]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Use new i915_gem_object_pin_map for LRC
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define CTX_LRI_HEADER_0                0x01
160 #define CTX_CONTEXT_CONTROL             0x02
161 #define CTX_RING_HEAD                   0x04
162 #define CTX_RING_TAIL                   0x06
163 #define CTX_RING_BUFFER_START           0x08
164 #define CTX_RING_BUFFER_CONTROL         0x0a
165 #define CTX_BB_HEAD_U                   0x0c
166 #define CTX_BB_HEAD_L                   0x0e
167 #define CTX_BB_STATE                    0x10
168 #define CTX_SECOND_BB_HEAD_U            0x12
169 #define CTX_SECOND_BB_HEAD_L            0x14
170 #define CTX_SECOND_BB_STATE             0x16
171 #define CTX_BB_PER_CTX_PTR              0x18
172 #define CTX_RCS_INDIRECT_CTX            0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
174 #define CTX_LRI_HEADER_1                0x21
175 #define CTX_CTX_TIMESTAMP               0x22
176 #define CTX_PDP3_UDW                    0x24
177 #define CTX_PDP3_LDW                    0x26
178 #define CTX_PDP2_UDW                    0x28
179 #define CTX_PDP2_LDW                    0x2a
180 #define CTX_PDP1_UDW                    0x2c
181 #define CTX_PDP1_LDW                    0x2e
182 #define CTX_PDP0_UDW                    0x30
183 #define CTX_PDP0_LDW                    0x32
184 #define CTX_LRI_HEADER_2                0x41
185 #define CTX_R_PWR_CLK_STATE             0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196         (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
200         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211         ADVANCED_CONTEXT = 0,
212         LEGACY_32B_CONTEXT,
213         ADVANCED_AD_CONTEXT,
214         LEGACY_64B_CONTEXT
215 };
216 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217 #define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
218                 LEGACY_64B_CONTEXT :\
219                 LEGACY_32B_CONTEXT)
220 enum {
221         FAULT_AND_HANG = 0,
222         FAULT_AND_HALT, /* Debug only */
223         FAULT_AND_STREAM,
224         FAULT_AND_CONTINUE /* Unsupported */
225 };
226 #define GEN8_CTX_ID_SHIFT 32
227 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
228 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
229
230 static int intel_lr_context_pin(struct intel_context *ctx,
231                                 struct intel_engine_cs *engine);
232
233 /**
234  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235  * @dev: DRM device.
236  * @enable_execlists: value of i915.enable_execlists module parameter.
237  *
238  * Only certain platforms support Execlists (the prerequisites being
239  * support for Logical Ring Contexts and Aliasing PPGTT or better).
240  *
241  * Return: 1 if Execlists is supported and has to be enabled.
242  */
243 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244 {
245         WARN_ON(i915.enable_ppgtt == -1);
246
247         /* On platforms with execlist available, vGPU will only
248          * support execlist mode, no ring buffer mode.
249          */
250         if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251                 return 1;
252
253         if (INTEL_INFO(dev)->gen >= 9)
254                 return 1;
255
256         if (enable_execlists == 0)
257                 return 0;
258
259         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260             i915.use_mmio_flip >= 0)
261                 return 1;
262
263         return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269         struct drm_device *dev = engine->dev;
270
271         if (IS_GEN8(dev) || IS_GEN9(dev))
272                 engine->idle_lite_restore_wa = ~0;
273
274         engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275                                         IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276                                         (engine->id == VCS || engine->id == VCS2);
277
278         engine->ctx_desc_template = GEN8_CTX_VALID;
279         engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280                                    GEN8_CTX_ADDRESSING_MODE_SHIFT;
281         if (IS_GEN8(dev))
282                 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283         engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285         /* TODO: WaDisableLiteRestore when we start using semaphore
286          * signalling between Command Streamers */
287         /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290         /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291         if (engine->disable_lite_restore_wa)
292                 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293 }
294
295 /**
296  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297  *                                        descriptor for a pinned context
298  *
299  * @ctx: Context to work on
300  * @ring: Engine the descriptor will be used with
301  *
302  * The context descriptor encodes various attributes of a context,
303  * including its GTT address and some flags. Because it's fairly
304  * expensive to calculate, we'll just do it once and cache the result,
305  * which remains valid until the context is unpinned.
306  *
307  * This is what a descriptor looks like, from LSB to MSB:
308  *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
309  *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
310  *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
311  *    bits 52-63:    reserved, may encode the engine ID (for GuC)
312  */
313 static void
314 intel_lr_context_descriptor_update(struct intel_context *ctx,
315                                    struct intel_engine_cs *engine)
316 {
317         uint64_t lrca, desc;
318
319         lrca = ctx->engine[engine->id].lrc_vma->node.start +
320                LRC_PPHWSP_PN * PAGE_SIZE;
321
322         desc = engine->ctx_desc_template;                          /* bits  0-11 */
323         desc |= lrca;                                      /* bits 12-31 */
324         desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326         ctx->engine[engine->id].lrc_desc = desc;
327 }
328
329 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330                                      struct intel_engine_cs *engine)
331 {
332         return ctx->engine[engine->id].lrc_desc;
333 }
334
335 /**
336  * intel_execlists_ctx_id() - get the Execlists Context ID
337  * @ctx: Context to get the ID for
338  * @ring: Engine to get the ID for
339  *
340  * Do not confuse with ctx->id! Unfortunately we have a name overload
341  * here: the old context ID we pass to userspace as a handler so that
342  * they can refer to a context, and the new context ID we pass to the
343  * ELSP so that the GPU can inform us of the context status via
344  * interrupts.
345  *
346  * The context ID is a portion of the context descriptor, so we can
347  * just extract the required part from the cached descriptor.
348  *
349  * Return: 20-bits globally unique context ID.
350  */
351 u32 intel_execlists_ctx_id(struct intel_context *ctx,
352                            struct intel_engine_cs *engine)
353 {
354         return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355 }
356
357 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358                                  struct drm_i915_gem_request *rq1)
359 {
360
361         struct intel_engine_cs *engine = rq0->engine;
362         struct drm_device *dev = engine->dev;
363         struct drm_i915_private *dev_priv = dev->dev_private;
364         uint64_t desc[2];
365
366         if (rq1) {
367                 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368                 rq1->elsp_submitted++;
369         } else {
370                 desc[1] = 0;
371         }
372
373         desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374         rq0->elsp_submitted++;
375
376         /* You must always write both descriptors in the order below. */
377         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380         I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381         /* The context is automatically loaded after the following */
382         I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384         /* ELSP is a wo register, use another nearby reg for posting */
385         POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386 }
387
388 static void
389 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390 {
391         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395 }
396
397 static void execlists_update_context(struct drm_i915_gem_request *rq)
398 {
399         struct intel_engine_cs *engine = rq->engine;
400         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401         uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403         reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405         /* True 32b PPGTT with dynamic page allocation: update PDP
406          * registers and point the unallocated PDPs to scratch page.
407          * PML4 is allocated during ppgtt init, so this is not needed
408          * in 48-bit mode.
409          */
410         if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411                 execlists_update_context_pdps(ppgtt, reg_state);
412 }
413
414 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415                                       struct drm_i915_gem_request *rq1)
416 {
417         struct drm_i915_private *dev_priv = rq0->i915;
418         unsigned int fw_domains = rq0->engine->fw_domains;
419
420         execlists_update_context(rq0);
421
422         if (rq1)
423                 execlists_update_context(rq1);
424
425         spin_lock_irq(&dev_priv->uncore.lock);
426         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428         execlists_elsp_write(rq0, rq1);
429
430         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431         spin_unlock_irq(&dev_priv->uncore.lock);
432 }
433
434 static void execlists_context_unqueue(struct intel_engine_cs *engine)
435 {
436         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437         struct drm_i915_gem_request *cursor, *tmp;
438
439         assert_spin_locked(&engine->execlist_lock);
440
441         /*
442          * If irqs are not active generate a warning as batches that finish
443          * without the irqs may get lost and a GPU Hang may occur.
444          */
445         WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447         /* Try to read in pairs */
448         list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449                                  execlist_link) {
450                 if (!req0) {
451                         req0 = cursor;
452                 } else if (req0->ctx == cursor->ctx) {
453                         /* Same ctx: ignore first request, as second request
454                          * will update tail past first request's workload */
455                         cursor->elsp_submitted = req0->elsp_submitted;
456                         list_move_tail(&req0->execlist_link,
457                                        &engine->execlist_retired_req_list);
458                         req0 = cursor;
459                 } else {
460                         req1 = cursor;
461                         WARN_ON(req1->elsp_submitted);
462                         break;
463                 }
464         }
465
466         if (unlikely(!req0))
467                 return;
468
469         if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470                 /*
471                  * WaIdleLiteRestore: make sure we never cause a lite restore
472                  * with HEAD==TAIL.
473                  *
474                  * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475                  * resubmit the request. See gen8_emit_request() for where we
476                  * prepare the padding after the end of the request.
477                  */
478                 struct intel_ringbuffer *ringbuf;
479
480                 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481                 req0->tail += 8;
482                 req0->tail &= ringbuf->size - 1;
483         }
484
485         execlists_submit_requests(req0, req1);
486 }
487
488 static unsigned int
489 execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490 {
491         struct drm_i915_gem_request *head_req;
492
493         assert_spin_locked(&engine->execlist_lock);
494
495         head_req = list_first_entry_or_null(&engine->execlist_queue,
496                                             struct drm_i915_gem_request,
497                                             execlist_link);
498
499         if (!head_req)
500                 return 0;
501
502         if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503                 return 0;
504
505         WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507         if (--head_req->elsp_submitted > 0)
508                 return 0;
509
510         list_move_tail(&head_req->execlist_link,
511                        &engine->execlist_retired_req_list);
512
513         return 1;
514 }
515
516 static u32
517 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518                    u32 *context_id)
519 {
520         struct drm_i915_private *dev_priv = engine->dev->dev_private;
521         u32 status;
522
523         read_pointer %= GEN8_CSB_ENTRIES;
524
525         status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527         if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528                 return 0;
529
530         *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531                                                               read_pointer));
532
533         return status;
534 }
535
536 /**
537  * intel_lrc_irq_handler() - handle Context Switch interrupts
538  * @engine: Engine Command Streamer to handle.
539  *
540  * Check the unread Context Status Buffers and manage the submission of new
541  * contexts to the ELSP accordingly.
542  */
543 static void intel_lrc_irq_handler(unsigned long data)
544 {
545         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546         struct drm_i915_private *dev_priv = engine->dev->dev_private;
547         u32 status_pointer;
548         unsigned int read_pointer, write_pointer;
549         u32 csb[GEN8_CSB_ENTRIES][2];
550         unsigned int csb_read = 0, i;
551         unsigned int submit_contexts = 0;
552
553         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555         status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557         read_pointer = engine->next_context_status_buffer;
558         write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559         if (read_pointer > write_pointer)
560                 write_pointer += GEN8_CSB_ENTRIES;
561
562         while (read_pointer < write_pointer) {
563                 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564                         break;
565                 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566                                                       &csb[csb_read][1]);
567                 csb_read++;
568         }
569
570         engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572         /* Update the read pointer to the old write pointer. Manual ringbuffer
573          * management ftw </sarcasm> */
574         I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575                       _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576                                     engine->next_context_status_buffer << 8));
577
578         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580         spin_lock(&engine->execlist_lock);
581
582         for (i = 0; i < csb_read; i++) {
583                 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584                         if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585                                 if (execlists_check_remove_request(engine, csb[i][1]))
586                                         WARN(1, "Lite Restored request removed from queue\n");
587                         } else
588                                 WARN(1, "Preemption without Lite Restore\n");
589                 }
590
591                 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592                     GEN8_CTX_STATUS_ELEMENT_SWITCH))
593                         submit_contexts +=
594                                 execlists_check_remove_request(engine, csb[i][1]);
595         }
596
597         if (submit_contexts) {
598                 if (!engine->disable_lite_restore_wa ||
599                     (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600                         execlists_context_unqueue(engine);
601         }
602
603         spin_unlock(&engine->execlist_lock);
604
605         if (unlikely(submit_contexts > 2))
606                 DRM_ERROR("More than two context complete events?\n");
607 }
608
609 static void execlists_context_queue(struct drm_i915_gem_request *request)
610 {
611         struct intel_engine_cs *engine = request->engine;
612         struct drm_i915_gem_request *cursor;
613         int num_elements = 0;
614
615         if (request->ctx != request->i915->kernel_context)
616                 intel_lr_context_pin(request->ctx, engine);
617
618         i915_gem_request_reference(request);
619
620         spin_lock_bh(&engine->execlist_lock);
621
622         list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623                 if (++num_elements > 2)
624                         break;
625
626         if (num_elements > 2) {
627                 struct drm_i915_gem_request *tail_req;
628
629                 tail_req = list_last_entry(&engine->execlist_queue,
630                                            struct drm_i915_gem_request,
631                                            execlist_link);
632
633                 if (request->ctx == tail_req->ctx) {
634                         WARN(tail_req->elsp_submitted != 0,
635                                 "More than 2 already-submitted reqs queued\n");
636                         list_move_tail(&tail_req->execlist_link,
637                                        &engine->execlist_retired_req_list);
638                 }
639         }
640
641         list_add_tail(&request->execlist_link, &engine->execlist_queue);
642         if (num_elements == 0)
643                 execlists_context_unqueue(engine);
644
645         spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650         struct intel_engine_cs *engine = req->engine;
651         uint32_t flush_domains;
652         int ret;
653
654         flush_domains = 0;
655         if (engine->gpu_caches_dirty)
656                 flush_domains = I915_GEM_GPU_DOMAINS;
657
658         ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659         if (ret)
660                 return ret;
661
662         engine->gpu_caches_dirty = false;
663         return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667                                  struct list_head *vmas)
668 {
669         const unsigned other_rings = ~intel_engine_flag(req->engine);
670         struct i915_vma *vma;
671         uint32_t flush_domains = 0;
672         bool flush_chipset = false;
673         int ret;
674
675         list_for_each_entry(vma, vmas, exec_list) {
676                 struct drm_i915_gem_object *obj = vma->obj;
677
678                 if (obj->active & other_rings) {
679                         ret = i915_gem_object_sync(obj, req->engine, &req);
680                         if (ret)
681                                 return ret;
682                 }
683
684                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685                         flush_chipset |= i915_gem_clflush_object(obj, false);
686
687                 flush_domains |= obj->base.write_domain;
688         }
689
690         if (flush_domains & I915_GEM_DOMAIN_GTT)
691                 wmb();
692
693         /* Unconditionally invalidate gpu caches and ensure that we do flush
694          * any residual writes from the previous batch.
695          */
696         return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701         int ret = 0;
702
703         request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705         if (i915.enable_guc_submission) {
706                 /*
707                  * Check that the GuC has space for the request before
708                  * going any further, as the i915_add_request() call
709                  * later on mustn't fail ...
710                  */
711                 struct intel_guc *guc = &request->i915->guc;
712
713                 ret = i915_guc_wq_check_space(guc->execbuf_client);
714                 if (ret)
715                         return ret;
716         }
717
718         if (request->ctx != request->i915->kernel_context)
719                 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721         return ret;
722 }
723
724 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725                                        int bytes)
726 {
727         struct intel_ringbuffer *ringbuf = req->ringbuf;
728         struct intel_engine_cs *engine = req->engine;
729         struct drm_i915_gem_request *target;
730         unsigned space;
731         int ret;
732
733         if (intel_ring_space(ringbuf) >= bytes)
734                 return 0;
735
736         /* The whole point of reserving space is to not wait! */
737         WARN_ON(ringbuf->reserved_in_use);
738
739         list_for_each_entry(target, &engine->request_list, list) {
740                 /*
741                  * The request queue is per-engine, so can contain requests
742                  * from multiple ringbuffers. Here, we must ignore any that
743                  * aren't from the ringbuffer we're considering.
744                  */
745                 if (target->ringbuf != ringbuf)
746                         continue;
747
748                 /* Would completion of this request free enough space? */
749                 space = __intel_ring_space(target->postfix, ringbuf->tail,
750                                            ringbuf->size);
751                 if (space >= bytes)
752                         break;
753         }
754
755         if (WARN_ON(&target->list == &engine->request_list))
756                 return -ENOSPC;
757
758         ret = i915_wait_request(target);
759         if (ret)
760                 return ret;
761
762         ringbuf->space = space;
763         return 0;
764 }
765
766 /*
767  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768  * @request: Request to advance the logical ringbuffer of.
769  *
770  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
771  * really happens during submission is that the context and current tail will be placed
772  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
773  * point, the tail *inside* the context is updated and the ELSP written to.
774  */
775 static int
776 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777 {
778         struct intel_ringbuffer *ringbuf = request->ringbuf;
779         struct drm_i915_private *dev_priv = request->i915;
780         struct intel_engine_cs *engine = request->engine;
781
782         intel_logical_ring_advance(ringbuf);
783         request->tail = ringbuf->tail;
784
785         /*
786          * Here we add two extra NOOPs as padding to avoid
787          * lite restore of a context with HEAD==TAIL.
788          *
789          * Caller must reserve WA_TAIL_DWORDS for us!
790          */
791         intel_logical_ring_emit(ringbuf, MI_NOOP);
792         intel_logical_ring_emit(ringbuf, MI_NOOP);
793         intel_logical_ring_advance(ringbuf);
794
795         if (intel_engine_stopped(engine))
796                 return 0;
797
798         if (engine->last_context != request->ctx) {
799                 if (engine->last_context)
800                         intel_lr_context_unpin(engine->last_context, engine);
801                 if (request->ctx != request->i915->kernel_context) {
802                         intel_lr_context_pin(request->ctx, engine);
803                         engine->last_context = request->ctx;
804                 } else {
805                         engine->last_context = NULL;
806                 }
807         }
808
809         if (dev_priv->guc.execbuf_client)
810                 i915_guc_submit(dev_priv->guc.execbuf_client, request);
811         else
812                 execlists_context_queue(request);
813
814         return 0;
815 }
816
817 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818 {
819         uint32_t __iomem *virt;
820         int rem = ringbuf->size - ringbuf->tail;
821
822         virt = ringbuf->virtual_start + ringbuf->tail;
823         rem /= 4;
824         while (rem--)
825                 iowrite32(MI_NOOP, virt++);
826
827         ringbuf->tail = 0;
828         intel_ring_update_space(ringbuf);
829 }
830
831 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832 {
833         struct intel_ringbuffer *ringbuf = req->ringbuf;
834         int remain_usable = ringbuf->effective_size - ringbuf->tail;
835         int remain_actual = ringbuf->size - ringbuf->tail;
836         int ret, total_bytes, wait_bytes = 0;
837         bool need_wrap = false;
838
839         if (ringbuf->reserved_in_use)
840                 total_bytes = bytes;
841         else
842                 total_bytes = bytes + ringbuf->reserved_size;
843
844         if (unlikely(bytes > remain_usable)) {
845                 /*
846                  * Not enough space for the basic request. So need to flush
847                  * out the remainder and then wait for base + reserved.
848                  */
849                 wait_bytes = remain_actual + total_bytes;
850                 need_wrap = true;
851         } else {
852                 if (unlikely(total_bytes > remain_usable)) {
853                         /*
854                          * The base request will fit but the reserved space
855                          * falls off the end. So don't need an immediate wrap
856                          * and only need to effectively wait for the reserved
857                          * size space from the start of ringbuffer.
858                          */
859                         wait_bytes = remain_actual + ringbuf->reserved_size;
860                 } else if (total_bytes > ringbuf->space) {
861                         /* No wrapping required, just waiting. */
862                         wait_bytes = total_bytes;
863                 }
864         }
865
866         if (wait_bytes) {
867                 ret = logical_ring_wait_for_space(req, wait_bytes);
868                 if (unlikely(ret))
869                         return ret;
870
871                 if (need_wrap)
872                         __wrap_ring_buffer(ringbuf);
873         }
874
875         return 0;
876 }
877
878 /**
879  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
880  *
881  * @req: The request to start some new work for
882  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
883  *
884  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
885  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
886  * and also preallocates a request (every workload submission is still mediated through
887  * requests, same as it did with legacy ringbuffer submission).
888  *
889  * Return: non-zero if the ringbuffer is not ready to be written to.
890  */
891 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892 {
893         struct drm_i915_private *dev_priv;
894         int ret;
895
896         WARN_ON(req == NULL);
897         dev_priv = req->i915;
898
899         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
900                                    dev_priv->mm.interruptible);
901         if (ret)
902                 return ret;
903
904         ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
905         if (ret)
906                 return ret;
907
908         req->ringbuf->space -= num_dwords * sizeof(uint32_t);
909         return 0;
910 }
911
912 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
913 {
914         /*
915          * The first call merely notes the reserve request and is common for
916          * all back ends. The subsequent localised _begin() call actually
917          * ensures that the reservation is available. Without the begin, if
918          * the request creator immediately submitted the request without
919          * adding any commands to it then there might not actually be
920          * sufficient room for the submission commands.
921          */
922         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
923
924         return intel_logical_ring_begin(request, 0);
925 }
926
927 /**
928  * execlists_submission() - submit a batchbuffer for execution, Execlists style
929  * @dev: DRM device.
930  * @file: DRM file.
931  * @ring: Engine Command Streamer to submit to.
932  * @ctx: Context to employ for this submission.
933  * @args: execbuffer call arguments.
934  * @vmas: list of vmas.
935  * @batch_obj: the batchbuffer to submit.
936  * @exec_start: batchbuffer start virtual address pointer.
937  * @dispatch_flags: translated execbuffer call flags.
938  *
939  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
940  * away the submission details of the execbuffer ioctl call.
941  *
942  * Return: non-zero if the submission fails.
943  */
944 int intel_execlists_submission(struct i915_execbuffer_params *params,
945                                struct drm_i915_gem_execbuffer2 *args,
946                                struct list_head *vmas)
947 {
948         struct drm_device       *dev = params->dev;
949         struct intel_engine_cs *engine = params->engine;
950         struct drm_i915_private *dev_priv = dev->dev_private;
951         struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
952         u64 exec_start;
953         int instp_mode;
954         u32 instp_mask;
955         int ret;
956
957         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
958         instp_mask = I915_EXEC_CONSTANTS_MASK;
959         switch (instp_mode) {
960         case I915_EXEC_CONSTANTS_REL_GENERAL:
961         case I915_EXEC_CONSTANTS_ABSOLUTE:
962         case I915_EXEC_CONSTANTS_REL_SURFACE:
963                 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
964                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
965                         return -EINVAL;
966                 }
967
968                 if (instp_mode != dev_priv->relative_constants_mode) {
969                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
970                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
971                                 return -EINVAL;
972                         }
973
974                         /* The HW changed the meaning on this bit on gen6 */
975                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
976                 }
977                 break;
978         default:
979                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
980                 return -EINVAL;
981         }
982
983         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
984                 DRM_DEBUG("sol reset is gen7 only\n");
985                 return -EINVAL;
986         }
987
988         ret = execlists_move_to_gpu(params->request, vmas);
989         if (ret)
990                 return ret;
991
992         if (engine == &dev_priv->engine[RCS] &&
993             instp_mode != dev_priv->relative_constants_mode) {
994                 ret = intel_logical_ring_begin(params->request, 4);
995                 if (ret)
996                         return ret;
997
998                 intel_logical_ring_emit(ringbuf, MI_NOOP);
999                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
1000                 intel_logical_ring_emit_reg(ringbuf, INSTPM);
1001                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
1002                 intel_logical_ring_advance(ringbuf);
1003
1004                 dev_priv->relative_constants_mode = instp_mode;
1005         }
1006
1007         exec_start = params->batch_obj_vm_offset +
1008                      args->batch_start_offset;
1009
1010         ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1011         if (ret)
1012                 return ret;
1013
1014         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1015
1016         i915_gem_execbuffer_move_to_active(vmas, params->request);
1017         i915_gem_execbuffer_retire_commands(params);
1018
1019         return 0;
1020 }
1021
1022 void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1023 {
1024         struct drm_i915_gem_request *req, *tmp;
1025         struct list_head retired_list;
1026
1027         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1028         if (list_empty(&engine->execlist_retired_req_list))
1029                 return;
1030
1031         INIT_LIST_HEAD(&retired_list);
1032         spin_lock_bh(&engine->execlist_lock);
1033         list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1034         spin_unlock_bh(&engine->execlist_lock);
1035
1036         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1037                 struct intel_context *ctx = req->ctx;
1038                 struct drm_i915_gem_object *ctx_obj =
1039                                 ctx->engine[engine->id].state;
1040
1041                 if (ctx_obj && (ctx != req->i915->kernel_context))
1042                         intel_lr_context_unpin(ctx, engine);
1043
1044                 list_del(&req->execlist_link);
1045                 i915_gem_request_unreference(req);
1046         }
1047 }
1048
1049 void intel_logical_ring_stop(struct intel_engine_cs *engine)
1050 {
1051         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1052         int ret;
1053
1054         if (!intel_engine_initialized(engine))
1055                 return;
1056
1057         ret = intel_engine_idle(engine);
1058         if (ret && !i915_reset_in_progress(&to_i915(engine->dev)->gpu_error))
1059                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1060                           engine->name, ret);
1061
1062         /* TODO: Is this correct with Execlists enabled? */
1063         I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1064         if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1065                 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1066                 return;
1067         }
1068         I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1069 }
1070
1071 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1072 {
1073         struct intel_engine_cs *engine = req->engine;
1074         int ret;
1075
1076         if (!engine->gpu_caches_dirty)
1077                 return 0;
1078
1079         ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1080         if (ret)
1081                 return ret;
1082
1083         engine->gpu_caches_dirty = false;
1084         return 0;
1085 }
1086
1087 static int intel_lr_context_do_pin(struct intel_context *ctx,
1088                                    struct intel_engine_cs *engine)
1089 {
1090         struct drm_device *dev = engine->dev;
1091         struct drm_i915_private *dev_priv = dev->dev_private;
1092         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1093         struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1094         void *vaddr;
1095         u32 *lrc_reg_state;
1096         int ret;
1097
1098         WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1099
1100         ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1101                         PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1102         if (ret)
1103                 return ret;
1104
1105         vaddr = i915_gem_object_pin_map(ctx_obj);
1106         if (IS_ERR(vaddr)) {
1107                 ret = PTR_ERR(vaddr);
1108                 goto unpin_ctx_obj;
1109         }
1110
1111         lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1112
1113         ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1114         if (ret)
1115                 goto unpin_map;
1116
1117         ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1118         intel_lr_context_descriptor_update(ctx, engine);
1119         lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1120         ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1121         ctx_obj->dirty = true;
1122
1123         /* Invalidate GuC TLB. */
1124         if (i915.enable_guc_submission)
1125                 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1126
1127         return ret;
1128
1129 unpin_map:
1130         i915_gem_object_unpin_map(ctx_obj);
1131 unpin_ctx_obj:
1132         i915_gem_object_ggtt_unpin(ctx_obj);
1133
1134         return ret;
1135 }
1136
1137 static int intel_lr_context_pin(struct intel_context *ctx,
1138                                 struct intel_engine_cs *engine)
1139 {
1140         int ret = 0;
1141
1142         if (ctx->engine[engine->id].pin_count++ == 0) {
1143                 ret = intel_lr_context_do_pin(ctx, engine);
1144                 if (ret)
1145                         goto reset_pin_count;
1146
1147                 i915_gem_context_reference(ctx);
1148         }
1149         return ret;
1150
1151 reset_pin_count:
1152         ctx->engine[engine->id].pin_count = 0;
1153         return ret;
1154 }
1155
1156 void intel_lr_context_unpin(struct intel_context *ctx,
1157                             struct intel_engine_cs *engine)
1158 {
1159         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1160
1161         WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1162         if (--ctx->engine[engine->id].pin_count == 0) {
1163                 i915_gem_object_unpin_map(ctx_obj);
1164                 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1165                 i915_gem_object_ggtt_unpin(ctx_obj);
1166                 ctx->engine[engine->id].lrc_vma = NULL;
1167                 ctx->engine[engine->id].lrc_desc = 0;
1168                 ctx->engine[engine->id].lrc_reg_state = NULL;
1169
1170                 i915_gem_context_unreference(ctx);
1171         }
1172 }
1173
1174 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1175 {
1176         int ret, i;
1177         struct intel_engine_cs *engine = req->engine;
1178         struct intel_ringbuffer *ringbuf = req->ringbuf;
1179         struct drm_device *dev = engine->dev;
1180         struct drm_i915_private *dev_priv = dev->dev_private;
1181         struct i915_workarounds *w = &dev_priv->workarounds;
1182
1183         if (w->count == 0)
1184                 return 0;
1185
1186         engine->gpu_caches_dirty = true;
1187         ret = logical_ring_flush_all_caches(req);
1188         if (ret)
1189                 return ret;
1190
1191         ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1192         if (ret)
1193                 return ret;
1194
1195         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1196         for (i = 0; i < w->count; i++) {
1197                 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1198                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1199         }
1200         intel_logical_ring_emit(ringbuf, MI_NOOP);
1201
1202         intel_logical_ring_advance(ringbuf);
1203
1204         engine->gpu_caches_dirty = true;
1205         ret = logical_ring_flush_all_caches(req);
1206         if (ret)
1207                 return ret;
1208
1209         return 0;
1210 }
1211
1212 #define wa_ctx_emit(batch, index, cmd)                                  \
1213         do {                                                            \
1214                 int __index = (index)++;                                \
1215                 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1216                         return -ENOSPC;                                 \
1217                 }                                                       \
1218                 batch[__index] = (cmd);                                 \
1219         } while (0)
1220
1221 #define wa_ctx_emit_reg(batch, index, reg) \
1222         wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1223
1224 /*
1225  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1226  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1227  * but there is a slight complication as this is applied in WA batch where the
1228  * values are only initialized once so we cannot take register value at the
1229  * beginning and reuse it further; hence we save its value to memory, upload a
1230  * constant value with bit21 set and then we restore it back with the saved value.
1231  * To simplify the WA, a constant value is formed by using the default value
1232  * of this register. This shouldn't be a problem because we are only modifying
1233  * it for a short period and this batch in non-premptible. We can ofcourse
1234  * use additional instructions that read the actual value of the register
1235  * at that time and set our bit of interest but it makes the WA complicated.
1236  *
1237  * This WA is also required for Gen9 so extracting as a function avoids
1238  * code duplication.
1239  */
1240 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1241                                                 uint32_t *const batch,
1242                                                 uint32_t index)
1243 {
1244         uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1245
1246         /*
1247          * WaDisableLSQCROPERFforOCL:skl
1248          * This WA is implemented in skl_init_clock_gating() but since
1249          * this batch updates GEN8_L3SQCREG4 with default value we need to
1250          * set this bit here to retain the WA during flush.
1251          */
1252         if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1253                 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1254
1255         wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1256                                    MI_SRM_LRM_GLOBAL_GTT));
1257         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1258         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1259         wa_ctx_emit(batch, index, 0);
1260
1261         wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1262         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1263         wa_ctx_emit(batch, index, l3sqc4_flush);
1264
1265         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266         wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1267                                    PIPE_CONTROL_DC_FLUSH_ENABLE));
1268         wa_ctx_emit(batch, index, 0);
1269         wa_ctx_emit(batch, index, 0);
1270         wa_ctx_emit(batch, index, 0);
1271         wa_ctx_emit(batch, index, 0);
1272
1273         wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1274                                    MI_SRM_LRM_GLOBAL_GTT));
1275         wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1276         wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1277         wa_ctx_emit(batch, index, 0);
1278
1279         return index;
1280 }
1281
1282 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1283                                     uint32_t offset,
1284                                     uint32_t start_alignment)
1285 {
1286         return wa_ctx->offset = ALIGN(offset, start_alignment);
1287 }
1288
1289 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1290                              uint32_t offset,
1291                              uint32_t size_alignment)
1292 {
1293         wa_ctx->size = offset - wa_ctx->offset;
1294
1295         WARN(wa_ctx->size % size_alignment,
1296              "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1297              wa_ctx->size, size_alignment);
1298         return 0;
1299 }
1300
1301 /**
1302  * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1303  *
1304  * @ring: only applicable for RCS
1305  * @wa_ctx: structure representing wa_ctx
1306  *  offset: specifies start of the batch, should be cache-aligned. This is updated
1307  *    with the offset value received as input.
1308  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1309  * @batch: page in which WA are loaded
1310  * @offset: This field specifies the start of the batch, it should be
1311  *  cache-aligned otherwise it is adjusted accordingly.
1312  *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
1313  *  initialized at the beginning and shared across all contexts but this field
1314  *  helps us to have multiple batches at different offsets and select them based
1315  *  on a criteria. At the moment this batch always start at the beginning of the page
1316  *  and at this point we don't have multiple wa_ctx batch buffers.
1317  *
1318  *  The number of WA applied are not known at the beginning; we use this field
1319  *  to return the no of DWORDS written.
1320  *
1321  *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1322  *  so it adds NOOPs as padding to make it cacheline aligned.
1323  *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1324  *  makes a complete batch buffer.
1325  *
1326  * Return: non-zero if we exceed the PAGE_SIZE limit.
1327  */
1328
1329 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1330                                     struct i915_wa_ctx_bb *wa_ctx,
1331                                     uint32_t *const batch,
1332                                     uint32_t *offset)
1333 {
1334         uint32_t scratch_addr;
1335         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1336
1337         /* WaDisableCtxRestoreArbitration:bdw,chv */
1338         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1339
1340         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1341         if (IS_BROADWELL(engine->dev)) {
1342                 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1343                 if (rc < 0)
1344                         return rc;
1345                 index = rc;
1346         }
1347
1348         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1349         /* Actual scratch location is at 128 bytes offset */
1350         scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1351
1352         wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1353         wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1354                                    PIPE_CONTROL_GLOBAL_GTT_IVB |
1355                                    PIPE_CONTROL_CS_STALL |
1356                                    PIPE_CONTROL_QW_WRITE));
1357         wa_ctx_emit(batch, index, scratch_addr);
1358         wa_ctx_emit(batch, index, 0);
1359         wa_ctx_emit(batch, index, 0);
1360         wa_ctx_emit(batch, index, 0);
1361
1362         /* Pad to end of cacheline */
1363         while (index % CACHELINE_DWORDS)
1364                 wa_ctx_emit(batch, index, MI_NOOP);
1365
1366         /*
1367          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1368          * execution depends on the length specified in terms of cache lines
1369          * in the register CTX_RCS_INDIRECT_CTX
1370          */
1371
1372         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1373 }
1374
1375 /**
1376  * gen8_init_perctx_bb() - initialize per ctx batch with WA
1377  *
1378  * @ring: only applicable for RCS
1379  * @wa_ctx: structure representing wa_ctx
1380  *  offset: specifies start of the batch, should be cache-aligned.
1381  *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1382  * @batch: page in which WA are loaded
1383  * @offset: This field specifies the start of this batch.
1384  *   This batch is started immediately after indirect_ctx batch. Since we ensure
1385  *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
1386  *
1387  *   The number of DWORDS written are returned using this field.
1388  *
1389  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1390  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1391  */
1392 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1393                                struct i915_wa_ctx_bb *wa_ctx,
1394                                uint32_t *const batch,
1395                                uint32_t *offset)
1396 {
1397         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1398
1399         /* WaDisableCtxRestoreArbitration:bdw,chv */
1400         wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1401
1402         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1403
1404         return wa_ctx_end(wa_ctx, *offset = index, 1);
1405 }
1406
1407 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1408                                     struct i915_wa_ctx_bb *wa_ctx,
1409                                     uint32_t *const batch,
1410                                     uint32_t *offset)
1411 {
1412         int ret;
1413         struct drm_device *dev = engine->dev;
1414         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1415
1416         /* WaDisableCtxRestoreArbitration:skl,bxt */
1417         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1418             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1419                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1420
1421         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1422         ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1423         if (ret < 0)
1424                 return ret;
1425         index = ret;
1426
1427         /* Pad to end of cacheline */
1428         while (index % CACHELINE_DWORDS)
1429                 wa_ctx_emit(batch, index, MI_NOOP);
1430
1431         return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1432 }
1433
1434 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1435                                struct i915_wa_ctx_bb *wa_ctx,
1436                                uint32_t *const batch,
1437                                uint32_t *offset)
1438 {
1439         struct drm_device *dev = engine->dev;
1440         uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1441
1442         /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1443         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1444             IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1445                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1446                 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1447                 wa_ctx_emit(batch, index,
1448                             _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1449                 wa_ctx_emit(batch, index, MI_NOOP);
1450         }
1451
1452         /* WaClearTdlStateAckDirtyBits:bxt */
1453         if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1454                 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1455
1456                 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1457                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1458
1459                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1460                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1461
1462                 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1463                 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1464
1465                 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1466                 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1467                 wa_ctx_emit(batch, index, 0x0);
1468                 wa_ctx_emit(batch, index, MI_NOOP);
1469         }
1470
1471         /* WaDisableCtxRestoreArbitration:skl,bxt */
1472         if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1473             IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1474                 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1475
1476         wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1477
1478         return wa_ctx_end(wa_ctx, *offset = index, 1);
1479 }
1480
1481 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1482 {
1483         int ret;
1484
1485         engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1486                                                    PAGE_ALIGN(size));
1487         if (!engine->wa_ctx.obj) {
1488                 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1489                 return -ENOMEM;
1490         }
1491
1492         ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1493         if (ret) {
1494                 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1495                                  ret);
1496                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1497                 return ret;
1498         }
1499
1500         return 0;
1501 }
1502
1503 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1504 {
1505         if (engine->wa_ctx.obj) {
1506                 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1507                 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1508                 engine->wa_ctx.obj = NULL;
1509         }
1510 }
1511
1512 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1513 {
1514         int ret;
1515         uint32_t *batch;
1516         uint32_t offset;
1517         struct page *page;
1518         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1519
1520         WARN_ON(engine->id != RCS);
1521
1522         /* update this when WA for higher Gen are added */
1523         if (INTEL_INFO(engine->dev)->gen > 9) {
1524                 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1525                           INTEL_INFO(engine->dev)->gen);
1526                 return 0;
1527         }
1528
1529         /* some WA perform writes to scratch page, ensure it is valid */
1530         if (engine->scratch.obj == NULL) {
1531                 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1532                 return -EINVAL;
1533         }
1534
1535         ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1536         if (ret) {
1537                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1538                 return ret;
1539         }
1540
1541         page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1542         batch = kmap_atomic(page);
1543         offset = 0;
1544
1545         if (INTEL_INFO(engine->dev)->gen == 8) {
1546                 ret = gen8_init_indirectctx_bb(engine,
1547                                                &wa_ctx->indirect_ctx,
1548                                                batch,
1549                                                &offset);
1550                 if (ret)
1551                         goto out;
1552
1553                 ret = gen8_init_perctx_bb(engine,
1554                                           &wa_ctx->per_ctx,
1555                                           batch,
1556                                           &offset);
1557                 if (ret)
1558                         goto out;
1559         } else if (INTEL_INFO(engine->dev)->gen == 9) {
1560                 ret = gen9_init_indirectctx_bb(engine,
1561                                                &wa_ctx->indirect_ctx,
1562                                                batch,
1563                                                &offset);
1564                 if (ret)
1565                         goto out;
1566
1567                 ret = gen9_init_perctx_bb(engine,
1568                                           &wa_ctx->per_ctx,
1569                                           batch,
1570                                           &offset);
1571                 if (ret)
1572                         goto out;
1573         }
1574
1575 out:
1576         kunmap_atomic(batch);
1577         if (ret)
1578                 lrc_destroy_wa_ctx_obj(engine);
1579
1580         return ret;
1581 }
1582
1583 static void lrc_init_hws(struct intel_engine_cs *engine)
1584 {
1585         struct drm_i915_private *dev_priv = engine->dev->dev_private;
1586
1587         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1588                    (u32)engine->status_page.gfx_addr);
1589         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1590 }
1591
1592 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1593 {
1594         struct drm_device *dev = engine->dev;
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596         unsigned int next_context_status_buffer_hw;
1597
1598         lrc_init_hws(engine);
1599
1600         I915_WRITE_IMR(engine,
1601                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1602         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1603
1604         I915_WRITE(RING_MODE_GEN7(engine),
1605                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1606                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1607         POSTING_READ(RING_MODE_GEN7(engine));
1608
1609         /*
1610          * Instead of resetting the Context Status Buffer (CSB) read pointer to
1611          * zero, we need to read the write pointer from hardware and use its
1612          * value because "this register is power context save restored".
1613          * Effectively, these states have been observed:
1614          *
1615          *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1616          * BDW  | CSB regs not reset       | CSB regs reset       |
1617          * CHT  | CSB regs not reset       | CSB regs not reset   |
1618          * SKL  |         ?                |         ?            |
1619          * BXT  |         ?                |         ?            |
1620          */
1621         next_context_status_buffer_hw =
1622                 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1623
1624         /*
1625          * When the CSB registers are reset (also after power-up / gpu reset),
1626          * CSB write pointer is set to all 1's, which is not valid, use '5' in
1627          * this special case, so the first element read is CSB[0].
1628          */
1629         if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1630                 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1631
1632         engine->next_context_status_buffer = next_context_status_buffer_hw;
1633         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1634
1635         intel_engine_init_hangcheck(engine);
1636
1637         return 0;
1638 }
1639
1640 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1641 {
1642         struct drm_device *dev = engine->dev;
1643         struct drm_i915_private *dev_priv = dev->dev_private;
1644         int ret;
1645
1646         ret = gen8_init_common_ring(engine);
1647         if (ret)
1648                 return ret;
1649
1650         /* We need to disable the AsyncFlip performance optimisations in order
1651          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1652          * programmed to '1' on all products.
1653          *
1654          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1655          */
1656         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1657
1658         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1659
1660         return init_workarounds_ring(engine);
1661 }
1662
1663 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1664 {
1665         int ret;
1666
1667         ret = gen8_init_common_ring(engine);
1668         if (ret)
1669                 return ret;
1670
1671         return init_workarounds_ring(engine);
1672 }
1673
1674 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1675 {
1676         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1677         struct intel_engine_cs *engine = req->engine;
1678         struct intel_ringbuffer *ringbuf = req->ringbuf;
1679         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1680         int i, ret;
1681
1682         ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1683         if (ret)
1684                 return ret;
1685
1686         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1687         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1688                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1689
1690                 intel_logical_ring_emit_reg(ringbuf,
1691                                             GEN8_RING_PDP_UDW(engine, i));
1692                 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1693                 intel_logical_ring_emit_reg(ringbuf,
1694                                             GEN8_RING_PDP_LDW(engine, i));
1695                 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1696         }
1697
1698         intel_logical_ring_emit(ringbuf, MI_NOOP);
1699         intel_logical_ring_advance(ringbuf);
1700
1701         return 0;
1702 }
1703
1704 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1705                               u64 offset, unsigned dispatch_flags)
1706 {
1707         struct intel_ringbuffer *ringbuf = req->ringbuf;
1708         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1709         int ret;
1710
1711         /* Don't rely in hw updating PDPs, specially in lite-restore.
1712          * Ideally, we should set Force PD Restore in ctx descriptor,
1713          * but we can't. Force Restore would be a second option, but
1714          * it is unsafe in case of lite-restore (because the ctx is
1715          * not idle). PML4 is allocated during ppgtt init so this is
1716          * not needed in 48-bit.*/
1717         if (req->ctx->ppgtt &&
1718             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1719                 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1720                     !intel_vgpu_active(req->i915->dev)) {
1721                         ret = intel_logical_ring_emit_pdps(req);
1722                         if (ret)
1723                                 return ret;
1724                 }
1725
1726                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1727         }
1728
1729         ret = intel_logical_ring_begin(req, 4);
1730         if (ret)
1731                 return ret;
1732
1733         /* FIXME(BDW): Address space and security selectors. */
1734         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1735                                 (ppgtt<<8) |
1736                                 (dispatch_flags & I915_DISPATCH_RS ?
1737                                  MI_BATCH_RESOURCE_STREAMER : 0));
1738         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1739         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1740         intel_logical_ring_emit(ringbuf, MI_NOOP);
1741         intel_logical_ring_advance(ringbuf);
1742
1743         return 0;
1744 }
1745
1746 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1747 {
1748         struct drm_device *dev = engine->dev;
1749         struct drm_i915_private *dev_priv = dev->dev_private;
1750         unsigned long flags;
1751
1752         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1753                 return false;
1754
1755         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1756         if (engine->irq_refcount++ == 0) {
1757                 I915_WRITE_IMR(engine,
1758                                ~(engine->irq_enable_mask | engine->irq_keep_mask));
1759                 POSTING_READ(RING_IMR(engine->mmio_base));
1760         }
1761         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1762
1763         return true;
1764 }
1765
1766 static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1767 {
1768         struct drm_device *dev = engine->dev;
1769         struct drm_i915_private *dev_priv = dev->dev_private;
1770         unsigned long flags;
1771
1772         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1773         if (--engine->irq_refcount == 0) {
1774                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1775                 POSTING_READ(RING_IMR(engine->mmio_base));
1776         }
1777         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1778 }
1779
1780 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1781                            u32 invalidate_domains,
1782                            u32 unused)
1783 {
1784         struct intel_ringbuffer *ringbuf = request->ringbuf;
1785         struct intel_engine_cs *engine = ringbuf->engine;
1786         struct drm_device *dev = engine->dev;
1787         struct drm_i915_private *dev_priv = dev->dev_private;
1788         uint32_t cmd;
1789         int ret;
1790
1791         ret = intel_logical_ring_begin(request, 4);
1792         if (ret)
1793                 return ret;
1794
1795         cmd = MI_FLUSH_DW + 1;
1796
1797         /* We always require a command barrier so that subsequent
1798          * commands, such as breadcrumb interrupts, are strictly ordered
1799          * wrt the contents of the write cache being flushed to memory
1800          * (and thus being coherent from the CPU).
1801          */
1802         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1803
1804         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1805                 cmd |= MI_INVALIDATE_TLB;
1806                 if (engine == &dev_priv->engine[VCS])
1807                         cmd |= MI_INVALIDATE_BSD;
1808         }
1809
1810         intel_logical_ring_emit(ringbuf, cmd);
1811         intel_logical_ring_emit(ringbuf,
1812                                 I915_GEM_HWS_SCRATCH_ADDR |
1813                                 MI_FLUSH_DW_USE_GTT);
1814         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1815         intel_logical_ring_emit(ringbuf, 0); /* value */
1816         intel_logical_ring_advance(ringbuf);
1817
1818         return 0;
1819 }
1820
1821 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1822                                   u32 invalidate_domains,
1823                                   u32 flush_domains)
1824 {
1825         struct intel_ringbuffer *ringbuf = request->ringbuf;
1826         struct intel_engine_cs *engine = ringbuf->engine;
1827         u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1828         bool vf_flush_wa = false;
1829         u32 flags = 0;
1830         int ret;
1831
1832         flags |= PIPE_CONTROL_CS_STALL;
1833
1834         if (flush_domains) {
1835                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1836                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1837                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1838                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1839         }
1840
1841         if (invalidate_domains) {
1842                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1843                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1844                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1845                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1846                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1847                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1848                 flags |= PIPE_CONTROL_QW_WRITE;
1849                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1850
1851                 /*
1852                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1853                  * pipe control.
1854                  */
1855                 if (IS_GEN9(engine->dev))
1856                         vf_flush_wa = true;
1857         }
1858
1859         ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1860         if (ret)
1861                 return ret;
1862
1863         if (vf_flush_wa) {
1864                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1865                 intel_logical_ring_emit(ringbuf, 0);
1866                 intel_logical_ring_emit(ringbuf, 0);
1867                 intel_logical_ring_emit(ringbuf, 0);
1868                 intel_logical_ring_emit(ringbuf, 0);
1869                 intel_logical_ring_emit(ringbuf, 0);
1870         }
1871
1872         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1873         intel_logical_ring_emit(ringbuf, flags);
1874         intel_logical_ring_emit(ringbuf, scratch_addr);
1875         intel_logical_ring_emit(ringbuf, 0);
1876         intel_logical_ring_emit(ringbuf, 0);
1877         intel_logical_ring_emit(ringbuf, 0);
1878         intel_logical_ring_advance(ringbuf);
1879
1880         return 0;
1881 }
1882
1883 static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1884 {
1885         return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1886 }
1887
1888 static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1889 {
1890         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1891 }
1892
1893 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1894 {
1895         /*
1896          * On BXT A steppings there is a HW coherency issue whereby the
1897          * MI_STORE_DATA_IMM storing the completed request's seqno
1898          * occasionally doesn't invalidate the CPU cache. Work around this by
1899          * clflushing the corresponding cacheline whenever the caller wants
1900          * the coherency to be guaranteed. Note that this cacheline is known
1901          * to be clean at this point, since we only write it in
1902          * bxt_a_set_seqno(), where we also do a clflush after the write. So
1903          * this clflush in practice becomes an invalidate operation.
1904          */
1905         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1906 }
1907
1908 static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1909 {
1910         intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1911
1912         /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1913         intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1914 }
1915
1916 /*
1917  * Reserve space for 2 NOOPs at the end of each request to be
1918  * used as a workaround for not being allowed to do lite
1919  * restore with HEAD==TAIL (WaIdleLiteRestore).
1920  */
1921 #define WA_TAIL_DWORDS 2
1922
1923 static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1924 {
1925         return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1926 }
1927
1928 static int gen8_emit_request(struct drm_i915_gem_request *request)
1929 {
1930         struct intel_ringbuffer *ringbuf = request->ringbuf;
1931         int ret;
1932
1933         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1934         if (ret)
1935                 return ret;
1936
1937         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1938         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1939
1940         intel_logical_ring_emit(ringbuf,
1941                                 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1942         intel_logical_ring_emit(ringbuf,
1943                                 hws_seqno_address(request->engine) |
1944                                 MI_FLUSH_DW_USE_GTT);
1945         intel_logical_ring_emit(ringbuf, 0);
1946         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1947         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1948         intel_logical_ring_emit(ringbuf, MI_NOOP);
1949         return intel_logical_ring_advance_and_submit(request);
1950 }
1951
1952 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1953 {
1954         struct intel_ringbuffer *ringbuf = request->ringbuf;
1955         int ret;
1956
1957         ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1958         if (ret)
1959                 return ret;
1960
1961         /* w/a for post sync ops following a GPGPU operation we
1962          * need a prior CS_STALL, which is emitted by the flush
1963          * following the batch.
1964          */
1965         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
1966         intel_logical_ring_emit(ringbuf,
1967                                 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1968                                  PIPE_CONTROL_CS_STALL |
1969                                  PIPE_CONTROL_QW_WRITE));
1970         intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1971         intel_logical_ring_emit(ringbuf, 0);
1972         intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1973         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1974         return intel_logical_ring_advance_and_submit(request);
1975 }
1976
1977 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1978 {
1979         struct render_state so;
1980         int ret;
1981
1982         ret = i915_gem_render_state_prepare(req->engine, &so);
1983         if (ret)
1984                 return ret;
1985
1986         if (so.rodata == NULL)
1987                 return 0;
1988
1989         ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1990                                        I915_DISPATCH_SECURE);
1991         if (ret)
1992                 goto out;
1993
1994         ret = req->engine->emit_bb_start(req,
1995                                        (so.ggtt_offset + so.aux_batch_offset),
1996                                        I915_DISPATCH_SECURE);
1997         if (ret)
1998                 goto out;
1999
2000         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
2001
2002 out:
2003         i915_gem_render_state_fini(&so);
2004         return ret;
2005 }
2006
2007 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2008 {
2009         int ret;
2010
2011         ret = intel_logical_ring_workarounds_emit(req);
2012         if (ret)
2013                 return ret;
2014
2015         ret = intel_rcs_context_init_mocs(req);
2016         /*
2017          * Failing to program the MOCS is non-fatal.The system will not
2018          * run at peak performance. So generate an error and carry on.
2019          */
2020         if (ret)
2021                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2022
2023         return intel_lr_context_render_state_init(req);
2024 }
2025
2026 /**
2027  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2028  *
2029  * @ring: Engine Command Streamer.
2030  *
2031  */
2032 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2033 {
2034         struct drm_i915_private *dev_priv;
2035
2036         if (!intel_engine_initialized(engine))
2037                 return;
2038
2039         /*
2040          * Tasklet cannot be active at this point due intel_mark_active/idle
2041          * so this is just for documentation.
2042          */
2043         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2044                 tasklet_kill(&engine->irq_tasklet);
2045
2046         dev_priv = engine->dev->dev_private;
2047
2048         if (engine->buffer) {
2049                 intel_logical_ring_stop(engine);
2050                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2051         }
2052
2053         if (engine->cleanup)
2054                 engine->cleanup(engine);
2055
2056         i915_cmd_parser_fini_ring(engine);
2057         i915_gem_batch_pool_fini(&engine->batch_pool);
2058
2059         if (engine->status_page.obj) {
2060                 i915_gem_object_unpin_map(engine->status_page.obj);
2061                 engine->status_page.obj = NULL;
2062         }
2063
2064         engine->idle_lite_restore_wa = 0;
2065         engine->disable_lite_restore_wa = false;
2066         engine->ctx_desc_template = 0;
2067
2068         lrc_destroy_wa_ctx_obj(engine);
2069         engine->dev = NULL;
2070 }
2071
2072 static void
2073 logical_ring_default_vfuncs(struct drm_device *dev,
2074                             struct intel_engine_cs *engine)
2075 {
2076         /* Default vfuncs which can be overriden by each engine. */
2077         engine->init_hw = gen8_init_common_ring;
2078         engine->emit_request = gen8_emit_request;
2079         engine->emit_flush = gen8_emit_flush;
2080         engine->irq_get = gen8_logical_ring_get_irq;
2081         engine->irq_put = gen8_logical_ring_put_irq;
2082         engine->emit_bb_start = gen8_emit_bb_start;
2083         engine->get_seqno = gen8_get_seqno;
2084         engine->set_seqno = gen8_set_seqno;
2085         if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2086                 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2087                 engine->set_seqno = bxt_a_set_seqno;
2088         }
2089 }
2090
2091 static inline void
2092 logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2093 {
2094         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2095         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2096 }
2097
2098 static int
2099 lrc_setup_hws(struct intel_engine_cs *engine,
2100               struct drm_i915_gem_object *dctx_obj)
2101 {
2102         void *hws;
2103
2104         /* The HWSP is part of the default context object in LRC mode. */
2105         engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2106                                        LRC_PPHWSP_PN * PAGE_SIZE;
2107         hws = i915_gem_object_pin_map(dctx_obj);
2108         if (IS_ERR(hws))
2109                 return PTR_ERR(hws);
2110         engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2111         engine->status_page.obj = dctx_obj;
2112
2113         return 0;
2114 }
2115
2116 static int
2117 logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2118 {
2119         struct drm_i915_private *dev_priv = to_i915(dev);
2120         struct intel_context *dctx = dev_priv->kernel_context;
2121         enum forcewake_domains fw_domains;
2122         int ret;
2123
2124         /* Intentionally left blank. */
2125         engine->buffer = NULL;
2126
2127         engine->dev = dev;
2128         INIT_LIST_HEAD(&engine->active_list);
2129         INIT_LIST_HEAD(&engine->request_list);
2130         i915_gem_batch_pool_init(dev, &engine->batch_pool);
2131         init_waitqueue_head(&engine->irq_queue);
2132
2133         INIT_LIST_HEAD(&engine->buffers);
2134         INIT_LIST_HEAD(&engine->execlist_queue);
2135         INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2136         spin_lock_init(&engine->execlist_lock);
2137
2138         tasklet_init(&engine->irq_tasklet,
2139                      intel_lrc_irq_handler, (unsigned long)engine);
2140
2141         logical_ring_init_platform_invariants(engine);
2142
2143         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2144                                                     RING_ELSP(engine),
2145                                                     FW_REG_WRITE);
2146
2147         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2148                                                      RING_CONTEXT_STATUS_PTR(engine),
2149                                                      FW_REG_READ | FW_REG_WRITE);
2150
2151         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2152                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2153                                                      FW_REG_READ);
2154
2155         engine->fw_domains = fw_domains;
2156
2157         ret = i915_cmd_parser_init_ring(engine);
2158         if (ret)
2159                 goto error;
2160
2161         ret = intel_lr_context_deferred_alloc(dctx, engine);
2162         if (ret)
2163                 goto error;
2164
2165         /* As this is the default context, always pin it */
2166         ret = intel_lr_context_do_pin(dctx, engine);
2167         if (ret) {
2168                 DRM_ERROR(
2169                         "Failed to pin and map ringbuffer %s: %d\n",
2170                         engine->name, ret);
2171                 goto error;
2172         }
2173
2174         /* And setup the hardware status page. */
2175         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2176         if (ret) {
2177                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2178                 goto error;
2179         }
2180
2181         return 0;
2182
2183 error:
2184         intel_logical_ring_cleanup(engine);
2185         return ret;
2186 }
2187
2188 static int logical_render_ring_init(struct drm_device *dev)
2189 {
2190         struct drm_i915_private *dev_priv = dev->dev_private;
2191         struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2192         int ret;
2193
2194         engine->name = "render ring";
2195         engine->id = RCS;
2196         engine->exec_id = I915_EXEC_RENDER;
2197         engine->guc_id = GUC_RENDER_ENGINE;
2198         engine->mmio_base = RENDER_RING_BASE;
2199
2200         logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2201         if (HAS_L3_DPF(dev))
2202                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2203
2204         logical_ring_default_vfuncs(dev, engine);
2205
2206         /* Override some for render ring. */
2207         if (INTEL_INFO(dev)->gen >= 9)
2208                 engine->init_hw = gen9_init_render_ring;
2209         else
2210                 engine->init_hw = gen8_init_render_ring;
2211         engine->init_context = gen8_init_rcs_context;
2212         engine->cleanup = intel_fini_pipe_control;
2213         engine->emit_flush = gen8_emit_flush_render;
2214         engine->emit_request = gen8_emit_request_render;
2215
2216         engine->dev = dev;
2217
2218         ret = intel_init_pipe_control(engine);
2219         if (ret)
2220                 return ret;
2221
2222         ret = intel_init_workaround_bb(engine);
2223         if (ret) {
2224                 /*
2225                  * We continue even if we fail to initialize WA batch
2226                  * because we only expect rare glitches but nothing
2227                  * critical to prevent us from using GPU
2228                  */
2229                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2230                           ret);
2231         }
2232
2233         ret = logical_ring_init(dev, engine);
2234         if (ret) {
2235                 lrc_destroy_wa_ctx_obj(engine);
2236         }
2237
2238         return ret;
2239 }
2240
2241 static int logical_bsd_ring_init(struct drm_device *dev)
2242 {
2243         struct drm_i915_private *dev_priv = dev->dev_private;
2244         struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2245
2246         engine->name = "bsd ring";
2247         engine->id = VCS;
2248         engine->exec_id = I915_EXEC_BSD;
2249         engine->guc_id = GUC_VIDEO_ENGINE;
2250         engine->mmio_base = GEN6_BSD_RING_BASE;
2251
2252         logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2253         logical_ring_default_vfuncs(dev, engine);
2254
2255         return logical_ring_init(dev, engine);
2256 }
2257
2258 static int logical_bsd2_ring_init(struct drm_device *dev)
2259 {
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2262
2263         engine->name = "bsd2 ring";
2264         engine->id = VCS2;
2265         engine->exec_id = I915_EXEC_BSD;
2266         engine->guc_id = GUC_VIDEO_ENGINE2;
2267         engine->mmio_base = GEN8_BSD2_RING_BASE;
2268
2269         logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2270         logical_ring_default_vfuncs(dev, engine);
2271
2272         return logical_ring_init(dev, engine);
2273 }
2274
2275 static int logical_blt_ring_init(struct drm_device *dev)
2276 {
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2279
2280         engine->name = "blitter ring";
2281         engine->id = BCS;
2282         engine->exec_id = I915_EXEC_BLT;
2283         engine->guc_id = GUC_BLITTER_ENGINE;
2284         engine->mmio_base = BLT_RING_BASE;
2285
2286         logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2287         logical_ring_default_vfuncs(dev, engine);
2288
2289         return logical_ring_init(dev, engine);
2290 }
2291
2292 static int logical_vebox_ring_init(struct drm_device *dev)
2293 {
2294         struct drm_i915_private *dev_priv = dev->dev_private;
2295         struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2296
2297         engine->name = "video enhancement ring";
2298         engine->id = VECS;
2299         engine->exec_id = I915_EXEC_VEBOX;
2300         engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2301         engine->mmio_base = VEBOX_RING_BASE;
2302
2303         logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2304         logical_ring_default_vfuncs(dev, engine);
2305
2306         return logical_ring_init(dev, engine);
2307 }
2308
2309 /**
2310  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2311  * @dev: DRM device.
2312  *
2313  * This function inits the engines for an Execlists submission style (the equivalent in the
2314  * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2315  * those engines that are present in the hardware.
2316  *
2317  * Return: non-zero if the initialization failed.
2318  */
2319 int intel_logical_rings_init(struct drm_device *dev)
2320 {
2321         struct drm_i915_private *dev_priv = dev->dev_private;
2322         int ret;
2323
2324         ret = logical_render_ring_init(dev);
2325         if (ret)
2326                 return ret;
2327
2328         if (HAS_BSD(dev)) {
2329                 ret = logical_bsd_ring_init(dev);
2330                 if (ret)
2331                         goto cleanup_render_ring;
2332         }
2333
2334         if (HAS_BLT(dev)) {
2335                 ret = logical_blt_ring_init(dev);
2336                 if (ret)
2337                         goto cleanup_bsd_ring;
2338         }
2339
2340         if (HAS_VEBOX(dev)) {
2341                 ret = logical_vebox_ring_init(dev);
2342                 if (ret)
2343                         goto cleanup_blt_ring;
2344         }
2345
2346         if (HAS_BSD2(dev)) {
2347                 ret = logical_bsd2_ring_init(dev);
2348                 if (ret)
2349                         goto cleanup_vebox_ring;
2350         }
2351
2352         return 0;
2353
2354 cleanup_vebox_ring:
2355         intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2356 cleanup_blt_ring:
2357         intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2358 cleanup_bsd_ring:
2359         intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2360 cleanup_render_ring:
2361         intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2362
2363         return ret;
2364 }
2365
2366 static u32
2367 make_rpcs(struct drm_device *dev)
2368 {
2369         u32 rpcs = 0;
2370
2371         /*
2372          * No explicit RPCS request is needed to ensure full
2373          * slice/subslice/EU enablement prior to Gen9.
2374         */
2375         if (INTEL_INFO(dev)->gen < 9)
2376                 return 0;
2377
2378         /*
2379          * Starting in Gen9, render power gating can leave
2380          * slice/subslice/EU in a partially enabled state. We
2381          * must make an explicit request through RPCS for full
2382          * enablement.
2383         */
2384         if (INTEL_INFO(dev)->has_slice_pg) {
2385                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2386                 rpcs |= INTEL_INFO(dev)->slice_total <<
2387                         GEN8_RPCS_S_CNT_SHIFT;
2388                 rpcs |= GEN8_RPCS_ENABLE;
2389         }
2390
2391         if (INTEL_INFO(dev)->has_subslice_pg) {
2392                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2393                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2394                         GEN8_RPCS_SS_CNT_SHIFT;
2395                 rpcs |= GEN8_RPCS_ENABLE;
2396         }
2397
2398         if (INTEL_INFO(dev)->has_eu_pg) {
2399                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2400                         GEN8_RPCS_EU_MIN_SHIFT;
2401                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2402                         GEN8_RPCS_EU_MAX_SHIFT;
2403                 rpcs |= GEN8_RPCS_ENABLE;
2404         }
2405
2406         return rpcs;
2407 }
2408
2409 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2410 {
2411         u32 indirect_ctx_offset;
2412
2413         switch (INTEL_INFO(engine->dev)->gen) {
2414         default:
2415                 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2416                 /* fall through */
2417         case 9:
2418                 indirect_ctx_offset =
2419                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2420                 break;
2421         case 8:
2422                 indirect_ctx_offset =
2423                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2424                 break;
2425         }
2426
2427         return indirect_ctx_offset;
2428 }
2429
2430 static int
2431 populate_lr_context(struct intel_context *ctx,
2432                     struct drm_i915_gem_object *ctx_obj,
2433                     struct intel_engine_cs *engine,
2434                     struct intel_ringbuffer *ringbuf)
2435 {
2436         struct drm_device *dev = engine->dev;
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2439         void *vaddr;
2440         u32 *reg_state;
2441         int ret;
2442
2443         if (!ppgtt)
2444                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2445
2446         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2447         if (ret) {
2448                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2449                 return ret;
2450         }
2451
2452         vaddr = i915_gem_object_pin_map(ctx_obj);
2453         if (IS_ERR(vaddr)) {
2454                 ret = PTR_ERR(vaddr);
2455                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2456                 return ret;
2457         }
2458         ctx_obj->dirty = true;
2459
2460         /* The second page of the context object contains some fields which must
2461          * be set up prior to the first execution. */
2462         reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2463
2464         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2465          * commands followed by (reg, value) pairs. The values we are setting here are
2466          * only for the first context restore: on a subsequent save, the GPU will
2467          * recreate this batchbuffer with new values (including all the missing
2468          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2469         reg_state[CTX_LRI_HEADER_0] =
2470                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2471         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2472                        RING_CONTEXT_CONTROL(engine),
2473                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2474                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2475                                           (HAS_RESOURCE_STREAMER(dev) ?
2476                                             CTX_CTRL_RS_CTX_ENABLE : 0)));
2477         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2478                        0);
2479         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2480                        0);
2481         /* Ring buffer start address is not known until the buffer is pinned.
2482          * It is written to the context image in execlists_update_context()
2483          */
2484         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2485                        RING_START(engine->mmio_base), 0);
2486         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2487                        RING_CTL(engine->mmio_base),
2488                        ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2489         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2490                        RING_BBADDR_UDW(engine->mmio_base), 0);
2491         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2492                        RING_BBADDR(engine->mmio_base), 0);
2493         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2494                        RING_BBSTATE(engine->mmio_base),
2495                        RING_BB_PPGTT);
2496         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2497                        RING_SBBADDR_UDW(engine->mmio_base), 0);
2498         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2499                        RING_SBBADDR(engine->mmio_base), 0);
2500         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2501                        RING_SBBSTATE(engine->mmio_base), 0);
2502         if (engine->id == RCS) {
2503                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2504                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2505                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2506                                RING_INDIRECT_CTX(engine->mmio_base), 0);
2507                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2508                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2509                 if (engine->wa_ctx.obj) {
2510                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2511                         uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2512
2513                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
2514                                 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2515                                 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2516
2517                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2518                                 intel_lr_indirect_ctx_offset(engine) << 6;
2519
2520                         reg_state[CTX_BB_PER_CTX_PTR+1] =
2521                                 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2522                                 0x01;
2523                 }
2524         }
2525         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2526         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2527                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2528         /* PDP values well be assigned later if needed */
2529         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2530                        0);
2531         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2532                        0);
2533         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2534                        0);
2535         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2536                        0);
2537         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2538                        0);
2539         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2540                        0);
2541         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2542                        0);
2543         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2544                        0);
2545
2546         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2547                 /* 64b PPGTT (48bit canonical)
2548                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2549                  * other PDP Descriptors are ignored.
2550                  */
2551                 ASSIGN_CTX_PML4(ppgtt, reg_state);
2552         } else {
2553                 /* 32b PPGTT
2554                  * PDP*_DESCRIPTOR contains the base address of space supported.
2555                  * With dynamic page allocation, PDPs may not be allocated at
2556                  * this point. Point the unallocated PDPs to the scratch page
2557                  */
2558                 execlists_update_context_pdps(ppgtt, reg_state);
2559         }
2560
2561         if (engine->id == RCS) {
2562                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2563                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2564                                make_rpcs(dev));
2565         }
2566
2567         i915_gem_object_unpin_map(ctx_obj);
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * intel_lr_context_free() - free the LRC specific bits of a context
2574  * @ctx: the LR context to free.
2575  *
2576  * The real context freeing is done in i915_gem_context_free: this only
2577  * takes care of the bits that are LRC related: the per-engine backing
2578  * objects and the logical ringbuffer.
2579  */
2580 void intel_lr_context_free(struct intel_context *ctx)
2581 {
2582         int i;
2583
2584         for (i = I915_NUM_ENGINES; --i >= 0; ) {
2585                 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2586                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2587
2588                 if (!ctx_obj)
2589                         continue;
2590
2591                 if (ctx == ctx->i915->kernel_context) {
2592                         intel_unpin_ringbuffer_obj(ringbuf);
2593                         i915_gem_object_ggtt_unpin(ctx_obj);
2594                         i915_gem_object_unpin_map(ctx_obj);
2595                 }
2596
2597                 WARN_ON(ctx->engine[i].pin_count);
2598                 intel_ringbuffer_free(ringbuf);
2599                 drm_gem_object_unreference(&ctx_obj->base);
2600         }
2601 }
2602
2603 /**
2604  * intel_lr_context_size() - return the size of the context for an engine
2605  * @ring: which engine to find the context size for
2606  *
2607  * Each engine may require a different amount of space for a context image,
2608  * so when allocating (or copying) an image, this function can be used to
2609  * find the right size for the specific engine.
2610  *
2611  * Return: size (in bytes) of an engine-specific context image
2612  *
2613  * Note: this size includes the HWSP, which is part of the context image
2614  * in LRC mode, but does not include the "shared data page" used with
2615  * GuC submission. The caller should account for this if using the GuC.
2616  */
2617 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2618 {
2619         int ret = 0;
2620
2621         WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2622
2623         switch (engine->id) {
2624         case RCS:
2625                 if (INTEL_INFO(engine->dev)->gen >= 9)
2626                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2627                 else
2628                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2629                 break;
2630         case VCS:
2631         case BCS:
2632         case VECS:
2633         case VCS2:
2634                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2635                 break;
2636         }
2637
2638         return ret;
2639 }
2640
2641 /**
2642  * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2643  * @ctx: LR context to create.
2644  * @ring: engine to be used with the context.
2645  *
2646  * This function can be called more than once, with different engines, if we plan
2647  * to use the context with them. The context backing objects and the ringbuffers
2648  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2649  * the creation is a deferred call: it's better to make sure first that we need to use
2650  * a given ring with the context.
2651  *
2652  * Return: non-zero on error.
2653  */
2654
2655 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2656                                     struct intel_engine_cs *engine)
2657 {
2658         struct drm_device *dev = engine->dev;
2659         struct drm_i915_gem_object *ctx_obj;
2660         uint32_t context_size;
2661         struct intel_ringbuffer *ringbuf;
2662         int ret;
2663
2664         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2665         WARN_ON(ctx->engine[engine->id].state);
2666
2667         context_size = round_up(intel_lr_context_size(engine), 4096);
2668
2669         /* One extra page as the sharing data between driver and GuC */
2670         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2671
2672         ctx_obj = i915_gem_alloc_object(dev, context_size);
2673         if (!ctx_obj) {
2674                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2675                 return -ENOMEM;
2676         }
2677
2678         ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2679         if (IS_ERR(ringbuf)) {
2680                 ret = PTR_ERR(ringbuf);
2681                 goto error_deref_obj;
2682         }
2683
2684         ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2685         if (ret) {
2686                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2687                 goto error_ringbuf;
2688         }
2689
2690         ctx->engine[engine->id].ringbuf = ringbuf;
2691         ctx->engine[engine->id].state = ctx_obj;
2692
2693         if (ctx != ctx->i915->kernel_context && engine->init_context) {
2694                 struct drm_i915_gem_request *req;
2695
2696                 req = i915_gem_request_alloc(engine, ctx);
2697                 if (IS_ERR(req)) {
2698                         ret = PTR_ERR(req);
2699                         DRM_ERROR("ring create req: %d\n", ret);
2700                         goto error_ringbuf;
2701                 }
2702
2703                 ret = engine->init_context(req);
2704                 if (ret) {
2705                         DRM_ERROR("ring init context: %d\n",
2706                                 ret);
2707                         i915_gem_request_cancel(req);
2708                         goto error_ringbuf;
2709                 }
2710                 i915_add_request_no_flush(req);
2711         }
2712         return 0;
2713
2714 error_ringbuf:
2715         intel_ringbuffer_free(ringbuf);
2716 error_deref_obj:
2717         drm_gem_object_unreference(&ctx_obj->base);
2718         ctx->engine[engine->id].ringbuf = NULL;
2719         ctx->engine[engine->id].state = NULL;
2720         return ret;
2721 }
2722
2723 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2724                             struct intel_context *ctx)
2725 {
2726         struct intel_engine_cs *engine;
2727
2728         for_each_engine(engine, dev_priv) {
2729                 struct drm_i915_gem_object *ctx_obj =
2730                                 ctx->engine[engine->id].state;
2731                 struct intel_ringbuffer *ringbuf =
2732                                 ctx->engine[engine->id].ringbuf;
2733                 void *vaddr;
2734                 uint32_t *reg_state;
2735
2736                 if (!ctx_obj)
2737                         continue;
2738
2739                 vaddr = i915_gem_object_pin_map(ctx_obj);
2740                 if (WARN_ON(IS_ERR(vaddr)))
2741                         continue;
2742
2743                 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2744                 ctx_obj->dirty = true;
2745
2746                 reg_state[CTX_RING_HEAD+1] = 0;
2747                 reg_state[CTX_RING_TAIL+1] = 0;
2748
2749                 i915_gem_object_unpin_map(ctx_obj);
2750
2751                 ringbuf->head = 0;
2752                 ringbuf->tail = 0;
2753         }
2754 }