]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: use pipe bpp in DP link bandwidth calculation
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[4];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         uint8_t link_status[DP_LINK_STATUS_SIZE];
62 };
63
64 /**
65  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
66  * @intel_dp: DP struct
67  *
68  * If a CPU or PCH DP output is attached to an eDP panel, this function
69  * will return true, and false otherwise.
70  */
71 static bool is_edp(struct intel_dp *intel_dp)
72 {
73         return intel_dp->base.type == INTEL_OUTPUT_EDP;
74 }
75
76 /**
77  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
78  * @intel_dp: DP struct
79  *
80  * Returns true if the given DP struct corresponds to a PCH DP port attached
81  * to an eDP panel, false otherwise.  Helpful for determining whether we
82  * may need FDI resources for a given DP output or not.
83  */
84 static bool is_pch_edp(struct intel_dp *intel_dp)
85 {
86         return intel_dp->is_pch_edp;
87 }
88
89 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
90 {
91         return container_of(encoder, struct intel_dp, base.base);
92 }
93
94 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
95 {
96         return container_of(intel_attached_encoder(connector),
97                             struct intel_dp, base);
98 }
99
100 /**
101  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
102  * @encoder: DRM encoder
103  *
104  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
105  * by intel_display.c.
106  */
107 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
108 {
109         struct intel_dp *intel_dp;
110
111         if (!encoder)
112                 return false;
113
114         intel_dp = enc_to_intel_dp(encoder);
115
116         return is_pch_edp(intel_dp);
117 }
118
119 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
120 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_link_down(struct intel_dp *intel_dp);
122
123 void
124 intel_edp_link_config (struct intel_encoder *intel_encoder,
125                        int *lane_num, int *link_bw)
126 {
127         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
128
129         *lane_num = intel_dp->lane_count;
130         if (intel_dp->link_bw == DP_LINK_BW_1_62)
131                 *link_bw = 162000;
132         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
133                 *link_bw = 270000;
134 }
135
136 static int
137 intel_dp_max_lane_count(struct intel_dp *intel_dp)
138 {
139         int max_lane_count = 4;
140
141         if (intel_dp->dpcd[0] >= 0x11) {
142                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
143                 switch (max_lane_count) {
144                 case 1: case 2: case 4:
145                         break;
146                 default:
147                         max_lane_count = 4;
148                 }
149         }
150         return max_lane_count;
151 }
152
153 static int
154 intel_dp_max_link_bw(struct intel_dp *intel_dp)
155 {
156         int max_link_bw = intel_dp->dpcd[1];
157
158         switch (max_link_bw) {
159         case DP_LINK_BW_1_62:
160         case DP_LINK_BW_2_7:
161                 break;
162         default:
163                 max_link_bw = DP_LINK_BW_1_62;
164                 break;
165         }
166         return max_link_bw;
167 }
168
169 static int
170 intel_dp_link_clock(uint8_t link_bw)
171 {
172         if (link_bw == DP_LINK_BW_2_7)
173                 return 270000;
174         else
175                 return 162000;
176 }
177
178 /* I think this is a fiction */
179 static int
180 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
181 {
182         struct drm_crtc *crtc = intel_dp->base.base.crtc;
183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
184         int bpp = 24;
185
186         if (intel_crtc)
187                 bpp = intel_crtc->bpp;
188
189         return (pixel_clock * bpp + 7) / 8;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195         return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static int
199 intel_dp_mode_valid(struct drm_connector *connector,
200                     struct drm_display_mode *mode)
201 {
202         struct intel_dp *intel_dp = intel_attached_dp(connector);
203         struct drm_device *dev = connector->dev;
204         struct drm_i915_private *dev_priv = dev->dev_private;
205         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206         int max_lanes = intel_dp_max_lane_count(intel_dp);
207
208         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210                         return MODE_PANEL;
211
212                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213                         return MODE_PANEL;
214         }
215
216         /* only refuse the mode on non eDP since we have seen some weird eDP panels
217            which are outside spec tolerances but somehow work by magic */
218         if (!is_edp(intel_dp) &&
219             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         return MODE_OK;
227 }
228
229 static uint32_t
230 pack_aux(uint8_t *src, int src_bytes)
231 {
232         int     i;
233         uint32_t v = 0;
234
235         if (src_bytes > 4)
236                 src_bytes = 4;
237         for (i = 0; i < src_bytes; i++)
238                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
239         return v;
240 }
241
242 static void
243 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244 {
245         int i;
246         if (dst_bytes > 4)
247                 dst_bytes = 4;
248         for (i = 0; i < dst_bytes; i++)
249                 dst[i] = src >> ((3-i) * 8);
250 }
251
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
254 intel_hrawclk(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         uint32_t clkcfg;
258
259         clkcfg = I915_READ(CLKCFG);
260         switch (clkcfg & CLKCFG_FSB_MASK) {
261         case CLKCFG_FSB_400:
262                 return 100;
263         case CLKCFG_FSB_533:
264                 return 133;
265         case CLKCFG_FSB_667:
266                 return 166;
267         case CLKCFG_FSB_800:
268                 return 200;
269         case CLKCFG_FSB_1067:
270                 return 266;
271         case CLKCFG_FSB_1333:
272                 return 333;
273         /* these two are just a guess; one of them might be right */
274         case CLKCFG_FSB_1600:
275         case CLKCFG_FSB_1600_ALT:
276                 return 400;
277         default:
278                 return 133;
279         }
280 }
281
282 static int
283 intel_dp_aux_ch(struct intel_dp *intel_dp,
284                 uint8_t *send, int send_bytes,
285                 uint8_t *recv, int recv_size)
286 {
287         uint32_t output_reg = intel_dp->output_reg;
288         struct drm_device *dev = intel_dp->base.base.dev;
289         struct drm_i915_private *dev_priv = dev->dev_private;
290         uint32_t ch_ctl = output_reg + 0x10;
291         uint32_t ch_data = ch_ctl + 4;
292         int i;
293         int recv_bytes;
294         uint32_t status;
295         uint32_t aux_clock_divider;
296         int try, precharge;
297
298         /* The clock divider is based off the hrawclk,
299          * and would like to run at 2MHz. So, take the
300          * hrawclk value and divide by 2 and use that
301          *
302          * Note that PCH attached eDP panels should use a 125MHz input
303          * clock divider.
304          */
305         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306                 if (IS_GEN6(dev))
307                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308                 else
309                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310         } else if (HAS_PCH_SPLIT(dev))
311                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312         else
313                 aux_clock_divider = intel_hrawclk(dev) / 2;
314
315         if (IS_GEN6(dev))
316                 precharge = 3;
317         else
318                 precharge = 5;
319
320         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
321                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
322                           I915_READ(ch_ctl));
323                 return -EBUSY;
324         }
325
326         /* Must try at least 3 times according to DP spec */
327         for (try = 0; try < 5; try++) {
328                 /* Load the send data into the aux channel data registers */
329                 for (i = 0; i < send_bytes; i += 4)
330                         I915_WRITE(ch_data + i,
331                                    pack_aux(send + i, send_bytes - i));
332         
333                 /* Send the command and wait for it to complete */
334                 I915_WRITE(ch_ctl,
335                            DP_AUX_CH_CTL_SEND_BUSY |
336                            DP_AUX_CH_CTL_TIME_OUT_400us |
337                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
338                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
339                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
340                            DP_AUX_CH_CTL_DONE |
341                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
342                            DP_AUX_CH_CTL_RECEIVE_ERROR);
343                 for (;;) {
344                         status = I915_READ(ch_ctl);
345                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
346                                 break;
347                         udelay(100);
348                 }
349         
350                 /* Clear done status and any errors */
351                 I915_WRITE(ch_ctl,
352                            status |
353                            DP_AUX_CH_CTL_DONE |
354                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
355                            DP_AUX_CH_CTL_RECEIVE_ERROR);
356                 if (status & DP_AUX_CH_CTL_DONE)
357                         break;
358         }
359
360         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
361                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
362                 return -EBUSY;
363         }
364
365         /* Check for timeout or receive error.
366          * Timeouts occur when the sink is not connected
367          */
368         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
369                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
370                 return -EIO;
371         }
372
373         /* Timeouts occur when the device isn't connected, so they're
374          * "normal" -- don't fill the kernel log with these */
375         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
376                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
377                 return -ETIMEDOUT;
378         }
379
380         /* Unload any bytes sent back from the other side */
381         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
382                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
383         if (recv_bytes > recv_size)
384                 recv_bytes = recv_size;
385         
386         for (i = 0; i < recv_bytes; i += 4)
387                 unpack_aux(I915_READ(ch_data + i),
388                            recv + i, recv_bytes - i);
389
390         return recv_bytes;
391 }
392
393 /* Write data to the aux channel in native mode */
394 static int
395 intel_dp_aux_native_write(struct intel_dp *intel_dp,
396                           uint16_t address, uint8_t *send, int send_bytes)
397 {
398         int ret;
399         uint8_t msg[20];
400         int msg_bytes;
401         uint8_t ack;
402
403         if (send_bytes > 16)
404                 return -1;
405         msg[0] = AUX_NATIVE_WRITE << 4;
406         msg[1] = address >> 8;
407         msg[2] = address & 0xff;
408         msg[3] = send_bytes - 1;
409         memcpy(&msg[4], send, send_bytes);
410         msg_bytes = send_bytes + 4;
411         for (;;) {
412                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
413                 if (ret < 0)
414                         return ret;
415                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
416                         break;
417                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
418                         udelay(100);
419                 else
420                         return -EIO;
421         }
422         return send_bytes;
423 }
424
425 /* Write a single byte to the aux channel in native mode */
426 static int
427 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
428                             uint16_t address, uint8_t byte)
429 {
430         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
431 }
432
433 /* read bytes from a native aux channel */
434 static int
435 intel_dp_aux_native_read(struct intel_dp *intel_dp,
436                          uint16_t address, uint8_t *recv, int recv_bytes)
437 {
438         uint8_t msg[4];
439         int msg_bytes;
440         uint8_t reply[20];
441         int reply_bytes;
442         uint8_t ack;
443         int ret;
444
445         msg[0] = AUX_NATIVE_READ << 4;
446         msg[1] = address >> 8;
447         msg[2] = address & 0xff;
448         msg[3] = recv_bytes - 1;
449
450         msg_bytes = 4;
451         reply_bytes = recv_bytes + 1;
452
453         for (;;) {
454                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
455                                       reply, reply_bytes);
456                 if (ret == 0)
457                         return -EPROTO;
458                 if (ret < 0)
459                         return ret;
460                 ack = reply[0];
461                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
462                         memcpy(recv, reply + 1, ret - 1);
463                         return ret - 1;
464                 }
465                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
466                         udelay(100);
467                 else
468                         return -EIO;
469         }
470 }
471
472 static int
473 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
474                     uint8_t write_byte, uint8_t *read_byte)
475 {
476         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
477         struct intel_dp *intel_dp = container_of(adapter,
478                                                 struct intel_dp,
479                                                 adapter);
480         uint16_t address = algo_data->address;
481         uint8_t msg[5];
482         uint8_t reply[2];
483         unsigned retry;
484         int msg_bytes;
485         int reply_bytes;
486         int ret;
487
488         /* Set up the command byte */
489         if (mode & MODE_I2C_READ)
490                 msg[0] = AUX_I2C_READ << 4;
491         else
492                 msg[0] = AUX_I2C_WRITE << 4;
493
494         if (!(mode & MODE_I2C_STOP))
495                 msg[0] |= AUX_I2C_MOT << 4;
496
497         msg[1] = address >> 8;
498         msg[2] = address;
499
500         switch (mode) {
501         case MODE_I2C_WRITE:
502                 msg[3] = 0;
503                 msg[4] = write_byte;
504                 msg_bytes = 5;
505                 reply_bytes = 1;
506                 break;
507         case MODE_I2C_READ:
508                 msg[3] = 0;
509                 msg_bytes = 4;
510                 reply_bytes = 2;
511                 break;
512         default:
513                 msg_bytes = 3;
514                 reply_bytes = 1;
515                 break;
516         }
517
518         for (retry = 0; retry < 5; retry++) {
519                 ret = intel_dp_aux_ch(intel_dp,
520                                       msg, msg_bytes,
521                                       reply, reply_bytes);
522                 if (ret < 0) {
523                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
524                         return ret;
525                 }
526
527                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
528                 case AUX_NATIVE_REPLY_ACK:
529                         /* I2C-over-AUX Reply field is only valid
530                          * when paired with AUX ACK.
531                          */
532                         break;
533                 case AUX_NATIVE_REPLY_NACK:
534                         DRM_DEBUG_KMS("aux_ch native nack\n");
535                         return -EREMOTEIO;
536                 case AUX_NATIVE_REPLY_DEFER:
537                         udelay(100);
538                         continue;
539                 default:
540                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
541                                   reply[0]);
542                         return -EREMOTEIO;
543                 }
544
545                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
546                 case AUX_I2C_REPLY_ACK:
547                         if (mode == MODE_I2C_READ) {
548                                 *read_byte = reply[1];
549                         }
550                         return reply_bytes - 1;
551                 case AUX_I2C_REPLY_NACK:
552                         DRM_DEBUG_KMS("aux_i2c nack\n");
553                         return -EREMOTEIO;
554                 case AUX_I2C_REPLY_DEFER:
555                         DRM_DEBUG_KMS("aux_i2c defer\n");
556                         udelay(100);
557                         break;
558                 default:
559                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
560                         return -EREMOTEIO;
561                 }
562         }
563
564         DRM_ERROR("too many retries, giving up\n");
565         return -EREMOTEIO;
566 }
567
568 static int
569 intel_dp_i2c_init(struct intel_dp *intel_dp,
570                   struct intel_connector *intel_connector, const char *name)
571 {
572         DRM_DEBUG_KMS("i2c_init %s\n", name);
573         intel_dp->algo.running = false;
574         intel_dp->algo.address = 0;
575         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
576
577         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
578         intel_dp->adapter.owner = THIS_MODULE;
579         intel_dp->adapter.class = I2C_CLASS_DDC;
580         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
581         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
582         intel_dp->adapter.algo_data = &intel_dp->algo;
583         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
584
585         return i2c_dp_aux_add_bus(&intel_dp->adapter);
586 }
587
588 static bool
589 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
590                     struct drm_display_mode *adjusted_mode)
591 {
592         struct drm_device *dev = encoder->dev;
593         struct drm_i915_private *dev_priv = dev->dev_private;
594         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
595         int lane_count, clock;
596         int max_lane_count = intel_dp_max_lane_count(intel_dp);
597         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
598         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
599
600         if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
601                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
602                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
603                                         mode, adjusted_mode);
604                 /*
605                  * the mode->clock is used to calculate the Data&Link M/N
606                  * of the pipe. For the eDP the fixed clock should be used.
607                  */
608                 mode->clock = dev_priv->panel_fixed_mode->clock;
609         }
610
611         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
612                 for (clock = 0; clock <= max_clock; clock++) {
613                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
614
615                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
616                                         <= link_avail) {
617                                 intel_dp->link_bw = bws[clock];
618                                 intel_dp->lane_count = lane_count;
619                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
620                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
621                                                 "count %d clock %d\n",
622                                        intel_dp->link_bw, intel_dp->lane_count,
623                                        adjusted_mode->clock);
624                                 return true;
625                         }
626                 }
627         }
628
629         if (is_edp(intel_dp)) {
630                 /* okay we failed just pick the highest */
631                 intel_dp->lane_count = max_lane_count;
632                 intel_dp->link_bw = bws[max_clock];
633                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
634                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
635                               "count %d clock %d\n",
636                               intel_dp->link_bw, intel_dp->lane_count,
637                               adjusted_mode->clock);
638
639                 return true;
640         }
641
642         return false;
643 }
644
645 struct intel_dp_m_n {
646         uint32_t        tu;
647         uint32_t        gmch_m;
648         uint32_t        gmch_n;
649         uint32_t        link_m;
650         uint32_t        link_n;
651 };
652
653 static void
654 intel_reduce_ratio(uint32_t *num, uint32_t *den)
655 {
656         while (*num > 0xffffff || *den > 0xffffff) {
657                 *num >>= 1;
658                 *den >>= 1;
659         }
660 }
661
662 static void
663 intel_dp_compute_m_n(int bpp,
664                      int nlanes,
665                      int pixel_clock,
666                      int link_clock,
667                      struct intel_dp_m_n *m_n)
668 {
669         m_n->tu = 64;
670         m_n->gmch_m = (pixel_clock * bpp) >> 3;
671         m_n->gmch_n = link_clock * nlanes;
672         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
673         m_n->link_m = pixel_clock;
674         m_n->link_n = link_clock;
675         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
676 }
677
678 void
679 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
680                  struct drm_display_mode *adjusted_mode)
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_mode_config *mode_config = &dev->mode_config;
684         struct drm_encoder *encoder;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
687         int lane_count = 4;
688         struct intel_dp_m_n m_n;
689         int pipe = intel_crtc->pipe;
690
691         /*
692          * Find the lane count in the intel_encoder private
693          */
694         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
695                 struct intel_dp *intel_dp;
696
697                 if (encoder->crtc != crtc)
698                         continue;
699
700                 intel_dp = enc_to_intel_dp(encoder);
701                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
702                         lane_count = intel_dp->lane_count;
703                         break;
704                 } else if (is_edp(intel_dp)) {
705                         lane_count = dev_priv->edp.lanes;
706                         break;
707                 }
708         }
709
710         /*
711          * Compute the GMCH and Link ratios. The '3' here is
712          * the number of bytes_per_pixel post-LUT, which we always
713          * set up for 8-bits of R/G/B, or 3 bytes total.
714          */
715         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
716                              mode->clock, adjusted_mode->clock, &m_n);
717
718         if (HAS_PCH_SPLIT(dev)) {
719                 I915_WRITE(TRANSDATA_M1(pipe),
720                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
721                            m_n.gmch_m);
722                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
723                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
724                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
725         } else {
726                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
727                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
728                            m_n.gmch_m);
729                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
730                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
731                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
732         }
733 }
734
735 static void
736 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
737                   struct drm_display_mode *adjusted_mode)
738 {
739         struct drm_device *dev = encoder->dev;
740         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
741         struct drm_crtc *crtc = intel_dp->base.base.crtc;
742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
743
744         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
745         intel_dp->DP |= intel_dp->color_range;
746
747         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
748                 intel_dp->DP |= DP_SYNC_HS_HIGH;
749         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
750                 intel_dp->DP |= DP_SYNC_VS_HIGH;
751
752         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
753                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
754         else
755                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
756
757         switch (intel_dp->lane_count) {
758         case 1:
759                 intel_dp->DP |= DP_PORT_WIDTH_1;
760                 break;
761         case 2:
762                 intel_dp->DP |= DP_PORT_WIDTH_2;
763                 break;
764         case 4:
765                 intel_dp->DP |= DP_PORT_WIDTH_4;
766                 break;
767         }
768         if (intel_dp->has_audio)
769                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
770
771         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
772         intel_dp->link_configuration[0] = intel_dp->link_bw;
773         intel_dp->link_configuration[1] = intel_dp->lane_count;
774
775         /*
776          * Check for DPCD version > 1.1 and enhanced framing support
777          */
778         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
779                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
780                 intel_dp->DP |= DP_ENHANCED_FRAMING;
781         }
782
783         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
784         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
785                 intel_dp->DP |= DP_PIPEB_SELECT;
786
787         if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
788                 /* don't miss out required setting for eDP */
789                 intel_dp->DP |= DP_PLL_ENABLE;
790                 if (adjusted_mode->clock < 200000)
791                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
792                 else
793                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
794         }
795 }
796
797 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
798 {
799         struct drm_device *dev = intel_dp->base.base.dev;
800         struct drm_i915_private *dev_priv = dev->dev_private;
801         u32 pp;
802
803         /*
804          * If the panel wasn't on, make sure there's not a currently
805          * active PP sequence before enabling AUX VDD.
806          */
807         if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
808                 msleep(dev_priv->panel_t3);
809
810         pp = I915_READ(PCH_PP_CONTROL);
811         pp |= EDP_FORCE_VDD;
812         I915_WRITE(PCH_PP_CONTROL, pp);
813         POSTING_READ(PCH_PP_CONTROL);
814 }
815
816 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
817 {
818         struct drm_device *dev = intel_dp->base.base.dev;
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         u32 pp;
821
822         pp = I915_READ(PCH_PP_CONTROL);
823         pp &= ~EDP_FORCE_VDD;
824         I915_WRITE(PCH_PP_CONTROL, pp);
825         POSTING_READ(PCH_PP_CONTROL);
826
827         /* Make sure sequencer is idle before allowing subsequent activity */
828         msleep(dev_priv->panel_t12);
829 }
830
831 /* Returns true if the panel was already on when called */
832 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
833 {
834         struct drm_device *dev = intel_dp->base.base.dev;
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
837
838         if (I915_READ(PCH_PP_STATUS) & PP_ON)
839                 return true;
840
841         pp = I915_READ(PCH_PP_CONTROL);
842
843         /* ILK workaround: disable reset around power sequence */
844         pp &= ~PANEL_POWER_RESET;
845         I915_WRITE(PCH_PP_CONTROL, pp);
846         POSTING_READ(PCH_PP_CONTROL);
847
848         pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
849         I915_WRITE(PCH_PP_CONTROL, pp);
850         POSTING_READ(PCH_PP_CONTROL);
851
852         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
853                      5000))
854                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
855                           I915_READ(PCH_PP_STATUS));
856
857         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
858         I915_WRITE(PCH_PP_CONTROL, pp);
859         POSTING_READ(PCH_PP_CONTROL);
860
861         return false;
862 }
863
864 static void ironlake_edp_panel_off (struct drm_device *dev)
865 {
866         struct drm_i915_private *dev_priv = dev->dev_private;
867         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
868                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
869
870         pp = I915_READ(PCH_PP_CONTROL);
871
872         /* ILK workaround: disable reset around power sequence */
873         pp &= ~PANEL_POWER_RESET;
874         I915_WRITE(PCH_PP_CONTROL, pp);
875         POSTING_READ(PCH_PP_CONTROL);
876
877         pp &= ~POWER_TARGET_ON;
878         I915_WRITE(PCH_PP_CONTROL, pp);
879         POSTING_READ(PCH_PP_CONTROL);
880
881         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
882                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
883                           I915_READ(PCH_PP_STATUS));
884
885         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
886         I915_WRITE(PCH_PP_CONTROL, pp);
887         POSTING_READ(PCH_PP_CONTROL);
888 }
889
890 static void ironlake_edp_backlight_on (struct drm_device *dev)
891 {
892         struct drm_i915_private *dev_priv = dev->dev_private;
893         u32 pp;
894
895         DRM_DEBUG_KMS("\n");
896         /*
897          * If we enable the backlight right away following a panel power
898          * on, we may see slight flicker as the panel syncs with the eDP
899          * link.  So delay a bit to make sure the image is solid before
900          * allowing it to appear.
901          */
902         msleep(300);
903         pp = I915_READ(PCH_PP_CONTROL);
904         pp |= EDP_BLC_ENABLE;
905         I915_WRITE(PCH_PP_CONTROL, pp);
906 }
907
908 static void ironlake_edp_backlight_off (struct drm_device *dev)
909 {
910         struct drm_i915_private *dev_priv = dev->dev_private;
911         u32 pp;
912
913         DRM_DEBUG_KMS("\n");
914         pp = I915_READ(PCH_PP_CONTROL);
915         pp &= ~EDP_BLC_ENABLE;
916         I915_WRITE(PCH_PP_CONTROL, pp);
917 }
918
919 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
920 {
921         struct drm_device *dev = encoder->dev;
922         struct drm_i915_private *dev_priv = dev->dev_private;
923         u32 dpa_ctl;
924
925         DRM_DEBUG_KMS("\n");
926         dpa_ctl = I915_READ(DP_A);
927         dpa_ctl |= DP_PLL_ENABLE;
928         I915_WRITE(DP_A, dpa_ctl);
929         POSTING_READ(DP_A);
930         udelay(200);
931 }
932
933 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
934 {
935         struct drm_device *dev = encoder->dev;
936         struct drm_i915_private *dev_priv = dev->dev_private;
937         u32 dpa_ctl;
938
939         dpa_ctl = I915_READ(DP_A);
940         dpa_ctl &= ~DP_PLL_ENABLE;
941         I915_WRITE(DP_A, dpa_ctl);
942         POSTING_READ(DP_A);
943         udelay(200);
944 }
945
946 static void intel_dp_prepare(struct drm_encoder *encoder)
947 {
948         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
949         struct drm_device *dev = encoder->dev;
950
951         if (is_edp(intel_dp)) {
952                 ironlake_edp_backlight_off(dev);
953                 ironlake_edp_panel_off(dev);
954                 if (!is_pch_edp(intel_dp))
955                         ironlake_edp_pll_on(encoder);
956                 else
957                         ironlake_edp_pll_off(encoder);
958         }
959         intel_dp_link_down(intel_dp);
960 }
961
962 static void intel_dp_commit(struct drm_encoder *encoder)
963 {
964         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
965         struct drm_device *dev = encoder->dev;
966
967         if (is_edp(intel_dp))
968                 ironlake_edp_panel_vdd_on(intel_dp);
969
970         intel_dp_start_link_train(intel_dp);
971
972         if (is_edp(intel_dp)) {
973                 ironlake_edp_panel_on(intel_dp);
974                 ironlake_edp_panel_vdd_off(intel_dp);
975         }
976
977         intel_dp_complete_link_train(intel_dp);
978
979         if (is_edp(intel_dp))
980                 ironlake_edp_backlight_on(dev);
981 }
982
983 static void
984 intel_dp_dpms(struct drm_encoder *encoder, int mode)
985 {
986         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
987         struct drm_device *dev = encoder->dev;
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
990
991         if (mode != DRM_MODE_DPMS_ON) {
992                 if (is_edp(intel_dp))
993                         ironlake_edp_backlight_off(dev);
994                 intel_dp_link_down(intel_dp);
995                 if (is_edp(intel_dp))
996                         ironlake_edp_panel_off(dev);
997                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
998                         ironlake_edp_pll_off(encoder);
999         } else {
1000                 if (is_edp(intel_dp))
1001                         ironlake_edp_panel_vdd_on(intel_dp);
1002                 if (!(dp_reg & DP_PORT_EN)) {
1003                         intel_dp_start_link_train(intel_dp);
1004                         if (is_edp(intel_dp)) {
1005                                 ironlake_edp_panel_on(intel_dp);
1006                                 ironlake_edp_panel_vdd_off(intel_dp);
1007                         }
1008                         intel_dp_complete_link_train(intel_dp);
1009                 }
1010                 if (is_edp(intel_dp))
1011                         ironlake_edp_backlight_on(dev);
1012         }
1013         intel_dp->dpms_mode = mode;
1014 }
1015
1016 /*
1017  * Fetch AUX CH registers 0x202 - 0x207 which contain
1018  * link status information
1019  */
1020 static bool
1021 intel_dp_get_link_status(struct intel_dp *intel_dp)
1022 {
1023         int ret;
1024
1025         ret = intel_dp_aux_native_read(intel_dp,
1026                                        DP_LANE0_1_STATUS,
1027                                        intel_dp->link_status, DP_LINK_STATUS_SIZE);
1028         if (ret != DP_LINK_STATUS_SIZE)
1029                 return false;
1030         return true;
1031 }
1032
1033 static uint8_t
1034 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1035                      int r)
1036 {
1037         return link_status[r - DP_LANE0_1_STATUS];
1038 }
1039
1040 static uint8_t
1041 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1042                                  int lane)
1043 {
1044         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1045         int         s = ((lane & 1) ?
1046                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1047                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1048         uint8_t l = intel_dp_link_status(link_status, i);
1049
1050         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1051 }
1052
1053 static uint8_t
1054 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1055                                       int lane)
1056 {
1057         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1058         int         s = ((lane & 1) ?
1059                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1060                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1061         uint8_t l = intel_dp_link_status(link_status, i);
1062
1063         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1064 }
1065
1066
1067 #if 0
1068 static char     *voltage_names[] = {
1069         "0.4V", "0.6V", "0.8V", "1.2V"
1070 };
1071 static char     *pre_emph_names[] = {
1072         "0dB", "3.5dB", "6dB", "9.5dB"
1073 };
1074 static char     *link_train_names[] = {
1075         "pattern 1", "pattern 2", "idle", "off"
1076 };
1077 #endif
1078
1079 /*
1080  * These are source-specific values; current Intel hardware supports
1081  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1082  */
1083 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1084
1085 static uint8_t
1086 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1087 {
1088         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1089         case DP_TRAIN_VOLTAGE_SWING_400:
1090                 return DP_TRAIN_PRE_EMPHASIS_6;
1091         case DP_TRAIN_VOLTAGE_SWING_600:
1092                 return DP_TRAIN_PRE_EMPHASIS_6;
1093         case DP_TRAIN_VOLTAGE_SWING_800:
1094                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1095         case DP_TRAIN_VOLTAGE_SWING_1200:
1096         default:
1097                 return DP_TRAIN_PRE_EMPHASIS_0;
1098         }
1099 }
1100
1101 static void
1102 intel_get_adjust_train(struct intel_dp *intel_dp)
1103 {
1104         uint8_t v = 0;
1105         uint8_t p = 0;
1106         int lane;
1107
1108         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1109                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1110                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1111
1112                 if (this_v > v)
1113                         v = this_v;
1114                 if (this_p > p)
1115                         p = this_p;
1116         }
1117
1118         if (v >= I830_DP_VOLTAGE_MAX)
1119                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1120
1121         if (p >= intel_dp_pre_emphasis_max(v))
1122                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1123
1124         for (lane = 0; lane < 4; lane++)
1125                 intel_dp->train_set[lane] = v | p;
1126 }
1127
1128 static uint32_t
1129 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1130 {
1131         uint32_t        signal_levels = 0;
1132
1133         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1134         case DP_TRAIN_VOLTAGE_SWING_400:
1135         default:
1136                 signal_levels |= DP_VOLTAGE_0_4;
1137                 break;
1138         case DP_TRAIN_VOLTAGE_SWING_600:
1139                 signal_levels |= DP_VOLTAGE_0_6;
1140                 break;
1141         case DP_TRAIN_VOLTAGE_SWING_800:
1142                 signal_levels |= DP_VOLTAGE_0_8;
1143                 break;
1144         case DP_TRAIN_VOLTAGE_SWING_1200:
1145                 signal_levels |= DP_VOLTAGE_1_2;
1146                 break;
1147         }
1148         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1149         case DP_TRAIN_PRE_EMPHASIS_0:
1150         default:
1151                 signal_levels |= DP_PRE_EMPHASIS_0;
1152                 break;
1153         case DP_TRAIN_PRE_EMPHASIS_3_5:
1154                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1155                 break;
1156         case DP_TRAIN_PRE_EMPHASIS_6:
1157                 signal_levels |= DP_PRE_EMPHASIS_6;
1158                 break;
1159         case DP_TRAIN_PRE_EMPHASIS_9_5:
1160                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1161                 break;
1162         }
1163         return signal_levels;
1164 }
1165
1166 /* Gen6's DP voltage swing and pre-emphasis control */
1167 static uint32_t
1168 intel_gen6_edp_signal_levels(uint8_t train_set)
1169 {
1170         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1171                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1172         switch (signal_levels) {
1173         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1174         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1175                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1176         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1177                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1178         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1179         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1180                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1181         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1182         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1183                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1184         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1185         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1186                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1187         default:
1188                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1189                               "0x%x\n", signal_levels);
1190                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1191         }
1192 }
1193
1194 static uint8_t
1195 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1196                       int lane)
1197 {
1198         int i = DP_LANE0_1_STATUS + (lane >> 1);
1199         int s = (lane & 1) * 4;
1200         uint8_t l = intel_dp_link_status(link_status, i);
1201
1202         return (l >> s) & 0xf;
1203 }
1204
1205 /* Check for clock recovery is done on all channels */
1206 static bool
1207 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1208 {
1209         int lane;
1210         uint8_t lane_status;
1211
1212         for (lane = 0; lane < lane_count; lane++) {
1213                 lane_status = intel_get_lane_status(link_status, lane);
1214                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1215                         return false;
1216         }
1217         return true;
1218 }
1219
1220 /* Check to see if channel eq is done on all channels */
1221 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1222                          DP_LANE_CHANNEL_EQ_DONE|\
1223                          DP_LANE_SYMBOL_LOCKED)
1224 static bool
1225 intel_channel_eq_ok(struct intel_dp *intel_dp)
1226 {
1227         uint8_t lane_align;
1228         uint8_t lane_status;
1229         int lane;
1230
1231         lane_align = intel_dp_link_status(intel_dp->link_status,
1232                                           DP_LANE_ALIGN_STATUS_UPDATED);
1233         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1234                 return false;
1235         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1236                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1237                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1238                         return false;
1239         }
1240         return true;
1241 }
1242
1243 static bool
1244 intel_dp_set_link_train(struct intel_dp *intel_dp,
1245                         uint32_t dp_reg_value,
1246                         uint8_t dp_train_pat)
1247 {
1248         struct drm_device *dev = intel_dp->base.base.dev;
1249         struct drm_i915_private *dev_priv = dev->dev_private;
1250         int ret;
1251
1252         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1253         POSTING_READ(intel_dp->output_reg);
1254
1255         intel_dp_aux_native_write_1(intel_dp,
1256                                     DP_TRAINING_PATTERN_SET,
1257                                     dp_train_pat);
1258
1259         ret = intel_dp_aux_native_write(intel_dp,
1260                                         DP_TRAINING_LANE0_SET,
1261                                         intel_dp->train_set, 4);
1262         if (ret != 4)
1263                 return false;
1264
1265         return true;
1266 }
1267
1268 /* Enable corresponding port and start training pattern 1 */
1269 static void
1270 intel_dp_start_link_train(struct intel_dp *intel_dp)
1271 {
1272         struct drm_device *dev = intel_dp->base.base.dev;
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1275         int i;
1276         uint8_t voltage;
1277         bool clock_recovery = false;
1278         int tries;
1279         u32 reg;
1280         uint32_t DP = intel_dp->DP;
1281
1282         /* Enable output, wait for it to become active */
1283         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1284         POSTING_READ(intel_dp->output_reg);
1285         intel_wait_for_vblank(dev, intel_crtc->pipe);
1286
1287         /* Write the link configuration data */
1288         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1289                                   intel_dp->link_configuration,
1290                                   DP_LINK_CONFIGURATION_SIZE);
1291
1292         DP |= DP_PORT_EN;
1293         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1294                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1295         else
1296                 DP &= ~DP_LINK_TRAIN_MASK;
1297         memset(intel_dp->train_set, 0, 4);
1298         voltage = 0xff;
1299         tries = 0;
1300         clock_recovery = false;
1301         for (;;) {
1302                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1303                 uint32_t    signal_levels;
1304                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1305                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1306                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1307                 } else {
1308                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1309                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1310                 }
1311
1312                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1313                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1314                 else
1315                         reg = DP | DP_LINK_TRAIN_PAT_1;
1316
1317                 if (!intel_dp_set_link_train(intel_dp, reg,
1318                                              DP_TRAINING_PATTERN_1))
1319                         break;
1320                 /* Set training pattern 1 */
1321
1322                 udelay(100);
1323                 if (!intel_dp_get_link_status(intel_dp))
1324                         break;
1325
1326                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1327                         clock_recovery = true;
1328                         break;
1329                 }
1330
1331                 /* Check to see if we've tried the max voltage */
1332                 for (i = 0; i < intel_dp->lane_count; i++)
1333                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1334                                 break;
1335                 if (i == intel_dp->lane_count)
1336                         break;
1337
1338                 /* Check to see if we've tried the same voltage 5 times */
1339                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1340                         ++tries;
1341                         if (tries == 5)
1342                                 break;
1343                 } else
1344                         tries = 0;
1345                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1346
1347                 /* Compute new intel_dp->train_set as requested by target */
1348                 intel_get_adjust_train(intel_dp);
1349         }
1350
1351         intel_dp->DP = DP;
1352 }
1353
1354 static void
1355 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1356 {
1357         struct drm_device *dev = intel_dp->base.base.dev;
1358         struct drm_i915_private *dev_priv = dev->dev_private;
1359         bool channel_eq = false;
1360         int tries, cr_tries;
1361         u32 reg;
1362         uint32_t DP = intel_dp->DP;
1363
1364         /* channel equalization */
1365         tries = 0;
1366         cr_tries = 0;
1367         channel_eq = false;
1368         for (;;) {
1369                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1370                 uint32_t    signal_levels;
1371
1372                 if (cr_tries > 5) {
1373                         DRM_ERROR("failed to train DP, aborting\n");
1374                         intel_dp_link_down(intel_dp);
1375                         break;
1376                 }
1377
1378                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1379                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1380                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1381                 } else {
1382                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1383                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1384                 }
1385
1386                 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1387                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1388                 else
1389                         reg = DP | DP_LINK_TRAIN_PAT_2;
1390
1391                 /* channel eq pattern */
1392                 if (!intel_dp_set_link_train(intel_dp, reg,
1393                                              DP_TRAINING_PATTERN_2))
1394                         break;
1395
1396                 udelay(400);
1397                 if (!intel_dp_get_link_status(intel_dp))
1398                         break;
1399
1400                 /* Make sure clock is still ok */
1401                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1402                         intel_dp_start_link_train(intel_dp);
1403                         cr_tries++;
1404                         continue;
1405                 }
1406
1407                 if (intel_channel_eq_ok(intel_dp)) {
1408                         channel_eq = true;
1409                         break;
1410                 }
1411
1412                 /* Try 5 times, then try clock recovery if that fails */
1413                 if (tries > 5) {
1414                         intel_dp_link_down(intel_dp);
1415                         intel_dp_start_link_train(intel_dp);
1416                         tries = 0;
1417                         cr_tries++;
1418                         continue;
1419                 }
1420
1421                 /* Compute new intel_dp->train_set as requested by target */
1422                 intel_get_adjust_train(intel_dp);
1423                 ++tries;
1424         }
1425
1426         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1427                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1428         else
1429                 reg = DP | DP_LINK_TRAIN_OFF;
1430
1431         I915_WRITE(intel_dp->output_reg, reg);
1432         POSTING_READ(intel_dp->output_reg);
1433         intel_dp_aux_native_write_1(intel_dp,
1434                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1435 }
1436
1437 static void
1438 intel_dp_link_down(struct intel_dp *intel_dp)
1439 {
1440         struct drm_device *dev = intel_dp->base.base.dev;
1441         struct drm_i915_private *dev_priv = dev->dev_private;
1442         uint32_t DP = intel_dp->DP;
1443
1444         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1445                 return;
1446
1447         DRM_DEBUG_KMS("\n");
1448
1449         if (is_edp(intel_dp)) {
1450                 DP &= ~DP_PLL_ENABLE;
1451                 I915_WRITE(intel_dp->output_reg, DP);
1452                 POSTING_READ(intel_dp->output_reg);
1453                 udelay(100);
1454         }
1455
1456         if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1457                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1458                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1459         } else {
1460                 DP &= ~DP_LINK_TRAIN_MASK;
1461                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1462         }
1463         POSTING_READ(intel_dp->output_reg);
1464
1465         msleep(17);
1466
1467         if (is_edp(intel_dp))
1468                 DP |= DP_LINK_TRAIN_OFF;
1469
1470         if (!HAS_PCH_CPT(dev) &&
1471             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1472                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1473
1474                 /* Hardware workaround: leaving our transcoder select
1475                  * set to transcoder B while it's off will prevent the
1476                  * corresponding HDMI output on transcoder A.
1477                  *
1478                  * Combine this with another hardware workaround:
1479                  * transcoder select bit can only be cleared while the
1480                  * port is enabled.
1481                  */
1482                 DP &= ~DP_PIPEB_SELECT;
1483                 I915_WRITE(intel_dp->output_reg, DP);
1484
1485                 /* Changes to enable or select take place the vblank
1486                  * after being written.
1487                  */
1488                 if (crtc == NULL) {
1489                         /* We can arrive here never having been attached
1490                          * to a CRTC, for instance, due to inheriting
1491                          * random state from the BIOS.
1492                          *
1493                          * If the pipe is not running, play safe and
1494                          * wait for the clocks to stabilise before
1495                          * continuing.
1496                          */
1497                         POSTING_READ(intel_dp->output_reg);
1498                         msleep(50);
1499                 } else
1500                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1501         }
1502
1503         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1504         POSTING_READ(intel_dp->output_reg);
1505 }
1506
1507 /*
1508  * According to DP spec
1509  * 5.1.2:
1510  *  1. Read DPCD
1511  *  2. Configure link according to Receiver Capabilities
1512  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1513  *  4. Check link status on receipt of hot-plug interrupt
1514  */
1515
1516 static void
1517 intel_dp_check_link_status(struct intel_dp *intel_dp)
1518 {
1519         if (!intel_dp->base.base.crtc)
1520                 return;
1521
1522         if (!intel_dp_get_link_status(intel_dp)) {
1523                 intel_dp_link_down(intel_dp);
1524                 return;
1525         }
1526
1527         if (!intel_channel_eq_ok(intel_dp)) {
1528                 intel_dp_start_link_train(intel_dp);
1529                 intel_dp_complete_link_train(intel_dp);
1530         }
1531 }
1532
1533 static enum drm_connector_status
1534 ironlake_dp_detect(struct intel_dp *intel_dp)
1535 {
1536         enum drm_connector_status status;
1537
1538         /* Can't disconnect eDP, but you can close the lid... */
1539         if (is_edp(intel_dp)) {
1540                 status = intel_panel_detect(intel_dp->base.base.dev);
1541                 if (status == connector_status_unknown)
1542                         status = connector_status_connected;
1543                 return status;
1544         }
1545
1546         status = connector_status_disconnected;
1547         if (intel_dp_aux_native_read(intel_dp,
1548                                      0x000, intel_dp->dpcd,
1549                                      sizeof (intel_dp->dpcd))
1550             == sizeof(intel_dp->dpcd)) {
1551                 if (intel_dp->dpcd[0] != 0)
1552                         status = connector_status_connected;
1553         }
1554         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1555                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1556         return status;
1557 }
1558
1559 static enum drm_connector_status
1560 g4x_dp_detect(struct intel_dp *intel_dp)
1561 {
1562         struct drm_device *dev = intel_dp->base.base.dev;
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         enum drm_connector_status status;
1565         uint32_t temp, bit;
1566
1567         switch (intel_dp->output_reg) {
1568         case DP_B:
1569                 bit = DPB_HOTPLUG_INT_STATUS;
1570                 break;
1571         case DP_C:
1572                 bit = DPC_HOTPLUG_INT_STATUS;
1573                 break;
1574         case DP_D:
1575                 bit = DPD_HOTPLUG_INT_STATUS;
1576                 break;
1577         default:
1578                 return connector_status_unknown;
1579         }
1580
1581         temp = I915_READ(PORT_HOTPLUG_STAT);
1582
1583         if ((temp & bit) == 0)
1584                 return connector_status_disconnected;
1585
1586         status = connector_status_disconnected;
1587         if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1588                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1589         {
1590                 if (intel_dp->dpcd[0] != 0)
1591                         status = connector_status_connected;
1592         }
1593
1594         return status;
1595 }
1596
1597 /**
1598  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1599  *
1600  * \return true if DP port is connected.
1601  * \return false if DP port is disconnected.
1602  */
1603 static enum drm_connector_status
1604 intel_dp_detect(struct drm_connector *connector, bool force)
1605 {
1606         struct intel_dp *intel_dp = intel_attached_dp(connector);
1607         struct drm_device *dev = intel_dp->base.base.dev;
1608         enum drm_connector_status status;
1609         struct edid *edid = NULL;
1610
1611         intel_dp->has_audio = false;
1612
1613         if (HAS_PCH_SPLIT(dev))
1614                 status = ironlake_dp_detect(intel_dp);
1615         else
1616                 status = g4x_dp_detect(intel_dp);
1617         if (status != connector_status_connected)
1618                 return status;
1619
1620         if (intel_dp->force_audio) {
1621                 intel_dp->has_audio = intel_dp->force_audio > 0;
1622         } else {
1623                 edid = drm_get_edid(connector, &intel_dp->adapter);
1624                 if (edid) {
1625                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1626                         connector->display_info.raw_edid = NULL;
1627                         kfree(edid);
1628                 }
1629         }
1630
1631         return connector_status_connected;
1632 }
1633
1634 static int intel_dp_get_modes(struct drm_connector *connector)
1635 {
1636         struct intel_dp *intel_dp = intel_attached_dp(connector);
1637         struct drm_device *dev = intel_dp->base.base.dev;
1638         struct drm_i915_private *dev_priv = dev->dev_private;
1639         int ret;
1640
1641         /* We should parse the EDID data and find out if it has an audio sink
1642          */
1643
1644         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1645         if (ret) {
1646                 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1647                         struct drm_display_mode *newmode;
1648                         list_for_each_entry(newmode, &connector->probed_modes,
1649                                             head) {
1650                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1651                                         dev_priv->panel_fixed_mode =
1652                                                 drm_mode_duplicate(dev, newmode);
1653                                         break;
1654                                 }
1655                         }
1656                 }
1657
1658                 return ret;
1659         }
1660
1661         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1662         if (is_edp(intel_dp)) {
1663                 if (dev_priv->panel_fixed_mode != NULL) {
1664                         struct drm_display_mode *mode;
1665                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1666                         drm_mode_probed_add(connector, mode);
1667                         return 1;
1668                 }
1669         }
1670         return 0;
1671 }
1672
1673 static bool
1674 intel_dp_detect_audio(struct drm_connector *connector)
1675 {
1676         struct intel_dp *intel_dp = intel_attached_dp(connector);
1677         struct edid *edid;
1678         bool has_audio = false;
1679
1680         edid = drm_get_edid(connector, &intel_dp->adapter);
1681         if (edid) {
1682                 has_audio = drm_detect_monitor_audio(edid);
1683
1684                 connector->display_info.raw_edid = NULL;
1685                 kfree(edid);
1686         }
1687
1688         return has_audio;
1689 }
1690
1691 static int
1692 intel_dp_set_property(struct drm_connector *connector,
1693                       struct drm_property *property,
1694                       uint64_t val)
1695 {
1696         struct drm_i915_private *dev_priv = connector->dev->dev_private;
1697         struct intel_dp *intel_dp = intel_attached_dp(connector);
1698         int ret;
1699
1700         ret = drm_connector_property_set_value(connector, property, val);
1701         if (ret)
1702                 return ret;
1703
1704         if (property == dev_priv->force_audio_property) {
1705                 int i = val;
1706                 bool has_audio;
1707
1708                 if (i == intel_dp->force_audio)
1709                         return 0;
1710
1711                 intel_dp->force_audio = i;
1712
1713                 if (i == 0)
1714                         has_audio = intel_dp_detect_audio(connector);
1715                 else
1716                         has_audio = i > 0;
1717
1718                 if (has_audio == intel_dp->has_audio)
1719                         return 0;
1720
1721                 intel_dp->has_audio = has_audio;
1722                 goto done;
1723         }
1724
1725         if (property == dev_priv->broadcast_rgb_property) {
1726                 if (val == !!intel_dp->color_range)
1727                         return 0;
1728
1729                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1730                 goto done;
1731         }
1732
1733         return -EINVAL;
1734
1735 done:
1736         if (intel_dp->base.base.crtc) {
1737                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1738                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1739                                          crtc->x, crtc->y,
1740                                          crtc->fb);
1741         }
1742
1743         return 0;
1744 }
1745
1746 static void
1747 intel_dp_destroy (struct drm_connector *connector)
1748 {
1749         drm_sysfs_connector_remove(connector);
1750         drm_connector_cleanup(connector);
1751         kfree(connector);
1752 }
1753
1754 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1755 {
1756         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1757
1758         i2c_del_adapter(&intel_dp->adapter);
1759         drm_encoder_cleanup(encoder);
1760         kfree(intel_dp);
1761 }
1762
1763 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1764         .dpms = intel_dp_dpms,
1765         .mode_fixup = intel_dp_mode_fixup,
1766         .prepare = intel_dp_prepare,
1767         .mode_set = intel_dp_mode_set,
1768         .commit = intel_dp_commit,
1769 };
1770
1771 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1772         .dpms = drm_helper_connector_dpms,
1773         .detect = intel_dp_detect,
1774         .fill_modes = drm_helper_probe_single_connector_modes,
1775         .set_property = intel_dp_set_property,
1776         .destroy = intel_dp_destroy,
1777 };
1778
1779 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1780         .get_modes = intel_dp_get_modes,
1781         .mode_valid = intel_dp_mode_valid,
1782         .best_encoder = intel_best_encoder,
1783 };
1784
1785 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1786         .destroy = intel_dp_encoder_destroy,
1787 };
1788
1789 static void
1790 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1791 {
1792         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1793
1794         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1795                 intel_dp_check_link_status(intel_dp);
1796 }
1797
1798 /* Return which DP Port should be selected for Transcoder DP control */
1799 int
1800 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->dev;
1803         struct drm_mode_config *mode_config = &dev->mode_config;
1804         struct drm_encoder *encoder;
1805
1806         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1807                 struct intel_dp *intel_dp;
1808
1809                 if (encoder->crtc != crtc)
1810                         continue;
1811
1812                 intel_dp = enc_to_intel_dp(encoder);
1813                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1814                         return intel_dp->output_reg;
1815         }
1816
1817         return -1;
1818 }
1819
1820 /* check the VBT to see whether the eDP is on DP-D port */
1821 bool intel_dpd_is_edp(struct drm_device *dev)
1822 {
1823         struct drm_i915_private *dev_priv = dev->dev_private;
1824         struct child_device_config *p_child;
1825         int i;
1826
1827         if (!dev_priv->child_dev_num)
1828                 return false;
1829
1830         for (i = 0; i < dev_priv->child_dev_num; i++) {
1831                 p_child = dev_priv->child_dev + i;
1832
1833                 if (p_child->dvo_port == PORT_IDPD &&
1834                     p_child->device_type == DEVICE_TYPE_eDP)
1835                         return true;
1836         }
1837         return false;
1838 }
1839
1840 static void
1841 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1842 {
1843         intel_attach_force_audio_property(connector);
1844         intel_attach_broadcast_rgb_property(connector);
1845 }
1846
1847 void
1848 intel_dp_init(struct drm_device *dev, int output_reg)
1849 {
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         struct drm_connector *connector;
1852         struct intel_dp *intel_dp;
1853         struct intel_encoder *intel_encoder;
1854         struct intel_connector *intel_connector;
1855         const char *name = NULL;
1856         int type;
1857
1858         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1859         if (!intel_dp)
1860                 return;
1861
1862         intel_dp->output_reg = output_reg;
1863         intel_dp->dpms_mode = -1;
1864
1865         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1866         if (!intel_connector) {
1867                 kfree(intel_dp);
1868                 return;
1869         }
1870         intel_encoder = &intel_dp->base;
1871
1872         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1873                 if (intel_dpd_is_edp(dev))
1874                         intel_dp->is_pch_edp = true;
1875
1876         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1877                 type = DRM_MODE_CONNECTOR_eDP;
1878                 intel_encoder->type = INTEL_OUTPUT_EDP;
1879         } else {
1880                 type = DRM_MODE_CONNECTOR_DisplayPort;
1881                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1882         }
1883
1884         connector = &intel_connector->base;
1885         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1886         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1887
1888         connector->polled = DRM_CONNECTOR_POLL_HPD;
1889
1890         if (output_reg == DP_B || output_reg == PCH_DP_B)
1891                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1892         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1893                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1894         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1895                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1896
1897         if (is_edp(intel_dp))
1898                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1899
1900         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1901         connector->interlace_allowed = true;
1902         connector->doublescan_allowed = 0;
1903
1904         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1905                          DRM_MODE_ENCODER_TMDS);
1906         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1907
1908         intel_connector_attach_encoder(intel_connector, intel_encoder);
1909         drm_sysfs_connector_add(connector);
1910
1911         /* Set up the DDC bus. */
1912         switch (output_reg) {
1913                 case DP_A:
1914                         name = "DPDDC-A";
1915                         break;
1916                 case DP_B:
1917                 case PCH_DP_B:
1918                         dev_priv->hotplug_supported_mask |=
1919                                 HDMIB_HOTPLUG_INT_STATUS;
1920                         name = "DPDDC-B";
1921                         break;
1922                 case DP_C:
1923                 case PCH_DP_C:
1924                         dev_priv->hotplug_supported_mask |=
1925                                 HDMIC_HOTPLUG_INT_STATUS;
1926                         name = "DPDDC-C";
1927                         break;
1928                 case DP_D:
1929                 case PCH_DP_D:
1930                         dev_priv->hotplug_supported_mask |=
1931                                 HDMID_HOTPLUG_INT_STATUS;
1932                         name = "DPDDC-D";
1933                         break;
1934         }
1935
1936         intel_dp_i2c_init(intel_dp, intel_connector, name);
1937
1938         /* Cache some DPCD data in the eDP case */
1939         if (is_edp(intel_dp)) {
1940                 int ret;
1941                 u32 pp_on, pp_div;
1942
1943                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
1944                 pp_div = I915_READ(PCH_PP_DIVISOR);
1945
1946                 /* Get T3 & T12 values (note: VESA not bspec terminology) */
1947                 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
1948                 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
1949                 dev_priv->panel_t12 = pp_div & 0xf;
1950                 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
1951
1952                 ironlake_edp_panel_vdd_on(intel_dp);
1953                 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1954                                                intel_dp->dpcd,
1955                                                sizeof(intel_dp->dpcd));
1956                 ironlake_edp_panel_vdd_off(intel_dp);
1957                 if (ret == sizeof(intel_dp->dpcd)) {
1958                         if (intel_dp->dpcd[0] >= 0x11)
1959                                 dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1960                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1961                 } else {
1962                         /* if this fails, presume the device is a ghost */
1963                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
1964                         intel_dp_encoder_destroy(&intel_dp->base.base);
1965                         intel_dp_destroy(&intel_connector->base);
1966                         return;
1967                 }
1968         }
1969
1970         intel_encoder->hot_plug = intel_dp_hot_plug;
1971
1972         if (is_edp(intel_dp)) {
1973                 /* initialize panel mode from VBT if available for eDP */
1974                 if (dev_priv->lfp_lvds_vbt_mode) {
1975                         dev_priv->panel_fixed_mode =
1976                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1977                         if (dev_priv->panel_fixed_mode) {
1978                                 dev_priv->panel_fixed_mode->type |=
1979                                         DRM_MODE_TYPE_PREFERRED;
1980                         }
1981                 }
1982         }
1983
1984         intel_dp_add_properties(intel_dp, connector);
1985
1986         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1987          * 0xd.  Failure to do so will result in spurious interrupts being
1988          * generated on the port when a cable is not attached.
1989          */
1990         if (IS_G4X(dev) && !IS_GM45(dev)) {
1991                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1992                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1993         }
1994 }