]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
0d6dc5ec4a46332259a79f8ae5ab658eb5808241
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231                                 struct intel_engine_cs *engine);
232 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
233                                            struct drm_i915_gem_object *default_ctx_obj);
234
235
236 /**
237  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
238  * @dev: DRM device.
239  * @enable_execlists: value of i915.enable_execlists module parameter.
240  *
241  * Only certain platforms support Execlists (the prerequisites being
242  * support for Logical Ring Contexts and Aliasing PPGTT or better).
243  *
244  * Return: 1 if Execlists is supported and has to be enabled.
245  */
246 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
247 {
248         WARN_ON(i915.enable_ppgtt == -1);
249
250         /* On platforms with execlist available, vGPU will only
251          * support execlist mode, no ring buffer mode.
252          */
253         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
254                 return 1;
255
256         if (INTEL_INFO(dev)->gen >= 9)
257                 return 1;
258
259         if (enable_execlists == 0)
260                 return 0;
261
262         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
263             i915.use_mmio_flip >= 0)
264                 return 1;
265
266         return 0;
267 }
268
269 static void
270 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271 {
272         struct drm_device *dev = engine->dev;
273
274         if (IS_GEN8(dev) || IS_GEN9(dev))
275                 engine->idle_lite_restore_wa = ~0;
276
277         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279                                         (engine->id == VCS || engine->id == VCS2);
280
281         engine->ctx_desc_template = GEN8_CTX_VALID;
282         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
284         if (IS_GEN8(dev))
285                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
286         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287
288         /* TODO: WaDisableLiteRestore when we start using semaphore
289          * signalling between Command Streamers */
290         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
291
292         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
293         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294         if (engine->disable_lite_restore_wa)
295                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 }
297
298 /**
299  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
300  *                                        descriptor for a pinned context
301  *
302  * @ctx: Context to work on
303  * @ring: Engine the descriptor will be used with
304  *
305  * The context descriptor encodes various attributes of a context,
306  * including its GTT address and some flags. Because it's fairly
307  * expensive to calculate, we'll just do it once and cache the result,
308  * which remains valid until the context is unpinned.
309  *
310  * This is what a descriptor looks like, from LSB to MSB:
311  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
314  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
315  */
316 static void
317 intel_lr_context_descriptor_update(struct intel_context *ctx,
318                                    struct intel_engine_cs *engine)
319 {
320         uint64_t lrca, desc;
321
322         lrca = ctx->engine[engine->id].lrc_vma->node.start +
323                LRC_PPHWSP_PN * PAGE_SIZE;
324
325         desc = engine->ctx_desc_template;                          /* bits  0-11 */
326         desc |= lrca;                                      /* bits 12-31 */
327         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
328
329         ctx->engine[engine->id].lrc_desc = desc;
330 }
331
332 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
333                                      struct intel_engine_cs *engine)
334 {
335         return ctx->engine[engine->id].lrc_desc;
336 }
337
338 /**
339  * intel_execlists_ctx_id() - get the Execlists Context ID
340  * @ctx: Context to get the ID for
341  * @ring: Engine to get the ID for
342  *
343  * Do not confuse with ctx->id! Unfortunately we have a name overload
344  * here: the old context ID we pass to userspace as a handler so that
345  * they can refer to a context, and the new context ID we pass to the
346  * ELSP so that the GPU can inform us of the context status via
347  * interrupts.
348  *
349  * The context ID is a portion of the context descriptor, so we can
350  * just extract the required part from the cached descriptor.
351  *
352  * Return: 20-bits globally unique context ID.
353  */
354 u32 intel_execlists_ctx_id(struct intel_context *ctx,
355                            struct intel_engine_cs *engine)
356 {
357         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
358 }
359
360 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
361                                  struct drm_i915_gem_request *rq1)
362 {
363
364         struct intel_engine_cs *engine = rq0->engine;
365         struct drm_device *dev = engine->dev;
366         struct drm_i915_private *dev_priv = dev->dev_private;
367         uint64_t desc[2];
368
369         if (rq1) {
370                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
371                 rq1->elsp_submitted++;
372         } else {
373                 desc[1] = 0;
374         }
375
376         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
377         rq0->elsp_submitted++;
378
379         /* You must always write both descriptors in the order below. */
380         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
381         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
382
383         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
384         /* The context is automatically loaded after the following */
385         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
386
387         /* ELSP is a wo register, use another nearby reg for posting */
388         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
389 }
390
391 static void
392 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
393 {
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
395         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
396         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
397         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
398 }
399
400 static void execlists_update_context(struct drm_i915_gem_request *rq)
401 {
402         struct intel_engine_cs *engine = rq->engine;
403         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
404         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
405
406         reg_state[CTX_RING_TAIL+1] = rq->tail;
407
408         /* True 32b PPGTT with dynamic page allocation: update PDP
409          * registers and point the unallocated PDPs to scratch page.
410          * PML4 is allocated during ppgtt init, so this is not needed
411          * in 48-bit mode.
412          */
413         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
414                 execlists_update_context_pdps(ppgtt, reg_state);
415 }
416
417 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
418                                       struct drm_i915_gem_request *rq1)
419 {
420         struct drm_i915_private *dev_priv = rq0->i915;
421
422         execlists_update_context(rq0);
423
424         if (rq1)
425                 execlists_update_context(rq1);
426
427         spin_lock_irq(&dev_priv->uncore.lock);
428         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
429
430         execlists_elsp_write(rq0, rq1);
431
432         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
433         spin_unlock_irq(&dev_priv->uncore.lock);
434 }
435
436 static void execlists_context_unqueue(struct intel_engine_cs *engine)
437 {
438         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
439         struct drm_i915_gem_request *cursor, *tmp;
440
441         assert_spin_locked(&engine->execlist_lock);
442
443         /*
444          * If irqs are not active generate a warning as batches that finish
445          * without the irqs may get lost and a GPU Hang may occur.
446          */
447         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
448
449         /* Try to read in pairs */
450         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
451                                  execlist_link) {
452                 if (!req0) {
453                         req0 = cursor;
454                 } else if (req0->ctx == cursor->ctx) {
455                         /* Same ctx: ignore first request, as second request
456                          * will update tail past first request's workload */
457                         cursor->elsp_submitted = req0->elsp_submitted;
458                         list_move_tail(&req0->execlist_link,
459                                        &engine->execlist_retired_req_list);
460                         req0 = cursor;
461                 } else {
462                         req1 = cursor;
463                         WARN_ON(req1->elsp_submitted);
464                         break;
465                 }
466         }
467
468         if (unlikely(!req0))
469                 return;
470
471         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
472                 /*
473                  * WaIdleLiteRestore: make sure we never cause a lite restore
474                  * with HEAD==TAIL.
475                  *
476                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
477                  * resubmit the request. See gen8_emit_request() for where we
478                  * prepare the padding after the end of the request.
479                  */
480                 struct intel_ringbuffer *ringbuf;
481
482                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
483                 req0->tail += 8;
484                 req0->tail &= ringbuf->size - 1;
485         }
486
487         execlists_submit_requests(req0, req1);
488 }
489
490 static unsigned int
491 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
492 {
493         struct drm_i915_gem_request *head_req;
494
495         assert_spin_locked(&engine->execlist_lock);
496
497         head_req = list_first_entry_or_null(&engine->execlist_queue,
498                                             struct drm_i915_gem_request,
499                                             execlist_link);
500
501         if (!head_req)
502                 return 0;
503
504         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
505                 return 0;
506
507         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
508
509         if (--head_req->elsp_submitted > 0)
510                 return 0;
511
512         list_move_tail(&head_req->execlist_link,
513                        &engine->execlist_retired_req_list);
514
515         return 1;
516 }
517
518 static u32
519 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
520                    u32 *context_id)
521 {
522         struct drm_i915_private *dev_priv = engine->dev->dev_private;
523         u32 status;
524
525         read_pointer %= GEN8_CSB_ENTRIES;
526
527         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
528
529         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
530                 return 0;
531
532         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
533                                                               read_pointer));
534
535         return status;
536 }
537
538 /**
539  * intel_lrc_irq_handler() - handle Context Switch interrupts
540  * @engine: Engine Command Streamer to handle.
541  *
542  * Check the unread Context Status Buffers and manage the submission of new
543  * contexts to the ELSP accordingly.
544  */
545 static void intel_lrc_irq_handler(unsigned long data)
546 {
547         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
548         struct drm_i915_private *dev_priv = engine->dev->dev_private;
549         u32 status_pointer;
550         unsigned int read_pointer, write_pointer;
551         u32 csb[GEN8_CSB_ENTRIES][2];
552         unsigned int csb_read = 0, i;
553         unsigned int submit_contexts = 0;
554
555         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
556
557         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
558
559         read_pointer = engine->next_context_status_buffer;
560         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
561         if (read_pointer > write_pointer)
562                 write_pointer += GEN8_CSB_ENTRIES;
563
564         while (read_pointer < write_pointer) {
565                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
566                         break;
567                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
568                                                       &csb[csb_read][1]);
569                 csb_read++;
570         }
571
572         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
573
574         /* Update the read pointer to the old write pointer. Manual ringbuffer
575          * management ftw </sarcasm> */
576         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
577                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
578                                     engine->next_context_status_buffer << 8));
579
580         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
581
582         spin_lock(&engine->execlist_lock);
583
584         for (i = 0; i < csb_read; i++) {
585                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
586                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
587                                 if (execlists_check_remove_request(engine, csb[i][1]))
588                                         WARN(1, "Lite Restored request removed from queue\n");
589                         } else
590                                 WARN(1, "Preemption without Lite Restore\n");
591                 }
592
593                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
594                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
595                         submit_contexts +=
596                                 execlists_check_remove_request(engine, csb[i][1]);
597         }
598
599         if (submit_contexts) {
600                 if (!engine->disable_lite_restore_wa ||
601                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
602                         execlists_context_unqueue(engine);
603         }
604
605         spin_unlock(&engine->execlist_lock);
606
607         if (unlikely(submit_contexts > 2))
608                 DRM_ERROR("More than two context complete events?\n");
609 }
610
611 static void execlists_context_queue(struct drm_i915_gem_request *request)
612 {
613         struct intel_engine_cs *engine = request->engine;
614         struct drm_i915_gem_request *cursor;
615         int num_elements = 0;
616
617         if (request->ctx != request->i915->kernel_context)
618                 intel_lr_context_pin(request->ctx, engine);
619
620         i915_gem_request_reference(request);
621
622         spin_lock_bh(&engine->execlist_lock);
623
624         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
625                 if (++num_elements > 2)
626                         break;
627
628         if (num_elements > 2) {
629                 struct drm_i915_gem_request *tail_req;
630
631                 tail_req = list_last_entry(&engine->execlist_queue,
632                                            struct drm_i915_gem_request,
633                                            execlist_link);
634
635                 if (request->ctx == tail_req->ctx) {
636                         WARN(tail_req->elsp_submitted != 0,
637                                 "More than 2 already-submitted reqs queued\n");
638                         list_move_tail(&tail_req->execlist_link,
639                                        &engine->execlist_retired_req_list);
640                 }
641         }
642
643         list_add_tail(&request->execlist_link, &engine->execlist_queue);
644         if (num_elements == 0)
645                 execlists_context_unqueue(engine);
646
647         spin_unlock_bh(&engine->execlist_lock);
648 }
649
650 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
651 {
652         struct intel_engine_cs *engine = req->engine;
653         uint32_t flush_domains;
654         int ret;
655
656         flush_domains = 0;
657         if (engine->gpu_caches_dirty)
658                 flush_domains = I915_GEM_GPU_DOMAINS;
659
660         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
661         if (ret)
662                 return ret;
663
664         engine->gpu_caches_dirty = false;
665         return 0;
666 }
667
668 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
669                                  struct list_head *vmas)
670 {
671         const unsigned other_rings = ~intel_engine_flag(req->engine);
672         struct i915_vma *vma;
673         uint32_t flush_domains = 0;
674         bool flush_chipset = false;
675         int ret;
676
677         list_for_each_entry(vma, vmas, exec_list) {
678                 struct drm_i915_gem_object *obj = vma->obj;
679
680                 if (obj->active & other_rings) {
681                         ret = i915_gem_object_sync(obj, req->engine, &req);
682                         if (ret)
683                                 return ret;
684                 }
685
686                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
687                         flush_chipset |= i915_gem_clflush_object(obj, false);
688
689                 flush_domains |= obj->base.write_domain;
690         }
691
692         if (flush_domains & I915_GEM_DOMAIN_GTT)
693                 wmb();
694
695         /* Unconditionally invalidate gpu caches and ensure that we do flush
696          * any residual writes from the previous batch.
697          */
698         return logical_ring_invalidate_all_caches(req);
699 }
700
701 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
702 {
703         int ret = 0;
704
705         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
706
707         if (i915.enable_guc_submission) {
708                 /*
709                  * Check that the GuC has space for the request before
710                  * going any further, as the i915_add_request() call
711                  * later on mustn't fail ...
712                  */
713                 struct intel_guc *guc = &request->i915->guc;
714
715                 ret = i915_guc_wq_check_space(guc->execbuf_client);
716                 if (ret)
717                         return ret;
718         }
719
720         if (request->ctx != request->i915->kernel_context)
721                 ret = intel_lr_context_pin(request->ctx, request->engine);
722
723         return ret;
724 }
725
726 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
727                                        int bytes)
728 {
729         struct intel_ringbuffer *ringbuf = req->ringbuf;
730         struct intel_engine_cs *engine = req->engine;
731         struct drm_i915_gem_request *target;
732         unsigned space;
733         int ret;
734
735         if (intel_ring_space(ringbuf) >= bytes)
736                 return 0;
737
738         /* The whole point of reserving space is to not wait! */
739         WARN_ON(ringbuf->reserved_in_use);
740
741         list_for_each_entry(target, &engine->request_list, list) {
742                 /*
743                  * The request queue is per-engine, so can contain requests
744                  * from multiple ringbuffers. Here, we must ignore any that
745                  * aren't from the ringbuffer we're considering.
746                  */
747                 if (target->ringbuf != ringbuf)
748                         continue;
749
750                 /* Would completion of this request free enough space? */
751                 space = __intel_ring_space(target->postfix, ringbuf->tail,
752                                            ringbuf->size);
753                 if (space >= bytes)
754                         break;
755         }
756
757         if (WARN_ON(&target->list == &engine->request_list))
758                 return -ENOSPC;
759
760         ret = i915_wait_request(target);
761         if (ret)
762                 return ret;
763
764         ringbuf->space = space;
765         return 0;
766 }
767
768 /*
769  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
770  * @request: Request to advance the logical ringbuffer of.
771  *
772  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
773  * really happens during submission is that the context and current tail will be placed
774  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
775  * point, the tail *inside* the context is updated and the ELSP written to.
776  */
777 static int
778 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
779 {
780         struct intel_ringbuffer *ringbuf = request->ringbuf;
781         struct drm_i915_private *dev_priv = request->i915;
782         struct intel_engine_cs *engine = request->engine;
783
784         intel_logical_ring_advance(ringbuf);
785         request->tail = ringbuf->tail;
786
787         /*
788          * Here we add two extra NOOPs as padding to avoid
789          * lite restore of a context with HEAD==TAIL.
790          *
791          * Caller must reserve WA_TAIL_DWORDS for us!
792          */
793         intel_logical_ring_emit(ringbuf, MI_NOOP);
794         intel_logical_ring_emit(ringbuf, MI_NOOP);
795         intel_logical_ring_advance(ringbuf);
796
797         if (intel_engine_stopped(engine))
798                 return 0;
799
800         if (engine->last_context != request->ctx) {
801                 if (engine->last_context)
802                         intel_lr_context_unpin(engine->last_context, engine);
803                 if (request->ctx != request->i915->kernel_context) {
804                         intel_lr_context_pin(request->ctx, engine);
805                         engine->last_context = request->ctx;
806                 } else {
807                         engine->last_context = NULL;
808                 }
809         }
810
811         if (dev_priv->guc.execbuf_client)
812                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
813         else
814                 execlists_context_queue(request);
815
816         return 0;
817 }
818
819 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
820 {
821         uint32_t __iomem *virt;
822         int rem = ringbuf->size - ringbuf->tail;
823
824         virt = ringbuf->virtual_start + ringbuf->tail;
825         rem /= 4;
826         while (rem--)
827                 iowrite32(MI_NOOP, virt++);
828
829         ringbuf->tail = 0;
830         intel_ring_update_space(ringbuf);
831 }
832
833 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
834 {
835         struct intel_ringbuffer *ringbuf = req->ringbuf;
836         int remain_usable = ringbuf->effective_size - ringbuf->tail;
837         int remain_actual = ringbuf->size - ringbuf->tail;
838         int ret, total_bytes, wait_bytes = 0;
839         bool need_wrap = false;
840
841         if (ringbuf->reserved_in_use)
842                 total_bytes = bytes;
843         else
844                 total_bytes = bytes + ringbuf->reserved_size;
845
846         if (unlikely(bytes > remain_usable)) {
847                 /*
848                  * Not enough space for the basic request. So need to flush
849                  * out the remainder and then wait for base + reserved.
850                  */
851                 wait_bytes = remain_actual + total_bytes;
852                 need_wrap = true;
853         } else {
854                 if (unlikely(total_bytes > remain_usable)) {
855                         /*
856                          * The base request will fit but the reserved space
857                          * falls off the end. So don't need an immediate wrap
858                          * and only need to effectively wait for the reserved
859                          * size space from the start of ringbuffer.
860                          */
861                         wait_bytes = remain_actual + ringbuf->reserved_size;
862                 } else if (total_bytes > ringbuf->space) {
863                         /* No wrapping required, just waiting. */
864                         wait_bytes = total_bytes;
865                 }
866         }
867
868         if (wait_bytes) {
869                 ret = logical_ring_wait_for_space(req, wait_bytes);
870                 if (unlikely(ret))
871                         return ret;
872
873                 if (need_wrap)
874                         __wrap_ring_buffer(ringbuf);
875         }
876
877         return 0;
878 }
879
880 /**
881  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
882  *
883  * @req: The request to start some new work for
884  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
885  *
886  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
887  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
888  * and also preallocates a request (every workload submission is still mediated through
889  * requests, same as it did with legacy ringbuffer submission).
890  *
891  * Return: non-zero if the ringbuffer is not ready to be written to.
892  */
893 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
894 {
895         struct drm_i915_private *dev_priv;
896         int ret;
897
898         WARN_ON(req == NULL);
899         dev_priv = req->i915;
900
901         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
902                                    dev_priv->mm.interruptible);
903         if (ret)
904                 return ret;
905
906         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
907         if (ret)
908                 return ret;
909
910         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
911         return 0;
912 }
913
914 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
915 {
916         /*
917          * The first call merely notes the reserve request and is common for
918          * all back ends. The subsequent localised _begin() call actually
919          * ensures that the reservation is available. Without the begin, if
920          * the request creator immediately submitted the request without
921          * adding any commands to it then there might not actually be
922          * sufficient room for the submission commands.
923          */
924         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
925
926         return intel_logical_ring_begin(request, 0);
927 }
928
929 /**
930  * execlists_submission() - submit a batchbuffer for execution, Execlists style
931  * @dev: DRM device.
932  * @file: DRM file.
933  * @ring: Engine Command Streamer to submit to.
934  * @ctx: Context to employ for this submission.
935  * @args: execbuffer call arguments.
936  * @vmas: list of vmas.
937  * @batch_obj: the batchbuffer to submit.
938  * @exec_start: batchbuffer start virtual address pointer.
939  * @dispatch_flags: translated execbuffer call flags.
940  *
941  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
942  * away the submission details of the execbuffer ioctl call.
943  *
944  * Return: non-zero if the submission fails.
945  */
946 int intel_execlists_submission(struct i915_execbuffer_params *params,
947                                struct drm_i915_gem_execbuffer2 *args,
948                                struct list_head *vmas)
949 {
950         struct drm_device       *dev = params->dev;
951         struct intel_engine_cs *engine = params->engine;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
954         u64 exec_start;
955         int instp_mode;
956         u32 instp_mask;
957         int ret;
958
959         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
960         instp_mask = I915_EXEC_CONSTANTS_MASK;
961         switch (instp_mode) {
962         case I915_EXEC_CONSTANTS_REL_GENERAL:
963         case I915_EXEC_CONSTANTS_ABSOLUTE:
964         case I915_EXEC_CONSTANTS_REL_SURFACE:
965                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
966                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
967                         return -EINVAL;
968                 }
969
970                 if (instp_mode != dev_priv->relative_constants_mode) {
971                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
972                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
973                                 return -EINVAL;
974                         }
975
976                         /* The HW changed the meaning on this bit on gen6 */
977                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
978                 }
979                 break;
980         default:
981                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
982                 return -EINVAL;
983         }
984
985         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
986                 DRM_DEBUG("sol reset is gen7 only\n");
987                 return -EINVAL;
988         }
989
990         ret = execlists_move_to_gpu(params->request, vmas);
991         if (ret)
992                 return ret;
993
994         if (engine == &dev_priv->engine[RCS] &&
995             instp_mode != dev_priv->relative_constants_mode) {
996                 ret = intel_logical_ring_begin(params->request, 4);
997                 if (ret)
998                         return ret;
999
1000                 intel_logical_ring_emit(ringbuf, MI_NOOP);
1001                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1002                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1003                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1004                 intel_logical_ring_advance(ringbuf);
1005
1006                 dev_priv->relative_constants_mode = instp_mode;
1007         }
1008
1009         exec_start = params->batch_obj_vm_offset +
1010                      args->batch_start_offset;
1011
1012         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1013         if (ret)
1014                 return ret;
1015
1016         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1017
1018         i915_gem_execbuffer_move_to_active(vmas, params->request);
1019         i915_gem_execbuffer_retire_commands(params);
1020
1021         return 0;
1022 }
1023
1024 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1025 {
1026         struct drm_i915_gem_request *req, *tmp;
1027         struct list_head retired_list;
1028
1029         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1030         if (list_empty(&engine->execlist_retired_req_list))
1031                 return;
1032
1033         INIT_LIST_HEAD(&retired_list);
1034         spin_lock_bh(&engine->execlist_lock);
1035         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1036         spin_unlock_bh(&engine->execlist_lock);
1037
1038         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1039                 struct intel_context *ctx = req->ctx;
1040                 struct drm_i915_gem_object *ctx_obj =
1041                                 ctx->engine[engine->id].state;
1042
1043                 if (ctx_obj && (ctx != req->i915->kernel_context))
1044                         intel_lr_context_unpin(ctx, engine);
1045
1046                 list_del(&req->execlist_link);
1047                 i915_gem_request_unreference(req);
1048         }
1049 }
1050
1051 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1052 {
1053         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1054         int ret;
1055
1056         if (!intel_engine_initialized(engine))
1057                 return;
1058
1059         ret = intel_engine_idle(engine);
1060         if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1061                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1062                           engine->name, ret);
1063
1064         /* TODO: Is this correct with Execlists enabled? */
1065         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1066         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1067                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1068                 return;
1069         }
1070         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1071 }
1072
1073 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1074 {
1075         struct intel_engine_cs *engine = req->engine;
1076         int ret;
1077
1078         if (!engine->gpu_caches_dirty)
1079                 return 0;
1080
1081         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1082         if (ret)
1083                 return ret;
1084
1085         engine->gpu_caches_dirty = false;
1086         return 0;
1087 }
1088
1089 static int intel_lr_context_do_pin(struct intel_context *ctx,
1090                                    struct intel_engine_cs *engine)
1091 {
1092         struct drm_device *dev = engine->dev;
1093         struct drm_i915_private *dev_priv = dev->dev_private;
1094         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1095         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1096         struct page *lrc_state_page;
1097         uint32_t *lrc_reg_state;
1098         int ret;
1099
1100         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1101
1102         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1103                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1104         if (ret)
1105                 return ret;
1106
1107         lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
1108         if (WARN_ON(!lrc_state_page)) {
1109                 ret = -ENODEV;
1110                 goto unpin_ctx_obj;
1111         }
1112
1113         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114         if (ret)
1115                 goto unpin_ctx_obj;
1116
1117         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1118         intel_lr_context_descriptor_update(ctx, engine);
1119         lrc_reg_state = kmap(lrc_state_page);
1120         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1121         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1122         ctx_obj->dirty = true;
1123
1124         /* Invalidate GuC TLB. */
1125         if (i915.enable_guc_submission)
1126                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1127
1128         return ret;
1129
1130 unpin_ctx_obj:
1131         i915_gem_object_ggtt_unpin(ctx_obj);
1132
1133         return ret;
1134 }
1135
1136 static int intel_lr_context_pin(struct intel_context *ctx,
1137                                 struct intel_engine_cs *engine)
1138 {
1139         int ret = 0;
1140
1141         if (ctx->engine[engine->id].pin_count++ == 0) {
1142                 ret = intel_lr_context_do_pin(ctx, engine);
1143                 if (ret)
1144                         goto reset_pin_count;
1145
1146                 i915_gem_context_reference(ctx);
1147         }
1148         return ret;
1149
1150 reset_pin_count:
1151         ctx->engine[engine->id].pin_count = 0;
1152         return ret;
1153 }
1154
1155 void intel_lr_context_unpin(struct intel_context *ctx,
1156                             struct intel_engine_cs *engine)
1157 {
1158         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1159
1160         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1161         if (--ctx->engine[engine->id].pin_count == 0) {
1162                 kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
1163                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1164                 i915_gem_object_ggtt_unpin(ctx_obj);
1165                 ctx->engine[engine->id].lrc_vma = NULL;
1166                 ctx->engine[engine->id].lrc_desc = 0;
1167                 ctx->engine[engine->id].lrc_reg_state = NULL;
1168
1169                 i915_gem_context_unreference(ctx);
1170         }
1171 }
1172
1173 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1174 {
1175         int ret, i;
1176         struct intel_engine_cs *engine = req->engine;
1177         struct intel_ringbuffer *ringbuf = req->ringbuf;
1178         struct drm_device *dev = engine->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct i915_workarounds *w = &dev_priv->workarounds;
1181
1182         if (w->count == 0)
1183                 return 0;
1184
1185         engine->gpu_caches_dirty = true;
1186         ret = logical_ring_flush_all_caches(req);
1187         if (ret)
1188                 return ret;
1189
1190         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1191         if (ret)
1192                 return ret;
1193
1194         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1195         for (i = 0; i < w->count; i++) {
1196                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1197                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1198         }
1199         intel_logical_ring_emit(ringbuf, MI_NOOP);
1200
1201         intel_logical_ring_advance(ringbuf);
1202
1203         engine->gpu_caches_dirty = true;
1204         ret = logical_ring_flush_all_caches(req);
1205         if (ret)
1206                 return ret;
1207
1208         return 0;
1209 }
1210
1211 #define wa_ctx_emit(batch, index, cmd)                                  \
1212         do {                                                            \
1213                 int __index = (index)++;                                \
1214                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1215                         return -ENOSPC;                                 \
1216                 }                                                       \
1217                 batch[__index] = (cmd);                                 \
1218         } while (0)
1219
1220 #define wa_ctx_emit_reg(batch, index, reg) \
1221         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1222
1223 /*
1224  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1225  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1226  * but there is a slight complication as this is applied in WA batch where the
1227  * values are only initialized once so we cannot take register value at the
1228  * beginning and reuse it further; hence we save its value to memory, upload a
1229  * constant value with bit21 set and then we restore it back with the saved value.
1230  * To simplify the WA, a constant value is formed by using the default value
1231  * of this register. This shouldn't be a problem because we are only modifying
1232  * it for a short period and this batch in non-premptible. We can ofcourse
1233  * use additional instructions that read the actual value of the register
1234  * at that time and set our bit of interest but it makes the WA complicated.
1235  *
1236  * This WA is also required for Gen9 so extracting as a function avoids
1237  * code duplication.
1238  */
1239 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1240                                                 uint32_t *const batch,
1241                                                 uint32_t index)
1242 {
1243         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1244
1245         /*
1246          * WaDisableLSQCROPERFforOCL:skl
1247          * This WA is implemented in skl_init_clock_gating() but since
1248          * this batch updates GEN8_L3SQCREG4 with default value we need to
1249          * set this bit here to retain the WA during flush.
1250          */
1251         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1252                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1253
1254         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1255                                    MI_SRM_LRM_GLOBAL_GTT));
1256         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1257         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1258         wa_ctx_emit(batch, index, 0);
1259
1260         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1261         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1262         wa_ctx_emit(batch, index, l3sqc4_flush);
1263
1264         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1265         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1266                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1267         wa_ctx_emit(batch, index, 0);
1268         wa_ctx_emit(batch, index, 0);
1269         wa_ctx_emit(batch, index, 0);
1270         wa_ctx_emit(batch, index, 0);
1271
1272         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1273                                    MI_SRM_LRM_GLOBAL_GTT));
1274         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1275         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1276         wa_ctx_emit(batch, index, 0);
1277
1278         return index;
1279 }
1280
1281 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1282                                     uint32_t offset,
1283                                     uint32_t start_alignment)
1284 {
1285         return wa_ctx->offset = ALIGN(offset, start_alignment);
1286 }
1287
1288 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1289                              uint32_t offset,
1290                              uint32_t size_alignment)
1291 {
1292         wa_ctx->size = offset - wa_ctx->offset;
1293
1294         WARN(wa_ctx->size % size_alignment,
1295              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1296              wa_ctx->size, size_alignment);
1297         return 0;
1298 }
1299
1300 /**
1301  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1302  *
1303  * @ring: only applicable for RCS
1304  * @wa_ctx: structure representing wa_ctx
1305  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1306  *    with the offset value received as input.
1307  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1308  * @batch: page in which WA are loaded
1309  * @offset: This field specifies the start of the batch, it should be
1310  *  cache-aligned otherwise it is adjusted accordingly.
1311  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1312  *  initialized at the beginning and shared across all contexts but this field
1313  *  helps us to have multiple batches at different offsets and select them based
1314  *  on a criteria. At the moment this batch always start at the beginning of the page
1315  *  and at this point we don't have multiple wa_ctx batch buffers.
1316  *
1317  *  The number of WA applied are not known at the beginning; we use this field
1318  *  to return the no of DWORDS written.
1319  *
1320  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1321  *  so it adds NOOPs as padding to make it cacheline aligned.
1322  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1323  *  makes a complete batch buffer.
1324  *
1325  * Return: non-zero if we exceed the PAGE_SIZE limit.
1326  */
1327
1328 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1329                                     struct i915_wa_ctx_bb *wa_ctx,
1330                                     uint32_t *const batch,
1331                                     uint32_t *offset)
1332 {
1333         uint32_t scratch_addr;
1334         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1335
1336         /* WaDisableCtxRestoreArbitration:bdw,chv */
1337         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1338
1339         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1340         if (IS_BROADWELL(engine->dev)) {
1341                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1342                 if (rc < 0)
1343                         return rc;
1344                 index = rc;
1345         }
1346
1347         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1348         /* Actual scratch location is at 128 bytes offset */
1349         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1350
1351         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1352         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1353                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1354                                    PIPE_CONTROL_CS_STALL |
1355                                    PIPE_CONTROL_QW_WRITE));
1356         wa_ctx_emit(batch, index, scratch_addr);
1357         wa_ctx_emit(batch, index, 0);
1358         wa_ctx_emit(batch, index, 0);
1359         wa_ctx_emit(batch, index, 0);
1360
1361         /* Pad to end of cacheline */
1362         while (index % CACHELINE_DWORDS)
1363                 wa_ctx_emit(batch, index, MI_NOOP);
1364
1365         /*
1366          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1367          * execution depends on the length specified in terms of cache lines
1368          * in the register CTX_RCS_INDIRECT_CTX
1369          */
1370
1371         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1372 }
1373
1374 /**
1375  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1376  *
1377  * @ring: only applicable for RCS
1378  * @wa_ctx: structure representing wa_ctx
1379  *  offset: specifies start of the batch, should be cache-aligned.
1380  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1381  * @batch: page in which WA are loaded
1382  * @offset: This field specifies the start of this batch.
1383  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1384  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1385  *
1386  *   The number of DWORDS written are returned using this field.
1387  *
1388  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1389  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1390  */
1391 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1392                                struct i915_wa_ctx_bb *wa_ctx,
1393                                uint32_t *const batch,
1394                                uint32_t *offset)
1395 {
1396         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1397
1398         /* WaDisableCtxRestoreArbitration:bdw,chv */
1399         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1400
1401         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1402
1403         return wa_ctx_end(wa_ctx, *offset = index, 1);
1404 }
1405
1406 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1407                                     struct i915_wa_ctx_bb *wa_ctx,
1408                                     uint32_t *const batch,
1409                                     uint32_t *offset)
1410 {
1411         int ret;
1412         struct drm_device *dev = engine->dev;
1413         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1414
1415         /* WaDisableCtxRestoreArbitration:skl,bxt */
1416         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1417             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1418                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1419
1420         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1421         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1422         if (ret < 0)
1423                 return ret;
1424         index = ret;
1425
1426         /* Pad to end of cacheline */
1427         while (index % CACHELINE_DWORDS)
1428                 wa_ctx_emit(batch, index, MI_NOOP);
1429
1430         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1431 }
1432
1433 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1434                                struct i915_wa_ctx_bb *wa_ctx,
1435                                uint32_t *const batch,
1436                                uint32_t *offset)
1437 {
1438         struct drm_device *dev = engine->dev;
1439         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1440
1441         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1442         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1443             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1444                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1445                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1446                 wa_ctx_emit(batch, index,
1447                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1448                 wa_ctx_emit(batch, index, MI_NOOP);
1449         }
1450
1451         /* WaClearTdlStateAckDirtyBits:bxt */
1452         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1453                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1454
1455                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1456                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1457
1458                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1459                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1460
1461                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1462                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1463
1464                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1465                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1466                 wa_ctx_emit(batch, index, 0x0);
1467                 wa_ctx_emit(batch, index, MI_NOOP);
1468         }
1469
1470         /* WaDisableCtxRestoreArbitration:skl,bxt */
1471         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1472             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1473                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1474
1475         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1476
1477         return wa_ctx_end(wa_ctx, *offset = index, 1);
1478 }
1479
1480 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1481 {
1482         int ret;
1483
1484         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1485                                                    PAGE_ALIGN(size));
1486         if (!engine->wa_ctx.obj) {
1487                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1488                 return -ENOMEM;
1489         }
1490
1491         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1492         if (ret) {
1493                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1494                                  ret);
1495                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1496                 return ret;
1497         }
1498
1499         return 0;
1500 }
1501
1502 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1503 {
1504         if (engine->wa_ctx.obj) {
1505                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1506                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1507                 engine->wa_ctx.obj = NULL;
1508         }
1509 }
1510
1511 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512 {
1513         int ret;
1514         uint32_t *batch;
1515         uint32_t offset;
1516         struct page *page;
1517         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1518
1519         WARN_ON(engine->id != RCS);
1520
1521         /* update this when WA for higher Gen are added */
1522         if (INTEL_INFO(engine->dev)->gen > 9) {
1523                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1524                           INTEL_INFO(engine->dev)->gen);
1525                 return 0;
1526         }
1527
1528         /* some WA perform writes to scratch page, ensure it is valid */
1529         if (engine->scratch.obj == NULL) {
1530                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1531                 return -EINVAL;
1532         }
1533
1534         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1535         if (ret) {
1536                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1537                 return ret;
1538         }
1539
1540         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1541         batch = kmap_atomic(page);
1542         offset = 0;
1543
1544         if (INTEL_INFO(engine->dev)->gen == 8) {
1545                 ret = gen8_init_indirectctx_bb(engine,
1546                                                &wa_ctx->indirect_ctx,
1547                                                batch,
1548                                                &offset);
1549                 if (ret)
1550                         goto out;
1551
1552                 ret = gen8_init_perctx_bb(engine,
1553                                           &wa_ctx->per_ctx,
1554                                           batch,
1555                                           &offset);
1556                 if (ret)
1557                         goto out;
1558         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1559                 ret = gen9_init_indirectctx_bb(engine,
1560                                                &wa_ctx->indirect_ctx,
1561                                                batch,
1562                                                &offset);
1563                 if (ret)
1564                         goto out;
1565
1566                 ret = gen9_init_perctx_bb(engine,
1567                                           &wa_ctx->per_ctx,
1568                                           batch,
1569                                           &offset);
1570                 if (ret)
1571                         goto out;
1572         }
1573
1574 out:
1575         kunmap_atomic(batch);
1576         if (ret)
1577                 lrc_destroy_wa_ctx_obj(engine);
1578
1579         return ret;
1580 }
1581
1582 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1583 {
1584         struct drm_device *dev = engine->dev;
1585         struct drm_i915_private *dev_priv = dev->dev_private;
1586         unsigned int next_context_status_buffer_hw;
1587
1588         lrc_setup_hardware_status_page(engine,
1589                                        dev_priv->kernel_context->engine[engine->id].state);
1590
1591         I915_WRITE_IMR(engine,
1592                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1593         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1594
1595         I915_WRITE(RING_MODE_GEN7(engine),
1596                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1597                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1598         POSTING_READ(RING_MODE_GEN7(engine));
1599
1600         /*
1601          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1602          * zero, we need to read the write pointer from hardware and use its
1603          * value because "this register is power context save restored".
1604          * Effectively, these states have been observed:
1605          *
1606          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1607          * BDW  | CSB regs not reset       | CSB regs reset       |
1608          * CHT  | CSB regs not reset       | CSB regs not reset   |
1609          * SKL  |         ?                |         ?            |
1610          * BXT  |         ?                |         ?            |
1611          */
1612         next_context_status_buffer_hw =
1613                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1614
1615         /*
1616          * When the CSB registers are reset (also after power-up / gpu reset),
1617          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1618          * this special case, so the first element read is CSB[0].
1619          */
1620         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1621                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1622
1623         engine->next_context_status_buffer = next_context_status_buffer_hw;
1624         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1625
1626         intel_engine_init_hangcheck(engine);
1627
1628         return 0;
1629 }
1630
1631 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1632 {
1633         struct drm_device *dev = engine->dev;
1634         struct drm_i915_private *dev_priv = dev->dev_private;
1635         int ret;
1636
1637         ret = gen8_init_common_ring(engine);
1638         if (ret)
1639                 return ret;
1640
1641         /* We need to disable the AsyncFlip performance optimisations in order
1642          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1643          * programmed to '1' on all products.
1644          *
1645          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1646          */
1647         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1648
1649         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1650
1651         return init_workarounds_ring(engine);
1652 }
1653
1654 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1655 {
1656         int ret;
1657
1658         ret = gen8_init_common_ring(engine);
1659         if (ret)
1660                 return ret;
1661
1662         return init_workarounds_ring(engine);
1663 }
1664
1665 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1666 {
1667         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1668         struct intel_engine_cs *engine = req->engine;
1669         struct intel_ringbuffer *ringbuf = req->ringbuf;
1670         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1671         int i, ret;
1672
1673         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1674         if (ret)
1675                 return ret;
1676
1677         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1678         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1679                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1680
1681                 intel_logical_ring_emit_reg(ringbuf,
1682                                             GEN8_RING_PDP_UDW(engine, i));
1683                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1684                 intel_logical_ring_emit_reg(ringbuf,
1685                                             GEN8_RING_PDP_LDW(engine, i));
1686                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1687         }
1688
1689         intel_logical_ring_emit(ringbuf, MI_NOOP);
1690         intel_logical_ring_advance(ringbuf);
1691
1692         return 0;
1693 }
1694
1695 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1696                               u64 offset, unsigned dispatch_flags)
1697 {
1698         struct intel_ringbuffer *ringbuf = req->ringbuf;
1699         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1700         int ret;
1701
1702         /* Don't rely in hw updating PDPs, specially in lite-restore.
1703          * Ideally, we should set Force PD Restore in ctx descriptor,
1704          * but we can't. Force Restore would be a second option, but
1705          * it is unsafe in case of lite-restore (because the ctx is
1706          * not idle). PML4 is allocated during ppgtt init so this is
1707          * not needed in 48-bit.*/
1708         if (req->ctx->ppgtt &&
1709             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1710                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1711                     !intel_vgpu_active(req->i915->dev)) {
1712                         ret = intel_logical_ring_emit_pdps(req);
1713                         if (ret)
1714                                 return ret;
1715                 }
1716
1717                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1718         }
1719
1720         ret = intel_logical_ring_begin(req, 4);
1721         if (ret)
1722                 return ret;
1723
1724         /* FIXME(BDW): Address space and security selectors. */
1725         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1726                                 (ppgtt<<8) |
1727                                 (dispatch_flags & I915_DISPATCH_RS ?
1728                                  MI_BATCH_RESOURCE_STREAMER : 0));
1729         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1730         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1731         intel_logical_ring_emit(ringbuf, MI_NOOP);
1732         intel_logical_ring_advance(ringbuf);
1733
1734         return 0;
1735 }
1736
1737 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1738 {
1739         struct drm_device *dev = engine->dev;
1740         struct drm_i915_private *dev_priv = dev->dev_private;
1741         unsigned long flags;
1742
1743         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1744                 return false;
1745
1746         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1747         if (engine->irq_refcount++ == 0) {
1748                 I915_WRITE_IMR(engine,
1749                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1750                 POSTING_READ(RING_IMR(engine->mmio_base));
1751         }
1752         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754         return true;
1755 }
1756
1757 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1758 {
1759         struct drm_device *dev = engine->dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         unsigned long flags;
1762
1763         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764         if (--engine->irq_refcount == 0) {
1765                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1766                 POSTING_READ(RING_IMR(engine->mmio_base));
1767         }
1768         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1769 }
1770
1771 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1772                            u32 invalidate_domains,
1773                            u32 unused)
1774 {
1775         struct intel_ringbuffer *ringbuf = request->ringbuf;
1776         struct intel_engine_cs *engine = ringbuf->engine;
1777         struct drm_device *dev = engine->dev;
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         uint32_t cmd;
1780         int ret;
1781
1782         ret = intel_logical_ring_begin(request, 4);
1783         if (ret)
1784                 return ret;
1785
1786         cmd = MI_FLUSH_DW + 1;
1787
1788         /* We always require a command barrier so that subsequent
1789          * commands, such as breadcrumb interrupts, are strictly ordered
1790          * wrt the contents of the write cache being flushed to memory
1791          * (and thus being coherent from the CPU).
1792          */
1793         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1794
1795         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1796                 cmd |= MI_INVALIDATE_TLB;
1797                 if (engine == &dev_priv->engine[VCS])
1798                         cmd |= MI_INVALIDATE_BSD;
1799         }
1800
1801         intel_logical_ring_emit(ringbuf, cmd);
1802         intel_logical_ring_emit(ringbuf,
1803                                 I915_GEM_HWS_SCRATCH_ADDR |
1804                                 MI_FLUSH_DW_USE_GTT);
1805         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1806         intel_logical_ring_emit(ringbuf, 0); /* value */
1807         intel_logical_ring_advance(ringbuf);
1808
1809         return 0;
1810 }
1811
1812 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1813                                   u32 invalidate_domains,
1814                                   u32 flush_domains)
1815 {
1816         struct intel_ringbuffer *ringbuf = request->ringbuf;
1817         struct intel_engine_cs *engine = ringbuf->engine;
1818         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1819         bool vf_flush_wa = false;
1820         u32 flags = 0;
1821         int ret;
1822
1823         flags |= PIPE_CONTROL_CS_STALL;
1824
1825         if (flush_domains) {
1826                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1827                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1828                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1829                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1830         }
1831
1832         if (invalidate_domains) {
1833                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1834                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1835                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1836                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1837                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1838                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1839                 flags |= PIPE_CONTROL_QW_WRITE;
1840                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1841
1842                 /*
1843                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1844                  * pipe control.
1845                  */
1846                 if (IS_GEN9(engine->dev))
1847                         vf_flush_wa = true;
1848         }
1849
1850         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1851         if (ret)
1852                 return ret;
1853
1854         if (vf_flush_wa) {
1855                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1856                 intel_logical_ring_emit(ringbuf, 0);
1857                 intel_logical_ring_emit(ringbuf, 0);
1858                 intel_logical_ring_emit(ringbuf, 0);
1859                 intel_logical_ring_emit(ringbuf, 0);
1860                 intel_logical_ring_emit(ringbuf, 0);
1861         }
1862
1863         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1864         intel_logical_ring_emit(ringbuf, flags);
1865         intel_logical_ring_emit(ringbuf, scratch_addr);
1866         intel_logical_ring_emit(ringbuf, 0);
1867         intel_logical_ring_emit(ringbuf, 0);
1868         intel_logical_ring_emit(ringbuf, 0);
1869         intel_logical_ring_advance(ringbuf);
1870
1871         return 0;
1872 }
1873
1874 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1875 {
1876         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1877 }
1878
1879 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1880 {
1881         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1882 }
1883
1884 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1885 {
1886         /*
1887          * On BXT A steppings there is a HW coherency issue whereby the
1888          * MI_STORE_DATA_IMM storing the completed request's seqno
1889          * occasionally doesn't invalidate the CPU cache. Work around this by
1890          * clflushing the corresponding cacheline whenever the caller wants
1891          * the coherency to be guaranteed. Note that this cacheline is known
1892          * to be clean at this point, since we only write it in
1893          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1894          * this clflush in practice becomes an invalidate operation.
1895          */
1896         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1897 }
1898
1899 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1900 {
1901         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1902
1903         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1904         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1905 }
1906
1907 /*
1908  * Reserve space for 2 NOOPs at the end of each request to be
1909  * used as a workaround for not being allowed to do lite
1910  * restore with HEAD==TAIL (WaIdleLiteRestore).
1911  */
1912 #define WA_TAIL_DWORDS 2
1913
1914 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1915 {
1916         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1917 }
1918
1919 static int gen8_emit_request(struct drm_i915_gem_request *request)
1920 {
1921         struct intel_ringbuffer *ringbuf = request->ringbuf;
1922         int ret;
1923
1924         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1925         if (ret)
1926                 return ret;
1927
1928         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1929         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1930
1931         intel_logical_ring_emit(ringbuf,
1932                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1933         intel_logical_ring_emit(ringbuf,
1934                                 hws_seqno_address(request->engine) |
1935                                 MI_FLUSH_DW_USE_GTT);
1936         intel_logical_ring_emit(ringbuf, 0);
1937         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1938         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1939         intel_logical_ring_emit(ringbuf, MI_NOOP);
1940         return intel_logical_ring_advance_and_submit(request);
1941 }
1942
1943 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1944 {
1945         struct intel_ringbuffer *ringbuf = request->ringbuf;
1946         int ret;
1947
1948         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1949         if (ret)
1950                 return ret;
1951
1952         /* w/a for post sync ops following a GPGPU operation we
1953          * need a prior CS_STALL, which is emitted by the flush
1954          * following the batch.
1955          */
1956         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1957         intel_logical_ring_emit(ringbuf,
1958                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1959                                  PIPE_CONTROL_CS_STALL |
1960                                  PIPE_CONTROL_QW_WRITE));
1961         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1962         intel_logical_ring_emit(ringbuf, 0);
1963         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1964         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1965         return intel_logical_ring_advance_and_submit(request);
1966 }
1967
1968 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1969 {
1970         struct render_state so;
1971         int ret;
1972
1973         ret = i915_gem_render_state_prepare(req->engine, &so);
1974         if (ret)
1975                 return ret;
1976
1977         if (so.rodata == NULL)
1978                 return 0;
1979
1980         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1981                                        I915_DISPATCH_SECURE);
1982         if (ret)
1983                 goto out;
1984
1985         ret = req->engine->emit_bb_start(req,
1986                                        (so.ggtt_offset + so.aux_batch_offset),
1987                                        I915_DISPATCH_SECURE);
1988         if (ret)
1989                 goto out;
1990
1991         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1992
1993 out:
1994         i915_gem_render_state_fini(&so);
1995         return ret;
1996 }
1997
1998 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1999 {
2000         int ret;
2001
2002         ret = intel_logical_ring_workarounds_emit(req);
2003         if (ret)
2004                 return ret;
2005
2006         ret = intel_rcs_context_init_mocs(req);
2007         /*
2008          * Failing to program the MOCS is non-fatal.The system will not
2009          * run at peak performance. So generate an error and carry on.
2010          */
2011         if (ret)
2012                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2013
2014         return intel_lr_context_render_state_init(req);
2015 }
2016
2017 /**
2018  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2019  *
2020  * @ring: Engine Command Streamer.
2021  *
2022  */
2023 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2024 {
2025         struct drm_i915_private *dev_priv;
2026
2027         if (!intel_engine_initialized(engine))
2028                 return;
2029
2030         /*
2031          * Tasklet cannot be active at this point due intel_mark_active/idle
2032          * so this is just for documentation.
2033          */
2034         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2035                 tasklet_kill(&engine->irq_tasklet);
2036
2037         dev_priv = engine->dev->dev_private;
2038
2039         if (engine->buffer) {
2040                 intel_logical_ring_stop(engine);
2041                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2042         }
2043
2044         if (engine->cleanup)
2045                 engine->cleanup(engine);
2046
2047         i915_cmd_parser_fini_ring(engine);
2048         i915_gem_batch_pool_fini(&engine->batch_pool);
2049
2050         if (engine->status_page.obj) {
2051                 kunmap(sg_page(engine->status_page.obj->pages->sgl));
2052                 engine->status_page.obj = NULL;
2053         }
2054
2055         engine->idle_lite_restore_wa = 0;
2056         engine->disable_lite_restore_wa = false;
2057         engine->ctx_desc_template = 0;
2058
2059         lrc_destroy_wa_ctx_obj(engine);
2060         engine->dev = NULL;
2061 }
2062
2063 static void
2064 logical_ring_default_vfuncs(struct drm_device *dev,
2065                             struct intel_engine_cs *engine)
2066 {
2067         /* Default vfuncs which can be overriden by each engine. */
2068         engine->init_hw = gen8_init_common_ring;
2069         engine->emit_request = gen8_emit_request;
2070         engine->emit_flush = gen8_emit_flush;
2071         engine->irq_get = gen8_logical_ring_get_irq;
2072         engine->irq_put = gen8_logical_ring_put_irq;
2073         engine->emit_bb_start = gen8_emit_bb_start;
2074         engine->get_seqno = gen8_get_seqno;
2075         engine->set_seqno = gen8_set_seqno;
2076         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2077                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2078                 engine->set_seqno = bxt_a_set_seqno;
2079         }
2080 }
2081
2082 static inline void
2083 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2084 {
2085         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2086         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2087 }
2088
2089 static int
2090 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2091 {
2092         struct intel_context *dctx = to_i915(dev)->kernel_context;
2093         int ret;
2094
2095         /* Intentionally left blank. */
2096         engine->buffer = NULL;
2097
2098         engine->dev = dev;
2099         INIT_LIST_HEAD(&engine->active_list);
2100         INIT_LIST_HEAD(&engine->request_list);
2101         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2102         init_waitqueue_head(&engine->irq_queue);
2103
2104         INIT_LIST_HEAD(&engine->buffers);
2105         INIT_LIST_HEAD(&engine->execlist_queue);
2106         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2107         spin_lock_init(&engine->execlist_lock);
2108
2109         tasklet_init(&engine->irq_tasklet,
2110                      intel_lrc_irq_handler, (unsigned long)engine);
2111
2112         logical_ring_init_platform_invariants(engine);
2113
2114         ret = i915_cmd_parser_init_ring(engine);
2115         if (ret)
2116                 goto error;
2117
2118         ret = intel_lr_context_deferred_alloc(dctx, engine);
2119         if (ret)
2120                 goto error;
2121
2122         /* As this is the default context, always pin it */
2123         ret = intel_lr_context_do_pin(dctx, engine);
2124         if (ret) {
2125                 DRM_ERROR(
2126                         "Failed to pin and map ringbuffer %s: %d\n",
2127                         engine->name, ret);
2128                 goto error;
2129         }
2130
2131         return 0;
2132
2133 error:
2134         intel_logical_ring_cleanup(engine);
2135         return ret;
2136 }
2137
2138 static int logical_render_ring_init(struct drm_device *dev)
2139 {
2140         struct drm_i915_private *dev_priv = dev->dev_private;
2141         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2142         int ret;
2143
2144         engine->name = "render ring";
2145         engine->id = RCS;
2146         engine->exec_id = I915_EXEC_RENDER;
2147         engine->guc_id = GUC_RENDER_ENGINE;
2148         engine->mmio_base = RENDER_RING_BASE;
2149
2150         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2151         if (HAS_L3_DPF(dev))
2152                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2153
2154         logical_ring_default_vfuncs(dev, engine);
2155
2156         /* Override some for render ring. */
2157         if (INTEL_INFO(dev)->gen >= 9)
2158                 engine->init_hw = gen9_init_render_ring;
2159         else
2160                 engine->init_hw = gen8_init_render_ring;
2161         engine->init_context = gen8_init_rcs_context;
2162         engine->cleanup = intel_fini_pipe_control;
2163         engine->emit_flush = gen8_emit_flush_render;
2164         engine->emit_request = gen8_emit_request_render;
2165
2166         engine->dev = dev;
2167
2168         ret = intel_init_pipe_control(engine);
2169         if (ret)
2170                 return ret;
2171
2172         ret = intel_init_workaround_bb(engine);
2173         if (ret) {
2174                 /*
2175                  * We continue even if we fail to initialize WA batch
2176                  * because we only expect rare glitches but nothing
2177                  * critical to prevent us from using GPU
2178                  */
2179                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2180                           ret);
2181         }
2182
2183         ret = logical_ring_init(dev, engine);
2184         if (ret) {
2185                 lrc_destroy_wa_ctx_obj(engine);
2186         }
2187
2188         return ret;
2189 }
2190
2191 static int logical_bsd_ring_init(struct drm_device *dev)
2192 {
2193         struct drm_i915_private *dev_priv = dev->dev_private;
2194         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2195
2196         engine->name = "bsd ring";
2197         engine->id = VCS;
2198         engine->exec_id = I915_EXEC_BSD;
2199         engine->guc_id = GUC_VIDEO_ENGINE;
2200         engine->mmio_base = GEN6_BSD_RING_BASE;
2201
2202         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2203         logical_ring_default_vfuncs(dev, engine);
2204
2205         return logical_ring_init(dev, engine);
2206 }
2207
2208 static int logical_bsd2_ring_init(struct drm_device *dev)
2209 {
2210         struct drm_i915_private *dev_priv = dev->dev_private;
2211         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2212
2213         engine->name = "bsd2 ring";
2214         engine->id = VCS2;
2215         engine->exec_id = I915_EXEC_BSD;
2216         engine->guc_id = GUC_VIDEO_ENGINE2;
2217         engine->mmio_base = GEN8_BSD2_RING_BASE;
2218
2219         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2220         logical_ring_default_vfuncs(dev, engine);
2221
2222         return logical_ring_init(dev, engine);
2223 }
2224
2225 static int logical_blt_ring_init(struct drm_device *dev)
2226 {
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2229
2230         engine->name = "blitter ring";
2231         engine->id = BCS;
2232         engine->exec_id = I915_EXEC_BLT;
2233         engine->guc_id = GUC_BLITTER_ENGINE;
2234         engine->mmio_base = BLT_RING_BASE;
2235
2236         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2237         logical_ring_default_vfuncs(dev, engine);
2238
2239         return logical_ring_init(dev, engine);
2240 }
2241
2242 static int logical_vebox_ring_init(struct drm_device *dev)
2243 {
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2246
2247         engine->name = "video enhancement ring";
2248         engine->id = VECS;
2249         engine->exec_id = I915_EXEC_VEBOX;
2250         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2251         engine->mmio_base = VEBOX_RING_BASE;
2252
2253         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2254         logical_ring_default_vfuncs(dev, engine);
2255
2256         return logical_ring_init(dev, engine);
2257 }
2258
2259 /**
2260  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2261  * @dev: DRM device.
2262  *
2263  * This function inits the engines for an Execlists submission style (the equivalent in the
2264  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2265  * those engines that are present in the hardware.
2266  *
2267  * Return: non-zero if the initialization failed.
2268  */
2269 int intel_logical_rings_init(struct drm_device *dev)
2270 {
2271         struct drm_i915_private *dev_priv = dev->dev_private;
2272         int ret;
2273
2274         ret = logical_render_ring_init(dev);
2275         if (ret)
2276                 return ret;
2277
2278         if (HAS_BSD(dev)) {
2279                 ret = logical_bsd_ring_init(dev);
2280                 if (ret)
2281                         goto cleanup_render_ring;
2282         }
2283
2284         if (HAS_BLT(dev)) {
2285                 ret = logical_blt_ring_init(dev);
2286                 if (ret)
2287                         goto cleanup_bsd_ring;
2288         }
2289
2290         if (HAS_VEBOX(dev)) {
2291                 ret = logical_vebox_ring_init(dev);
2292                 if (ret)
2293                         goto cleanup_blt_ring;
2294         }
2295
2296         if (HAS_BSD2(dev)) {
2297                 ret = logical_bsd2_ring_init(dev);
2298                 if (ret)
2299                         goto cleanup_vebox_ring;
2300         }
2301
2302         return 0;
2303
2304 cleanup_vebox_ring:
2305         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2306 cleanup_blt_ring:
2307         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2308 cleanup_bsd_ring:
2309         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2310 cleanup_render_ring:
2311         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2312
2313         return ret;
2314 }
2315
2316 static u32
2317 make_rpcs(struct drm_device *dev)
2318 {
2319         u32 rpcs = 0;
2320
2321         /*
2322          * No explicit RPCS request is needed to ensure full
2323          * slice/subslice/EU enablement prior to Gen9.
2324         */
2325         if (INTEL_INFO(dev)->gen < 9)
2326                 return 0;
2327
2328         /*
2329          * Starting in Gen9, render power gating can leave
2330          * slice/subslice/EU in a partially enabled state. We
2331          * must make an explicit request through RPCS for full
2332          * enablement.
2333         */
2334         if (INTEL_INFO(dev)->has_slice_pg) {
2335                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2336                 rpcs |= INTEL_INFO(dev)->slice_total <<
2337                         GEN8_RPCS_S_CNT_SHIFT;
2338                 rpcs |= GEN8_RPCS_ENABLE;
2339         }
2340
2341         if (INTEL_INFO(dev)->has_subslice_pg) {
2342                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2343                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2344                         GEN8_RPCS_SS_CNT_SHIFT;
2345                 rpcs |= GEN8_RPCS_ENABLE;
2346         }
2347
2348         if (INTEL_INFO(dev)->has_eu_pg) {
2349                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2350                         GEN8_RPCS_EU_MIN_SHIFT;
2351                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2352                         GEN8_RPCS_EU_MAX_SHIFT;
2353                 rpcs |= GEN8_RPCS_ENABLE;
2354         }
2355
2356         return rpcs;
2357 }
2358
2359 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2360 {
2361         u32 indirect_ctx_offset;
2362
2363         switch (INTEL_INFO(engine->dev)->gen) {
2364         default:
2365                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2366                 /* fall through */
2367         case 9:
2368                 indirect_ctx_offset =
2369                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2370                 break;
2371         case 8:
2372                 indirect_ctx_offset =
2373                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2374                 break;
2375         }
2376
2377         return indirect_ctx_offset;
2378 }
2379
2380 static int
2381 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2382                     struct intel_engine_cs *engine,
2383                     struct intel_ringbuffer *ringbuf)
2384 {
2385         struct drm_device *dev = engine->dev;
2386         struct drm_i915_private *dev_priv = dev->dev_private;
2387         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2388         struct page *page;
2389         uint32_t *reg_state;
2390         int ret;
2391
2392         if (!ppgtt)
2393                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2394
2395         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2396         if (ret) {
2397                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2398                 return ret;
2399         }
2400
2401         ret = i915_gem_object_get_pages(ctx_obj);
2402         if (ret) {
2403                 DRM_DEBUG_DRIVER("Could not get object pages\n");
2404                 return ret;
2405         }
2406
2407         i915_gem_object_pin_pages(ctx_obj);
2408
2409         /* The second page of the context object contains some fields which must
2410          * be set up prior to the first execution. */
2411         page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2412         reg_state = kmap_atomic(page);
2413
2414         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2415          * commands followed by (reg, value) pairs. The values we are setting here are
2416          * only for the first context restore: on a subsequent save, the GPU will
2417          * recreate this batchbuffer with new values (including all the missing
2418          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2419         reg_state[CTX_LRI_HEADER_0] =
2420                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2421         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2422                        RING_CONTEXT_CONTROL(engine),
2423                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2424                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2425                                           (HAS_RESOURCE_STREAMER(dev) ?
2426                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2427         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2428                        0);
2429         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2430                        0);
2431         /* Ring buffer start address is not known until the buffer is pinned.
2432          * It is written to the context image in execlists_update_context()
2433          */
2434         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2435                        RING_START(engine->mmio_base), 0);
2436         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2437                        RING_CTL(engine->mmio_base),
2438                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2439         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2440                        RING_BBADDR_UDW(engine->mmio_base), 0);
2441         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2442                        RING_BBADDR(engine->mmio_base), 0);
2443         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2444                        RING_BBSTATE(engine->mmio_base),
2445                        RING_BB_PPGTT);
2446         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2447                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2448         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2449                        RING_SBBADDR(engine->mmio_base), 0);
2450         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2451                        RING_SBBSTATE(engine->mmio_base), 0);
2452         if (engine->id == RCS) {
2453                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2454                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2455                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2456                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2457                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2458                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2459                 if (engine->wa_ctx.obj) {
2460                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2461                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2462
2463                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2464                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2465                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2466
2467                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2468                                 intel_lr_indirect_ctx_offset(engine) << 6;
2469
2470                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2471                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2472                                 0x01;
2473                 }
2474         }
2475         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2476         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2477                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2478         /* PDP values well be assigned later if needed */
2479         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2480                        0);
2481         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2482                        0);
2483         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2484                        0);
2485         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2486                        0);
2487         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2488                        0);
2489         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2490                        0);
2491         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2492                        0);
2493         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2494                        0);
2495
2496         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2497                 /* 64b PPGTT (48bit canonical)
2498                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2499                  * other PDP Descriptors are ignored.
2500                  */
2501                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2502         } else {
2503                 /* 32b PPGTT
2504                  * PDP*_DESCRIPTOR contains the base address of space supported.
2505                  * With dynamic page allocation, PDPs may not be allocated at
2506                  * this point. Point the unallocated PDPs to the scratch page
2507                  */
2508                 execlists_update_context_pdps(ppgtt, reg_state);
2509         }
2510
2511         if (engine->id == RCS) {
2512                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2513                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2514                                make_rpcs(dev));
2515         }
2516
2517         kunmap_atomic(reg_state);
2518         i915_gem_object_unpin_pages(ctx_obj);
2519
2520         return 0;
2521 }
2522
2523 /**
2524  * intel_lr_context_free() - free the LRC specific bits of a context
2525  * @ctx: the LR context to free.
2526  *
2527  * The real context freeing is done in i915_gem_context_free: this only
2528  * takes care of the bits that are LRC related: the per-engine backing
2529  * objects and the logical ringbuffer.
2530  */
2531 void intel_lr_context_free(struct intel_context *ctx)
2532 {
2533         int i;
2534
2535         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2536                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2537                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2538
2539                 if (!ctx_obj)
2540                         continue;
2541
2542                 if (ctx == ctx->i915->kernel_context) {
2543                         intel_unpin_ringbuffer_obj(ringbuf);
2544                         i915_gem_object_ggtt_unpin(ctx_obj);
2545                 }
2546
2547                 WARN_ON(ctx->engine[i].pin_count);
2548                 intel_ringbuffer_free(ringbuf);
2549                 drm_gem_object_unreference(&ctx_obj->base);
2550         }
2551 }
2552
2553 /**
2554  * intel_lr_context_size() - return the size of the context for an engine
2555  * @ring: which engine to find the context size for
2556  *
2557  * Each engine may require a different amount of space for a context image,
2558  * so when allocating (or copying) an image, this function can be used to
2559  * find the right size for the specific engine.
2560  *
2561  * Return: size (in bytes) of an engine-specific context image
2562  *
2563  * Note: this size includes the HWSP, which is part of the context image
2564  * in LRC mode, but does not include the "shared data page" used with
2565  * GuC submission. The caller should account for this if using the GuC.
2566  */
2567 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2568 {
2569         int ret = 0;
2570
2571         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2572
2573         switch (engine->id) {
2574         case RCS:
2575                 if (INTEL_INFO(engine->dev)->gen >= 9)
2576                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2577                 else
2578                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2579                 break;
2580         case VCS:
2581         case BCS:
2582         case VECS:
2583         case VCS2:
2584                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2585                 break;
2586         }
2587
2588         return ret;
2589 }
2590
2591 static void lrc_setup_hardware_status_page(struct intel_engine_cs *engine,
2592                                            struct drm_i915_gem_object *default_ctx_obj)
2593 {
2594         struct drm_i915_private *dev_priv = engine->dev->dev_private;
2595         struct page *page;
2596
2597         /* The HWSP is part of the default context object in LRC mode. */
2598         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2599                         + LRC_PPHWSP_PN * PAGE_SIZE;
2600         page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2601         engine->status_page.page_addr = kmap(page);
2602         engine->status_page.obj = default_ctx_obj;
2603
2604         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2605                         (u32)engine->status_page.gfx_addr);
2606         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2607 }
2608
2609 /**
2610  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2611  * @ctx: LR context to create.
2612  * @ring: engine to be used with the context.
2613  *
2614  * This function can be called more than once, with different engines, if we plan
2615  * to use the context with them. The context backing objects and the ringbuffers
2616  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2617  * the creation is a deferred call: it's better to make sure first that we need to use
2618  * a given ring with the context.
2619  *
2620  * Return: non-zero on error.
2621  */
2622
2623 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2624                                     struct intel_engine_cs *engine)
2625 {
2626         struct drm_device *dev = engine->dev;
2627         struct drm_i915_gem_object *ctx_obj;
2628         uint32_t context_size;
2629         struct intel_ringbuffer *ringbuf;
2630         int ret;
2631
2632         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2633         WARN_ON(ctx->engine[engine->id].state);
2634
2635         context_size = round_up(intel_lr_context_size(engine), 4096);
2636
2637         /* One extra page as the sharing data between driver and GuC */
2638         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2639
2640         ctx_obj = i915_gem_alloc_object(dev, context_size);
2641         if (!ctx_obj) {
2642                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2643                 return -ENOMEM;
2644         }
2645
2646         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2647         if (IS_ERR(ringbuf)) {
2648                 ret = PTR_ERR(ringbuf);
2649                 goto error_deref_obj;
2650         }
2651
2652         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2653         if (ret) {
2654                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2655                 goto error_ringbuf;
2656         }
2657
2658         ctx->engine[engine->id].ringbuf = ringbuf;
2659         ctx->engine[engine->id].state = ctx_obj;
2660
2661         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2662                 struct drm_i915_gem_request *req;
2663
2664                 req = i915_gem_request_alloc(engine, ctx);
2665                 if (IS_ERR(req)) {
2666                         ret = PTR_ERR(req);
2667                         DRM_ERROR("ring create req: %d\n", ret);
2668                         goto error_ringbuf;
2669                 }
2670
2671                 ret = engine->init_context(req);
2672                 if (ret) {
2673                         DRM_ERROR("ring init context: %d\n",
2674                                 ret);
2675                         i915_gem_request_cancel(req);
2676                         goto error_ringbuf;
2677                 }
2678                 i915_add_request_no_flush(req);
2679         }
2680         return 0;
2681
2682 error_ringbuf:
2683         intel_ringbuffer_free(ringbuf);
2684 error_deref_obj:
2685         drm_gem_object_unreference(&ctx_obj->base);
2686         ctx->engine[engine->id].ringbuf = NULL;
2687         ctx->engine[engine->id].state = NULL;
2688         return ret;
2689 }
2690
2691 void intel_lr_context_reset(struct drm_device *dev,
2692                         struct intel_context *ctx)
2693 {
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695         struct intel_engine_cs *engine;
2696
2697         for_each_engine(engine, dev_priv) {
2698                 struct drm_i915_gem_object *ctx_obj =
2699                                 ctx->engine[engine->id].state;
2700                 struct intel_ringbuffer *ringbuf =
2701                                 ctx->engine[engine->id].ringbuf;
2702                 uint32_t *reg_state;
2703                 struct page *page;
2704
2705                 if (!ctx_obj)
2706                         continue;
2707
2708                 if (i915_gem_object_get_pages(ctx_obj)) {
2709                         WARN(1, "Failed get_pages for context obj\n");
2710                         continue;
2711                 }
2712                 page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2713                 reg_state = kmap_atomic(page);
2714
2715                 reg_state[CTX_RING_HEAD+1] = 0;
2716                 reg_state[CTX_RING_TAIL+1] = 0;
2717
2718                 kunmap_atomic(reg_state);
2719
2720                 ringbuf->head = 0;
2721                 ringbuf->tail = 0;
2722         }
2723 }