
418                         break;
419         }
420
421         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
422                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
423                 return -EBUSY;
424         }
425
426         /* Check for timeout or receive error.
427          * Timeouts occur when the sink is not connected
428          */
429         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
430                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
431                 return -EIO;
432         }
433
434         /* Timeouts occur when the device isn't connected, so they're
435          * "normal" -- don't fill the kernel log with these */
436         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
437                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
438                 return -ETIMEDOUT;
439         }
440
441         /* Unload any bytes sent back from the other side */
442         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
443                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
444         if (recv_bytes > recv_size)
445                 recv_bytes = recv_size;
446
447         for (i = 0; i < recv_bytes; i += 4)
448                 unpack_aux(I915_READ(ch_data + i),
449                            recv + i, recv_bytes - i);
450
451         return recv_bytes;
452 }
453
454 /* Write data to the aux channel in native mode */
455 static int
456 intel_dp_aux_native_write(struct intel_dp *intel_dp,
457                           uint16_t address, uint8_t *send, int send_bytes)
458 {
459         int ret;
460         uint8_t msg[20];
461         int msg_bytes;
462         uint8_t ack;
463
464         intel_dp_check_edp(intel_dp);
465         if (send_bytes > 16)
466                 return -1;
467         msg[0] = AUX_NATIVE_WRITE << 4;
468         msg[1] = address >> 8;
469         msg[2] = address & 0xff;
470         msg[3] = send_bytes - 1;
471         memcpy(&msg[4], send, send_bytes);
472         msg_bytes = send_bytes + 4;
473         for (;;) {
474                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
475                 if (ret < 0)
476                         return ret;
477                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
478                         break;
479                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
480                         udelay(100);
481                 else
482                         return -EIO;
483         }
484         return send_bytes;
485 }
486
487 /* Write a single byte to the aux channel in native mode */
488 static int
489 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
490                             uint16_t address, uint8_t byte)
491 {
492         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
493 }
494
495 /* read bytes from a native aux channel */
496 static int
497 intel_dp_aux_native_read(struct intel_dp *intel_dp,
498                          uint16_t address, uint8_t *recv, int recv_bytes)
499 {
500         uint8_t msg[4];
501         int msg_bytes;
502         uint8_t reply[20];
503         int reply_bytes;
504         uint8_t ack;
505         int ret;
506
507         intel_dp_check_edp(intel_dp);
508         msg[0] = AUX_NATIVE_READ << 4;
509         msg[1] = address >> 8;
510         msg[2] = address & 0xff;
511         msg[3] = recv_bytes - 1;
512
513         msg_bytes = 4;
514         reply_bytes = recv_bytes + 1;
515
516         for (;;) {
517                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
518                                       reply, reply_bytes);
519                 if (ret == 0)
520                         return -EPROTO;
521                 if (ret < 0)
522                         return ret;
523                 ack = reply[0];
524                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
525                         memcpy(recv, reply + 1, ret - 1);
526                         return ret - 1;
527                 }
528                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
529                         udelay(100);
530                 else
531                         return -EIO;
532         }
533 }
534
535 static int
536 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
537                     uint8_t write_byte, uint8_t *read_byte)
538 {
539         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
540         struct intel_dp *intel_dp = container_of(adapter,
541                                                 struct intel_dp,
542                                                 adapter);
543         uint16_t address = algo_data->address;
544         uint8_t msg[5];
545         uint8_t reply[2];
546         unsigned retry;
547         int msg_bytes;
548         int reply_bytes;
549         int ret;
550
551         intel_dp_check_edp(intel_dp);
552         /* Set up the command byte */
553         if (mode & MODE_I2C_READ)
554                 msg[0] = AUX_I2C_READ << 4;
555         else
556                 msg[0] = AUX_I2C_WRITE << 4;
557
558         if (!(mode & MODE_I2C_STOP))
559                 msg[0] |= AUX_I2C_MOT << 4;
560
561         msg[1] = address >> 8;
562         msg[2] = address;
563
564         switch (mode) {
565         case MODE_I2C_WRITE:
566                 msg[3] = 0;
567                 msg[4] = write_byte;
568                 msg_bytes = 5;
569                 reply_bytes = 1;
570                 break;
571         case MODE_I2C_READ:
572                 msg[3] = 0;
573                 msg_bytes = 4;
574                 reply_bytes = 2;
575                 break;
576         default:
577                 msg_bytes = 3;
578                 reply_bytes = 1;
579                 break;
580         }
581
582         for (retry = 0; retry < 5; retry++) {
583                 ret = intel_dp_aux_ch(intel_dp,
584                                       msg, msg_bytes,
585                                       reply, reply_bytes);
586                 if (ret < 0) {
587                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
588                         return ret;
589                 }
590
591                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
592                 case AUX_NATIVE_REPLY_ACK:
593                         /* I2C-over-AUX Reply field is only valid
594                          * when paired with AUX ACK.
595                          */
596                         break;
597                 case AUX_NATIVE_REPLY_NACK:
598                         DRM_DEBUG_KMS("aux_ch native nack\n");
599                         return -EREMOTEIO;
600                 case AUX_NATIVE_REPLY_DEFER:
601                         udelay(100);
602                         continue;
603                 default:
604                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
605                                   reply[0]);
606                         return -EREMOTEIO;
607                 }
608
609                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
610                 case AUX_I2C_REPLY_ACK:
611                         if (mode == MODE_I2C_READ) {
612                                 *read_byte = reply[1];
613                         }
614                         return reply_bytes - 1;
615                 case AUX_I2C_REPLY_NACK:
616                         DRM_DEBUG_KMS("aux_i2c nack\n");
617                         return -EREMOTEIO;
618                 case AUX_I2C_REPLY_DEFER:
619                         DRM_DEBUG_KMS("aux_i2c defer\n");
620                         udelay(100);
621                         break;
622                 default:
623                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
624                         return -EREMOTEIO;
625                 }
626         }
627
628         DRM_ERROR("too many retries, giving up\n");
629         return -EREMOTEIO;
630 }
631
632 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
633 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
634
635 static int
636 intel_dp_i2c_init(struct intel_dp *intel_dp,
637                   struct intel_connector *intel_connector, const char *name)
638 {
639         int     ret;
640
641         DRM_DEBUG_KMS("i2c_init %s\n", name);
642         intel_dp->algo.running = false;
643         intel_dp->algo.address = 0;
644         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
645
646         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
647         intel_dp->adapter.owner = THIS_MODULE;
648         intel_dp->adapter.class = I2C_CLASS_DDC;
649         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
650         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
651         intel_dp->adapter.algo_data = &intel_dp->algo;
652         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
653
654         ironlake_edp_panel_vdd_on(intel_dp);
655         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
656         ironlake_edp_panel_vdd_off(intel_dp, false);
657         return ret;
658 }
659
660 static bool
661 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
662                     struct drm_display_mode *adjusted_mode)
663 {
664         struct drm_device *dev = encoder->dev;
665         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
666         int lane_count, clock;
667         int max_lane_count = intel_dp_max_lane_count(intel_dp);
668         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
669         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
670
671         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
672                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
673                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
674                                         mode, adjusted_mode);
675                 /*
676                  * the mode->clock is used to calculate the Data&Link M/N
677                  * of the pipe. For the eDP the fixed clock should be used.
678                  */
679                 mode->clock = intel_dp->panel_fixed_mode->clock;
680         }
681
682         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
683                 for (clock = 0; clock <= max_clock; clock++) {
684                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
685
686                         if (intel_dp_link_required(intel_dp, mode->clock)
687                                         <= link_avail) {
688                                 intel_dp->link_bw = bws[clock];
689                                 intel_dp->lane_count = lane_count;
690                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
691                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
692                                                 "count %d clock %d\n",
693                                        intel_dp->link_bw, intel_dp->lane_count,
694                                        adjusted_mode->clock);
695                                 return true;
696                         }
697                 }
698         }
699
700         return false;
701 }
702
703 struct intel_dp_m_n {
704         uint32_t        tu;
705         uint32_t        gmch_m;
706         uint32_t        gmch_n;
707         uint32_t        link_m;
708         uint32_t        link_n;
709 };
710
711 static void
712 intel_reduce_ratio(uint32_t *num, uint32_t *den)
713 {
714         while (*num > 0xffffff || *den > 0xffffff) {
715                 *num >>= 1;
716                 *den >>= 1;
717         }
718 }
719
720 static void
721 intel_dp_compute_m_n(int bpp,
722                      int nlanes,
723                      int pixel_clock,
724                      int link_clock,
725                      struct intel_dp_m_n *m_n)
726 {
727         m_n->tu = 64;
728         m_n->gmch_m = (pixel_clock * bpp) >> 3;
729         m_n->gmch_n = link_clock * nlanes;
730         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
731         m_n->link_m = pixel_clock;
732         m_n->link_n = link_clock;
733         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
734 }
735
736 void
737 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
738                  struct drm_display_mode *adjusted_mode)
739 {
740         struct drm_device *dev = crtc->dev;
741         struct drm_mode_config *mode_config = &dev->mode_config;
742         struct drm_encoder *encoder;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
745         int lane_count = 4;
746         struct intel_dp_m_n m_n;
747         int pipe = intel_crtc->pipe;
748
749         /*
750          * Find the lane count in the intel_encoder private
751          */
752         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
753                 struct intel_dp *intel_dp;
754
755                 if (encoder->crtc != crtc)
756                         continue;
757
758                 intel_dp = enc_to_intel_dp(encoder);
759                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
760                         lane_count = intel_dp->lane_count;
761                         break;
762                 } else if (is_edp(intel_dp)) {
763                         lane_count = dev_priv->edp.lanes;
764                         break;
765                 }
766         }
767
768         /*
769          * Compute the GMCH and Link ratios. The '3' here is
770          * the number of bytes_per_pixel post-LUT, which we always
771          * set up for 8-bits of R/G/B, or 3 bytes total.
772          */
773         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
774                              mode->clock, adjusted_mode->clock, &m_n);
775
776         if (HAS_PCH_SPLIT(dev)) {
777                 I915_WRITE(TRANSDATA_M1(pipe),
778                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
779                            m_n.gmch_m);
780                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
781                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
782                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
783         } else {
784                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
785                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
786                            m_n.gmch_m);
787                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
788                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
789                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
790         }
791 }
792
793 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
794 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
795
796 static void
797 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
798                   struct drm_display_mode *adjusted_mode)
799 {
800         struct drm_device *dev = encoder->dev;
801         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
802         struct drm_crtc *crtc = intel_dp->base.base.crtc;
803         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
804
805         /* Turn on the eDP PLL if needed */
806         if (is_edp(intel_dp)) {
807                 if (!is_pch_edp(intel_dp))
808                         ironlake_edp_pll_on(encoder);
809                 else
810                         ironlake_edp_pll_off(encoder);
811         }
812
813         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
814         intel_dp->DP |= intel_dp->color_range;
815
816         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
817                 intel_dp->DP |= DP_SYNC_HS_HIGH;
818         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
819                 intel_dp->DP |= DP_SYNC_VS_HIGH;
820
821         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
822                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
823         else
824                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
825
826         switch (intel_dp->lane_count) {
827         case 1:
828                 intel_dp->DP |= DP_PORT_WIDTH_1;
829                 break;
830         case 2:
831                 intel_dp->DP |= DP_PORT_WIDTH_2;
832                 break;
833         case 4:
834                 intel_dp->DP |= DP_PORT_WIDTH_4;
835                 break;
836         }
837         if (intel_dp->has_audio) {
838                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
839                                  pipe_name(intel_crtc->pipe));
840                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
841                 intel_write_eld(encoder, adjusted_mode);
842         }
843
844         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
845         intel_dp->link_configuration[0] = intel_dp->link_bw;
846         intel_dp->link_configuration[1] = intel_dp->lane_count;
847         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
848
849         /*
850          * Check for DPCD version > 1.1 and enhanced framing support
851          */
852         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
853             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
854                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
855                 intel_dp->DP |= DP_ENHANCED_FRAMING;
856         }
857
858         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
859         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
860                 intel_dp->DP |= DP_PIPEB_SELECT;
861
862         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
863                 /* don't miss out required setting for eDP */
864                 intel_dp->DP |= DP_PLL_ENABLE;
865                 if (adjusted_mode->clock < 200000)
866                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
867                 else
868                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
869         }
870 }
871
872 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
873 {
874         unsigned long   off_time;
875         unsigned long   delay;
876
877         DRM_DEBUG_KMS("Wait for panel power off time\n");
878
879         if (ironlake_edp_have_panel_power(intel_dp) ||
880             ironlake_edp_have_panel_vdd(intel_dp))
881         {
882                 DRM_DEBUG_KMS("Panel still on, no delay needed\n");
883                 return;
884         }
885
886         off_time = intel_dp->panel_off_jiffies + msecs_to_jiffies(intel_dp->panel_power_down_delay);
887         if (time_after(jiffies, off_time)) {
888                 DRM_DEBUG_KMS("Time already passed");
889                 return;
890         }
891         delay = jiffies_to_msecs(off_time - jiffies);
892         if (delay > intel_dp->panel_power_down_delay)
893                 delay = intel_dp->panel_power_down_delay;
894         DRM_DEBUG_KMS("Waiting an additional %ld ms\n", delay);
895         msleep(delay);
896 }
897
898 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
899 {
900         struct drm_device *dev = intel_dp->base.base.dev;
901         struct drm_i915_private *dev_priv = dev->dev_private;
902         u32 pp;
903
904         if (!is_edp(intel_dp))
905                 return;
906         DRM_DEBUG_KMS("Turn eDP VDD on\n");
907
908         WARN(intel_dp->want_panel_vdd,
909              "eDP VDD already requested on\n");
910
911         intel_dp->want_panel_vdd = true;
912         if (ironlake_edp_have_panel_vdd(intel_dp)) {
913                 DRM_DEBUG_KMS("eDP VDD already on\n");
914                 return;
915         }
916
917         ironlake_wait_panel_off(intel_dp);
918         pp = I915_READ(PCH_PP_CONTROL);
919         pp &= ~PANEL_UNLOCK_MASK;
920         pp |= PANEL_UNLOCK_REGS;
921         pp |= EDP_FORCE_VDD;
922         I915_WRITE(PCH_PP_CONTROL, pp);
923         POSTING_READ(PCH_PP_CONTROL);
924         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
925                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
926
927         /*
928          * If the panel wasn't on, delay before accessing aux channel
929          */
930         if (!ironlake_edp_have_panel_power(intel_dp)) {
931                 DRM_DEBUG_KMS("eDP was not running\n");
932                 msleep(intel_dp->panel_power_up_delay);
933         }
934 }
935
936 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
937 {
938         struct drm_device *dev = intel_dp->base.base.dev;
939         struct drm_i915_private *dev_priv = dev->dev_private;
940         u32 pp;
941
942         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
943                 pp = I915_READ(PCH_PP_CONTROL);
944                 pp &= ~PANEL_UNLOCK_MASK;
945                 pp |= PANEL_UNLOCK_REGS;
946                 pp &= ~EDP_FORCE_VDD;
947                 I915_WRITE(PCH_PP_CONTROL, pp);
948                 POSTING_READ(PCH_PP_CONTROL);
949
950                 /* Make sure sequencer is idle before allowing subsequent activity */
951                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
952                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
953                 intel_dp->panel_off_jiffies = jiffies;
954         }
955 }
956
957 static void ironlake_panel_vdd_work(struct work_struct *__work)
958 {
959         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
960                                                  struct intel_dp, panel_vdd_work);
961         struct drm_device *dev = intel_dp->base.base.dev;
962
963         mutex_lock(&dev->struct_mutex);
964         ironlake_panel_vdd_off_sync(intel_dp);
965         mutex_unlock(&dev->struct_mutex);
966 }
967
968 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
969 {
970         if (!is_edp(intel_dp))
971                 return;
972
973         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
974         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
975         
976         intel_dp->want_panel_vdd = false;
977
978         if (sync) {
979                 ironlake_panel_vdd_off_sync(intel_dp);
980         } else {
981                 /*
982                  * Queue the timer to fire a long
983                  * time from now (relative to the power down delay)
984                  * to keep the panel power up across a sequence of operations
985                  */
986                 schedule_delayed_work(&intel_dp->panel_vdd_work,
987                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
988         }
989 }
990
991 /* Returns true if the panel was already on when called */
992 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
993 {
994         struct drm_device *dev = intel_dp->base.base.dev;
995         struct drm_i915_private *dev_priv = dev->dev_private;
996         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
997
998         if (!is_edp(intel_dp))
999                 return;
1000         if (ironlake_edp_have_panel_power(intel_dp))
1001                 return;
1002
1003         ironlake_wait_panel_off(intel_dp);
1004         pp = I915_READ(PCH_PP_CONTROL);
1005         pp &= ~PANEL_UNLOCK_MASK;
1006         pp |= PANEL_UNLOCK_REGS;
1007
1008         if (IS_GEN5(dev)) {
1009                 /* ILK workaround: disable reset around power sequence */
1010                 pp &= ~PANEL_POWER_RESET;
1011                 I915_WRITE(PCH_PP_CONTROL, pp);
1012                 POSTING_READ(PCH_PP_CONTROL);
1013         }
1014
1015         pp |= POWER_TARGET_ON;
1016         I915_WRITE(PCH_PP_CONTROL, pp);
1017         POSTING_READ(PCH_PP_CONTROL);
1018
1019         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
1020                      5000))
1021                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
1022                           I915_READ(PCH_PP_STATUS));
1023
1024         if (IS_GEN5(dev)) {
1025                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1026                 I915_WRITE(PCH_PP_CONTROL, pp);
1027                 POSTING_READ(PCH_PP_CONTROL);
1028         }
1029 }
1030
1031 static void ironlake_edp_panel_off(struct drm_encoder *encoder)
1032 {
1033         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1034         struct drm_device *dev = encoder->dev;
1035         struct drm_i915_private *dev_priv = dev->dev_private;
1036         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
1037                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
1038
1039         if (!is_edp(intel_dp))
1040                 return;
1041         pp = I915_READ(PCH_PP_CONTROL);
1042         pp &= ~PANEL_UNLOCK_MASK;
1043         pp |= PANEL_UNLOCK_REGS;
1044
1045         if (IS_GEN5(dev)) {
1046                 /* ILK workaround: disable reset around power sequence */
1047                 pp &= ~PANEL_POWER_RESET;
1048                 I915_WRITE(PCH_PP_CONTROL, pp);
1049                 POSTING_READ(PCH_PP_CONTROL);
1050         }
1051
1052         intel_dp->panel_off_jiffies = jiffies;
1053
1054         if (IS_GEN5(dev)) {
1055                 pp &= ~POWER_TARGET_ON;
1056                 I915_WRITE(PCH_PP_CONTROL, pp);
1057                 POSTING_READ(PCH_PP_CONTROL);
1058                 pp &= ~POWER_TARGET_ON;
1059                 I915_WRITE(PCH_PP_CONTROL, pp);
1060                 POSTING_READ(PCH_PP_CONTROL);
1061                 msleep(intel_dp->panel_power_cycle_delay);
1062
1063                 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
1064                         DRM_ERROR("panel off wait timed out: 0x%08x\n",
1065                                   I915_READ(PCH_PP_STATUS));
1066
1067                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1068                 I915_WRITE(PCH_PP_CONTROL, pp);
1069                 POSTING_READ(PCH_PP_CONTROL);
1070         }
1071 }
1072
1073 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1074 {
1075         struct drm_device *dev = intel_dp->base.base.dev;
1076         struct drm_i915_private *dev_priv = dev->dev_private;
1077         u32 pp;
1078
1079         if (!is_edp(intel_dp))
1080                 return;
1081
1082         DRM_DEBUG_KMS("\n");
1083         /*
1084          * If we enable the backlight right away following a panel power
1085          * on, we may see slight flicker as the panel syncs with the eDP
1086          * link.  So delay a bit to make sure the image is solid before
1087          * allowing it to appear.
1088          */
1089         msleep(intel_dp->backlight_on_delay);
1090         pp = I915_READ(PCH_PP_CONTROL);
1091         pp &= ~PANEL_UNLOCK_MASK;
1092         pp |= PANEL_UNLOCK_REGS;
1093         pp |= EDP_BLC_ENABLE;
1094         I915_WRITE(PCH_PP_CONTROL, pp);
1095         POSTING_READ(PCH_PP_CONTROL);
1096 }
1097
1098 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1099 {
1100         struct drm_device *dev = intel_dp->base.base.dev;
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         u32 pp;
1103
1104         if (!is_edp(intel_dp))
1105                 return;
1106
1107         DRM_DEBUG_KMS("\n");
1108         pp = I915_READ(PCH_PP_CONTROL);
1109         pp &= ~PANEL_UNLOCK_MASK;
1110         pp |= PANEL_UNLOCK_REGS;
1111         pp &= ~EDP_BLC_ENABLE;
1112         I915_WRITE(PCH_PP_CONTROL, pp);
1113         POSTING_READ(PCH_PP_CONTROL);
1114         msleep(intel_dp->backlight_off_delay);
1115 }
1116
1117 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1118 {
1119         struct drm_device *dev = encoder->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         u32 dpa_ctl;
1122
1123         DRM_DEBUG_KMS("\n");
1124         dpa_ctl = I915_READ(DP_A);
1125         dpa_ctl |= DP_PLL_ENABLE;
1126         I915_WRITE(DP_A, dpa_ctl);
1127         POSTING_READ(DP_A);
1128         udelay(200);
1129 }
1130
1131 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1132 {
1133         struct drm_device *dev = encoder->dev;
1134         struct drm_i915_private *dev_priv = dev->dev_private;
1135         u32 dpa_ctl;
1136
1137         dpa_ctl = I915_READ(DP_A);
1138         dpa_ctl &= ~DP_PLL_ENABLE;
1139         I915_WRITE(DP_A, dpa_ctl);
1140         POSTING_READ(DP_A);
1141         udelay(200);
1142 }
1143
1144 /* If the sink supports it, try to set the power state appropriately */
1145 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1146 {
1147         int ret, i;
1148
1149         /* Should have a valid DPCD by this point */
1150         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1151                 return;
1152
1153         if (mode != DRM_MODE_DPMS_ON) {
1154                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1155                                                   DP_SET_POWER_D3);
1156                 if (ret != 1)
1157                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1158         } else {
1159                 /*
1160                  * When turning on, we need to retry for 1ms to give the sink
1161                  * time to wake up.
1162                  */
1163                 for (i = 0; i < 3; i++) {
1164                         ret = intel_dp_aux_native_write_1(intel_dp,
1165                                                           DP_SET_POWER,
1166                                                           DP_SET_POWER_D0);
1167                         if (ret == 1)
1168                                 break;
1169                         msleep(1);
1170                 }
1171         }
1172 }
1173
1174 static void intel_dp_prepare(struct drm_encoder *encoder)
1175 {
1176         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1177
1178         /* Wake up the sink first */
1179         ironlake_edp_panel_vdd_on(intel_dp);
1180         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1181         ironlake_edp_panel_vdd_off(intel_dp, false);
1182
1183         /* Make sure the panel is off before trying to
1184          * change the mode
1185          */
1186         ironlake_edp_backlight_off(intel_dp);
1187         intel_dp_link_down(intel_dp);
1188         ironlake_edp_panel_off(encoder);
1189 }
1190
1191 static void intel_dp_commit(struct drm_encoder *encoder)
1192 {
1193         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1194         struct drm_device *dev = encoder->dev;
1195         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1196
1197         ironlake_edp_panel_vdd_on(intel_dp);
1198         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1199         intel_dp_start_link_train(intel_dp);
1200         ironlake_edp_panel_on(intel_dp);
1201         ironlake_edp_panel_vdd_off(intel_dp, true);
1202
1203         intel_dp_complete_link_train(intel_dp);
1204         ironlake_edp_backlight_on(intel_dp);
1205
1206         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1207
1208         if (HAS_PCH_CPT(dev))
1209                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1210 }
1211
1212 static void
1213 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1214 {
1215         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1216         struct drm_device *dev = encoder->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1219
1220         if (mode != DRM_MODE_DPMS_ON) {
1221                 ironlake_edp_panel_vdd_on(intel_dp);
1222                 if (is_edp(intel_dp))
1223                         ironlake_edp_backlight_off(intel_dp);
1224                 intel_dp_sink_dpms(intel_dp, mode);
1225                 intel_dp_link_down(intel_dp);
1226                 ironlake_edp_panel_off(encoder);
1227                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1228                         ironlake_edp_pll_off(encoder);
1229                 ironlake_edp_panel_vdd_off(intel_dp, false);
1230         } else {
1231                 ironlake_edp_panel_vdd_on(intel_dp);
1232                 intel_dp_sink_dpms(intel_dp, mode);
1233                 if (!(dp_reg & DP_PORT_EN)) {
1234                         intel_dp_start_link_train(intel_dp);
1235                         ironlake_edp_panel_on(intel_dp);
1236                         ironlake_edp_panel_vdd_off(intel_dp, true);
1237                         intel_dp_complete_link_train(intel_dp);
1238                         ironlake_edp_backlight_on(intel_dp);
1239                 } else
1240                         ironlake_edp_panel_vdd_off(intel_dp, false);
1241                 ironlake_edp_backlight_on(intel_dp);
1242         }
1243         intel_dp->dpms_mode = mode;
1244 }
1245
1246 /*
1247  * Native read with retry for link status and receiver capability reads for
1248  * cases where the sink may still be asleep.
1249  */
1250 static bool
1251 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1252                                uint8_t *recv, int recv_bytes)
1253 {
1254         int ret, i;
1255
1256         /*
1257          * Sinks are *supposed* to come up within 1ms from an off state,
1258          * but we're also supposed to retry 3 times per the spec.
1259          */
1260         for (i = 0; i < 3; i++) {
1261                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1262                                                recv_bytes);
1263                 if (ret == recv_bytes)
1264                         return true;
1265                 msleep(1);
1266         }
1267
1268         return false;
1269 }
1270
1271 /*
1272  * Fetch AUX CH registers 0x202 - 0x207 which contain
1273  * link status information
1274  */
1275 static bool
1276 intel_dp_get_link_status(struct intel_dp *intel_dp)
1277 {
1278         return intel_dp_aux_native_read_retry(intel_dp,
1279                                               DP_LANE0_1_STATUS,
1280                                               intel_dp->link_status,
1281                                               DP_LINK_STATUS_SIZE);
1282 }
1283
1284 static uint8_t
1285 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1286                      int r)
1287 {
1288         return link_status[r - DP_LANE0_1_STATUS];
1289 }
1290
1291 static uint8_t
1292 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1293                                  int lane)
1294 {
1295         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1296         int         s = ((lane & 1) ?
1297                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1298                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1299         uint8_t l = intel_dp_link_status(link_status, i);
1300
1301         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1302 }
1303
1304 static uint8_t
1305 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1306                                       int lane)
1307 {
1308         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1309         int         s = ((lane & 1) ?
1310                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1311                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1312         uint8_t l = intel_dp_link_status(link_status, i);
1313
1314         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1315 }
1316
1317
1318 #if 0
1319 static char     *voltage_names[] = {
1320         "0.4V", "0.6V", "0.8V", "1.2V"
1321 };
1322 static char     *pre_emph_names[] = {
1323         "0dB", "3.5dB", "6dB", "9.5dB"
1324 };
1325 static char     *link_train_names[] = {
1326         "pattern 1", "pattern 2", "idle", "off"
1327 };
1328 #endif
1329
1330 /*
1331  * These are source-specific values; current Intel hardware supports
1332  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1333  */
1334 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1335
1336 static uint8_t
1337 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1338 {
1339         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1340         case DP_TRAIN_VOLTAGE_SWING_400:
1341                 return DP_TRAIN_PRE_EMPHASIS_6;
1342         case DP_TRAIN_VOLTAGE_SWING_600:
1343                 return DP_TRAIN_PRE_EMPHASIS_6;
1344         case DP_TRAIN_VOLTAGE_SWING_800:
1345                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1346         case DP_TRAIN_VOLTAGE_SWING_1200:
1347         default:
1348                 return DP_TRAIN_PRE_EMPHASIS_0;
1349         }
1350 }
1351
1352 static void
1353 intel_get_adjust_train(struct intel_dp *intel_dp)
1354 {
1355         uint8_t v = 0;
1356         uint8_t p = 0;
1357         int lane;
1358
1359         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1360                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1361                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1362
1363                 if (this_v > v)
1364                         v = this_v;
1365                 if (this_p > p)
1366                         p = this_p;
1367         }
1368
1369         if (v >= I830_DP_VOLTAGE_MAX)
1370                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1371
1372         if (p >= intel_dp_pre_emphasis_max(v))
1373                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1374
1375         for (lane = 0; lane < 4; lane++)
1376                 intel_dp->train_set[lane] = v | p;
1377 }
1378
1379 static uint32_t
1380 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1381 {
1382         uint32_t        signal_levels = 0;
1383
1384         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1385         case DP_TRAIN_VOLTAGE_SWING_400:
1386         default:
1387                 signal_levels |= DP_VOLTAGE_0_4;
1388                 break;
1389         case DP_TRAIN_VOLTAGE_SWING_600:
1390                 signal_levels |= DP_VOLTAGE_0_6;
1391                 break;
1392         case DP_TRAIN_VOLTAGE_SWING_800:
1393                 signal_levels |= DP_VOLTAGE_0_8;
1394                 break;
1395         case DP_TRAIN_VOLTAGE_SWING_1200:
1396                 signal_levels |= DP_VOLTAGE_1_2;
1397                 break;
1398         }
1399         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1400         case DP_TRAIN_PRE_EMPHASIS_0:
1401         default:
1402                 signal_levels |= DP_PRE_EMPHASIS_0;
1403                 break;
1404         case DP_TRAIN_PRE_EMPHASIS_3_5:
1405                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1406                 break;
1407         case DP_TRAIN_PRE_EMPHASIS_6:
1408                 signal_levels |= DP_PRE_EMPHASIS_6;
1409                 break;
1410         case DP_TRAIN_PRE_EMPHASIS_9_5:
1411                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1412                 break;
1413         }
1414         return signal_levels;
1415 }
1416
1417 /* Gen6's DP voltage swing and pre-emphasis control */
1418 static uint32_t
1419 intel_gen6_edp_signal_levels(uint8_t train_set)
1420 {
1421         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1422                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1423         switch (signal_levels) {
1424         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1425         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1426                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1427         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1428                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1429         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1430         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1431                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1432         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1433         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1434                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1435         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1436         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1437                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1438         default:
1439                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1440                               "0x%x\n", signal_levels);
1441                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1442         }
1443 }
1444
1445 static uint8_t
1446 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1447                       int lane)
1448 {
1449         int i = DP_LANE0_1_STATUS + (lane >> 1);
1450         int s = (lane & 1) * 4;
1451         uint8_t l = intel_dp_link_status(link_status, i);
1452
1453         return (l >> s) & 0xf;
1454 }
1455
1456 /* Check for clock recovery is done on all channels */
1457 static bool
1458 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1459 {
1460         int lane;
1461         uint8_t lane_status;
1462
1463         for (lane = 0; lane < lane_count; lane++) {
1464                 lane_status = intel_get_lane_status(link_status, lane);
1465                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1466                         return false;
1467         }
1468         return true;
1469 }
1470
1471 /* Check to see if channel eq is done on all channels */
1472 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1473                          DP_LANE_CHANNEL_EQ_DONE|\
1474                          DP_LANE_SYMBOL_LOCKED)
1475 static bool
1476 intel_channel_eq_ok(struct intel_dp *intel_dp)
1477 {
1478         uint8_t lane_align;
1479         uint8_t lane_status;
1480         int lane;
1481
1482         lane_align = intel_dp_link_status(intel_dp->link_status,
1483                                           DP_LANE_ALIGN_STATUS_UPDATED);
1484         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1485                 return false;
1486         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1487                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1488                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1489                         return false;
1490         }
1491         return true;
1492 }
1493
1494 static bool
1495 intel_dp_set_link_train(struct intel_dp *intel_dp,
1496                         uint32_t dp_reg_value,
1497                         uint8_t dp_train_pat)
1498 {
1499         struct drm_device *dev = intel_dp->base.base.dev;
1500         struct drm_i915_private *dev_priv = dev->dev_private;
1501         int ret;
1502
1503         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1504         POSTING_READ(intel_dp->output_reg);
1505
1506         intel_dp_aux_native_write_1(intel_dp,
1507                                     DP_TRAINING_PATTERN_SET,
1508                                     dp_train_pat);
1509
1510         ret = intel_dp_aux_native_write(intel_dp,
1511                                         DP_TRAINING_LANE0_SET,
1512                                         intel_dp->train_set, 4);
1513         if (ret != 4)
1514                 return false;
1515
1516         return true;
1517 }
1518
1519 /* Enable corresponding port and start training pattern 1 */
1520 static void
1521 intel_dp_start_link_train(struct intel_dp *intel_dp)
1522 {
1523         struct drm_device *dev = intel_dp->base.base.dev;
1524         struct drm_i915_private *dev_priv = dev->dev_private;
1525         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1526         int i;
1527         uint8_t voltage;
1528         bool clock_recovery = false;
1529         int tries;
1530         u32 reg;
1531         uint32_t DP = intel_dp->DP;
1532
1533         /*
1534          * On CPT we have to enable the port in training pattern 1, which
1535          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1536          * the port and wait for it to become active.
1537          */
1538         if (!HAS_PCH_CPT(dev)) {
1539                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1540                 POSTING_READ(intel_dp->output_reg);
1541                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1542         }
1543
1544         /* Write the link configuration data */
1545         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1546                                   intel_dp->link_configuration,
1547                                   DP_LINK_CONFIGURATION_SIZE);
1548
1549         DP |= DP_PORT_EN;
1550         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1551                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1552         else
1553                 DP &= ~DP_LINK_TRAIN_MASK;
1554         memset(intel_dp->train_set, 0, 4);
1555         voltage = 0xff;
1556         tries = 0;
1557         clock_recovery = false;
1558         for (;;) {
1559                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1560                 uint32_t    signal_levels;
1561                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1562                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1563                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1564                 } else {
1565                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1566                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1567                 }
1568
1569                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1570                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1571                 else
1572                         reg = DP | DP_LINK_TRAIN_PAT_1;
1573
1574                 if (!intel_dp_set_link_train(intel_dp, reg,
1575                                              DP_TRAINING_PATTERN_1 |
1576                                              DP_LINK_SCRAMBLING_DISABLE))
1577                         break;
1578                 /* Set training pattern 1 */
1579
1580                 udelay(100);
1581                 if (!intel_dp_get_link_status(intel_dp))
1582                         break;
1583
1584                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1585                         clock_recovery = true;
1586                         break;
1587                 }
1588
1589                 /* Check to see if we've tried the max voltage */
1590                 for (i = 0; i < intel_dp->lane_count; i++)
1591                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1592                                 break;
1593                 if (i == intel_dp->lane_count)
1594                         break;
1595
1596                 /* Check to see if we've tried the same voltage 5 times */
1597                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1598                         ++tries;
1599                         if (tries == 5)
1600                                 break;
1601                 } else
1602                         tries = 0;
1603                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1604
1605                 /* Compute new intel_dp->train_set as requested by target */
1606                 intel_get_adjust_train(intel_dp);
1607         }
1608
1609         intel_dp->DP = DP;
1610 }
1611
1612 static void
1613 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1614 {
1615         struct drm_device *dev = intel_dp->base.base.dev;
1616         struct drm_i915_private *dev_priv = dev->dev_private;
1617         bool channel_eq = false;
1618         int tries, cr_tries;
1619         u32 reg;
1620         uint32_t DP = intel_dp->DP;
1621
1622         /* channel equalization */
1623         tries = 0;
1624         cr_tries = 0;
1625         channel_eq = false;
1626         for (;;) {
1627                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1628                 uint32_t    signal_levels;
1629
1630                 if (cr_tries > 5) {
1631                         DRM_ERROR("failed to train DP, aborting\n");
1632                         intel_dp_link_down(intel_dp);
1633                         break;
1634                 }
1635
1636                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1637                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1638                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1639                 } else {
1640                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1641                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1642                 }
1643
1644                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1645                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1646                 else
1647                         reg = DP | DP_LINK_TRAIN_PAT_2;
1648
1649                 /* channel eq pattern */
1650                 if (!intel_dp_set_link_train(intel_dp, reg,
1651                                              DP_TRAINING_PATTERN_2 |
1652                                              DP_LINK_SCRAMBLING_DISABLE))
1653                         break;
1654
1655                 udelay(400);
1656                 if (!intel_dp_get_link_status(intel_dp))
1657                         break;
1658
1659                 /* Make sure clock is still ok */
1660                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1661                         intel_dp_start_link_train(intel_dp);
1662                         cr_tries++;
1663                         continue;
1664                 }
1665
1666                 if (intel_channel_eq_ok(intel_dp)) {
1667                         channel_eq = true;
1668                         break;
1669                 }
1670
1671                 /* Try 5 times, then try clock recovery if that fails */
1672                 if (tries > 5) {
1673                         intel_dp_link_down(intel_dp);
1674                         intel_dp_start_link_train(intel_dp);
1675                         tries = 0;
1676                         cr_tries++;
1677                         continue;
1678                 }
1679
1680                 /* Compute new intel_dp->train_set as requested by target */
1681                 intel_get_adjust_train(intel_dp);
1682                 ++tries;
1683         }
1684
1685         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1686                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1687         else
1688                 reg = DP | DP_LINK_TRAIN_OFF;
1689
1690         I915_WRITE(intel_dp->output_reg, reg);
1691         POSTING_READ(intel_dp->output_reg);
1692         intel_dp_aux_native_write_1(intel_dp,
1693                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1694 }
1695
1696 static void
1697 intel_dp_link_down(struct intel_dp *intel_dp)
1698 {
1699         struct drm_device *dev = intel_dp->base.base.dev;
1700         struct drm_i915_private *dev_priv = dev->dev_private;
1701         uint32_t DP = intel_dp->DP;
1702
1703         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1704                 return;
1705
1706         DRM_DEBUG_KMS("\n");
1707
1708         if (is_edp(intel_dp)) {
1709                 DP &= ~DP_PLL_ENABLE;
1710                 I915_WRITE(intel_dp->output_reg, DP);
1711                 POSTING_READ(intel_dp->output_reg);
1712                 udelay(100);
1713         }
1714
1715         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1716                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1717                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1718         } else {
1719                 DP &= ~DP_LINK_TRAIN_MASK;
1720                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1721         }
1722         POSTING_READ(intel_dp->output_reg);
1723
1724         msleep(17);
1725
1726         if (is_edp(intel_dp))
1727                 DP |= DP_LINK_TRAIN_OFF;
1728
1729         if (!HAS_PCH_CPT(dev) &&
1730             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1731                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1732
1733                 /* Hardware workaround: leaving our transcoder select
1734                  * set to transcoder B while it's off will prevent the
1735                  * corresponding HDMI output on transcoder A.
1736                  *
1737                  * Combine this with another hardware workaround:
1738                  * transcoder select bit can only be cleared while the
1739                  * port is enabled.
1740                  */
1741                 DP &= ~DP_PIPEB_SELECT;
1742                 I915_WRITE(intel_dp->output_reg, DP);
1743
1744                 /* Changes to enable or select take place the vblank
1745                  * after being written.
1746                  */
1747                 if (crtc == NULL) {
1748                         /* We can arrive here never having been attached
1749                          * to a CRTC, for instance, due to inheriting
1750                          * random state from the BIOS.
1751                          *
1752                          * If the pipe is not running, play safe and
1753                          * wait for the clocks to stabilise before
1754                          * continuing.
1755                          */
1756                         POSTING_READ(intel_dp->output_reg);
1757                         msleep(50);
1758                 } else
1759                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1760         }
1761
1762         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1763         POSTING_READ(intel_dp->output_reg);
1764         msleep(intel_dp->panel_power_down_delay);
1765 }
1766
1767 static bool
1768 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1769 {
1770         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1771                                            sizeof(intel_dp->dpcd)) &&
1772             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1773                 return true;
1774         }
1775
1776         return false;
1777 }
1778
1779 /*
1780  * According to DP spec
1781  * 5.1.2:
1782  *  1. Read DPCD
1783  *  2. Configure link according to Receiver Capabilities
1784  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1785  *  4. Check link status on receipt of hot-plug interrupt
1786  */
1787
1788 static void
1789 intel_dp_check_link_status(struct intel_dp *intel_dp)
1790 {
1791         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1792                 return;
1793
1794         if (!intel_dp->base.base.crtc)
1795                 return;
1796
1797         /* Try to read receiver status if the link appears to be up */
1798         if (!intel_dp_get_link_status(intel_dp)) {
1799                 intel_dp_link_down(intel_dp);
1800                 return;
1801         }
1802
1803         /* Now read the DPCD to see if it's actually running */
1804         if (!intel_dp_get_dpcd(intel_dp)) {
1805                 intel_dp_link_down(intel_dp);
1806                 return;
1807         }
1808
1809         if (!intel_channel_eq_ok(intel_dp)) {
1810                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1811                               drm_get_encoder_name(&intel_dp->base.base));
1812                 intel_dp_start_link_train(intel_dp);
1813                 intel_dp_complete_link_train(intel_dp);
1814         }
1815 }
1816
1817 static enum drm_connector_status
1818 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1819 {
1820         if (intel_dp_get_dpcd(intel_dp))
1821                 return connector_status_connected;
1822         return connector_status_disconnected;
1823 }
1824
1825 static enum drm_connector_status
1826 ironlake_dp_detect(struct intel_dp *intel_dp)
1827 {
1828         enum drm_connector_status status;
1829
1830         /* Can't disconnect eDP, but you can close the lid... */
1831         if (is_edp(intel_dp)) {
1832                 status = intel_panel_detect(intel_dp->base.base.dev);
1833                 if (status == connector_status_unknown)
1834                         status = connector_status_connected;
1835                 return status;
1836         }
1837
1838         return intel_dp_detect_dpcd(intel_dp);
1839 }
1840
1841 static enum drm_connector_status
1842 g4x_dp_detect(struct intel_dp *intel_dp)
1843 {
1844         struct drm_device *dev = intel_dp->base.base.dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         uint32_t temp, bit;
1847
1848         switch (intel_dp->output_reg) {
1849         case DP_B:
1850                 bit = DPB_HOTPLUG_INT_STATUS;
1851                 break;
1852         case DP_C:
1853                 bit = DPC_HOTPLUG_INT_STATUS;
1854                 break;
1855         case DP_D:
1856                 bit = DPD_HOTPLUG_INT_STATUS;
1857                 break;
1858         default:
1859                 return connector_status_unknown;
1860         }
1861
1862         temp = I915_READ(PORT_HOTPLUG_STAT);
1863
1864         if ((temp & bit) == 0)
1865                 return connector_status_disconnected;
1866
1867         return intel_dp_detect_dpcd(intel_dp);
1868 }
1869
1870 static struct edid *
1871 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1872 {
1873         struct intel_dp *intel_dp = intel_attached_dp(connector);
1874         struct edid     *edid;
1875
1876         ironlake_edp_panel_vdd_on(intel_dp);
1877         edid = drm_get_edid(connector, adapter);
1878         ironlake_edp_panel_vdd_off(intel_dp, false);
1879         return edid;
1880 }
1881
1882 static int
1883 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1884 {
1885         struct intel_dp *intel_dp = intel_attached_dp(connector);
1886         int     ret;
1887
1888         ironlake_edp_panel_vdd_on(intel_dp);
1889         ret = intel_ddc_get_modes(connector, adapter);
1890         ironlake_edp_panel_vdd_off(intel_dp, false);
1891         return ret;
1892 }
1893
1894
1895 /**
1896  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1897  *
1898  * \return true if DP port is connected.
1899  * \return false if DP port is disconnected.
1900  */
1901 static enum drm_connector_status
1902 intel_dp_detect(struct drm_connector *connector, bool force)
1903 {
1904         struct intel_dp *intel_dp = intel_attached_dp(connector);
1905         struct drm_device *dev = intel_dp->base.base.dev;
1906         enum drm_connector_status status;
1907         struct edid *edid = NULL;
1908
1909         intel_dp->has_audio = false;
1910
1911         if (HAS_PCH_SPLIT(dev))
1912                 status = ironlake_dp_detect(intel_dp);
1913         else
1914                 status = g4x_dp_detect(intel_dp);
1915
1916         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1917                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1918                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1919                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
1920
1921         if (status != connector_status_connected)
1922                 return status;
1923
1924         if (intel_dp->force_audio) {
1925                 intel_dp->has_audio = intel_dp->force_audio > 0;
1926         } else {
1927                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
1928                 if (edid) {
1929                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1930                         connector->display_info.raw_edid = NULL;
1931                         kfree(edid);
1932                 }
1933         }
1934
1935         return connector_status_connected;
1936 }
1937
1938 static int intel_dp_get_modes(struct drm_connector *connector)
1939 {
1940         struct intel_dp *intel_dp = intel_attached_dp(connector);
1941         struct drm_device *dev = intel_dp->base.base.dev;
1942         struct drm_i915_private *dev_priv = dev->dev_private;
1943         int ret;
1944
1945         /* We should parse the EDID data and find out if it has an audio sink
1946          */
1947
1948         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
1949         if (ret) {
1950                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
1951                         struct drm_display_mode *newmode;
1952                         list_for_each_entry(newmode, &connector->probed_modes,
1953                                             head) {
1954                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
1955                                         intel_dp->panel_fixed_mode =
1956                                                 drm_mode_duplicate(dev, newmode);
1957                                         break;
1958                                 }
1959                         }
1960                 }
1961                 return ret;
1962         }
1963
1964         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1965         if (is_edp(intel_dp)) {
1966                 /* initialize panel mode from VBT if available for eDP */
1967                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
1968                         intel_dp->panel_fixed_mode =
1969                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1970                         if (intel_dp->panel_fixed_mode) {
1971                                 intel_dp->panel_fixed_mode->type |=
1972                                         DRM_MODE_TYPE_PREFERRED;
1973                         }
1974                 }
1975                 if (intel_dp->panel_fixed_mode) {
1976                         struct drm_display_mode *mode;
1977                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1978                         drm_mode_probed_add(connector, mode);
1979                         return 1;
1980                 }
1981         }
1982         return 0;
1983 }
1984
1985 static bool
1986 intel_dp_detect_audio(struct drm_connector *connector)
1987 {
1988         struct intel_dp *intel_dp = intel_attached_dp(connector);
1989         struct edid *edid;
1990         bool has_audio = false;
1991
1992         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
1993         if (edid) {
1994                 has_audio = drm_detect_monitor_audio(edid);
1995
1996                 connector->display_info.raw_edid = NULL;
1997                 kfree(edid);
1998         }
1999
2000         return has_audio;
2001 }
2002
2003 static int
2004 intel_dp_set_property(struct drm_connector *connector,
2005                       struct drm_property *property,
2006                       uint64_t val)
2007 {
2008         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2009         struct intel_dp *intel_dp = intel_attached_dp(connector);
2010         int ret;
2011
2012         ret = drm_connector_property_set_value(connector, property, val);
2013         if (ret)
2014                 return ret;
2015
2016         if (property == dev_priv->force_audio_property) {
2017                 int i = val;
2018                 bool has_audio;
2019
2020                 if (i == intel_dp->force_audio)
2021                         return 0;
2022
2023                 intel_dp->force_audio = i;
2024
2025                 if (i == 0)
2026                         has_audio = intel_dp_detect_audio(connector);
2027                 else
2028                         has_audio = i > 0;
2029
2030                 if (has_audio == intel_dp->has_audio)
2031                         return 0;
2032
2033                 intel_dp->has_audio = has_audio;
2034                 goto done;
2035         }
2036
2037         if (property == dev_priv->broadcast_rgb_property) {
2038                 if (val == !!intel_dp->color_range)
2039                         return 0;
2040
2041                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2042                 goto done;
2043         }
2044
2045         return -EINVAL;
2046
2047 done:
2048         if (intel_dp->base.base.crtc) {
2049                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2050                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2051                                          crtc->x, crtc->y,
2052                                          crtc->fb);
2053         }
2054
2055         return 0;
2056 }
2057
2058 static void
2059 intel_dp_destroy(struct drm_connector *connector)
2060 {
2061         struct drm_device *dev = connector->dev;
2062
2063         if (intel_dpd_is_edp(dev))
2064                 intel_panel_destroy_backlight(dev);
2065
2066         drm_sysfs_connector_remove(connector);
2067         drm_connector_cleanup(connector);
2068         kfree(connector);
2069 }
2070
2071 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2072 {
2073         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2074
2075         i2c_del_adapter(&intel_dp->adapter);
2076         drm_encoder_cleanup(encoder);
2077         if (is_edp(intel_dp)) {
2078                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2079                 ironlake_panel_vdd_off_sync(intel_dp);
2080         }
2081         kfree(intel_dp);
2082 }
2083
2084 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2085         .dpms = intel_dp_dpms,
2086         .mode_fixup = intel_dp_mode_fixup,
2087         .prepare = intel_dp_prepare,
2088         .mode_set = intel_dp_mode_set,
2089         .commit = intel_dp_commit,
2090 };
2091
2092 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2093         .dpms = drm_helper_connector_dpms,
2094         .detect = intel_dp_detect,
2095         .fill_modes = drm_helper_probe_single_connector_modes,
2096         .set_property = intel_dp_set_property,
2097         .destroy = intel_dp_destroy,
2098 };
2099
2100 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2101         .get_modes = intel_dp_get_modes,
2102         .mode_valid = intel_dp_mode_valid,
2103         .best_encoder = intel_best_encoder,
2104 };
2105
2106 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2107         .destroy = intel_dp_encoder_destroy,
2108 };
2109
2110 static void
2111 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2112 {
2113         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2114
2115         intel_dp_check_link_status(intel_dp);
2116 }
2117
2118 /* Return which DP Port should be selected for Transcoder DP control */
2119 int
2120 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2121 {
2122         struct drm_device *dev = crtc->dev;
2123         struct drm_mode_config *mode_config = &dev->mode_config;
2124         struct drm_encoder *encoder;
2125
2126         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2127                 struct intel_dp *intel_dp;
2128
2129                 if (encoder->crtc != crtc)
2130                         continue;
2131
2132                 intel_dp = enc_to_intel_dp(encoder);
2133                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
2134                         return intel_dp->output_reg;
2135         }
2136
2137         return -1;
2138 }
2139
2140 /* check the VBT to see whether the eDP is on DP-D port */
2141 bool intel_dpd_is_edp(struct drm_device *dev)
2142 {
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         struct child_device_config *p_child;
2145         int i;
2146
2147         if (!dev_priv->child_dev_num)
2148                 return false;
2149
2150         for (i = 0; i < dev_priv->child_dev_num; i++) {
2151                 p_child = dev_priv->child_dev + i;
2152
2153                 if (p_child->dvo_port == PORT_IDPD &&
2154                     p_child->device_type == DEVICE_TYPE_eDP)
2155                         return true;
2156         }
2157         return false;
2158 }
2159
2160 static void
2161 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2162 {
2163         intel_attach_force_audio_property(connector);
2164         intel_attach_broadcast_rgb_property(connector);
2165 }
2166
2167 void
2168 intel_dp_init(struct drm_device *dev, int output_reg)
2169 {
2170         struct drm_i915_private *dev_priv = dev->dev_private;
2171         struct drm_connector *connector;
2172         struct intel_dp *intel_dp;
2173         struct intel_encoder *intel_encoder;
2174         struct intel_connector *intel_connector;
2175         const char *name = NULL;
2176         int type;
2177
2178         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2179         if (!intel_dp)
2180                 return;
2181
2182         intel_dp->output_reg = output_reg;
2183         intel_dp->dpms_mode = -1;
2184
2185         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2186         if (!intel_connector) {
2187                 kfree(intel_dp);
2188                 return;
2189         }
2190         intel_encoder = &intel_dp->base;
2191
2192         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2193                 if (intel_dpd_is_edp(dev))
2194                         intel_dp->is_pch_edp = true;
2195
2196         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2197                 type = DRM_MODE_CONNECTOR_eDP;
2198                 intel_encoder->type = INTEL_OUTPUT_EDP;
2199         } else {
2200                 type = DRM_MODE_CONNECTOR_DisplayPort;
2201                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2202         }
2203
2204         connector = &intel_connector->base;
2205         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2206         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2207
2208         connector->polled = DRM_CONNECTOR_POLL_HPD;
2209
2210         if (output_reg == DP_B || output_reg == PCH_DP_B)
2211                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2212         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2213                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2214         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2215                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2216
2217         if (is_edp(intel_dp)) {
2218                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2219                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2220                                   ironlake_panel_vdd_work);
2221         }
2222
2223         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2224         connector->interlace_allowed = true;
2225         connector->doublescan_allowed = 0;
2226
2227         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2228                          DRM_MODE_ENCODER_TMDS);
2229         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2230
2231         intel_connector_attach_encoder(intel_connector, intel_encoder);
2232         drm_sysfs_connector_add(connector);
2233
2234         /* Set up the DDC bus. */
2235         switch (output_reg) {
2236                 case DP_A:
2237                         name = "DPDDC-A";
2238                         break;
2239                 case DP_B:
2240                 case PCH_DP_B:
2241                         dev_priv->hotplug_supported_mask |=
2242                                 HDMIB_HOTPLUG_INT_STATUS;
2243                         name = "DPDDC-B";
2244                         break;
2245                 case DP_C:
2246                 case PCH_DP_C:
2247                         dev_priv->hotplug_supported_mask |=
2248                                 HDMIC_HOTPLUG_INT_STATUS;
2249                         name = "DPDDC-C";
2250                         break;
2251                 case DP_D:
2252                 case PCH_DP_D:
2253                         dev_priv->hotplug_supported_mask |=
2254                                 HDMID_HOTPLUG_INT_STATUS;
2255                         name = "DPDDC-D";
2256                         break;
2257         }
2258
2259         /* Cache some DPCD data in the eDP case */
2260         if (is_edp(intel_dp)) {
2261                 bool ret;
2262                 struct edp_power_seq    cur, vbt;
2263                 u32 pp_on, pp_off, pp_div;
2264
2265                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2266                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2267                 pp_div = I915_READ(PCH_PP_DIVISOR);
2268
2269                 /* Pull timing values out of registers */
2270                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2271                         PANEL_POWER_UP_DELAY_SHIFT;
2272
2273                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2274                         PANEL_LIGHT_ON_DELAY_SHIFT;
2275                 
2276                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2277                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2278
2279                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2280                         PANEL_POWER_DOWN_DELAY_SHIFT;
2281
2282                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2283                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2284
2285                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2286                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2287
2288                 vbt = dev_priv->edp.pps;
2289
2290                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2291                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2292
2293 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2294
2295                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2296                 intel_dp->backlight_on_delay = get_delay(t8);
2297                 intel_dp->backlight_off_delay = get_delay(t9);
2298                 intel_dp->panel_power_down_delay = get_delay(t10);
2299                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2300
2301                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2302                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2303                               intel_dp->panel_power_cycle_delay);
2304
2305                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2306                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2307
2308                 intel_dp->panel_off_jiffies = jiffies - intel_dp->panel_power_down_delay;
2309
2310                 ironlake_edp_panel_vdd_on(intel_dp);
2311                 ret = intel_dp_get_dpcd(intel_dp);
2312                 ironlake_edp_panel_vdd_off(intel_dp, false);
2313                 if (ret) {
2314                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2315                                 dev_priv->no_aux_handshake =
2316                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2317                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2318                 } else {
2319                         /* if this fails, presume the device is a ghost */
2320                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2321                         intel_dp_encoder_destroy(&intel_dp->base.base);
2322                         intel_dp_destroy(&intel_connector->base);
2323                         return;
2324                 }
2325         }
2326
2327         intel_dp_i2c_init(intel_dp, intel_connector, name);
2328
2329         intel_encoder->hot_plug = intel_dp_hot_plug;
2330
2331         if (is_edp(intel_dp)) {
2332                 dev_priv->int_edp_connector = connector;
2333                 intel_panel_setup_backlight(dev);
2334         }
2335
2336         intel_dp_add_properties(intel_dp, connector);
2337
2338         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2339          * 0xd.  Failure to do so will result in spurious interrupts being
2340          * generated on the port when a cable is not attached.
2341          */
2342         if (IS_G4X(dev) && !IS_GM45(dev)) {
2343                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2344                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2345         }
2346 }