]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dsi_panel_vbt.c
drm/i915/dsi: be defensive about out of bounds operation byte
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dsi_panel_vbt.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Shobhit Kumar <shobhit.kumar@intel.com>
24  *
25  */
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc.h>
29 #include <drm/drm_edid.h>
30 #include <drm/i915_drm.h>
31 #include <drm/drm_panel.h>
32 #include <linux/slab.h>
33 #include <video/mipi_display.h>
34 #include <asm/intel-mid.h>
35 #include <video/mipi_display.h>
36 #include "i915_drv.h"
37 #include "intel_drv.h"
38 #include "intel_dsi.h"
39
40 struct vbt_panel {
41         struct drm_panel panel;
42         struct intel_dsi *intel_dsi;
43 };
44
45 static inline struct vbt_panel *to_vbt_panel(struct drm_panel *panel)
46 {
47         return container_of(panel, struct vbt_panel, panel);
48 }
49
50 #define MIPI_TRANSFER_MODE_SHIFT        0
51 #define MIPI_VIRTUAL_CHANNEL_SHIFT      1
52 #define MIPI_PORT_SHIFT                 3
53
54 #define PREPARE_CNT_MAX         0x3F
55 #define EXIT_ZERO_CNT_MAX       0x3F
56 #define CLK_ZERO_CNT_MAX        0xFF
57 #define TRAIL_CNT_MAX           0x1F
58
59 #define NS_KHZ_RATIO 1000000
60
61 #define GPI0_NC_0_HV_DDI0_HPD           0x4130
62 #define GPIO_NC_0_HV_DDI0_PAD           0x4138
63 #define GPIO_NC_1_HV_DDI0_DDC_SDA       0x4120
64 #define GPIO_NC_1_HV_DDI0_DDC_SDA_PAD   0x4128
65 #define GPIO_NC_2_HV_DDI0_DDC_SCL       0x4110
66 #define GPIO_NC_2_HV_DDI0_DDC_SCL_PAD   0x4118
67 #define GPIO_NC_3_PANEL0_VDDEN          0x4140
68 #define GPIO_NC_3_PANEL0_VDDEN_PAD      0x4148
69 #define GPIO_NC_4_PANEL0_BLKEN          0x4150
70 #define GPIO_NC_4_PANEL0_BLKEN_PAD      0x4158
71 #define GPIO_NC_5_PANEL0_BLKCTL         0x4160
72 #define GPIO_NC_5_PANEL0_BLKCTL_PAD     0x4168
73 #define GPIO_NC_6_PCONF0                0x4180
74 #define GPIO_NC_6_PAD                   0x4188
75 #define GPIO_NC_7_PCONF0                0x4190
76 #define GPIO_NC_7_PAD                   0x4198
77 #define GPIO_NC_8_PCONF0                0x4170
78 #define GPIO_NC_8_PAD                   0x4178
79 #define GPIO_NC_9_PCONF0                0x4100
80 #define GPIO_NC_9_PAD                   0x4108
81 #define GPIO_NC_10_PCONF0               0x40E0
82 #define GPIO_NC_10_PAD                  0x40E8
83 #define GPIO_NC_11_PCONF0               0x40F0
84 #define GPIO_NC_11_PAD                  0x40F8
85
86 struct gpio_table {
87         u16 function_reg;
88         u16 pad_reg;
89         u8 init;
90 };
91
92 static struct gpio_table gtable[] = {
93         { GPI0_NC_0_HV_DDI0_HPD, GPIO_NC_0_HV_DDI0_PAD, 0 },
94         { GPIO_NC_1_HV_DDI0_DDC_SDA, GPIO_NC_1_HV_DDI0_DDC_SDA_PAD, 0 },
95         { GPIO_NC_2_HV_DDI0_DDC_SCL, GPIO_NC_2_HV_DDI0_DDC_SCL_PAD, 0 },
96         { GPIO_NC_3_PANEL0_VDDEN, GPIO_NC_3_PANEL0_VDDEN_PAD, 0 },
97         { GPIO_NC_4_PANEL0_BLKEN, GPIO_NC_4_PANEL0_BLKEN_PAD, 0 },
98         { GPIO_NC_5_PANEL0_BLKCTL, GPIO_NC_5_PANEL0_BLKCTL_PAD, 0 },
99         { GPIO_NC_6_PCONF0, GPIO_NC_6_PAD, 0 },
100         { GPIO_NC_7_PCONF0, GPIO_NC_7_PAD, 0 },
101         { GPIO_NC_8_PCONF0, GPIO_NC_8_PAD, 0 },
102         { GPIO_NC_9_PCONF0, GPIO_NC_9_PAD, 0 },
103         { GPIO_NC_10_PCONF0, GPIO_NC_10_PAD, 0},
104         { GPIO_NC_11_PCONF0, GPIO_NC_11_PAD, 0}
105 };
106
107 static inline enum port intel_dsi_seq_port_to_port(u8 port)
108 {
109         return port ? PORT_C : PORT_A;
110 }
111
112 static const u8 *mipi_exec_send_packet(struct intel_dsi *intel_dsi,
113                                        const u8 *data)
114 {
115         struct mipi_dsi_device *dsi_device;
116         u8 type, flags, seq_port;
117         u16 len;
118         enum port port;
119
120         flags = *data++;
121         type = *data++;
122
123         len = *((u16 *) data);
124         data += 2;
125
126         seq_port = (flags >> MIPI_PORT_SHIFT) & 3;
127
128         /* For DSI single link on Port A & C, the seq_port value which is
129          * parsed from Sequence Block#53 of VBT has been set to 0
130          * Now, read/write of packets for the DSI single link on Port A and
131          * Port C will based on the DVO port from VBT block 2.
132          */
133         if (intel_dsi->ports == (1 << PORT_C))
134                 port = PORT_C;
135         else
136                 port = intel_dsi_seq_port_to_port(seq_port);
137
138         dsi_device = intel_dsi->dsi_hosts[port]->device;
139         if (!dsi_device) {
140                 DRM_DEBUG_KMS("no dsi device for port %c\n", port_name(port));
141                 goto out;
142         }
143
144         if ((flags >> MIPI_TRANSFER_MODE_SHIFT) & 1)
145                 dsi_device->mode_flags &= ~MIPI_DSI_MODE_LPM;
146         else
147                 dsi_device->mode_flags |= MIPI_DSI_MODE_LPM;
148
149         dsi_device->channel = (flags >> MIPI_VIRTUAL_CHANNEL_SHIFT) & 3;
150
151         switch (type) {
152         case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM:
153                 mipi_dsi_generic_write(dsi_device, NULL, 0);
154                 break;
155         case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM:
156                 mipi_dsi_generic_write(dsi_device, data, 1);
157                 break;
158         case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM:
159                 mipi_dsi_generic_write(dsi_device, data, 2);
160                 break;
161         case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM:
162         case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM:
163         case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM:
164                 DRM_DEBUG_DRIVER("Generic Read not yet implemented or used\n");
165                 break;
166         case MIPI_DSI_GENERIC_LONG_WRITE:
167                 mipi_dsi_generic_write(dsi_device, data, len);
168                 break;
169         case MIPI_DSI_DCS_SHORT_WRITE:
170                 mipi_dsi_dcs_write_buffer(dsi_device, data, 1);
171                 break;
172         case MIPI_DSI_DCS_SHORT_WRITE_PARAM:
173                 mipi_dsi_dcs_write_buffer(dsi_device, data, 2);
174                 break;
175         case MIPI_DSI_DCS_READ:
176                 DRM_DEBUG_DRIVER("DCS Read not yet implemented or used\n");
177                 break;
178         case MIPI_DSI_DCS_LONG_WRITE:
179                 mipi_dsi_dcs_write_buffer(dsi_device, data, len);
180                 break;
181         }
182
183 out:
184         data += len;
185
186         return data;
187 }
188
189 static const u8 *mipi_exec_delay(struct intel_dsi *intel_dsi, const u8 *data)
190 {
191         u32 delay = *((const u32 *) data);
192
193         usleep_range(delay, delay + 10);
194         data += 4;
195
196         return data;
197 }
198
199 static const u8 *mipi_exec_gpio(struct intel_dsi *intel_dsi, const u8 *data)
200 {
201         u8 gpio, action;
202         u16 function, pad;
203         u32 val;
204         struct drm_device *dev = intel_dsi->base.base.dev;
205         struct drm_i915_private *dev_priv = dev->dev_private;
206
207         gpio = *data++;
208
209         /* pull up/down */
210         action = *data++;
211
212         function = gtable[gpio].function_reg;
213         pad = gtable[gpio].pad_reg;
214
215         mutex_lock(&dev_priv->sb_lock);
216         if (!gtable[gpio].init) {
217                 /* program the function */
218                 /* FIXME: remove constant below */
219                 vlv_gpio_nc_write(dev_priv, function, 0x2000CC00);
220                 gtable[gpio].init = 1;
221         }
222
223         val = 0x4 | action;
224
225         /* pull up/down */
226         vlv_gpio_nc_write(dev_priv, pad, val);
227         mutex_unlock(&dev_priv->sb_lock);
228
229         return data;
230 }
231
232 typedef const u8 * (*fn_mipi_elem_exec)(struct intel_dsi *intel_dsi,
233                                         const u8 *data);
234 static const fn_mipi_elem_exec exec_elem[] = {
235         [MIPI_SEQ_ELEM_SEND_PKT] = mipi_exec_send_packet,
236         [MIPI_SEQ_ELEM_DELAY] = mipi_exec_delay,
237         [MIPI_SEQ_ELEM_GPIO] = mipi_exec_gpio,
238 };
239
240 /*
241  * MIPI Sequence from VBT #53 parsing logic
242  * We have already separated each seqence during bios parsing
243  * Following is generic execution function for any sequence
244  */
245
246 static const char * const seq_name[] = {
247         [MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET",
248         [MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP",
249         [MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON",
250         [MIPI_SEQ_DISPLAY_OFF]  = "MIPI_SEQ_DISPLAY_OFF",
251         [MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET",
252 };
253
254 static const char *sequence_name(enum mipi_seq seq_id)
255 {
256         if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id])
257                 return seq_name[seq_id];
258         else
259                 return "(unknown)";
260 }
261
262 static void generic_exec_sequence(struct intel_dsi *intel_dsi, const u8 *data)
263 {
264         fn_mipi_elem_exec mipi_elem_exec;
265
266         if (!data)
267                 return;
268
269         DRM_DEBUG_DRIVER("Starting MIPI sequence %u - %s\n",
270                          *data, sequence_name(*data));
271
272         /* go to the first element of the sequence */
273         data++;
274
275         /* parse each byte till we reach end of sequence byte - 0x00 */
276         while (1) {
277                 u8 operation_byte = *data++;
278                 if (operation_byte >= ARRAY_SIZE(exec_elem) ||
279                     !exec_elem[operation_byte]) {
280                         DRM_ERROR("Unsupported MIPI operation byte %u\n",
281                                   operation_byte);
282                         return;
283                 }
284                 mipi_elem_exec = exec_elem[operation_byte];
285
286                 /* execute the element specific rotines */
287                 data = mipi_elem_exec(intel_dsi, data);
288
289                 /*
290                  * After processing the element, data should point to
291                  * next element or end of sequence
292                  * check if have we reached end of sequence
293                  */
294                 if (*data == 0x00)
295                         break;
296         }
297 }
298
299 static int vbt_panel_prepare(struct drm_panel *panel)
300 {
301         struct vbt_panel *vbt_panel = to_vbt_panel(panel);
302         struct intel_dsi *intel_dsi = vbt_panel->intel_dsi;
303         struct drm_device *dev = intel_dsi->base.base.dev;
304         struct drm_i915_private *dev_priv = dev->dev_private;
305         const u8 *sequence;
306
307         sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET];
308         generic_exec_sequence(intel_dsi, sequence);
309
310         sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
311         generic_exec_sequence(intel_dsi, sequence);
312
313         return 0;
314 }
315
316 static int vbt_panel_unprepare(struct drm_panel *panel)
317 {
318         struct vbt_panel *vbt_panel = to_vbt_panel(panel);
319         struct intel_dsi *intel_dsi = vbt_panel->intel_dsi;
320         struct drm_device *dev = intel_dsi->base.base.dev;
321         struct drm_i915_private *dev_priv = dev->dev_private;
322         const u8 *sequence;
323
324         sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET];
325         generic_exec_sequence(intel_dsi, sequence);
326
327         return 0;
328 }
329
330 static int vbt_panel_enable(struct drm_panel *panel)
331 {
332         struct vbt_panel *vbt_panel = to_vbt_panel(panel);
333         struct intel_dsi *intel_dsi = vbt_panel->intel_dsi;
334         struct drm_device *dev = intel_dsi->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         const u8 *sequence;
337
338         sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON];
339         generic_exec_sequence(intel_dsi, sequence);
340
341         return 0;
342 }
343
344 static int vbt_panel_disable(struct drm_panel *panel)
345 {
346         struct vbt_panel *vbt_panel = to_vbt_panel(panel);
347         struct intel_dsi *intel_dsi = vbt_panel->intel_dsi;
348         struct drm_device *dev = intel_dsi->base.base.dev;
349         struct drm_i915_private *dev_priv = dev->dev_private;
350         const u8 *sequence;
351
352         sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_OFF];
353         generic_exec_sequence(intel_dsi, sequence);
354
355         return 0;
356 }
357
358 static int vbt_panel_get_modes(struct drm_panel *panel)
359 {
360         struct vbt_panel *vbt_panel = to_vbt_panel(panel);
361         struct intel_dsi *intel_dsi = vbt_panel->intel_dsi;
362         struct drm_device *dev = intel_dsi->base.base.dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         struct drm_display_mode *mode;
365
366         if (!panel->connector)
367                 return 0;
368
369         mode = drm_mode_duplicate(dev, dev_priv->vbt.lfp_lvds_vbt_mode);
370         if (!mode)
371                 return 0;
372
373         mode->type |= DRM_MODE_TYPE_PREFERRED;
374
375         drm_mode_probed_add(panel->connector, mode);
376
377         return 1;
378 }
379
380 static const struct drm_panel_funcs vbt_panel_funcs = {
381         .disable = vbt_panel_disable,
382         .unprepare = vbt_panel_unprepare,
383         .prepare = vbt_panel_prepare,
384         .enable = vbt_panel_enable,
385         .get_modes = vbt_panel_get_modes,
386 };
387
388 struct drm_panel *vbt_panel_init(struct intel_dsi *intel_dsi, u16 panel_id)
389 {
390         struct drm_device *dev = intel_dsi->base.base.dev;
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         struct mipi_config *mipi_config = dev_priv->vbt.dsi.config;
393         struct mipi_pps_data *pps = dev_priv->vbt.dsi.pps;
394         struct drm_display_mode *mode = dev_priv->vbt.lfp_lvds_vbt_mode;
395         struct vbt_panel *vbt_panel;
396         u32 bits_per_pixel = 24;
397         u32 tlpx_ns, extra_byte_count, bitrate, tlpx_ui;
398         u32 ui_num, ui_den;
399         u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt;
400         u32 ths_prepare_ns, tclk_trail_ns;
401         u32 tclk_prepare_clkzero, ths_prepare_hszero;
402         u32 lp_to_hs_switch, hs_to_lp_switch;
403         u32 pclk, computed_ddr;
404         u16 burst_mode_ratio;
405         enum port port;
406
407         DRM_DEBUG_KMS("\n");
408
409         intel_dsi->eotp_pkt = mipi_config->eot_pkt_disabled ? 0 : 1;
410         intel_dsi->clock_stop = mipi_config->enable_clk_stop ? 1 : 0;
411         intel_dsi->lane_count = mipi_config->lane_cnt + 1;
412         intel_dsi->pixel_format = mipi_config->videomode_color_format << 7;
413         intel_dsi->dual_link = mipi_config->dual_link;
414         intel_dsi->pixel_overlap = mipi_config->pixel_overlap;
415
416         if (intel_dsi->pixel_format == VID_MODE_FORMAT_RGB666)
417                 bits_per_pixel = 18;
418         else if (intel_dsi->pixel_format == VID_MODE_FORMAT_RGB565)
419                 bits_per_pixel = 16;
420
421         intel_dsi->operation_mode = mipi_config->is_cmd_mode;
422         intel_dsi->video_mode_format = mipi_config->video_transfer_mode;
423         intel_dsi->escape_clk_div = mipi_config->byte_clk_sel;
424         intel_dsi->lp_rx_timeout = mipi_config->lp_rx_timeout;
425         intel_dsi->turn_arnd_val = mipi_config->turn_around_timeout;
426         intel_dsi->rst_timer_val = mipi_config->device_reset_timer;
427         intel_dsi->init_count = mipi_config->master_init_timer;
428         intel_dsi->bw_timer = mipi_config->dbi_bw_timer;
429         intel_dsi->video_frmt_cfg_bits =
430                 mipi_config->bta_enabled ? DISABLE_VIDEO_BTA : 0;
431
432         pclk = mode->clock;
433
434         /* In dual link mode each port needs half of pixel clock */
435         if (intel_dsi->dual_link) {
436                 pclk = pclk / 2;
437
438                 /* we can enable pixel_overlap if needed by panel. In this
439                  * case we need to increase the pixelclock for extra pixels
440                  */
441                 if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) {
442                         pclk += DIV_ROUND_UP(mode->vtotal *
443                                                 intel_dsi->pixel_overlap *
444                                                 60, 1000);
445                 }
446         }
447
448         /* Burst Mode Ratio
449          * Target ddr frequency from VBT / non burst ddr freq
450          * multiply by 100 to preserve remainder
451          */
452         if (intel_dsi->video_mode_format == VIDEO_MODE_BURST) {
453                 if (mipi_config->target_burst_mode_freq) {
454                         computed_ddr =
455                                 (pclk * bits_per_pixel) / intel_dsi->lane_count;
456
457                         if (mipi_config->target_burst_mode_freq <
458                                                                 computed_ddr) {
459                                 DRM_ERROR("Burst mode freq is less than computed\n");
460                                 return NULL;
461                         }
462
463                         burst_mode_ratio = DIV_ROUND_UP(
464                                 mipi_config->target_burst_mode_freq * 100,
465                                 computed_ddr);
466
467                         pclk = DIV_ROUND_UP(pclk * burst_mode_ratio, 100);
468                 } else {
469                         DRM_ERROR("Burst mode target is not set\n");
470                         return NULL;
471                 }
472         } else
473                 burst_mode_ratio = 100;
474
475         intel_dsi->burst_mode_ratio = burst_mode_ratio;
476         intel_dsi->pclk = pclk;
477
478         bitrate = (pclk * bits_per_pixel) / intel_dsi->lane_count;
479
480         switch (intel_dsi->escape_clk_div) {
481         case 0:
482                 tlpx_ns = 50;
483                 break;
484         case 1:
485                 tlpx_ns = 100;
486                 break;
487
488         case 2:
489                 tlpx_ns = 200;
490                 break;
491         default:
492                 tlpx_ns = 50;
493                 break;
494         }
495
496         switch (intel_dsi->lane_count) {
497         case 1:
498         case 2:
499                 extra_byte_count = 2;
500                 break;
501         case 3:
502                 extra_byte_count = 4;
503                 break;
504         case 4:
505         default:
506                 extra_byte_count = 3;
507                 break;
508         }
509
510         /*
511          * ui(s) = 1/f [f in hz]
512          * ui(ns) = 10^9 / (f*10^6) [f in Mhz] -> 10^3/f(Mhz)
513          */
514
515         /* in Kbps */
516         ui_num = NS_KHZ_RATIO;
517         ui_den = bitrate;
518
519         tclk_prepare_clkzero = mipi_config->tclk_prepare_clkzero;
520         ths_prepare_hszero = mipi_config->ths_prepare_hszero;
521
522         /*
523          * B060
524          * LP byte clock = TLPX/ (8UI)
525          */
526         intel_dsi->lp_byte_clk = DIV_ROUND_UP(tlpx_ns * ui_den, 8 * ui_num);
527
528         /* count values in UI = (ns value) * (bitrate / (2 * 10^6))
529          *
530          * Since txddrclkhs_i is 2xUI, all the count values programmed in
531          * DPHY param register are divided by 2
532          *
533          * prepare count
534          */
535         ths_prepare_ns = max(mipi_config->ths_prepare,
536                              mipi_config->tclk_prepare);
537         prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * ui_den, ui_num * 2);
538
539         /* exit zero count */
540         exit_zero_cnt = DIV_ROUND_UP(
541                                 (ths_prepare_hszero - ths_prepare_ns) * ui_den,
542                                 ui_num * 2
543                                 );
544
545         /*
546          * Exit zero  is unified val ths_zero and ths_exit
547          * minimum value for ths_exit = 110ns
548          * min (exit_zero_cnt * 2) = 110/UI
549          * exit_zero_cnt = 55/UI
550          */
551          if (exit_zero_cnt < (55 * ui_den / ui_num))
552                 if ((55 * ui_den) % ui_num)
553                         exit_zero_cnt += 1;
554
555         /* clk zero count */
556         clk_zero_cnt = DIV_ROUND_UP(
557                         (tclk_prepare_clkzero - ths_prepare_ns)
558                         * ui_den, 2 * ui_num);
559
560         /* trail count */
561         tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail);
562         trail_cnt = DIV_ROUND_UP(tclk_trail_ns * ui_den, 2 * ui_num);
563
564         if (prepare_cnt > PREPARE_CNT_MAX ||
565                 exit_zero_cnt > EXIT_ZERO_CNT_MAX ||
566                 clk_zero_cnt > CLK_ZERO_CNT_MAX ||
567                 trail_cnt > TRAIL_CNT_MAX)
568                 DRM_DEBUG_DRIVER("Values crossing maximum limits, restricting to max values\n");
569
570         if (prepare_cnt > PREPARE_CNT_MAX)
571                 prepare_cnt = PREPARE_CNT_MAX;
572
573         if (exit_zero_cnt > EXIT_ZERO_CNT_MAX)
574                 exit_zero_cnt = EXIT_ZERO_CNT_MAX;
575
576         if (clk_zero_cnt > CLK_ZERO_CNT_MAX)
577                 clk_zero_cnt = CLK_ZERO_CNT_MAX;
578
579         if (trail_cnt > TRAIL_CNT_MAX)
580                 trail_cnt = TRAIL_CNT_MAX;
581
582         /* B080 */
583         intel_dsi->dphy_reg = exit_zero_cnt << 24 | trail_cnt << 16 |
584                                                 clk_zero_cnt << 8 | prepare_cnt;
585
586         /*
587          * LP to HS switch count = 4TLPX + PREP_COUNT * 2 + EXIT_ZERO_COUNT * 2
588          *                                      + 10UI + Extra Byte Count
589          *
590          * HS to LP switch count = THS-TRAIL + 2TLPX + Extra Byte Count
591          * Extra Byte Count is calculated according to number of lanes.
592          * High Low Switch Count is the Max of LP to HS and
593          * HS to LP switch count
594          *
595          */
596         tlpx_ui = DIV_ROUND_UP(tlpx_ns * ui_den, ui_num);
597
598         /* B044 */
599         /* FIXME:
600          * The comment above does not match with the code */
601         lp_to_hs_switch = DIV_ROUND_UP(4 * tlpx_ui + prepare_cnt * 2 +
602                                                 exit_zero_cnt * 2 + 10, 8);
603
604         hs_to_lp_switch = DIV_ROUND_UP(mipi_config->ths_trail + 2 * tlpx_ui, 8);
605
606         intel_dsi->hs_to_lp_count = max(lp_to_hs_switch, hs_to_lp_switch);
607         intel_dsi->hs_to_lp_count += extra_byte_count;
608
609         /* B088 */
610         /* LP -> HS for clock lanes
611          * LP clk sync + LP11 + LP01 + tclk_prepare + tclk_zero +
612          *                                              extra byte count
613          * 2TPLX + 1TLPX + 1 TPLX(in ns) + prepare_cnt * 2 + clk_zero_cnt *
614          *                                      2(in UI) + extra byte count
615          * In byteclks = (4TLPX + prepare_cnt * 2 + clk_zero_cnt *2 (in UI)) /
616          *                                      8 + extra byte count
617          */
618         intel_dsi->clk_lp_to_hs_count =
619                 DIV_ROUND_UP(
620                         4 * tlpx_ui + prepare_cnt * 2 +
621                         clk_zero_cnt * 2,
622                         8);
623
624         intel_dsi->clk_lp_to_hs_count += extra_byte_count;
625
626         /* HS->LP for Clock Lanes
627          * Low Power clock synchronisations + 1Tx byteclk + tclk_trail +
628          *                                              Extra byte count
629          * 2TLPX + 8UI + (trail_count*2)(in UI) + Extra byte count
630          * In byteclks = (2*TLpx(in UI) + trail_count*2 +8)(in UI)/8 +
631          *                                              Extra byte count
632          */
633         intel_dsi->clk_hs_to_lp_count =
634                 DIV_ROUND_UP(2 * tlpx_ui + trail_cnt * 2 + 8,
635                         8);
636         intel_dsi->clk_hs_to_lp_count += extra_byte_count;
637
638         DRM_DEBUG_KMS("Eot %s\n", intel_dsi->eotp_pkt ? "enabled" : "disabled");
639         DRM_DEBUG_KMS("Clockstop %s\n", intel_dsi->clock_stop ?
640                                                 "disabled" : "enabled");
641         DRM_DEBUG_KMS("Mode %s\n", intel_dsi->operation_mode ? "command" : "video");
642         if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK)
643                 DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_FRONT_BACK\n");
644         else if (intel_dsi->dual_link == DSI_DUAL_LINK_PIXEL_ALT)
645                 DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_PIXEL_ALT\n");
646         else
647                 DRM_DEBUG_KMS("Dual link: NONE\n");
648         DRM_DEBUG_KMS("Pixel Format %d\n", intel_dsi->pixel_format);
649         DRM_DEBUG_KMS("TLPX %d\n", intel_dsi->escape_clk_div);
650         DRM_DEBUG_KMS("LP RX Timeout 0x%x\n", intel_dsi->lp_rx_timeout);
651         DRM_DEBUG_KMS("Turnaround Timeout 0x%x\n", intel_dsi->turn_arnd_val);
652         DRM_DEBUG_KMS("Init Count 0x%x\n", intel_dsi->init_count);
653         DRM_DEBUG_KMS("HS to LP Count 0x%x\n", intel_dsi->hs_to_lp_count);
654         DRM_DEBUG_KMS("LP Byte Clock %d\n", intel_dsi->lp_byte_clk);
655         DRM_DEBUG_KMS("DBI BW Timer 0x%x\n", intel_dsi->bw_timer);
656         DRM_DEBUG_KMS("LP to HS Clock Count 0x%x\n", intel_dsi->clk_lp_to_hs_count);
657         DRM_DEBUG_KMS("HS to LP Clock Count 0x%x\n", intel_dsi->clk_hs_to_lp_count);
658         DRM_DEBUG_KMS("BTA %s\n",
659                         intel_dsi->video_frmt_cfg_bits & DISABLE_VIDEO_BTA ?
660                         "disabled" : "enabled");
661
662         /* delays in VBT are in unit of 100us, so need to convert
663          * here in ms
664          * Delay (100us) * 100 /1000 = Delay / 10 (ms) */
665         intel_dsi->backlight_off_delay = pps->bl_disable_delay / 10;
666         intel_dsi->backlight_on_delay = pps->bl_enable_delay / 10;
667         intel_dsi->panel_on_delay = pps->panel_on_delay / 10;
668         intel_dsi->panel_off_delay = pps->panel_off_delay / 10;
669         intel_dsi->panel_pwr_cycle_delay = pps->panel_power_cycle_delay / 10;
670
671         /* This is cheating a bit with the cleanup. */
672         vbt_panel = devm_kzalloc(dev->dev, sizeof(*vbt_panel), GFP_KERNEL);
673         if (!vbt_panel)
674                 return NULL;
675
676         vbt_panel->intel_dsi = intel_dsi;
677         drm_panel_init(&vbt_panel->panel);
678         vbt_panel->panel.funcs = &vbt_panel_funcs;
679         drm_panel_add(&vbt_panel->panel);
680
681         /* a regular driver would get the device in probe */
682         for_each_dsi_port(port, intel_dsi->ports) {
683                 mipi_dsi_attach(intel_dsi->dsi_hosts[port]->device);
684         }
685
686         return &vbt_panel->panel;
687 }