]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
ec26ee7ca9929cf63d9094efc3d626ebdcd984d0
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
46 #define IS_PCH_eDP(i) ((i)->is_pch_edp)
47
48 struct intel_dp {
49         struct intel_encoder base;
50         uint32_t output_reg;
51         uint32_t DP;
52         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
53         bool has_audio;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[4];
58         struct i2c_adapter adapter;
59         struct i2c_algo_dp_aux_data algo;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         uint8_t link_status[DP_LINK_STATUS_SIZE];
63 };
64
65 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
66 {
67         return container_of(encoder, struct intel_dp, base.base);
68 }
69
70 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
71 {
72         return container_of(intel_attached_encoder(connector),
73                             struct intel_dp, base);
74 }
75
76 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
77 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
78 static void intel_dp_link_down(struct intel_dp *intel_dp);
79
80 void
81 intel_edp_link_config (struct intel_encoder *intel_encoder,
82                        int *lane_num, int *link_bw)
83 {
84         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
85
86         *lane_num = intel_dp->lane_count;
87         if (intel_dp->link_bw == DP_LINK_BW_1_62)
88                 *link_bw = 162000;
89         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
90                 *link_bw = 270000;
91 }
92
93 static int
94 intel_dp_max_lane_count(struct intel_dp *intel_dp)
95 {
96         int max_lane_count = 4;
97
98         if (intel_dp->dpcd[0] >= 0x11) {
99                 max_lane_count = intel_dp->dpcd[2] & 0x1f;
100                 switch (max_lane_count) {
101                 case 1: case 2: case 4:
102                         break;
103                 default:
104                         max_lane_count = 4;
105                 }
106         }
107         return max_lane_count;
108 }
109
110 static int
111 intel_dp_max_link_bw(struct intel_dp *intel_dp)
112 {
113         int max_link_bw = intel_dp->dpcd[1];
114
115         switch (max_link_bw) {
116         case DP_LINK_BW_1_62:
117         case DP_LINK_BW_2_7:
118                 break;
119         default:
120                 max_link_bw = DP_LINK_BW_1_62;
121                 break;
122         }
123         return max_link_bw;
124 }
125
126 static int
127 intel_dp_link_clock(uint8_t link_bw)
128 {
129         if (link_bw == DP_LINK_BW_2_7)
130                 return 270000;
131         else
132                 return 162000;
133 }
134
135 /* I think this is a fiction */
136 static int
137 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
142                 return (pixel_clock * dev_priv->edp_bpp) / 8;
143         else
144                 return pixel_clock * 3;
145 }
146
147 static int
148 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
149 {
150         return (max_link_clock * max_lanes * 8) / 10;
151 }
152
153 static int
154 intel_dp_mode_valid(struct drm_connector *connector,
155                     struct drm_display_mode *mode)
156 {
157         struct intel_dp *intel_dp = intel_attached_dp(connector);
158         struct drm_device *dev = connector->dev;
159         struct drm_i915_private *dev_priv = dev->dev_private;
160         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
161         int max_lanes = intel_dp_max_lane_count(intel_dp);
162
163         if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
164             dev_priv->panel_fixed_mode) {
165                 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
166                         return MODE_PANEL;
167
168                 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
169                         return MODE_PANEL;
170         }
171
172         /* only refuse the mode on non eDP since we have seen some wierd eDP panels
173            which are outside spec tolerances but somehow work by magic */
174         if (!IS_eDP(intel_dp) &&
175             (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
176              > intel_dp_max_data_rate(max_link_clock, max_lanes)))
177                 return MODE_CLOCK_HIGH;
178
179         if (mode->clock < 10000)
180                 return MODE_CLOCK_LOW;
181
182         return MODE_OK;
183 }
184
185 static uint32_t
186 pack_aux(uint8_t *src, int src_bytes)
187 {
188         int     i;
189         uint32_t v = 0;
190
191         if (src_bytes > 4)
192                 src_bytes = 4;
193         for (i = 0; i < src_bytes; i++)
194                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
195         return v;
196 }
197
198 static void
199 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
200 {
201         int i;
202         if (dst_bytes > 4)
203                 dst_bytes = 4;
204         for (i = 0; i < dst_bytes; i++)
205                 dst[i] = src >> ((3-i) * 8);
206 }
207
208 /* hrawclock is 1/4 the FSB frequency */
209 static int
210 intel_hrawclk(struct drm_device *dev)
211 {
212         struct drm_i915_private *dev_priv = dev->dev_private;
213         uint32_t clkcfg;
214
215         clkcfg = I915_READ(CLKCFG);
216         switch (clkcfg & CLKCFG_FSB_MASK) {
217         case CLKCFG_FSB_400:
218                 return 100;
219         case CLKCFG_FSB_533:
220                 return 133;
221         case CLKCFG_FSB_667:
222                 return 166;
223         case CLKCFG_FSB_800:
224                 return 200;
225         case CLKCFG_FSB_1067:
226                 return 266;
227         case CLKCFG_FSB_1333:
228                 return 333;
229         /* these two are just a guess; one of them might be right */
230         case CLKCFG_FSB_1600:
231         case CLKCFG_FSB_1600_ALT:
232                 return 400;
233         default:
234                 return 133;
235         }
236 }
237
238 static int
239 intel_dp_aux_ch(struct intel_dp *intel_dp,
240                 uint8_t *send, int send_bytes,
241                 uint8_t *recv, int recv_size)
242 {
243         uint32_t output_reg = intel_dp->output_reg;
244         struct drm_device *dev = intel_dp->base.base.dev;
245         struct drm_i915_private *dev_priv = dev->dev_private;
246         uint32_t ch_ctl = output_reg + 0x10;
247         uint32_t ch_data = ch_ctl + 4;
248         int i;
249         int recv_bytes;
250         uint32_t status;
251         uint32_t aux_clock_divider;
252         int try, precharge;
253
254         /* The clock divider is based off the hrawclk,
255          * and would like to run at 2MHz. So, take the
256          * hrawclk value and divide by 2 and use that
257          *
258          * Note that PCH attached eDP panels should use a 125MHz input
259          * clock divider.
260          */
261         if (IS_eDP(intel_dp) && !IS_PCH_eDP(intel_dp)) {
262                 if (IS_GEN6(dev))
263                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
264                 else
265                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
266         } else if (HAS_PCH_SPLIT(dev))
267                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
268         else
269                 aux_clock_divider = intel_hrawclk(dev) / 2;
270
271         if (IS_GEN6(dev))
272                 precharge = 3;
273         else
274                 precharge = 5;
275
276         if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
277                 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
278                           I915_READ(ch_ctl));
279                 return -EBUSY;
280         }
281
282         /* Must try at least 3 times according to DP spec */
283         for (try = 0; try < 5; try++) {
284                 /* Load the send data into the aux channel data registers */
285                 for (i = 0; i < send_bytes; i += 4)
286                         I915_WRITE(ch_data + i,
287                                    pack_aux(send + i, send_bytes - i));
288         
289                 /* Send the command and wait for it to complete */
290                 I915_WRITE(ch_ctl,
291                            DP_AUX_CH_CTL_SEND_BUSY |
292                            DP_AUX_CH_CTL_TIME_OUT_400us |
293                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
294                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
295                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
296                            DP_AUX_CH_CTL_DONE |
297                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
298                            DP_AUX_CH_CTL_RECEIVE_ERROR);
299                 for (;;) {
300                         status = I915_READ(ch_ctl);
301                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
302                                 break;
303                         udelay(100);
304                 }
305         
306                 /* Clear done status and any errors */
307                 I915_WRITE(ch_ctl,
308                            status |
309                            DP_AUX_CH_CTL_DONE |
310                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
311                            DP_AUX_CH_CTL_RECEIVE_ERROR);
312                 if (status & DP_AUX_CH_CTL_DONE)
313                         break;
314         }
315
316         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
317                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
318                 return -EBUSY;
319         }
320
321         /* Check for timeout or receive error.
322          * Timeouts occur when the sink is not connected
323          */
324         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
325                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
326                 return -EIO;
327         }
328
329         /* Timeouts occur when the device isn't connected, so they're
330          * "normal" -- don't fill the kernel log with these */
331         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
332                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
333                 return -ETIMEDOUT;
334         }
335
336         /* Unload any bytes sent back from the other side */
337         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
338                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
339         if (recv_bytes > recv_size)
340                 recv_bytes = recv_size;
341         
342         for (i = 0; i < recv_bytes; i += 4)
343                 unpack_aux(I915_READ(ch_data + i),
344                            recv + i, recv_bytes - i);
345
346         return recv_bytes;
347 }
348
349 /* Write data to the aux channel in native mode */
350 static int
351 intel_dp_aux_native_write(struct intel_dp *intel_dp,
352                           uint16_t address, uint8_t *send, int send_bytes)
353 {
354         int ret;
355         uint8_t msg[20];
356         int msg_bytes;
357         uint8_t ack;
358
359         if (send_bytes > 16)
360                 return -1;
361         msg[0] = AUX_NATIVE_WRITE << 4;
362         msg[1] = address >> 8;
363         msg[2] = address & 0xff;
364         msg[3] = send_bytes - 1;
365         memcpy(&msg[4], send, send_bytes);
366         msg_bytes = send_bytes + 4;
367         for (;;) {
368                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
369                 if (ret < 0)
370                         return ret;
371                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
372                         break;
373                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
374                         udelay(100);
375                 else
376                         return -EIO;
377         }
378         return send_bytes;
379 }
380
381 /* Write a single byte to the aux channel in native mode */
382 static int
383 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
384                             uint16_t address, uint8_t byte)
385 {
386         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
387 }
388
389 /* read bytes from a native aux channel */
390 static int
391 intel_dp_aux_native_read(struct intel_dp *intel_dp,
392                          uint16_t address, uint8_t *recv, int recv_bytes)
393 {
394         uint8_t msg[4];
395         int msg_bytes;
396         uint8_t reply[20];
397         int reply_bytes;
398         uint8_t ack;
399         int ret;
400
401         msg[0] = AUX_NATIVE_READ << 4;
402         msg[1] = address >> 8;
403         msg[2] = address & 0xff;
404         msg[3] = recv_bytes - 1;
405
406         msg_bytes = 4;
407         reply_bytes = recv_bytes + 1;
408
409         for (;;) {
410                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
411                                       reply, reply_bytes);
412                 if (ret == 0)
413                         return -EPROTO;
414                 if (ret < 0)
415                         return ret;
416                 ack = reply[0];
417                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
418                         memcpy(recv, reply + 1, ret - 1);
419                         return ret - 1;
420                 }
421                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
422                         udelay(100);
423                 else
424                         return -EIO;
425         }
426 }
427
428 static int
429 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
430                     uint8_t write_byte, uint8_t *read_byte)
431 {
432         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
433         struct intel_dp *intel_dp = container_of(adapter,
434                                                 struct intel_dp,
435                                                 adapter);
436         uint16_t address = algo_data->address;
437         uint8_t msg[5];
438         uint8_t reply[2];
439         int msg_bytes;
440         int reply_bytes;
441         int ret;
442
443         /* Set up the command byte */
444         if (mode & MODE_I2C_READ)
445                 msg[0] = AUX_I2C_READ << 4;
446         else
447                 msg[0] = AUX_I2C_WRITE << 4;
448
449         if (!(mode & MODE_I2C_STOP))
450                 msg[0] |= AUX_I2C_MOT << 4;
451
452         msg[1] = address >> 8;
453         msg[2] = address;
454
455         switch (mode) {
456         case MODE_I2C_WRITE:
457                 msg[3] = 0;
458                 msg[4] = write_byte;
459                 msg_bytes = 5;
460                 reply_bytes = 1;
461                 break;
462         case MODE_I2C_READ:
463                 msg[3] = 0;
464                 msg_bytes = 4;
465                 reply_bytes = 2;
466                 break;
467         default:
468                 msg_bytes = 3;
469                 reply_bytes = 1;
470                 break;
471         }
472
473         for (;;) {
474           ret = intel_dp_aux_ch(intel_dp,
475                                 msg, msg_bytes,
476                                 reply, reply_bytes);
477                 if (ret < 0) {
478                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
479                         return ret;
480                 }
481                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
482                 case AUX_I2C_REPLY_ACK:
483                         if (mode == MODE_I2C_READ) {
484                                 *read_byte = reply[1];
485                         }
486                         return reply_bytes - 1;
487                 case AUX_I2C_REPLY_NACK:
488                         DRM_DEBUG_KMS("aux_ch nack\n");
489                         return -EREMOTEIO;
490                 case AUX_I2C_REPLY_DEFER:
491                         DRM_DEBUG_KMS("aux_ch defer\n");
492                         udelay(100);
493                         break;
494                 default:
495                         DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
496                         return -EREMOTEIO;
497                 }
498         }
499 }
500
501 static int
502 intel_dp_i2c_init(struct intel_dp *intel_dp,
503                   struct intel_connector *intel_connector, const char *name)
504 {
505         DRM_DEBUG_KMS("i2c_init %s\n", name);
506         intel_dp->algo.running = false;
507         intel_dp->algo.address = 0;
508         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
509
510         memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
511         intel_dp->adapter.owner = THIS_MODULE;
512         intel_dp->adapter.class = I2C_CLASS_DDC;
513         strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
514         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
515         intel_dp->adapter.algo_data = &intel_dp->algo;
516         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
517
518         return i2c_dp_aux_add_bus(&intel_dp->adapter);
519 }
520
521 static bool
522 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
523                     struct drm_display_mode *adjusted_mode)
524 {
525         struct drm_device *dev = encoder->dev;
526         struct drm_i915_private *dev_priv = dev->dev_private;
527         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
528         int lane_count, clock;
529         int max_lane_count = intel_dp_max_lane_count(intel_dp);
530         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
531         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
532
533         if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
534             dev_priv->panel_fixed_mode) {
535                 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
536                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
537                                         mode, adjusted_mode);
538                 /*
539                  * the mode->clock is used to calculate the Data&Link M/N
540                  * of the pipe. For the eDP the fixed clock should be used.
541                  */
542                 mode->clock = dev_priv->panel_fixed_mode->clock;
543         }
544
545         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
546                 for (clock = 0; clock <= max_clock; clock++) {
547                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
548
549                         if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
550                                         <= link_avail) {
551                                 intel_dp->link_bw = bws[clock];
552                                 intel_dp->lane_count = lane_count;
553                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
554                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
555                                                 "count %d clock %d\n",
556                                        intel_dp->link_bw, intel_dp->lane_count,
557                                        adjusted_mode->clock);
558                                 return true;
559                         }
560                 }
561         }
562
563         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
564                 /* okay we failed just pick the highest */
565                 intel_dp->lane_count = max_lane_count;
566                 intel_dp->link_bw = bws[max_clock];
567                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
568                 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
569                               "count %d clock %d\n",
570                               intel_dp->link_bw, intel_dp->lane_count,
571                               adjusted_mode->clock);
572
573                 return true;
574         }
575
576         return false;
577 }
578
579 struct intel_dp_m_n {
580         uint32_t        tu;
581         uint32_t        gmch_m;
582         uint32_t        gmch_n;
583         uint32_t        link_m;
584         uint32_t        link_n;
585 };
586
587 static void
588 intel_reduce_ratio(uint32_t *num, uint32_t *den)
589 {
590         while (*num > 0xffffff || *den > 0xffffff) {
591                 *num >>= 1;
592                 *den >>= 1;
593         }
594 }
595
596 static void
597 intel_dp_compute_m_n(int bpp,
598                      int nlanes,
599                      int pixel_clock,
600                      int link_clock,
601                      struct intel_dp_m_n *m_n)
602 {
603         m_n->tu = 64;
604         m_n->gmch_m = (pixel_clock * bpp) >> 3;
605         m_n->gmch_n = link_clock * nlanes;
606         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
607         m_n->link_m = pixel_clock;
608         m_n->link_n = link_clock;
609         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
610 }
611
612 bool intel_pch_has_edp(struct drm_crtc *crtc)
613 {
614         struct drm_device *dev = crtc->dev;
615         struct drm_mode_config *mode_config = &dev->mode_config;
616         struct drm_encoder *encoder;
617
618         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
619                 struct intel_dp *intel_dp;
620
621                 if (encoder->crtc != crtc)
622                         continue;
623
624                 intel_dp = enc_to_intel_dp(encoder);
625                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
626                         return intel_dp->is_pch_edp;
627         }
628         return false;
629 }
630
631 void
632 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
633                  struct drm_display_mode *adjusted_mode)
634 {
635         struct drm_device *dev = crtc->dev;
636         struct drm_mode_config *mode_config = &dev->mode_config;
637         struct drm_encoder *encoder;
638         struct drm_i915_private *dev_priv = dev->dev_private;
639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
640         int lane_count = 4, bpp = 24;
641         struct intel_dp_m_n m_n;
642
643         /*
644          * Find the lane count in the intel_encoder private
645          */
646         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
647                 struct intel_dp *intel_dp;
648
649                 if (encoder->crtc != crtc)
650                         continue;
651
652                 intel_dp = enc_to_intel_dp(encoder);
653                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
654                         lane_count = intel_dp->lane_count;
655                         if (IS_PCH_eDP(intel_dp))
656                                 bpp = dev_priv->edp_bpp;
657                         break;
658                 }
659         }
660
661         /*
662          * Compute the GMCH and Link ratios. The '3' here is
663          * the number of bytes_per_pixel post-LUT, which we always
664          * set up for 8-bits of R/G/B, or 3 bytes total.
665          */
666         intel_dp_compute_m_n(bpp, lane_count,
667                              mode->clock, adjusted_mode->clock, &m_n);
668
669         if (HAS_PCH_SPLIT(dev)) {
670                 if (intel_crtc->pipe == 0) {
671                         I915_WRITE(TRANSA_DATA_M1,
672                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
673                                    m_n.gmch_m);
674                         I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
675                         I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
676                         I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
677                 } else {
678                         I915_WRITE(TRANSB_DATA_M1,
679                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
680                                    m_n.gmch_m);
681                         I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
682                         I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
683                         I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
684                 }
685         } else {
686                 if (intel_crtc->pipe == 0) {
687                         I915_WRITE(PIPEA_GMCH_DATA_M,
688                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
689                                    m_n.gmch_m);
690                         I915_WRITE(PIPEA_GMCH_DATA_N,
691                                    m_n.gmch_n);
692                         I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
693                         I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
694                 } else {
695                         I915_WRITE(PIPEB_GMCH_DATA_M,
696                                    ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
697                                    m_n.gmch_m);
698                         I915_WRITE(PIPEB_GMCH_DATA_N,
699                                         m_n.gmch_n);
700                         I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
701                         I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
702                 }
703         }
704 }
705
706 static void
707 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
708                   struct drm_display_mode *adjusted_mode)
709 {
710         struct drm_device *dev = encoder->dev;
711         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
712         struct drm_crtc *crtc = intel_dp->base.base.crtc;
713         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
714
715         intel_dp->DP = (DP_VOLTAGE_0_4 |
716                        DP_PRE_EMPHASIS_0);
717
718         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
719                 intel_dp->DP |= DP_SYNC_HS_HIGH;
720         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
721                 intel_dp->DP |= DP_SYNC_VS_HIGH;
722
723         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
724                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
725         else
726                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
727
728         switch (intel_dp->lane_count) {
729         case 1:
730                 intel_dp->DP |= DP_PORT_WIDTH_1;
731                 break;
732         case 2:
733                 intel_dp->DP |= DP_PORT_WIDTH_2;
734                 break;
735         case 4:
736                 intel_dp->DP |= DP_PORT_WIDTH_4;
737                 break;
738         }
739         if (intel_dp->has_audio)
740                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
741
742         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
743         intel_dp->link_configuration[0] = intel_dp->link_bw;
744         intel_dp->link_configuration[1] = intel_dp->lane_count;
745
746         /*
747          * Check for DPCD version > 1.1 and enhanced framing support
748          */
749         if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
750                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
751                 intel_dp->DP |= DP_ENHANCED_FRAMING;
752         }
753
754         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
755         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
756                 intel_dp->DP |= DP_PIPEB_SELECT;
757
758         if (IS_eDP(intel_dp)) {
759                 /* don't miss out required setting for eDP */
760                 intel_dp->DP |= DP_PLL_ENABLE;
761                 if (adjusted_mode->clock < 200000)
762                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
763                 else
764                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
765         }
766 }
767
768 /* Returns true if the panel was already on when called */
769 static bool ironlake_edp_panel_on (struct drm_device *dev)
770 {
771         struct drm_i915_private *dev_priv = dev->dev_private;
772         u32 pp;
773
774         if (I915_READ(PCH_PP_STATUS) & PP_ON)
775                 return true;
776
777         pp = I915_READ(PCH_PP_CONTROL);
778
779         /* ILK workaround: disable reset around power sequence */
780         pp &= ~PANEL_POWER_RESET;
781         I915_WRITE(PCH_PP_CONTROL, pp);
782         POSTING_READ(PCH_PP_CONTROL);
783
784         pp |= POWER_TARGET_ON;
785         I915_WRITE(PCH_PP_CONTROL, pp);
786
787         if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000))
788                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
789                           I915_READ(PCH_PP_STATUS));
790
791         pp &= ~(PANEL_UNLOCK_REGS);
792         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
793         I915_WRITE(PCH_PP_CONTROL, pp);
794         POSTING_READ(PCH_PP_CONTROL);
795
796         return false;
797 }
798
799 static void ironlake_edp_panel_off (struct drm_device *dev)
800 {
801         struct drm_i915_private *dev_priv = dev->dev_private;
802         u32 pp;
803
804         pp = I915_READ(PCH_PP_CONTROL);
805
806         /* ILK workaround: disable reset around power sequence */
807         pp &= ~PANEL_POWER_RESET;
808         I915_WRITE(PCH_PP_CONTROL, pp);
809         POSTING_READ(PCH_PP_CONTROL);
810
811         pp &= ~POWER_TARGET_ON;
812         I915_WRITE(PCH_PP_CONTROL, pp);
813
814         if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000))
815                 DRM_ERROR("panel off wait timed out: 0x%08x\n",
816                           I915_READ(PCH_PP_STATUS));
817
818         /* Make sure VDD is enabled so DP AUX will work */
819         pp |= PANEL_POWER_RESET; /* restore panel reset bit */
820         I915_WRITE(PCH_PP_CONTROL, pp);
821         POSTING_READ(PCH_PP_CONTROL);
822 }
823
824 static void ironlake_edp_panel_vdd_on(struct drm_device *dev)
825 {
826         struct drm_i915_private *dev_priv = dev->dev_private;
827         u32 pp;
828
829         pp = I915_READ(PCH_PP_CONTROL);
830         pp |= EDP_FORCE_VDD;
831         I915_WRITE(PCH_PP_CONTROL, pp);
832         POSTING_READ(PCH_PP_CONTROL);
833         msleep(300);
834 }
835
836 static void ironlake_edp_panel_vdd_off(struct drm_device *dev)
837 {
838         struct drm_i915_private *dev_priv = dev->dev_private;
839         u32 pp;
840
841         pp = I915_READ(PCH_PP_CONTROL);
842         pp &= ~EDP_FORCE_VDD;
843         I915_WRITE(PCH_PP_CONTROL, pp);
844         POSTING_READ(PCH_PP_CONTROL);
845         msleep(300);
846 }
847
848 static void ironlake_edp_backlight_on (struct drm_device *dev)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         u32 pp;
852
853         DRM_DEBUG_KMS("\n");
854         pp = I915_READ(PCH_PP_CONTROL);
855         pp |= EDP_BLC_ENABLE;
856         I915_WRITE(PCH_PP_CONTROL, pp);
857 }
858
859 static void ironlake_edp_backlight_off (struct drm_device *dev)
860 {
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         u32 pp;
863
864         DRM_DEBUG_KMS("\n");
865         pp = I915_READ(PCH_PP_CONTROL);
866         pp &= ~EDP_BLC_ENABLE;
867         I915_WRITE(PCH_PP_CONTROL, pp);
868 }
869
870 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
871 {
872         struct drm_device *dev = encoder->dev;
873         struct drm_i915_private *dev_priv = dev->dev_private;
874         u32 dpa_ctl;
875
876         DRM_DEBUG_KMS("\n");
877         dpa_ctl = I915_READ(DP_A);
878         dpa_ctl &= ~DP_PLL_ENABLE;
879         I915_WRITE(DP_A, dpa_ctl);
880 }
881
882 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
883 {
884         struct drm_device *dev = encoder->dev;
885         struct drm_i915_private *dev_priv = dev->dev_private;
886         u32 dpa_ctl;
887
888         dpa_ctl = I915_READ(DP_A);
889         dpa_ctl |= DP_PLL_ENABLE;
890         I915_WRITE(DP_A, dpa_ctl);
891         POSTING_READ(DP_A);
892         udelay(200);
893 }
894
895 static void intel_dp_prepare(struct drm_encoder *encoder)
896 {
897         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
898         struct drm_device *dev = encoder->dev;
899         struct drm_i915_private *dev_priv = dev->dev_private;
900         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
901
902         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
903                 ironlake_edp_panel_off(dev);
904                 ironlake_edp_backlight_off(dev);
905                 ironlake_edp_panel_vdd_on(dev);
906                 ironlake_edp_pll_on(encoder);
907         }
908         if (dp_reg & DP_PORT_EN)
909                 intel_dp_link_down(intel_dp);
910 }
911
912 static void intel_dp_commit(struct drm_encoder *encoder)
913 {
914         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
915         struct drm_device *dev = encoder->dev;
916
917         intel_dp_start_link_train(intel_dp);
918
919         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
920                 ironlake_edp_panel_on(dev);
921
922         intel_dp_complete_link_train(intel_dp);
923
924         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
925                 ironlake_edp_backlight_on(dev);
926 }
927
928 static void
929 intel_dp_dpms(struct drm_encoder *encoder, int mode)
930 {
931         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
932         struct drm_device *dev = encoder->dev;
933         struct drm_i915_private *dev_priv = dev->dev_private;
934         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
935
936         if (mode != DRM_MODE_DPMS_ON) {
937                 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
938                         ironlake_edp_backlight_off(dev);
939                         ironlake_edp_panel_off(dev);
940                 }
941                 if (dp_reg & DP_PORT_EN)
942                         intel_dp_link_down(intel_dp);
943                 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
944                         ironlake_edp_pll_off(encoder);
945         } else {
946                 if (!(dp_reg & DP_PORT_EN)) {
947                         intel_dp_start_link_train(intel_dp);
948                         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
949                                 ironlake_edp_panel_on(dev);
950                         intel_dp_complete_link_train(intel_dp);
951                         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
952                                 ironlake_edp_backlight_on(dev);
953                 }
954         }
955         intel_dp->dpms_mode = mode;
956 }
957
958 /*
959  * Fetch AUX CH registers 0x202 - 0x207 which contain
960  * link status information
961  */
962 static bool
963 intel_dp_get_link_status(struct intel_dp *intel_dp)
964 {
965         int ret;
966
967         ret = intel_dp_aux_native_read(intel_dp,
968                                        DP_LANE0_1_STATUS,
969                                        intel_dp->link_status, DP_LINK_STATUS_SIZE);
970         if (ret != DP_LINK_STATUS_SIZE)
971                 return false;
972         return true;
973 }
974
975 static uint8_t
976 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
977                      int r)
978 {
979         return link_status[r - DP_LANE0_1_STATUS];
980 }
981
982 static uint8_t
983 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
984                                  int lane)
985 {
986         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
987         int         s = ((lane & 1) ?
988                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
989                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
990         uint8_t l = intel_dp_link_status(link_status, i);
991
992         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
993 }
994
995 static uint8_t
996 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
997                                       int lane)
998 {
999         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1000         int         s = ((lane & 1) ?
1001                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1002                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1003         uint8_t l = intel_dp_link_status(link_status, i);
1004
1005         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1006 }
1007
1008
1009 #if 0
1010 static char     *voltage_names[] = {
1011         "0.4V", "0.6V", "0.8V", "1.2V"
1012 };
1013 static char     *pre_emph_names[] = {
1014         "0dB", "3.5dB", "6dB", "9.5dB"
1015 };
1016 static char     *link_train_names[] = {
1017         "pattern 1", "pattern 2", "idle", "off"
1018 };
1019 #endif
1020
1021 /*
1022  * These are source-specific values; current Intel hardware supports
1023  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1024  */
1025 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1026
1027 static uint8_t
1028 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1029 {
1030         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1031         case DP_TRAIN_VOLTAGE_SWING_400:
1032                 return DP_TRAIN_PRE_EMPHASIS_6;
1033         case DP_TRAIN_VOLTAGE_SWING_600:
1034                 return DP_TRAIN_PRE_EMPHASIS_6;
1035         case DP_TRAIN_VOLTAGE_SWING_800:
1036                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1037         case DP_TRAIN_VOLTAGE_SWING_1200:
1038         default:
1039                 return DP_TRAIN_PRE_EMPHASIS_0;
1040         }
1041 }
1042
1043 static void
1044 intel_get_adjust_train(struct intel_dp *intel_dp)
1045 {
1046         uint8_t v = 0;
1047         uint8_t p = 0;
1048         int lane;
1049
1050         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1051                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1052                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1053
1054                 if (this_v > v)
1055                         v = this_v;
1056                 if (this_p > p)
1057                         p = this_p;
1058         }
1059
1060         if (v >= I830_DP_VOLTAGE_MAX)
1061                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1062
1063         if (p >= intel_dp_pre_emphasis_max(v))
1064                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1065
1066         for (lane = 0; lane < 4; lane++)
1067                 intel_dp->train_set[lane] = v | p;
1068 }
1069
1070 static uint32_t
1071 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1072 {
1073         uint32_t        signal_levels = 0;
1074
1075         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1076         case DP_TRAIN_VOLTAGE_SWING_400:
1077         default:
1078                 signal_levels |= DP_VOLTAGE_0_4;
1079                 break;
1080         case DP_TRAIN_VOLTAGE_SWING_600:
1081                 signal_levels |= DP_VOLTAGE_0_6;
1082                 break;
1083         case DP_TRAIN_VOLTAGE_SWING_800:
1084                 signal_levels |= DP_VOLTAGE_0_8;
1085                 break;
1086         case DP_TRAIN_VOLTAGE_SWING_1200:
1087                 signal_levels |= DP_VOLTAGE_1_2;
1088                 break;
1089         }
1090         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1091         case DP_TRAIN_PRE_EMPHASIS_0:
1092         default:
1093                 signal_levels |= DP_PRE_EMPHASIS_0;
1094                 break;
1095         case DP_TRAIN_PRE_EMPHASIS_3_5:
1096                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1097                 break;
1098         case DP_TRAIN_PRE_EMPHASIS_6:
1099                 signal_levels |= DP_PRE_EMPHASIS_6;
1100                 break;
1101         case DP_TRAIN_PRE_EMPHASIS_9_5:
1102                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1103                 break;
1104         }
1105         return signal_levels;
1106 }
1107
1108 /* Gen6's DP voltage swing and pre-emphasis control */
1109 static uint32_t
1110 intel_gen6_edp_signal_levels(uint8_t train_set)
1111 {
1112         switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
1113         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1114                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1115         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1116                 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
1117         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1118                 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
1119         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1120                 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
1121         default:
1122                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
1123                 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1124         }
1125 }
1126
1127 static uint8_t
1128 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1129                       int lane)
1130 {
1131         int i = DP_LANE0_1_STATUS + (lane >> 1);
1132         int s = (lane & 1) * 4;
1133         uint8_t l = intel_dp_link_status(link_status, i);
1134
1135         return (l >> s) & 0xf;
1136 }
1137
1138 /* Check for clock recovery is done on all channels */
1139 static bool
1140 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1141 {
1142         int lane;
1143         uint8_t lane_status;
1144
1145         for (lane = 0; lane < lane_count; lane++) {
1146                 lane_status = intel_get_lane_status(link_status, lane);
1147                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1148                         return false;
1149         }
1150         return true;
1151 }
1152
1153 /* Check to see if channel eq is done on all channels */
1154 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1155                          DP_LANE_CHANNEL_EQ_DONE|\
1156                          DP_LANE_SYMBOL_LOCKED)
1157 static bool
1158 intel_channel_eq_ok(struct intel_dp *intel_dp)
1159 {
1160         uint8_t lane_align;
1161         uint8_t lane_status;
1162         int lane;
1163
1164         lane_align = intel_dp_link_status(intel_dp->link_status,
1165                                           DP_LANE_ALIGN_STATUS_UPDATED);
1166         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1167                 return false;
1168         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1169                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1170                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1171                         return false;
1172         }
1173         return true;
1174 }
1175
1176 static bool
1177 intel_dp_set_link_train(struct intel_dp *intel_dp,
1178                         uint32_t dp_reg_value,
1179                         uint8_t dp_train_pat,
1180                         bool first)
1181 {
1182         struct drm_device *dev = intel_dp->base.base.dev;
1183         struct drm_i915_private *dev_priv = dev->dev_private;
1184         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1185         int ret;
1186
1187         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1188         POSTING_READ(intel_dp->output_reg);
1189         if (first)
1190                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1191
1192         intel_dp_aux_native_write_1(intel_dp,
1193                                     DP_TRAINING_PATTERN_SET,
1194                                     dp_train_pat);
1195
1196         ret = intel_dp_aux_native_write(intel_dp,
1197                                         DP_TRAINING_LANE0_SET, intel_dp->train_set, 4);
1198         if (ret != 4)
1199                 return false;
1200
1201         return true;
1202 }
1203
1204 /* Enable corresponding port and start training pattern 1 */
1205 static void
1206 intel_dp_start_link_train(struct intel_dp *intel_dp)
1207 {
1208         struct drm_device *dev = intel_dp->base.base.dev;
1209         int i;
1210         uint8_t voltage;
1211         bool clock_recovery = false;
1212         bool first = true;
1213         int tries;
1214         u32 reg;
1215         uint32_t DP = intel_dp->DP;
1216
1217         /* Write the link configuration data */
1218         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1219                                   intel_dp->link_configuration,
1220                                   DP_LINK_CONFIGURATION_SIZE);
1221
1222         DP |= DP_PORT_EN;
1223         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1224                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1225         else
1226                 DP &= ~DP_LINK_TRAIN_MASK;
1227         memset(intel_dp->train_set, 0, 4);
1228         voltage = 0xff;
1229         tries = 0;
1230         clock_recovery = false;
1231         for (;;) {
1232                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1233                 uint32_t    signal_levels;
1234                 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1235                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1236                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1237                 } else {
1238                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1239                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1240                 }
1241
1242                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1243                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1244                 else
1245                         reg = DP | DP_LINK_TRAIN_PAT_1;
1246
1247                 if (!intel_dp_set_link_train(intel_dp, reg,
1248                                              DP_TRAINING_PATTERN_1, first))
1249                         break;
1250                 first = false;
1251                 /* Set training pattern 1 */
1252
1253                 udelay(100);
1254                 if (!intel_dp_get_link_status(intel_dp))
1255                         break;
1256
1257                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1258                         clock_recovery = true;
1259                         break;
1260                 }
1261
1262                 /* Check to see if we've tried the max voltage */
1263                 for (i = 0; i < intel_dp->lane_count; i++)
1264                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1265                                 break;
1266                 if (i == intel_dp->lane_count)
1267                         break;
1268
1269                 /* Check to see if we've tried the same voltage 5 times */
1270                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1271                         ++tries;
1272                         if (tries == 5)
1273                                 break;
1274                 } else
1275                         tries = 0;
1276                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1277
1278                 /* Compute new intel_dp->train_set as requested by target */
1279                 intel_get_adjust_train(intel_dp);
1280         }
1281
1282         intel_dp->DP = DP;
1283 }
1284
1285 static void
1286 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1287 {
1288         struct drm_device *dev = intel_dp->base.base.dev;
1289         struct drm_i915_private *dev_priv = dev->dev_private;
1290         bool channel_eq = false;
1291         int tries;
1292         u32 reg;
1293         uint32_t DP = intel_dp->DP;
1294
1295         /* channel equalization */
1296         tries = 0;
1297         channel_eq = false;
1298         for (;;) {
1299                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1300                 uint32_t    signal_levels;
1301
1302                 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1303                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1304                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1305                 } else {
1306                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1307                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1308                 }
1309
1310                 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1311                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1312                 else
1313                         reg = DP | DP_LINK_TRAIN_PAT_2;
1314
1315                 /* channel eq pattern */
1316                 if (!intel_dp_set_link_train(intel_dp, reg,
1317                                              DP_TRAINING_PATTERN_2,
1318                                              false))
1319                         break;
1320
1321                 udelay(400);
1322                 if (!intel_dp_get_link_status(intel_dp))
1323                         break;
1324
1325                 if (intel_channel_eq_ok(intel_dp)) {
1326                         channel_eq = true;
1327                         break;
1328                 }
1329
1330                 /* Try 5 times */
1331                 if (tries > 5)
1332                         break;
1333
1334                 /* Compute new intel_dp->train_set as requested by target */
1335                 intel_get_adjust_train(intel_dp);
1336                 ++tries;
1337         }
1338
1339         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1340                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1341         else
1342                 reg = DP | DP_LINK_TRAIN_OFF;
1343
1344         I915_WRITE(intel_dp->output_reg, reg);
1345         POSTING_READ(intel_dp->output_reg);
1346         intel_dp_aux_native_write_1(intel_dp,
1347                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1348 }
1349
1350 static void
1351 intel_dp_link_down(struct intel_dp *intel_dp)
1352 {
1353         struct drm_device *dev = intel_dp->base.base.dev;
1354         struct drm_i915_private *dev_priv = dev->dev_private;
1355         uint32_t DP = intel_dp->DP;
1356
1357         DRM_DEBUG_KMS("\n");
1358
1359         if (IS_eDP(intel_dp)) {
1360                 DP &= ~DP_PLL_ENABLE;
1361                 I915_WRITE(intel_dp->output_reg, DP);
1362                 POSTING_READ(intel_dp->output_reg);
1363                 udelay(100);
1364         }
1365
1366         if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
1367                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1368                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1369         } else {
1370                 DP &= ~DP_LINK_TRAIN_MASK;
1371                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1372         }
1373         POSTING_READ(intel_dp->output_reg);
1374
1375         msleep(17);
1376
1377         if (IS_eDP(intel_dp))
1378                 DP |= DP_LINK_TRAIN_OFF;
1379         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1380         POSTING_READ(intel_dp->output_reg);
1381 }
1382
1383 /*
1384  * According to DP spec
1385  * 5.1.2:
1386  *  1. Read DPCD
1387  *  2. Configure link according to Receiver Capabilities
1388  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1389  *  4. Check link status on receipt of hot-plug interrupt
1390  */
1391
1392 static void
1393 intel_dp_check_link_status(struct intel_dp *intel_dp)
1394 {
1395         if (!intel_dp->base.base.crtc)
1396                 return;
1397
1398         if (!intel_dp_get_link_status(intel_dp)) {
1399                 intel_dp_link_down(intel_dp);
1400                 return;
1401         }
1402
1403         if (!intel_channel_eq_ok(intel_dp)) {
1404                 intel_dp_start_link_train(intel_dp);
1405                 intel_dp_complete_link_train(intel_dp);
1406         }
1407 }
1408
1409 static enum drm_connector_status
1410 ironlake_dp_detect(struct drm_connector *connector)
1411 {
1412         struct intel_dp *intel_dp = intel_attached_dp(connector);
1413         enum drm_connector_status status;
1414
1415         /* Panel needs power for AUX to work */
1416         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
1417                 ironlake_edp_panel_vdd_on(connector->dev);
1418         status = connector_status_disconnected;
1419         if (intel_dp_aux_native_read(intel_dp,
1420                                      0x000, intel_dp->dpcd,
1421                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1422         {
1423                 if (intel_dp->dpcd[0] != 0)
1424                         status = connector_status_connected;
1425         }
1426         DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1427                       intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1428         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
1429                 ironlake_edp_panel_vdd_off(connector->dev);
1430         return status;
1431 }
1432
1433 /**
1434  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1435  *
1436  * \return true if DP port is connected.
1437  * \return false if DP port is disconnected.
1438  */
1439 static enum drm_connector_status
1440 intel_dp_detect(struct drm_connector *connector, bool force)
1441 {
1442         struct intel_dp *intel_dp = intel_attached_dp(connector);
1443         struct drm_device *dev = intel_dp->base.base.dev;
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         uint32_t temp, bit;
1446         enum drm_connector_status status;
1447
1448         intel_dp->has_audio = false;
1449
1450         if (HAS_PCH_SPLIT(dev))
1451                 return ironlake_dp_detect(connector);
1452
1453         switch (intel_dp->output_reg) {
1454         case DP_B:
1455                 bit = DPB_HOTPLUG_INT_STATUS;
1456                 break;
1457         case DP_C:
1458                 bit = DPC_HOTPLUG_INT_STATUS;
1459                 break;
1460         case DP_D:
1461                 bit = DPD_HOTPLUG_INT_STATUS;
1462                 break;
1463         default:
1464                 return connector_status_unknown;
1465         }
1466
1467         temp = I915_READ(PORT_HOTPLUG_STAT);
1468
1469         if ((temp & bit) == 0)
1470                 return connector_status_disconnected;
1471
1472         status = connector_status_disconnected;
1473         if (intel_dp_aux_native_read(intel_dp,
1474                                      0x000, intel_dp->dpcd,
1475                                      sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1476         {
1477                 if (intel_dp->dpcd[0] != 0)
1478                         status = connector_status_connected;
1479         }
1480         return status;
1481 }
1482
1483 static int intel_dp_get_modes(struct drm_connector *connector)
1484 {
1485         struct intel_dp *intel_dp = intel_attached_dp(connector);
1486         struct drm_device *dev = intel_dp->base.base.dev;
1487         struct drm_i915_private *dev_priv = dev->dev_private;
1488         int ret;
1489
1490         /* We should parse the EDID data and find out if it has an audio sink
1491          */
1492
1493         ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1494         if (ret) {
1495                 if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
1496                     !dev_priv->panel_fixed_mode) {
1497                         struct drm_display_mode *newmode;
1498                         list_for_each_entry(newmode, &connector->probed_modes,
1499                                             head) {
1500                                 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1501                                         dev_priv->panel_fixed_mode =
1502                                                 drm_mode_duplicate(dev, newmode);
1503                                         break;
1504                                 }
1505                         }
1506                 }
1507
1508                 return ret;
1509         }
1510
1511         /* if eDP has no EDID, try to use fixed panel mode from VBT */
1512         if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
1513                 if (dev_priv->panel_fixed_mode != NULL) {
1514                         struct drm_display_mode *mode;
1515                         mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1516                         drm_mode_probed_add(connector, mode);
1517                         return 1;
1518                 }
1519         }
1520         return 0;
1521 }
1522
1523 static void
1524 intel_dp_destroy (struct drm_connector *connector)
1525 {
1526         drm_sysfs_connector_remove(connector);
1527         drm_connector_cleanup(connector);
1528         kfree(connector);
1529 }
1530
1531 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1532 {
1533         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1534
1535         i2c_del_adapter(&intel_dp->adapter);
1536         drm_encoder_cleanup(encoder);
1537         kfree(intel_dp);
1538 }
1539
1540 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1541         .dpms = intel_dp_dpms,
1542         .mode_fixup = intel_dp_mode_fixup,
1543         .prepare = intel_dp_prepare,
1544         .mode_set = intel_dp_mode_set,
1545         .commit = intel_dp_commit,
1546 };
1547
1548 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1549         .dpms = drm_helper_connector_dpms,
1550         .detect = intel_dp_detect,
1551         .fill_modes = drm_helper_probe_single_connector_modes,
1552         .destroy = intel_dp_destroy,
1553 };
1554
1555 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1556         .get_modes = intel_dp_get_modes,
1557         .mode_valid = intel_dp_mode_valid,
1558         .best_encoder = intel_best_encoder,
1559 };
1560
1561 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1562         .destroy = intel_dp_encoder_destroy,
1563 };
1564
1565 static void
1566 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1567 {
1568         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1569
1570         if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1571                 intel_dp_check_link_status(intel_dp);
1572 }
1573
1574 /* Return which DP Port should be selected for Transcoder DP control */
1575 int
1576 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1577 {
1578         struct drm_device *dev = crtc->dev;
1579         struct drm_mode_config *mode_config = &dev->mode_config;
1580         struct drm_encoder *encoder;
1581
1582         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1583                 struct intel_dp *intel_dp;
1584
1585                 if (encoder->crtc != crtc)
1586                         continue;
1587
1588                 intel_dp = enc_to_intel_dp(encoder);
1589                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1590                         return intel_dp->output_reg;
1591         }
1592
1593         return -1;
1594 }
1595
1596 /* check the VBT to see whether the eDP is on DP-D port */
1597 bool intel_dpd_is_edp(struct drm_device *dev)
1598 {
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         struct child_device_config *p_child;
1601         int i;
1602
1603         if (!dev_priv->child_dev_num)
1604                 return false;
1605
1606         for (i = 0; i < dev_priv->child_dev_num; i++) {
1607                 p_child = dev_priv->child_dev + i;
1608
1609                 if (p_child->dvo_port == PORT_IDPD &&
1610                     p_child->device_type == DEVICE_TYPE_eDP)
1611                         return true;
1612         }
1613         return false;
1614 }
1615
1616 void
1617 intel_dp_init(struct drm_device *dev, int output_reg)
1618 {
1619         struct drm_i915_private *dev_priv = dev->dev_private;
1620         struct drm_connector *connector;
1621         struct intel_dp *intel_dp;
1622         struct intel_encoder *intel_encoder;
1623         struct intel_connector *intel_connector;
1624         const char *name = NULL;
1625         int type;
1626
1627         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1628         if (!intel_dp)
1629                 return;
1630
1631         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1632         if (!intel_connector) {
1633                 kfree(intel_dp);
1634                 return;
1635         }
1636         intel_encoder = &intel_dp->base;
1637
1638         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1639                 if (intel_dpd_is_edp(dev))
1640                         intel_dp->is_pch_edp = true;
1641
1642         if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1643                 type = DRM_MODE_CONNECTOR_eDP;
1644                 intel_encoder->type = INTEL_OUTPUT_EDP;
1645         } else {
1646                 type = DRM_MODE_CONNECTOR_DisplayPort;
1647                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1648         }
1649
1650         connector = &intel_connector->base;
1651         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1652         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1653
1654         connector->polled = DRM_CONNECTOR_POLL_HPD;
1655
1656         if (output_reg == DP_B || output_reg == PCH_DP_B)
1657                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1658         else if (output_reg == DP_C || output_reg == PCH_DP_C)
1659                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1660         else if (output_reg == DP_D || output_reg == PCH_DP_D)
1661                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1662
1663         if (IS_eDP(intel_dp))
1664                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1665
1666         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1667         connector->interlace_allowed = true;
1668         connector->doublescan_allowed = 0;
1669
1670         intel_dp->output_reg = output_reg;
1671         intel_dp->has_audio = false;
1672         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1673
1674         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1675                          DRM_MODE_ENCODER_TMDS);
1676         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1677
1678         intel_connector_attach_encoder(intel_connector, intel_encoder);
1679         drm_sysfs_connector_add(connector);
1680
1681         /* Set up the DDC bus. */
1682         switch (output_reg) {
1683                 case DP_A:
1684                         name = "DPDDC-A";
1685                         break;
1686                 case DP_B:
1687                 case PCH_DP_B:
1688                         dev_priv->hotplug_supported_mask |=
1689                                 HDMIB_HOTPLUG_INT_STATUS;
1690                         name = "DPDDC-B";
1691                         break;
1692                 case DP_C:
1693                 case PCH_DP_C:
1694                         dev_priv->hotplug_supported_mask |=
1695                                 HDMIC_HOTPLUG_INT_STATUS;
1696                         name = "DPDDC-C";
1697                         break;
1698                 case DP_D:
1699                 case PCH_DP_D:
1700                         dev_priv->hotplug_supported_mask |=
1701                                 HDMID_HOTPLUG_INT_STATUS;
1702                         name = "DPDDC-D";
1703                         break;
1704         }
1705
1706         intel_dp_i2c_init(intel_dp, intel_connector, name);
1707
1708         intel_encoder->hot_plug = intel_dp_hot_plug;
1709
1710         if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1711                 /* initialize panel mode from VBT if available for eDP */
1712                 if (dev_priv->lfp_lvds_vbt_mode) {
1713                         dev_priv->panel_fixed_mode =
1714                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1715                         if (dev_priv->panel_fixed_mode) {
1716                                 dev_priv->panel_fixed_mode->type |=
1717                                         DRM_MODE_TYPE_PREFERRED;
1718                         }
1719                 }
1720         }
1721
1722         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1723          * 0xd.  Failure to do so will result in spurious interrupts being
1724          * generated on the port when a cable is not attached.
1725          */
1726         if (IS_G4X(dev) && !IS_GM45(dev)) {
1727                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1728                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1729         }
1730 }