]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Use dev_priv consistently through the intel_frontbuffer interface
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195                     struct drm_display_mode *mode)
196 {
197         struct intel_dp *intel_dp = intel_attached_dp(connector);
198         struct intel_connector *intel_connector = to_intel_connector(connector);
199         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200         int target_clock = mode->clock;
201         int max_rate, mode_rate, max_lanes, max_link_clock;
202         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204         if (is_edp(intel_dp) && fixed_mode) {
205                 if (mode->hdisplay > fixed_mode->hdisplay)
206                         return MODE_PANEL;
207
208                 if (mode->vdisplay > fixed_mode->vdisplay)
209                         return MODE_PANEL;
210
211                 target_clock = fixed_mode->clock;
212         }
213
214         max_link_clock = intel_dp_max_link_rate(intel_dp);
215         max_lanes = intel_dp_max_lane_count(intel_dp);
216
217         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218         mode_rate = intel_dp_link_required(target_clock, 18);
219
220         if (mode_rate > max_rate || target_clock > max_dotclk)
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227                 return MODE_H_ILLEGAL;
228
229         return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234         int     i;
235         uint32_t v = 0;
236
237         if (src_bytes > 4)
238                 src_bytes = 4;
239         for (i = 0; i < src_bytes; i++)
240                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241         return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246         int i;
247         if (dst_bytes > 4)
248                 dst_bytes = 4;
249         for (i = 0; i < dst_bytes; i++)
250                 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255                                     struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258                                               struct intel_dp *intel_dp);
259
260 static void pps_lock(struct intel_dp *intel_dp)
261 {
262         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
263         struct intel_encoder *encoder = &intel_dig_port->base;
264         struct drm_device *dev = encoder->base.dev;
265         struct drm_i915_private *dev_priv = to_i915(dev);
266         enum intel_display_power_domain power_domain;
267
268         /*
269          * See vlv_power_sequencer_reset() why we need
270          * a power domain reference here.
271          */
272         power_domain = intel_display_port_aux_power_domain(encoder);
273         intel_display_power_get(dev_priv, power_domain);
274
275         mutex_lock(&dev_priv->pps_mutex);
276 }
277
278 static void pps_unlock(struct intel_dp *intel_dp)
279 {
280         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
281         struct intel_encoder *encoder = &intel_dig_port->base;
282         struct drm_device *dev = encoder->base.dev;
283         struct drm_i915_private *dev_priv = to_i915(dev);
284         enum intel_display_power_domain power_domain;
285
286         mutex_unlock(&dev_priv->pps_mutex);
287
288         power_domain = intel_display_port_aux_power_domain(encoder);
289         intel_display_power_put(dev_priv, power_domain);
290 }
291
292 static void
293 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
294 {
295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296         struct drm_device *dev = intel_dig_port->base.base.dev;
297         struct drm_i915_private *dev_priv = to_i915(dev);
298         enum pipe pipe = intel_dp->pps_pipe;
299         bool pll_enabled, release_cl_override = false;
300         enum dpio_phy phy = DPIO_PHY(pipe);
301         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
302         uint32_t DP;
303
304         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
305                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
306                  pipe_name(pipe), port_name(intel_dig_port->port)))
307                 return;
308
309         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
310                       pipe_name(pipe), port_name(intel_dig_port->port));
311
312         /* Preserve the BIOS-computed detected bit. This is
313          * supposed to be read-only.
314          */
315         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
316         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
317         DP |= DP_PORT_WIDTH(1);
318         DP |= DP_LINK_TRAIN_PAT_1;
319
320         if (IS_CHERRYVIEW(dev))
321                 DP |= DP_PIPE_SELECT_CHV(pipe);
322         else if (pipe == PIPE_B)
323                 DP |= DP_PIPEB_SELECT;
324
325         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
326
327         /*
328          * The DPLL for the pipe must be enabled for this to work.
329          * So enable temporarily it if it's not already enabled.
330          */
331         if (!pll_enabled) {
332                 release_cl_override = IS_CHERRYVIEW(dev) &&
333                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
334
335                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
336                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
337                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
338                                   pipe_name(pipe));
339                         return;
340                 }
341         }
342
343         /*
344          * Similar magic as in intel_dp_enable_port().
345          * We _must_ do this port enable + disable trick
346          * to make this power seqeuencer lock onto the port.
347          * Otherwise even VDD force bit won't work.
348          */
349         I915_WRITE(intel_dp->output_reg, DP);
350         POSTING_READ(intel_dp->output_reg);
351
352         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
353         POSTING_READ(intel_dp->output_reg);
354
355         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
356         POSTING_READ(intel_dp->output_reg);
357
358         if (!pll_enabled) {
359                 vlv_force_pll_off(dev, pipe);
360
361                 if (release_cl_override)
362                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
363         }
364 }
365
366 static enum pipe
367 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
368 {
369         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
370         struct drm_device *dev = intel_dig_port->base.base.dev;
371         struct drm_i915_private *dev_priv = to_i915(dev);
372         struct intel_encoder *encoder;
373         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
374         enum pipe pipe;
375
376         lockdep_assert_held(&dev_priv->pps_mutex);
377
378         /* We should never land here with regular DP ports */
379         WARN_ON(!is_edp(intel_dp));
380
381         if (intel_dp->pps_pipe != INVALID_PIPE)
382                 return intel_dp->pps_pipe;
383
384         /*
385          * We don't have power sequencer currently.
386          * Pick one that's not used by other ports.
387          */
388         for_each_intel_encoder(dev, encoder) {
389                 struct intel_dp *tmp;
390
391                 if (encoder->type != INTEL_OUTPUT_EDP)
392                         continue;
393
394                 tmp = enc_to_intel_dp(&encoder->base);
395
396                 if (tmp->pps_pipe != INVALID_PIPE)
397                         pipes &= ~(1 << tmp->pps_pipe);
398         }
399
400         /*
401          * Didn't find one. This should not happen since there
402          * are two power sequencers and up to two eDP ports.
403          */
404         if (WARN_ON(pipes == 0))
405                 pipe = PIPE_A;
406         else
407                 pipe = ffs(pipes) - 1;
408
409         vlv_steal_power_sequencer(dev, pipe);
410         intel_dp->pps_pipe = pipe;
411
412         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
413                       pipe_name(intel_dp->pps_pipe),
414                       port_name(intel_dig_port->port));
415
416         /* init power sequencer on this pipe and port */
417         intel_dp_init_panel_power_sequencer(dev, intel_dp);
418         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
419
420         /*
421          * Even vdd force doesn't work until we've made
422          * the power sequencer lock in on the port.
423          */
424         vlv_power_sequencer_kick(intel_dp);
425
426         return intel_dp->pps_pipe;
427 }
428
429 static int
430 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
431 {
432         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
433         struct drm_device *dev = intel_dig_port->base.base.dev;
434         struct drm_i915_private *dev_priv = to_i915(dev);
435
436         lockdep_assert_held(&dev_priv->pps_mutex);
437
438         /* We should never land here with regular DP ports */
439         WARN_ON(!is_edp(intel_dp));
440
441         /*
442          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
443          * mapping needs to be retrieved from VBT, for now just hard-code to
444          * use instance #0 always.
445          */
446         if (!intel_dp->pps_reset)
447                 return 0;
448
449         intel_dp->pps_reset = false;
450
451         /*
452          * Only the HW needs to be reprogrammed, the SW state is fixed and
453          * has been setup during connector init.
454          */
455         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
456
457         return 0;
458 }
459
460 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
461                                enum pipe pipe);
462
463 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
464                                enum pipe pipe)
465 {
466         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
467 }
468
469 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
470                                 enum pipe pipe)
471 {
472         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
473 }
474
475 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
476                          enum pipe pipe)
477 {
478         return true;
479 }
480
481 static enum pipe
482 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
483                      enum port port,
484                      vlv_pipe_check pipe_check)
485 {
486         enum pipe pipe;
487
488         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
489                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
490                         PANEL_PORT_SELECT_MASK;
491
492                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
493                         continue;
494
495                 if (!pipe_check(dev_priv, pipe))
496                         continue;
497
498                 return pipe;
499         }
500
501         return INVALID_PIPE;
502 }
503
504 static void
505 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
506 {
507         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
508         struct drm_device *dev = intel_dig_port->base.base.dev;
509         struct drm_i915_private *dev_priv = to_i915(dev);
510         enum port port = intel_dig_port->port;
511
512         lockdep_assert_held(&dev_priv->pps_mutex);
513
514         /* try to find a pipe with this port selected */
515         /* first pick one where the panel is on */
516         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517                                                   vlv_pipe_has_pp_on);
518         /* didn't find one? pick one where vdd is on */
519         if (intel_dp->pps_pipe == INVALID_PIPE)
520                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521                                                           vlv_pipe_has_vdd_on);
522         /* didn't find one? pick one with just the correct port */
523         if (intel_dp->pps_pipe == INVALID_PIPE)
524                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
525                                                           vlv_pipe_any);
526
527         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
528         if (intel_dp->pps_pipe == INVALID_PIPE) {
529                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
530                               port_name(port));
531                 return;
532         }
533
534         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
535                       port_name(port), pipe_name(intel_dp->pps_pipe));
536
537         intel_dp_init_panel_power_sequencer(dev, intel_dp);
538         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
539 }
540
541 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
542 {
543         struct drm_device *dev = &dev_priv->drm;
544         struct intel_encoder *encoder;
545
546         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
547                     !IS_BROXTON(dev)))
548                 return;
549
550         /*
551          * We can't grab pps_mutex here due to deadlock with power_domain
552          * mutex when power_domain functions are called while holding pps_mutex.
553          * That also means that in order to use pps_pipe the code needs to
554          * hold both a power domain reference and pps_mutex, and the power domain
555          * reference get/put must be done while _not_ holding pps_mutex.
556          * pps_{lock,unlock}() do these steps in the correct order, so one
557          * should use them always.
558          */
559
560         for_each_intel_encoder(dev, encoder) {
561                 struct intel_dp *intel_dp;
562
563                 if (encoder->type != INTEL_OUTPUT_EDP)
564                         continue;
565
566                 intel_dp = enc_to_intel_dp(&encoder->base);
567                 if (IS_BROXTON(dev))
568                         intel_dp->pps_reset = true;
569                 else
570                         intel_dp->pps_pipe = INVALID_PIPE;
571         }
572 }
573
574 struct pps_registers {
575         i915_reg_t pp_ctrl;
576         i915_reg_t pp_stat;
577         i915_reg_t pp_on;
578         i915_reg_t pp_off;
579         i915_reg_t pp_div;
580 };
581
582 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
583                                     struct intel_dp *intel_dp,
584                                     struct pps_registers *regs)
585 {
586         memset(regs, 0, sizeof(*regs));
587
588         if (IS_BROXTON(dev_priv)) {
589                 int idx = bxt_power_sequencer_idx(intel_dp);
590
591                 regs->pp_ctrl = BXT_PP_CONTROL(idx);
592                 regs->pp_stat = BXT_PP_STATUS(idx);
593                 regs->pp_on = BXT_PP_ON_DELAYS(idx);
594                 regs->pp_off = BXT_PP_OFF_DELAYS(idx);
595         } else if (HAS_PCH_SPLIT(dev_priv)) {
596                 regs->pp_ctrl = PCH_PP_CONTROL;
597                 regs->pp_stat = PCH_PP_STATUS;
598                 regs->pp_on = PCH_PP_ON_DELAYS;
599                 regs->pp_off = PCH_PP_OFF_DELAYS;
600                 regs->pp_div = PCH_PP_DIVISOR;
601         } else {
602                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604                 regs->pp_ctrl = VLV_PIPE_PP_CONTROL(pipe);
605                 regs->pp_stat = VLV_PIPE_PP_STATUS(pipe);
606                 regs->pp_on = VLV_PIPE_PP_ON_DELAYS(pipe);
607                 regs->pp_off = VLV_PIPE_PP_OFF_DELAYS(pipe);
608                 regs->pp_div = VLV_PIPE_PP_DIVISOR(pipe);
609         }
610 }
611
612 static i915_reg_t
613 _pp_ctrl_reg(struct intel_dp *intel_dp)
614 {
615         struct pps_registers regs;
616
617         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
618                                 &regs);
619
620         return regs.pp_ctrl;
621 }
622
623 static i915_reg_t
624 _pp_stat_reg(struct intel_dp *intel_dp)
625 {
626         struct pps_registers regs;
627
628         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
629                                 &regs);
630
631         return regs.pp_stat;
632 }
633
634 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
635    This function only applicable when panel PM state is not to be tracked */
636 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
637                               void *unused)
638 {
639         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
640                                                  edp_notifier);
641         struct drm_device *dev = intel_dp_to_dev(intel_dp);
642         struct drm_i915_private *dev_priv = to_i915(dev);
643
644         if (!is_edp(intel_dp) || code != SYS_RESTART)
645                 return 0;
646
647         pps_lock(intel_dp);
648
649         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
650                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
651                 i915_reg_t pp_ctrl_reg, pp_div_reg;
652                 u32 pp_div;
653
654                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
655                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
656                 pp_div = I915_READ(pp_div_reg);
657                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
658
659                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
660                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
661                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
662                 msleep(intel_dp->panel_power_cycle_delay);
663         }
664
665         pps_unlock(intel_dp);
666
667         return 0;
668 }
669
670 static bool edp_have_panel_power(struct intel_dp *intel_dp)
671 {
672         struct drm_device *dev = intel_dp_to_dev(intel_dp);
673         struct drm_i915_private *dev_priv = to_i915(dev);
674
675         lockdep_assert_held(&dev_priv->pps_mutex);
676
677         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
678             intel_dp->pps_pipe == INVALID_PIPE)
679                 return false;
680
681         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
682 }
683
684 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
685 {
686         struct drm_device *dev = intel_dp_to_dev(intel_dp);
687         struct drm_i915_private *dev_priv = to_i915(dev);
688
689         lockdep_assert_held(&dev_priv->pps_mutex);
690
691         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
692             intel_dp->pps_pipe == INVALID_PIPE)
693                 return false;
694
695         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
696 }
697
698 static void
699 intel_dp_check_edp(struct intel_dp *intel_dp)
700 {
701         struct drm_device *dev = intel_dp_to_dev(intel_dp);
702         struct drm_i915_private *dev_priv = to_i915(dev);
703
704         if (!is_edp(intel_dp))
705                 return;
706
707         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
708                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
709                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
710                               I915_READ(_pp_stat_reg(intel_dp)),
711                               I915_READ(_pp_ctrl_reg(intel_dp)));
712         }
713 }
714
715 static uint32_t
716 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
717 {
718         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
719         struct drm_device *dev = intel_dig_port->base.base.dev;
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
722         uint32_t status;
723         bool done;
724
725 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
726         if (has_aux_irq)
727                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
728                                           msecs_to_jiffies_timeout(10));
729         else
730                 done = wait_for(C, 10) == 0;
731         if (!done)
732                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
733                           has_aux_irq);
734 #undef C
735
736         return status;
737 }
738
739 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
743
744         if (index)
745                 return 0;
746
747         /*
748          * The clock divider is based off the hrawclk, and would like to run at
749          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
750          */
751         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
752 }
753
754 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
755 {
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
758
759         if (index)
760                 return 0;
761
762         /*
763          * The clock divider is based off the cdclk or PCH rawclk, and would
764          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
765          * divide by 2000 and use that
766          */
767         if (intel_dig_port->port == PORT_A)
768                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
769         else
770                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772
773 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777
778         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
779                 /* Workaround for non-ULT HSW */
780                 switch (index) {
781                 case 0: return 63;
782                 case 1: return 72;
783                 default: return 0;
784                 }
785         }
786
787         return ilk_get_aux_clock_divider(intel_dp, index);
788 }
789
790 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
791 {
792         /*
793          * SKL doesn't need us to program the AUX clock divider (Hardware will
794          * derive the clock from CDCLK automatically). We still implement the
795          * get_aux_clock_divider vfunc to plug-in into the existing code.
796          */
797         return index ? 0 : 1;
798 }
799
800 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
801                                      bool has_aux_irq,
802                                      int send_bytes,
803                                      uint32_t aux_clock_divider)
804 {
805         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
806         struct drm_device *dev = intel_dig_port->base.base.dev;
807         uint32_t precharge, timeout;
808
809         if (IS_GEN6(dev))
810                 precharge = 3;
811         else
812                 precharge = 5;
813
814         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
815                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
816         else
817                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
818
819         return DP_AUX_CH_CTL_SEND_BUSY |
820                DP_AUX_CH_CTL_DONE |
821                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
822                DP_AUX_CH_CTL_TIME_OUT_ERROR |
823                timeout |
824                DP_AUX_CH_CTL_RECEIVE_ERROR |
825                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
826                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
827                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
828 }
829
830 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
831                                       bool has_aux_irq,
832                                       int send_bytes,
833                                       uint32_t unused)
834 {
835         return DP_AUX_CH_CTL_SEND_BUSY |
836                DP_AUX_CH_CTL_DONE |
837                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
838                DP_AUX_CH_CTL_TIME_OUT_ERROR |
839                DP_AUX_CH_CTL_TIME_OUT_1600us |
840                DP_AUX_CH_CTL_RECEIVE_ERROR |
841                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
842                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
843                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
844 }
845
846 static int
847 intel_dp_aux_ch(struct intel_dp *intel_dp,
848                 const uint8_t *send, int send_bytes,
849                 uint8_t *recv, int recv_size)
850 {
851         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
852         struct drm_device *dev = intel_dig_port->base.base.dev;
853         struct drm_i915_private *dev_priv = to_i915(dev);
854         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
855         uint32_t aux_clock_divider;
856         int i, ret, recv_bytes;
857         uint32_t status;
858         int try, clock = 0;
859         bool has_aux_irq = HAS_AUX_IRQ(dev);
860         bool vdd;
861
862         pps_lock(intel_dp);
863
864         /*
865          * We will be called with VDD already enabled for dpcd/edid/oui reads.
866          * In such cases we want to leave VDD enabled and it's up to upper layers
867          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
868          * ourselves.
869          */
870         vdd = edp_panel_vdd_on(intel_dp);
871
872         /* dp aux is extremely sensitive to irq latency, hence request the
873          * lowest possible wakeup latency and so prevent the cpu from going into
874          * deep sleep states.
875          */
876         pm_qos_update_request(&dev_priv->pm_qos, 0);
877
878         intel_dp_check_edp(intel_dp);
879
880         /* Try to wait for any previous AUX channel activity */
881         for (try = 0; try < 3; try++) {
882                 status = I915_READ_NOTRACE(ch_ctl);
883                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
884                         break;
885                 msleep(1);
886         }
887
888         if (try == 3) {
889                 static u32 last_status = -1;
890                 const u32 status = I915_READ(ch_ctl);
891
892                 if (status != last_status) {
893                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
894                              status);
895                         last_status = status;
896                 }
897
898                 ret = -EBUSY;
899                 goto out;
900         }
901
902         /* Only 5 data registers! */
903         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
904                 ret = -E2BIG;
905                 goto out;
906         }
907
908         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
909                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
910                                                           has_aux_irq,
911                                                           send_bytes,
912                                                           aux_clock_divider);
913
914                 /* Must try at least 3 times according to DP spec */
915                 for (try = 0; try < 5; try++) {
916                         /* Load the send data into the aux channel data registers */
917                         for (i = 0; i < send_bytes; i += 4)
918                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
919                                            intel_dp_pack_aux(send + i,
920                                                              send_bytes - i));
921
922                         /* Send the command and wait for it to complete */
923                         I915_WRITE(ch_ctl, send_ctl);
924
925                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
926
927                         /* Clear done status and any errors */
928                         I915_WRITE(ch_ctl,
929                                    status |
930                                    DP_AUX_CH_CTL_DONE |
931                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
932                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
933
934                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
935                                 continue;
936
937                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
938                          *   400us delay required for errors and timeouts
939                          *   Timeout errors from the HW already meet this
940                          *   requirement so skip to next iteration
941                          */
942                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
943                                 usleep_range(400, 500);
944                                 continue;
945                         }
946                         if (status & DP_AUX_CH_CTL_DONE)
947                                 goto done;
948                 }
949         }
950
951         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
952                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
953                 ret = -EBUSY;
954                 goto out;
955         }
956
957 done:
958         /* Check for timeout or receive error.
959          * Timeouts occur when the sink is not connected
960          */
961         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
963                 ret = -EIO;
964                 goto out;
965         }
966
967         /* Timeouts occur when the device isn't connected, so they're
968          * "normal" -- don't fill the kernel log with these */
969         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
970                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
971                 ret = -ETIMEDOUT;
972                 goto out;
973         }
974
975         /* Unload any bytes sent back from the other side */
976         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
977                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
978
979         /*
980          * By BSpec: "Message sizes of 0 or >20 are not allowed."
981          * We have no idea of what happened so we return -EBUSY so
982          * drm layer takes care for the necessary retries.
983          */
984         if (recv_bytes == 0 || recv_bytes > 20) {
985                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
986                               recv_bytes);
987                 /*
988                  * FIXME: This patch was created on top of a series that
989                  * organize the retries at drm level. There EBUSY should
990                  * also take care for 1ms wait before retrying.
991                  * That aux retries re-org is still needed and after that is
992                  * merged we remove this sleep from here.
993                  */
994                 usleep_range(1000, 1500);
995                 ret = -EBUSY;
996                 goto out;
997         }
998
999         if (recv_bytes > recv_size)
1000                 recv_bytes = recv_size;
1001
1002         for (i = 0; i < recv_bytes; i += 4)
1003                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1004                                     recv + i, recv_bytes - i);
1005
1006         ret = recv_bytes;
1007 out:
1008         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1009
1010         if (vdd)
1011                 edp_panel_vdd_off(intel_dp, false);
1012
1013         pps_unlock(intel_dp);
1014
1015         return ret;
1016 }
1017
1018 #define BARE_ADDRESS_SIZE       3
1019 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1020 static ssize_t
1021 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1022 {
1023         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1024         uint8_t txbuf[20], rxbuf[20];
1025         size_t txsize, rxsize;
1026         int ret;
1027
1028         txbuf[0] = (msg->request << 4) |
1029                 ((msg->address >> 16) & 0xf);
1030         txbuf[1] = (msg->address >> 8) & 0xff;
1031         txbuf[2] = msg->address & 0xff;
1032         txbuf[3] = msg->size - 1;
1033
1034         switch (msg->request & ~DP_AUX_I2C_MOT) {
1035         case DP_AUX_NATIVE_WRITE:
1036         case DP_AUX_I2C_WRITE:
1037         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1038                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1039                 rxsize = 2; /* 0 or 1 data bytes */
1040
1041                 if (WARN_ON(txsize > 20))
1042                         return -E2BIG;
1043
1044                 WARN_ON(!msg->buffer != !msg->size);
1045
1046                 if (msg->buffer)
1047                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1048
1049                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1050                 if (ret > 0) {
1051                         msg->reply = rxbuf[0] >> 4;
1052
1053                         if (ret > 1) {
1054                                 /* Number of bytes written in a short write. */
1055                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1056                         } else {
1057                                 /* Return payload size. */
1058                                 ret = msg->size;
1059                         }
1060                 }
1061                 break;
1062
1063         case DP_AUX_NATIVE_READ:
1064         case DP_AUX_I2C_READ:
1065                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1066                 rxsize = msg->size + 1;
1067
1068                 if (WARN_ON(rxsize > 20))
1069                         return -E2BIG;
1070
1071                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1072                 if (ret > 0) {
1073                         msg->reply = rxbuf[0] >> 4;
1074                         /*
1075                          * Assume happy day, and copy the data. The caller is
1076                          * expected to check msg->reply before touching it.
1077                          *
1078                          * Return payload size.
1079                          */
1080                         ret--;
1081                         memcpy(msg->buffer, rxbuf + 1, ret);
1082                 }
1083                 break;
1084
1085         default:
1086                 ret = -EINVAL;
1087                 break;
1088         }
1089
1090         return ret;
1091 }
1092
1093 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1094                                        enum port port)
1095 {
1096         switch (port) {
1097         case PORT_B:
1098         case PORT_C:
1099         case PORT_D:
1100                 return DP_AUX_CH_CTL(port);
1101         default:
1102                 MISSING_CASE(port);
1103                 return DP_AUX_CH_CTL(PORT_B);
1104         }
1105 }
1106
1107 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1108                                         enum port port, int index)
1109 {
1110         switch (port) {
1111         case PORT_B:
1112         case PORT_C:
1113         case PORT_D:
1114                 return DP_AUX_CH_DATA(port, index);
1115         default:
1116                 MISSING_CASE(port);
1117                 return DP_AUX_CH_DATA(PORT_B, index);
1118         }
1119 }
1120
1121 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1122                                        enum port port)
1123 {
1124         switch (port) {
1125         case PORT_A:
1126                 return DP_AUX_CH_CTL(port);
1127         case PORT_B:
1128         case PORT_C:
1129         case PORT_D:
1130                 return PCH_DP_AUX_CH_CTL(port);
1131         default:
1132                 MISSING_CASE(port);
1133                 return DP_AUX_CH_CTL(PORT_A);
1134         }
1135 }
1136
1137 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1138                                         enum port port, int index)
1139 {
1140         switch (port) {
1141         case PORT_A:
1142                 return DP_AUX_CH_DATA(port, index);
1143         case PORT_B:
1144         case PORT_C:
1145         case PORT_D:
1146                 return PCH_DP_AUX_CH_DATA(port, index);
1147         default:
1148                 MISSING_CASE(port);
1149                 return DP_AUX_CH_DATA(PORT_A, index);
1150         }
1151 }
1152
1153 /*
1154  * On SKL we don't have Aux for port E so we rely
1155  * on VBT to set a proper alternate aux channel.
1156  */
1157 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1158 {
1159         const struct ddi_vbt_port_info *info =
1160                 &dev_priv->vbt.ddi_port_info[PORT_E];
1161
1162         switch (info->alternate_aux_channel) {
1163         case DP_AUX_A:
1164                 return PORT_A;
1165         case DP_AUX_B:
1166                 return PORT_B;
1167         case DP_AUX_C:
1168                 return PORT_C;
1169         case DP_AUX_D:
1170                 return PORT_D;
1171         default:
1172                 MISSING_CASE(info->alternate_aux_channel);
1173                 return PORT_A;
1174         }
1175 }
1176
1177 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1178                                        enum port port)
1179 {
1180         if (port == PORT_E)
1181                 port = skl_porte_aux_port(dev_priv);
1182
1183         switch (port) {
1184         case PORT_A:
1185         case PORT_B:
1186         case PORT_C:
1187         case PORT_D:
1188                 return DP_AUX_CH_CTL(port);
1189         default:
1190                 MISSING_CASE(port);
1191                 return DP_AUX_CH_CTL(PORT_A);
1192         }
1193 }
1194
1195 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1196                                         enum port port, int index)
1197 {
1198         if (port == PORT_E)
1199                 port = skl_porte_aux_port(dev_priv);
1200
1201         switch (port) {
1202         case PORT_A:
1203         case PORT_B:
1204         case PORT_C:
1205         case PORT_D:
1206                 return DP_AUX_CH_DATA(port, index);
1207         default:
1208                 MISSING_CASE(port);
1209                 return DP_AUX_CH_DATA(PORT_A, index);
1210         }
1211 }
1212
1213 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1214                                          enum port port)
1215 {
1216         if (INTEL_INFO(dev_priv)->gen >= 9)
1217                 return skl_aux_ctl_reg(dev_priv, port);
1218         else if (HAS_PCH_SPLIT(dev_priv))
1219                 return ilk_aux_ctl_reg(dev_priv, port);
1220         else
1221                 return g4x_aux_ctl_reg(dev_priv, port);
1222 }
1223
1224 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1225                                           enum port port, int index)
1226 {
1227         if (INTEL_INFO(dev_priv)->gen >= 9)
1228                 return skl_aux_data_reg(dev_priv, port, index);
1229         else if (HAS_PCH_SPLIT(dev_priv))
1230                 return ilk_aux_data_reg(dev_priv, port, index);
1231         else
1232                 return g4x_aux_data_reg(dev_priv, port, index);
1233 }
1234
1235 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1236 {
1237         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1238         enum port port = dp_to_dig_port(intel_dp)->port;
1239         int i;
1240
1241         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1242         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1243                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1244 }
1245
1246 static void
1247 intel_dp_aux_fini(struct intel_dp *intel_dp)
1248 {
1249         kfree(intel_dp->aux.name);
1250 }
1251
1252 static void
1253 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1254 {
1255         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1256         enum port port = intel_dig_port->port;
1257
1258         intel_aux_reg_init(intel_dp);
1259         drm_dp_aux_init(&intel_dp->aux);
1260
1261         /* Failure to allocate our preferred name is not critical */
1262         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1263         intel_dp->aux.transfer = intel_dp_aux_transfer;
1264 }
1265
1266 static int
1267 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1268 {
1269         if (intel_dp->num_sink_rates) {
1270                 *sink_rates = intel_dp->sink_rates;
1271                 return intel_dp->num_sink_rates;
1272         }
1273
1274         *sink_rates = default_rates;
1275
1276         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1277 }
1278
1279 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1280 {
1281         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1282         struct drm_device *dev = dig_port->base.base.dev;
1283
1284         /* WaDisableHBR2:skl */
1285         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1286                 return false;
1287
1288         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1289             (INTEL_INFO(dev)->gen >= 9))
1290                 return true;
1291         else
1292                 return false;
1293 }
1294
1295 static int
1296 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1297 {
1298         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1299         struct drm_device *dev = dig_port->base.base.dev;
1300         int size;
1301
1302         if (IS_BROXTON(dev)) {
1303                 *source_rates = bxt_rates;
1304                 size = ARRAY_SIZE(bxt_rates);
1305         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1306                 *source_rates = skl_rates;
1307                 size = ARRAY_SIZE(skl_rates);
1308         } else {
1309                 *source_rates = default_rates;
1310                 size = ARRAY_SIZE(default_rates);
1311         }
1312
1313         /* This depends on the fact that 5.4 is last value in the array */
1314         if (!intel_dp_source_supports_hbr2(intel_dp))
1315                 size--;
1316
1317         return size;
1318 }
1319
1320 static void
1321 intel_dp_set_clock(struct intel_encoder *encoder,
1322                    struct intel_crtc_state *pipe_config)
1323 {
1324         struct drm_device *dev = encoder->base.dev;
1325         const struct dp_link_dpll *divisor = NULL;
1326         int i, count = 0;
1327
1328         if (IS_G4X(dev)) {
1329                 divisor = gen4_dpll;
1330                 count = ARRAY_SIZE(gen4_dpll);
1331         } else if (HAS_PCH_SPLIT(dev)) {
1332                 divisor = pch_dpll;
1333                 count = ARRAY_SIZE(pch_dpll);
1334         } else if (IS_CHERRYVIEW(dev)) {
1335                 divisor = chv_dpll;
1336                 count = ARRAY_SIZE(chv_dpll);
1337         } else if (IS_VALLEYVIEW(dev)) {
1338                 divisor = vlv_dpll;
1339                 count = ARRAY_SIZE(vlv_dpll);
1340         }
1341
1342         if (divisor && count) {
1343                 for (i = 0; i < count; i++) {
1344                         if (pipe_config->port_clock == divisor[i].clock) {
1345                                 pipe_config->dpll = divisor[i].dpll;
1346                                 pipe_config->clock_set = true;
1347                                 break;
1348                         }
1349                 }
1350         }
1351 }
1352
1353 static int intersect_rates(const int *source_rates, int source_len,
1354                            const int *sink_rates, int sink_len,
1355                            int *common_rates)
1356 {
1357         int i = 0, j = 0, k = 0;
1358
1359         while (i < source_len && j < sink_len) {
1360                 if (source_rates[i] == sink_rates[j]) {
1361                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1362                                 return k;
1363                         common_rates[k] = source_rates[i];
1364                         ++k;
1365                         ++i;
1366                         ++j;
1367                 } else if (source_rates[i] < sink_rates[j]) {
1368                         ++i;
1369                 } else {
1370                         ++j;
1371                 }
1372         }
1373         return k;
1374 }
1375
1376 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1377                                  int *common_rates)
1378 {
1379         const int *source_rates, *sink_rates;
1380         int source_len, sink_len;
1381
1382         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1384
1385         return intersect_rates(source_rates, source_len,
1386                                sink_rates, sink_len,
1387                                common_rates);
1388 }
1389
1390 static void snprintf_int_array(char *str, size_t len,
1391                                const int *array, int nelem)
1392 {
1393         int i;
1394
1395         str[0] = '\0';
1396
1397         for (i = 0; i < nelem; i++) {
1398                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1399                 if (r >= len)
1400                         return;
1401                 str += r;
1402                 len -= r;
1403         }
1404 }
1405
1406 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1407 {
1408         const int *source_rates, *sink_rates;
1409         int source_len, sink_len, common_len;
1410         int common_rates[DP_MAX_SUPPORTED_RATES];
1411         char str[128]; /* FIXME: too big for stack? */
1412
1413         if ((drm_debug & DRM_UT_KMS) == 0)
1414                 return;
1415
1416         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1417         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1418         DRM_DEBUG_KMS("source rates: %s\n", str);
1419
1420         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1421         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1422         DRM_DEBUG_KMS("sink rates: %s\n", str);
1423
1424         common_len = intel_dp_common_rates(intel_dp, common_rates);
1425         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1426         DRM_DEBUG_KMS("common rates: %s\n", str);
1427 }
1428
1429 static int rate_to_index(int find, const int *rates)
1430 {
1431         int i = 0;
1432
1433         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1434                 if (find == rates[i])
1435                         break;
1436
1437         return i;
1438 }
1439
1440 int
1441 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1442 {
1443         int rates[DP_MAX_SUPPORTED_RATES] = {};
1444         int len;
1445
1446         len = intel_dp_common_rates(intel_dp, rates);
1447         if (WARN_ON(len <= 0))
1448                 return 162000;
1449
1450         return rates[len - 1];
1451 }
1452
1453 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1454 {
1455         return rate_to_index(rate, intel_dp->sink_rates);
1456 }
1457
1458 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1459                            uint8_t *link_bw, uint8_t *rate_select)
1460 {
1461         if (intel_dp->num_sink_rates) {
1462                 *link_bw = 0;
1463                 *rate_select =
1464                         intel_dp_rate_select(intel_dp, port_clock);
1465         } else {
1466                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1467                 *rate_select = 0;
1468         }
1469 }
1470
1471 bool
1472 intel_dp_compute_config(struct intel_encoder *encoder,
1473                         struct intel_crtc_state *pipe_config)
1474 {
1475         struct drm_device *dev = encoder->base.dev;
1476         struct drm_i915_private *dev_priv = to_i915(dev);
1477         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1478         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1479         enum port port = dp_to_dig_port(intel_dp)->port;
1480         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1481         struct intel_connector *intel_connector = intel_dp->attached_connector;
1482         int lane_count, clock;
1483         int min_lane_count = 1;
1484         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1485         /* Conveniently, the link BW constants become indices with a shift...*/
1486         int min_clock = 0;
1487         int max_clock;
1488         int bpp, mode_rate;
1489         int link_avail, link_clock;
1490         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1491         int common_len;
1492         uint8_t link_bw, rate_select;
1493
1494         common_len = intel_dp_common_rates(intel_dp, common_rates);
1495
1496         /* No common link rates between source and sink */
1497         WARN_ON(common_len <= 0);
1498
1499         max_clock = common_len - 1;
1500
1501         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1502                 pipe_config->has_pch_encoder = true;
1503
1504         pipe_config->has_drrs = false;
1505         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1506
1507         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1508                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1509                                        adjusted_mode);
1510
1511                 if (INTEL_INFO(dev)->gen >= 9) {
1512                         int ret;
1513                         ret = skl_update_scaler_crtc(pipe_config);
1514                         if (ret)
1515                                 return ret;
1516                 }
1517
1518                 if (HAS_GMCH_DISPLAY(dev))
1519                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1520                                                  intel_connector->panel.fitting_mode);
1521                 else
1522                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1523                                                 intel_connector->panel.fitting_mode);
1524         }
1525
1526         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1527                 return false;
1528
1529         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1530                       "max bw %d pixel clock %iKHz\n",
1531                       max_lane_count, common_rates[max_clock],
1532                       adjusted_mode->crtc_clock);
1533
1534         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1535          * bpc in between. */
1536         bpp = pipe_config->pipe_bpp;
1537         if (is_edp(intel_dp)) {
1538
1539                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1540                 if (intel_connector->base.display_info.bpc == 0 &&
1541                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1542                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1543                                       dev_priv->vbt.edp.bpp);
1544                         bpp = dev_priv->vbt.edp.bpp;
1545                 }
1546
1547                 /*
1548                  * Use the maximum clock and number of lanes the eDP panel
1549                  * advertizes being capable of. The panels are generally
1550                  * designed to support only a single clock and lane
1551                  * configuration, and typically these values correspond to the
1552                  * native resolution of the panel.
1553                  */
1554                 min_lane_count = max_lane_count;
1555                 min_clock = max_clock;
1556         }
1557
1558         for (; bpp >= 6*3; bpp -= 2*3) {
1559                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1560                                                    bpp);
1561
1562                 for (clock = min_clock; clock <= max_clock; clock++) {
1563                         for (lane_count = min_lane_count;
1564                                 lane_count <= max_lane_count;
1565                                 lane_count <<= 1) {
1566
1567                                 link_clock = common_rates[clock];
1568                                 link_avail = intel_dp_max_data_rate(link_clock,
1569                                                                     lane_count);
1570
1571                                 if (mode_rate <= link_avail) {
1572                                         goto found;
1573                                 }
1574                         }
1575                 }
1576         }
1577
1578         return false;
1579
1580 found:
1581         if (intel_dp->color_range_auto) {
1582                 /*
1583                  * See:
1584                  * CEA-861-E - 5.1 Default Encoding Parameters
1585                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1586                  */
1587                 pipe_config->limited_color_range =
1588                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1589         } else {
1590                 pipe_config->limited_color_range =
1591                         intel_dp->limited_color_range;
1592         }
1593
1594         pipe_config->lane_count = lane_count;
1595
1596         pipe_config->pipe_bpp = bpp;
1597         pipe_config->port_clock = common_rates[clock];
1598
1599         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1600                               &link_bw, &rate_select);
1601
1602         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1603                       link_bw, rate_select, pipe_config->lane_count,
1604                       pipe_config->port_clock, bpp);
1605         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1606                       mode_rate, link_avail);
1607
1608         intel_link_compute_m_n(bpp, lane_count,
1609                                adjusted_mode->crtc_clock,
1610                                pipe_config->port_clock,
1611                                &pipe_config->dp_m_n);
1612
1613         if (intel_connector->panel.downclock_mode != NULL &&
1614                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1615                         pipe_config->has_drrs = true;
1616                         intel_link_compute_m_n(bpp, lane_count,
1617                                 intel_connector->panel.downclock_mode->clock,
1618                                 pipe_config->port_clock,
1619                                 &pipe_config->dp_m2_n2);
1620         }
1621
1622         /*
1623          * DPLL0 VCO may need to be adjusted to get the correct
1624          * clock for eDP. This will affect cdclk as well.
1625          */
1626         if (is_edp(intel_dp) &&
1627             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1628                 int vco;
1629
1630                 switch (pipe_config->port_clock / 2) {
1631                 case 108000:
1632                 case 216000:
1633                         vco = 8640000;
1634                         break;
1635                 default:
1636                         vco = 8100000;
1637                         break;
1638                 }
1639
1640                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1641         }
1642
1643         if (!HAS_DDI(dev))
1644                 intel_dp_set_clock(encoder, pipe_config);
1645
1646         return true;
1647 }
1648
1649 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1650                               const struct intel_crtc_state *pipe_config)
1651 {
1652         intel_dp->link_rate = pipe_config->port_clock;
1653         intel_dp->lane_count = pipe_config->lane_count;
1654         intel_dp->link_mst = intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST);
1655 }
1656
1657 static void intel_dp_prepare(struct intel_encoder *encoder)
1658 {
1659         struct drm_device *dev = encoder->base.dev;
1660         struct drm_i915_private *dev_priv = to_i915(dev);
1661         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1662         enum port port = dp_to_dig_port(intel_dp)->port;
1663         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1664         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1665
1666         intel_dp_set_link_params(intel_dp, crtc->config);
1667
1668         /*
1669          * There are four kinds of DP registers:
1670          *
1671          *      IBX PCH
1672          *      SNB CPU
1673          *      IVB CPU
1674          *      CPT PCH
1675          *
1676          * IBX PCH and CPU are the same for almost everything,
1677          * except that the CPU DP PLL is configured in this
1678          * register
1679          *
1680          * CPT PCH is quite different, having many bits moved
1681          * to the TRANS_DP_CTL register instead. That
1682          * configuration happens (oddly) in ironlake_pch_enable
1683          */
1684
1685         /* Preserve the BIOS-computed detected bit. This is
1686          * supposed to be read-only.
1687          */
1688         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1689
1690         /* Handle DP bits in common between all three register formats */
1691         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1692         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1693
1694         /* Split out the IBX/CPU vs CPT settings */
1695
1696         if (IS_GEN7(dev) && port == PORT_A) {
1697                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1698                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1699                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1700                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1701                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1702
1703                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1704                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1705
1706                 intel_dp->DP |= crtc->pipe << 29;
1707         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1708                 u32 trans_dp;
1709
1710                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1711
1712                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1713                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1714                         trans_dp |= TRANS_DP_ENH_FRAMING;
1715                 else
1716                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1717                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1718         } else {
1719                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1720                     !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1721                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1722
1723                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1724                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1725                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1726                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1727                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1728
1729                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1730                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1731
1732                 if (IS_CHERRYVIEW(dev))
1733                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1734                 else if (crtc->pipe == PIPE_B)
1735                         intel_dp->DP |= DP_PIPEB_SELECT;
1736         }
1737 }
1738
1739 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1740 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1741
1742 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1743 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1744
1745 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1746 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1747
1748 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1749                                    struct intel_dp *intel_dp);
1750
1751 static void wait_panel_status(struct intel_dp *intel_dp,
1752                                        u32 mask,
1753                                        u32 value)
1754 {
1755         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1756         struct drm_i915_private *dev_priv = to_i915(dev);
1757         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1758
1759         lockdep_assert_held(&dev_priv->pps_mutex);
1760
1761         intel_pps_verify_state(dev_priv, intel_dp);
1762
1763         pp_stat_reg = _pp_stat_reg(intel_dp);
1764         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1765
1766         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1767                         mask, value,
1768                         I915_READ(pp_stat_reg),
1769                         I915_READ(pp_ctrl_reg));
1770
1771         if (intel_wait_for_register(dev_priv,
1772                                     pp_stat_reg, mask, value,
1773                                     5000))
1774                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1775                                 I915_READ(pp_stat_reg),
1776                                 I915_READ(pp_ctrl_reg));
1777
1778         DRM_DEBUG_KMS("Wait complete\n");
1779 }
1780
1781 static void wait_panel_on(struct intel_dp *intel_dp)
1782 {
1783         DRM_DEBUG_KMS("Wait for panel power on\n");
1784         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1785 }
1786
1787 static void wait_panel_off(struct intel_dp *intel_dp)
1788 {
1789         DRM_DEBUG_KMS("Wait for panel power off time\n");
1790         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1791 }
1792
1793 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1794 {
1795         ktime_t panel_power_on_time;
1796         s64 panel_power_off_duration;
1797
1798         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1799
1800         /* take the difference of currrent time and panel power off time
1801          * and then make panel wait for t11_t12 if needed. */
1802         panel_power_on_time = ktime_get_boottime();
1803         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1804
1805         /* When we disable the VDD override bit last we have to do the manual
1806          * wait. */
1807         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1808                 wait_remaining_ms_from_jiffies(jiffies,
1809                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1810
1811         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1812 }
1813
1814 static void wait_backlight_on(struct intel_dp *intel_dp)
1815 {
1816         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1817                                        intel_dp->backlight_on_delay);
1818 }
1819
1820 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1821 {
1822         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1823                                        intel_dp->backlight_off_delay);
1824 }
1825
1826 /* Read the current pp_control value, unlocking the register if it
1827  * is locked
1828  */
1829
1830 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1831 {
1832         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1833         struct drm_i915_private *dev_priv = to_i915(dev);
1834         u32 control;
1835
1836         lockdep_assert_held(&dev_priv->pps_mutex);
1837
1838         control = I915_READ(_pp_ctrl_reg(intel_dp));
1839         if (!IS_BROXTON(dev)) {
1840                 control &= ~PANEL_UNLOCK_MASK;
1841                 control |= PANEL_UNLOCK_REGS;
1842         }
1843         return control;
1844 }
1845
1846 /*
1847  * Must be paired with edp_panel_vdd_off().
1848  * Must hold pps_mutex around the whole on/off sequence.
1849  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1850  */
1851 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1852 {
1853         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1854         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1855         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1856         struct drm_i915_private *dev_priv = to_i915(dev);
1857         enum intel_display_power_domain power_domain;
1858         u32 pp;
1859         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1860         bool need_to_disable = !intel_dp->want_panel_vdd;
1861
1862         lockdep_assert_held(&dev_priv->pps_mutex);
1863
1864         if (!is_edp(intel_dp))
1865                 return false;
1866
1867         cancel_delayed_work(&intel_dp->panel_vdd_work);
1868         intel_dp->want_panel_vdd = true;
1869
1870         if (edp_have_panel_vdd(intel_dp))
1871                 return need_to_disable;
1872
1873         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1874         intel_display_power_get(dev_priv, power_domain);
1875
1876         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1877                       port_name(intel_dig_port->port));
1878
1879         if (!edp_have_panel_power(intel_dp))
1880                 wait_panel_power_cycle(intel_dp);
1881
1882         pp = ironlake_get_pp_control(intel_dp);
1883         pp |= EDP_FORCE_VDD;
1884
1885         pp_stat_reg = _pp_stat_reg(intel_dp);
1886         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1887
1888         I915_WRITE(pp_ctrl_reg, pp);
1889         POSTING_READ(pp_ctrl_reg);
1890         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1891                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1892         /*
1893          * If the panel wasn't on, delay before accessing aux channel
1894          */
1895         if (!edp_have_panel_power(intel_dp)) {
1896                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1897                               port_name(intel_dig_port->port));
1898                 msleep(intel_dp->panel_power_up_delay);
1899         }
1900
1901         return need_to_disable;
1902 }
1903
1904 /*
1905  * Must be paired with intel_edp_panel_vdd_off() or
1906  * intel_edp_panel_off().
1907  * Nested calls to these functions are not allowed since
1908  * we drop the lock. Caller must use some higher level
1909  * locking to prevent nested calls from other threads.
1910  */
1911 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1912 {
1913         bool vdd;
1914
1915         if (!is_edp(intel_dp))
1916                 return;
1917
1918         pps_lock(intel_dp);
1919         vdd = edp_panel_vdd_on(intel_dp);
1920         pps_unlock(intel_dp);
1921
1922         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1923              port_name(dp_to_dig_port(intel_dp)->port));
1924 }
1925
1926 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1927 {
1928         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929         struct drm_i915_private *dev_priv = to_i915(dev);
1930         struct intel_digital_port *intel_dig_port =
1931                 dp_to_dig_port(intel_dp);
1932         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1933         enum intel_display_power_domain power_domain;
1934         u32 pp;
1935         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1936
1937         lockdep_assert_held(&dev_priv->pps_mutex);
1938
1939         WARN_ON(intel_dp->want_panel_vdd);
1940
1941         if (!edp_have_panel_vdd(intel_dp))
1942                 return;
1943
1944         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1945                       port_name(intel_dig_port->port));
1946
1947         pp = ironlake_get_pp_control(intel_dp);
1948         pp &= ~EDP_FORCE_VDD;
1949
1950         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1951         pp_stat_reg = _pp_stat_reg(intel_dp);
1952
1953         I915_WRITE(pp_ctrl_reg, pp);
1954         POSTING_READ(pp_ctrl_reg);
1955
1956         /* Make sure sequencer is idle before allowing subsequent activity */
1957         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1958         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1959
1960         if ((pp & POWER_TARGET_ON) == 0)
1961                 intel_dp->panel_power_off_time = ktime_get_boottime();
1962
1963         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1964         intel_display_power_put(dev_priv, power_domain);
1965 }
1966
1967 static void edp_panel_vdd_work(struct work_struct *__work)
1968 {
1969         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1970                                                  struct intel_dp, panel_vdd_work);
1971
1972         pps_lock(intel_dp);
1973         if (!intel_dp->want_panel_vdd)
1974                 edp_panel_vdd_off_sync(intel_dp);
1975         pps_unlock(intel_dp);
1976 }
1977
1978 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1979 {
1980         unsigned long delay;
1981
1982         /*
1983          * Queue the timer to fire a long time from now (relative to the power
1984          * down delay) to keep the panel power up across a sequence of
1985          * operations.
1986          */
1987         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1988         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1989 }
1990
1991 /*
1992  * Must be paired with edp_panel_vdd_on().
1993  * Must hold pps_mutex around the whole on/off sequence.
1994  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1995  */
1996 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1997 {
1998         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1999
2000         lockdep_assert_held(&dev_priv->pps_mutex);
2001
2002         if (!is_edp(intel_dp))
2003                 return;
2004
2005         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2006              port_name(dp_to_dig_port(intel_dp)->port));
2007
2008         intel_dp->want_panel_vdd = false;
2009
2010         if (sync)
2011                 edp_panel_vdd_off_sync(intel_dp);
2012         else
2013                 edp_panel_vdd_schedule_off(intel_dp);
2014 }
2015
2016 static void edp_panel_on(struct intel_dp *intel_dp)
2017 {
2018         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2019         struct drm_i915_private *dev_priv = to_i915(dev);
2020         u32 pp;
2021         i915_reg_t pp_ctrl_reg;
2022
2023         lockdep_assert_held(&dev_priv->pps_mutex);
2024
2025         if (!is_edp(intel_dp))
2026                 return;
2027
2028         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2029                       port_name(dp_to_dig_port(intel_dp)->port));
2030
2031         if (WARN(edp_have_panel_power(intel_dp),
2032                  "eDP port %c panel power already on\n",
2033                  port_name(dp_to_dig_port(intel_dp)->port)))
2034                 return;
2035
2036         wait_panel_power_cycle(intel_dp);
2037
2038         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2039         pp = ironlake_get_pp_control(intel_dp);
2040         if (IS_GEN5(dev)) {
2041                 /* ILK workaround: disable reset around power sequence */
2042                 pp &= ~PANEL_POWER_RESET;
2043                 I915_WRITE(pp_ctrl_reg, pp);
2044                 POSTING_READ(pp_ctrl_reg);
2045         }
2046
2047         pp |= POWER_TARGET_ON;
2048         if (!IS_GEN5(dev))
2049                 pp |= PANEL_POWER_RESET;
2050
2051         I915_WRITE(pp_ctrl_reg, pp);
2052         POSTING_READ(pp_ctrl_reg);
2053
2054         wait_panel_on(intel_dp);
2055         intel_dp->last_power_on = jiffies;
2056
2057         if (IS_GEN5(dev)) {
2058                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2059                 I915_WRITE(pp_ctrl_reg, pp);
2060                 POSTING_READ(pp_ctrl_reg);
2061         }
2062 }
2063
2064 void intel_edp_panel_on(struct intel_dp *intel_dp)
2065 {
2066         if (!is_edp(intel_dp))
2067                 return;
2068
2069         pps_lock(intel_dp);
2070         edp_panel_on(intel_dp);
2071         pps_unlock(intel_dp);
2072 }
2073
2074
2075 static void edp_panel_off(struct intel_dp *intel_dp)
2076 {
2077         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2078         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2079         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2080         struct drm_i915_private *dev_priv = to_i915(dev);
2081         enum intel_display_power_domain power_domain;
2082         u32 pp;
2083         i915_reg_t pp_ctrl_reg;
2084
2085         lockdep_assert_held(&dev_priv->pps_mutex);
2086
2087         if (!is_edp(intel_dp))
2088                 return;
2089
2090         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2091                       port_name(dp_to_dig_port(intel_dp)->port));
2092
2093         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2094              port_name(dp_to_dig_port(intel_dp)->port));
2095
2096         pp = ironlake_get_pp_control(intel_dp);
2097         /* We need to switch off panel power _and_ force vdd, for otherwise some
2098          * panels get very unhappy and cease to work. */
2099         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2100                 EDP_BLC_ENABLE);
2101
2102         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2103
2104         intel_dp->want_panel_vdd = false;
2105
2106         I915_WRITE(pp_ctrl_reg, pp);
2107         POSTING_READ(pp_ctrl_reg);
2108
2109         intel_dp->panel_power_off_time = ktime_get_boottime();
2110         wait_panel_off(intel_dp);
2111
2112         /* We got a reference when we enabled the VDD. */
2113         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2114         intel_display_power_put(dev_priv, power_domain);
2115 }
2116
2117 void intel_edp_panel_off(struct intel_dp *intel_dp)
2118 {
2119         if (!is_edp(intel_dp))
2120                 return;
2121
2122         pps_lock(intel_dp);
2123         edp_panel_off(intel_dp);
2124         pps_unlock(intel_dp);
2125 }
2126
2127 /* Enable backlight in the panel power control. */
2128 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2129 {
2130         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2131         struct drm_device *dev = intel_dig_port->base.base.dev;
2132         struct drm_i915_private *dev_priv = to_i915(dev);
2133         u32 pp;
2134         i915_reg_t pp_ctrl_reg;
2135
2136         /*
2137          * If we enable the backlight right away following a panel power
2138          * on, we may see slight flicker as the panel syncs with the eDP
2139          * link.  So delay a bit to make sure the image is solid before
2140          * allowing it to appear.
2141          */
2142         wait_backlight_on(intel_dp);
2143
2144         pps_lock(intel_dp);
2145
2146         pp = ironlake_get_pp_control(intel_dp);
2147         pp |= EDP_BLC_ENABLE;
2148
2149         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2150
2151         I915_WRITE(pp_ctrl_reg, pp);
2152         POSTING_READ(pp_ctrl_reg);
2153
2154         pps_unlock(intel_dp);
2155 }
2156
2157 /* Enable backlight PWM and backlight PP control. */
2158 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2159 {
2160         if (!is_edp(intel_dp))
2161                 return;
2162
2163         DRM_DEBUG_KMS("\n");
2164
2165         intel_panel_enable_backlight(intel_dp->attached_connector);
2166         _intel_edp_backlight_on(intel_dp);
2167 }
2168
2169 /* Disable backlight in the panel power control. */
2170 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2171 {
2172         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2173         struct drm_i915_private *dev_priv = to_i915(dev);
2174         u32 pp;
2175         i915_reg_t pp_ctrl_reg;
2176
2177         if (!is_edp(intel_dp))
2178                 return;
2179
2180         pps_lock(intel_dp);
2181
2182         pp = ironlake_get_pp_control(intel_dp);
2183         pp &= ~EDP_BLC_ENABLE;
2184
2185         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2186
2187         I915_WRITE(pp_ctrl_reg, pp);
2188         POSTING_READ(pp_ctrl_reg);
2189
2190         pps_unlock(intel_dp);
2191
2192         intel_dp->last_backlight_off = jiffies;
2193         edp_wait_backlight_off(intel_dp);
2194 }
2195
2196 /* Disable backlight PP control and backlight PWM. */
2197 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2198 {
2199         if (!is_edp(intel_dp))
2200                 return;
2201
2202         DRM_DEBUG_KMS("\n");
2203
2204         _intel_edp_backlight_off(intel_dp);
2205         intel_panel_disable_backlight(intel_dp->attached_connector);
2206 }
2207
2208 /*
2209  * Hook for controlling the panel power control backlight through the bl_power
2210  * sysfs attribute. Take care to handle multiple calls.
2211  */
2212 static void intel_edp_backlight_power(struct intel_connector *connector,
2213                                       bool enable)
2214 {
2215         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2216         bool is_enabled;
2217
2218         pps_lock(intel_dp);
2219         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2220         pps_unlock(intel_dp);
2221
2222         if (is_enabled == enable)
2223                 return;
2224
2225         DRM_DEBUG_KMS("panel power control backlight %s\n",
2226                       enable ? "enable" : "disable");
2227
2228         if (enable)
2229                 _intel_edp_backlight_on(intel_dp);
2230         else
2231                 _intel_edp_backlight_off(intel_dp);
2232 }
2233
2234 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2235 {
2236         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2237         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2238         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2239
2240         I915_STATE_WARN(cur_state != state,
2241                         "DP port %c state assertion failure (expected %s, current %s)\n",
2242                         port_name(dig_port->port),
2243                         onoff(state), onoff(cur_state));
2244 }
2245 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2246
2247 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2248 {
2249         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2250
2251         I915_STATE_WARN(cur_state != state,
2252                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2253                         onoff(state), onoff(cur_state));
2254 }
2255 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2256 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2257
2258 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2259 {
2260         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2261         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2262         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2263
2264         assert_pipe_disabled(dev_priv, crtc->pipe);
2265         assert_dp_port_disabled(intel_dp);
2266         assert_edp_pll_disabled(dev_priv);
2267
2268         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2269                       crtc->config->port_clock);
2270
2271         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2272
2273         if (crtc->config->port_clock == 162000)
2274                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2275         else
2276                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2277
2278         I915_WRITE(DP_A, intel_dp->DP);
2279         POSTING_READ(DP_A);
2280         udelay(500);
2281
2282         /*
2283          * [DevILK] Work around required when enabling DP PLL
2284          * while a pipe is enabled going to FDI:
2285          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2286          * 2. Program DP PLL enable
2287          */
2288         if (IS_GEN5(dev_priv))
2289                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2290
2291         intel_dp->DP |= DP_PLL_ENABLE;
2292
2293         I915_WRITE(DP_A, intel_dp->DP);
2294         POSTING_READ(DP_A);
2295         udelay(200);
2296 }
2297
2298 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2299 {
2300         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2301         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2302         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2303
2304         assert_pipe_disabled(dev_priv, crtc->pipe);
2305         assert_dp_port_disabled(intel_dp);
2306         assert_edp_pll_enabled(dev_priv);
2307
2308         DRM_DEBUG_KMS("disabling eDP PLL\n");
2309
2310         intel_dp->DP &= ~DP_PLL_ENABLE;
2311
2312         I915_WRITE(DP_A, intel_dp->DP);
2313         POSTING_READ(DP_A);
2314         udelay(200);
2315 }
2316
2317 /* If the sink supports it, try to set the power state appropriately */
2318 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2319 {
2320         int ret, i;
2321
2322         /* Should have a valid DPCD by this point */
2323         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2324                 return;
2325
2326         if (mode != DRM_MODE_DPMS_ON) {
2327                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2328                                          DP_SET_POWER_D3);
2329         } else {
2330                 /*
2331                  * When turning on, we need to retry for 1ms to give the sink
2332                  * time to wake up.
2333                  */
2334                 for (i = 0; i < 3; i++) {
2335                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2336                                                  DP_SET_POWER_D0);
2337                         if (ret == 1)
2338                                 break;
2339                         msleep(1);
2340                 }
2341         }
2342
2343         if (ret != 1)
2344                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2345                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2346 }
2347
2348 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2349                                   enum pipe *pipe)
2350 {
2351         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2352         enum port port = dp_to_dig_port(intel_dp)->port;
2353         struct drm_device *dev = encoder->base.dev;
2354         struct drm_i915_private *dev_priv = to_i915(dev);
2355         enum intel_display_power_domain power_domain;
2356         u32 tmp;
2357         bool ret;
2358
2359         power_domain = intel_display_port_power_domain(encoder);
2360         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2361                 return false;
2362
2363         ret = false;
2364
2365         tmp = I915_READ(intel_dp->output_reg);
2366
2367         if (!(tmp & DP_PORT_EN))
2368                 goto out;
2369
2370         if (IS_GEN7(dev) && port == PORT_A) {
2371                 *pipe = PORT_TO_PIPE_CPT(tmp);
2372         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2373                 enum pipe p;
2374
2375                 for_each_pipe(dev_priv, p) {
2376                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2377                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2378                                 *pipe = p;
2379                                 ret = true;
2380
2381                                 goto out;
2382                         }
2383                 }
2384
2385                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2386                               i915_mmio_reg_offset(intel_dp->output_reg));
2387         } else if (IS_CHERRYVIEW(dev)) {
2388                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2389         } else {
2390                 *pipe = PORT_TO_PIPE(tmp);
2391         }
2392
2393         ret = true;
2394
2395 out:
2396         intel_display_power_put(dev_priv, power_domain);
2397
2398         return ret;
2399 }
2400
2401 static void intel_dp_get_config(struct intel_encoder *encoder,
2402                                 struct intel_crtc_state *pipe_config)
2403 {
2404         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2405         u32 tmp, flags = 0;
2406         struct drm_device *dev = encoder->base.dev;
2407         struct drm_i915_private *dev_priv = to_i915(dev);
2408         enum port port = dp_to_dig_port(intel_dp)->port;
2409         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2410
2411         tmp = I915_READ(intel_dp->output_reg);
2412
2413         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2414
2415         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2416                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2417
2418                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2419                         flags |= DRM_MODE_FLAG_PHSYNC;
2420                 else
2421                         flags |= DRM_MODE_FLAG_NHSYNC;
2422
2423                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2424                         flags |= DRM_MODE_FLAG_PVSYNC;
2425                 else
2426                         flags |= DRM_MODE_FLAG_NVSYNC;
2427         } else {
2428                 if (tmp & DP_SYNC_HS_HIGH)
2429                         flags |= DRM_MODE_FLAG_PHSYNC;
2430                 else
2431                         flags |= DRM_MODE_FLAG_NHSYNC;
2432
2433                 if (tmp & DP_SYNC_VS_HIGH)
2434                         flags |= DRM_MODE_FLAG_PVSYNC;
2435                 else
2436                         flags |= DRM_MODE_FLAG_NVSYNC;
2437         }
2438
2439         pipe_config->base.adjusted_mode.flags |= flags;
2440
2441         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2442             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2443                 pipe_config->limited_color_range = true;
2444
2445         pipe_config->lane_count =
2446                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2447
2448         intel_dp_get_m_n(crtc, pipe_config);
2449
2450         if (port == PORT_A) {
2451                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2452                         pipe_config->port_clock = 162000;
2453                 else
2454                         pipe_config->port_clock = 270000;
2455         }
2456
2457         pipe_config->base.adjusted_mode.crtc_clock =
2458                 intel_dotclock_calculate(pipe_config->port_clock,
2459                                          &pipe_config->dp_m_n);
2460
2461         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2462             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2463                 /*
2464                  * This is a big fat ugly hack.
2465                  *
2466                  * Some machines in UEFI boot mode provide us a VBT that has 18
2467                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2468                  * unknown we fail to light up. Yet the same BIOS boots up with
2469                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2470                  * max, not what it tells us to use.
2471                  *
2472                  * Note: This will still be broken if the eDP panel is not lit
2473                  * up by the BIOS, and thus we can't get the mode at module
2474                  * load.
2475                  */
2476                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2477                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2478                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2479         }
2480 }
2481
2482 static void intel_disable_dp(struct intel_encoder *encoder)
2483 {
2484         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2485         struct drm_device *dev = encoder->base.dev;
2486         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2487
2488         if (crtc->config->has_audio)
2489                 intel_audio_codec_disable(encoder);
2490
2491         if (HAS_PSR(dev) && !HAS_DDI(dev))
2492                 intel_psr_disable(intel_dp);
2493
2494         /* Make sure the panel is off before trying to change the mode. But also
2495          * ensure that we have vdd while we switch off the panel. */
2496         intel_edp_panel_vdd_on(intel_dp);
2497         intel_edp_backlight_off(intel_dp);
2498         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2499         intel_edp_panel_off(intel_dp);
2500
2501         /* disable the port before the pipe on g4x */
2502         if (INTEL_INFO(dev)->gen < 5)
2503                 intel_dp_link_down(intel_dp);
2504 }
2505
2506 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2507 {
2508         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2509         enum port port = dp_to_dig_port(intel_dp)->port;
2510
2511         intel_dp_link_down(intel_dp);
2512
2513         /* Only ilk+ has port A */
2514         if (port == PORT_A)
2515                 ironlake_edp_pll_off(intel_dp);
2516 }
2517
2518 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2519 {
2520         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2521
2522         intel_dp_link_down(intel_dp);
2523 }
2524
2525 static void chv_post_disable_dp(struct intel_encoder *encoder)
2526 {
2527         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2528         struct drm_device *dev = encoder->base.dev;
2529         struct drm_i915_private *dev_priv = to_i915(dev);
2530
2531         intel_dp_link_down(intel_dp);
2532
2533         mutex_lock(&dev_priv->sb_lock);
2534
2535         /* Assert data lane reset */
2536         chv_data_lane_soft_reset(encoder, true);
2537
2538         mutex_unlock(&dev_priv->sb_lock);
2539 }
2540
2541 static void
2542 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2543                          uint32_t *DP,
2544                          uint8_t dp_train_pat)
2545 {
2546         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2547         struct drm_device *dev = intel_dig_port->base.base.dev;
2548         struct drm_i915_private *dev_priv = to_i915(dev);
2549         enum port port = intel_dig_port->port;
2550
2551         if (HAS_DDI(dev)) {
2552                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2553
2554                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2555                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2556                 else
2557                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2558
2559                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2560                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2561                 case DP_TRAINING_PATTERN_DISABLE:
2562                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2563
2564                         break;
2565                 case DP_TRAINING_PATTERN_1:
2566                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2567                         break;
2568                 case DP_TRAINING_PATTERN_2:
2569                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2570                         break;
2571                 case DP_TRAINING_PATTERN_3:
2572                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2573                         break;
2574                 }
2575                 I915_WRITE(DP_TP_CTL(port), temp);
2576
2577         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2578                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2579                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2580
2581                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2582                 case DP_TRAINING_PATTERN_DISABLE:
2583                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2584                         break;
2585                 case DP_TRAINING_PATTERN_1:
2586                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2587                         break;
2588                 case DP_TRAINING_PATTERN_2:
2589                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2590                         break;
2591                 case DP_TRAINING_PATTERN_3:
2592                         DRM_ERROR("DP training pattern 3 not supported\n");
2593                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2594                         break;
2595                 }
2596
2597         } else {
2598                 if (IS_CHERRYVIEW(dev))
2599                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2600                 else
2601                         *DP &= ~DP_LINK_TRAIN_MASK;
2602
2603                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2604                 case DP_TRAINING_PATTERN_DISABLE:
2605                         *DP |= DP_LINK_TRAIN_OFF;
2606                         break;
2607                 case DP_TRAINING_PATTERN_1:
2608                         *DP |= DP_LINK_TRAIN_PAT_1;
2609                         break;
2610                 case DP_TRAINING_PATTERN_2:
2611                         *DP |= DP_LINK_TRAIN_PAT_2;
2612                         break;
2613                 case DP_TRAINING_PATTERN_3:
2614                         if (IS_CHERRYVIEW(dev)) {
2615                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2616                         } else {
2617                                 DRM_ERROR("DP training pattern 3 not supported\n");
2618                                 *DP |= DP_LINK_TRAIN_PAT_2;
2619                         }
2620                         break;
2621                 }
2622         }
2623 }
2624
2625 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2626 {
2627         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2628         struct drm_i915_private *dev_priv = to_i915(dev);
2629         struct intel_crtc *crtc =
2630                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2631
2632         /* enable with pattern 1 (as per spec) */
2633         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2634                                  DP_TRAINING_PATTERN_1);
2635
2636         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2637         POSTING_READ(intel_dp->output_reg);
2638
2639         /*
2640          * Magic for VLV/CHV. We _must_ first set up the register
2641          * without actually enabling the port, and then do another
2642          * write to enable the port. Otherwise link training will
2643          * fail when the power sequencer is freshly used for this port.
2644          */
2645         intel_dp->DP |= DP_PORT_EN;
2646         if (crtc->config->has_audio)
2647                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2648
2649         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2650         POSTING_READ(intel_dp->output_reg);
2651 }
2652
2653 static void intel_enable_dp(struct intel_encoder *encoder)
2654 {
2655         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2656         struct drm_device *dev = encoder->base.dev;
2657         struct drm_i915_private *dev_priv = to_i915(dev);
2658         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2659         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2660         enum pipe pipe = crtc->pipe;
2661
2662         if (WARN_ON(dp_reg & DP_PORT_EN))
2663                 return;
2664
2665         pps_lock(intel_dp);
2666
2667         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2668                 vlv_init_panel_power_sequencer(intel_dp);
2669
2670         intel_dp_enable_port(intel_dp);
2671
2672         edp_panel_vdd_on(intel_dp);
2673         edp_panel_on(intel_dp);
2674         edp_panel_vdd_off(intel_dp, true);
2675
2676         pps_unlock(intel_dp);
2677
2678         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2679                 unsigned int lane_mask = 0x0;
2680
2681                 if (IS_CHERRYVIEW(dev))
2682                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2683
2684                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2685                                     lane_mask);
2686         }
2687
2688         WARN_ON(intel_dp->active_streams != 0);
2689         intel_dp->active_streams++;
2690
2691         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2692         intel_dp_start_link_train(intel_dp);
2693         intel_dp_stop_link_train(intel_dp);
2694
2695         if (crtc->config->has_audio) {
2696                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2697                                  pipe_name(pipe));
2698                 intel_audio_codec_enable(encoder);
2699         }
2700 }
2701
2702 static void g4x_enable_dp(struct intel_encoder *encoder)
2703 {
2704         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2705
2706         intel_enable_dp(encoder);
2707         intel_edp_backlight_on(intel_dp);
2708 }
2709
2710 static void vlv_enable_dp(struct intel_encoder *encoder)
2711 {
2712         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2713
2714         intel_edp_backlight_on(intel_dp);
2715         intel_psr_enable(intel_dp);
2716 }
2717
2718 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2719 {
2720         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2721         enum port port = dp_to_dig_port(intel_dp)->port;
2722
2723         intel_dp_prepare(encoder);
2724
2725         /* Only ilk+ has port A */
2726         if (port == PORT_A)
2727                 ironlake_edp_pll_on(intel_dp);
2728 }
2729
2730 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2731 {
2732         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2733         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2734         enum pipe pipe = intel_dp->pps_pipe;
2735         i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2736
2737         edp_panel_vdd_off_sync(intel_dp);
2738
2739         /*
2740          * VLV seems to get confused when multiple power seqeuencers
2741          * have the same port selected (even if only one has power/vdd
2742          * enabled). The failure manifests as vlv_wait_port_ready() failing
2743          * CHV on the other hand doesn't seem to mind having the same port
2744          * selected in multiple power seqeuencers, but let's clear the
2745          * port select always when logically disconnecting a power sequencer
2746          * from a port.
2747          */
2748         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2749                       pipe_name(pipe), port_name(intel_dig_port->port));
2750         I915_WRITE(pp_on_reg, 0);
2751         POSTING_READ(pp_on_reg);
2752
2753         intel_dp->pps_pipe = INVALID_PIPE;
2754 }
2755
2756 static void vlv_steal_power_sequencer(struct drm_device *dev,
2757                                       enum pipe pipe)
2758 {
2759         struct drm_i915_private *dev_priv = to_i915(dev);
2760         struct intel_encoder *encoder;
2761
2762         lockdep_assert_held(&dev_priv->pps_mutex);
2763
2764         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2765                 return;
2766
2767         for_each_intel_encoder(dev, encoder) {
2768                 struct intel_dp *intel_dp;
2769                 enum port port;
2770
2771                 if (encoder->type != INTEL_OUTPUT_EDP)
2772                         continue;
2773
2774                 intel_dp = enc_to_intel_dp(&encoder->base);
2775                 port = dp_to_dig_port(intel_dp)->port;
2776
2777                 if (intel_dp->pps_pipe != pipe)
2778                         continue;
2779
2780                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2781                               pipe_name(pipe), port_name(port));
2782
2783                 WARN(encoder->base.crtc,
2784                      "stealing pipe %c power sequencer from active eDP port %c\n",
2785                      pipe_name(pipe), port_name(port));
2786
2787                 /* make sure vdd is off before we steal it */
2788                 vlv_detach_power_sequencer(intel_dp);
2789         }
2790 }
2791
2792 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2793 {
2794         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2795         struct intel_encoder *encoder = &intel_dig_port->base;
2796         struct drm_device *dev = encoder->base.dev;
2797         struct drm_i915_private *dev_priv = to_i915(dev);
2798         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2799
2800         lockdep_assert_held(&dev_priv->pps_mutex);
2801
2802         if (!is_edp(intel_dp))
2803                 return;
2804
2805         if (intel_dp->pps_pipe == crtc->pipe)
2806                 return;
2807
2808         /*
2809          * If another power sequencer was being used on this
2810          * port previously make sure to turn off vdd there while
2811          * we still have control of it.
2812          */
2813         if (intel_dp->pps_pipe != INVALID_PIPE)
2814                 vlv_detach_power_sequencer(intel_dp);
2815
2816         /*
2817          * We may be stealing the power
2818          * sequencer from another port.
2819          */
2820         vlv_steal_power_sequencer(dev, crtc->pipe);
2821
2822         /* now it's all ours */
2823         intel_dp->pps_pipe = crtc->pipe;
2824
2825         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2826                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2827
2828         /* init power sequencer on this pipe and port */
2829         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2830         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2831 }
2832
2833 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2834 {
2835         vlv_phy_pre_encoder_enable(encoder);
2836
2837         intel_enable_dp(encoder);
2838 }
2839
2840 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2841 {
2842         intel_dp_prepare(encoder);
2843
2844         vlv_phy_pre_pll_enable(encoder);
2845 }
2846
2847 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2848 {
2849         chv_phy_pre_encoder_enable(encoder);
2850
2851         intel_enable_dp(encoder);
2852
2853         /* Second common lane will stay alive on its own now */
2854         chv_phy_release_cl2_override(encoder);
2855 }
2856
2857 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2858 {
2859         intel_dp_prepare(encoder);
2860
2861         chv_phy_pre_pll_enable(encoder);
2862 }
2863
2864 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2865 {
2866         chv_phy_post_pll_disable(encoder);
2867 }
2868
2869 /*
2870  * Fetch AUX CH registers 0x202 - 0x207 which contain
2871  * link status information
2872  */
2873 bool
2874 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2875 {
2876         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2877                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2878 }
2879
2880 /* These are source-specific values. */
2881 uint8_t
2882 intel_dp_voltage_max(struct intel_dp *intel_dp)
2883 {
2884         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2885         struct drm_i915_private *dev_priv = to_i915(dev);
2886         enum port port = dp_to_dig_port(intel_dp)->port;
2887
2888         if (IS_BROXTON(dev))
2889                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2890         else if (INTEL_INFO(dev)->gen >= 9) {
2891                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2892                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2893                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2894         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2895                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2896         else if (IS_GEN7(dev) && port == PORT_A)
2897                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2898         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2899                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2900         else
2901                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2902 }
2903
2904 uint8_t
2905 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2906 {
2907         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2908         enum port port = dp_to_dig_port(intel_dp)->port;
2909
2910         if (INTEL_INFO(dev)->gen >= 9) {
2911                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2912                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2913                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2914                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2915                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2916                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2917                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2918                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2919                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2920                 default:
2921                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2922                 }
2923         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2924                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2925                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2926                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2927                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2928                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2929                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2930                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2931                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2932                 default:
2933                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2934                 }
2935         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2936                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2938                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2939                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2940                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2941                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2942                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2943                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2944                 default:
2945                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2946                 }
2947         } else if (IS_GEN7(dev) && port == PORT_A) {
2948                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2949                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2950                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2951                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2952                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2953                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2954                 default:
2955                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2956                 }
2957         } else {
2958                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2959                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2960                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2961                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2962                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2963                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2964                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2965                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2966                 default:
2967                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2968                 }
2969         }
2970 }
2971
2972 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2973 {
2974         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2975         unsigned long demph_reg_value, preemph_reg_value,
2976                 uniqtranscale_reg_value;
2977         uint8_t train_set = intel_dp->train_set[0];
2978
2979         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2980         case DP_TRAIN_PRE_EMPH_LEVEL_0:
2981                 preemph_reg_value = 0x0004000;
2982                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2983                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2984                         demph_reg_value = 0x2B405555;
2985                         uniqtranscale_reg_value = 0x552AB83A;
2986                         break;
2987                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2988                         demph_reg_value = 0x2B404040;
2989                         uniqtranscale_reg_value = 0x5548B83A;
2990                         break;
2991                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2992                         demph_reg_value = 0x2B245555;
2993                         uniqtranscale_reg_value = 0x5560B83A;
2994                         break;
2995                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2996                         demph_reg_value = 0x2B405555;
2997                         uniqtranscale_reg_value = 0x5598DA3A;
2998                         break;
2999                 default:
3000                         return 0;
3001                 }
3002                 break;
3003         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3004                 preemph_reg_value = 0x0002000;
3005                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3006                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3007                         demph_reg_value = 0x2B404040;
3008                         uniqtranscale_reg_value = 0x5552B83A;
3009                         break;
3010                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3011                         demph_reg_value = 0x2B404848;
3012                         uniqtranscale_reg_value = 0x5580B83A;
3013                         break;
3014                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3015                         demph_reg_value = 0x2B404040;
3016                         uniqtranscale_reg_value = 0x55ADDA3A;
3017                         break;
3018                 default:
3019                         return 0;
3020                 }
3021                 break;
3022         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3023                 preemph_reg_value = 0x0000000;
3024                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3025                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3026                         demph_reg_value = 0x2B305555;
3027                         uniqtranscale_reg_value = 0x5570B83A;
3028                         break;
3029                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3030                         demph_reg_value = 0x2B2B4040;
3031                         uniqtranscale_reg_value = 0x55ADDA3A;
3032                         break;
3033                 default:
3034                         return 0;
3035                 }
3036                 break;
3037         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3038                 preemph_reg_value = 0x0006000;
3039                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3040                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3041                         demph_reg_value = 0x1B405555;
3042                         uniqtranscale_reg_value = 0x55ADDA3A;
3043                         break;
3044                 default:
3045                         return 0;
3046                 }
3047                 break;
3048         default:
3049                 return 0;
3050         }
3051
3052         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3053                                  uniqtranscale_reg_value, 0);
3054
3055         return 0;
3056 }
3057
3058 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3059 {
3060         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3061         u32 deemph_reg_value, margin_reg_value;
3062         bool uniq_trans_scale = false;
3063         uint8_t train_set = intel_dp->train_set[0];
3064
3065         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3066         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3067                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3068                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3069                         deemph_reg_value = 128;
3070                         margin_reg_value = 52;
3071                         break;
3072                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3073                         deemph_reg_value = 128;
3074                         margin_reg_value = 77;
3075                         break;
3076                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3077                         deemph_reg_value = 128;
3078                         margin_reg_value = 102;
3079                         break;
3080                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3081                         deemph_reg_value = 128;
3082                         margin_reg_value = 154;
3083                         uniq_trans_scale = true;
3084                         break;
3085                 default:
3086                         return 0;
3087                 }
3088                 break;
3089         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3090                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092                         deemph_reg_value = 85;
3093                         margin_reg_value = 78;
3094                         break;
3095                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3096                         deemph_reg_value = 85;
3097                         margin_reg_value = 116;
3098                         break;
3099                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3100                         deemph_reg_value = 85;
3101                         margin_reg_value = 154;
3102                         break;
3103                 default:
3104                         return 0;
3105                 }
3106                 break;
3107         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3108                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3109                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3110                         deemph_reg_value = 64;
3111                         margin_reg_value = 104;
3112                         break;
3113                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3114                         deemph_reg_value = 64;
3115                         margin_reg_value = 154;
3116                         break;
3117                 default:
3118                         return 0;
3119                 }
3120                 break;
3121         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3122                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3123                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3124                         deemph_reg_value = 43;
3125                         margin_reg_value = 154;
3126                         break;
3127                 default:
3128                         return 0;
3129                 }
3130                 break;
3131         default:
3132                 return 0;
3133         }
3134
3135         chv_set_phy_signal_level(encoder, deemph_reg_value,
3136                                  margin_reg_value, uniq_trans_scale);
3137
3138         return 0;
3139 }
3140
3141 static uint32_t
3142 gen4_signal_levels(uint8_t train_set)
3143 {
3144         uint32_t        signal_levels = 0;
3145
3146         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3147         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3148         default:
3149                 signal_levels |= DP_VOLTAGE_0_4;
3150                 break;
3151         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3152                 signal_levels |= DP_VOLTAGE_0_6;
3153                 break;
3154         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3155                 signal_levels |= DP_VOLTAGE_0_8;
3156                 break;
3157         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3158                 signal_levels |= DP_VOLTAGE_1_2;
3159                 break;
3160         }
3161         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3162         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3163         default:
3164                 signal_levels |= DP_PRE_EMPHASIS_0;
3165                 break;
3166         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3167                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3168                 break;
3169         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3170                 signal_levels |= DP_PRE_EMPHASIS_6;
3171                 break;
3172         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3173                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3174                 break;
3175         }
3176         return signal_levels;
3177 }
3178
3179 /* Gen6's DP voltage swing and pre-emphasis control */
3180 static uint32_t
3181 gen6_edp_signal_levels(uint8_t train_set)
3182 {
3183         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3184                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3185         switch (signal_levels) {
3186         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3187         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3188                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3189         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3190                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3191         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3192         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3193                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3194         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3195         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3196                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3197         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3198         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3199                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3200         default:
3201                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3202                               "0x%x\n", signal_levels);
3203                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3204         }
3205 }
3206
3207 /* Gen7's DP voltage swing and pre-emphasis control */
3208 static uint32_t
3209 gen7_edp_signal_levels(uint8_t train_set)
3210 {
3211         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3212                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3213         switch (signal_levels) {
3214         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3215                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3216         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3217                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3218         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3219                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3220
3221         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3222                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3223         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3224                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3225
3226         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3227                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3228         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3229                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3230
3231         default:
3232                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3233                               "0x%x\n", signal_levels);
3234                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3235         }
3236 }
3237
3238 void
3239 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3240 {
3241         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3242         enum port port = intel_dig_port->port;
3243         struct drm_device *dev = intel_dig_port->base.base.dev;
3244         struct drm_i915_private *dev_priv = to_i915(dev);
3245         uint32_t signal_levels, mask = 0;
3246         uint8_t train_set = intel_dp->train_set[0];
3247
3248         if (HAS_DDI(dev)) {
3249                 signal_levels = ddi_signal_levels(intel_dp);
3250
3251                 if (IS_BROXTON(dev))
3252                         signal_levels = 0;
3253                 else
3254                         mask = DDI_BUF_EMP_MASK;
3255         } else if (IS_CHERRYVIEW(dev)) {
3256                 signal_levels = chv_signal_levels(intel_dp);
3257         } else if (IS_VALLEYVIEW(dev)) {
3258                 signal_levels = vlv_signal_levels(intel_dp);
3259         } else if (IS_GEN7(dev) && port == PORT_A) {
3260                 signal_levels = gen7_edp_signal_levels(train_set);
3261                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3262         } else if (IS_GEN6(dev) && port == PORT_A) {
3263                 signal_levels = gen6_edp_signal_levels(train_set);
3264                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3265         } else {
3266                 signal_levels = gen4_signal_levels(train_set);
3267                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3268         }
3269
3270         if (mask)
3271                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3272
3273         DRM_DEBUG_KMS("Using vswing level %d\n",
3274                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3275         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3276                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3277                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3278
3279         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3280
3281         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3282         POSTING_READ(intel_dp->output_reg);
3283 }
3284
3285 void
3286 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3287                                        uint8_t dp_train_pat)
3288 {
3289         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3290         struct drm_i915_private *dev_priv =
3291                 to_i915(intel_dig_port->base.base.dev);
3292
3293         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3294
3295         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3296         POSTING_READ(intel_dp->output_reg);
3297 }
3298
3299 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3300 {
3301         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3302         struct drm_device *dev = intel_dig_port->base.base.dev;
3303         struct drm_i915_private *dev_priv = to_i915(dev);
3304         enum port port = intel_dig_port->port;
3305         uint32_t val;
3306
3307         if (!HAS_DDI(dev))
3308                 return;
3309
3310         val = I915_READ(DP_TP_CTL(port));
3311         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3312         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3313         I915_WRITE(DP_TP_CTL(port), val);
3314
3315         /*
3316          * On PORT_A we can have only eDP in SST mode. There the only reason
3317          * we need to set idle transmission mode is to work around a HW issue
3318          * where we enable the pipe while not in idle link-training mode.
3319          * In this case there is requirement to wait for a minimum number of
3320          * idle patterns to be sent.
3321          */
3322         if (port == PORT_A)
3323                 return;
3324
3325         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3326                                     DP_TP_STATUS_IDLE_DONE,
3327                                     DP_TP_STATUS_IDLE_DONE,
3328                                     1))
3329                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3330 }
3331
3332 static void
3333 intel_dp_link_down(struct intel_dp *intel_dp)
3334 {
3335         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3336         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3337         enum port port = intel_dig_port->port;
3338         struct drm_device *dev = intel_dig_port->base.base.dev;
3339         struct drm_i915_private *dev_priv = to_i915(dev);
3340         uint32_t DP = intel_dp->DP;
3341
3342         if (WARN_ON(HAS_DDI(dev)))
3343                 return;
3344
3345         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3346                 return;
3347
3348         DRM_DEBUG_KMS("\n");
3349
3350         intel_dp->active_streams--;
3351         WARN_ON(intel_dp->active_streams != 0);
3352
3353         if ((IS_GEN7(dev) && port == PORT_A) ||
3354             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3355                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3356                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3357         } else {
3358                 if (IS_CHERRYVIEW(dev))
3359                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3360                 else
3361                         DP &= ~DP_LINK_TRAIN_MASK;
3362                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3363         }
3364         I915_WRITE(intel_dp->output_reg, DP);
3365         POSTING_READ(intel_dp->output_reg);
3366
3367         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3368         I915_WRITE(intel_dp->output_reg, DP);
3369         POSTING_READ(intel_dp->output_reg);
3370
3371         /*
3372          * HW workaround for IBX, we need to move the port
3373          * to transcoder A after disabling it to allow the
3374          * matching HDMI port to be enabled on transcoder A.
3375          */
3376         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3377                 /*
3378                  * We get CPU/PCH FIFO underruns on the other pipe when
3379                  * doing the workaround. Sweep them under the rug.
3380                  */
3381                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3382                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3383
3384                 /* always enable with pattern 1 (as per spec) */
3385                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3386                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3387                 I915_WRITE(intel_dp->output_reg, DP);
3388                 POSTING_READ(intel_dp->output_reg);
3389
3390                 DP &= ~DP_PORT_EN;
3391                 I915_WRITE(intel_dp->output_reg, DP);
3392                 POSTING_READ(intel_dp->output_reg);
3393
3394                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3395                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3396                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3397         }
3398
3399         msleep(intel_dp->panel_power_down_delay);
3400
3401         intel_dp->DP = DP;
3402 }
3403
3404 static bool
3405 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3406 {
3407         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3408                              sizeof(intel_dp->dpcd)) < 0)
3409                 return false; /* aux transfer failed */
3410
3411         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3412
3413         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3414 }
3415
3416 static bool
3417 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3418 {
3419         struct drm_i915_private *dev_priv =
3420                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3421
3422         /* this function is meant to be called only once */
3423         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3424
3425         if (!intel_dp_read_dpcd(intel_dp))
3426                 return false;
3427
3428         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3429                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3430                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3431
3432         /* Check if the panel supports PSR */
3433         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3434                          intel_dp->psr_dpcd,
3435                          sizeof(intel_dp->psr_dpcd));
3436         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3437                 dev_priv->psr.sink_support = true;
3438                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3439         }
3440
3441         if (INTEL_GEN(dev_priv) >= 9 &&
3442             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3443                 uint8_t frame_sync_cap;
3444
3445                 dev_priv->psr.sink_support = true;
3446                 drm_dp_dpcd_read(&intel_dp->aux,
3447                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3448                                  &frame_sync_cap, 1);
3449                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3450                 /* PSR2 needs frame sync as well */
3451                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3452                 DRM_DEBUG_KMS("PSR2 %s on sink",
3453                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3454         }
3455
3456         /* Read the eDP Display control capabilities registers */
3457         if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3458             drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3459                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd) ==
3460                              sizeof(intel_dp->edp_dpcd)))
3461                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3462                               intel_dp->edp_dpcd);
3463
3464         /* Intermediate frequency support */
3465         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3466                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3467                 int i;
3468
3469                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3470                                 sink_rates, sizeof(sink_rates));
3471
3472                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3473                         int val = le16_to_cpu(sink_rates[i]);
3474
3475                         if (val == 0)
3476                                 break;
3477
3478                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3479                         intel_dp->sink_rates[i] = (val * 200) / 10;
3480                 }
3481                 intel_dp->num_sink_rates = i;
3482         }
3483
3484         return true;
3485 }
3486
3487
3488 static bool
3489 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3490 {
3491         if (!intel_dp_read_dpcd(intel_dp))
3492                 return false;
3493
3494         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3495                              &intel_dp->sink_count, 1) < 0)
3496                 return false;
3497
3498         /*
3499          * Sink count can change between short pulse hpd hence
3500          * a member variable in intel_dp will track any changes
3501          * between short pulse interrupts.
3502          */
3503         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3504
3505         /*
3506          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3507          * a dongle is present but no display. Unless we require to know
3508          * if a dongle is present or not, we don't need to update
3509          * downstream port information. So, an early return here saves
3510          * time from performing other operations which are not required.
3511          */
3512         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3513                 return false;
3514
3515         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3516               DP_DWN_STRM_PORT_PRESENT))
3517                 return true; /* native DP sink */
3518
3519         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3520                 return true; /* no per-port downstream info */
3521
3522         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3523                              intel_dp->downstream_ports,
3524                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3525                 return false; /* downstream port status fetch failed */
3526
3527         return true;
3528 }
3529
3530 static void
3531 intel_dp_probe_oui(struct intel_dp *intel_dp)
3532 {
3533         u8 buf[3];
3534
3535         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3536                 return;
3537
3538         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3539                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3540                               buf[0], buf[1], buf[2]);
3541
3542         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3543                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3544                               buf[0], buf[1], buf[2]);
3545 }
3546
3547 static bool
3548 intel_dp_can_mst(struct intel_dp *intel_dp)
3549 {
3550         u8 buf[1];
3551
3552         if (!i915.enable_dp_mst)
3553                 return false;
3554
3555         if (!intel_dp->can_mst)
3556                 return false;
3557
3558         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3559                 return false;
3560
3561         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3562                 return false;
3563
3564         return buf[0] & DP_MST_CAP;
3565 }
3566
3567 static void
3568 intel_dp_configure_mst(struct intel_dp *intel_dp)
3569 {
3570         if (!i915.enable_dp_mst)
3571                 return;
3572
3573         if (!intel_dp->can_mst)
3574                 return;
3575
3576         intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3577
3578         if (intel_dp->is_mst)
3579                 DRM_DEBUG_KMS("Sink is MST capable\n");
3580         else
3581                 DRM_DEBUG_KMS("Sink is not MST capable\n");
3582
3583         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3584                                         intel_dp->is_mst);
3585 }
3586
3587 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3588 {
3589         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3590         struct drm_device *dev = dig_port->base.base.dev;
3591         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3592         u8 buf;
3593         int ret = 0;
3594         int count = 0;
3595         int attempts = 10;
3596
3597         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3598                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3599                 ret = -EIO;
3600                 goto out;
3601         }
3602
3603         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3604                                buf & ~DP_TEST_SINK_START) < 0) {
3605                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3606                 ret = -EIO;
3607                 goto out;
3608         }
3609
3610         do {
3611                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3612
3613                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3614                                       DP_TEST_SINK_MISC, &buf) < 0) {
3615                         ret = -EIO;
3616                         goto out;
3617                 }
3618                 count = buf & DP_TEST_COUNT_MASK;
3619         } while (--attempts && count);
3620
3621         if (attempts == 0) {
3622                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3623                 ret = -ETIMEDOUT;
3624         }
3625
3626  out:
3627         hsw_enable_ips(intel_crtc);
3628         return ret;
3629 }
3630
3631 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3632 {
3633         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3634         struct drm_device *dev = dig_port->base.base.dev;
3635         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3636         u8 buf;
3637         int ret;
3638
3639         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3640                 return -EIO;
3641
3642         if (!(buf & DP_TEST_CRC_SUPPORTED))
3643                 return -ENOTTY;
3644
3645         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3646                 return -EIO;
3647
3648         if (buf & DP_TEST_SINK_START) {
3649                 ret = intel_dp_sink_crc_stop(intel_dp);
3650                 if (ret)
3651                         return ret;
3652         }
3653
3654         hsw_disable_ips(intel_crtc);
3655
3656         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3657                                buf | DP_TEST_SINK_START) < 0) {
3658                 hsw_enable_ips(intel_crtc);
3659                 return -EIO;
3660         }
3661
3662         intel_wait_for_vblank(dev, intel_crtc->pipe);
3663         return 0;
3664 }
3665
3666 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3667 {
3668         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3669         struct drm_device *dev = dig_port->base.base.dev;
3670         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3671         u8 buf;
3672         int count, ret;
3673         int attempts = 6;
3674
3675         ret = intel_dp_sink_crc_start(intel_dp);
3676         if (ret)
3677                 return ret;
3678
3679         do {
3680                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3681
3682                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3683                                       DP_TEST_SINK_MISC, &buf) < 0) {
3684                         ret = -EIO;
3685                         goto stop;
3686                 }
3687                 count = buf & DP_TEST_COUNT_MASK;
3688
3689         } while (--attempts && count == 0);
3690
3691         if (attempts == 0) {
3692                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3693                 ret = -ETIMEDOUT;
3694                 goto stop;
3695         }
3696
3697         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3698                 ret = -EIO;
3699                 goto stop;
3700         }
3701
3702 stop:
3703         intel_dp_sink_crc_stop(intel_dp);
3704         return ret;
3705 }
3706
3707 static bool
3708 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3709 {
3710         return drm_dp_dpcd_read(&intel_dp->aux,
3711                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3712                                        sink_irq_vector, 1) == 1;
3713 }
3714
3715 static bool
3716 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3717 {
3718         int ret;
3719
3720         ret = drm_dp_dpcd_read(&intel_dp->aux,
3721                                              DP_SINK_COUNT_ESI,
3722                                              sink_irq_vector, 14);
3723         if (ret != 14)
3724                 return false;
3725
3726         return true;
3727 }
3728
3729 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3730 {
3731         uint8_t test_result = DP_TEST_ACK;
3732         return test_result;
3733 }
3734
3735 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3736 {
3737         uint8_t test_result = DP_TEST_NAK;
3738         return test_result;
3739 }
3740
3741 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3742 {
3743         uint8_t test_result = DP_TEST_NAK;
3744         struct intel_connector *intel_connector = intel_dp->attached_connector;
3745         struct drm_connector *connector = &intel_connector->base;
3746
3747         if (intel_connector->detect_edid == NULL ||
3748             connector->edid_corrupt ||
3749             intel_dp->aux.i2c_defer_count > 6) {
3750                 /* Check EDID read for NACKs, DEFERs and corruption
3751                  * (DP CTS 1.2 Core r1.1)
3752                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3753                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3754                  *    4.2.2.6 : EDID corruption detected
3755                  * Use failsafe mode for all cases
3756                  */
3757                 if (intel_dp->aux.i2c_nack_count > 0 ||
3758                         intel_dp->aux.i2c_defer_count > 0)
3759                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3760                                       intel_dp->aux.i2c_nack_count,
3761                                       intel_dp->aux.i2c_defer_count);
3762                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3763         } else {
3764                 struct edid *block = intel_connector->detect_edid;
3765
3766                 /* We have to write the checksum
3767                  * of the last block read
3768                  */
3769                 block += intel_connector->detect_edid->extensions;
3770
3771                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3772                                         DP_TEST_EDID_CHECKSUM,
3773                                         &block->checksum,
3774                                         1))
3775                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3776
3777                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3778                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3779         }
3780
3781         /* Set test active flag here so userspace doesn't interrupt things */
3782         intel_dp->compliance_test_active = 1;
3783
3784         return test_result;
3785 }
3786
3787 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3788 {
3789         uint8_t test_result = DP_TEST_NAK;
3790         return test_result;
3791 }
3792
3793 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3794 {
3795         uint8_t response = DP_TEST_NAK;
3796         uint8_t rxdata = 0;
3797         int status = 0;
3798
3799         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3800         if (status <= 0) {
3801                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3802                 goto update_status;
3803         }
3804
3805         switch (rxdata) {
3806         case DP_TEST_LINK_TRAINING:
3807                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3808                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3809                 response = intel_dp_autotest_link_training(intel_dp);
3810                 break;
3811         case DP_TEST_LINK_VIDEO_PATTERN:
3812                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3813                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3814                 response = intel_dp_autotest_video_pattern(intel_dp);
3815                 break;
3816         case DP_TEST_LINK_EDID_READ:
3817                 DRM_DEBUG_KMS("EDID test requested\n");
3818                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3819                 response = intel_dp_autotest_edid(intel_dp);
3820                 break;
3821         case DP_TEST_LINK_PHY_TEST_PATTERN:
3822                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3823                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3824                 response = intel_dp_autotest_phy_pattern(intel_dp);
3825                 break;
3826         default:
3827                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3828                 break;
3829         }
3830
3831 update_status:
3832         status = drm_dp_dpcd_write(&intel_dp->aux,
3833                                    DP_TEST_RESPONSE,
3834                                    &response, 1);
3835         if (status <= 0)
3836                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3837 }
3838
3839 static int
3840 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3841 {
3842         bool bret;
3843
3844         if (intel_dp->is_mst) {
3845                 u8 esi[16] = { 0 };
3846                 int ret = 0;
3847                 int retry;
3848                 bool handled;
3849                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3850 go_again:
3851                 if (bret == true) {
3852
3853                         /* check link status - esi[10] = 0x200c */
3854                         if (intel_dp->active_streams &&
3855                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3856                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3857                                 intel_dp_start_link_train(intel_dp);
3858                                 intel_dp_stop_link_train(intel_dp);
3859                         }
3860
3861                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3862                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3863
3864                         if (handled) {
3865                                 for (retry = 0; retry < 3; retry++) {
3866                                         int wret;
3867                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3868                                                                  DP_SINK_COUNT_ESI+1,
3869                                                                  &esi[1], 3);
3870                                         if (wret == 3) {
3871                                                 break;
3872                                         }
3873                                 }
3874
3875                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3876                                 if (bret == true) {
3877                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3878                                         goto go_again;
3879                                 }
3880                         } else
3881                                 ret = 0;
3882
3883                         return ret;
3884                 } else {
3885                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3886                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3887                         intel_dp->is_mst = false;
3888                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3889                         /* send a hotplug event */
3890                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3891                 }
3892         }
3893         return -EINVAL;
3894 }
3895
3896 static void
3897 intel_dp_check_link_status(struct intel_dp *intel_dp)
3898 {
3899         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3900         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3901         u8 link_status[DP_LINK_STATUS_SIZE];
3902
3903         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3904
3905         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3906                 DRM_ERROR("Failed to get link status\n");
3907                 return;
3908         }
3909
3910         if (!intel_encoder->base.crtc)
3911                 return;
3912
3913         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3914                 return;
3915
3916         /* if link training is requested we should perform it always */
3917         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3918             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3919                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3920                               intel_encoder->base.name);
3921                 intel_dp_start_link_train(intel_dp);
3922                 intel_dp_stop_link_train(intel_dp);
3923         }
3924 }
3925
3926 /*
3927  * According to DP spec
3928  * 5.1.2:
3929  *  1. Read DPCD
3930  *  2. Configure link according to Receiver Capabilities
3931  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3932  *  4. Check link status on receipt of hot-plug interrupt
3933  *
3934  * intel_dp_short_pulse -  handles short pulse interrupts
3935  * when full detection is not required.
3936  * Returns %true if short pulse is handled and full detection
3937  * is NOT required and %false otherwise.
3938  */
3939 static bool
3940 intel_dp_short_pulse(struct intel_dp *intel_dp)
3941 {
3942         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3943         u8 sink_irq_vector = 0;
3944         u8 old_sink_count = intel_dp->sink_count;
3945         bool ret;
3946
3947         /*
3948          * Clearing compliance test variables to allow capturing
3949          * of values for next automated test request.
3950          */
3951         intel_dp->compliance_test_active = 0;
3952         intel_dp->compliance_test_type = 0;
3953         intel_dp->compliance_test_data = 0;
3954
3955         /*
3956          * Now read the DPCD to see if it's actually running
3957          * If the current value of sink count doesn't match with
3958          * the value that was stored earlier or dpcd read failed
3959          * we need to do full detection
3960          */
3961         ret = intel_dp_get_dpcd(intel_dp);
3962
3963         if ((old_sink_count != intel_dp->sink_count) || !ret) {
3964                 /* No need to proceed if we are going to do full detect */
3965                 return false;
3966         }
3967
3968         /* Try to read the source of the interrupt */
3969         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3970             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
3971             sink_irq_vector != 0) {
3972                 /* Clear interrupt source */
3973                 drm_dp_dpcd_writeb(&intel_dp->aux,
3974                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3975                                    sink_irq_vector);
3976
3977                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3978                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3979                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3980                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3981         }
3982
3983         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3984         intel_dp_check_link_status(intel_dp);
3985         drm_modeset_unlock(&dev->mode_config.connection_mutex);
3986
3987         return true;
3988 }
3989
3990 /* XXX this is probably wrong for multiple downstream ports */
3991 static enum drm_connector_status
3992 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3993 {
3994         uint8_t *dpcd = intel_dp->dpcd;
3995         uint8_t type;
3996
3997         if (!intel_dp_get_dpcd(intel_dp))
3998                 return connector_status_disconnected;
3999
4000         if (is_edp(intel_dp))
4001                 return connector_status_connected;
4002
4003         /* if there's no downstream port, we're done */
4004         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4005                 return connector_status_connected;
4006
4007         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4008         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4009             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4010
4011                 return intel_dp->sink_count ?
4012                 connector_status_connected : connector_status_disconnected;
4013         }
4014
4015         if (intel_dp_can_mst(intel_dp))
4016                 return connector_status_connected;
4017
4018         /* If no HPD, poke DDC gently */
4019         if (drm_probe_ddc(&intel_dp->aux.ddc))
4020                 return connector_status_connected;
4021
4022         /* Well we tried, say unknown for unreliable port types */
4023         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4024                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4025                 if (type == DP_DS_PORT_TYPE_VGA ||
4026                     type == DP_DS_PORT_TYPE_NON_EDID)
4027                         return connector_status_unknown;
4028         } else {
4029                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4030                         DP_DWN_STRM_PORT_TYPE_MASK;
4031                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4032                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4033                         return connector_status_unknown;
4034         }
4035
4036         /* Anything else is out of spec, warn and ignore */
4037         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4038         return connector_status_disconnected;
4039 }
4040
4041 static enum drm_connector_status
4042 edp_detect(struct intel_dp *intel_dp)
4043 {
4044         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4045         enum drm_connector_status status;
4046
4047         status = intel_panel_detect(dev);
4048         if (status == connector_status_unknown)
4049                 status = connector_status_connected;
4050
4051         return status;
4052 }
4053
4054 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4055                                        struct intel_digital_port *port)
4056 {
4057         u32 bit;
4058
4059         switch (port->port) {
4060         case PORT_A:
4061                 return true;
4062         case PORT_B:
4063                 bit = SDE_PORTB_HOTPLUG;
4064                 break;
4065         case PORT_C:
4066                 bit = SDE_PORTC_HOTPLUG;
4067                 break;
4068         case PORT_D:
4069                 bit = SDE_PORTD_HOTPLUG;
4070                 break;
4071         default:
4072                 MISSING_CASE(port->port);
4073                 return false;
4074         }
4075
4076         return I915_READ(SDEISR) & bit;
4077 }
4078
4079 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4080                                        struct intel_digital_port *port)
4081 {
4082         u32 bit;
4083
4084         switch (port->port) {
4085         case PORT_A:
4086                 return true;
4087         case PORT_B:
4088                 bit = SDE_PORTB_HOTPLUG_CPT;
4089                 break;
4090         case PORT_C:
4091                 bit = SDE_PORTC_HOTPLUG_CPT;
4092                 break;
4093         case PORT_D:
4094                 bit = SDE_PORTD_HOTPLUG_CPT;
4095                 break;
4096         case PORT_E:
4097                 bit = SDE_PORTE_HOTPLUG_SPT;
4098                 break;
4099         default:
4100                 MISSING_CASE(port->port);
4101                 return false;
4102         }
4103
4104         return I915_READ(SDEISR) & bit;
4105 }
4106
4107 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4108                                        struct intel_digital_port *port)
4109 {
4110         u32 bit;
4111
4112         switch (port->port) {
4113         case PORT_B:
4114                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4115                 break;
4116         case PORT_C:
4117                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4118                 break;
4119         case PORT_D:
4120                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4121                 break;
4122         default:
4123                 MISSING_CASE(port->port);
4124                 return false;
4125         }
4126
4127         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4128 }
4129
4130 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4131                                         struct intel_digital_port *port)
4132 {
4133         u32 bit;
4134
4135         switch (port->port) {
4136         case PORT_B:
4137                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4138                 break;
4139         case PORT_C:
4140                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4141                 break;
4142         case PORT_D:
4143                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4144                 break;
4145         default:
4146                 MISSING_CASE(port->port);
4147                 return false;
4148         }
4149
4150         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4151 }
4152
4153 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4154                                        struct intel_digital_port *intel_dig_port)
4155 {
4156         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4157         enum port port;
4158         u32 bit;
4159
4160         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4161         switch (port) {
4162         case PORT_A:
4163                 bit = BXT_DE_PORT_HP_DDIA;
4164                 break;
4165         case PORT_B:
4166                 bit = BXT_DE_PORT_HP_DDIB;
4167                 break;
4168         case PORT_C:
4169                 bit = BXT_DE_PORT_HP_DDIC;
4170                 break;
4171         default:
4172                 MISSING_CASE(port);
4173                 return false;
4174         }
4175
4176         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4177 }
4178
4179 /*
4180  * intel_digital_port_connected - is the specified port connected?
4181  * @dev_priv: i915 private structure
4182  * @port: the port to test
4183  *
4184  * Return %true if @port is connected, %false otherwise.
4185  */
4186 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4187                                          struct intel_digital_port *port)
4188 {
4189         if (HAS_PCH_IBX(dev_priv))
4190                 return ibx_digital_port_connected(dev_priv, port);
4191         else if (HAS_PCH_SPLIT(dev_priv))
4192                 return cpt_digital_port_connected(dev_priv, port);
4193         else if (IS_BROXTON(dev_priv))
4194                 return bxt_digital_port_connected(dev_priv, port);
4195         else if (IS_GM45(dev_priv))
4196                 return gm45_digital_port_connected(dev_priv, port);
4197         else
4198                 return g4x_digital_port_connected(dev_priv, port);
4199 }
4200
4201 static struct edid *
4202 intel_dp_get_edid(struct intel_dp *intel_dp)
4203 {
4204         struct intel_connector *intel_connector = intel_dp->attached_connector;
4205
4206         /* use cached edid if we have one */
4207         if (intel_connector->edid) {
4208                 /* invalid edid */
4209                 if (IS_ERR(intel_connector->edid))
4210                         return NULL;
4211
4212                 return drm_edid_duplicate(intel_connector->edid);
4213         } else
4214                 return drm_get_edid(&intel_connector->base,
4215                                     &intel_dp->aux.ddc);
4216 }
4217
4218 static void
4219 intel_dp_set_edid(struct intel_dp *intel_dp)
4220 {
4221         struct intel_connector *intel_connector = intel_dp->attached_connector;
4222         struct edid *edid;
4223
4224         intel_dp_unset_edid(intel_dp);
4225         edid = intel_dp_get_edid(intel_dp);
4226         intel_connector->detect_edid = edid;
4227
4228         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4229                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4230         else
4231                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4232 }
4233
4234 static void
4235 intel_dp_unset_edid(struct intel_dp *intel_dp)
4236 {
4237         struct intel_connector *intel_connector = intel_dp->attached_connector;
4238
4239         kfree(intel_connector->detect_edid);
4240         intel_connector->detect_edid = NULL;
4241
4242         intel_dp->has_audio = false;
4243 }
4244
4245 static void
4246 intel_dp_long_pulse(struct intel_connector *intel_connector)
4247 {
4248         struct drm_connector *connector = &intel_connector->base;
4249         struct intel_dp *intel_dp = intel_attached_dp(connector);
4250         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4251         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4252         struct drm_device *dev = connector->dev;
4253         enum drm_connector_status status;
4254         enum intel_display_power_domain power_domain;
4255         u8 sink_irq_vector = 0;
4256
4257         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4258         intel_display_power_get(to_i915(dev), power_domain);
4259
4260         /* Can't disconnect eDP, but you can close the lid... */
4261         if (is_edp(intel_dp))
4262                 status = edp_detect(intel_dp);
4263         else if (intel_digital_port_connected(to_i915(dev),
4264                                               dp_to_dig_port(intel_dp)))
4265                 status = intel_dp_detect_dpcd(intel_dp);
4266         else
4267                 status = connector_status_disconnected;
4268
4269         if (status != connector_status_connected) {
4270                 intel_dp->compliance_test_active = 0;
4271                 intel_dp->compliance_test_type = 0;
4272                 intel_dp->compliance_test_data = 0;
4273
4274                 if (intel_dp->is_mst) {
4275                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4276                                       intel_dp->is_mst,
4277                                       intel_dp->mst_mgr.mst_state);
4278                         intel_dp->is_mst = false;
4279                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4280                                                         intel_dp->is_mst);
4281                 }
4282
4283                 goto out;
4284         }
4285
4286         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4287                 intel_encoder->type = INTEL_OUTPUT_DP;
4288
4289         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4290                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4291                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4292
4293         intel_dp_print_rates(intel_dp);
4294
4295         intel_dp_probe_oui(intel_dp);
4296
4297         intel_dp_configure_mst(intel_dp);
4298
4299         if (intel_dp->is_mst) {
4300                 /*
4301                  * If we are in MST mode then this connector
4302                  * won't appear connected or have anything
4303                  * with EDID on it
4304                  */
4305                 status = connector_status_disconnected;
4306                 goto out;
4307         } else if (connector->status == connector_status_connected) {
4308                 /*
4309                  * If display was connected already and is still connected
4310                  * check links status, there has been known issues of
4311                  * link loss triggerring long pulse!!!!
4312                  */
4313                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4314                 intel_dp_check_link_status(intel_dp);
4315                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4316                 goto out;
4317         }
4318
4319         /*
4320          * Clearing NACK and defer counts to get their exact values
4321          * while reading EDID which are required by Compliance tests
4322          * 4.2.2.4 and 4.2.2.5
4323          */
4324         intel_dp->aux.i2c_nack_count = 0;
4325         intel_dp->aux.i2c_defer_count = 0;
4326
4327         intel_dp_set_edid(intel_dp);
4328
4329         status = connector_status_connected;
4330         intel_dp->detect_done = true;
4331
4332         /* Try to read the source of the interrupt */
4333         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4334             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4335             sink_irq_vector != 0) {
4336                 /* Clear interrupt source */
4337                 drm_dp_dpcd_writeb(&intel_dp->aux,
4338                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4339                                    sink_irq_vector);
4340
4341                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4342                         intel_dp_handle_test_request(intel_dp);
4343                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4344                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4345         }
4346
4347 out:
4348         if ((status != connector_status_connected) &&
4349             (intel_dp->is_mst == false))
4350                 intel_dp_unset_edid(intel_dp);
4351
4352         intel_display_power_put(to_i915(dev), power_domain);
4353         return;
4354 }
4355
4356 static enum drm_connector_status
4357 intel_dp_detect(struct drm_connector *connector, bool force)
4358 {
4359         struct intel_dp *intel_dp = intel_attached_dp(connector);
4360         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4361         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4362         struct intel_connector *intel_connector = to_intel_connector(connector);
4363
4364         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4365                       connector->base.id, connector->name);
4366
4367         if (intel_dp->is_mst) {
4368                 /* MST devices are disconnected from a monitor POV */
4369                 intel_dp_unset_edid(intel_dp);
4370                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4371                         intel_encoder->type = INTEL_OUTPUT_DP;
4372                 return connector_status_disconnected;
4373         }
4374
4375         /* If full detect is not performed yet, do a full detect */
4376         if (!intel_dp->detect_done)
4377                 intel_dp_long_pulse(intel_dp->attached_connector);
4378
4379         intel_dp->detect_done = false;
4380
4381         if (is_edp(intel_dp) || intel_connector->detect_edid)
4382                 return connector_status_connected;
4383         else
4384                 return connector_status_disconnected;
4385 }
4386
4387 static void
4388 intel_dp_force(struct drm_connector *connector)
4389 {
4390         struct intel_dp *intel_dp = intel_attached_dp(connector);
4391         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4392         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4393         enum intel_display_power_domain power_domain;
4394
4395         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4396                       connector->base.id, connector->name);
4397         intel_dp_unset_edid(intel_dp);
4398
4399         if (connector->status != connector_status_connected)
4400                 return;
4401
4402         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4403         intel_display_power_get(dev_priv, power_domain);
4404
4405         intel_dp_set_edid(intel_dp);
4406
4407         intel_display_power_put(dev_priv, power_domain);
4408
4409         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4410                 intel_encoder->type = INTEL_OUTPUT_DP;
4411 }
4412
4413 static int intel_dp_get_modes(struct drm_connector *connector)
4414 {
4415         struct intel_connector *intel_connector = to_intel_connector(connector);
4416         struct edid *edid;
4417
4418         edid = intel_connector->detect_edid;
4419         if (edid) {
4420                 int ret = intel_connector_update_modes(connector, edid);
4421                 if (ret)
4422                         return ret;
4423         }
4424
4425         /* if eDP has no EDID, fall back to fixed mode */
4426         if (is_edp(intel_attached_dp(connector)) &&
4427             intel_connector->panel.fixed_mode) {
4428                 struct drm_display_mode *mode;
4429
4430                 mode = drm_mode_duplicate(connector->dev,
4431                                           intel_connector->panel.fixed_mode);
4432                 if (mode) {
4433                         drm_mode_probed_add(connector, mode);
4434                         return 1;
4435                 }
4436         }
4437
4438         return 0;
4439 }
4440
4441 static bool
4442 intel_dp_detect_audio(struct drm_connector *connector)
4443 {
4444         bool has_audio = false;
4445         struct edid *edid;
4446
4447         edid = to_intel_connector(connector)->detect_edid;
4448         if (edid)
4449                 has_audio = drm_detect_monitor_audio(edid);
4450
4451         return has_audio;
4452 }
4453
4454 static int
4455 intel_dp_set_property(struct drm_connector *connector,
4456                       struct drm_property *property,
4457                       uint64_t val)
4458 {
4459         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4460         struct intel_connector *intel_connector = to_intel_connector(connector);
4461         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4462         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4463         int ret;
4464
4465         ret = drm_object_property_set_value(&connector->base, property, val);
4466         if (ret)
4467                 return ret;
4468
4469         if (property == dev_priv->force_audio_property) {
4470                 int i = val;
4471                 bool has_audio;
4472
4473                 if (i == intel_dp->force_audio)
4474                         return 0;
4475
4476                 intel_dp->force_audio = i;
4477
4478                 if (i == HDMI_AUDIO_AUTO)
4479                         has_audio = intel_dp_detect_audio(connector);
4480                 else
4481                         has_audio = (i == HDMI_AUDIO_ON);
4482
4483                 if (has_audio == intel_dp->has_audio)
4484                         return 0;
4485
4486                 intel_dp->has_audio = has_audio;
4487                 goto done;
4488         }
4489
4490         if (property == dev_priv->broadcast_rgb_property) {
4491                 bool old_auto = intel_dp->color_range_auto;
4492                 bool old_range = intel_dp->limited_color_range;
4493
4494                 switch (val) {
4495                 case INTEL_BROADCAST_RGB_AUTO:
4496                         intel_dp->color_range_auto = true;
4497                         break;
4498                 case INTEL_BROADCAST_RGB_FULL:
4499                         intel_dp->color_range_auto = false;
4500                         intel_dp->limited_color_range = false;
4501                         break;
4502                 case INTEL_BROADCAST_RGB_LIMITED:
4503                         intel_dp->color_range_auto = false;
4504                         intel_dp->limited_color_range = true;
4505                         break;
4506                 default:
4507                         return -EINVAL;
4508                 }
4509
4510                 if (old_auto == intel_dp->color_range_auto &&
4511                     old_range == intel_dp->limited_color_range)
4512                         return 0;
4513
4514                 goto done;
4515         }
4516
4517         if (is_edp(intel_dp) &&
4518             property == connector->dev->mode_config.scaling_mode_property) {
4519                 if (val == DRM_MODE_SCALE_NONE) {
4520                         DRM_DEBUG_KMS("no scaling not supported\n");
4521                         return -EINVAL;
4522                 }
4523                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4524                     val == DRM_MODE_SCALE_CENTER) {
4525                         DRM_DEBUG_KMS("centering not supported\n");
4526                         return -EINVAL;
4527                 }
4528
4529                 if (intel_connector->panel.fitting_mode == val) {
4530                         /* the eDP scaling property is not changed */
4531                         return 0;
4532                 }
4533                 intel_connector->panel.fitting_mode = val;
4534
4535                 goto done;
4536         }
4537
4538         return -EINVAL;
4539
4540 done:
4541         if (intel_encoder->base.crtc)
4542                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4543
4544         return 0;
4545 }
4546
4547 static int
4548 intel_dp_connector_register(struct drm_connector *connector)
4549 {
4550         struct intel_dp *intel_dp = intel_attached_dp(connector);
4551         int ret;
4552
4553         ret = intel_connector_register(connector);
4554         if (ret)
4555                 return ret;
4556
4557         i915_debugfs_connector_add(connector);
4558
4559         DRM_DEBUG_KMS("registering %s bus for %s\n",
4560                       intel_dp->aux.name, connector->kdev->kobj.name);
4561
4562         intel_dp->aux.dev = connector->kdev;
4563         return drm_dp_aux_register(&intel_dp->aux);
4564 }
4565
4566 static void
4567 intel_dp_connector_unregister(struct drm_connector *connector)
4568 {
4569         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4570         intel_connector_unregister(connector);
4571 }
4572
4573 static void
4574 intel_dp_connector_destroy(struct drm_connector *connector)
4575 {
4576         struct intel_connector *intel_connector = to_intel_connector(connector);
4577
4578         kfree(intel_connector->detect_edid);
4579
4580         if (!IS_ERR_OR_NULL(intel_connector->edid))
4581                 kfree(intel_connector->edid);
4582
4583         /* Can't call is_edp() since the encoder may have been destroyed
4584          * already. */
4585         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4586                 intel_panel_fini(&intel_connector->panel);
4587
4588         drm_connector_cleanup(connector);
4589         kfree(connector);
4590 }
4591
4592 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4593 {
4594         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4595         struct intel_dp *intel_dp = &intel_dig_port->dp;
4596
4597         intel_dp_mst_encoder_cleanup(intel_dig_port);
4598         if (is_edp(intel_dp)) {
4599                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4600                 /*
4601                  * vdd might still be enabled do to the delayed vdd off.
4602                  * Make sure vdd is actually turned off here.
4603                  */
4604                 pps_lock(intel_dp);
4605                 edp_panel_vdd_off_sync(intel_dp);
4606                 pps_unlock(intel_dp);
4607
4608                 if (intel_dp->edp_notifier.notifier_call) {
4609                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4610                         intel_dp->edp_notifier.notifier_call = NULL;
4611                 }
4612         }
4613
4614         intel_dp_aux_fini(intel_dp);
4615
4616         drm_encoder_cleanup(encoder);
4617         kfree(intel_dig_port);
4618 }
4619
4620 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4621 {
4622         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4623
4624         if (!is_edp(intel_dp))
4625                 return;
4626
4627         /*
4628          * vdd might still be enabled do to the delayed vdd off.
4629          * Make sure vdd is actually turned off here.
4630          */
4631         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4632         pps_lock(intel_dp);
4633         edp_panel_vdd_off_sync(intel_dp);
4634         pps_unlock(intel_dp);
4635 }
4636
4637 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4638 {
4639         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4640         struct drm_device *dev = intel_dig_port->base.base.dev;
4641         struct drm_i915_private *dev_priv = to_i915(dev);
4642         enum intel_display_power_domain power_domain;
4643
4644         lockdep_assert_held(&dev_priv->pps_mutex);
4645
4646         if (!edp_have_panel_vdd(intel_dp))
4647                 return;
4648
4649         /*
4650          * The VDD bit needs a power domain reference, so if the bit is
4651          * already enabled when we boot or resume, grab this reference and
4652          * schedule a vdd off, so we don't hold on to the reference
4653          * indefinitely.
4654          */
4655         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4656         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4657         intel_display_power_get(dev_priv, power_domain);
4658
4659         edp_panel_vdd_schedule_off(intel_dp);
4660 }
4661
4662 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4663 {
4664         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4665         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4666
4667         if (!HAS_DDI(dev_priv))
4668                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4669
4670         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4671                 return;
4672
4673         pps_lock(intel_dp);
4674
4675         /*
4676          * Read out the current power sequencer assignment,
4677          * in case the BIOS did something with it.
4678          */
4679         if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4680                 vlv_initial_power_sequencer_setup(intel_dp);
4681
4682         intel_edp_panel_vdd_sanitize(intel_dp);
4683
4684         pps_unlock(intel_dp);
4685 }
4686
4687 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4688         .dpms = drm_atomic_helper_connector_dpms,
4689         .detect = intel_dp_detect,
4690         .force = intel_dp_force,
4691         .fill_modes = drm_helper_probe_single_connector_modes,
4692         .set_property = intel_dp_set_property,
4693         .atomic_get_property = intel_connector_atomic_get_property,
4694         .late_register = intel_dp_connector_register,
4695         .early_unregister = intel_dp_connector_unregister,
4696         .destroy = intel_dp_connector_destroy,
4697         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4698         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4699 };
4700
4701 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4702         .get_modes = intel_dp_get_modes,
4703         .mode_valid = intel_dp_mode_valid,
4704 };
4705
4706 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4707         .reset = intel_dp_encoder_reset,
4708         .destroy = intel_dp_encoder_destroy,
4709 };
4710
4711 enum irqreturn
4712 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4713 {
4714         struct intel_dp *intel_dp = &intel_dig_port->dp;
4715         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4716         struct drm_device *dev = intel_dig_port->base.base.dev;
4717         struct drm_i915_private *dev_priv = to_i915(dev);
4718         enum intel_display_power_domain power_domain;
4719         enum irqreturn ret = IRQ_NONE;
4720
4721         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4722             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4723                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4724
4725         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4726                 /*
4727                  * vdd off can generate a long pulse on eDP which
4728                  * would require vdd on to handle it, and thus we
4729                  * would end up in an endless cycle of
4730                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4731                  */
4732                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4733                               port_name(intel_dig_port->port));
4734                 return IRQ_HANDLED;
4735         }
4736
4737         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4738                       port_name(intel_dig_port->port),
4739                       long_hpd ? "long" : "short");
4740
4741         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4742         intel_display_power_get(dev_priv, power_domain);
4743
4744         if (long_hpd) {
4745                 intel_dp_long_pulse(intel_dp->attached_connector);
4746                 if (intel_dp->is_mst)
4747                         ret = IRQ_HANDLED;
4748                 goto put_power;
4749
4750         } else {
4751                 if (intel_dp->is_mst) {
4752                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4753                                 /*
4754                                  * If we were in MST mode, and device is not
4755                                  * there, get out of MST mode
4756                                  */
4757                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4758                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4759                                 intel_dp->is_mst = false;
4760                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4761                                                                 intel_dp->is_mst);
4762                                 goto put_power;
4763                         }
4764                 }
4765
4766                 if (!intel_dp->is_mst) {
4767                         if (!intel_dp_short_pulse(intel_dp)) {
4768                                 intel_dp_long_pulse(intel_dp->attached_connector);
4769                                 goto put_power;
4770                         }
4771                 }
4772         }
4773
4774         ret = IRQ_HANDLED;
4775
4776 put_power:
4777         intel_display_power_put(dev_priv, power_domain);
4778
4779         return ret;
4780 }
4781
4782 /* check the VBT to see whether the eDP is on another port */
4783 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4784 {
4785         struct drm_i915_private *dev_priv = to_i915(dev);
4786
4787         /*
4788          * eDP not supported on g4x. so bail out early just
4789          * for a bit extra safety in case the VBT is bonkers.
4790          */
4791         if (INTEL_INFO(dev)->gen < 5)
4792                 return false;
4793
4794         if (port == PORT_A)
4795                 return true;
4796
4797         return intel_bios_is_port_edp(dev_priv, port);
4798 }
4799
4800 void
4801 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4802 {
4803         struct intel_connector *intel_connector = to_intel_connector(connector);
4804
4805         intel_attach_force_audio_property(connector);
4806         intel_attach_broadcast_rgb_property(connector);
4807         intel_dp->color_range_auto = true;
4808
4809         if (is_edp(intel_dp)) {
4810                 drm_mode_create_scaling_mode_property(connector->dev);
4811                 drm_object_attach_property(
4812                         &connector->base,
4813                         connector->dev->mode_config.scaling_mode_property,
4814                         DRM_MODE_SCALE_ASPECT);
4815                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4816         }
4817 }
4818
4819 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4820 {
4821         intel_dp->panel_power_off_time = ktime_get_boottime();
4822         intel_dp->last_power_on = jiffies;
4823         intel_dp->last_backlight_off = jiffies;
4824 }
4825
4826 static void
4827 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4828                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4829 {
4830         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4831         struct pps_registers regs;
4832
4833         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4834
4835         /* Workaround: Need to write PP_CONTROL with the unlock key as
4836          * the very first thing. */
4837         pp_ctl = ironlake_get_pp_control(intel_dp);
4838
4839         pp_on = I915_READ(regs.pp_on);
4840         pp_off = I915_READ(regs.pp_off);
4841         if (!IS_BROXTON(dev_priv)) {
4842                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4843                 pp_div = I915_READ(regs.pp_div);
4844         }
4845
4846         /* Pull timing values out of registers */
4847         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4848                      PANEL_POWER_UP_DELAY_SHIFT;
4849
4850         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4851                   PANEL_LIGHT_ON_DELAY_SHIFT;
4852
4853         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4854                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4855
4856         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4857                    PANEL_POWER_DOWN_DELAY_SHIFT;
4858
4859         if (IS_BROXTON(dev_priv)) {
4860                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4861                         BXT_POWER_CYCLE_DELAY_SHIFT;
4862                 if (tmp > 0)
4863                         seq->t11_t12 = (tmp - 1) * 1000;
4864                 else
4865                         seq->t11_t12 = 0;
4866         } else {
4867                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4868                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4869         }
4870 }
4871
4872 static void
4873 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4874 {
4875         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4876                       state_name,
4877                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4878 }
4879
4880 static void
4881 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4882                        struct intel_dp *intel_dp)
4883 {
4884         struct edp_power_seq hw;
4885         struct edp_power_seq *sw = &intel_dp->pps_delays;
4886
4887         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4888
4889         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4890             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4891                 DRM_ERROR("PPS state mismatch\n");
4892                 intel_pps_dump_state("sw", sw);
4893                 intel_pps_dump_state("hw", &hw);
4894         }
4895 }
4896
4897 static void
4898 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4899                                     struct intel_dp *intel_dp)
4900 {
4901         struct drm_i915_private *dev_priv = to_i915(dev);
4902         struct edp_power_seq cur, vbt, spec,
4903                 *final = &intel_dp->pps_delays;
4904
4905         lockdep_assert_held(&dev_priv->pps_mutex);
4906
4907         /* already initialized? */
4908         if (final->t11_t12 != 0)
4909                 return;
4910
4911         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4912
4913         intel_pps_dump_state("cur", &cur);
4914
4915         vbt = dev_priv->vbt.edp.pps;
4916
4917         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4918          * our hw here, which are all in 100usec. */
4919         spec.t1_t3 = 210 * 10;
4920         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4921         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4922         spec.t10 = 500 * 10;
4923         /* This one is special and actually in units of 100ms, but zero
4924          * based in the hw (so we need to add 100 ms). But the sw vbt
4925          * table multiplies it with 1000 to make it in units of 100usec,
4926          * too. */
4927         spec.t11_t12 = (510 + 100) * 10;
4928
4929         intel_pps_dump_state("vbt", &vbt);
4930
4931         /* Use the max of the register settings and vbt. If both are
4932          * unset, fall back to the spec limits. */
4933 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4934                                        spec.field : \
4935                                        max(cur.field, vbt.field))
4936         assign_final(t1_t3);
4937         assign_final(t8);
4938         assign_final(t9);
4939         assign_final(t10);
4940         assign_final(t11_t12);
4941 #undef assign_final
4942
4943 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4944         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4945         intel_dp->backlight_on_delay = get_delay(t8);
4946         intel_dp->backlight_off_delay = get_delay(t9);
4947         intel_dp->panel_power_down_delay = get_delay(t10);
4948         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4949 #undef get_delay
4950
4951         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4952                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4953                       intel_dp->panel_power_cycle_delay);
4954
4955         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4956                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4957
4958         /*
4959          * We override the HW backlight delays to 1 because we do manual waits
4960          * on them. For T8, even BSpec recommends doing it. For T9, if we
4961          * don't do this, we'll end up waiting for the backlight off delay
4962          * twice: once when we do the manual sleep, and once when we disable
4963          * the panel and wait for the PP_STATUS bit to become zero.
4964          */
4965         final->t8 = 1;
4966         final->t9 = 1;
4967 }
4968
4969 static void
4970 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4971                                               struct intel_dp *intel_dp)
4972 {
4973         struct drm_i915_private *dev_priv = to_i915(dev);
4974         u32 pp_on, pp_off, pp_div, port_sel = 0;
4975         int div = dev_priv->rawclk_freq / 1000;
4976         struct pps_registers regs;
4977         enum port port = dp_to_dig_port(intel_dp)->port;
4978         const struct edp_power_seq *seq = &intel_dp->pps_delays;
4979
4980         lockdep_assert_held(&dev_priv->pps_mutex);
4981
4982         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4983
4984         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4985                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
4986         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4987                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4988         /* Compute the divisor for the pp clock, simply match the Bspec
4989          * formula. */
4990         if (IS_BROXTON(dev)) {
4991                 pp_div = I915_READ(regs.pp_ctrl);
4992                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
4993                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
4994                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
4995         } else {
4996                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4997                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4998                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4999         }
5000
5001         /* Haswell doesn't have any port selection bits for the panel
5002          * power sequencer any more. */
5003         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5004                 port_sel = PANEL_PORT_SELECT_VLV(port);
5005         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5006                 if (port == PORT_A)
5007                         port_sel = PANEL_PORT_SELECT_DPA;
5008                 else
5009                         port_sel = PANEL_PORT_SELECT_DPD;
5010         }
5011
5012         pp_on |= port_sel;
5013
5014         I915_WRITE(regs.pp_on, pp_on);
5015         I915_WRITE(regs.pp_off, pp_off);
5016         if (IS_BROXTON(dev))
5017                 I915_WRITE(regs.pp_ctrl, pp_div);
5018         else
5019                 I915_WRITE(regs.pp_div, pp_div);
5020
5021         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5022                       I915_READ(regs.pp_on),
5023                       I915_READ(regs.pp_off),
5024                       IS_BROXTON(dev) ?
5025                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5026                       I915_READ(regs.pp_div));
5027 }
5028
5029 /**
5030  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5031  * @dev: DRM device
5032  * @refresh_rate: RR to be programmed
5033  *
5034  * This function gets called when refresh rate (RR) has to be changed from
5035  * one frequency to another. Switches can be between high and low RR
5036  * supported by the panel or to any other RR based on media playback (in
5037  * this case, RR value needs to be passed from user space).
5038  *
5039  * The caller of this function needs to take a lock on dev_priv->drrs.
5040  */
5041 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5042 {
5043         struct drm_i915_private *dev_priv = to_i915(dev);
5044         struct intel_encoder *encoder;
5045         struct intel_digital_port *dig_port = NULL;
5046         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5047         struct intel_crtc_state *config = NULL;
5048         struct intel_crtc *intel_crtc = NULL;
5049         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5050
5051         if (refresh_rate <= 0) {
5052                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5053                 return;
5054         }
5055
5056         if (intel_dp == NULL) {
5057                 DRM_DEBUG_KMS("DRRS not supported.\n");
5058                 return;
5059         }
5060
5061         /*
5062          * FIXME: This needs proper synchronization with psr state for some
5063          * platforms that cannot have PSR and DRRS enabled at the same time.
5064          */
5065
5066         dig_port = dp_to_dig_port(intel_dp);
5067         encoder = &dig_port->base;
5068         intel_crtc = to_intel_crtc(encoder->base.crtc);
5069
5070         if (!intel_crtc) {
5071                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5072                 return;
5073         }
5074
5075         config = intel_crtc->config;
5076
5077         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5078                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5079                 return;
5080         }
5081
5082         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5083                         refresh_rate)
5084                 index = DRRS_LOW_RR;
5085
5086         if (index == dev_priv->drrs.refresh_rate_type) {
5087                 DRM_DEBUG_KMS(
5088                         "DRRS requested for previously set RR...ignoring\n");
5089                 return;
5090         }
5091
5092         if (!intel_crtc->active) {
5093                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5094                 return;
5095         }
5096
5097         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5098                 switch (index) {
5099                 case DRRS_HIGH_RR:
5100                         intel_dp_set_m_n(intel_crtc, M1_N1);
5101                         break;
5102                 case DRRS_LOW_RR:
5103                         intel_dp_set_m_n(intel_crtc, M2_N2);
5104                         break;
5105                 case DRRS_MAX_RR:
5106                 default:
5107                         DRM_ERROR("Unsupported refreshrate type\n");
5108                 }
5109         } else if (INTEL_INFO(dev)->gen > 6) {
5110                 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5111                 u32 val;
5112
5113                 val = I915_READ(reg);
5114                 if (index > DRRS_HIGH_RR) {
5115                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5116                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5117                         else
5118                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5119                 } else {
5120                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5121                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5122                         else
5123                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5124                 }
5125                 I915_WRITE(reg, val);
5126         }
5127
5128         dev_priv->drrs.refresh_rate_type = index;
5129
5130         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5131 }
5132
5133 /**
5134  * intel_edp_drrs_enable - init drrs struct if supported
5135  * @intel_dp: DP struct
5136  *
5137  * Initializes frontbuffer_bits and drrs.dp
5138  */
5139 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5140 {
5141         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5142         struct drm_i915_private *dev_priv = to_i915(dev);
5143         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5144         struct drm_crtc *crtc = dig_port->base.base.crtc;
5145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5146
5147         if (!intel_crtc->config->has_drrs) {
5148                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5149                 return;
5150         }
5151
5152         mutex_lock(&dev_priv->drrs.mutex);
5153         if (WARN_ON(dev_priv->drrs.dp)) {
5154                 DRM_ERROR("DRRS already enabled\n");
5155                 goto unlock;
5156         }
5157
5158         dev_priv->drrs.busy_frontbuffer_bits = 0;
5159
5160         dev_priv->drrs.dp = intel_dp;
5161
5162 unlock:
5163         mutex_unlock(&dev_priv->drrs.mutex);
5164 }
5165
5166 /**
5167  * intel_edp_drrs_disable - Disable DRRS
5168  * @intel_dp: DP struct
5169  *
5170  */
5171 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5172 {
5173         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5174         struct drm_i915_private *dev_priv = to_i915(dev);
5175         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5176         struct drm_crtc *crtc = dig_port->base.base.crtc;
5177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5178
5179         if (!intel_crtc->config->has_drrs)
5180                 return;
5181
5182         mutex_lock(&dev_priv->drrs.mutex);
5183         if (!dev_priv->drrs.dp) {
5184                 mutex_unlock(&dev_priv->drrs.mutex);
5185                 return;
5186         }
5187
5188         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5189                 intel_dp_set_drrs_state(&dev_priv->drm,
5190                                         intel_dp->attached_connector->panel.
5191                                         fixed_mode->vrefresh);
5192
5193         dev_priv->drrs.dp = NULL;
5194         mutex_unlock(&dev_priv->drrs.mutex);
5195
5196         cancel_delayed_work_sync(&dev_priv->drrs.work);
5197 }
5198
5199 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5200 {
5201         struct drm_i915_private *dev_priv =
5202                 container_of(work, typeof(*dev_priv), drrs.work.work);
5203         struct intel_dp *intel_dp;
5204
5205         mutex_lock(&dev_priv->drrs.mutex);
5206
5207         intel_dp = dev_priv->drrs.dp;
5208
5209         if (!intel_dp)
5210                 goto unlock;
5211
5212         /*
5213          * The delayed work can race with an invalidate hence we need to
5214          * recheck.
5215          */
5216
5217         if (dev_priv->drrs.busy_frontbuffer_bits)
5218                 goto unlock;
5219
5220         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5221                 intel_dp_set_drrs_state(&dev_priv->drm,
5222                                         intel_dp->attached_connector->panel.
5223                                         downclock_mode->vrefresh);
5224
5225 unlock:
5226         mutex_unlock(&dev_priv->drrs.mutex);
5227 }
5228
5229 /**
5230  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5231  * @dev_priv: i915 device
5232  * @frontbuffer_bits: frontbuffer plane tracking bits
5233  *
5234  * This function gets called everytime rendering on the given planes start.
5235  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5236  *
5237  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5238  */
5239 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5240                                unsigned int frontbuffer_bits)
5241 {
5242         struct drm_crtc *crtc;
5243         enum pipe pipe;
5244
5245         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5246                 return;
5247
5248         cancel_delayed_work(&dev_priv->drrs.work);
5249
5250         mutex_lock(&dev_priv->drrs.mutex);
5251         if (!dev_priv->drrs.dp) {
5252                 mutex_unlock(&dev_priv->drrs.mutex);
5253                 return;
5254         }
5255
5256         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5257         pipe = to_intel_crtc(crtc)->pipe;
5258
5259         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5260         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5261
5262         /* invalidate means busy screen hence upclock */
5263         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5264                 intel_dp_set_drrs_state(&dev_priv->drm,
5265                                         dev_priv->drrs.dp->attached_connector->panel.
5266                                         fixed_mode->vrefresh);
5267
5268         mutex_unlock(&dev_priv->drrs.mutex);
5269 }
5270
5271 /**
5272  * intel_edp_drrs_flush - Restart Idleness DRRS
5273  * @dev_priv: i915 device
5274  * @frontbuffer_bits: frontbuffer plane tracking bits
5275  *
5276  * This function gets called every time rendering on the given planes has
5277  * completed or flip on a crtc is completed. So DRRS should be upclocked
5278  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5279  * if no other planes are dirty.
5280  *
5281  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5282  */
5283 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5284                           unsigned int frontbuffer_bits)
5285 {
5286         struct drm_crtc *crtc;
5287         enum pipe pipe;
5288
5289         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5290                 return;
5291
5292         cancel_delayed_work(&dev_priv->drrs.work);
5293
5294         mutex_lock(&dev_priv->drrs.mutex);
5295         if (!dev_priv->drrs.dp) {
5296                 mutex_unlock(&dev_priv->drrs.mutex);
5297                 return;
5298         }
5299
5300         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5301         pipe = to_intel_crtc(crtc)->pipe;
5302
5303         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5304         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5305
5306         /* flush means busy screen hence upclock */
5307         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5308                 intel_dp_set_drrs_state(&dev_priv->drm,
5309                                         dev_priv->drrs.dp->attached_connector->panel.
5310                                         fixed_mode->vrefresh);
5311
5312         /*
5313          * flush also means no more activity hence schedule downclock, if all
5314          * other fbs are quiescent too
5315          */
5316         if (!dev_priv->drrs.busy_frontbuffer_bits)
5317                 schedule_delayed_work(&dev_priv->drrs.work,
5318                                 msecs_to_jiffies(1000));
5319         mutex_unlock(&dev_priv->drrs.mutex);
5320 }
5321
5322 /**
5323  * DOC: Display Refresh Rate Switching (DRRS)
5324  *
5325  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5326  * which enables swtching between low and high refresh rates,
5327  * dynamically, based on the usage scenario. This feature is applicable
5328  * for internal panels.
5329  *
5330  * Indication that the panel supports DRRS is given by the panel EDID, which
5331  * would list multiple refresh rates for one resolution.
5332  *
5333  * DRRS is of 2 types - static and seamless.
5334  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5335  * (may appear as a blink on screen) and is used in dock-undock scenario.
5336  * Seamless DRRS involves changing RR without any visual effect to the user
5337  * and can be used during normal system usage. This is done by programming
5338  * certain registers.
5339  *
5340  * Support for static/seamless DRRS may be indicated in the VBT based on
5341  * inputs from the panel spec.
5342  *
5343  * DRRS saves power by switching to low RR based on usage scenarios.
5344  *
5345  * The implementation is based on frontbuffer tracking implementation.  When
5346  * there is a disturbance on the screen triggered by user activity or a periodic
5347  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5348  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5349  * made.
5350  *
5351  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5352  * and intel_edp_drrs_flush() are called.
5353  *
5354  * DRRS can be further extended to support other internal panels and also
5355  * the scenario of video playback wherein RR is set based on the rate
5356  * requested by userspace.
5357  */
5358
5359 /**
5360  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5361  * @intel_connector: eDP connector
5362  * @fixed_mode: preferred mode of panel
5363  *
5364  * This function is  called only once at driver load to initialize basic
5365  * DRRS stuff.
5366  *
5367  * Returns:
5368  * Downclock mode if panel supports it, else return NULL.
5369  * DRRS support is determined by the presence of downclock mode (apart
5370  * from VBT setting).
5371  */
5372 static struct drm_display_mode *
5373 intel_dp_drrs_init(struct intel_connector *intel_connector,
5374                 struct drm_display_mode *fixed_mode)
5375 {
5376         struct drm_connector *connector = &intel_connector->base;
5377         struct drm_device *dev = connector->dev;
5378         struct drm_i915_private *dev_priv = to_i915(dev);
5379         struct drm_display_mode *downclock_mode = NULL;
5380
5381         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5382         mutex_init(&dev_priv->drrs.mutex);
5383
5384         if (INTEL_INFO(dev)->gen <= 6) {
5385                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5386                 return NULL;
5387         }
5388
5389         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5390                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5391                 return NULL;
5392         }
5393
5394         downclock_mode = intel_find_panel_downclock
5395                                         (dev, fixed_mode, connector);
5396
5397         if (!downclock_mode) {
5398                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5399                 return NULL;
5400         }
5401
5402         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5403
5404         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5405         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5406         return downclock_mode;
5407 }
5408
5409 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5410                                      struct intel_connector *intel_connector)
5411 {
5412         struct drm_connector *connector = &intel_connector->base;
5413         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5414         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5415         struct drm_device *dev = intel_encoder->base.dev;
5416         struct drm_i915_private *dev_priv = to_i915(dev);
5417         struct drm_display_mode *fixed_mode = NULL;
5418         struct drm_display_mode *downclock_mode = NULL;
5419         bool has_dpcd;
5420         struct drm_display_mode *scan;
5421         struct edid *edid;
5422         enum pipe pipe = INVALID_PIPE;
5423
5424         if (!is_edp(intel_dp))
5425                 return true;
5426
5427         /*
5428          * On IBX/CPT we may get here with LVDS already registered. Since the
5429          * driver uses the only internal power sequencer available for both
5430          * eDP and LVDS bail out early in this case to prevent interfering
5431          * with an already powered-on LVDS power sequencer.
5432          */
5433         if (intel_get_lvds_encoder(dev)) {
5434                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5435                 DRM_INFO("LVDS was detected, not registering eDP\n");
5436
5437                 return false;
5438         }
5439
5440         pps_lock(intel_dp);
5441
5442         intel_dp_init_panel_power_timestamps(intel_dp);
5443
5444         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5445                 vlv_initial_power_sequencer_setup(intel_dp);
5446         } else {
5447                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5448                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5449         }
5450
5451         intel_edp_panel_vdd_sanitize(intel_dp);
5452
5453         pps_unlock(intel_dp);
5454
5455         /* Cache DPCD and EDID for edp. */
5456         has_dpcd = intel_edp_init_dpcd(intel_dp);
5457
5458         if (!has_dpcd) {
5459                 /* if this fails, presume the device is a ghost */
5460                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5461                 goto out_vdd_off;
5462         }
5463
5464         mutex_lock(&dev->mode_config.mutex);
5465         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5466         if (edid) {
5467                 if (drm_add_edid_modes(connector, edid)) {
5468                         drm_mode_connector_update_edid_property(connector,
5469                                                                 edid);
5470                         drm_edid_to_eld(connector, edid);
5471                 } else {
5472                         kfree(edid);
5473                         edid = ERR_PTR(-EINVAL);
5474                 }
5475         } else {
5476                 edid = ERR_PTR(-ENOENT);
5477         }
5478         intel_connector->edid = edid;
5479
5480         /* prefer fixed mode from EDID if available */
5481         list_for_each_entry(scan, &connector->probed_modes, head) {
5482                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5483                         fixed_mode = drm_mode_duplicate(dev, scan);
5484                         downclock_mode = intel_dp_drrs_init(
5485                                                 intel_connector, fixed_mode);
5486                         break;
5487                 }
5488         }
5489
5490         /* fallback to VBT if available for eDP */
5491         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5492                 fixed_mode = drm_mode_duplicate(dev,
5493                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5494                 if (fixed_mode) {
5495                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5496                         connector->display_info.width_mm = fixed_mode->width_mm;
5497                         connector->display_info.height_mm = fixed_mode->height_mm;
5498                 }
5499         }
5500         mutex_unlock(&dev->mode_config.mutex);
5501
5502         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5503                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5504                 register_reboot_notifier(&intel_dp->edp_notifier);
5505
5506                 /*
5507                  * Figure out the current pipe for the initial backlight setup.
5508                  * If the current pipe isn't valid, try the PPS pipe, and if that
5509                  * fails just assume pipe A.
5510                  */
5511                 if (IS_CHERRYVIEW(dev))
5512                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5513                 else
5514                         pipe = PORT_TO_PIPE(intel_dp->DP);
5515
5516                 if (pipe != PIPE_A && pipe != PIPE_B)
5517                         pipe = intel_dp->pps_pipe;
5518
5519                 if (pipe != PIPE_A && pipe != PIPE_B)
5520                         pipe = PIPE_A;
5521
5522                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5523                               pipe_name(pipe));
5524         }
5525
5526         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5527         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5528         intel_panel_setup_backlight(connector, pipe);
5529
5530         return true;
5531
5532 out_vdd_off:
5533         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5534         /*
5535          * vdd might still be enabled do to the delayed vdd off.
5536          * Make sure vdd is actually turned off here.
5537          */
5538         pps_lock(intel_dp);
5539         edp_panel_vdd_off_sync(intel_dp);
5540         pps_unlock(intel_dp);
5541
5542         return false;
5543 }
5544
5545 bool
5546 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5547                         struct intel_connector *intel_connector)
5548 {
5549         struct drm_connector *connector = &intel_connector->base;
5550         struct intel_dp *intel_dp = &intel_dig_port->dp;
5551         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5552         struct drm_device *dev = intel_encoder->base.dev;
5553         struct drm_i915_private *dev_priv = to_i915(dev);
5554         enum port port = intel_dig_port->port;
5555         int type;
5556
5557         if (WARN(intel_dig_port->max_lanes < 1,
5558                  "Not enough lanes (%d) for DP on port %c\n",
5559                  intel_dig_port->max_lanes, port_name(port)))
5560                 return false;
5561
5562         intel_dp->pps_pipe = INVALID_PIPE;
5563
5564         /* intel_dp vfuncs */
5565         if (INTEL_INFO(dev)->gen >= 9)
5566                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5567         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5568                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5569         else if (HAS_PCH_SPLIT(dev))
5570                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5571         else
5572                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5573
5574         if (INTEL_INFO(dev)->gen >= 9)
5575                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5576         else
5577                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5578
5579         if (HAS_DDI(dev))
5580                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5581
5582         /* Preserve the current hw state. */
5583         intel_dp->DP = I915_READ(intel_dp->output_reg);
5584         intel_dp->attached_connector = intel_connector;
5585
5586         if (intel_dp_is_edp(dev, port))
5587                 type = DRM_MODE_CONNECTOR_eDP;
5588         else
5589                 type = DRM_MODE_CONNECTOR_DisplayPort;
5590
5591         /*
5592          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5593          * for DP the encoder type can be set by the caller to
5594          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5595          */
5596         if (type == DRM_MODE_CONNECTOR_eDP)
5597                 intel_encoder->type = INTEL_OUTPUT_EDP;
5598
5599         /* eDP only on port B and/or C on vlv/chv */
5600         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5601                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5602                 return false;
5603
5604         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5605                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5606                         port_name(port));
5607
5608         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5609         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5610
5611         connector->interlace_allowed = true;
5612         connector->doublescan_allowed = 0;
5613
5614         intel_dp_aux_init(intel_dp, intel_connector);
5615
5616         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5617                           edp_panel_vdd_work);
5618
5619         intel_connector_attach_encoder(intel_connector, intel_encoder);
5620
5621         if (HAS_DDI(dev))
5622                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5623         else
5624                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5625
5626         /* Set up the hotplug pin. */
5627         switch (port) {
5628         case PORT_A:
5629                 intel_encoder->hpd_pin = HPD_PORT_A;
5630                 break;
5631         case PORT_B:
5632                 intel_encoder->hpd_pin = HPD_PORT_B;
5633                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5634                         intel_encoder->hpd_pin = HPD_PORT_A;
5635                 break;
5636         case PORT_C:
5637                 intel_encoder->hpd_pin = HPD_PORT_C;
5638                 break;
5639         case PORT_D:
5640                 intel_encoder->hpd_pin = HPD_PORT_D;
5641                 break;
5642         case PORT_E:
5643                 intel_encoder->hpd_pin = HPD_PORT_E;
5644                 break;
5645         default:
5646                 BUG();
5647         }
5648
5649         /* init MST on ports that can support it */
5650         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5651             (port == PORT_B || port == PORT_C || port == PORT_D))
5652                 intel_dp_mst_encoder_init(intel_dig_port,
5653                                           intel_connector->base.base.id);
5654
5655         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5656                 intel_dp_aux_fini(intel_dp);
5657                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5658                 goto fail;
5659         }
5660
5661         intel_dp_add_properties(intel_dp, connector);
5662
5663         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5664          * 0xd.  Failure to do so will result in spurious interrupts being
5665          * generated on the port when a cable is not attached.
5666          */
5667         if (IS_G4X(dev) && !IS_GM45(dev)) {
5668                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5669                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5670         }
5671
5672         return true;
5673
5674 fail:
5675         drm_connector_cleanup(connector);
5676
5677         return false;
5678 }
5679
5680 bool intel_dp_init(struct drm_device *dev,
5681                    i915_reg_t output_reg,
5682                    enum port port)
5683 {
5684         struct drm_i915_private *dev_priv = to_i915(dev);
5685         struct intel_digital_port *intel_dig_port;
5686         struct intel_encoder *intel_encoder;
5687         struct drm_encoder *encoder;
5688         struct intel_connector *intel_connector;
5689
5690         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5691         if (!intel_dig_port)
5692                 return false;
5693
5694         intel_connector = intel_connector_alloc();
5695         if (!intel_connector)
5696                 goto err_connector_alloc;
5697
5698         intel_encoder = &intel_dig_port->base;
5699         encoder = &intel_encoder->base;
5700
5701         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5702                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5703                 goto err_encoder_init;
5704
5705         intel_encoder->compute_config = intel_dp_compute_config;
5706         intel_encoder->disable = intel_disable_dp;
5707         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5708         intel_encoder->get_config = intel_dp_get_config;
5709         intel_encoder->suspend = intel_dp_encoder_suspend;
5710         if (IS_CHERRYVIEW(dev)) {
5711                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5712                 intel_encoder->pre_enable = chv_pre_enable_dp;
5713                 intel_encoder->enable = vlv_enable_dp;
5714                 intel_encoder->post_disable = chv_post_disable_dp;
5715                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5716         } else if (IS_VALLEYVIEW(dev)) {
5717                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5718                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5719                 intel_encoder->enable = vlv_enable_dp;
5720                 intel_encoder->post_disable = vlv_post_disable_dp;
5721         } else {
5722                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5723                 intel_encoder->enable = g4x_enable_dp;
5724                 if (INTEL_INFO(dev)->gen >= 5)
5725                         intel_encoder->post_disable = ilk_post_disable_dp;
5726         }
5727
5728         intel_dig_port->port = port;
5729         intel_dig_port->dp.output_reg = output_reg;
5730         intel_dig_port->max_lanes = 4;
5731
5732         intel_encoder->type = INTEL_OUTPUT_DP;
5733         if (IS_CHERRYVIEW(dev)) {
5734                 if (port == PORT_D)
5735                         intel_encoder->crtc_mask = 1 << 2;
5736                 else
5737                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5738         } else {
5739                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5740         }
5741         intel_encoder->cloneable = 0;
5742
5743         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5744         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5745
5746         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5747                 goto err_init_connector;
5748
5749         return true;
5750
5751 err_init_connector:
5752         drm_encoder_cleanup(encoder);
5753 err_encoder_init:
5754         kfree(intel_connector);
5755 err_connector_alloc:
5756         kfree(intel_dig_port);
5757         return false;
5758 }
5759
5760 void intel_dp_mst_suspend(struct drm_device *dev)
5761 {
5762         struct drm_i915_private *dev_priv = to_i915(dev);
5763         int i;
5764
5765         /* disable MST */
5766         for (i = 0; i < I915_MAX_PORTS; i++) {
5767                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5768
5769                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5770                         continue;
5771
5772                 if (intel_dig_port->dp.is_mst)
5773                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5774         }
5775 }
5776
5777 void intel_dp_mst_resume(struct drm_device *dev)
5778 {
5779         struct drm_i915_private *dev_priv = to_i915(dev);
5780         int i;
5781
5782         for (i = 0; i < I915_MAX_PORTS; i++) {
5783                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5784                 int ret;
5785
5786                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5787                         continue;
5788
5789                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5790                 if (ret)
5791                         intel_dp_check_mst_status(&intel_dig_port->dp);
5792         }
5793 }