]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
1562a75ac9d16578224682404a501c6398e48a31
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231                                 struct intel_engine_cs *engine);
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269         struct drm_device *dev = engine->dev;
270
271         if (IS_GEN8(dev) || IS_GEN9(dev))
272                 engine->idle_lite_restore_wa = ~0;
273
274         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276                                         (engine->id == VCS || engine->id == VCS2);
277
278         engine->ctx_desc_template = GEN8_CTX_VALID;
279         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
281         if (IS_GEN8(dev))
282                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285         /* TODO: WaDisableLiteRestore when we start using semaphore
286          * signalling between Command Streamers */
287         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291         if (engine->disable_lite_restore_wa)
292                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297  *                                        descriptor for a pinned context
298  *
299  * @ctx: Context to work on
300  * @ring: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB:
308  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
309  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
310  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
311  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312  */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315                                    struct intel_engine_cs *engine)
316 {
317         uint64_t lrca, desc;
318
319         lrca = ctx->engine[engine->id].lrc_vma->node.start +
320                LRC_PPHWSP_PN * PAGE_SIZE;
321
322         desc = engine->ctx_desc_template;                          /* bits  0-11 */
323         desc |= lrca;                                      /* bits 12-31 */
324         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326         ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330                                      struct intel_engine_cs *engine)
331 {
332         return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336  * intel_execlists_ctx_id() - get the Execlists Context ID
337  * @ctx: Context to get the ID for
338  * @ring: Engine to get the ID for
339  *
340  * Do not confuse with ctx->id! Unfortunately we have a name overload
341  * here: the old context ID we pass to userspace as a handler so that
342  * they can refer to a context, and the new context ID we pass to the
343  * ELSP so that the GPU can inform us of the context status via
344  * interrupts.
345  *
346  * The context ID is a portion of the context descriptor, so we can
347  * just extract the required part from the cached descriptor.
348  *
349  * Return: 20-bits globally unique context ID.
350  */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352                            struct intel_engine_cs *engine)
353 {
354         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358                                  struct drm_i915_gem_request *rq1)
359 {
360
361         struct intel_engine_cs *engine = rq0->engine;
362         struct drm_device *dev = engine->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         uint64_t desc[2];
365
366         if (rq1) {
367                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368                 rq1->elsp_submitted++;
369         } else {
370                 desc[1] = 0;
371         }
372
373         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374         rq0->elsp_submitted++;
375
376         /* You must always write both descriptors in the order below. */
377         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381         /* The context is automatically loaded after the following */
382         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384         /* ELSP is a wo register, use another nearby reg for posting */
385         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399         struct intel_engine_cs *engine = rq->engine;
400         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403         reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405         /* True 32b PPGTT with dynamic page allocation: update PDP
406          * registers and point the unallocated PDPs to scratch page.
407          * PML4 is allocated during ppgtt init, so this is not needed
408          * in 48-bit mode.
409          */
410         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411                 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415                                       struct drm_i915_gem_request *rq1)
416 {
417         struct drm_i915_private *dev_priv = rq0->i915;
418         unsigned int fw_domains = rq0->engine->fw_domains;
419
420         execlists_update_context(rq0);
421
422         if (rq1)
423                 execlists_update_context(rq1);
424
425         spin_lock_irq(&dev_priv->uncore.lock);
426         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428         execlists_elsp_write(rq0, rq1);
429
430         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431         spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437         struct drm_i915_gem_request *cursor, *tmp;
438
439         assert_spin_locked(&engine->execlist_lock);
440
441         /*
442          * If irqs are not active generate a warning as batches that finish
443          * without the irqs may get lost and a GPU Hang may occur.
444          */
445         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447         /* Try to read in pairs */
448         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449                                  execlist_link) {
450                 if (!req0) {
451                         req0 = cursor;
452                 } else if (req0->ctx == cursor->ctx) {
453                         /* Same ctx: ignore first request, as second request
454                          * will update tail past first request's workload */
455                         cursor->elsp_submitted = req0->elsp_submitted;
456                         list_move_tail(&req0->execlist_link,
457                                        &engine->execlist_retired_req_list);
458                         req0 = cursor;
459                 } else {
460                         req1 = cursor;
461                         WARN_ON(req1->elsp_submitted);
462                         break;
463                 }
464         }
465
466         if (unlikely(!req0))
467                 return;
468
469         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470                 /*
471                  * WaIdleLiteRestore: make sure we never cause a lite restore
472                  * with HEAD==TAIL.
473                  *
474                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475                  * resubmit the request. See gen8_emit_request() for where we
476                  * prepare the padding after the end of the request.
477                  */
478                 struct intel_ringbuffer *ringbuf;
479
480                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481                 req0->tail += 8;
482                 req0->tail &= ringbuf->size - 1;
483         }
484
485         execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491         struct drm_i915_gem_request *head_req;
492
493         assert_spin_locked(&engine->execlist_lock);
494
495         head_req = list_first_entry_or_null(&engine->execlist_queue,
496                                             struct drm_i915_gem_request,
497                                             execlist_link);
498
499         if (!head_req)
500                 return 0;
501
502         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503                 return 0;
504
505         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507         if (--head_req->elsp_submitted > 0)
508                 return 0;
509
510         list_move_tail(&head_req->execlist_link,
511                        &engine->execlist_retired_req_list);
512
513         return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518                    u32 *context_id)
519 {
520         struct drm_i915_private *dev_priv = engine->dev->dev_private;
521         u32 status;
522
523         read_pointer %= GEN8_CSB_ENTRIES;
524
525         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528                 return 0;
529
530         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531                                                               read_pointer));
532
533         return status;
534 }
535
536 /**
537  * intel_lrc_irq_handler() - handle Context Switch interrupts
538  * @engine: Engine Command Streamer to handle.
539  *
540  * Check the unread Context Status Buffers and manage the submission of new
541  * contexts to the ELSP accordingly.
542  */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546         struct drm_i915_private *dev_priv = engine->dev->dev_private;
547         u32 status_pointer;
548         unsigned int read_pointer, write_pointer;
549         u32 csb[GEN8_CSB_ENTRIES][2];
550         unsigned int csb_read = 0, i;
551         unsigned int submit_contexts = 0;
552
553         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557         read_pointer = engine->next_context_status_buffer;
558         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559         if (read_pointer > write_pointer)
560                 write_pointer += GEN8_CSB_ENTRIES;
561
562         while (read_pointer < write_pointer) {
563                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564                         break;
565                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566                                                       &csb[csb_read][1]);
567                 csb_read++;
568         }
569
570         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572         /* Update the read pointer to the old write pointer. Manual ringbuffer
573          * management ftw </sarcasm> */
574         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576                                     engine->next_context_status_buffer << 8));
577
578         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580         spin_lock(&engine->execlist_lock);
581
582         for (i = 0; i < csb_read; i++) {
583                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585                                 if (execlists_check_remove_request(engine, csb[i][1]))
586                                         WARN(1, "Lite Restored request removed from queue\n");
587                         } else
588                                 WARN(1, "Preemption without Lite Restore\n");
589                 }
590
591                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
593                         submit_contexts +=
594                                 execlists_check_remove_request(engine, csb[i][1]);
595         }
596
597         if (submit_contexts) {
598                 if (!engine->disable_lite_restore_wa ||
599                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600                         execlists_context_unqueue(engine);
601         }
602
603         spin_unlock(&engine->execlist_lock);
604
605         if (unlikely(submit_contexts > 2))
606                 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611         struct intel_engine_cs *engine = request->engine;
612         struct drm_i915_gem_request *cursor;
613         int num_elements = 0;
614
615         if (request->ctx != request->i915->kernel_context)
616                 intel_lr_context_pin(request->ctx, engine);
617
618         i915_gem_request_reference(request);
619
620         spin_lock_bh(&engine->execlist_lock);
621
622         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623                 if (++num_elements > 2)
624                         break;
625
626         if (num_elements > 2) {
627                 struct drm_i915_gem_request *tail_req;
628
629                 tail_req = list_last_entry(&engine->execlist_queue,
630                                            struct drm_i915_gem_request,
631                                            execlist_link);
632
633                 if (request->ctx == tail_req->ctx) {
634                         WARN(tail_req->elsp_submitted != 0,
635                                 "More than 2 already-submitted reqs queued\n");
636                         list_move_tail(&tail_req->execlist_link,
637                                        &engine->execlist_retired_req_list);
638                 }
639         }
640
641         list_add_tail(&request->execlist_link, &engine->execlist_queue);
642         if (num_elements == 0)
643                 execlists_context_unqueue(engine);
644
645         spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650         struct intel_engine_cs *engine = req->engine;
651         uint32_t flush_domains;
652         int ret;
653
654         flush_domains = 0;
655         if (engine->gpu_caches_dirty)
656                 flush_domains = I915_GEM_GPU_DOMAINS;
657
658         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659         if (ret)
660                 return ret;
661
662         engine->gpu_caches_dirty = false;
663         return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667                                  struct list_head *vmas)
668 {
669         const unsigned other_rings = ~intel_engine_flag(req->engine);
670         struct i915_vma *vma;
671         uint32_t flush_domains = 0;
672         bool flush_chipset = false;
673         int ret;
674
675         list_for_each_entry(vma, vmas, exec_list) {
676                 struct drm_i915_gem_object *obj = vma->obj;
677
678                 if (obj->active & other_rings) {
679                         ret = i915_gem_object_sync(obj, req->engine, &req);
680                         if (ret)
681                                 return ret;
682                 }
683
684                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685                         flush_chipset |= i915_gem_clflush_object(obj, false);
686
687                 flush_domains |= obj->base.write_domain;
688         }
689
690         if (flush_domains & I915_GEM_DOMAIN_GTT)
691                 wmb();
692
693         /* Unconditionally invalidate gpu caches and ensure that we do flush
694          * any residual writes from the previous batch.
695          */
696         return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701         int ret = 0;
702
703         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705         if (i915.enable_guc_submission) {
706                 /*
707                  * Check that the GuC has space for the request before
708                  * going any further, as the i915_add_request() call
709                  * later on mustn't fail ...
710                  */
711                 struct intel_guc *guc = &request->i915->guc;
712
713                 ret = i915_guc_wq_check_space(guc->execbuf_client);
714                 if (ret)
715                         return ret;
716         }
717
718         if (request->ctx != request->i915->kernel_context)
719                 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721         return ret;
722 }
723
724 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725                                        int bytes)
726 {
727         struct intel_ringbuffer *ringbuf = req->ringbuf;
728         struct intel_engine_cs *engine = req->engine;
729         struct drm_i915_gem_request *target;
730         unsigned space;
731         int ret;
732
733         if (intel_ring_space(ringbuf) >= bytes)
734                 return 0;
735
736         /* The whole point of reserving space is to not wait! */
737         WARN_ON(ringbuf->reserved_in_use);
738
739         list_for_each_entry(target, &engine->request_list, list) {
740                 /*
741                  * The request queue is per-engine, so can contain requests
742                  * from multiple ringbuffers. Here, we must ignore any that
743                  * aren't from the ringbuffer we're considering.
744                  */
745                 if (target->ringbuf != ringbuf)
746                         continue;
747
748                 /* Would completion of this request free enough space? */
749                 space = __intel_ring_space(target->postfix, ringbuf->tail,
750                                            ringbuf->size);
751                 if (space >= bytes)
752                         break;
753         }
754
755         if (WARN_ON(&target->list == &engine->request_list))
756                 return -ENOSPC;
757
758         ret = i915_wait_request(target);
759         if (ret)
760                 return ret;
761
762         ringbuf->space = space;
763         return 0;
764 }
765
766 /*
767  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768  * @request: Request to advance the logical ringbuffer of.
769  *
770  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
771  * really happens during submission is that the context and current tail will be placed
772  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
773  * point, the tail *inside* the context is updated and the ELSP written to.
774  */
775 static int
776 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777 {
778         struct intel_ringbuffer *ringbuf = request->ringbuf;
779         struct drm_i915_private *dev_priv = request->i915;
780         struct intel_engine_cs *engine = request->engine;
781
782         intel_logical_ring_advance(ringbuf);
783         request->tail = ringbuf->tail;
784
785         /*
786          * Here we add two extra NOOPs as padding to avoid
787          * lite restore of a context with HEAD==TAIL.
788          *
789          * Caller must reserve WA_TAIL_DWORDS for us!
790          */
791         intel_logical_ring_emit(ringbuf, MI_NOOP);
792         intel_logical_ring_emit(ringbuf, MI_NOOP);
793         intel_logical_ring_advance(ringbuf);
794
795         if (intel_engine_stopped(engine))
796                 return 0;
797
798         if (engine->last_context != request->ctx) {
799                 if (engine->last_context)
800                         intel_lr_context_unpin(engine->last_context, engine);
801                 if (request->ctx != request->i915->kernel_context) {
802                         intel_lr_context_pin(request->ctx, engine);
803                         engine->last_context = request->ctx;
804                 } else {
805                         engine->last_context = NULL;
806                 }
807         }
808
809         if (dev_priv->guc.execbuf_client)
810                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
811         else
812                 execlists_context_queue(request);
813
814         return 0;
815 }
816
817 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818 {
819         uint32_t __iomem *virt;
820         int rem = ringbuf->size - ringbuf->tail;
821
822         virt = ringbuf->virtual_start + ringbuf->tail;
823         rem /= 4;
824         while (rem--)
825                 iowrite32(MI_NOOP, virt++);
826
827         ringbuf->tail = 0;
828         intel_ring_update_space(ringbuf);
829 }
830
831 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832 {
833         struct intel_ringbuffer *ringbuf = req->ringbuf;
834         int remain_usable = ringbuf->effective_size - ringbuf->tail;
835         int remain_actual = ringbuf->size - ringbuf->tail;
836         int ret, total_bytes, wait_bytes = 0;
837         bool need_wrap = false;
838
839         if (ringbuf->reserved_in_use)
840                 total_bytes = bytes;
841         else
842                 total_bytes = bytes + ringbuf->reserved_size;
843
844         if (unlikely(bytes > remain_usable)) {
845                 /*
846                  * Not enough space for the basic request. So need to flush
847                  * out the remainder and then wait for base + reserved.
848                  */
849                 wait_bytes = remain_actual + total_bytes;
850                 need_wrap = true;
851         } else {
852                 if (unlikely(total_bytes > remain_usable)) {
853                         /*
854                          * The base request will fit but the reserved space
855                          * falls off the end. So don't need an immediate wrap
856                          * and only need to effectively wait for the reserved
857                          * size space from the start of ringbuffer.
858                          */
859                         wait_bytes = remain_actual + ringbuf->reserved_size;
860                 } else if (total_bytes > ringbuf->space) {
861                         /* No wrapping required, just waiting. */
862                         wait_bytes = total_bytes;
863                 }
864         }
865
866         if (wait_bytes) {
867                 ret = logical_ring_wait_for_space(req, wait_bytes);
868                 if (unlikely(ret))
869                         return ret;
870
871                 if (need_wrap)
872                         __wrap_ring_buffer(ringbuf);
873         }
874
875         return 0;
876 }
877
878 /**
879  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
880  *
881  * @req: The request to start some new work for
882  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
883  *
884  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
885  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
886  * and also preallocates a request (every workload submission is still mediated through
887  * requests, same as it did with legacy ringbuffer submission).
888  *
889  * Return: non-zero if the ringbuffer is not ready to be written to.
890  */
891 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892 {
893         int ret;
894
895         WARN_ON(req == NULL);
896
897         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
898         if (ret)
899                 return ret;
900
901         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
902         return 0;
903 }
904
905 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
906 {
907         /*
908          * The first call merely notes the reserve request and is common for
909          * all back ends. The subsequent localised _begin() call actually
910          * ensures that the reservation is available. Without the begin, if
911          * the request creator immediately submitted the request without
912          * adding any commands to it then there might not actually be
913          * sufficient room for the submission commands.
914          */
915         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
916
917         return intel_logical_ring_begin(request, 0);
918 }
919
920 /**
921  * execlists_submission() - submit a batchbuffer for execution, Execlists style
922  * @dev: DRM device.
923  * @file: DRM file.
924  * @ring: Engine Command Streamer to submit to.
925  * @ctx: Context to employ for this submission.
926  * @args: execbuffer call arguments.
927  * @vmas: list of vmas.
928  * @batch_obj: the batchbuffer to submit.
929  * @exec_start: batchbuffer start virtual address pointer.
930  * @dispatch_flags: translated execbuffer call flags.
931  *
932  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
933  * away the submission details of the execbuffer ioctl call.
934  *
935  * Return: non-zero if the submission fails.
936  */
937 int intel_execlists_submission(struct i915_execbuffer_params *params,
938                                struct drm_i915_gem_execbuffer2 *args,
939                                struct list_head *vmas)
940 {
941         struct drm_device       *dev = params->dev;
942         struct intel_engine_cs *engine = params->engine;
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
945         u64 exec_start;
946         int instp_mode;
947         u32 instp_mask;
948         int ret;
949
950         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
951         instp_mask = I915_EXEC_CONSTANTS_MASK;
952         switch (instp_mode) {
953         case I915_EXEC_CONSTANTS_REL_GENERAL:
954         case I915_EXEC_CONSTANTS_ABSOLUTE:
955         case I915_EXEC_CONSTANTS_REL_SURFACE:
956                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
957                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
958                         return -EINVAL;
959                 }
960
961                 if (instp_mode != dev_priv->relative_constants_mode) {
962                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
963                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
964                                 return -EINVAL;
965                         }
966
967                         /* The HW changed the meaning on this bit on gen6 */
968                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
969                 }
970                 break;
971         default:
972                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
973                 return -EINVAL;
974         }
975
976         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
977                 DRM_DEBUG("sol reset is gen7 only\n");
978                 return -EINVAL;
979         }
980
981         ret = execlists_move_to_gpu(params->request, vmas);
982         if (ret)
983                 return ret;
984
985         if (engine == &dev_priv->engine[RCS] &&
986             instp_mode != dev_priv->relative_constants_mode) {
987                 ret = intel_logical_ring_begin(params->request, 4);
988                 if (ret)
989                         return ret;
990
991                 intel_logical_ring_emit(ringbuf, MI_NOOP);
992                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
993                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
994                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
995                 intel_logical_ring_advance(ringbuf);
996
997                 dev_priv->relative_constants_mode = instp_mode;
998         }
999
1000         exec_start = params->batch_obj_vm_offset +
1001                      args->batch_start_offset;
1002
1003         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1004         if (ret)
1005                 return ret;
1006
1007         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1008
1009         i915_gem_execbuffer_move_to_active(vmas, params->request);
1010
1011         return 0;
1012 }
1013
1014 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1015 {
1016         struct drm_i915_gem_request *req, *tmp;
1017         struct list_head retired_list;
1018
1019         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1020         if (list_empty(&engine->execlist_retired_req_list))
1021                 return;
1022
1023         INIT_LIST_HEAD(&retired_list);
1024         spin_lock_bh(&engine->execlist_lock);
1025         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1026         spin_unlock_bh(&engine->execlist_lock);
1027
1028         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1029                 struct intel_context *ctx = req->ctx;
1030                 struct drm_i915_gem_object *ctx_obj =
1031                                 ctx->engine[engine->id].state;
1032
1033                 if (ctx_obj && (ctx != req->i915->kernel_context))
1034                         intel_lr_context_unpin(ctx, engine);
1035
1036                 list_del(&req->execlist_link);
1037                 i915_gem_request_unreference(req);
1038         }
1039 }
1040
1041 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1042 {
1043         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1044         int ret;
1045
1046         if (!intel_engine_initialized(engine))
1047                 return;
1048
1049         ret = intel_engine_idle(engine);
1050         if (ret)
1051                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1052                           engine->name, ret);
1053
1054         /* TODO: Is this correct with Execlists enabled? */
1055         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1056         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1057                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1058                 return;
1059         }
1060         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1061 }
1062
1063 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1064 {
1065         struct intel_engine_cs *engine = req->engine;
1066         int ret;
1067
1068         if (!engine->gpu_caches_dirty)
1069                 return 0;
1070
1071         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1072         if (ret)
1073                 return ret;
1074
1075         engine->gpu_caches_dirty = false;
1076         return 0;
1077 }
1078
1079 static int intel_lr_context_do_pin(struct intel_context *ctx,
1080                                    struct intel_engine_cs *engine)
1081 {
1082         struct drm_device *dev = engine->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1085         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1086         void *vaddr;
1087         u32 *lrc_reg_state;
1088         int ret;
1089
1090         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1091
1092         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1093                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1094         if (ret)
1095                 return ret;
1096
1097         vaddr = i915_gem_object_pin_map(ctx_obj);
1098         if (IS_ERR(vaddr)) {
1099                 ret = PTR_ERR(vaddr);
1100                 goto unpin_ctx_obj;
1101         }
1102
1103         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1104
1105         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1106         if (ret)
1107                 goto unpin_map;
1108
1109         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1110         intel_lr_context_descriptor_update(ctx, engine);
1111         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1112         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1113         ctx_obj->dirty = true;
1114
1115         /* Invalidate GuC TLB. */
1116         if (i915.enable_guc_submission)
1117                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1118
1119         return ret;
1120
1121 unpin_map:
1122         i915_gem_object_unpin_map(ctx_obj);
1123 unpin_ctx_obj:
1124         i915_gem_object_ggtt_unpin(ctx_obj);
1125
1126         return ret;
1127 }
1128
1129 static int intel_lr_context_pin(struct intel_context *ctx,
1130                                 struct intel_engine_cs *engine)
1131 {
1132         int ret = 0;
1133
1134         if (ctx->engine[engine->id].pin_count++ == 0) {
1135                 ret = intel_lr_context_do_pin(ctx, engine);
1136                 if (ret)
1137                         goto reset_pin_count;
1138
1139                 i915_gem_context_reference(ctx);
1140         }
1141         return ret;
1142
1143 reset_pin_count:
1144         ctx->engine[engine->id].pin_count = 0;
1145         return ret;
1146 }
1147
1148 void intel_lr_context_unpin(struct intel_context *ctx,
1149                             struct intel_engine_cs *engine)
1150 {
1151         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1152
1153         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1154         if (--ctx->engine[engine->id].pin_count == 0) {
1155                 i915_gem_object_unpin_map(ctx_obj);
1156                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1157                 i915_gem_object_ggtt_unpin(ctx_obj);
1158                 ctx->engine[engine->id].lrc_vma = NULL;
1159                 ctx->engine[engine->id].lrc_desc = 0;
1160                 ctx->engine[engine->id].lrc_reg_state = NULL;
1161
1162                 i915_gem_context_unreference(ctx);
1163         }
1164 }
1165
1166 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1167 {
1168         int ret, i;
1169         struct intel_engine_cs *engine = req->engine;
1170         struct intel_ringbuffer *ringbuf = req->ringbuf;
1171         struct drm_device *dev = engine->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         struct i915_workarounds *w = &dev_priv->workarounds;
1174
1175         if (w->count == 0)
1176                 return 0;
1177
1178         engine->gpu_caches_dirty = true;
1179         ret = logical_ring_flush_all_caches(req);
1180         if (ret)
1181                 return ret;
1182
1183         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1184         if (ret)
1185                 return ret;
1186
1187         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1188         for (i = 0; i < w->count; i++) {
1189                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1190                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1191         }
1192         intel_logical_ring_emit(ringbuf, MI_NOOP);
1193
1194         intel_logical_ring_advance(ringbuf);
1195
1196         engine->gpu_caches_dirty = true;
1197         ret = logical_ring_flush_all_caches(req);
1198         if (ret)
1199                 return ret;
1200
1201         return 0;
1202 }
1203
1204 #define wa_ctx_emit(batch, index, cmd)                                  \
1205         do {                                                            \
1206                 int __index = (index)++;                                \
1207                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1208                         return -ENOSPC;                                 \
1209                 }                                                       \
1210                 batch[__index] = (cmd);                                 \
1211         } while (0)
1212
1213 #define wa_ctx_emit_reg(batch, index, reg) \
1214         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1215
1216 /*
1217  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1218  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1219  * but there is a slight complication as this is applied in WA batch where the
1220  * values are only initialized once so we cannot take register value at the
1221  * beginning and reuse it further; hence we save its value to memory, upload a
1222  * constant value with bit21 set and then we restore it back with the saved value.
1223  * To simplify the WA, a constant value is formed by using the default value
1224  * of this register. This shouldn't be a problem because we are only modifying
1225  * it for a short period and this batch in non-premptible. We can ofcourse
1226  * use additional instructions that read the actual value of the register
1227  * at that time and set our bit of interest but it makes the WA complicated.
1228  *
1229  * This WA is also required for Gen9 so extracting as a function avoids
1230  * code duplication.
1231  */
1232 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1233                                                 uint32_t *const batch,
1234                                                 uint32_t index)
1235 {
1236         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1237
1238         /*
1239          * WaDisableLSQCROPERFforOCL:skl
1240          * This WA is implemented in skl_init_clock_gating() but since
1241          * this batch updates GEN8_L3SQCREG4 with default value we need to
1242          * set this bit here to retain the WA during flush.
1243          */
1244         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1245                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1246
1247         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1248                                    MI_SRM_LRM_GLOBAL_GTT));
1249         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1250         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1251         wa_ctx_emit(batch, index, 0);
1252
1253         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1254         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1255         wa_ctx_emit(batch, index, l3sqc4_flush);
1256
1257         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1258         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1259                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1260         wa_ctx_emit(batch, index, 0);
1261         wa_ctx_emit(batch, index, 0);
1262         wa_ctx_emit(batch, index, 0);
1263         wa_ctx_emit(batch, index, 0);
1264
1265         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1266                                    MI_SRM_LRM_GLOBAL_GTT));
1267         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1268         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1269         wa_ctx_emit(batch, index, 0);
1270
1271         return index;
1272 }
1273
1274 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1275                                     uint32_t offset,
1276                                     uint32_t start_alignment)
1277 {
1278         return wa_ctx->offset = ALIGN(offset, start_alignment);
1279 }
1280
1281 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1282                              uint32_t offset,
1283                              uint32_t size_alignment)
1284 {
1285         wa_ctx->size = offset - wa_ctx->offset;
1286
1287         WARN(wa_ctx->size % size_alignment,
1288              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1289              wa_ctx->size, size_alignment);
1290         return 0;
1291 }
1292
1293 /**
1294  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1295  *
1296  * @ring: only applicable for RCS
1297  * @wa_ctx: structure representing wa_ctx
1298  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1299  *    with the offset value received as input.
1300  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1301  * @batch: page in which WA are loaded
1302  * @offset: This field specifies the start of the batch, it should be
1303  *  cache-aligned otherwise it is adjusted accordingly.
1304  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1305  *  initialized at the beginning and shared across all contexts but this field
1306  *  helps us to have multiple batches at different offsets and select them based
1307  *  on a criteria. At the moment this batch always start at the beginning of the page
1308  *  and at this point we don't have multiple wa_ctx batch buffers.
1309  *
1310  *  The number of WA applied are not known at the beginning; we use this field
1311  *  to return the no of DWORDS written.
1312  *
1313  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1314  *  so it adds NOOPs as padding to make it cacheline aligned.
1315  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1316  *  makes a complete batch buffer.
1317  *
1318  * Return: non-zero if we exceed the PAGE_SIZE limit.
1319  */
1320
1321 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1322                                     struct i915_wa_ctx_bb *wa_ctx,
1323                                     uint32_t *const batch,
1324                                     uint32_t *offset)
1325 {
1326         uint32_t scratch_addr;
1327         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1328
1329         /* WaDisableCtxRestoreArbitration:bdw,chv */
1330         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1331
1332         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1333         if (IS_BROADWELL(engine->dev)) {
1334                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1335                 if (rc < 0)
1336                         return rc;
1337                 index = rc;
1338         }
1339
1340         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1341         /* Actual scratch location is at 128 bytes offset */
1342         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1343
1344         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1345         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1346                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1347                                    PIPE_CONTROL_CS_STALL |
1348                                    PIPE_CONTROL_QW_WRITE));
1349         wa_ctx_emit(batch, index, scratch_addr);
1350         wa_ctx_emit(batch, index, 0);
1351         wa_ctx_emit(batch, index, 0);
1352         wa_ctx_emit(batch, index, 0);
1353
1354         /* Pad to end of cacheline */
1355         while (index % CACHELINE_DWORDS)
1356                 wa_ctx_emit(batch, index, MI_NOOP);
1357
1358         /*
1359          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1360          * execution depends on the length specified in terms of cache lines
1361          * in the register CTX_RCS_INDIRECT_CTX
1362          */
1363
1364         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1365 }
1366
1367 /**
1368  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1369  *
1370  * @ring: only applicable for RCS
1371  * @wa_ctx: structure representing wa_ctx
1372  *  offset: specifies start of the batch, should be cache-aligned.
1373  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1374  * @batch: page in which WA are loaded
1375  * @offset: This field specifies the start of this batch.
1376  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1377  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1378  *
1379  *   The number of DWORDS written are returned using this field.
1380  *
1381  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1382  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1383  */
1384 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1385                                struct i915_wa_ctx_bb *wa_ctx,
1386                                uint32_t *const batch,
1387                                uint32_t *offset)
1388 {
1389         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1390
1391         /* WaDisableCtxRestoreArbitration:bdw,chv */
1392         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1393
1394         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1395
1396         return wa_ctx_end(wa_ctx, *offset = index, 1);
1397 }
1398
1399 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1400                                     struct i915_wa_ctx_bb *wa_ctx,
1401                                     uint32_t *const batch,
1402                                     uint32_t *offset)
1403 {
1404         int ret;
1405         struct drm_device *dev = engine->dev;
1406         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1407
1408         /* WaDisableCtxRestoreArbitration:skl,bxt */
1409         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1410             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1411                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1412
1413         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1414         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1415         if (ret < 0)
1416                 return ret;
1417         index = ret;
1418
1419         /* Pad to end of cacheline */
1420         while (index % CACHELINE_DWORDS)
1421                 wa_ctx_emit(batch, index, MI_NOOP);
1422
1423         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1424 }
1425
1426 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1427                                struct i915_wa_ctx_bb *wa_ctx,
1428                                uint32_t *const batch,
1429                                uint32_t *offset)
1430 {
1431         struct drm_device *dev = engine->dev;
1432         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1433
1434         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1435         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1436             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1437                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1438                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1439                 wa_ctx_emit(batch, index,
1440                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1441                 wa_ctx_emit(batch, index, MI_NOOP);
1442         }
1443
1444         /* WaClearTdlStateAckDirtyBits:bxt */
1445         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1446                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1447
1448                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1449                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1450
1451                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1452                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1453
1454                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1455                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1456
1457                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1458                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1459                 wa_ctx_emit(batch, index, 0x0);
1460                 wa_ctx_emit(batch, index, MI_NOOP);
1461         }
1462
1463         /* WaDisableCtxRestoreArbitration:skl,bxt */
1464         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1465             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1466                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1467
1468         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1469
1470         return wa_ctx_end(wa_ctx, *offset = index, 1);
1471 }
1472
1473 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1474 {
1475         int ret;
1476
1477         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1478                                                    PAGE_ALIGN(size));
1479         if (!engine->wa_ctx.obj) {
1480                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1481                 return -ENOMEM;
1482         }
1483
1484         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1485         if (ret) {
1486                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1487                                  ret);
1488                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1489                 return ret;
1490         }
1491
1492         return 0;
1493 }
1494
1495 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1496 {
1497         if (engine->wa_ctx.obj) {
1498                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1499                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1500                 engine->wa_ctx.obj = NULL;
1501         }
1502 }
1503
1504 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1505 {
1506         int ret;
1507         uint32_t *batch;
1508         uint32_t offset;
1509         struct page *page;
1510         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1511
1512         WARN_ON(engine->id != RCS);
1513
1514         /* update this when WA for higher Gen are added */
1515         if (INTEL_INFO(engine->dev)->gen > 9) {
1516                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1517                           INTEL_INFO(engine->dev)->gen);
1518                 return 0;
1519         }
1520
1521         /* some WA perform writes to scratch page, ensure it is valid */
1522         if (engine->scratch.obj == NULL) {
1523                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1524                 return -EINVAL;
1525         }
1526
1527         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1528         if (ret) {
1529                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1530                 return ret;
1531         }
1532
1533         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1534         batch = kmap_atomic(page);
1535         offset = 0;
1536
1537         if (INTEL_INFO(engine->dev)->gen == 8) {
1538                 ret = gen8_init_indirectctx_bb(engine,
1539                                                &wa_ctx->indirect_ctx,
1540                                                batch,
1541                                                &offset);
1542                 if (ret)
1543                         goto out;
1544
1545                 ret = gen8_init_perctx_bb(engine,
1546                                           &wa_ctx->per_ctx,
1547                                           batch,
1548                                           &offset);
1549                 if (ret)
1550                         goto out;
1551         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1552                 ret = gen9_init_indirectctx_bb(engine,
1553                                                &wa_ctx->indirect_ctx,
1554                                                batch,
1555                                                &offset);
1556                 if (ret)
1557                         goto out;
1558
1559                 ret = gen9_init_perctx_bb(engine,
1560                                           &wa_ctx->per_ctx,
1561                                           batch,
1562                                           &offset);
1563                 if (ret)
1564                         goto out;
1565         }
1566
1567 out:
1568         kunmap_atomic(batch);
1569         if (ret)
1570                 lrc_destroy_wa_ctx_obj(engine);
1571
1572         return ret;
1573 }
1574
1575 static void lrc_init_hws(struct intel_engine_cs *engine)
1576 {
1577         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1578
1579         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1580                    (u32)engine->status_page.gfx_addr);
1581         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1582 }
1583
1584 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1585 {
1586         struct drm_device *dev = engine->dev;
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588         unsigned int next_context_status_buffer_hw;
1589
1590         lrc_init_hws(engine);
1591
1592         I915_WRITE_IMR(engine,
1593                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1594         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1595
1596         I915_WRITE(RING_MODE_GEN7(engine),
1597                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1598                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1599         POSTING_READ(RING_MODE_GEN7(engine));
1600
1601         /*
1602          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1603          * zero, we need to read the write pointer from hardware and use its
1604          * value because "this register is power context save restored".
1605          * Effectively, these states have been observed:
1606          *
1607          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1608          * BDW  | CSB regs not reset       | CSB regs reset       |
1609          * CHT  | CSB regs not reset       | CSB regs not reset   |
1610          * SKL  |         ?                |         ?            |
1611          * BXT  |         ?                |         ?            |
1612          */
1613         next_context_status_buffer_hw =
1614                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1615
1616         /*
1617          * When the CSB registers are reset (also after power-up / gpu reset),
1618          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1619          * this special case, so the first element read is CSB[0].
1620          */
1621         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1622                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1623
1624         engine->next_context_status_buffer = next_context_status_buffer_hw;
1625         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1626
1627         intel_engine_init_hangcheck(engine);
1628
1629         return intel_mocs_init_engine(engine);
1630 }
1631
1632 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1633 {
1634         struct drm_device *dev = engine->dev;
1635         struct drm_i915_private *dev_priv = dev->dev_private;
1636         int ret;
1637
1638         ret = gen8_init_common_ring(engine);
1639         if (ret)
1640                 return ret;
1641
1642         /* We need to disable the AsyncFlip performance optimisations in order
1643          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1644          * programmed to '1' on all products.
1645          *
1646          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1647          */
1648         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1649
1650         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1651
1652         return init_workarounds_ring(engine);
1653 }
1654
1655 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1656 {
1657         int ret;
1658
1659         ret = gen8_init_common_ring(engine);
1660         if (ret)
1661                 return ret;
1662
1663         return init_workarounds_ring(engine);
1664 }
1665
1666 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1667 {
1668         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1669         struct intel_engine_cs *engine = req->engine;
1670         struct intel_ringbuffer *ringbuf = req->ringbuf;
1671         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1672         int i, ret;
1673
1674         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1675         if (ret)
1676                 return ret;
1677
1678         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1679         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1680                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1681
1682                 intel_logical_ring_emit_reg(ringbuf,
1683                                             GEN8_RING_PDP_UDW(engine, i));
1684                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1685                 intel_logical_ring_emit_reg(ringbuf,
1686                                             GEN8_RING_PDP_LDW(engine, i));
1687                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1688         }
1689
1690         intel_logical_ring_emit(ringbuf, MI_NOOP);
1691         intel_logical_ring_advance(ringbuf);
1692
1693         return 0;
1694 }
1695
1696 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1697                               u64 offset, unsigned dispatch_flags)
1698 {
1699         struct intel_ringbuffer *ringbuf = req->ringbuf;
1700         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1701         int ret;
1702
1703         /* Don't rely in hw updating PDPs, specially in lite-restore.
1704          * Ideally, we should set Force PD Restore in ctx descriptor,
1705          * but we can't. Force Restore would be a second option, but
1706          * it is unsafe in case of lite-restore (because the ctx is
1707          * not idle). PML4 is allocated during ppgtt init so this is
1708          * not needed in 48-bit.*/
1709         if (req->ctx->ppgtt &&
1710             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1711                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1712                     !intel_vgpu_active(req->i915->dev)) {
1713                         ret = intel_logical_ring_emit_pdps(req);
1714                         if (ret)
1715                                 return ret;
1716                 }
1717
1718                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1719         }
1720
1721         ret = intel_logical_ring_begin(req, 4);
1722         if (ret)
1723                 return ret;
1724
1725         /* FIXME(BDW): Address space and security selectors. */
1726         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1727                                 (ppgtt<<8) |
1728                                 (dispatch_flags & I915_DISPATCH_RS ?
1729                                  MI_BATCH_RESOURCE_STREAMER : 0));
1730         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1731         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1732         intel_logical_ring_emit(ringbuf, MI_NOOP);
1733         intel_logical_ring_advance(ringbuf);
1734
1735         return 0;
1736 }
1737
1738 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1739 {
1740         struct drm_device *dev = engine->dev;
1741         struct drm_i915_private *dev_priv = dev->dev_private;
1742         unsigned long flags;
1743
1744         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1745                 return false;
1746
1747         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1748         if (engine->irq_refcount++ == 0) {
1749                 I915_WRITE_IMR(engine,
1750                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1751                 POSTING_READ(RING_IMR(engine->mmio_base));
1752         }
1753         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1754
1755         return true;
1756 }
1757
1758 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1759 {
1760         struct drm_device *dev = engine->dev;
1761         struct drm_i915_private *dev_priv = dev->dev_private;
1762         unsigned long flags;
1763
1764         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765         if (--engine->irq_refcount == 0) {
1766                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1767                 POSTING_READ(RING_IMR(engine->mmio_base));
1768         }
1769         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1770 }
1771
1772 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1773                            u32 invalidate_domains,
1774                            u32 unused)
1775 {
1776         struct intel_ringbuffer *ringbuf = request->ringbuf;
1777         struct intel_engine_cs *engine = ringbuf->engine;
1778         struct drm_device *dev = engine->dev;
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         uint32_t cmd;
1781         int ret;
1782
1783         ret = intel_logical_ring_begin(request, 4);
1784         if (ret)
1785                 return ret;
1786
1787         cmd = MI_FLUSH_DW + 1;
1788
1789         /* We always require a command barrier so that subsequent
1790          * commands, such as breadcrumb interrupts, are strictly ordered
1791          * wrt the contents of the write cache being flushed to memory
1792          * (and thus being coherent from the CPU).
1793          */
1794         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1795
1796         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1797                 cmd |= MI_INVALIDATE_TLB;
1798                 if (engine == &dev_priv->engine[VCS])
1799                         cmd |= MI_INVALIDATE_BSD;
1800         }
1801
1802         intel_logical_ring_emit(ringbuf, cmd);
1803         intel_logical_ring_emit(ringbuf,
1804                                 I915_GEM_HWS_SCRATCH_ADDR |
1805                                 MI_FLUSH_DW_USE_GTT);
1806         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1807         intel_logical_ring_emit(ringbuf, 0); /* value */
1808         intel_logical_ring_advance(ringbuf);
1809
1810         return 0;
1811 }
1812
1813 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1814                                   u32 invalidate_domains,
1815                                   u32 flush_domains)
1816 {
1817         struct intel_ringbuffer *ringbuf = request->ringbuf;
1818         struct intel_engine_cs *engine = ringbuf->engine;
1819         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1820         bool vf_flush_wa = false;
1821         u32 flags = 0;
1822         int ret;
1823
1824         flags |= PIPE_CONTROL_CS_STALL;
1825
1826         if (flush_domains) {
1827                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1828                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1829                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1830                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1831         }
1832
1833         if (invalidate_domains) {
1834                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1835                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1836                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1837                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1838                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1839                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1840                 flags |= PIPE_CONTROL_QW_WRITE;
1841                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1842
1843                 /*
1844                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1845                  * pipe control.
1846                  */
1847                 if (IS_GEN9(engine->dev))
1848                         vf_flush_wa = true;
1849         }
1850
1851         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1852         if (ret)
1853                 return ret;
1854
1855         if (vf_flush_wa) {
1856                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1857                 intel_logical_ring_emit(ringbuf, 0);
1858                 intel_logical_ring_emit(ringbuf, 0);
1859                 intel_logical_ring_emit(ringbuf, 0);
1860                 intel_logical_ring_emit(ringbuf, 0);
1861                 intel_logical_ring_emit(ringbuf, 0);
1862         }
1863
1864         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1865         intel_logical_ring_emit(ringbuf, flags);
1866         intel_logical_ring_emit(ringbuf, scratch_addr);
1867         intel_logical_ring_emit(ringbuf, 0);
1868         intel_logical_ring_emit(ringbuf, 0);
1869         intel_logical_ring_emit(ringbuf, 0);
1870         intel_logical_ring_advance(ringbuf);
1871
1872         return 0;
1873 }
1874
1875 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1876 {
1877         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1878 }
1879
1880 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1881 {
1882         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1883 }
1884
1885 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1886 {
1887         /*
1888          * On BXT A steppings there is a HW coherency issue whereby the
1889          * MI_STORE_DATA_IMM storing the completed request's seqno
1890          * occasionally doesn't invalidate the CPU cache. Work around this by
1891          * clflushing the corresponding cacheline whenever the caller wants
1892          * the coherency to be guaranteed. Note that this cacheline is known
1893          * to be clean at this point, since we only write it in
1894          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1895          * this clflush in practice becomes an invalidate operation.
1896          */
1897         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1898 }
1899
1900 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1901 {
1902         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1903
1904         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1905         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1906 }
1907
1908 /*
1909  * Reserve space for 2 NOOPs at the end of each request to be
1910  * used as a workaround for not being allowed to do lite
1911  * restore with HEAD==TAIL (WaIdleLiteRestore).
1912  */
1913 #define WA_TAIL_DWORDS 2
1914
1915 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1916 {
1917         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1918 }
1919
1920 static int gen8_emit_request(struct drm_i915_gem_request *request)
1921 {
1922         struct intel_ringbuffer *ringbuf = request->ringbuf;
1923         int ret;
1924
1925         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1926         if (ret)
1927                 return ret;
1928
1929         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1930         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1931
1932         intel_logical_ring_emit(ringbuf,
1933                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1934         intel_logical_ring_emit(ringbuf,
1935                                 hws_seqno_address(request->engine) |
1936                                 MI_FLUSH_DW_USE_GTT);
1937         intel_logical_ring_emit(ringbuf, 0);
1938         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1939         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1940         intel_logical_ring_emit(ringbuf, MI_NOOP);
1941         return intel_logical_ring_advance_and_submit(request);
1942 }
1943
1944 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1945 {
1946         struct intel_ringbuffer *ringbuf = request->ringbuf;
1947         int ret;
1948
1949         ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1950         if (ret)
1951                 return ret;
1952
1953         /* We're using qword write, seqno should be aligned to 8 bytes. */
1954         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1955
1956         /* w/a for post sync ops following a GPGPU operation we
1957          * need a prior CS_STALL, which is emitted by the flush
1958          * following the batch.
1959          */
1960         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1961         intel_logical_ring_emit(ringbuf,
1962                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1963                                  PIPE_CONTROL_CS_STALL |
1964                                  PIPE_CONTROL_QW_WRITE));
1965         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1966         intel_logical_ring_emit(ringbuf, 0);
1967         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1968         /* We're thrashing one dword of HWS. */
1969         intel_logical_ring_emit(ringbuf, 0);
1970         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1971         intel_logical_ring_emit(ringbuf, MI_NOOP);
1972         return intel_logical_ring_advance_and_submit(request);
1973 }
1974
1975 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1976 {
1977         struct render_state so;
1978         int ret;
1979
1980         ret = i915_gem_render_state_prepare(req->engine, &so);
1981         if (ret)
1982                 return ret;
1983
1984         if (so.rodata == NULL)
1985                 return 0;
1986
1987         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1988                                        I915_DISPATCH_SECURE);
1989         if (ret)
1990                 goto out;
1991
1992         ret = req->engine->emit_bb_start(req,
1993                                        (so.ggtt_offset + so.aux_batch_offset),
1994                                        I915_DISPATCH_SECURE);
1995         if (ret)
1996                 goto out;
1997
1998         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1999
2000 out:
2001         i915_gem_render_state_fini(&so);
2002         return ret;
2003 }
2004
2005 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2006 {
2007         int ret;
2008
2009         ret = intel_logical_ring_workarounds_emit(req);
2010         if (ret)
2011                 return ret;
2012
2013         ret = intel_rcs_context_init_mocs(req);
2014         /*
2015          * Failing to program the MOCS is non-fatal.The system will not
2016          * run at peak performance. So generate an error and carry on.
2017          */
2018         if (ret)
2019                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2020
2021         return intel_lr_context_render_state_init(req);
2022 }
2023
2024 /**
2025  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2026  *
2027  * @ring: Engine Command Streamer.
2028  *
2029  */
2030 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2031 {
2032         struct drm_i915_private *dev_priv;
2033
2034         if (!intel_engine_initialized(engine))
2035                 return;
2036
2037         /*
2038          * Tasklet cannot be active at this point due intel_mark_active/idle
2039          * so this is just for documentation.
2040          */
2041         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2042                 tasklet_kill(&engine->irq_tasklet);
2043
2044         dev_priv = engine->dev->dev_private;
2045
2046         if (engine->buffer) {
2047                 intel_logical_ring_stop(engine);
2048                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2049         }
2050
2051         if (engine->cleanup)
2052                 engine->cleanup(engine);
2053
2054         i915_cmd_parser_fini_ring(engine);
2055         i915_gem_batch_pool_fini(&engine->batch_pool);
2056
2057         if (engine->status_page.obj) {
2058                 i915_gem_object_unpin_map(engine->status_page.obj);
2059                 engine->status_page.obj = NULL;
2060         }
2061
2062         engine->idle_lite_restore_wa = 0;
2063         engine->disable_lite_restore_wa = false;
2064         engine->ctx_desc_template = 0;
2065
2066         lrc_destroy_wa_ctx_obj(engine);
2067         engine->dev = NULL;
2068 }
2069
2070 static void
2071 logical_ring_default_vfuncs(struct drm_device *dev,
2072                             struct intel_engine_cs *engine)
2073 {
2074         /* Default vfuncs which can be overriden by each engine. */
2075         engine->init_hw = gen8_init_common_ring;
2076         engine->emit_request = gen8_emit_request;
2077         engine->emit_flush = gen8_emit_flush;
2078         engine->irq_get = gen8_logical_ring_get_irq;
2079         engine->irq_put = gen8_logical_ring_put_irq;
2080         engine->emit_bb_start = gen8_emit_bb_start;
2081         engine->get_seqno = gen8_get_seqno;
2082         engine->set_seqno = gen8_set_seqno;
2083         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2084                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2085                 engine->set_seqno = bxt_a_set_seqno;
2086         }
2087 }
2088
2089 static inline void
2090 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2091 {
2092         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2093         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2094 }
2095
2096 static int
2097 lrc_setup_hws(struct intel_engine_cs *engine,
2098               struct drm_i915_gem_object *dctx_obj)
2099 {
2100         void *hws;
2101
2102         /* The HWSP is part of the default context object in LRC mode. */
2103         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2104                                        LRC_PPHWSP_PN * PAGE_SIZE;
2105         hws = i915_gem_object_pin_map(dctx_obj);
2106         if (IS_ERR(hws))
2107                 return PTR_ERR(hws);
2108         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2109         engine->status_page.obj = dctx_obj;
2110
2111         return 0;
2112 }
2113
2114 static int
2115 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2116 {
2117         struct drm_i915_private *dev_priv = to_i915(dev);
2118         struct intel_context *dctx = dev_priv->kernel_context;
2119         enum forcewake_domains fw_domains;
2120         int ret;
2121
2122         /* Intentionally left blank. */
2123         engine->buffer = NULL;
2124
2125         engine->dev = dev;
2126         INIT_LIST_HEAD(&engine->active_list);
2127         INIT_LIST_HEAD(&engine->request_list);
2128         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2129         init_waitqueue_head(&engine->irq_queue);
2130
2131         INIT_LIST_HEAD(&engine->buffers);
2132         INIT_LIST_HEAD(&engine->execlist_queue);
2133         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2134         spin_lock_init(&engine->execlist_lock);
2135
2136         tasklet_init(&engine->irq_tasklet,
2137                      intel_lrc_irq_handler, (unsigned long)engine);
2138
2139         logical_ring_init_platform_invariants(engine);
2140
2141         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2142                                                     RING_ELSP(engine),
2143                                                     FW_REG_WRITE);
2144
2145         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2146                                                      RING_CONTEXT_STATUS_PTR(engine),
2147                                                      FW_REG_READ | FW_REG_WRITE);
2148
2149         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2150                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2151                                                      FW_REG_READ);
2152
2153         engine->fw_domains = fw_domains;
2154
2155         ret = i915_cmd_parser_init_ring(engine);
2156         if (ret)
2157                 goto error;
2158
2159         ret = intel_lr_context_deferred_alloc(dctx, engine);
2160         if (ret)
2161                 goto error;
2162
2163         /* As this is the default context, always pin it */
2164         ret = intel_lr_context_do_pin(dctx, engine);
2165         if (ret) {
2166                 DRM_ERROR(
2167                         "Failed to pin and map ringbuffer %s: %d\n",
2168                         engine->name, ret);
2169                 goto error;
2170         }
2171
2172         /* And setup the hardware status page. */
2173         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2174         if (ret) {
2175                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2176                 goto error;
2177         }
2178
2179         return 0;
2180
2181 error:
2182         intel_logical_ring_cleanup(engine);
2183         return ret;
2184 }
2185
2186 static int logical_render_ring_init(struct drm_device *dev)
2187 {
2188         struct drm_i915_private *dev_priv = dev->dev_private;
2189         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2190         int ret;
2191
2192         engine->name = "render ring";
2193         engine->id = RCS;
2194         engine->exec_id = I915_EXEC_RENDER;
2195         engine->guc_id = GUC_RENDER_ENGINE;
2196         engine->mmio_base = RENDER_RING_BASE;
2197
2198         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2199         if (HAS_L3_DPF(dev))
2200                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2201
2202         logical_ring_default_vfuncs(dev, engine);
2203
2204         /* Override some for render ring. */
2205         if (INTEL_INFO(dev)->gen >= 9)
2206                 engine->init_hw = gen9_init_render_ring;
2207         else
2208                 engine->init_hw = gen8_init_render_ring;
2209         engine->init_context = gen8_init_rcs_context;
2210         engine->cleanup = intel_fini_pipe_control;
2211         engine->emit_flush = gen8_emit_flush_render;
2212         engine->emit_request = gen8_emit_request_render;
2213
2214         engine->dev = dev;
2215
2216         ret = intel_init_pipe_control(engine);
2217         if (ret)
2218                 return ret;
2219
2220         ret = intel_init_workaround_bb(engine);
2221         if (ret) {
2222                 /*
2223                  * We continue even if we fail to initialize WA batch
2224                  * because we only expect rare glitches but nothing
2225                  * critical to prevent us from using GPU
2226                  */
2227                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2228                           ret);
2229         }
2230
2231         ret = logical_ring_init(dev, engine);
2232         if (ret) {
2233                 lrc_destroy_wa_ctx_obj(engine);
2234         }
2235
2236         return ret;
2237 }
2238
2239 static int logical_bsd_ring_init(struct drm_device *dev)
2240 {
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2243
2244         engine->name = "bsd ring";
2245         engine->id = VCS;
2246         engine->exec_id = I915_EXEC_BSD;
2247         engine->guc_id = GUC_VIDEO_ENGINE;
2248         engine->mmio_base = GEN6_BSD_RING_BASE;
2249
2250         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2251         logical_ring_default_vfuncs(dev, engine);
2252
2253         return logical_ring_init(dev, engine);
2254 }
2255
2256 static int logical_bsd2_ring_init(struct drm_device *dev)
2257 {
2258         struct drm_i915_private *dev_priv = dev->dev_private;
2259         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2260
2261         engine->name = "bsd2 ring";
2262         engine->id = VCS2;
2263         engine->exec_id = I915_EXEC_BSD;
2264         engine->guc_id = GUC_VIDEO_ENGINE2;
2265         engine->mmio_base = GEN8_BSD2_RING_BASE;
2266
2267         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2268         logical_ring_default_vfuncs(dev, engine);
2269
2270         return logical_ring_init(dev, engine);
2271 }
2272
2273 static int logical_blt_ring_init(struct drm_device *dev)
2274 {
2275         struct drm_i915_private *dev_priv = dev->dev_private;
2276         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2277
2278         engine->name = "blitter ring";
2279         engine->id = BCS;
2280         engine->exec_id = I915_EXEC_BLT;
2281         engine->guc_id = GUC_BLITTER_ENGINE;
2282         engine->mmio_base = BLT_RING_BASE;
2283
2284         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2285         logical_ring_default_vfuncs(dev, engine);
2286
2287         return logical_ring_init(dev, engine);
2288 }
2289
2290 static int logical_vebox_ring_init(struct drm_device *dev)
2291 {
2292         struct drm_i915_private *dev_priv = dev->dev_private;
2293         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2294
2295         engine->name = "video enhancement ring";
2296         engine->id = VECS;
2297         engine->exec_id = I915_EXEC_VEBOX;
2298         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2299         engine->mmio_base = VEBOX_RING_BASE;
2300
2301         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2302         logical_ring_default_vfuncs(dev, engine);
2303
2304         return logical_ring_init(dev, engine);
2305 }
2306
2307 /**
2308  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2309  * @dev: DRM device.
2310  *
2311  * This function inits the engines for an Execlists submission style (the equivalent in the
2312  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2313  * those engines that are present in the hardware.
2314  *
2315  * Return: non-zero if the initialization failed.
2316  */
2317 int intel_logical_rings_init(struct drm_device *dev)
2318 {
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320         int ret;
2321
2322         ret = logical_render_ring_init(dev);
2323         if (ret)
2324                 return ret;
2325
2326         if (HAS_BSD(dev)) {
2327                 ret = logical_bsd_ring_init(dev);
2328                 if (ret)
2329                         goto cleanup_render_ring;
2330         }
2331
2332         if (HAS_BLT(dev)) {
2333                 ret = logical_blt_ring_init(dev);
2334                 if (ret)
2335                         goto cleanup_bsd_ring;
2336         }
2337
2338         if (HAS_VEBOX(dev)) {
2339                 ret = logical_vebox_ring_init(dev);
2340                 if (ret)
2341                         goto cleanup_blt_ring;
2342         }
2343
2344         if (HAS_BSD2(dev)) {
2345                 ret = logical_bsd2_ring_init(dev);
2346                 if (ret)
2347                         goto cleanup_vebox_ring;
2348         }
2349
2350         return 0;
2351
2352 cleanup_vebox_ring:
2353         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2354 cleanup_blt_ring:
2355         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2356 cleanup_bsd_ring:
2357         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2358 cleanup_render_ring:
2359         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2360
2361         return ret;
2362 }
2363
2364 static u32
2365 make_rpcs(struct drm_device *dev)
2366 {
2367         u32 rpcs = 0;
2368
2369         /*
2370          * No explicit RPCS request is needed to ensure full
2371          * slice/subslice/EU enablement prior to Gen9.
2372         */
2373         if (INTEL_INFO(dev)->gen < 9)
2374                 return 0;
2375
2376         /*
2377          * Starting in Gen9, render power gating can leave
2378          * slice/subslice/EU in a partially enabled state. We
2379          * must make an explicit request through RPCS for full
2380          * enablement.
2381         */
2382         if (INTEL_INFO(dev)->has_slice_pg) {
2383                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2384                 rpcs |= INTEL_INFO(dev)->slice_total <<
2385                         GEN8_RPCS_S_CNT_SHIFT;
2386                 rpcs |= GEN8_RPCS_ENABLE;
2387         }
2388
2389         if (INTEL_INFO(dev)->has_subslice_pg) {
2390                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2391                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2392                         GEN8_RPCS_SS_CNT_SHIFT;
2393                 rpcs |= GEN8_RPCS_ENABLE;
2394         }
2395
2396         if (INTEL_INFO(dev)->has_eu_pg) {
2397                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2398                         GEN8_RPCS_EU_MIN_SHIFT;
2399                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2400                         GEN8_RPCS_EU_MAX_SHIFT;
2401                 rpcs |= GEN8_RPCS_ENABLE;
2402         }
2403
2404         return rpcs;
2405 }
2406
2407 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2408 {
2409         u32 indirect_ctx_offset;
2410
2411         switch (INTEL_INFO(engine->dev)->gen) {
2412         default:
2413                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2414                 /* fall through */
2415         case 9:
2416                 indirect_ctx_offset =
2417                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2418                 break;
2419         case 8:
2420                 indirect_ctx_offset =
2421                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2422                 break;
2423         }
2424
2425         return indirect_ctx_offset;
2426 }
2427
2428 static int
2429 populate_lr_context(struct intel_context *ctx,
2430                     struct drm_i915_gem_object *ctx_obj,
2431                     struct intel_engine_cs *engine,
2432                     struct intel_ringbuffer *ringbuf)
2433 {
2434         struct drm_device *dev = engine->dev;
2435         struct drm_i915_private *dev_priv = dev->dev_private;
2436         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2437         void *vaddr;
2438         u32 *reg_state;
2439         int ret;
2440
2441         if (!ppgtt)
2442                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2443
2444         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2445         if (ret) {
2446                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2447                 return ret;
2448         }
2449
2450         vaddr = i915_gem_object_pin_map(ctx_obj);
2451         if (IS_ERR(vaddr)) {
2452                 ret = PTR_ERR(vaddr);
2453                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2454                 return ret;
2455         }
2456         ctx_obj->dirty = true;
2457
2458         /* The second page of the context object contains some fields which must
2459          * be set up prior to the first execution. */
2460         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2461
2462         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2463          * commands followed by (reg, value) pairs. The values we are setting here are
2464          * only for the first context restore: on a subsequent save, the GPU will
2465          * recreate this batchbuffer with new values (including all the missing
2466          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2467         reg_state[CTX_LRI_HEADER_0] =
2468                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2469         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2470                        RING_CONTEXT_CONTROL(engine),
2471                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2472                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2473                                           (HAS_RESOURCE_STREAMER(dev) ?
2474                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2475         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2476                        0);
2477         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2478                        0);
2479         /* Ring buffer start address is not known until the buffer is pinned.
2480          * It is written to the context image in execlists_update_context()
2481          */
2482         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2483                        RING_START(engine->mmio_base), 0);
2484         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2485                        RING_CTL(engine->mmio_base),
2486                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2487         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2488                        RING_BBADDR_UDW(engine->mmio_base), 0);
2489         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2490                        RING_BBADDR(engine->mmio_base), 0);
2491         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2492                        RING_BBSTATE(engine->mmio_base),
2493                        RING_BB_PPGTT);
2494         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2495                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2496         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2497                        RING_SBBADDR(engine->mmio_base), 0);
2498         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2499                        RING_SBBSTATE(engine->mmio_base), 0);
2500         if (engine->id == RCS) {
2501                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2502                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2503                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2504                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2505                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2506                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2507                 if (engine->wa_ctx.obj) {
2508                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2509                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2510
2511                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2512                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2513                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2514
2515                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2516                                 intel_lr_indirect_ctx_offset(engine) << 6;
2517
2518                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2519                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2520                                 0x01;
2521                 }
2522         }
2523         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2524         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2525                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2526         /* PDP values well be assigned later if needed */
2527         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2528                        0);
2529         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2530                        0);
2531         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2532                        0);
2533         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2534                        0);
2535         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2536                        0);
2537         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2538                        0);
2539         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2540                        0);
2541         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2542                        0);
2543
2544         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2545                 /* 64b PPGTT (48bit canonical)
2546                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2547                  * other PDP Descriptors are ignored.
2548                  */
2549                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2550         } else {
2551                 /* 32b PPGTT
2552                  * PDP*_DESCRIPTOR contains the base address of space supported.
2553                  * With dynamic page allocation, PDPs may not be allocated at
2554                  * this point. Point the unallocated PDPs to the scratch page
2555                  */
2556                 execlists_update_context_pdps(ppgtt, reg_state);
2557         }
2558
2559         if (engine->id == RCS) {
2560                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2561                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2562                                make_rpcs(dev));
2563         }
2564
2565         i915_gem_object_unpin_map(ctx_obj);
2566
2567         return 0;
2568 }
2569
2570 /**
2571  * intel_lr_context_free() - free the LRC specific bits of a context
2572  * @ctx: the LR context to free.
2573  *
2574  * The real context freeing is done in i915_gem_context_free: this only
2575  * takes care of the bits that are LRC related: the per-engine backing
2576  * objects and the logical ringbuffer.
2577  */
2578 void intel_lr_context_free(struct intel_context *ctx)
2579 {
2580         int i;
2581
2582         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2583                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2584                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2585
2586                 if (!ctx_obj)
2587                         continue;
2588
2589                 if (ctx == ctx->i915->kernel_context) {
2590                         intel_unpin_ringbuffer_obj(ringbuf);
2591                         i915_gem_object_ggtt_unpin(ctx_obj);
2592                         i915_gem_object_unpin_map(ctx_obj);
2593                 }
2594
2595                 WARN_ON(ctx->engine[i].pin_count);
2596                 intel_ringbuffer_free(ringbuf);
2597                 drm_gem_object_unreference(&ctx_obj->base);
2598         }
2599 }
2600
2601 /**
2602  * intel_lr_context_size() - return the size of the context for an engine
2603  * @ring: which engine to find the context size for
2604  *
2605  * Each engine may require a different amount of space for a context image,
2606  * so when allocating (or copying) an image, this function can be used to
2607  * find the right size for the specific engine.
2608  *
2609  * Return: size (in bytes) of an engine-specific context image
2610  *
2611  * Note: this size includes the HWSP, which is part of the context image
2612  * in LRC mode, but does not include the "shared data page" used with
2613  * GuC submission. The caller should account for this if using the GuC.
2614  */
2615 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2616 {
2617         int ret = 0;
2618
2619         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2620
2621         switch (engine->id) {
2622         case RCS:
2623                 if (INTEL_INFO(engine->dev)->gen >= 9)
2624                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2625                 else
2626                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2627                 break;
2628         case VCS:
2629         case BCS:
2630         case VECS:
2631         case VCS2:
2632                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2633                 break;
2634         }
2635
2636         return ret;
2637 }
2638
2639 /**
2640  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2641  * @ctx: LR context to create.
2642  * @ring: engine to be used with the context.
2643  *
2644  * This function can be called more than once, with different engines, if we plan
2645  * to use the context with them. The context backing objects and the ringbuffers
2646  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2647  * the creation is a deferred call: it's better to make sure first that we need to use
2648  * a given ring with the context.
2649  *
2650  * Return: non-zero on error.
2651  */
2652
2653 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2654                                     struct intel_engine_cs *engine)
2655 {
2656         struct drm_device *dev = engine->dev;
2657         struct drm_i915_gem_object *ctx_obj;
2658         uint32_t context_size;
2659         struct intel_ringbuffer *ringbuf;
2660         int ret;
2661
2662         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2663         WARN_ON(ctx->engine[engine->id].state);
2664
2665         context_size = round_up(intel_lr_context_size(engine), 4096);
2666
2667         /* One extra page as the sharing data between driver and GuC */
2668         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2669
2670         ctx_obj = i915_gem_alloc_object(dev, context_size);
2671         if (!ctx_obj) {
2672                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2673                 return -ENOMEM;
2674         }
2675
2676         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2677         if (IS_ERR(ringbuf)) {
2678                 ret = PTR_ERR(ringbuf);
2679                 goto error_deref_obj;
2680         }
2681
2682         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2683         if (ret) {
2684                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2685                 goto error_ringbuf;
2686         }
2687
2688         ctx->engine[engine->id].ringbuf = ringbuf;
2689         ctx->engine[engine->id].state = ctx_obj;
2690
2691         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2692                 struct drm_i915_gem_request *req;
2693
2694                 req = i915_gem_request_alloc(engine, ctx);
2695                 if (IS_ERR(req)) {
2696                         ret = PTR_ERR(req);
2697                         DRM_ERROR("ring create req: %d\n", ret);
2698                         goto error_ringbuf;
2699                 }
2700
2701                 ret = engine->init_context(req);
2702                 i915_add_request_no_flush(req);
2703                 if (ret) {
2704                         DRM_ERROR("ring init context: %d\n",
2705                                 ret);
2706                         goto error_ringbuf;
2707                 }
2708         }
2709         return 0;
2710
2711 error_ringbuf:
2712         intel_ringbuffer_free(ringbuf);
2713 error_deref_obj:
2714         drm_gem_object_unreference(&ctx_obj->base);
2715         ctx->engine[engine->id].ringbuf = NULL;
2716         ctx->engine[engine->id].state = NULL;
2717         return ret;
2718 }
2719
2720 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2721                             struct intel_context *ctx)
2722 {
2723         struct intel_engine_cs *engine;
2724
2725         for_each_engine(engine, dev_priv) {
2726                 struct drm_i915_gem_object *ctx_obj =
2727                                 ctx->engine[engine->id].state;
2728                 struct intel_ringbuffer *ringbuf =
2729                                 ctx->engine[engine->id].ringbuf;
2730                 void *vaddr;
2731                 uint32_t *reg_state;
2732
2733                 if (!ctx_obj)
2734                         continue;
2735
2736                 vaddr = i915_gem_object_pin_map(ctx_obj);
2737                 if (WARN_ON(IS_ERR(vaddr)))
2738                         continue;
2739
2740                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2741                 ctx_obj->dirty = true;
2742
2743                 reg_state[CTX_RING_HEAD+1] = 0;
2744                 reg_state[CTX_RING_TAIL+1] = 0;
2745
2746                 i915_gem_object_unpin_map(ctx_obj);
2747
2748                 ringbuf->head = 0;
2749                 ringbuf->tail = 0;
2750         }
2751 }